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This thesis examines the effect of stock-level liquidity and systematic liquidity risk on stock 

excess returns in the Frankfurt Stock Exchange. Additionally, systematic liquidity risk is 

examined for a time trend. This study uses two proxies for liquidity, PQS to measure the 

quoted bid-ask spread and AdjILLIQ to measure price impact, enabling comparison of the 

results between the two proxies. The sample consists of all stocks quoted at the Frankfurt 

Stock Exchange between 01/2000 and 12/2018. Methodologically, a variety of prior studies 

are followed (Lee, 2011; Kim and Lee, 2014; Saad and Samet, 2015; Vu, Chai, and Do, 

2015). Conditional, time-varying liquidity risks are estimated at the portfolio level with a 

quadvariate DCC-GARCH(1,1) estimator. The liquidity risks measured at the portfolio level 

are used to estimate the pricing of liquidity risk at the stock-level. Pricing is examined by 

using a fixed effects panel regression to estimate a conditional version of the LCAPM of 

Acharya and Pedersen (2005). 

 

The results suggest that a hypothesized illiquidity premium is subsumed by other factors, 

such as size and the book-to-market ratio. Return premia are found for stocks which: (i) 

become illiquid with the market, (ii) earn lower returns during illiquid markets, and (iii) are 

illiquid during down markets. Total annualized premia for systematic liquidity risk are 3.07 

percent using AdjILLIQ and 3.66 percent using PQS. No time trend is found in liquidity risk. 

The results are generally similar between the proxies. Premia (i) and (iii) are robust to an 

alternative method in Fama-MacBeth (1973) regressions, and the results concerning AdjIL-

LIQ are robust to holding period. Dividing the sample into size groups implies that pricing 

of liquidity risk may vary between small, medium-sized, and large stocks. 
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Tämä pro gradu -tutkielma tutkii osakkeen likviditeetin sekä systemaattisen likviditeettiris-

kin vaikutusta osakkeiden ylituottoihin Frankfurtin pörssissä. Lisäksi tarkastellaan, onko lik-

viditeettiriskissä havaittavaa trendiä. Tutkimuksessa käytetään kahta likviditeetin mittaria, 

PQS ja AdjILLIQ, joka mahdollistaa tulosten vertailun mittareiden välillä. Tutkimuksen ai-

neisto kattaa kaikki Frankfurtin pörssissä noteeratut osakkeet aikavälillä 01/2000-12/2018. 

Tutkielma mukailee metodologisesti useita aiempia tutkimuksia (Lee, 2011; Kim ja Lee, 

2014; Saad ja Samet, 2015; Vu, Chai ja Do, 2015). Ehdollisia, ajassa muuttuvia likviditeet-

tiriskejä mallinnetaan portfoliotasolla monimuuttujaisella DCC-GARCH(1,1)-mallilla. Port-

foliotasolla mallinnettuja likviditeettiriskejä käytetään likviditeettiriskin hinnoittelun arvi-

oinnissa osaketasolla. Hinnoittelua tutkitaan arvioimalla Acharyan ja Pedersenin (2005) lik-

viditeettimukautettu CAPM-malli kiinteiden vaikutusten paneeliregressiolla. 

 

Tulokset vihjaavat, että hypotesoitu epälikvidien osakkeiden tuottopreemio peittyy muiden 

muuttujien kuten markkina-arvon ja B/M-luvun vaikutuksiin. Tuottopreemio löytyy osak-

keista jotka: (i) ovat epälikvidejä epälikvideillä markkinoilla, (ii) tarjoavat alhaisempia tuot-

toja epälikvideillä markkinoilla ja (iii) ovat epälikvidejä, kun markkinoiden tuotto on alhai-

nen. Annualisoidut preemiot systemaattiselle likviditeettiriskille kokonaisuudessaan ovat 

3.07 (AdjILLIQ) ja 3.66 prosenttia (PQS). Likviditeettiriskissä ei ole havaittavissa trendiä. 

Tulokset ovat yleisesti ottaen samankaltaisia likviditeetin mittareiden välillä. Preemiot (i) ja 

(iii) ovat robusteja vaihtoehtoiselle estimaatiomenetelmälle (Fama ja MacBeth, 1973) ja 

AdjILLIQ:lla mitattuna myös eri pitoajoille. Aineiston jaotteleminen kokoluokkien mukaan 

vihjaa, että likviditeettiriskin hinnoittelu vaihtellee pienten, keskisuurien ja suurien osakkei-

den välillä. 
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1 INTRODUCTION 

 

Liquidity is a complex and elusive concept, defined in the context of asset pricing as the 

ability to trade a significant quantity of a security at a low cost within a short time (Holden, 

Jacobsen, and Subrahmanyam, 2013). Kyle (1985) notes similar characteristics in defining 

market liquidity. Tight markets enable turning around a position within a short timeframe, 

whereas deep markets are able to accommodate large orders with little price response, and 

resilient markets recover quickly from random, uninformative shocks. Conversely, illiquid-

ity can be considered in terms of costs (Amihud and Mendelson, 1991). The bid-ask spread 

increases in illiquidity and entails a price concession for sellers and a price premium for 

buyers. Furthermore, market impact costs entail larger price concessions and premia for 

larger orders. Lastly, the inability to find a suitable trading partner or favorable trading terms 

may impose delay and search costs. All of the above definitions share the notions of cost, 

quantity, and time, highlighting the complexity of the phenomenon. As a multi-faceted phe-

nomenon, liquidity is of interest to all market participants. Traders, institutional investors, 

capital issuers, the exchanges, as well as regulators and policy makers all benefit from liquid 

markets, which tend to be well-functioning, less volatile, and facilitate efficient risk sharing 

(Harris, 2003; Foucault, Pagano, and Röell, 2013). 

 

Literature on the relationship between liquidity and asset returns is extensive and can be 

divided into two strands: one focusing on the asset-specific liquidity level and another on 

systematic liquidity risk. Regarding liquidity level and asset returns, Amihud and Mendelson 

(1986) both theorize and provide evidence that returns increase in illiquidity. Further evi-

dence of the illiquidity premium is abundant (e.g. Brennan and Subrahmanyam, 1996; 

Eleswarapu, 1997; Amihud, 2002). The literature focusing on systematic liquidity risk has 

identified three risks: commonality in liquidity, flight to liquidity, and the depressed wealth 

effect. Commonality in liquidity relates to the co-movement of asset liquidity with liquidity 

at a larger scale, such as at the industry or market level and even internationally. Evidence 

of the phenomenon is extensive both in the US market (Chordia, Roll, and Subrahmanyam, 

2000; Huberman and Halka, 2001; Korajczyk and Sadka, 2008) and internationally (Fabre 

and Frino, 2004; Brockman, Chung, and Pérignon, 2009; Foran, Hutchinson, and O’Sulli-

van, 2015). Flight to liquidity refers to a phenomenon where, during an illiquid market, in-

vestors seek to substitute illiquid or otherwise undesirable assets with more liquid or 
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desirable ones, consequently causing a greater decline in the value of the undesirable assets. 

US evidence of the phenomenon is abundant (Amihud, 2002; Pástor and Stambaugh, 2003; 

Korajczyk and Sadka, 2008), whereas Liang and Wei (2012) find evidence in further 10 

developed markets. Lastly, the depressed wealth effect refers to a situation where an asset 

becomes illiquid during a declining market. During market downturns, investors tend to face 

wealth problems and seek to exit their positions. Holding an illiquid asset in such a situation 

may exacerbate the wealth problems. Again, US evidence is extensive (Acharya and Peder-

sen, 2005; Hagströmer, Hansson, and Nilsson, 2013; Kim and Lee, 2014), whereas interna-

tional studies mainly group markets by region (Lee, 2011) or degree of development (Lee, 

2011; Saad and Samet, 2015). 

 

Extensive literature points to time-variance of the phenomena. Amihud et al. (2015) find the 

illiquidity premium to increase in declining markets. Commonality in liquidity has also been 

found to increase during periods of volatility and market decline (Karolyi, Lee, and van Dijk, 

2012; Johann et al., 2019). More generally, Vu, Chai, and Do (2015) find the premium for 

aggregate liquidity risk to be substantially higher in bearish markets. Although time-variance 

of liquidity risk is well-documented, Hagströmer, Hansson, and Nilsson (2013) do not find 

a decreasing trend in liquidity risk premia, nor do Saad and Samet (2015) find decreasing 

trends in liquidity risks. 

 

The liquidity-adjusted capital asset pricing model (LCAPM) of Acharya and Pedersen 

(2005) is the first theoretical model to incorporate liquidity level and the three liquidity risks 

into a unified framework. Moreover, the LCAPM allows for conditional estimation whereby 

the liquidity risks are allowed to vary over time. The model has been used in empirical stud-

ies both on the US market (Acharya and Pedersen, 2005; Hagströmer, Hansson, and Nilsson, 

2013; Kim and Lee, 2014) and internationally (Lee, 2011; Saad and Samet, 2015; Vu, Chai, 

and Do, 2015), both in conditional and unconditional specifications. 

 

1.1 Research gap and objectives 

 

Despite its prominence among stock markets, literature on systematic liquidity risk in the 

German market remains relatively scarce. The literature documents an illiquidity premium 

among German stocks (Hagemeister and Kempf, 2010; Koch, 2010). Liang and Wei (2010) 
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in turn find a premium related to flight to liquidity. Commonality in liquidity has also been 

found among German stocks, and between US and German markets (Kempf and Mayston, 

2008; Brockman, Chung, and Pérignon, 2009; Johann et al., 2019). Moreover, commonality 

has been found to vary over time and to increase during market declines (Kempf and 

Mayston, 2008; Johann et al., 2019). However, none of the studies report a pricing implica-

tion. The unified framework of the LCAPM is applied to German stocks unconditionally by 

Lee (2011) and conditionally by Saad and Samet (2015). Hagemeister and Kempf (2010, p. 

156) also estimate the full LCAPM unreported, and state that only one of the liquidity betas 

is significantly different from zero at the 1 percent level. 

 

This study fills a gap by estimating a conditional version the LCAPM using a sample of all 

stocks listed in the Frankfurt Stock Exchange (FSE) between 1.1.2000 and 31.12.2018. The 

FSE is a natural choice as it is by far the largest exchange in the country (Deutsche Börse 

Group, 2020). Moreover, the 19-year timeframe is long enough to capture the time before, 

during, and after the financial crisis of 2008. This study uses two illiquidity proxies: closing 

percent quoted spread (PQS) of Chung and Zhang (2014) and the adjusted Amihud (2002) 

proxy (AdjILLIQ) of Kang and Zhang (2014) to proxy the spread and price impact, respec-

tively.  

 

The method of this study follows various prior studies. Similar to Lee (2011) and Kim and 

Lee (2014), stocks are grouped into portfolios based on pre-ranking betas. Following Saad 

and Samet (2015), the time-varying conditional liquidity risks are estimated at the portfolio 

level using the dynamic conditional correlation and generalized autoregressive conditional 

heteroskedasticity (DCC-GARCH) estimator of Engle (2002). This approach allows for the 

liquidity risks to vary over time, which is presumable based on prior findings. Possible trends 

in the liquidity risks are examined with trend tests of Vogelsang (1998) and Bunzel and 

Vogelsang (2005), similar to Saad and Samet (2015). Following Lee (2011) and Kim and 

Lee (2014), the time-varying conditional liquidity risks are assigned to the portfolio constit-

uents, and the LCAPM is estimated using individual stocks as test assets. This approach 

lends power to the test and allows controlling for stock-specific characteristics. Following 

Vu, Chai, and Do (2015), the LCAPM specifications are estimated with a fixed effects panel 

regression to avoid potentially biased estimates of the conventional Fama and MacBeth 

(1973) regressions.  
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This study aims to answer the following questions: 

 

1) Is the stock-specific liquidity level and systematic liquidity risk priced in the FSE? 

2) Is there a time trend in the liquidity risks? 

3) Do the results differ between the illiquidity proxies used? 

 

The first question determines whether investors are compensated for holding illiquid assets 

and seeks to confirm the findings of Koch (2010) and Hagemeister and Kempf (2010). More-

over, it sheds light on whether systematic liquidity risks are priced, and consequently, 

whether investors should consider said risks in portfolio formation. The answers partly ex-

tend the findings of Johann et al. (2019) with a pricing implication related to commonality 

and add detail to the findings of Saad and Samet (2015) with country-specific estimates. In 

estimating the pricing of systematic liquidity risks, this study also adds to the literature by 

considering the free float of a stock, which has an idiosyncratic effect on liquidity through 

limiting the number of shares available for trading. Therefore, its confounding effect on the 

pricing of the liquidity risks is controlled for. As this study examines time-varying liquidity 

risks, the second question provides further insight on the time-variance. Lastly, the use of 

two illiquidity proxies allows for a comparison between the measures. This is of particular 

interest because the LCAPM considers the illiquidity cost as a cost of sale. PQS proxies this 

directly, whereas AdjILLIQ does not but is rather assumed to be a valid proxy (Acharya and 

Pedersen, 2005). Therefore, similar results between the proxies can be seen as a validation 

of this assumption. 

 

1.2 Structure 

 

The rest of this study is structured as follows. Section 2 describes the theoretical background, 

gives an overview of prior literature on the topic, and presents the hypotheses of this study. 

Section 3 describes the sampling and methodology. Empirical results related to each step in 

the methodology as well as robustness tests of the pricing of liquidity risk are presented in 

Section 4. Section 5 discusses the economic implications of the results, as well as their gen-

eralizability and limitations. Section 6 concludes.
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2 THEORETICAL BACKGROUND 

 

2.1 Defining liquidity 

 

Liquidity is a complex and elusive concept. In the context of asset pricing, Holden, Jacobsen, 

and Subrahmanyam (2013, p. 4) define it shortly as the ability to trade a significant quantity 

of a security at a low cost within a short time. This highlights the complexity as quantity, 

cost, and time are to be considered. 

 

To better understand the nature of liquidity and illiquidity costs, it is useful to consider the 

market as the interaction of groups of liquidity suppliers and liquidity demanders. The li-

quidity suppliers offer to buy assets at the bid price and sell assets at the ask price. Con-

versely, liquidity demanders agree to sell assets at the bid price and buy at the ask price. 

Both groups are subject to illiquidity costs in transacting. Aside from direct, exogenous 

transaction costs, such as brokerage fees and order processing costs, Amihud and Mendelson 

(1991, pp. 56-57) identify three types of illiquidity costs. Firstly, the bid-ask spread is in-

versely related to liquidity; liquid assets can be bought or sold at prices close to each other. 

Secondly, market impact costs are incurred when a transaction for a large quantity affects 

the transaction price. Large orders typically entail a larger price concession when selling or 

a larger price premium when buying. Lastly, delay and search costs are incurred when de-

laying a trade to find a counterparty or in anticipation of better trading terms, such as a better 

price or a lower market impact cost. 

 

In defining market liquidity, Kyle (1985, p. 1316) highlights three key characteristics. Tight-

ness of the market refers to the costs associated with turning around a position within a short 

timeframe. This touches upon the bid-ask spread as well as the delay and search costs dis-

cussed by Amihud and Mendelson (1991). Market depth refers to the price response to large 

orders; a deep market is able to accommodate a large order with relatively little price re-

sponse. The link to the market impact costs of Amihud and Mendelson (1991) is evident. 

Lastly, the resiliency of a market refers to the speed of price recovery from random, unin-

formative shocks. 
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Generally, liquidity is a sign of a well-functioning market and as such, facilitates efficient 

risk sharing. Seeing that it is a broad concept, it is relevant to all market participants. For 

traders, liquidity is of interest simply because illiquid assets are costlier (Foucault, Pagano, 

and Röell, 2013, p. 4). In terms of the bid-ask spread, illiquid assets sell for less and are 

costlier to buy. Moreover, especially for institutional investors who generally trade in large 

quantities, delay and search costs as well as market impact costs are a consideration. Liquid-

ity is also of interest to capital issuers. As liquidity affects security prices, the cost of capital 

and consequent capital expenditure decisions of the issuers may also be affected (Foucault, 

Pagano, and Röell, 2013, p. 5). Liquidity is also of interest to the exchanges themselves, as 

it stimulates trading activity and attracts investors. And lastly, regulators and policy makers 

should prefer liquidity because liquid markets tend to be less volatile (Harris, 2003, p. 394). 

 

2.2 Measuring liquidity 

 

As liquidity is a broad concept, it is difficult to capture in a single measure (Amihud, 2002). 

Consequently, a large number of liquidity measures have been proposed in the literature. 

Conceptually, the measures can be categorized into two distinct groups. Spread-based 

measures measure the direct cost of a trade and generally relate to the tightness of the market, 

whereas price impact measures focus on price response to trading volume, and generally 

relate to market depth and resiliency. Moreover, the two groups of measures can further be 

divided into two categories: high-frequency measures based on intraday transaction data and 

low-frequency proxies which are generally based on daily data. 

 

By design, high-frequency measures have an advantage in terms of precision as they account 

for each individual transaction. A downside to their use is the scarcity of data required. For 

the US market, data is generally available only from 1983 onwards, and many countries lack 

data altogether (Goyenko, Holden, and Trzcinka, 2009, p. 153). For German stocks, high-

frequency data is available for research over the period of 1999-2013.1 Moreover, construct-

ing long time series of illiquidity measures using intraday data, where available, can be com-

putationally heavy due to the large amount of transactions (Amihud, 2002, p. 32). 

 
1 Market Microstructure Database Xetra (MMDB-Xetra) is provided by the Center for Financial Studies (CFS) 

at Goethe University Frankfurt am Main. The data set covers the years 1999-2013 and contains various high-

frequency liquidity measures for all CDAX index constituents that are traded on Xetra. Xetra is an electronic 

trading venue of the Frankfurt Stock Exchange. For the database, see CFS (2014). 
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Low-frequency proxies are naturally less precise, as typically closing prices and end-of-day 

figures are used. As such, they do not directly measure transaction costs but rather approxi-

mate the illiquidity cost (Goyenko, Holden, and Trzcinka, 2009). A natural advantage of the 

low-frequency proxies is the general availability of data for long periods of time and the 

relative ease in constructing long time series from daily observations. As Goyenko, Holden, 

and Trzcinka (2009) point out, low-frequency proxies generally tend to measure liquidity, 

providing a compromise between precision, computational ease, and availability of data. 

This study employs one low-frequency proxy each for spread and price impact. The follow-

ing subsections give a brief overview of each class of measures, justify the choice of proxy, 

and describe the chosen proxies in more detail. 

 

2.2.1 Spread-based measures 

 

Perhaps the simplest and most widely used high-frequency spread-based measure is the ef-

fective spread. It is commonly calculated as two times the absolute difference between the 

transaction price and preceding bid-ask midpoint (Chordia, Roll, and Subrahmanyam, 2000; 

Goyenko, Holden, and Trzcinka, 2009). This represents the cost of a roundtrip on the asset, 

assuming the midpoint remains unchanged. The effective spread can also be expressed in 

relative terms, proportional to, for example, the price of the actual transaction (Chordia, Roll, 

and Subrahmanyam, 2000). Seeing that a proportional effective spread is ideal for compar-

ison between securities, it is used as a benchmark for selecting a low-frequency proxy for 

this study. 

 

Among low-frequency proxies, the measure of Roll (1984) is widely used (e.g. Lesmond, 

2005; Kim and Lee, 2014). In short, Roll proxies the effective spread based on the auto-

covariance of price changes. The model has also seen several extensions. Hasbrouck (2004) 

computes a measure (Gibbs) by taking a Bayesian estimation approach and using a Gibbs 

sampler to estimate a variant of the Roll measure. The measure of Roll is also extended by 

Holden (2009), by using the framework of Huang and Stoll (1997) to combine the autocovar-

iance of price changes with observable price clustering. The measure is commonly referred 

to as Holden. Holden (2009) also uses the observable price clustering separately to propose 

a measure called effective tick. Two conceptually independent proxies are also proposed by 

Lesmond, Ogden, and Trzcinka (1999). Their proxy commonly referred to as LOT measures 
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effective spread as the difference in percentage buying and selling costs, whereas Zeros is 

simply a ratio of days with zero returns to total trading days. Most recently, Chung and 

Zhang (2014) propose a simple closing percent quote spread (PQS), the spread proportional 

to the midpoint, to approximate quoted spreads. 

 

Goyenko, Holden, and Trzcinka (2009) compare the abovementioned low-frequency prox-

ies, with the exception of PQS, to their high-frequency counterparts using US market data. 

In terms of both cross-sectional and time series correlation, Holden dominates the sample, 

with effective tick and Gibbs as distant runners up. In a similar comparison of Chung and 

Zhang (2014), Holden is excluded, but PQS dominates both effective tick and Gibbs. The 

results are largely similar in Fong, Holden, and Trzcinka (2017), where PQS dominates ef-

fective tick. Although it appears that Holden performs well where tested, it is acknowledged 

that it is very computationally intensive. Therefore, PQS is chosen as the spread-based proxy 

for this study due to computational ease and good performance. 

 

2.2.2 Price impact measures 

 

In terms of high-frequency price impact measures, the seminal paper of Kyle (1985) intro-

duces Lambda as a measure of price impact in an equilibrium. The Lambda, measured as the 

slope coefficient of a regression of price change on trading volume, remains constant in the 

model of Kyle (1985). Hasbrouck (2009) takes a similar approach and estimates Lambda by 

periodic regressions of log price changes against signed square root Dollar trading volume. 

Commonly 5-minute time intervals are used (Goyenko, Holden, and Trzcinka, 2009; 

Hasbrouck, 2009). This measures the cost of demanding a certain amount of liquidity over 

a five-minute period. Another pertinent high-frequency measure is the 5-minute price impact 

proposed by Goyenko, Holden, and Trzcinka (2009), measured as the change in the log bid-

ask midpoints over a 5-minute interval.2 The choice of a low-frequency proxy for this study 

is based on correlation to the Lambda of Hasbrouck (2009). 

 

 
2 Goyenko, Holden, and Trzcinka also compute a static price impact, the data for which is available due to 

Securities and Exchange Commission (SEC) Rule 605. The measure is not considered in this study, as rules in 

other markets may differ from SEC rules. 
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The literature regarding low-frequency price impact proxies is relatively scarce compared to 

spread-based proxies. Datar, Naik, and Radcliffe (1998) simply use a monthly turnover rate 

to proxy liquidity. Similarly, Liu (2006) also considers only trading volume in computing a 

monthly standardized turnover-adjusted number of zero-volume trading days. Pástor and 

Stambaugh (2003, pp. 646-647) adopt the slope coefficient approach and measure Gamma 

as the ordinary least squares (OLS) slope coefficient of a regression of returns against pre-

vious period returns, excess returns, and trading volume. This effectively measures the re-

versal of the order flow shock of the previous day. Amihud (2002) proxies illiquidity (ILLIQ) 

as the absolute percentage return divided by trading volume. The proxy has become widely 

used and several variations of ILLIQ have been proposed in the literature. Goyenko, Holden, 

and Trzcinka (2009) formulate an extended ILLIQ as a spread proxy divided by trading vol-

ume. Similarly, they define a Roll Impact measure as the Roll proxy divided by trading vol-

ume. 

 

Goyenko, Holden, and Trzcinka (2009) find both ILLIQ and its extensions to perform best 

compared to their high-frequency counterparts both in terms of cross-sectional and time se-

ries correlation. However, their results pertain to the US market, which is much more ac-

tively traded than other markets. In an international setting, Fong, Holden, and Trzcinka 

(2017) show that ILLIQ performs equally well with other low-frequency proxies in terms of 

correlation, but none of them are able to capture the level of the Lambda of Hasbrouck 

(2009). Importantly, Kang and Zhang (2014) note that ILLIQ is ideal mainly for actively 

traded markets. As the proxy requires days with trading volume, its accuracy in proxying 

illiquidity in inactively traded markets, or differentiating between actively and inactively 

traded stocks, is limited. Therefore, Kang and Zhang (2014) propose an adjusted proxy 

(AdjILLIQ), multiplying the original proxy by the proportion of non-trading days. In the 

comparisons of Kang and Zhang (2014), AdjILLIQ generally outperforms ILLIQ, especially 

in thinly traded markets. An advantage of the proxy is its ability to combine the good per-

formance of ILLIQ and to further consider the proportion of non-trading days. As the sample 

of this study contains a large proportion of small, thinly traded stocks, AdjILLIQ is a sound 

choice. 
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2.2.3 Proxies chosen for this study 

 

Based on Section 2.2.1, PQS is chosen as the spread-based proxy for this study due to good 

performance and ease of computation. It is defined by Chung and Zhang (2014, p. 97) as 

 

𝑃𝑄𝑆𝑚
𝑖 =

1

𝑁𝑚
𝑖

∑
𝐴𝑠𝑘𝑚,𝑑

𝑖 − 𝐵𝑖𝑑𝑚,𝑑
𝑖

𝑀𝑚,𝑑
𝑖

𝑁𝑚
𝑖

𝑑=1

, (1) 

 

where N is the number of days with data available for stock i in month m, and M is the mean 

of closing ask and bid prices for stock i on day d, in month m. Similar to Chung and Zhang 

(2014), PQS is computed for each stock-month with a minimum of 10 observations. As a 

larger spread indicates illiquidity, the values of PQS increase in illiquidity. Moreover, the 

values are bounded from below by 0, as bid-ask pairs with a negative spread are omitted as 

errors. As PQS proxies the proportional effective spread, it relates to the direct cost associ-

ated with a trade of any size. Brennan and Subrahmanyam (1996) liken this to a fixed com-

ponent of the trading cost. Moreover, in terms of market characteristics, the proxy relates to 

the tightness of the market. As transaction size is not a consideration, the results obtained 

using PQS should be of particular interest to the private investors whose orders are not large 

enough to affect prices.  

 

As explained in Section 2.2.2, AdjILLIQ is chosen as the price impact proxy for this study. 

The proxy is based on ILLIQ, which is defined by Amihud (2002, p. 34) as 

 

𝐼𝐿𝐿𝐼𝑄𝑚
𝑖 =

1

𝑁𝑚
𝑖

∑
|𝑅𝑒𝑡𝑚,𝑑

𝑖 |

𝑉𝑜𝑙𝑚,𝑑
𝑖

𝑁𝑚
𝑖

𝑑=1

, (2) 

 

where N is the number of days with data available for stock i in month m. Ret and Vol refer 

to the absolute percentage return and Euro trading volume for stock i on day d, in month m, 

respectively. Kang and Zhang (2014) extend the proxy with a ZeroVol modifier defined as 

 

𝑍𝑒𝑟𝑜𝑉𝑜𝑙 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 𝑤𝑖𝑡ℎ 𝑧𝑒𝑟𝑜 𝑣𝑜𝑙𝑢𝑚𝑒𝑠 𝑖𝑛 𝑎 𝑚𝑜𝑛𝑡ℎ

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑑𝑖𝑛𝑔 𝑑𝑎𝑦𝑠 𝑖𝑛 𝑎 𝑚𝑜𝑛𝑡ℎ
. (3) 
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The modifier is notably similar to Zeros proposed by Lesmond, Ogden, and Trzcinka (1999). 

Kang and Zhang (2014, p. 55) further log transform the original measure, and formulate 

AdjILLIQ as 

 

𝐴𝑑𝑗𝐼𝐿𝐿𝐼𝑄𝑚
𝑖 = [𝑙𝑛 (

1

𝑁𝑚
𝑖

∑
|𝑅𝑒𝑡𝑚,𝑑

𝑖 |

𝑉𝑜𝑙𝑚,𝑑
𝑖

𝑁𝑚
𝑖

𝑑=1

)] × (1 + 𝑍𝑒𝑟𝑜𝑉𝑜𝑙𝑚
𝑖 ). (4) 

 

N remains the number of days with data available for stock i in month m. Ret and Vol are the 

absolute percentage returns and Euro trading volume (in thousands) of stock i on day d, in 

month m.3 Therefore, AdjILLIQ in this study represents a percentage cost per €1000 of trad-

ing volume. As such, the values begin from 0 and increase in illiquidity. Similar to Kang and 

Zhang (2014), the proxy is computed for each stock-month with a minimum of 5 trading 

days. Considering Equations (2) and (4), it is evident that the measure is highly correlated 

with ILLIQ; minor differences may occur from the log transformation, but the most drastic 

differences are due to the ZeroVol multiplier.  

 

As AdjILLIQ proxies the cost per volume, it can be likened to the variable component in 

trading costs discussed in Brennan and Subrahmanyam (1996) and to the market character-

istics of depth and resiliency. The results obtained using AdjILLIQ should therefore be of 

particular interest to the institutional investors whose orders are large enough to affect prices. 

 

2.3 The liquidity-adjusted capital asset pricing model 

 

In the traditional capital asset pricing model (CAPM), the expected return of an asset is de-

pendent on a systematic risk factor: the covariance between asset and market returns. The 

liquidity-adjusted CAPM (LCAPM) of Acharya and Pedersen (2005) complements this 

model by incorporating a stochastic illiquidity cost and consequent liquidity risk. In this 

model, the expected return of an asset is dependent on the covariances of its returns and 

illiquidity with the returns and illiquidity of the market. The model accounts for a net sys-

tematic risk which includes illiquidity, and which can be further decomposed into a 

 
3 It should be noted that the log transformation denoted ln is computed as ln(1+ILLIQ). 
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conventional market beta adjusted for liquidity, and three illiquidity betas corresponding to 

commonality in liquidity, flight to liquidity, and the depressed wealth effect.  

 

Acharya and Pedersen (2005) describe a simple overlapping generations economy where 

agents under a wealth constraint maximize their expected utility from trading securities. 

Thus, the agents buy assets at time t and must sell all their assets at time t+1. Similar to the 

conventional CAPM, the agents are assumed to be risk-averse and able to lend or borrow at 

a risk-free rate (Sharpe, 1964; Lintner, 1965). The frictionless economy of the CAPM is 

extended to include a stochastic trading cost. Essentially, the LCAPM seeks to explain how 

the expected gross return of an asset is dependent of its relative illiquidity cost. The two are 

defined as 

 

𝑟𝑡
𝑖 =

𝐷𝑡
𝑖 + 𝑃𝑡

𝑖

𝑃𝑡−1
𝑖

(5) 

 

and 

 

𝑐𝑡
𝑖 =

𝐶𝑡
𝑖

𝑃𝑡−1
𝑖

, (6) 

 

where rt
i is the expected gross return of asset i at time t, ct

i the relative illiquidity cost, Dt
i a 

stochastic dividend, and Pt
i the ex-dividend price.4 Market measures of the two, rt

M and ct
M, 

respectively, are computed as averages of the constituents. The LCAPM models the expected 

net return of a security as 

 

𝐸𝑡(𝑟𝑡+1
𝑖 − 𝑐𝑡+1

𝑖 ) = 𝑟𝑓 + 𝜆𝑡

𝑐𝑜𝑣𝑡(𝑟𝑡+1
𝑖 − 𝑐𝑡+1

𝑖 , 𝑟𝑡+1
𝑀 − 𝑐𝑡+1

𝑀 )

𝑣𝑎𝑟𝑡(𝑟𝑡+1
𝑀 − 𝑐𝑡+1

𝑀 )
, (7) 

 

where rf is the return of a risk-free asset and λt is the time-varying risk premium defined as 

 

 
4 The illiquidity cost in LCAPM represents a cost of selling. It is noted that AdjILLIQ does not measure this 

directly. Similar to Acharya and Pedersen (2005) who employ ILLIQ, AdjILLIQ is assumed to be an adequate 

proxy. 
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𝜆𝑡 = 𝐸𝑡(𝑟𝑡+1
𝑀 − 𝑐𝑡+1

𝑀 − 𝑟𝑓). (8) 

 

The subscript t implies that expectations are conditional on information available up to time 

t. As noted by Acharya and Pedersen (2005), it is evident from Equation (7) that the condi-

tional CAPM of Jagannathan and Wang (1996) holds for expected net returns and can thus 

account for the covariances. Moreover, it is evident that the only adjustment of Acharya and 

Pedersen (2005) is to incorporate trading costs. Equivalent to Equation (7), the conditional 

expected gross return of a security can be expressed as 

 

𝐸𝑡(𝑟𝑡+1
𝑖 ) = 𝑟𝑓 + 𝐸𝑡(𝑐𝑡+1

𝑖 ) + 𝜆𝑡

𝑐𝑜𝑣𝑡(𝑟𝑡+1
𝑖 , 𝑟𝑡+1

𝑀 )

𝑣𝑎𝑟𝑡(𝑟𝑡+1
𝑀 − 𝑐𝑡+1

𝑀 )
+ 𝜆𝑡

𝑐𝑜𝑣𝑡(𝑐𝑡+1
𝑖 , 𝑐𝑡+1

𝑀 )

𝑣𝑎𝑟𝑡(𝑟𝑡+1
𝑀 − 𝑐𝑡+1

𝑀 )
 

−𝜆𝑡

𝑐𝑜𝑣𝑡(𝑟𝑡+1
𝑖 , 𝑐𝑡+1

𝑀 )

𝑣𝑎𝑟𝑡(𝑟𝑡+1
𝑀 − 𝑐𝑡+1

𝑀 )
− 𝜆𝑡

𝑐𝑜𝑣𝑡(𝑐𝑡+1
𝑖 , 𝑟𝑡+1

𝑀 )

𝑣𝑎𝑟𝑡(𝑟𝑡+1
𝑀 − 𝑐𝑡+1

𝑀 )
. (9) 

 

By assuming time-varying conditional covariances, variances, and an equal risk premium 

for all risk factors, Equation (9) can be equivalently formulated as 

 

𝐸(𝑟𝑡
𝑖 − 𝑟𝑡

𝑓
) = 𝐸(𝑐𝑡

𝑖) + 𝜆𝑡𝛽𝑡
1𝑖 + 𝜆𝑡𝛽𝑡

2𝑖 − 𝜆𝑡𝛽𝑡
3𝑖 − 𝜆𝑡𝛽𝑡

4𝑖, (10) 

 

where 

 

𝛽𝑡
1𝑖 =

𝑐𝑜𝑣𝑡(𝑟𝑡
𝑖, 𝑟𝑡

𝑀)

𝑣𝑎𝑟𝑡(𝑟𝑡
𝑀 − 𝑐𝑡

𝑀)
, (11) 

 

𝛽𝑡
2𝑖 =

𝑐𝑜𝑣𝑡(𝑐𝑡
𝑖, 𝑐𝑡

𝑀)

𝑣𝑎𝑟𝑡(𝑟𝑡
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𝛽𝑡
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𝑐𝑜𝑣𝑡(𝑟𝑡
𝑖, 𝑐𝑡

𝑀)
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𝛽𝑡
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𝑐𝑜𝑣𝑡(𝑐𝑡
𝑖, 𝑟𝑡
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. (14) 
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In Equations (11)–(14), β
1i

 measures the covariance of the return of an asset and market 

return, with a liquidity adjustment in the denominator. This corresponds to the conventional 

CAPM market risk factor adjusted for liquidity. The intuition is that investors expect higher 

returns from an asset with a higher sensitivity to market returns. 

 

Commonality in liquidity is measured by β
2i

 as the covariance of the illiquidity of an asset 

and market illiquidity. As indicated by Equation (10), the beta is positively related to ex-

pected returns, meaning that investors expect higher returns from an asset that becomes il-

liquid when the market overall becomes illiquid. This is simply due to a higher illiquidity 

cost for which compensation is required. Although the LCAPM is a one-period model, 

Acharya and Pedersen (2005) postulate that this could potentially apply even in a more gen-

eral setting where investors can choose which assets to sell. In such a setting, investors could 

choose to sell other similar assets with a lower illiquidity cost, unless a return premium is 

paid. 

 

The covariance of the returns of an asset and market illiquidity, which corresponds to the 

risk of flight to liquidity, is measured by β
3i

. During illiquid markets, investors may wish to 

substitute illiquid or otherwise undesirable assets with more liquid or desirable ones, causing 

a greater decline in the value (and a larger negative covariance) of the more illiquid or un-

desirable assets. Therefore, Equation (10) indicates a negative relation to expected returns, 

as investors are willing to accept lower returns from assets which tend to have higher returns 

when the market is illiquid. 

 

Lastly, β
4i

 measures the covariance of the illiquidity of an asset and market returns, which 

corresponds to the depressed wealth effect. A negative covariance would indicate that an 

asset becomes illiquid during down markets. This presents a considerable risk, as investors 

tend to face wealth problems during down markets and consequently want to sell their assets 

(Acharya and Pedersen, 2005). As holding a liquid asset during a down market is valuable, 

the effect of the covariance on expected returns is negative, indicating that investors are 

willing to accept a lower expected return from assets which are liquid during down markets. 
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2.4 Literature review: Liquidity and stock returns 

 

There is extensive literature on the multi-faceted relationship between liquidity and stock 

returns. The following four subsections briefly summarize previous empirical findings re-

lated to the relationship between asset liquidity and returns, as well as the three liquidity 

risks described in the previous section. Much of the literature focuses on the US market, 

international studies are fewer, and literature focusing on the German market is especially 

scarce. 

 

2.4.1 Liquidity level 

 

The idiosyncratic effect of stock liquidity on stock returns is perhaps the most extensively 

studied aspect of liquidity. In an early work, Amihud and Mendelson (1986) propose a theory 

that stock returns increase with illiquidity. They examine the bid-ask spreads of stocks listed 

in the New York Stock Exchange (NYSE) over the period of 1961-1980 and find that stock 

returns indeed increase with illiquidity, implying a premium for holding illiquid stocks. 

Moreover, Amihud and Mendelson (1986) postulate a clientele effect to drive the illiquidity 

premium; investors with longer investment horizons are more inclined to buy illiquid assets, 

consequently affecting their pricing. The clientele effect is further discussed in Amihud and 

Mendelson (1991). Chalmers and Kadlec (1998) further consider the length of the holding 

period in estimating the illiquidity premium. Their study considers US-domiciled stocks 

listed in the American Stock Exchange (AMEX) and NYSE over the period of 1983-1992 

and find a premium for amortized spreads. 

 

The findings of Amihud and Mendelson (1986) are further examined by Eleswarapu and 

Reinganum (1993). Their study considers the bid-ask spreads of NYSE-listed stocks be-

tween 1961 and 1990, and finds a strong seasonality in the illiquidity premium, similar to 

the January effect in the CAPM beta (Tinic and West, 1984). The illiquidity premium is 

reliably priced only in the month of January and indistinguishable from zero in other months 

(Eleswarapu and Reinganum, 1993). Eleswarapu (1997) further extends on the topic by con-

sidering the bid-ask spreads of Nasdaq-listed stocks over the period of 1973-1990. The find-

ings support both Amihud and Mendelson (1986) and Eleswarapu and Reinganum (1993); 

strong support for the illiquidity premium is found throughout the year, with a stronger 
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spread effect in January. Eleswarapu (1997) notes that differences between the results from 

Nasdaq and NYSE may be due to differences in what the quoted spreads represent in each 

exchange. This raises the notion that a simple bid-ask spread may not be an ideal represen-

tation of liquidity, especially in terms of generalizability. Lee (1993) further discusses the 

noisiness of the bid-ask spread and notes that large trades may occur outside the spread, 

whereas small trades may occur within it. 

 

Consequently, Brennan and Subrahmanyam (1996) consider both the spread as well as mar-

ket impact in examining the fixed and variable components of the illiquidity premium, re-

spectively. Their study is in many ways a departure. The market is expanded to cover both 

AMEX and NYSE-listed stocks over the period of 1984-1991. Moreover, price impact is 

included to study the implications of adverse selection as discussed in Kyle (1985), and the 

three risk factors of Fama and French (1993) are controlled for in the estimation. The study 

finds a return premium associated with both the spread and price impact in both exchanges, 

without noticeable seasonality. Evidence supporting the clientele effect of Amihud and Men-

delson (1986; 1991) is limited to the price impact, however. In addition to proposing ILLIQ 

to proxy price impact, Amihud (2002) further examines the illiquidity premium related to 

price impact. The study considers NYSE-listed stocks over the period of 1964-1997 and 

finds an illiquidity premium, even when January is excluded from the sample. 

 

Importantly, empirical studies have been extended to markets outside the notably liquid US 

market. Chan and Faff (2003; 2005) study the illiquidity premium among Australian stocks 

over the period of 1989-1998, using share turnover to measure liquidity. Both studies find 

that returns increase in illiquidity, with the latter study estimating an annualized premium 

well above 20 percent. However, as the authors note, methodological issues in hypothesis 

testing cause difficulty in determining the exact nature of the premium (Chan and Faff, 2005, 

pp. 445-450). The illiquidity premium is also examined in the Tokyo Stock Exchange over 

the period of 1975-2004 by Chang, Faff, and Hwang (2010). The study uses various illiquid-

ity measures including turnover, ILLIQ, Zeros, and the measure of Liu (2006) discussed in 

Sections 2.2.1 and 2.2.2. Overall, the results indicate an illiquidity premium mainly in ex-

pansionary phases of the business cycle and in the pre-1990 portion of the sample. After 

controlling for variability of liquidity, the evidence is strong across business cycles, different 

subperiods, and all sections of the exchange. In another study on Asian markets, Lam and 



24 

 

Tam (2011) study the Hong Kong Stock Exchange over the period of 1981-2004. The study 

employs a total of 9 illiquidity proxies, including turnover, ILLIQ, Gamma, and the measure 

of Liu (2006), and finds returns to increase with illiquidity. Moreover, the study highlights 

markedly varied results between the proxies. Of particular interest to this study are the results 

pertaining to the German market. Koch (2010) examines stocks traded at the Frankfurt Stock 

Exchange (FSE) between 1974 and 2006 and reports evidence of an illiquidity premium. A 

similar result is reported by Hagemeister and Kempf (2010), who examine 210 HDAX index 

constituent stocks between 1995 and 2006, using expected returns and the bid-ask spread. 

 

Results to the contrary are also reported in the literature. Eun and Huang (2007) examine the 

illiquidity premium over the period of 1995-2004 in the Chinese stock market and find that 

Chinese investors appear to pay a premium for liquidity. Similar results are reported by Ngu-

yen and Lo (2013) who study the New Zealand market over the period of 1996-2011. Their 

study employs both high- and low-frequency proxies and finds consistent and robust evi-

dence of an illiquidity discount. 

 

The results of Amihud et al. (2015) suggest that the illiquidity premium varies over time and 

by market conditions. The paper examines 45 markets over the period of 1990-2011 and 

finds an illiquidity premium in most of the markets. Moreover, the results indicate that the 

illiquidity premium is higher when market returns are lower. 

 

2.4.2 Commonality in liquidity 

 

As market-wide phenomena are often observed, it is a reasonable notion that liquidity is not 

solely determined at the stock level. Chordia, Roll, and Subrahmanyam (2000) study com-

monality in liquidity, which refers to the co-movement of stock liquidity with liquidity of 

other assets, or at a larger scale such as the industry or market-level. The authors note the 

cross-sectional positive relationship between illiquidity and returns as compensation for 

trading costs, and further argue that if commonality in liquidity cannot be fully anticipated 

and impacts stocks asymmetrically, it should constitute a systematic risk. Using 5 high-fre-

quency liquidity measures to examine stocks listed at the NYSE during 1992, they regress 

stock-level liquidity against market averages and find a significant common component in 

liquidity. In a coinciding paper, Huberman and Halka (2001) use 4 liquidity proxies to study 
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a random sample of 240 stocks traded at the NYSE during 1996. The study models unantic-

ipated movements (innovations) in illiquidity and estimates their correlations among groups 

of stocks, finding a systematic, time-varying component of liquidity. In another coinciding 

paper, Hasbrouck and Seppi (2001) use principal component analysis (PCA) to study com-

monality among the 30 Dow Jones constituents during 1994. Contrary to the previous stud-

ies, they find no evidence of commonality in liquidity. Korajczyk and Sadka (2008) extend 

the timeframe and study AMEX and NYSE-listed stocks over 1983-2000 using PCA. Their 

results conform to those of Chordia, Roll, and Subrahmanyam (2000) and Huberman and 

Halka (2001) in finding commonality in liquidity. 

 

In terms of pricing implications in the US market, Acharya and Pedersen (2005) study stocks 

listed in NYSE and AMEX during 1962-1999 and estimate an annualized premium of 0.08 

percent attributable to the covariance of stock and market liquidity. Kim and Lee (2014) also 

study NYSE and AMEX-listed stocks over a longer timeframe of 1962-2011 and estimate a 

substantially larger annualized premium at 2.28 percent. The difference may arise partly due 

to the timeframe, but to a larger extent due to differences in defining liquidity. 

 

Outside the US, Fabre and Frino (2004) study stocks listed at the Australian Stock Exchange 

(ASX) during 2000. Using a method similar to Chordia, Roll, and Subrahmanyam (2000), 

the study finds evidence of commonality, albeit less widespread and lower in significance. 

Moreover, Vu, Chai, and Do (2015) examine the pricing of liquidity risks among stocks 

listed in ASX between 1995 and 2010 and find commonality in liquidity both priced and the 

dominant liquidity risk. Focusing on UK stocks, Foran, Hutchinson, and O’Sullivan (2015) 

examine stocks listed at the London Stock Exchange (LSE) between 1991 and 2013. Using 

a method similar to Korajczyk and Sadka (2008), they find evidence of commonality in li-

quidity. Moreover, the study notes that commonality is associated with a positive premium 

in LSE but does not estimate its magnitude. Among Finnish stocks listed between 1997 and 

2015, Ahmed, Hirvonen, and Hussain (2019) report annualized premia attributable to com-

monality in the range of 0.26-0.36 percent. 

 

As commonality is found at the exchange level, a larger-scale, international commonality is 

a possibility. Brockman, Chung, and Pérignon (2009) examine intraday data of 47 exchanges 

in 38 countries between 2002 and 2004. Using and extending the method of Chordia, Roll, 
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and Subrahmanyam (2000), the study finds both widespread exchange-level commonality, 

as well as a global component in liquidity. Moreover, the study finds that local rather than 

global factors contribute more to commonality. Similarly, Karolyi, Lee, and van Dijk (2012) 

examine daily data of stocks in 40 countries between 1995 and 2009 for commonality. The 

study finds substantial variance in commonality between countries; both the level and vari-

ance of commonality tends to be lower in developed countries. Moreover, the level of com-

monality tends to rise during financial crises and market downturns. The reaction to market 

conditions is asymmetric, indicating that reactions to market declines are stronger. 

 

Related to the German market, Kempf and Mayston (2008) examine constituents of the DAX 

30, the German blue-chip index, using intraday data covering the period of 2.1.2004-

31.3.2004. The study notes commonality at the inside spread, and a much stronger common-

ality beyond the best prices in the order book. Moreover, they note intraday variance in com-

monality and a stronger commonality during market declines. Brockman, Chung, and Péri-

gnon (2009) also note commonality among German stocks. Similarly, Johann et al. (2019) 

find commonality in the FSE during 1999-2013 with a method following Chordia, Roll, and 

Subrahmanyam (2000). The study also finds commonality to increase in times of distress, 

reaching its highest levels during the financial crisis in 2008, which aligns with the results 

of Karolyi, Lee, and van Dijk (2012). The study further examines commonality in liquidity 

between Germany and the US, finding both long- and short-term commonality which is par-

ticularly high during the financial crisis. Moreover, liquidity in Germany appears to react to 

liquidity in the US, but not vice versa. 

 

2.4.3 Flight to liquidity 

 

As discussed in Section 2.3, flight to liquidity refers to the covariance of stock returns and 

market liquidity. During an illiquid market, investors may wish to substitute illiquid or oth-

erwise undesirable assets with more liquid or desirable ones, causing a greater decline in the 

value of more illiquid assets. Amihud (2002) examines this phenomenon among NYSE-

listed stocks between 1962 and 1997, both cross-sectionally and over time. The study finds 

a positive relationship between expected market illiquidity and ex ante returns, as well as a 

negative relationship between unexpected market illiquidity and contemporaneous returns. 

Both relationships are stronger for small, illiquid stocks, implying a flight to liquidity. Pástor 
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and Stambaugh (2003) further study the cross-section of stocks listed in AMEX, Nasdaq, 

and NYSE during 1966-1999, and find that stocks with a higher return sensitivity to market 

liquidity have higher expected returns, providing further evidence of flight to liquidity. Con-

trolling for common factors such as size, value, momentum, and market return, but not the 

level of liquidity, the study estimates an annualized premium of 7.5 percent attributable to 

flight to liquidity. Studying AMEX and NYSE-listed stocks over the span of 1964-1999, 

Acharya and Pedersen (2005) find similar results, but a substantially smaller annualized pre-

mium at 0.16 percent. Further US-market evidence of flight to liquidity is provided by Liu 

(2006) who examines AMEX, Nasdaq, and NYSE-listed stocks during 1960-2003, 

Korajczyk and Sadka (2008), who study intraday data of AMEX and NYSE-listed stocks 

during 1983-2000, and Kim and Lee (2014), who examine stocks in AMEX and NYSE dur-

ing 1962-2008.  

 

Baradarannia and Peat (2013) extend the US evidence by examining NYSE-listed stocks 

over the period of 1926-2008. The study considers the pricing of both stock level liquidity 

using effective tick, as well as a market liquidity factor, constructed similar to the small minus 

big (SMB) factor of Fama and French (1993). The study finds that the market liquidity factor 

has a positive relationship with stock returns over the entire sample period. The study further 

considers subperiods of pre-1963 and post-1962; the market liquidity factor has a positive 

relationship with returns in the pre-1963 period, but its effect is subsumed by the liquidity 

level in the post-1962 sample. The authors argue that this is due to a shift in business cycle 

lengths; the contraction periods, during which flight to liquidity is most prevalent, are sub-

stantially longer during the pre-1963 period, affecting the pricing ability of the market li-

quidity factor (Baradarannia and Peat, 2013, p. 19). 

 

Bekaert, Harvey, and Lundblad (2007) extend the literature beyond the US by examining 19 

emerging markets over the span of 1987-2003. Systematic liquidity risk, which corresponds 

to flight to liquidity, is found to have a positive and significant relationship with stock re-

turns, both under full segmentation and in a mixed model where the degree of integration 

varies by market. Moreover, this risk is found to be empirically more significant than local 

market risk. Liang and Wei (2012) further extend the research to cover 21 developed coun-

tries. The sample periods vary depending on availability of data, most commonly spanning 

from 1989 to 2005. Using Gamma of Pástor and Stambaugh (2003) and ILLIQ as proxies, 
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the study finds local systematic liquidity risk priced in 11 markets after controlling for the 

local market, value, and size factors. Of most interest for this study is that ILLIQ finds a 

premium for local liquidity risk among German stocks. 

 

Results to the contrary are also documented in the literature. Nguyen and Lo (2013) examine 

stocks in New Zealand during 1996-2011, using 7 proxies, and find no evidence of a pre-

mium after controlling for market returns, momentum, and size and value factors. Of the 

evidence to the contrary, the results of Saad and Samet (2015) are perhaps of most interest 

for this study. They find no evidence of a premium related to flight to liquidity neither glob-

ally, nor in developed or emerging markets. The result concerning developed countries is of 

particular interest, as Germany is grouped together with 22 other countries. 

 

2.4.4 Depressed wealth effect 

 

The depressed wealth effect is introduced as a testable liquidity risk by Acharya and Peder-

sen (2005). The intuition is based on the finding of Lynch and Tan (2004) that liquidity 

premia tend to be substantially larger when transaction costs covary negatively with wealth 

shocks. This poses a considerable risk to investors holding an illiquid asset during market 

downturns, as they tend to face wealth problems and may wish to sell their assets. A high 

cost or an inability to sell may exacerbate the wealth problems. 

 

Acharya and Pedersen (2005) use market returns to proxy wealth shocks, and subsequent 

literature largely follows suit. In their empirical test, Acharya and Pedersen (2005) examine 

stocks listed in AMEX and NYSE during the span of 1962-1999 and find the depressed 

wealth effect to be the largest contributor to the total liquidity risk premium, with an annu-

alized premium of 0.82 percent. Further US evidence is documented by Hagströmer, Hans-

son, and Nilsson (2013), who study AMEX and NYSE-listed stocks over the span of 1927-

2010. Similar to Acharya and Pedersen (2005), the depressed wealth effect is found to be 

the most important liquidity risk empirically, with an annualized premium estimated in the 

range of 0.38-0.68 percent. Similar evidence is also documented by Kim and Lee (2014), 

who examine AMEX and NYSE-listed stocks over the period of 1962-2011 using 8 illiquid-

ity proxies as well as their first principal component. Again, the results indicate that the 

depressed wealth effect is the largest contributor to the total liquidity risk premium; an 



29 

 

annualized premium of 2.42 percent is estimated using the first principal component of the 

illiquidity proxies. 

 

Studies outside the US market are relatively scarce. Vu, Chai, and Do (2015) test the 

LCAPM on Australian stocks over the span of 1995-2010 and find the depressed wealth 

effect priced in the full sample of stocks, as well as among large and medium-sized stocks. 

The authors do not estimate a premium for the risk, however. Ahmed, Hirvonen, and Hussain 

(2019) test the LCAPM on Finnish stocks over the span of 1997-2015 and find the depressed 

wealth effect to be the most substantial liquidity risk with annualized premia in the range of 

0.52-0.98 percent. 

 

Of interest for this study are the studies which cover German stocks. Studies specific to 

Germany are not available to the knowledge of the author, but the global studies of Lee 

(2011) and Saad and Samet (2015) include Germany, albeit grouping it with other developed 

markets. Lee (2011) examines stocks in 50 countries over the span of 1988-2007 and finds 

the depressed wealth effect widely priced as a local risk. Most notably, the local risk is priced 

in the full sample of countries, but not among developed markets where Germany is grouped. 

Moreover, using global covariates to estimate global liquidity risks, the depressed wealth 

effect is priced in both the full sample of countries as well as among developed markets. Lee 

(2011) further estimates a global annualized premium of 0.66 percent attributable to the de-

pressed wealth effect. Saad and Samet (2015) examine stocks in 83 markets over the span of 

1985-2012 and generally provide evidence of a premium for the depressed wealth effect. 

Under assumed full segmentation, the risk is priced in the full sample, but not among devel-

oped markets. Nevertheless, using the estimates of aggregate liquidity risk to compute a 

premium for the depressed wealth effect, the annualized premia are estimated at 0.71 percent 

globally, and at 0.49 percent among developed markets. Under the arguably more realistic 

assumption of partial integration and using local market covariates, the depressed wealth 

effect is found priced both globally and among developed countries. Moreover, the results 

indicate that the risk varies substantially over time. 
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2.5 Hypotheses 

 

The LCAPM of Acharya and Pedersen (2005) innately gives rise to the first five hypotheses 

which are tested in this study. Hypothesis 1 corresponds to the illiquidity premium discussed 

in Section 2.4.1. Hypotheses 2-4 correspond to the liquidity risks outlined in the LCAPM 

and Equations (12)–(14). The risks are commonality in liquidity, flight to liquidity, and the 

depressed wealth effect, respectively. Hypothesis 5 is tested by computing the aggregate 

liquidity risk as a linear combination of the betas in Equations (12)–(14) as per Acharya and 

Pedersen (2005). As premia related to both illiquidity and the respective liquidity risks are 

widely documented in the literature, this study expects to find both an illiquidity premium, 

as well as premia for the liquidity risks. Hypotheses 1-5 are formally stated as: 

 

Hypothesis 1: The level of expected illiquidity has a positive and significant relationship 

with stock returns. 

Hypothesis 2: The covariance of stock and market illiquidity has a positive and significant 

relationship with stock returns. 

Hypothesis 3: The covariance of stock returns and market illiquidity has a negative and 

significant relationship with stock returns. 

Hypothesis 4: The covariance between stock illiquidity and market returns has a negative 

and significant relationship with stock returns. 

Hypothesis 5: The aggregate liquidity risk has a positive and significant relationship with 

stock returns. 

 

As the literature discussed under Section 2.4 documents time-variance of the liquidity risks 

pertaining to hypotheses 2-5, the hypotheses are tested by estimating a conditional version 

of the LCAPM similar to Saad and Samet (2015). The conditional time-varying liquidity 

risks are estimated using dynamic conditional correlation (DCC) and generalized autoregres-

sive conditional heteroskedasticity (GARCH). The liquidity risks are estimated at the (dec-

ile) portfolio level, and the estimates are assigned to each portfolio constituent. Pricing of 

the liquidity risks is examined with a fixed effects panel regression using individual stocks 

as test assets, similar to Vu, Chai, and Do (2014). 
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Moreover, as this study considers time-varying risks, it is worthwhile to examine them for 

trends. Based on the findings of Hagströmer, Hansson, and Nilsson (2013) as well as Saad 

and Samet (2015), it is expected that the liquidity risks do not exhibit a trend. 

 

Hypothesis 6: There is no time trend in illiquidity risks. 

 

The trend tests are conducted on the DCC-GARCH estimates using trend tests of Vogelsang 

(1998) and Bunzel and Vogelsang (2005). The tests are conducted for the decile portfolios 

with the lowest and highest ex ante risk. This approach is taken following Saad and Samet 

(2015).
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3 DATA AND METHODOLOGY 

 

3.1 Data and sampling 

 

All data used in this study is extracted from Thomson Reuters Datastream. The data set 

consists of all stocks quoted at the Frankfurt Stock Exchange (FSE) between 1.1.2000 and 

31.12.2018.5 Dead and delisted stocks are included in the sample to avoid survivorship bias. 

Daily data includes closing price adjusted for dividends, stock splits, and other capital 

changes; closing ask and bid prices; and trading volume. Simple returns are computed from 

daily closing prices. The closing price of 31.12.1999, which reflects the last closing price of 

1999 is included in the sample to compute the first value of returns. Additionally, monthly 

observations of the free float ratio, market capitalization, and market-to-book ratio are used 

to control for stock characteristics. Simple monthly returns are computed from end-of-month 

closing prices. The 12-month Euribor rate reported at the end of each month, converted into 

a monthly rate, is used as a proxy for the risk-free rate, and monthly observations of the 

CDAX index are used to compute a proxy for market returns.6 

 

The initial sample contains 2390 stocks. The following screening procedure is used to build 

a reliable sample. Any stock with data for at least one variable entirely missing is dropped 

from the sample. Any day in which more than 90 percent of the stocks available for trading 

have zero returns is dropped as a non-trading day (Lee, 2011). Data errors highlighted by 

Ince and Porter (2006) are screened as follows. Daily returns that equal or exceed 100 per-

cent and are reversed either on the following day or on the prior day by a preceding negative 

return are dropped (Lee, 2011; Saad and Samet, 2015).7 Moreover, the omitted observations 

are excluded from computing the ZeroVol proportion of AdjILLIQ to avoid inflating the 

measure. Monthly returns that equal or exceed 300 percent and are reversed either in the 

following month or in the prior month by a preceding negative return are dropped (Lee, 

 
5 German non-voting shares (Vorzugsaktien) are considered equities yet are often incorrectly classified as pre-

ferred stock in Datastream (Brückner, 2013). Stocks labeled as preferred are therefore retained in the sample. 
6 Many studies on the German stock market use the DAFOX index and prolong it with the CDAX index if 

necessary (Brückner, 2013). This study does not use the DAFOX index because it is only available until 2004 

and would thus cover a minor part of the sample. 
7 If Rt or Rt-1 is greater than 100% and (1+Rt)(1+Rt-1) - 1 < 50%, both Rt and Rt-1 are dropped. 
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2011). Additionally, any negative bid or ask price and any pair of bid-ask observations where 

the spread is negative are dropped. 

 

First partial stock-months are excluded from the sample as the stock is not available at any 

portfolio formation point which occur at the beginning of the month or year. To avoid a look-

ahead bias, delisted stocks are allowed to remain in the sample until their delisting date. 

Moreover, a stock may have an illiquidity ratio in the month of delisting if it has enough 

daily data. In such instances, the ZeroVol proportion of AdjILLIQ is adjusted to reflect only 

those days on which the stock is available for trading to avoid inflating the measure. Returns 

are not adjusted for delisting returns. 

 

Stocks which have a price of less than €1.00 and market capitalization of less than €5 million 

at the end of the previous period are excluded from the next period as penny stocks.8 This 

study effectively uses two samples built from the data, and therefore penny stocks are 

screened as follows. The equally weighted market portfolio used to measure market illiquid-

ity is rebalanced monthly (Acharya and Pedersen, 2005), and stocks which fail to meet the 

criteria at the end of month t-1 are excluded from the sample for month t. The sample used 

for stock-level analysis employs annually formed portfolios, and stocks which fail to meet 

the above criteria at the end of year y-1 are excluded from the sample for year y. 

 

Lastly, any stock with less than 37 observations of both illiquidity proxies is dropped from 

the sample used for stock-level analysis. This corresponds to the requirements outlined in 

Section 3.2.2. This criterion does not apply to the sample used for market illiquidity, which 

is simply an equally weighted average of all valid stock-months. After the above screening, 

extreme values of AdjILLIQ are removed from both samples by deleting the 99th percentiles 

of observations (Amihud, 2002; Amihud et al., 2015).9 In the sample used for stock-level 

analysis, the 99th percentile has a mean value of 61 percent and a maximum of 787 percent, 

which seems unreasonable for a price impact of €1000 of trading volume. 

 

 
8 Many large German stocks trade at prices below €1.00 despite market capitalizations measured in millions. 

Therefore, the combination of a price threshold of €1.00 and market capitalization threshold of €5 million are 

used (Brückner, 2013). An additional observation of market capitalization at the end of 1999 is used for screen-

ing the data of January 2000. 
9 Amihud (2002) deletes the 1st and 99th percentiles of the full sample, whereas Amihud et al. (2015) delete the 

99th percentile of a rolling 3-month window. 
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3.1.1 Descriptive statistics 

 

A total of 1118 stocks comprise the sample used to measure market illiquidity. The sample 

used for stock-level analysis contains 911 stocks; due to the method outlined in Section 3.2.2, 

699 and 770 of these stocks are used in analyses concerning AdjILLIQ and PQS, respec-

tively. The sample period covers 4825 trading days over 228 months. Table 1 presents de-

scriptive statistics of monthly observations of both illiquidity measures for the sample used 

to compute market illiquidity, and of both illiquidity measures and stock returns for the sam-

ple used for stock-level analysis. The counts for AdjILLIQ and PQS are naturally fewer than 

the amount of valid sample months, as they require at least 5 and 10 days of data per month, 

respectively. The omission of the 99th percentile of observations of AdjILLIQ in both samples 

further reduces the number. When comparing the values of the illiquidity proxies between 

the two samples, it is worth noting that Sample B is more efficient in filtering out penny 

stocks. Sample B filters stock-months whereas Sample A filters stock-years based on begin-

ning-of-year values. The correlation between market measures of illiquidity computed from 

Sample B is 0.854. 

 

Table 1. Descriptive statistics. 
This table provides descriptive statistics of monthly values of both illiquidity proxies for the sample used to 

compute market illiquidity, and of both illiquidity proxies and stock returns for the sample used for stock-level 

analysis. It is noted that some observations of Sample A may be omitted from the final analyses due to criteria 

detailed in Section 3.2.2. 

 Sample A:  Sample B: 

 Stock-level analysis  Market portfolio 

 AdjILLIQ PQS Returns  AdjILLIQ PQS 

Valid sample months 142276 142276 142276  151178 151178 

Number of observations 117552 131696 140382  120826 135463 

Sample coverage (%) 82.62 92.56 98.67  79.92 89.61 

Minimum (%) 0.00 0.00 -100.00  0.00 0.00 

Maximum (%) 23.92 200.00 831.03  19.15 193.69 

Range (%) 23.92 200.00 931.03  19.15 193.69 

Median (%) 0.19 2.61 0.00  0.19 2.61 

Mean (%) 1.05 3.84 0.27  0.96 3.69 

Skewness 4.719 11.895 5.639  4.284 11.155 

Standard error of mean 0.000 0.000 0.000  0.000 0.000 

Mean standard deviation (%) 1.69 3.19 15.02  1.39 2.73 

Min. standard deviation (%) 0.00 0.08 1.55  0.00 0.00 

Max. standard deviation (%) 8.07 62.40 82.48  6.71 70.04 
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For the focus of this study, Sample A is of main interest. Naturally, monthly returns have 

the highest sample coverage at nearly 99 percent. AdjILLIQ and PQS both have lower cov-

erages due to the abovementioned computational requirements, yet both are relatively well-

covered at 82.62 and 92.56 percent, respectively. Monthly returns have the highest range 

from minus 100 percent to 831 percent, with a mean of 0.27 percent. There are 11 instances 

of returns of minus 100 percent; 9 stocks cease trading afterwards and delist within a year, 

whereas two stocks continue trading. Of the illiquidity proxies, PQS has the higher range 

from 0 to 200 percent with a mean of 3.84 percent. The maximum value of PQS is not due 

to a single observation; 4 stocks combine for a total of 8 observations of 200 percent, and 21 

stocks combine for 90 observations above 100 percent. 

 

All variables display a mean that is higher than the median, hinting at possibly right-skewed 

distributions, which is confirmed by the positive values of skewness. In terms of illiquidity, 

this indicates that relatively low values are most frequent in the sample. Standard deviations 

also uniformly follow the ranges; monthly returns with the highest range also display the 

highest minimum, maximum, and mean standard deviations, and AdjILLIQ is on the opposite 

end on all accounts. The mean correlation between stock-level time series of AdjILLIQ and 

PQS is 0.517. 

 

Liquidity increases monotonically with size in the FSE. Table 2 presents the size, illiquidity, 

and standard deviations in illiquidity of size deciles using both illiquidity proxies. Sample B 

is used to examine the size effect, as penny stocks are filtered out monthly. Only contempo-

raneous observations of illiquidity and end-of-month market capitalization are considered, 

and stocks are sorted monthly into size deciles based on their market capitalization. Illiquid-

ity and market capitalization of the deciles are computed as equally weighted averages, and 

the table presents time-series averages of the figures. With both proxies, illiquidity increases 

drastically as size decreases. Moreover, the small, illiquid stocks exhibit substantially larger 

standard deviations in illiquidity. Conversely, larger stocks, on average, are more liquid and 

their liquidity is more stable over time. 
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Table 2. Size effect in illiquidity. 
The table lists the average illiquidity denoted by μ(c), standard deviation in illiquidity denoted by σ(c), and 

average market capitalization of size deciles. Values of illiquidity are reported as percentages, and market 

capitalization in millions. The averages are time-series averages of the deciles. 

Decile 1 2 3 4 5 6 7 8 9 10 

Panel A: AdjILLIQ 

μ(c) 3.77 2.12 1.33 0.90 0.65 0.47 0.30 0.16 0.09 0.03 

σ(c) 1.43 1.12 0.72 0.51 0.40 0.25 0.20 0.08 0.04 0.02 

Size 7 18 32 53 87 149 288 665 1983 18307 

           

Panel B: PQS 

μ(c) 9.74 6.15 4.68 3.79 3.35 2.91 2.40 1.90 1.37 0.68 

σ(c) 2.90 1.70 1.26 0.94 0.75 0.73 0.56 0.54 0.43 0.26 

Size 6 15 28 45 75 128 242 542 1651 16629 

 

 

3.2 Methodology 

 

Following prior studies (Lee, 2011; Kim and Lee, 2014; Vu, Chai, and Do, 2015), individual 

stocks are used as test assets because this approach provides several benefits. Firstly, the loss 

of information which is inherent in portfolio formation is minimized. Similarly, this ensures 

a larger number of observations which lends power to the test. Secondly, using individual 

stocks as test assets allows to control for characteristics of individual stocks, such as the size 

or value effect (Lee, 2011). Lastly, this approach helps avoid potentially spurious results 

caused by characteristic-based portfolio formation (Brennan, Chordia, and Subrahmanyam, 

1998; Berk, 2000). The above benefits, however, come with the cost that the estimates for 

individual stocks tend to be noisier than those for portfolios (Lee, 2011). 

 

The estimation procedure is generally as follows. Firstly, innovations in illiquidity are ob-

tained to examine the unanticipated movements in illiquidity (Section 3.2.1). Pre-ranking 

betas are then computed for each stock, and the stocks are sorted annually into decile port-

folios based on the pre-ranking betas (Section 3.2.2). The efficacy of the portfolio formation 

is examined by computing full-sample post ranking betas for each portfolio, and portfolio 

characteristics are computed for further insight. Time-varying conditional liquidity risks are 

then estimated for each portfolio, and the portfolio betas are assigned to constituent stocks 

(Section 3.2.3). The most liquid and illiquid portfolio deciles are also tested for a time trend 

in liquidity risk (Section 3.2.4). Finally, a panel regression using individual stocks as test 
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assets is used to determine the pricing of the time-varying liquidity risks (3.2.5). Each section 

details both the theoretical motivation, as well as the exact method of the procedure. Results 

are presented in Section 4 under corresponding subsections. 

 

3.2.1 Innovations in illiquidity 

 

Liquidity has widely been shown to be persistent. Earlier studies often report first order au-

tocorrelation (Acharya and Pedersen, 2005; Lee, 2011; Saad and Samet, 2015), which sup-

ports the notion of Amihud (2002, p.43) that investors can, to some extent, predict liquidity. 

The Breusch-Godfrey Lagrange Multiplier (LM) test is used to test the joint significance of 

autocorrelation up to second order (Breusch, 1978; Godfrey, 1978). The test is conducted 

for both market illiquidity series and for each individual stock-level series, and the results 

are found in Appendix 1. Due to the presence of both first and second order autocorrelation 

in most of the sample, prior studies (Acharya and Pedersen, 2005; Lee, 2011; Saad and 

Samet, 2015) are followed in obtaining innovations in illiquidity.10 

 

The innovations are obtained by estimating an autoregressive (AR) model on the data; the 

residuals inferred from the model act as the innovations, which represent unanticipated 

movements in illiquidity. As AR coefficients cannot be estimated for some of the stock-level 

illiquidity series using maximum likelihood as the method of estimation, the models are es-

timated on first differences of the series, similar to Saad and Samet (2015). AR(1) of first 

differences does not fully remove second order autocorrelation from the sample. Moreover, 

Akaike (AIC) and Bayesian (BIC) information criteria tend to favor AR(2) over AR(1). BIC 

favors AR(2) over AR(1) for AdjILLIQ, and in total for 48 percent of the series, whereas 

AIC favors AR(2) for both AdjILLIQ and PQS, and in total for 71 percent of the series. 

Therefore, innovations are obtained by estimating an AR(2) model on first differences of the 

illiquidity series. The coefficients are freely determined for each series with the equation 

 

∆𝑐𝑡
𝑖 = 𝛼0 + 𝛼1∆𝑐𝑡−1

𝑖 + 𝛼2∆𝑐𝑡−2
𝑖 + 𝑢𝑡

𝑖 , (15) 

 
10 The market return series is also tested for autocorrelation, but innovations are not obtained. This is unlike in 

Acharya and Pedersen (2005), but similar to Lee (2011) and Saad and Samet (2015). Moreover, some stock-

level return series exhibit autocorrelation, but this does not bias the parameter estimates discussed in Section 

3.2.2. 
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where Δ indicates first differences, ct
i is the illiquidity of time series i at time t, α0,…,2 are the 

estimated coefficients, and ut
i is the residual interpreted as the innovation. 

 

It is noted that an ex-post fitting of the AR models may induce a look-ahead bias. As the 

coefficients used to infer the residuals are determined from data for the full sample period, 

the residuals may be based on information unavailable at the time. However, this approach 

is taken to follow prior studies (Saad and Samet, 2015; Vu, Chai, and Do, 2015) in estimating 

the model of Acharya and Pedersen (2005), all of which employ this method. Moreover, 

Kim and Lee (2014, p. 119) argue that liquidity events are more explicitly evident with this 

method. 

 

3.2.2 Illiquidity portfolios 

 

Despite the use of individual stocks as test assets in the regression analyses, portfolios are 

used in estimating liquidity risk, similar to Lee (2011), Kim and Lee (2014), and Vu, Chai, 

and Do (2015). The motivation for using portfolios at this stage originates from the errors-

in-variables (EIV) problem highlighted by Blume (1970). The EIV problem relates to the 

use of betas as regressors when the betas of individual stocks contain some degree of error. 

If the errors are not perfectly correlated, Blume (1970, p.156) shows that using weighted 

averages of stock-level betas as portfolio betas reduces the total error. Assuming that both 

high and low estimates of betas exhibit larger errors and to mitigate consequent bunching of 

errors within portfolios, Fama and MacBeth (1973) advocate the computation of pre-ranking 

betas based on one sample period for portfolio formation, and computing portfolio betas 

using a subsequent sample period. 

 

Therefore, this study sorts stocks into decile portfolios based on pre-ranking betas and esti-

mates the liquidity risk at portfolio level before assigning the portfolio illiquidity betas to 

each portfolio constituent. The portfolios are formed using a one-dimensional sorting similar 

to the one described in Fama and French (1992). Although they also employ a two-dimen-

sional sorting based on size and pre-ranking betas, this is forgone to avoid potential bias 

caused by characteristic-based sorting (Lee, 2011). 
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Following Lee (2011) and Saad and Samet (2015), portfolios are formed based on three pre-

ranking illiquidity betas as per Equations (12)–(14). For each stock i, the pre-ranking il-

liquidity beta k (k=1,…,3) for year y is estimated based on years y-1 to y-5, using stock and 

market returns, as well as the innovation series in stock and market illiquidity. The 5-year 

window begins in January and rolls over annually. To have a pre-ranking beta for year y, a 

stock must have at least 36 contemporaneous observations of returns and innovations in il-

liquidity within the given 5-year window. Stocks which become delisted during the holding 

period are allowed into the portfolios to avoid a look-ahead bias. Should a stock receive a 

pre-ranking beta for a year in which it is flagged as a penny stock, the pre-ranking beta is 

naturally deleted. 

 

Based on the pre-ranking betas, the stocks are sorted annually into decile portfolios using 

the method described by Fama and MacBeth (1973). This method ensures that the middle 8 

portfolios are of equal size, and the first and last portfolios receive possible additional stocks. 

In short, if there are n stocks and int(n/10) is the integral part of n/10, the middle 8 portfolios 

receive int(n/10) stocks each. If n is even, the first and last portfolios each receive 

int(n/10)+0.5[n-10int(n/10)] stocks. If n is odd, the last portfolio receives an additional stock. 

This produces a total of 6 sets of decile portfolios. First, the three pre-ranking betas are 

computed using AdjILLIQ and stocks are sorted into three sets of portfolios based on the pre-

ranking betas. The process is then repeated using PQS alternatively. Equally weighted re-

turns and illiquidity for the portfolios are computed as 

 

𝑟𝑡
𝑝 =

1

𝑛
∑ 𝑟𝑡

𝑖

𝑛

𝑖=1

(16) 

 

and 

 

𝑐𝑡
𝑝 =

1

𝑛
∑ 𝑐𝑡

𝑖

𝑛

𝑖=1

, (17) 

 

where rt
i is the return of stock i of portfolio p, at time t, ct

i is the corresponding illiquidity, 

and n is the number of constituents in portfolio p. The weighting is predetermined for each 
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portfolio-year based on the amount of stocks at portfolio formation and is unaffected by 

missing values of ct
i or rt

i to adhere to the 1-year holding period. 

 

Portfolio illiquidity is defined using the stock-level illiquidity proxies instead of their inno-

vations. Therefore, portfolio illiquidity is tested for up to second order autocorrelation with 

the Breusch-Godfrey LM test. All portfolios exhibit autocorrelation of either first or second 

order, and innovations in portfolio illiquidity are obtained by estimating an AR(2) model on 

first differences as per Equation (15).  

 

For each portfolio sorted on the pre-ranking beta k (k=1,…,3), a full-sample post-ranking 

beta k is estimated using portfolio and market returns, as well as innovations in portfolio and 

market illiquidity. In other words, portfolios sorted on the commonality beta will receive a 

post-ranking commonality beta, and so forth. The post-ranking betas and portfolio charac-

teristics are reported in Section 4.2. 

 

Prerequisites to Section 3.2.3 

 

The estimation of time-varying liquidity risks uses portfolio and market returns, and inno-

vations in portfolio and market illiquidity as inputs. The inputs are required to be zero-mean 

series. As already stated, innovations are obtained for portfolio illiquidity. Portfolio returns 

are also tested for autocorrelation and first order autocorrelation is found in all series. How-

ever, a simplifying assumption of the returns being zero-mean series is made. The results for 

the Breusch-Godfrey LM test for autocorrelation in portfolio illiquidity and returns are found 

in Appendix 2. 

 

The estimation method also requires all inputs to be stationary. All series are therefore tested 

for a unit root with the augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests. Both 

tests are conducted alternatively with two null models: AR and AR with drift. The lag order 

for all tests is set to 12, which is intuitive as the data has a monthly frequency.11 Additionally, 

all series are tested for stationarity with the Kwiatkowski, Phillips, Schmidt, and Shin 

(KPSS) test. The lag order is again set to 12, which is both intuitive and corresponds to a lag 

 
11 With 167-168 observations in each series, this loosely corresponds to the lag order of l = int[12(n/100)1/4]  

suggested by Schwert (1989). 



41 

 

order deemed satisfactory in terms of size and power of the test by the authors (Kwiatkowski 

et al., 1992, p. 165). The results for stationarity and unit root tests for portfolio and market 

series are found in Appendices 3 and 4, respectively. 

 

3.2.3 Time-varying liquidity risk 

 

The tendency of financial and macroeconomic time series to exhibit nonlinear behavior has 

widely been documented in literature (Engle, 1982; Bollerslev, 1986). Perhaps two of the 

most significant phenomena for this study are non-constant variance or volatility clustering, 

and leverage effects where volatility increases asymmetrically after positive or negative 

shocks. Such features have given rise to a wealth of models designed to account for the 

nonlinear behavior of time series. The autoregressive conditional heteroskedasticity (ARCH) 

model of Engle (1982), and the generalized version (GARCH) of Bollerslev (1986), are de-

signed to explain how volatility is influenced by past volatility. Additionally, the exponential 

GARCH (EGARCH) of Nelson (1991) extends the model to consider leverage effects. 

 

As the timeframe of the portfolio analysis of this study is 14 years, the notion of constant 

variance, and consequently constant risk, seems implausible. Therefore, following Saad and 

Samet (2015), this study employs the dynamic conditional correlation (DCC) estimator to 

estimate conditional time-varying liquidity risks (Engle and Sheppard, 2001; Engle, 2002). 

The model essentially generalizes the constant conditional correlation (CCC) of Bollerslev 

(1990) by allowing correlations to vary over time. The estimation occurs in two steps. Firstly, 

univariate GARCH(1,1) models are used to estimate the conditional variance of each varia-

ble and subsequently, transformed residuals are used in estimating dynamic correlations. 

 

Let n denote the number of variables in the model; in this case n=4. The set of variables 

among which conditional correlations are estimated is 

 

𝑌𝑡 = (𝑐𝑡
𝑖 , 𝑐𝑡

𝑀, 𝑟𝑡
𝑖, 𝑟𝑡

𝑀)
′
, 𝑡 = 1, … , 𝑇, (18) 

 

where T is the total number of observations for each variable. Considering 
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𝐸(𝑦𝑡|Ω𝑡−1) = 0, 𝑉𝑎𝑟(𝑦𝑡|Ω𝑡−1) = 𝐻𝑡, (19) 

 

the expected value of y
t
, conditional on the information set Ω up to the previous period, is 0. 

Ht denotes an n × n conditional covariance matrix. As such, it must be positive definite. It is 

assumed to follow a quadvariate DCC-GARCH(1,1) similar to Engle (2002), whereby the 

conditional covariance matrix for the LCAPM can be expressed as 

 

𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡 . (20) 

 

Dt is an n × n diagonal matrix of time-varying conditional standard deviations, √hit, at time 

t. The conditional variances hit used to form the diagonal are obtained from univariate 

GARCH(1,1) processes as 

 

ℎ𝑖𝑡 = 𝛼𝑖0 + 𝛼𝑖1𝑢𝑖,𝑡−1
2 + 𝛽𝑖ℎ𝑖,𝑡−1, 𝑖 = 1, … , 𝑛, (21) 

 

where ui,t-1
2  is the squared innovation and hi,t-1 the conditional variance, both of the previous 

period. The restrictions of αi1, βi ≥ 0 for non-negativity of variances and αi1 + β
i
 < 1 for sta-

tionarity apply (Bollerslev, 1986). 

 

In Equation (20), Rt is an n × n conditional correlation matrix of standardized residuals. As 

Ht must be positive definite, Rt must also be positive definite to ensure this. Consequently, 

Rt is decomposed into 

 

𝑅𝑡 = 𝑑𝑖𝑎𝑔{𝑄𝑡}−
1
2𝑄𝑡{𝑄𝑡}−

1
2, (22) 

 

where the dynamic correlation structure of Q
t
 is 

 

𝑄𝑡 = (1 − 𝛼 − 𝛽)𝑄̅ + 𝛼𝜀𝑡−1𝜀𝑡−1
′ + 𝛽𝑄𝑡−1. (23) 

 

In Equations (22)–(23), Q
t
 is the conditional covariance matrix of standardized residuals εt, 

and diag{Q
t
} refers to a diagonal matrix containing the square roots of the diagonal elements 
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of Q
t
. Q̅ is the unconditional covariance matrix of the standardized residuals εt. Equation 

(23) is again subject to the restrictions αi1, βi > 0 for non-negativity of variances and αi1 + 

β
i
 < 1 for stationarity. 

 

To ensure that Rt is positive definite, it is required to ensure that Q
t
 is positive definite. Q

t
 is 

positive definite for all t, as it is a weighted average of positive definite and positive sem-

idefinite matrices. The specification in Equation (22) ensures that all elements of Rt are be-

tween the interval -1 and 1 (Engle, 2002). 

 

The parameters of the model are estimated in two steps using quasi-maximum likelihood, 

similar to Engle (2002). First, each variable is modeled separately as a univariate 

GARCH(1,1) process. Subsequently, the parameters of the dynamic correlation process are 

estimated using the standardized residuals. Under the assumption of conditional normality, 

the joint log-likelihood function to estimate the parameters is 

 

ln 𝐿(𝜃, 𝛼, 𝛽) = −0.5 ∑(𝑛 ln(2𝜋) + 𝑙𝑛|𝐻𝑡| + 𝜀𝑡
′𝐻𝑡

−1𝜀𝑡).

𝑇

𝑡=1

(24) 

 

Above, n refers to the number of cross-sectional dimensions, which in this study is 4. T is 

the number of time periods, in this case 167, and θ, α, and β are unknown parameters to be 

estimated (Saad and Samet, 2015, p.132).  

 

The quadvariate DCC-GARCH(1,1) estimator estimates four conditional covariances, 

covt(rt
i,rt

M), covt(ct
i,ct

M), covt(rt
i,ct

M), and covt(ct
i,rt

M), for all 60 portfolios. The covariances 

correspond to the market risk adjusted for liquidity, commonality in liquidity, flight to li-

quidity, and the depressed wealth effect, respectively. The conditional variances of market 

returns adjusted for liquidity, using AdjILLIQ and PQS alternatively, are modeled with an 

EGARCH(1,1).12 Finally, the time-varying conditional illiquidity betas are computed for all 

 
12 Both series exhibit ARCH effects with the ARCH test of Engle (1982) and leverage effects with the sign 

bias test of Engle and Ng (1993). Negative shocks appear to have a higher impact on next-period volatility. 

Both AIC and BIC indicate that (1,1) is the ideal order. 
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portfolios as per Equations (12)–(14), using the conditional covariances and variances, and 

assigned to each portfolio constituent. 

 

The time-varying conditional market risk factor (β1) is not assigned from the portfolios to 

their constituents. Instead, the market risk factor is estimated at the stock level as per Equa-

tion (11) using a 5-year window that rolls over monthly, similar to the pre-ranking betas 

computed in Section 3.2.2, albeit at a higher frequency. To ensure that all stock-months 

which receive a conditional illiquidity beta also receive a market beta, the constraint of a 

minimum 36 observations within the 5-year window is dropped, but the data is balanced to 

only include contemporaneous observations of β1 and the illiquidity betas. As the market 

risk of a stock may differ from its liquidity risk, this avoids potentially spurious results from 

forming portfolios based on liquidity risk and assigning the market risk of the portfolio to its 

constituents. 

 

3.2.4 Time trend in liquidity risk 

 

Liquidity risk and associated premia have been shown to vary substantially over time (Hag-

strömer, Hansson, and Nilsson, 2013; Saad and Samet, 2015) and between up and down 

markets (Vu, Chai, and Do, 2015). This study also finds substantial time-variation in liquid-

ity risk. Moreover, Hagströmer, Hansson, and Nilsson (2013) find no evidence of a decreas-

ing trend in liquidity risk premia in the US market, and Saad and Samet (2015) reach a 

similar conclusion on liquidity risk in their study of 83 countries.13 Although the latter in-

clude Germany in their country-level analysis, this study also tests the sample for a time 

trend in liquidity risks, as both the timeframe and sample differ. Following Saad and Samet 

(2015), time trends are investigated using the trend tests of Vogelsang (1998) and Bunzel 

and Vogelsang (2005). Both tests examine a simple linear trend of the form 

 

𝑦𝑡 = 𝛽1 + 𝛽2𝑡 + 𝜀𝑡, (25) 

 

where y
t
 is the conditional liquidity risk, β

1
 a constant term, β

2
 a time trend coefficient, and 

εt an error term. 

 
13 The only notable trend is a decrease in flight to liquidity and the depressed wealth effect in the UK. 
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The PS1 test of Vogelsang (1998) is designed to test for deterministic trend functions in 

univariate time series. The test requires no knowledge of the form of autocorrelation in the 

series and is asymptotically valid in the presence of general forms of autocorrelation or a 

unit root in the errors (Vogelsang, 1998, p.134). The DAN test of Bunzel and Vogelsang 

(2005) is a further development of the PS1 test. The general principle is similar, but the 

Daniell kernel is used to non-parametrically estimate the error variance required to compute 

the test statistic. The exact specification used in this study is the DAN-J test, which includes 

a scaling correction to the test statistic. Both the PS1 and DAN-J test use this scaling correc-

tion to mitigate strong autocorrelation and consequent inflated size of the test (Bunzel and 

Vogelsang, 2005, pp. 383-384). The DAN test is a natural choice for an additional test, as it 

performs equally well as the PS1 test in terms of size but shows greater power both asymp-

totically and in finite samples. Moreover, DAN-J is the specification recommended for prac-

tical use by the authors (Bunzel and Vogelsang, 2005, p. 387-391). 

 

The test statistics follow a symmetric distribution, and therefore test statistics for a two-tailed 

test are simple to derive (Vogelsang, 1998, p. 135). As the liquidity risks in the sample vary 

substantially over time and no clear trend is visible, a two-tailed test is conducted. This al-

lows the trend coefficient to be either positive or negative, indicating either an increase or 

decrease in liquidity risks. The null hypothesis is therefore of no linear trend against the 

alternative of a linear trend of any kind. 

 

3.2.5 Pricing of time-varying liquidity risk 

 

A fixed effects panel regression is used to estimate the pricing of liquidity risk instead of the 

conventional Fama-MacBeth (1973) regressions, similar to Vu, Chai, and Do (2015). This 

approach is taken because Petersen (2009, pp. 446-450) shows that the standard errors of the 

Fama-MacBeth method are biased downward in presence of a firm effect. Moreover, the 

bias is most likely when both the dependent and independent variables exhibit autocorrela-

tion. Even after adjusting for autocorrelation with Newey-West (1987) standard errors, the 

estimates may remain biased (Petersen, 2009). 

 

Acharya and Pedersen (2005) note that collinearity among the illiquidity betas poses a diffi-

culty in distinguishing their separate effects in a joint test. The problem is that 
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multicollinearity tends to inflate standard errors of the parameter estimates, widening the 

confidence intervals, and consequently increasing the chance of a Type II error. Moreover, 

even large changes in coefficient values between specifications are possible (Brooks, 2014, 

p. 218). To mitigate the issue of multicollinearity and to allow for separate estimation of 

market risk, liquidity risk, and the liquidity level, Acharya and Pedersen (2005) define an 

aggregate illiquidity beta as 

 

𝛽5𝑖 ≔ 𝛽2𝑖 − 𝛽3𝑖 − 𝛽4𝑖. (26) 

 

Similarly, net systematic risk is defined as  

 

𝛽6𝑖 ≔ 𝛽1𝑖 + 𝛽2𝑖 − 𝛽3𝑖 − 𝛽4𝑖, (27) 

 

which enforces the model-implied constraint of equal risk premia (Acharya and Pedersen, 

2005, p. 392). Similar to Vu, Chai, and Do (2015), the LCAPM is estimated in seven differ-

ent specifications to first estimate each liquidity risk separately and then jointly. The seven 

different specifications are as listed below. 

 

𝐸(𝑟𝑡
𝑖 − 𝑟𝑡

𝑓
) = 𝛼𝑡 + 𝜅𝐸(𝑐𝑡

𝑖) + 𝜆1𝛽𝑡
1𝑖 + 𝛾1𝐵𝑀𝑡

𝑖 + 𝛾2𝐹𝐹𝑡
𝑖 + 𝛾3𝑆𝑖𝑧𝑒𝑡

𝑖 + 𝜀𝑡
𝑖 (28) 

 

𝐸(𝑟𝑡
𝑖 − 𝑟𝑡

𝑓
) = 𝛼𝑡 + 𝜅𝐸(𝑐𝑡

𝑖) + 𝜆1𝛽𝑡
1𝑖 + 𝜆2𝛽𝑡

2𝑖 + 𝛾1𝐵𝑀𝑡
𝑖 + 𝛾2𝐹𝐹𝑡

𝑖 + 𝛾3𝑆𝑖𝑧𝑒𝑡
𝑖 + 𝜀𝑡

𝑖 (29) 

 

𝐸(𝑟𝑡
𝑖 − 𝑟𝑡

𝑓
) = 𝛼𝑡 + 𝜅𝐸(𝑐𝑡

𝑖) + 𝜆1𝛽𝑡
1𝑖 + 𝜆3𝛽𝑡

3𝑖 + 𝛾1𝐵𝑀𝑡
𝑖 + 𝛾2𝐹𝐹𝑡

𝑖 + 𝛾3𝑆𝑖𝑧𝑒𝑡
𝑖 + 𝜀𝑡

𝑖 (30) 

 

𝐸(𝑟𝑡
𝑖 − 𝑟𝑡

𝑓
) = 𝛼𝑡 + 𝜅𝐸(𝑐𝑡

𝑖) + 𝜆1𝛽𝑡
1𝑖 + 𝜆4𝛽𝑡

4𝑖 + 𝛾1𝐵𝑀𝑡
𝑖 + 𝛾2𝐹𝐹𝑡

𝑖 + 𝛾3𝑆𝑖𝑧𝑒𝑡
𝑖 + 𝜀𝑡

𝑖 (31) 

 

𝐸(𝑟𝑡
𝑖 − 𝑟𝑡

𝑓
) = 𝛼𝑡 + 𝜅𝐸(𝑐𝑡

𝑖) + 𝜆1𝛽𝑡
1𝑖 + 𝜆5𝛽𝑡

5𝑖 + 𝛾1𝐵𝑀𝑡
𝑖 + 𝛾2𝐹𝐹𝑡

𝑖 + 𝛾3𝑆𝑖𝑧𝑒𝑡
𝑖 + 𝜀𝑡

𝑖 (32) 

 

𝐸(𝑟𝑡
𝑖 − 𝑟𝑡

𝑓
) = 𝛼𝑡 + 𝜅𝐸(𝑐𝑡

𝑖) + 𝜆6𝛽𝑡
6𝑖 + 𝛾1𝐵𝑀𝑡

𝑖 + 𝛾2𝐹𝐹𝑡
𝑖 + 𝛾3𝑆𝑖𝑧𝑒𝑡

𝑖 + 𝜀𝑡
𝑖 (33) 

 

𝐸(𝑟𝑡
𝑖 − 𝑟𝑡

𝑓
) = 𝛼𝑡 + 𝜅𝐸(𝑐𝑡

𝑖) + 𝜆1𝛽𝑡
1𝑖 + 𝜆2𝛽𝑡

2𝑖 + 𝜆3𝛽𝑡
3𝑖 + 𝜆4𝛽𝑡

4𝑖

+𝛾1𝐵𝑀𝑡
𝑖 + 𝛾2𝐹𝐹𝑡

𝑖 + 𝛾3𝑆𝑖𝑧𝑒𝑡
𝑖 + 𝜀𝑡

𝑖 (34)
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The dependent variable in each specification is the monthly excess return of a given stock. 

The risk-free rate, r t
f
, is proxied by lagged values of the 12-month Euribor rate reported at 

the end of each month, converted into a monthly rate. Lagged values are used to avoid a 

look-ahead bias; the rate used for January is the rate reported at the end of December and so 

forth. The expected illiquidity cost, E(ct
i), is modeled as the illiquidity ratio of the previous 

month. The market risk adjusted for liquidity is β
t

1i
, β

t

2i
 through β

t

4i
 are the conditional liquid-

ity risks, and β
t

5i
 and  β

t

6i
 are the aggregate liquidity risk and net systematic risk defined in 

Equations (26) and (27), respectively. BM and Size refer to the natural logarithms of the 

book-to-market ratio and market capitalization, respectively. Logarithms are taken to ac-

count for extreme values. FF refers to the free float ratio, which is introduced as a control 

variable due to its potentially confounding effect. Free float directly affects liquidity by lim-

iting the amounts of shares available for trading, and a lower proportion of free float shares 

may increase information asymmetry which may further drive illiquidity (Kyle, 1985). Ding, 

Ni, and Zhong (2016) find a linkage between free float, liquidity, and liquidity risk, and 

suggest that free float may affect the expected returns of a stock through liquidity risk in 

markets where liquidity risk is priced. Controlling for free float allows for the examination 

of the systematic component of the liquidity risks. 

 

The LCAPM assumes the expected illiquidity cost E(ct
i) to be incurred once per model pe-

riod, whereby κ is a free parameter in the estimation. As the model-implied one-month hold-

ing period is likely to differ from the typical holding period of an investor, Acharya and 

Pedersen (2005) alternatively calibrate κ to correspond to an approximate average holding 

period. This is done empirically by setting κ to be the average monthly turnover (rate) of the 

sampled stocks. In the sample of this study, the average monthly turnover rate is 1.93 per-

cent, which corresponds to a holding period of 1/0.0193≈52 months. To determine whether 

the results hold in a more general setting, the panel regressions are repeated with the cali-

brated value of κ. When the estimation period is κ times the model-implied one-month hold-

ing period, the expected returns and illiquidity betas are scaled by κ. This is because κ-period 

returns or illiquidity innovations are approximately the sum of κ one-period returns or il-

liquidity innovations, and both exhibit a small degree of autocorrelation. The expected il-

liquidity cost, however, does not scale with time because it is an average of daily illiquidities 

instead of a sum. Therefore, the term κE(ct
i) is substituted to the left-hand side, and the 
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dependent variable in the regressions is E(rt
i - rt

f
) - κE(ct

i) (Acharya and Pedersen, 2005, p. 

393). 

 

The use of fixed effects is validated with the following specification tests conducted for each 

regression model as per Equations (28)–(34), using each of the three portfolio sorts and both 

illiquidity measures. Firstly, the Breusch-Pagan LM test is used to determine whether a panel 

regression is more suitable than pooled OLS. The null hypothesis that error variance across 

panels is zero is rejected in all specifications, indicating that a panel regression is more suit-

able. The Hausman specification test compares the estimates of fixed and random effects 

models with the null hypothesis that the difference in coefficients is not systematic (Brooks, 

2014, pp. 543-547). The null hypothesis is rejected in all specifications, indicating that fixed 

effects are present in the data. Lastly, the presence of time fixed effects is tested by adding 

dummy variables for time to the fixed effects model and using a Wald test to determine 

whether the dummy variables are jointly equal to zero (Brooks, 2014, pp. 529-532). The null 

hypothesis is rejected in all specifications, indicating that time fixed effects are present. The 

results for the model specification tests are found in Appendix 5. 

 

Due to the results of the specification tests, the panel regressions are estimated with a two-

way error component model which includes both firm and time fixed effects. The error term 

εt
i in Equations (28)–(34) decomposes into 

 

𝜀𝑡
𝑖 = 𝜇𝑖 + 𝜆𝑡 + 𝑣𝑖𝑡 , (35) 

 

where μ
i
 is a time-invariant and individual-specific effect, λt is an individual-invariant and 

time-specific effect, and vit is a remaining disturbance that varies over time and across indi-

viduals (Brooks, 2014, pp. 529-532). The time fixed effects account for market-wide heter-

ogeneity in time and the firm fixed effects account for firm-level heterogeneity. Robust 

standard errors asymptotically equivalent to Arellano (1987) are used to account for auto-

correlation at the firm level.
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4 EMPIRICAL RESULTS 

 

4.1 Innovations in illiquidity 

 

As detailed in Section 3.2.1, liquidity is persistent and therefore predictable. Consequently, 

innovations are used to examine the unanticipated movements in illiquidity. Moreover, the 

use of innovations in the analyses mitigates the issue of autocorrelation widely documented 

in prior studies (Acharya and Pedersen, 2005; Lee, 2011; Saad and Samet, 2015). The il-

liquidity series are initially tested for first and second order autocorrelation using the 

Breusch-Godfrey LM test. First order autocorrelation is present in approximately 96 percent 

of the sample, and second order in approximately 69 percent of the sample. After obtaining 

innovations for both market illiquidity series and all stock-level illiquidity series with the 

procedure detailed in Section 3.2.1, the innovation series are again tested for autocorrelation. 

Autocorrelation is sufficiently removed from the sample.14 The results of the Breusch-God-

frey LM test for both market illiquidity series as well as their innovations are found in Ap-

pendix 1. Market illiquidity measured by PQS exhibits first order autocorrelation, whereas 

both first and second order are found in the AdjILLIQ series. The innovations appear free of 

autocorrelation. 

 

Figure 1 plots the innovations in market illiquidity using both proxies. As the figure plots 

the unanticipated movements in illiquidity, the upward spikes are associated with unex-

pected liquidity dry-ups. Moreover, the periods of higher volatility generally coincide with 

times of higher overall illiquidity, perhaps partly because the measure is bounded from be-

low by zero. Both series show similar dynamics, albeit at different magnitudes.  

 
14 3.50 percent of the AdjILLIQ innovations and 2.78 percent of the PQS innovations test positive for autocor-

relation. As both figures are below the 5 percent change of Type I error, the conclusion is that autocorrelation 

is sufficiently removed from the sample. 
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Figure 1. Innovations in market illiquidity. 

 

The periods of most pronounced instability can be anecdotally linked to developments in the 

German economy. More specifically, as Brunnermeier and Pedersen (2009, p. 2206) note, 

sudden liquidity dry-ups tend to occur more frequently in declining markets. The period 

between 2000 and 2005 indicates increased uncertainty about market liquidity, which is es-

pecially pronounced in the PQS series, and coincides with a slumping economy. The finan-

cial crisis which affected Germany most severely in 2008 and 2009 is also a period of high 

volatility. The period between 2011 and 2013 also appears volatile and coincides with an 

economic decline. The relatively calm periods of 2005-2008, 2009-2011, and 2013 onwards 

appear to coincide with overall economic growth in the country. 

 

4.2 Illiquidity portfolios 

 

The decile portfolios are sorted on pre-ranking betas computed as per Section 3.2.2. Full-

sample post-ranking betas are then computed to examine the efficacy of portfolio formation. 

Table 3 presents the post ranking betas for each portfolio. The leftmost column lists the 

decile, and βn refers to both the relevant sorting criterion and the post-ranking beta. For 
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example, β2 under AdjILLIQ refers to the post-ranking β2 of portfolios sorted on β2 using 

AdjILLIQ, and so forth. Under β2, portfolios are sorted from lowest to highest risk from 

decile 1 through 10, whereas the order is the opposite under β3 and β4. 

 

The signs of the betas are as expected and consistent with those reported by Acharya and 

Pedersen (2005, p. 391). The only exception is decile 9 of β4 portfolios using PQS, where 

the sign is positive. Largest magnitudes are generally seen in β4, which corresponds to the 

depressed wealth effect. Moreover, the risk appears to be the most pronounced in terms of 

the dispersion between deciles. The magnitudes of β3, which corresponds to the risk of flight 

to liquidity, are generally similar to those of β4, aside from the extreme values. Consequently, 

the betas are less dispersed than β4, indicating a more even distribution of risk between the 

deciles. While the risky deciles of β3 have smaller values than β4, the opposite is generally 

the case in the less risky deciles. Lastly, β2, which corresponds to commonality in liquidity, 

uniformly has the smallest magnitude of betas. 

 

All betas appear to be generally monotonic with a gradual increase in risk when moving 

from the least to most risky decile. Deviations from monotonicity tend to occur in the least 

risky deciles, most notably in decile 1 of β2-sorted portfolios and decile 10 of β4-sorted port-

folios. In the β2-sorted portfolios of both illiquidity proxies, decile 1 receives a notably high 

post-ranking beta, which is exceeded only by deciles 8-10 under AdjILLIQ and only decile 

10 under PQS. A similar occurrence is found in β4-sorted portfolios using PQS where the 

risk of decile 10 is only exceeded by deciles 1 and 2. These aberrations are strikingly similar 

to those reported by Kim and Lee (2014, p. 122) in portfolios using the Amihud (2002) proxy  

of illiquidity. As the portfolios are sorted annually, it is possible that the risks of portfolio 

constituents, and consequently of the portfolios, vary over time, which would naturally affect 

deciles 1 and 10 the most as they are bounded from one direction. The change in timeframe 

of estimation between pre- and post-ranking betas may also produce differing results. 
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Table 3. Post-ranking betas. 
This table lists the post-ranking betas for liquidity risk sorted portfolios. The post-ranking betas are computed 

using data for the period spanning from 01/2005 to 12/2018. Post-ranking β2 under AdjILLIQ refers to the 

portfolio that was sorted on β2 using AdjILLIQ, and so forth. Under β2, portfolio 1 comprises of stocks with 

lowest liquidity risk and 10 the highest, whereas under β3 and β4 the order is the opposite. HML refers to the 

difference between the high-risk and low-risk portfolios. 

 AdjILLIQ  PQS 

Portfolio β2 β3 β4  β2 β3 β4 

1 0.0005 -0.0164 -0.0219  0.0015 -0.0213 -0.0433 

2 0.0001 -0.0136 -0.0227  0.0004 -0.0196 -0.0304 

3 0.0001 -0.0135 -0.0181  0.0002 -0.0197 -0.0164 

4 0.0002 -0.0137 -0.0114  0.0006 -0.0165 -0.0198 

5 0.0002 -0.0127 -0.0086  0.0004 -0.0182 -0.0125 

6 0.0005 -0.0118 -0.0112  0.0008 -0.0158 -0.0093 

7 0.0004 -0.0104 -0.0024  0.0011 -0.0168 -0.0062 

8 0.0006 -0.0091 -0.0025  0.0009 -0.0132 -0.0081 

9 0.0014 -0.0089 -0.0044  0.0014 -0.0110 0.0125 

10 0.0012 -0.0093 -0.0104  0.0053 -0.0124 -0.0271 

HML 0.0007 -0.0071 -0.0115  0.0038 -0.0089 -0.0162 

 

Portfolio characteristics are also computed for additional insight. The characteristics of in-

terest are averages and standard deviations in returns and illiquidity, as well as the average 

monthly market capitalization. Table 4 presents the above characteristics for the three sets 

of decile portfolios sorted using AdjILLIQ. 

 

In Panel A, average returns tend to gradually increase with liquidity risk, aside from notable 

deviations in deciles 1 and 7. Decile 1 has the highest returns despite being designed to 

contain the lowest risk. Bearing in mind the post-ranking betas, the relationship between risk 

and average returns is more evident. Panels B and especially C, however, find little relation-

ship between liquidity risk and average returns. Standard deviations of returns show mixed 

results. In all panels, the differences between deciles 1 and 10 are as expected. The riskiest 

portfolio has a higher standard deviation than the least risky portfolio, consistent with 

Acharya and Pedersen (2005, p.391). However, with the exception of Panel B, it requires a 

degree of optimism to find any clear pattern. 

 

Average illiquidity is higher in the high-risk portfolios in Panels A and C, which is an intu-

itive result. Moreover, bearing in mind the post-ranking betas, the relationship is again more 

explicit. Panel B is an exception in this regard with no clear relationship. Standard deviations 

in illiquidity appear to have a similar relationship. In all panels, the high-risk decile has a 
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higher standard deviation than the low-risk decile. Again, a monotonic relationship is more 

pronounced in Panels A and C, closely following the post-ranking betas. Average sizes of 

the portfolios also show a relatively monotonic trend in Panels A and C, indicating that larger 

stocks have, on average, a lower ex ante liquidity risk. Decile 1 in Panel A and deciles 9 and 

10 in Panel C are exceptions, but in general it is apparent that larger stocks tend to have a 

lower liquidity risk. 

 

Table 4. Characteristics of portfolios sorted using AdjILLIQ. 
This table reports characteristics of liquidity risk sorted portfolios using AdjILLIQ. All figures are based on the 

sample spanning from 01/2005 to 12/2018. Mean portfolio returns and illiquidity, μ(rp) and μ(cp), respectively, 

as well as standard deviations of both, σ(rp) and σ(cp), are reported in percentages. Size refers to the time series 

average of the market capitalization (in millions) of each portfolio. 

Portfolio 1 2 3 4 5 6 7 8 9 10 

Panel A: β2 (commonality) sorted portfolios 

μ(rp) 0.83 0.36 0.55 0.52 0.47 0.59 0.37 0.66 0.65 0.80 

σ(rp) 4.50 4.87 5.03 4.70 4.61 4.23 4.32 4.41 4.96 4.67 

μ(cp) 1.22 0.13 0.13 0.22 0.35 0.56 0.72 1.15 1.67 2.24 

σ(cp) 0.70 0.16 0.11 0.14 0.25 0.41 0.44 0.75 0.92 0.80 

Size 5252 10881 5742 1959 1367 605 233 151 73 45 

           

Panel B: β3 (flight to liquidity) sorted portfolios 

μ(rp) 0.53 0.46 0.61 0.88 0.89 0.57 0.58 0.50 0.45 0.38 

σ(rp) 6.14 5.30 4.92 4.94 4.67 4.05 4.08 3.70 3.50 3.99 

μ(cp) 1.07 0.85 0.75 0.76 0.71 0.75 0.79 0.81 0.84 1.14 

σ(cp) 0.66 0.62 0.53 0.44 0.36 0.45 0.55 0.46 0.44 0.40 

Size 748 2802 4694 3231 3247 2389 2417 3055 2216 1553 

           

Panel C: β4 (depressed wealth effect) sorted portfolios 

μ(rp) 0.69 0.48 0.75 0.63 0.20 0.75 0.63 0.29 0.69 0.70 

σ(rp) 5.00 4.69 4.40 4.27 4.56 4.82 4.79 4.89 4.48 4.39 

μ(cp) 2.14 1.38 1.02 0.68 0.49 0.32 0.15 0.10 0.41 1.69 

σ(cp) 0.99 0.81 0.55 0.50 0.34 0.27 0.13 0.09 0.32 0.67 

Size 50 80 155 401 919 1365 3304 13668 6224 297 

 

Table 5 presents the same set of characteristics for portfolios sorted using PQS as the proxy 

of illiquidity. All panels indicate that the decile of highest risk has higher average returns 

than the decile of lowest risk. However, the variance between deciles indicates little con-

sistent trend. Standard deviations of returns appear to exhibit a more consistent trend. In all 

panels, standard deviations increase with liquidity risk, consistent with Acharya and Peder-

sen (2005, p.391). Moreover, Panel B exhibits the most consistent gradual increase with 

liquidity risk. 
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Average illiquidity tends to increase between the least and most risky deciles in all panels. 

In Panels A and C, the increase is generally gradual with the exception of the least risky 

deciles, which seem to be an aberration in many ways. Standard deviations in illiquidity 

mostly follow a similar pattern; the riskiest deciles have higher standard deviations than the 

least risky deciles in all panels, and Panels A and C indicate a somewhat gradual increase 

with the exception of the two least risky deciles. Similar to the AdjILLIQ portfolios, average 

portfolio size appears to be linked with liquidity risk in Panels A and C. With the exception 

of the least risky deciles, the relationship between average market capitalization and liquidity 

risk appears to be monotonic. Again, Panel B indicates that the risk of flight to liquidity is 

not strongly linked to size, but commonality and the depressed wealth effect appear to be. 

 

Table 5. Characteristics of portfolios sorted using PQS. 
This table reports characteristics of liquidity risk sorted portfolios using PQS. All figures are based on the 

sample spanning from 01/2005 to 12/2018. Mean portfolio returns and illiquidity, μ(rp) and μ(cp), respectively, 

as well as standard deviations of both, σ(rp) and σ(cp), are reported in percentages. Size refers to the time series 

average of the market capitalization (in millions) of each portfolio. 

Portfolio 1 2 3 4 5 6 7 8 9 10 

Panel A: β2 (commonality) sorted portfolios 

μ(rp) 0.57 0.66 0.38 0.53 0.54 0.75 0.50 0.58 0.55 0.87 

σ(rp) 3.51 4.45 4.24 4.77 4.47 3.99 4.55 4.44 4.15 4.75 

μ(cp) 3.94 1.92 1.57 2.02 2.38 2.82 3.20 3.58 4.44 8.27 

σ(cp) 1.35 0.92 0.43 0.73 0.67 0.83 1.01 0.73 1.20 2.73 

Size 1790 7420 5364 4157 2008 1190 548 432 113 93 

           

Panel B: β3 (flight to liquidity) sorted portfolios 

μ(rp) 0.63 1.01 0.55 0.27 0.87 0.60 0.52 0.51 0.67 0.35 

σ(rp) 5.85 5.25 4.96 4.51 4.23 3.94 4.12 3.36 3.41 3.65 

μ(cp) 4.95 3.10 2.97 2.93 3.08 3.00 3.05 3.29 3.35 4.59 

σ(cp) 2.20 0.91 1.05 0.87 0.87 1.00 1.02 1.33 1.12 0.98 

Size 899 1756 3227 3085 2440 2737 3188 2556 1975 1203 

           

Panel C: β4 (depressed wealth effect) sorted portfolios 

μ(rp) 0.66 0.76 0.55 0.48 0.58 0.54 0.64 0.65 0.58 0.52 

σ(rp) 4.52 4.55 4.19 4.70 4.18 4.63 4.28 4.26 3.85 3.92 

μ(cp) 7.14 4.12 3.60 3.16 2.70 2.27 1.64 1.68 2.50 5.35 

σ(cp) 2.37 1.28 0.96 0.76 0.74 0.70 0.52 0.50 1.19 1.81 

Size 122 146 231 531 1036 2269 5888 6713 5570 635 
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4.3 Time-varying liquidity risk 

 

Time-varying conditional illiquidity betas are computed as per Equations (11)–(14) as dis-

cussed in Section 2.4, using the method described in Section 3.2.3. The conditional covari-

ances for the betas are estimated using the DCC-GARCH(1,1) estimator, and the conditional 

variance of  market returns is estimated with an EGARCH(1,1). Figure 2 plots the betas for 

decile portfolios 1 and 10, representing the lowest and highest liquidity risks. The betas plot-

ted are the betas for portfolios sorted on the corresponding beta. For example, the common-

ality betas are those of portfolios sorted on the commonality beta, and so forth. The portfolio 

with the lower risk – decile 1 for commonality, elsewhere decile 10 – is plotted in blue, and 

the portfolio with the higher risk in red. 

 

 
Figure 2. Time-varying conditional liquidity risks. 
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All betas vary substantially over time, consistent with prior findings (Hagströmer, Hansson, 

and Nilsson, 2013; Saad and Samet, 2015). The effects of the global financial crisis are evi-

dent in all series; the betas are generally at their lowest prior to the effects of the crisis be-

coming apparent, and subsequently reach their highest levels. As could be expected, the 

high-risk portfolios tend to react more strongly to market developments. The low-risk port-

folios also show notable reactions, especially in terms of commonality and flight to liquidity, 

and to a lesser extent in the depressed wealth effect. 

 

In all figures, the illiquidity betas tend to be higher for the high-risk portfolios, as expected. 

There are temporary exceptions, most notably in the depressed wealth effect using AdjILLIQ, 

where the portfolios cross over, and the high-risk portfolio takes on positive values. In terms 

of absolute magnitudes, the depressed wealth effect has the largest magnitudes and com-

monality in liquidity the smallest, similar to the post-ranking betas discussed in the previous 

section. Moreover, standard deviations indicate that the high-risk portfolios have greater 

variance in their risk. In all series, the high-risk portfolio has a greater standard deviation 

than the low-risk portfolio. In the AdjILLIQ series, these are 0.0004 and 0.0007, 0.0053 and 

0.0112, and 0.0044 and 0.0163 for the pairs of low and high-risk portfolios in commonality, 

flight to liquidity, and the depressed wealth effect. In the PQS series, the same figures are 

0.0009 and 0.0036, 0.0078 and 0.0131, and 0.0131 and 0.0277, respectively. 

 

Visually, the spreads in risk between low and high-risk portfolios appear to be the smallest 

in flight to liquidity; the series seem to closely follow each other with a constantly narrow 

spread. In absolute terms, however, the smallest differences in means – 0.0009 for AdjILLIQ 

and 0.0041 for PQS – are found in the commonality betas, which tend to converge and di-

verge intermittently. The largest differences in means are found in the depressed wealth ef-

fect portfolios, with 0.0153 for AdjILLIQ and 0.0249 for PQS, and flight to liquidity stands 

in the middle with 0.0075 and 0.0090 for AdjILLIQ and PQS, respectively. Regarding the 

spreads, it is to be noted that not all 8 middle portfolios lie within the spread. The conditional 

betas follow a somewhat similar dispersion to the post-ranking betas. Therefore, on numer-

ous occasions the low-risk portfolio has a higher conditional beta than neighboring deciles. 

This highlights the notion that an ex ante beta may not be a failsafe predictor of future risk. 
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4.3.1 Time trend in liquidity risk 

 

The only series that exhibits a semblance of a trend in Figure 2 is the portfolio of highest 

risk in flight to liquidity when using AdjILLIQ as a proxy of illiquidity. Regardless, all series 

plotted in Figure 2 are tested for a linear trend using the PS1 test of Vogelsang (1998) and 

the DAN-J test of Bunzel and Vogelsang (2005). The results for both tests are reported in 

Table 6. The test is two-tailed, whereby the linear trend may be either positive or a negative. 

As positive values of β2 indicate greater risk, a positive trend coefficient would indicate an 

increasing trend. Conversely, β3 and β4 take on negative values, and a larger negative value 

indicates greater risk. Therefore, a positive trend coefficient would indicate a decreasing 

trend. 

 

Table 6. Tests for time trend in conditional liquidity risks. 
The leftmost column lists the portfolio tested; β2 low risk refers to the conditional β2 series of the decile with 

lowest risk when sorted on β2, and so forth. The test is two tailed, testing for either a positive or a negative 

trend. The table lists the time trend coefficient and the two tailed test statistic at the 5% significance level below 

in parentheses. Two tailed critical values at 5% significance are 2.152 for the PS1 test and 2.052 for the DAN-

J test. 

 AdjILLIQ  PQS 

 DAN-J PS1  DAN-J PS1 

β2 low risk 0.0000 0.0000  0.0000 0.0000 

 (-0.067) (0.185)  (0.019) (0.615) 

β2 high risk -0.0000 0.0000  0.0000 0.0000 

 (-1.477) (-1.062)  (0.815) (0.992) 

β3 low risk 0.0000 0.0000  0.0000 0.0000 

 (1.595) (1.421)  (0.948) (0.429) 

β3 high risk 0.0001* 0.0001  0.0001 0.0000 

 (2.505) (1.794)  (1.520) (0.870) 

β4 low risk 0.0000 0.0000  -0.0001 -0.0001 

 (1.032) (0.409)  (-0.556) (-0.533) 

β4 high risk 0.0000 0.0000  0.0001 0.0001 

 (0.657) (-0.035)  (1.056) (0.576) 

H0: No linear time trend. * indicates significance at the 5% level. 

 

The results largely confirm the hypothesis of no trend in the risks, conforming to the results 

of prior studies (Hagströmer, Hansson, and Nilsson 2013; Saad and Samet, 2015). The co-

efficients are minimal across the board, and only one coefficient is statistically significant at 

the 5 percent level. The significant coefficient corresponds to the high-risk portfolio sorted 

on flight to liquidity, using AdjILLIQ as the proxy of illiquidity. Judging by Figure 2, there 

appears to be a trend of a decreasing risk within the sample period. However, it could be 
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argued that a longer timeframe is required to determine whether the result is generalizable 

or simply driven by the sample period. As is evident from Figure 2, the betas tend to peak 

shortly after a liquidity event such as the financial crisis, the brunt of which occurred during 

2008. Bearing in mind that the sample period of the trend test covers the years 2005 through 

2018, and that the innovations in market illiquidity plotted in Figure 1 indicate a period of 

increased uncertainty about market liquidity from 2000 until 2005, it is possible that the 

starting values of large magnitude are a product of the preceding period omitted from the 

trend test. Consequently, there is little evidence of a general trend in the liquidity risks, and 

hypothesis 6 of no trend in liquidity risks cannot be rejected. 

 

4.4 Pricing of time-varying liquidity risk 

 

As Acharya and Pedersen (2005) note multicollinearity among the betas, their pairwise cor-

relations are examined in Table 7. The table lists the pairwise correlations among the il-

liquidity betas for each portfolio sorting and confirms collinearity in the sample. For brevity, 

only the betas which are regressed together with another beta are included. Although omitted 

from the table, it is noted that the net systematic risk (β6) is largely defined by the market 

risk factor (β1) due to its large magnitude compared to the illiquidity betas. Consequently, 

the correlation between the two is approximately 0.999. 

 

The market risk factor (β1) has negligible correlations with the illiquidity betas and the ag-

gregate liquidity risk (β5). The negative correlation between commonality in liquidity (β2) 

and flight to liquidity (β3) ranges from weak to moderate, with highest values in Panel B. 

Flight to liquidity (β3) is positively correlated with the depressed wealth effect (β4), but the 

coefficients again range from weak to moderate. Most notably, commonality (β2) has a 

strong negative correlation with the depressed wealth effect (β4) in all panels, with coeffi-

cients ranging from -0.756 to -0.860. This may cause difficulty in estimating coefficients 

and their statistical significance when the betas are regressed jointly. 
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Table 7. Pairwise correlations of conditional betas. 
The table lists the Spearman correlation coefficients for the illiquidity betas. All values are significant at the 1 

percent level. 

 AdjILLIQ   PQS 

 
Panel A: β2 (commonality) sorted portfolios 

 β1 β2 β3 β4 β5   β1 β2 β3 β4 β5 

β1 1.000      β1 1.000     

β2 -0.097 1.000     β2 -0.088 1.000    

β3 -0.059 -0.437 1.000    β3 -0.089 -0.350 1.000   

β4 0.088 -0.850 0.421 1.000   β4 0.048 -0.860 0.421 1.000  

β5 -0.039 0.825 -0.749 -0.916 1.000  β5 -0.005 0.816 -0.722 -0.930 1.000 

 
Panel B: β3 (flight to liquidity) sorted portfolios 

 β1 β2 β3 β4 β5   β1 β2 β3 β4 β5 

β1 1.000      β1 1.000     

β2 0.130 1.000     β2 0.105 1.000    

β3 -0.257 -0.682 1.000    β3 -0.226 -0.536 1.000   

β4 -0.087 -0.756 0.453 1.000   β4 -0.205 -0.762 0.536 1.000  

β5 0.191 0.854 -0.821 -0.881 1.000  β5 0.236 0.786 -0.794 -0.938 1.000 

 
Panel C: β4 (depressed wealth effect) sorted portfolios 

 β1 β2 β3 β4 β5   β1 β2 β3 β4 β5 
β1 1.000      β1 1.000     

β2 -0.102 1.000     β2 -0.089 1.000    

β3 -0.059 -0.498 1.000    β3 -0.064 -0.327 1.000   
β4 0.069 -0.846 0.477 1.000   β4 0.026 -0.814 0.338 1.000  

β5 -0.029 0.837 -0.764 -0.931 1.000  β5 -0.002 0.803 -0.642 -0.938 1.000 

 

To mitigate the issue of multicollinearity, the LCAPM is estimated in seven different speci-

fications as per Equations (28)–(34).  This allows for the liquidity risks to be estimated both 

separately and jointly. A fixed effects panel regression described in Section 3.2.3 is used for 

the estimation. A two-way error component model is used to account for both firm and time 

fixed effects which are present in the data. Moreover, robust standard errors are used to 

account for autocorrelation in the regressors. The use of the model is justified with the fol-

lowing diagnostic tests conducted for each model specification. Firstly, the Breusch-Pagan 

LM test indicates that panel effects are present in the data and that a pooled OLS is not the 

most suitable model. Secondly, the Hausman test indicates the presence of a firm effect in 

the data. Lastly, a Wald test indicates that the coefficients differ between time periods, con-

firming the presence of a time fixed effect. The results of the diagnostic tests are found in 

Appendix 5.  

 

The timeframe for the regressions spans from 2000 to 2018, as the first 5 years of data are 

used to obtain pre-ranking betas. Moreover, the illiquidity innovation of 01/2000 is lost due 

to differencing before estimating the AR model to obtain innovations, and consequently, 
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there are no conditional betas for 01/2000. Therefore, the data in the regressions contains 

167 time periods. In the AdjILLIQ regressions, 699 individual stocks are used as test assets. 

On average, the data contains 91.6 observations per stock, and the total number of observa-

tions is 63999. In the PQS regressions, 770 individual stocks with an average of 96.6 obser-

vations per stock combine for a total of 74415 observations. 

 

Tables 8 and 9 report the results of the panel regressions using AdjILLIQ and PQS, alterna-

tively, as the proxies for illiquidity. The numbering in the leftmost column refers to the 

LCAPM specification corresponding to Equations (28)–(34), and the top row lists the pa-

rameters estimated. In the first specification, the pricing of market risk adjusted for liquidity 

is estimated separately. Subsequently, the pricing of each liquidity risk, and finally the ag-

gregate liquidity risk, are estimated jointly with the market risk. Specification 6 estimates 

the pricing of the net systematic risk, and finally, specification 7 estimates the pricing of the 

conditional liquidity risks jointly. All regressions consider the expected illiquidity level E(c), 

which is hypothesized to be priced in the market. The natural logarithms of market capitali-

zation and the book-to-market ratio are used to control for the size and value effects, and the 

free float ratio is included to control for its idiosyncratic effect on illiquidity. 

 

When AdjILLIQ is used to proxy illiquidity, its expected level is not significantly related to 

stock returns at conventional levels in any of the regressions. In a bivariate regression, il-

liquidity has a positive and significant relationship with stock returns. Noting the negative 

and significant coefficient for size in all regressions and bearing in mind the size effect noted 

in Table 2, whereby small stocks tend to be less liquid, it is possible that the illiquidity pre-

mium is subsumed by a size effect. Another culprit may be a noted value effect whereby 

returns increase with the book-to-market ratio.15 

 

Another consistent result across panels is that market risk (β1) is priced negatively with a 

coefficient of -0.004, significant at the 10 percent level. Although counter-intuitive, the re-

sult is plausible when compared to the cross-sectional regressions of Brückner, Lehmann, 

and Stehle (2012). Unreported but worth noting is that sorting stocks on β1 and estimating a 

conditional β1 at the portfolio level would produce a similar result. As a consequence of the 

 
15 The book-to-market ratio has an indirect size implication. The natural logarithms of market capitalization 

and book-to-market ratio have a pairwise correlation of -0.235. 
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pricing of β1, net systematic risk (β6) is also priced with a coefficient of -0.004, significant 

at the 10 percent level. 

 

Panel A contains the results for portfolios sorted on commonality in liquidity. Commonality 

(β2) is positively related to returns with a coefficient of 2.665, significant at the 5 percent 

level. The signs of flight to liquidity (β3) and the depressed wealth effect (β4) are negative as 

hypothesized, but neither are significant at conventional levels. When regressed jointly in 

line 7, none of the liquidity risks have significant relationships with returns. Moreover, the 

coefficient for β4 changes sign, which is possibly due to collinearity with β2. As commonality 

in liquidity is priced, aggregate liquidity risk (β5) is also priced with a coefficient of 0.103, 

albeit at the 10 percent significance level. 

 

Panel B contains the results for portfolios sorted on flight to liquidity. The signs for the 

liquidity risks are all as hypothesized and remain so in joint estimation. However, only flight 

to liquidity (β3) is priced with a coefficient of -0.455, significant at the 5 percent level. More-

over, β3 remains priced in the joint estimation with a coefficient of -0.442, again significant 

at the 5 percent level. As a consequence of the pricing of β3, aggregate liquidity risk (β5) is 

priced with a coefficient of 0.132, significant at the 5 percent level. 

 

Lastly, panel C contains the results for portfolios sorted on the depressed wealth effect. 

When estimated separately, none of the liquidity risks are priced at conventional significance 

levels. Moreover, the coefficient for the depressed wealth effect (β4) is positive, contrary to 

expectations. In joint estimation, β2 and β4 gain significance; the coefficients are 3.832 and 

0.193, respectively, both significant at the 10 percent level. Aggregate liquidity risk (β5) is 

not priced at conventional significance levels.
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Table 8. Panel regressions with fixed effects using AdjILLIQ. 
The numbering in the leftmost column corresponds to the model specification as per Equations (28)–(34). The dependent variable in all regressions is the monthly excess 

return of a given stock. The top row lists the estimated parameters. The intercept is α, the expected illiquidity cost is E(c), and the market risk adjusted for liquidity is β1. β2, 

β3, and β4 refer to commonality in liquidity, flight to liquidity, and the depressed wealth effect, respectively. The aggregate liquidity risk is β5, and the net systematic risk is 

β6. Ln(Sz), ln(BM), and FF control for size, book-to-market ratio, and the free float ratio, respectively. The table lists the parameter estimate and the corresponding t-statistic 

below in parentheses. *, **, and *** indicate significance at 10%, 5%, and 1% levels, respectively.  

 α E(c) β1 β2 β3 β4 β5 β6 ln(Sz) ln(BM) FF 

Panel A: β2 (commonality) sorted portfolios 

1 0.037*** -0.048 -0.004*      -0.005*** 0.019*** -0.001 

 (3.49) (-0.98) (-1.70)      (-2.72) (8.64) (-0.36) 

2 0.034*** -0.046 -0.004* 2.665**     -0.005** 0.019*** -0.001 

 (3.17) (-0.93) (-1.68) (2.09)     (-2.55) (8.67) (-0.31) 

3 0.035*** -0.047 -0.004*  -0.111    -0.005*** 0.019*** -0.001 

 (3.18) (-0.94) (-1.71)  (-0.54)    (-2.70) (8.64) (-0.36) 

4 0.036*** -0.048 -0.004*   -0.102   -0.005*** 0.019*** -0.001 

 (3.35) (-0.97) (-1.68)   (-1.62)   (-2.64) (8.65) (-0.33) 

5 0.034*** -0.046 -0.004*    0.103*  -0.005*** 0.019*** -0.001 

 (3.12) (-0.93) (-1.69)    (1.71)  (-2.61) (8.65) (-0.33) 

6 0.037*** -0.048      -0.004* -0.005*** 0.019*** -0.001 

 (3.49) (-0.98)      (-1.66) (-2.72) (8.64) (-0.36) 

7 0.033*** -0.045 -0.004* 2.878 -0.089 0.017   -0.005** 0.019*** -0.001 

 (2.91) (-0.90) (-1.69) (1.29) (-0.43) (0.15)   (-2.53) (8.68) (-0.31) 
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Table 8 continued. 
 α E(c) β1 β2 β3 β4 β5 β6 ln(Sz) ln(BM) FF 

Panel B: β3 (flight to liquidity) sorted portfolios 

1 0.037*** -0.048 -0.004*      -0.005*** 0.019*** -0.001 

 (3.49) (-0.98) (-1.70)      (-2.72) (8.64) (-0.36) 

2 0.036*** -0.048 -0.004* 2.933     -0.005*** 0.019*** -0.001 

 (3.34) (-0.98) (-1.82) (1.22)     (-2.73) (8.63) (-0.37) 

3 0.031*** -0.046 -0.005**  -0.455**    -0.005*** 0.019*** -0.001 

 (2.77) (-0.93) (-2.31)  (-2.28)    (-2.72) (8.63) (-0.38) 

4 0.037*** -0.049 -0.004*   -0.058   -0.005*** 0.019*** -0.001 

 (3.48) (-0.99) (-1.74)   (-0.79)   (-2.73) (8.64) (-0.36) 

5 0.035*** -0.049 -0.005**    0.132**  -0.005*** 0.019*** -0.001 

 (3.27) (-0.99) (-1.99)    (2.00)  (-2.74) (8.63) (-0.39) 

6 0.037*** -0.048      -0.004* -0.005*** 0.019*** -0.001 

 (3.49) (-0.98)      (-1.66) (-2.72) (8.64) (-0.36) 

7 0.030*** -0.046 -0.006** 1.358 -0.442** -0.039   -0.005*** 0.019*** -0.001 

 (2.72) (-0.94) (-2.37) (0.48) (-2.29) (-0.44)   (-2.73) (8.62) (-0.39) 

Panel C: β4 (depressed wealth effect) sorted portfolios 

1 0.037*** -0.048 -0.004*      -0.005*** 0.019*** -0.001 

 (3.49) (-0.98) (-1.70)      (-2.72) (8.64) (-0.36) 

2 0.036*** -0.047 -0.004* 0.976     -0.005*** 0.019*** -0.001 

 (3.33) (-0.95) (-1.69) (0.71)     (-2.65) (8.63) (-0.34) 

3 0.031*** -0.042 -0.004*  -0.354    -0.005*** 0.019*** -0.001 

 (2.73) (-0.85) (-1.74)  (-1.53)    (-2.66) (8.65) (-0.32) 

4 0.038*** -0.050 -0.004*   0.055   -0.005*** 0.019*** -0.001 

 (3.51) (-1.01) (-1.70)   (0.85)   (-2.74) (8.66) (-0.37) 

5 0.038*** -0.049 -0.004*    -0.017  -0.005*** 0.019*** -0.001 

 (3.43) (-1.00) (-1.70)    (-0.29)  (-2.71) (8.65) (-0.36) 

6 0.037*** -0.049      -0.004* -0.005*** 0.019*** -0.001 

 (3.50) (-0.99)      (-1.71) (-2.72) (8.64) (-0.36) 

7 0.029** -0.041 -0.004* 3.832* -0.363 0.193*   -0.005** 0.019*** -0.001 

 (2.56) (-0.82) (-1.74) (1.84) (-1.55) (1.96)   (-2.58) (8.69) (-0.32) 
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Alternatively, PQS is used to proxy illiquidity in Table 9. The method of analysis and layout 

of the table are identical to Table 8. Similar to the AdjILLIQ regressions, any illiquidity 

premium appears to be subsumed by other factors, such as the size or value effect. Moreover, 

the coefficient for market risk (β1) remains negative but is not significant at conventional 

levels. Consequently, net systematic risk (β6) has a negative coefficient which is neither sig-

nificant at conventional levels. 

 

Panel A again contains the results for portfolios sorted on commonality in liquidity. Com-

monality (β2) is positively related to returns with a coefficient of 0.860, significant at the 5 

percent level. The sign of the flight to liquidity (β3) is as hypothesized, but the coefficient is 

not significant at conventional levels. The depressed wealth effect (β4) is priced with a coef-

ficient of -0.117, significant at the 1 percent level. In joint estimation, neither β2 nor β4 retain 

significance. Moreover, the sign of β2 becomes negative, which is possibly due to collinear-

ity with β4. Due to the pricing of β2 and β4, aggregate liquidity risk (β5) is also priced with a 

coefficient of 0.105, significant at the 1 percent level. 

 

Panel B contains the results for portfolios sorted on flight to liquidity. When estimated sep-

arately, only flight to liquidity (β3) is priced with a coefficient of -0.259, significant at the 5 

percent level. Moreover, β3 remains significantly priced in the joint estimation with a coef-

ficient of -0.293, again significant at the 5 percent level. Although β3 is priced, aggregate 

liquidity risk (β5) is not priced at conventional significance levels. 

 

Finally, panel C contains the results for portfolios sorted on the depressed wealth effect. The 

signs for the liquidity risks are all as hypothesized and remain so in joint estimation. How-

ever, only commonality (β2) is priced with a coefficient of 0.813, significant at the 10 percent 

level. When regressed jointly, none of the liquidity risks have significant relationships with 

returns. As a consequence of the pricing of β2, aggregate liquidity risk (β5) is priced with a 

coefficient of 0.048, also significant at the 10 percent level. 
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Table 9. Panel regressions with fixed effects using PQS. 
The numbering in the leftmost column corresponds to the model specification as per Equations (28)–(34). The dependent variable in all regressions is the monthly excess 

return of a given stock. The top row lists the estimated parameters. The intercept is α, the expected illiquidity cost is E(c), and the market risk adjusted for liquidity is β1. β2, 

β3, and β4 refer to commonality in liquidity, flight to liquidity, and the depressed wealth effect, respectively. The aggregate liquidity risk is β5, and the net systematic risk is 

β6. Ln(Sz), ln(BM), and FF control for size, book-to-market ratio, and the free float ratio, respectively. The table lists the parameter estimate and the corresponding t-statistic 

below in parentheses. *, **, and *** indicate significance at 10%, 5%, and 1% levels, respectively.  

 α E(c) β1 β2 β3 β4 β5 β6 ln(Sz) ln(BM) FF 

Panel A: β2 (commonality) sorted portfolios 

1 0.032*** 0.018 -0.003      -0.005** 0.017*** -0.000 

 (2.79) (0.23) (-1.29)      (-2.37) (8.52) (-0.00) 

2 0.030*** 0.017 -0.003 0.860**     -0.005** 0.017*** 0.000 

 (2.63) (0.22) (-1.35) (2.00)     (-2.29) (8.50) (0.04) 

3 0.027** 0.019 -0.003  -0.211    -0.005** 0.017*** -0.000 

 (2.29) (0.24) (-1.38)  (-1.42)    (-2.39) (8.53) (-0.02) 

4 0.031*** 0.017 -0.003   -0.117***   -0.005** 0.017*** -0.000 

 (2.74) (0.21) (-1.39)   (-2.70)   (-2.33) (8.53) (-0.00) 

5 0.029** 0.017 -0.003    0.105***  -0.005** 0.017*** -0.000 

 (2.53) (0.22) (-1.43)    (2.74)  (-2.33) (8.51) (-0.01) 

6 0.031*** 0.018      -0.003 -0.005** 0.017*** -0.000 

 (2.78) (0.23)      (-1.16) (-2.37) (8.51) (-0.02) 

7 0.028** 0.017 -0.003 -0.011 -0.147 -0.111   -0.005** 0.017*** -0.000 

 (2.31) (0.22) (-1.44) (-0.01) (-1.00) (-1.47)   (-2.33) (8.53) (-0.02) 
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Table 9 continued. 
 α E(c) β1 β2 β3 β4 β5 β6 ln(Sz) ln(BM) FF 

Panel B: β3 (flight to liquidity) sorted portfolios 

1 0.032*** 0.018 -0.003      -0.005** 0.017*** -0.000 

 (2.79) (0.23) (-1.29)      (-2.37) (8.52) (-0.00) 

2 0.032*** 0.018 -0.003 -0.051     -0.005** 0.017*** -0.000 

 (2.79) (0.23) (-1.29) (-0.09)     (-2.37) (8.50) (-0.00) 

3 0.026** 0.019 -0.004*  -0.259**    -0.005** 0.017*** -0.000 

 (2.26) (0.24) (-1.66)  (-2.05)    (-2.32) (8.49) (-0.03) 

4 0.032*** 0.018 -0.003   -0.007   -0.005** 0.017*** -0.000 

 (2.79) (0.23) (-1.31)   (-0.18)   (-2.37) (8.51) (-0.00) 

5 0.031*** 0.018 -0.003    0.021  -0.005** 0.017*** -0.000 

 (2.75) (0.23) (-1.39)    (0.65)  (-2.36) (8.51) (-0.01) 

6 0.032*** 0.018      -0.003 -0.005** 0.017*** -0.000 

 (2.79) (0.23)      (-1.25) (-2.37) (8.52) (-0.00) 

7 0.026** 0.019 -0.004 -0.047 -0.293** 0.025   -0.005** 0.017*** -0.000 

 (2.17) (0.24) (-1.63) (-0.06) (-2.33) (0.50)   (-2.33) (8.49) (-0.03) 

Panel C: β4 (depressed wealth effect) sorted portfolios 

1 0.032*** 0.018 -0.003      -0.005** 0.017*** -0.000 

 (2.79) (0.23) (-1.29)      (-2.37) (8.52) (-0.00) 

2 0.030*** 0.017 -0.003 0.813*     -0.005** 0.017*** 0.000 

 (2.65) (0.22) (-1.33) (1.92)     (-2.28) (8.54) (0.02) 

3 0.031** 0.018 -0.003  -0.048    -0.005** 0.017*** -0.000 

 (2.59) (0.23) (-1.30)  (-0.32)    (-2.37) (8.51) (-0.01) 

4 0.031*** 0.018 -0.003   -0.050   -0.005** 0.017*** -0.000 

 (2.74) (0.23) (-1.37)   (-1.65)   (-2.32) (8.53) (-0.01) 

5 0.030*** 0.018 -0.003    0.048*  -0.005** 0.017*** -0.000 

 (2.64) (0.23) (-1.38)    (1.73)  (-2.31) (8.53) (-0.01) 

6 0.032*** 0.018      -0.003 -0.005** 0.017*** -0.000 

 (2.79) (0.23)      (-1.21) (-2.38) (8.51) (-0.01) 

7 0.029** 0.018 -0.003 0.799 -0.074 -0.003   -0.005** 0.017*** 0.000 

 (2.38) (0.23) (-1.35) (1.39) (-0.49) (-0.08)   (-2.28) (8.54) (0.01) 
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The following briefly summarizes the findings related to hypotheses 1-5 and considers dif-

ferences between the illiquidity proxies. Hypothesis 1, which states that the level of expected 

illiquidity has a positive and significant relationship with stock returns receives no support. 

None of the regressions of either illiquidity proxy find a positive and significant relationship. 

As already noted, a positive and significant relationship exists in bivariate regressions, but 

the illiquidity premium appears to be subsumed by other factors. 

 

Hypothesis 2 states that commonality in liquidity is positively and significantly related to 

stock returns. When estimated separately from the other conditional betas, both illiquidity 

proxies find a positive and significant relationship at the 5 percent level in portfolios sorted 

on commonality. When estimated jointly with other conditional betas, both estimates lose 

significance most likely due to multicollinearity, but a lack of empirical relevance remains 

a possibility. Additionally, commonality is priced in panel C with both proxies: when esti-

mated separately using PQS and in joint estimation using AdjILLIQ. The estimated coeffi-

cients are generally substantially larger in magnitude when using AdjILLIQ. 

 

Hypothesis 3, which states that flight to liquidity has a negative and significant relationship 

with stock returns, receives stronger support. Both illiquidity proxies find a negative and 

significant relationship in portfolios sorted on flight to liquidity. Moreover, the estimates 

remain significant in joint estimation. All significant relationships are at the 5 percent level. 

The estimated coefficients are again substantially larger in magnitude when using AdjILLIQ. 

 

Hypothesis 4 states that the depressed wealth effect has a negative and significant relation-

ship with stock returns. The AdjILLIQ regressions find no evidence of a negative and signif-

icant relationship. When using PQS, a negative and significant relationship is found at the 1 

percent level in portfolios sorted on commonality in liquidity. The estimate loses its signifi-

cance in joint estimation most likely due to multicollinearity, but again a lack of empirical 

relevance remains a possibility. Although the result is plausible as the stocks are sorted on 

commonality in liquidity and β4 considers stock illiquidity as a variable, a lack of pricing in 

portfolios sorted on β4 casts doubt on the meaningfulness of the result. 

 

Lastly, hypothesis 5 states that the aggregate liquidity risk has a positive and significant 

relationship with stock returns. Aggregate liquidity risk is priced in panels A and B using 
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AdjILLIQ, and panels A and C using PQS. Arguably the most reliable estimates are at the 5 

percent level in panel B using AdjILLIQ and at the 1 percent level in panel A using PQS. 

 

In light of the results, hypothesis 1 is rejected. Illiquidity does appear to be generally linked 

with higher returns, but the relationship seems to be subsumed by other factors. Despite 

difficulty caused by multicollinearity, hypothesis 2 cannot be rejected. Hypothesis 3 receives 

stronger support and can neither be rejected. Hypothesis 4 receives no support using AdjIL-

LIQ and evidence is weak at best using PQS, but the hypothesis should be examined further 

rather than outright rejected. Lastly, hypothesis 5 cannot be rejected. Aside from hypothesis 

4, the results are fairly similar between the proxies, which could be considered a validation 

of the assumption that AdjILLIQ is a valid proxy for illiquidity. 

 

4.4.1 Pricing with an endogenous holding period 

 

When modeling illiquidity costs and associated premia, it is important to consider how often 

the illiquidity cost is incurred (Acharya and Pedersen, 2005; Hagströmer, Hansson, and Nils-

son, 2013). The regressions in the previous section assume a one-month holding period, 

which is likely to differ from the typical holding period of an investor. Similar to Acharya 

and Pedersen (2005), the average holding period is determined empirically from the sample 

as the period during which all the stocks are turned over once. Using end-of-month market 

capitalization of free-floating stocks and total monthly trading volume in Euros based on the 

end-of-month price, the average turnover rate across all stocks over the entire sample period 

is determined to be 1.93 percent. This corresponds to an average holding period of 

1/0.0193≈52 months.16 

 

For sake of brevity, the results of the regressions are presented in Tables 29 and 30 of Ap-

pendix 6. The regressions remain similar to the ones in the previous section. The expected 

illiquidity cost scaled by the holding period is substituted to the left-hand side of the equa-

tion, as in Acharya and Pedersen (2005). 

 

 
16 It is noted that the average holding period is likely to vary over time, making this a crude proxy (Atkins and 

Dyl, 1997; Hagströmer, Hansson, and Nilsson, 2013). Nevertheless, it shows whether the results hold in a more 

general setting. 
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In terms of AdjILLIQ, the results largely gain significance. In panel A, β2 retains its positive 

relationship with returns but the significance increases to the 1 percent level. Additionally, 

the coefficients for β3 and β4 are negative and significant at the 5 and 10 percent levels, 

respectively. Consequently, the coefficient for β5 is positive and significant at the 1 percent 

level. When estimated jointly, β2 and β3 retain significance at the 5 percent level. In panel B, 

only β3 is priced negatively and significant at the 5 percent level, both separately and jointly, 

and β5 loses its significance. In panel C, the coefficient for β2 is positive and significant at 

the 1 percent level, both separately and jointly. Moreover, the coefficient for β3 is negative 

and significant at the 1 percent level, both separately and jointly. β4 is not priced on its own 

but is negative and significant at the 5 percent level in joint estimation. As the liquidity risks 

are priced, the coefficient for β5 is also positive and significant at the 10 percent level. All 

coefficients are substantially larger in magnitude when accounting for the holding period. 

 

To the contrary, the results largely lose significance in terms of PQS. Only the coefficient 

for β3 remains negative and significant in all panels when estimated both separately and 

jointly. All coefficients are significant at the 5 percent level, aside from the joint estimation 

in panel B which is at the 1 percent level. All coefficients are again substantially larger in 

magnitude when accounting for the holding period. 

 

4.5 Robustness tests 

 

The results of this study are tested for robustness to both alternative methods and subsam-

ples. Firstly, the same sample is analyzed with the Fama-MacBeth (1973) regressions to 

determine whether the results hold in cross-sectional estimation. Secondly, the sample is 

split into size groups to determine whether a certain size group is driving the results. The 

following subsections explain the motivation and method in more detail. 

 

4.5.1 Fama-MacBeth regressions 

 

Petersen (2009) highlights drastic differences in the estimation of standard errors, and con-

sequently, rejection rates for test statistics using alternative methods. This raises the notion 

that the chosen methodology may drive the results. Moreover, the study of Saad and Samet 

(2015) indicates considerable differences between estimation methods when the sample and 
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timeframe are held constant. The Fama-MacBeth (1973) method is forgone in estimating the 

main results of this study due to potentially biased estimates, as highlighted by Petersen 

(2009). However, the method is included as a robustness test as it is widely used in related 

literature (Acharya and Pedersen, 2005; Lee, 2011; Saad and Samet, 2015). In addition to 

determining whether the results differ between the methods, it is an additional curiosity to 

examine whether the method is more prone to find significant coefficients, as the potentially 

downward-biased estimates of standard errors would imply (Petersen, 2009, pp. 446-450). 

 

The general method of the Fama-MacBeth (1973) regressions contains two steps. In the first 

step, cross-sectional regressions are estimated at each point in time. In the second step, the 

final parameter estimates are obtained as time series averages of the estimates of the first 

step. The test statistics are computed from the time series averages. Similar to Acharya and 

Pedersen (2005), the standard errors are adjusted with the method of Newey and West (1987) 

using two lags to account for autocorrelation in the time series of coefficients.17 

 

Table 10 presents the results of the Fama-MacBeth regressions using AdjILLIQ as the proxy 

for illiquidity. The relationship between the expected level of illiquidity and returns remains 

insignificantly different from zero at conventional levels. Curiously, the size effect evident 

in the panel regressions is not found, either. Therefore, the illiquidity premium may be sub-

sumed by a value effect. 

 

In panel A, the results of the panel regressions hold and gain significance. The coefficient 

for β2 remains positive and gains significance at the 1 percent level. Moreover, β3 and β4, 

which were not priced in the panel regressions are priced negatively and are significant at 

the 1 percent level. In the joint estimation, only β3 retains its significance, possibly due to 

collinearity between β2 and β4. As the liquidity risks are priced, the coefficient for β5 is pos-

itive and significant at the 1 percent level. The estimated coefficients are substantially larger 

in magnitude in the Fama-MacBeth regressions. In panel B, none of the liquidity risks are 

priced at conventional significance levels. This is contrary to the panel regressions, which 

find β3 and β5 to be priced factors. Similarly, in panel C, none of the liquidity risks are priced 

at conventional significance levels. This result is in line with the panel regressions. 

 
17 The lag order is set due to autocorrelation in the underlying data. It is noted that the adjustment is made to 

autocorrelation in the time series of coefficients rather than the underlying data. 
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Table 10. Fama-MacBeth regressions using AdjILLIQ. 
The numbering in the leftmost column corresponds to the model specification as per Equations (28)–(34). The dependent variable in all regressions is the monthly excess 

return of a given stock. The top row lists the estimated parameters. The constant term is 𝛼, the expected illiquidity cost is 𝐸(𝑐), and the market risk adjusted for liquidity is 

𝛽1. 𝛽2, 𝛽3, and  𝛽4 refer to commonality in liquidity, flight to liquidity, and the depressed wealth effect, respectively. The aggregate liquidity risk is 𝛽5, and the net systematic 

risk is 𝛽6. Ln(Sz), ln(BM), and FF are control variables for size, book-to-market ratio, and the free float ratio, respectively. The table lists the parameter estimate and the 

corresponding t-statistic below in parentheses. The test statistics are computed using standard errors adjusted with the Newey and West (1987) method with two lags. *, **, 

and *** indicate significance at 10%, 5%, and 1% levels, respectively.  

 α E(c) β1 β2 β3 β4 β5 β6 ln(Sz) ln(BM) FF 

Panel A: β2 (commonality) sorted portfolios 

1 0.006* 0.010 0.000      0.000 0.004*** -0.004* 

 (1.69) (0.14) (0.08)      (1.15) (2.86) (-1.85) 

2 0.001 -0.007 0.000 5.073***     0.001** 0.004*** -0.003* 

 (0.18) (-0.10) (0.14) (3.76)     (2.11) (2.94) (-1.69) 

3 -0.011 0.003 0.000  -2.206***    0.001 0.004*** -0.003* 

 (-1.65) (0.05) (0.09)  (-3.07)    (1.62) (2.89) (-1.70) 

4 -0.000 0.001 0.000   -0.367***   0.001** 0.004*** -0.003 

 (-0.02) (0.01) (0.12)   (-3.82)   (2.17) (2.97) (-1.62) 

5 -0.003 0.003 0.000    0.329***  0.001** 0.004*** -0.003 

 (-0.80) (0.04) (0.12)    (3.89)  (2.25) (2.98) (-1.59) 

6 0.006* 0.010      0.000 0.000 0.004*** -0.003* 

 (1.70) (0.14)      (0.11) (1.14) (2.85) (-1.86) 

7 -0.016** -0.008 0.000 0.359 -2.405*** -0.370   0.001** 0.004*** -0.003 

 (-2.03) (-0.10) (0.11) (0.09) (-2.89) (-1.49)   (2.43) (3.06) (-1.54) 
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Table 10 continued. 
 α E(c) β1 β2 β3 β4 β5 β6 ln(Sz) ln(BM) FF 

Panel B: β3 (flight to liquidity) sorted portfolios 

1 0.006* 0.010 0.000      0.000 0.004*** -0.004* 

 (1.69) (0.14) (0.08)      (1.15) (2.86) (-1.85) 

2 0.007* 0.013 0.000 -1.645     0.000 0.004*** -0.003* 

 (1.91) (0.17) (0.16) (-0.66)     (1.08) (2.88) (-1.73) 

3 0.005 0.012 -0.000  -0.065    0.000 0.004*** -0.003* 

 (1.59) (0.17) (-0.12)  (-0.18)    (1.12) (2.87) (-1.81) 

4 0.006* 0.012 0.000   0.056   0.000 0.004*** -0.003* 

 (1.77) (0.16) (0.11)   (0.70)   (1.10) (2.85) (-1.81) 

5 0.007** 0.012 0.000    -0.072  0.000 0.004*** -0.003* 

 (2.02) (0.16) (0.09)    (-0.87)  (1.09) (2.87) (-1.76) 

6 0.006* 0.010      0.000 0.000 0.004*** -0.004* 

 (1.70) (0.14)      (0.08) (1.14) (2.85) (-1.85) 

7 0.004 0.015 -0.000 -0.566 -0.164 -0.110   0.000 0.004*** -0.003* 

 (1.10) (0.21) (-0.16) (-0.14) (-0.38) (-0.81)   (1.06) (2.92) (-1.72) 

Panel C: β4 (depressed wealth effect) sorted portfolios 

1 0.006* 0.010 0.000      0.000 0.004*** -0.004* 

 (1.69) (0.14) (0.08)      (1.15) (2.86) (-1.85) 

2 0.003 0.009 0.000 1.305     0.001 0.004*** -0.003* 

 (0.77) (0.12) (0.11) (0.64)     (1.44) (2.90) (-1.72) 

3 0.001 0.014 0.000  -0.309    0.001 0.004*** -0.003* 

 (0.14) (0.19) (0.06)  (-0.81)    (1.38) (2.85) (-1.69) 

4 0.005 0.015 0.000   -0.005   0.001 0.004*** -0.003* 

 (1.24) (0.21) (0.10)   (-0.06)   (1.10) (2.86) (-1.79) 

5 0.004 0.015 0.000    0.044  0.001 0.004*** -0.003* 

 (0.96) (0.20) (0.10)    (0.55)  (1.14) (2.85) (-1.78) 

6 0.006* 0.010      0.000 0.000 0.004*** -0.004* 

 (1.71) (0.14)      (0.08) (1.15) (2.86) (-1.85) 

7 0.001 0.005 0.000 5.389 -0.156 0.229   0.001* 0.004*** -0.003 

 (0.18) (0.06) (0.13) (1.51) (-0.33) (1.24)   (1.66) (2.93) (-1.50) 
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Table 11 presents the results of the Fama-MacBeth regressions using PQS as the proxy for 

illiquidity. Again, the relationship between the expected level of illiquidity and returns re-

mains insignificantly different from zero at conventional levels. Again, the size effect evi-

dent in the panel regressions is absent, which indicates that the illiquidity premium may be 

subsumed by the value effect. 

 

In panel A, the results of the panel regressions largely hold but lose some of their signifi-

cance. The coefficient for β2 remains positive but is significant at the 10 percent level. Sim-

ilarly, the coefficient for β4 remains negative but is significant at the 5 percent level. As β2 

and β4 are priced, the coefficient for β5 is positive and significant at the 10 percent level.  

 

Panel B is a slight departure from the panel regressions. Contrary to the panel regressions, 

β3 is not priced. However, β5, which is not priced in the panel regression, receives a positive 

coefficient which is significant at the 10 percent level.  

 

Panel C is also a departure from the panel regressions. β2 is not priced, contrary to the panel 

regression. However, the coefficient for β4 is negative and significant at the 5 percent level. 

The coefficient for β5 remains positive and gains significance at the 1 percent level. Again, 

the estimated coefficients are consistently larger in magnitude in the Fama-MacBeth regres-

sions.
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Table 11. Fama-MacBeth regressions using PQS. 
The numbering in the leftmost column corresponds to the model specification as per Equations (28)–(34). The dependent variable in all regressions is the monthly excess 

return of a given stock. The top row lists the estimated parameters. The constant term is 𝛼, the expected illiquidity cost is 𝐸(𝑐), and the market risk adjusted for liquidity is 

𝛽1. 𝛽2, 𝛽3, and  𝛽4 refer to commonality in liquidity, flight to liquidity, and the depressed wealth effect, respectively. The aggregate liquidity risk is 𝛽5, and the net systematic 

risk is 𝛽6. Ln(Sz), ln(BM), and FF are control variables for size, book-to-market ratio, and the free float ratio, respectively. The table lists the parameter estimate and the 

corresponding t-statistic below in parentheses. The test statistics are computed using standard errors adjusted with the Newey and West (1987) method with two lags. *, **, 

and *** indicate significance at 10%, 5%, and 1% levels, respectively.  

 α E(c) β1 β2 β3 β4 β5 β6 ln(Sz) ln(BM) FF 

Panel A: β2 (commonality) sorted portfolios 

1 0.002 0.034 -0.000      0.001** 0.004*** -0.003 

 (0.40) (0.86) (-0.15)      (2.10) (2.80) (-1.47) 

2 -0.001 0.026 -0.000 1.216*     0.001** 0.004*** -0.003 

 (-0.18) (0.65) (-0.16) (1.70)     (2.58) (2.86) (-1.39) 

3 0.001 0.033 -0.001  0.043    0.001** 0.003*** -0.003 

 (0.18) (0.84) (-0.22)  (0.15)    (2.17) (2.78) (-1.52) 

4 -0.001 0.026 -0.000   -0.140**   0.001*** 0.004*** -0.002 

 (-0.27) (0.65) (-0.20)   (-2.10)   (2.65) (2.90) (-1.34) 

5 -0.003 0.026 -0.001    0.110*  0.001*** 0.004*** -0.003 

 (-0.73) (0.65) (-0.22)    (1.85)  (2.70) (2.90) (-1.35) 

6 0.002 0.033      -0.000 0.001** 0.004*** -0.003 

 (0.39) (0.85)      (-0.10) (2.09) (2.79) (-1.50) 

7 0.003 0.028 -0.000 0.289 0.245 -0.132   0.001** 0.004*** -0.003 

 (0.47) (0.71) (-0.20) (0.31) (0.77) (-1.34)   (2.51) (2.80) (-1.46) 
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Table 11 continued. 
 α E(c) β1 β2 β3 β4 β5 β6 ln(Sz) ln(BM) FF 

Panel B: β3 (flight to liquidity) sorted portfolios 

1 0.002 0.034 -0.000      0.001** 0.004*** -0.003 

 (0.40) (0.86) (-0.15)      (2.10) (2.80) (-1.47) 

2 0.002 0.034 -0.000 0.193     0.001** 0.004*** -0.003 

 (0.41) (0.86) (-0.11) (0.21)     (2.06) (2.79) (-1.44) 

3 -0.002 0.033 -0.002  -0.171    0.001** 0.003*** -0.003 

 (-0.48) (0.85) (-0.77)  (-1.05)    (2.20) (2.79) (-1.35) 

4 0.001 0.035 -0.001   -0.093   0.001** 0.004*** -0.003 

 (0.16) (0.89) (-0.41)   (-1.61)   (2.18) (2.81) (-1.43) 

5 -0.000 0.035 -0.001    0.079*  0.001** 0.004*** -0.003 

 (-0.11) (0.89) (-0.59)    (1.68)  (2.20) (2.82) (-1.41) 

6 0.002 0.034      -0.000 0.001** 0.004*** -0.003 

 (0.40) (0.86)      (-0.16) (2.11) (2.80) (-1.48) 

7 -0.001 0.034 -0.002 -0.597 -0.000 -0.165*   0.001** 0.003*** -0.002 

 (-0.30) (0.86) (-0.85) (-0.53) (-0.00) (-1.84)   (2.11) (2.77) (-1.32) 

Panel C: β4 (depressed wealth effect) sorted portfolios 

1 0.002 0.034 -0.000      0.001** 0.004*** -0.003 

 (0.40) (0.86) (-0.15)      (2.10) (2.80) (-1.47) 

2 0.000 0.034 -0.000 0.650     0.001** 0.004*** -0.003 

 (0.02) (0.85) (-0.17) (1.15)     (2.42) (2.82) (-1.43) 

3 0.001 0.032 -0.000  -0.001    0.001** 0.004*** -0.003 

 (0.28) (0.83) (-0.17)  (-0.01)    (2.26) (2.84) (-1.55) 

4 -0.000 0.033 -0.001   -0.100**   0.001** 0.004*** -0.003 

 (-0.11) (0.84) (-0.22)   (-2.55)   (2.59) (2.85) (-1.38) 

5 -0.002 0.033 -0.001    0.093***  0.001** 0.004*** -0.003 

 (-0.41) (0.83) (-0.22)    (2.63)  (2.61) (2.85) (-1.39) 

6 0.002 0.033      -0.000 0.001** 0.004*** -0.003 

 (0.39) (0.85)      (-0.12) (2.11) (2.80) (-1.48) 

7 -0.002 0.035 -0.000 -0.068 -0.146 -0.083   0.001** 0.004*** -0.003 

 (-0.30) (0.87) (-0.18) (-0.05) (-0.39) (-0.89)   (2.61) (2.84) (-1.52) 
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The following briefly summarizes the results of the Fama-MacBeth regressions and relates 

them to both the panel regressions and the hypotheses. Hypothesis 1, which states that the 

expected level of illiquidity is positively and significantly related to stock returns, is robust 

to the method. The expected level of illiquidity is not priced in any of the regressions using 

either illiquidity proxy. 

 

In terms of AdjILLIQ, the methods are somewhat consistent. The results concerning hypoth-

esis 2 are consistent between the methods, as β2 is a priced factor in commonality-sorted 

portfolios. The results concerning hypothesis 3 are mixed, as β3 is not priced in the flight to 

liquidity-sorted portfolios with the Fama-MacBeth method. On the contrary, it is a priced 

factor under commonality sorting. Hypothesis 4 is supported as β4 is a priced factor under 

commonality sorting, contrary to the panel regressions. Lastly, hypothesis 5 is supported by 

both methods as β5 is a priced factor under commonality sorting with both methods. How-

ever, it is not priced in flight to liquidity-sorted portfolios, contrary to the panel regressions. 

 

When PQS is used to proxy illiquidity, the two methods show more discrepancy in results. 

Hypothesis 2 is supported by both methods as β2 is a priced factor in commonality-sorted 

portfolios. It is not, however, priced in the depressed wealth effect portfolios, contrary to the 

panel regressions. Hypothesis 3 receives no support as β3 is never priced, again contrary to 

the panel regressions. Hypothesis 4 is supported as β4 is a priced factor under commonality 

sorting. Moreover, it is also priced in β4-sorted portfolios. Lastly, hypothesis 5 is supported 

by both methods, as β5 is priced in all portfolios. 
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4.5.2 Panel regressions using size groups 

 

Section 3.1.1 notes a size effect in illiquidity within the sample. Moreover, size effects of 

various kinds are reported in related literature. When examining commonality in liquidity in 

the US market, Chordia, Roll, and Subrahmanyam (2000) note that commonality is more 

pronounced in large stocks, and Fabre and Frino (2004) make a similar finding in Australian 

stocks. When estimating the LCAPM on Australian stocks within a panel regression frame-

work, Vu, Chai, and Do (2015) note considerable differences in the pricing of liquidity risks 

between size groups. Therefore, the sample of this study is split into size groups to determine 

whether the results are driven by a size effect. This also gives further insight into where the 

liquidity risks are priced. 

 

Following Vu, Chai, and Do (2015), the sample is split into three size groups. At the begin-

ning of year y, the stocks are sorted on their market capitalization at the end of year y-1 and 

split into three groups with a 30/40/30 split. The panel regressions from Section 4.4 are then 

repeated using only the individual size groups. Aside from the split into subsamples, the data 

remains unaltered. Perhaps of most interest are the portfolios sorted on commonality in li-

quidity, as they present the broadest evidence for the pricing of liquidity risks. Tables 12 and 

13 present the results for panel regressions using each size group and the commonality sort-

ing. 

 

Table 12 presents the results using AdjILLIQ to measure illiquidity. The small group has 

observations for 336 separate stocks with an average of 49.2 observations per stock. The 

medium-sized group comprises of observations for 410 stocks with an average of 64.8 ob-

servations each. The large group has 238 separate stocks with an average of 87.8 observa-

tions per stock. 
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Table 12. Fixed effects panel regressions of size groups using AdjILLIQ. 
The numbering in the leftmost column corresponds to the model specification as per Equations (28)–(34). The dependent variable in all regressions is the monthly excess 

return of a given stock. The top row lists the estimated parameters. The intercept is α, the expected illiquidity cost is E(c), and the market risk adjusted for liquidity is β1. β2, 

β3, and β4 refer to commonality in liquidity, flight to liquidity, and the depressed wealth effect, respectively. The aggregate liquidity risk is β5, and the net systematic risk is 

β6. Ln(Sz), ln(BM), and FF control for size, book-to-market ratio, and the free float ratio, respectively. The table lists the parameter estimate and the corresponding t-statistic 

below in parentheses. *, **, and *** indicate significance at 10%, 5%, and 1% levels, respectively. 

 α E(c) β1 β2 β3 β4 β5 β6 ln(Sz) ln(BM) FF 

Panel A: Small stocks 

1 0.026 -0.025 -0.007      -0.012** 0.020*** 0.005 

 (1.26) (-0.46) (-1.42)      (-2.34) (5.99) (0.58) 

2 0.026 -0.025 -0.007 0.322     -0.012** 0.020*** 0.005 

 (1.25) (-0.45) (-1.41) (0.11)     (-2.33) (5.99) (0.58) 

3 0.041* -0.027 -0.008  0.606    -0.012** 0.020*** 0.005 

 (1.81) (-0.48) (-1.44)  (1.18)    (-2.38) (5.98) (0.58) 

4 0.026 -0.025 -0.007   -0.071   -0.012** 0.020*** 0.005 

 (1.20) (-0.45) (-1.39)   (-0.43)   (-2.32) (5.99) (0.60) 

5 0.027 -0.025 -0.007    -0.018  -0.012** 0.020*** 0.005 

 (1.24) (-0.46) (-1.41)    (-0.12)  (-2.34) (5.99) (0.57) 

6 0.027 -0.025      -0.007 -0.012** 0.020*** 0.005 

 (1.27) (-0.46)      (-1.41) (-2.34) (5.99) (0.58) 

7 0.040* -0.026 -0.007 0.119 0.628 -0.087   -0.012** 0.020*** 0.005 

 (1.77) (-0.48) (-1.41) (0.03) (1.21) (-0.34)   (-2.37) (5.97) (0.60) 

 

 

 

 

 

 



79 

 

Table 12 continued. 
 α E(c) β1 β2 β3 β4 β5 β6 ln(Sz) ln(BM) FF 

Panel B: Medium-sized stocks 

1 0.051*** -0.352** -0.003      -0.006* 0.025*** -0.005 

 (2.88) (-2.01) (-0.68)      (-1.71) (6.93) (-0.98) 

2 0.047** -0.343* -0.003 4.374**     -0.005 0.026*** -0.005 

 (2.59) (-1.97) (-0.71) (2.28)     (-1.51) (7.00) (-0.96) 

3 0.045** -0.347** -0.003  -0.359    -0.005* 0.025*** -0.005 

 (2.30) (-1.98) (-0.70)  (-1.11)    (-1.66) (6.94) (-0.99) 

4 0.050*** -0.350** -0.003   -0.116   -0.005* 0.025*** -0.005 

 (2.81) (-2.00) (-0.69)   (-1.19)   (-1.65) (6.95) (-0.99) 

5 0.047*** -0.347** -0.003    0.133  -0.005 0.025*** -0.005 

 (2.64) (-1.99) (-0.70)    (1.50)  (-1.62) (6.96) (-1.00) 

6 0.051*** -0.352**      -0.002 -0.006* 0.025*** -0.005 

 (2.87) (-2.01)      (-0.65) (-1.71) (6.93) (-0.98) 

7 0.041** -0.337* -0.003 6.466** -0.283 0.145   -0.005 0.026*** -0.005 

 (2.07) (-1.93) (-0.72) (2.16) (-0.89) (0.96)   (-1.46) (7.02) (-0.93) 

Panel C: Large stocks 

1 0.058** 0.009 -0.000      -0.008** 0.019*** 0.001 

 (2.57) (0.02) (-0.08)      (-2.57) (4.73) (0.17) 

2 0.061*** 0.039 -0.000 -3.935     -0.008*** 0.019*** 0.001 

 (2.66) (0.09) (-0.11) (-1.59)     (-2.66) (4.72) (0.12) 

3 0.056** 0.025 -0.000  -0.151    -0.008** 0.019*** 0.001 

 (2.36) (0.06) (-0.08)  (-0.45)    (-2.56) (4.73) (0.16) 

4 0.057** 0.011 -0.000   -0.073   -0.007** 0.019*** 0.001 

 (2.51) (0.02) (-0.08)   (-0.65)   (-2.51) (4.74) (0.17) 

5 0.056** 0.018 -0.000    0.071  -0.007** 0.019*** 0.001 

 (2.42) (0.04) (-0.08)    (0.66)  (-2.50) (4.74) (0.17) 

6 0.058** 0.010      -0.000 -0.008** 0.019*** 0.001 

 (2.57) (0.02)      (-0.07) (-2.57) (4.73) (0.17) 

7 0.060** 0.152 -0.001 -14.631*** -0.171 -0.591***   -0.008*** 0.019*** 0.000 

 (2.51) (0.33) (-0.17) (-3.75) (-0.51) (-3.38)   (-2.63) (4.78) (0.03) 
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As expected, the pricing of liquidity risks differs between size groups. The expected level of 

illiquidity, when measured in terms of price impact, is not significantly priced in the smallest 

or largest groups of stocks. Medium-sized stocks appear to exhibit an illiquidity discount, 

contrary to a hypothesized premium. 

 

In the full-sample regression, only β2 is priced. The split into size groups indicates that com-

monality in liquidity is only priced among the medium-sized stocks. Curiously, β2 and β4 

both have negative coefficients which are significant at the 1 percent level in joint estimation 

among large stocks. In terms of β2 this would represent a risk discount. This may simply be 

a result of the split in the sample, as the relationship becomes insignificant in quartiles and 

quintiles in an unreported test. Lastly, β5, which is priced in the full sample, is not priced in 

any size group. 

 

For the other two portfolio sorts, it is briefly worth noting the results of a similar analysis. 

In portfolios sorted on flight to liquidity, an illiquidity discount persists among medium-

sized stocks. β3, which is priced in the full sample, is only priced among medium-sized 

stocks. β4, which is not priced in the full sample, is priced among large stocks. Lastly, β5, 

which is priced in the full sample, is only priced among large stocks. Finally, in portfolios 

sorted on the depressed wealth effect, an illiquidity discount again persists among medium-

sized stocks. Although none of the liquidity risks are priced in the full sample, pricing occurs 

among small and medium-sized stocks. β2 receives a negative coefficient among small 

stocks, but a positive one among medium-sized stocks. Moreover, β4 receives a positive co-

efficient among small stocks. As both β2 and β4 represent a risk discount among small stocks, 

β5 consequently receives a negative coefficient among small stocks, again representing a risk 

discount. 

 

Table 13 presents the results when PQS is used to measure illiquidity, alternatively. The 

small group comprises of observations for 366 stocks, with an average of 53.2 observations 

per stock. The medium-sized group contains observations for 463 stocks, with an average of 

66.8 observations per stock. The 284 stocks in the large size group have an average of 84.5 

observations each.
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Table 13. Fixed effects panel regressions of size groups using PQS. 
The numbering in the leftmost column corresponds to the model specification as per Equations (28)–(34). The dependent variable in all regressions is the monthly excess 

return of a given stock. The top row lists the estimated parameters. The intercept is α, the expected illiquidity cost is 𝐸(𝑐), and the market risk adjusted for liquidity is 𝛽1. 

𝛽2, 𝛽3, and 𝛽4 refer to commonality in liquidity, flight to liquidity, and the depressed wealth effect, respectively. The aggregate liquidity risk is 𝛽5, and the net systematic 

risk is 𝛽6. Ln(Sz), ln(BM), and FF control for size, book-to-market ratio, and the free float ratio, respectively. The table lists the parameter estimate and the corresponding 

robust t-statistic below in parentheses. *, **, and *** indicate significance at 10%, 5%, and 1% levels, respectively.  

 α E(c) β1 β2 β3 β4 β5 β6 ln(Sz) ln(BM) FF 

Panel A: Small stocks 

1 0.022 0.047 -0.003      -0.010* 0.016*** 0.001 

 (1.00) (0.54) (-0.59)      (-1.86) (5.09) (0.16) 

2 0.021 0.047 -0.003 0.437     -0.010* 0.016*** 0.002 

 (0.97) (0.54) (-0.60) (0.53)     (-1.85) (5.08) (0.18) 

3 0.023 0.047 -0.003  0.056    -0.010* 0.016*** 0.001 

 (1.01) (0.54) (-0.58)  (0.16)    (-1.85) (5.16) (0.16) 

4 0.020 0.046 -0.003   -0.114   -0.009* 0.016*** 0.001 

 (0.94) (0.53) (-0.61)   (-1.21)   (-1.84) (5.09) (0.17) 

5 0.018 0.046 -0.003    0.083  -0.010* 0.016*** 0.001 

 (0.86) (0.54) (-0.62)    (1.02)  (-1.84) (5.09) (0.16) 

6 0.022 0.047      -0.003 -0.010* 0.016*** 0.001 

 (0.99) (0.55)      (-0.54) (-1.86) (5.09) (0.16) 

7 0.026 0.046 -0.003 -1.054 0.209 -0.231   -0.009* 0.016*** 0.001 

 (1.11) (0.53) (-0.56) (-0.75) (0.61) (-1.43)   (-1.83) (5.21) (0.13) 
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Table 13 continued. 
 α E(c) β1 β2 β3 β4 β5 β6 ln(Sz) ln(BM) FF 

Panel B: Medium-sized stocks 

1 0.049*** -0.120 -0.003      -0.006* 0.025*** -0.001 

 (2.73) (-0.81) (-0.87)      (-1.92) (7.27) (-0.12) 

2 0.047*** -0.120 -0.004 1.285***     -0.006* 0.025*** -0.001 

 (2.62) (-0.81) (-0.96) (2.71)     (-1.86) (7.31) (-0.19) 

3 0.042** -0.120 -0.004  -0.342*    -0.006* 0.025*** -0.001 

 (2.21) (-0.81) (-0.97)  (-1.67)    (-1.91) (7.26) (-0.17) 

4 0.048*** -0.122 -0.004   -0.149***   -0.006* 0.025*** -0.001 

 (2.70) (-0.82) (-0.96)   (-2.91)   (-1.89) (7.32) (-0.20) 

5 0.045** -0.122 -0.004    0.140***  -0.006* 0.025*** -0.001 

 (2.53) (-0.82) (-1.01)    (3.07)  (-1.88) (7.32) (-0.22) 

6 0.049*** -0.120      -0.003 -0.006* 0.025*** -0.001 

 (2.71) (-0.80)      (-0.74) (-1.92) (7.26) (-0.14) 

7 0.042** -0.122 -0.004 0.379 -0.264 -0.102   -0.006* 0.025*** -0.001 

 (2.25) (-0.82) (-1.04) (0.43) (-1.30) (-1.10)   (-1.87) (7.30) (-0.24) 

Panel C: Large stocks 

1 0.065*** 0.019 -0.002      -0.009*** 0.018*** -0.000 

 (3.27) (0.25) (-0.57)      (-3.18) (5.00) (-0.08) 

2 0.065*** 0.017 -0.002 0.403     -0.009*** 0.018*** -0.000 

 (3.19) (0.22) (-0.56) (0.63)     (-3.16) (4.99) (-0.04) 

3 0.064*** 0.018 -0.002  -0.102    -0.009*** 0.018*** -0.000 

 (3.06) (0.23) (-0.57)  (-0.50)    (-3.16) (5.00) (-0.09) 

4 0.065*** 0.016 -0.002   -0.035   -0.009*** 0.018*** -0.000 

 (3.26) (0.21) (-0.57)   (-0.52)   (-3.15) (5.01) (-0.05) 

5 0.065*** 0.015 -0.002    0.039  -0.009*** 0.018*** -0.000 

 (3.17) (0.20) (-0.58)    (0.66)  (-3.13) (5.02) (-0.05) 

6 0.065*** 0.019      -0.002 -0.009*** 0.018*** -0.000 

 (3.26) (0.25)      (-0.55) (-3.18) (5.00) (-0.08) 

7 0.063*** 0.015 -0.002 0.228 -0.105 -0.019   -0.009*** 0.018*** -0.000 

 (3.01) (0.20) (-0.57) (0.29) (-0.52) (-0.21)   (-3.13) (4.98) (-0.05) 
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Again, differences occur between size groups. Contrary to the AdjILLIQ regressions, the 

expected level of illiquidity is not priced in any of the size groups. β2, β4, and β5, which are 

priced in the full sample, are only priced among medium-sized stocks. Additionally, β3, 

which is not priced in the full sample, receives a negative coefficient which is significant at 

the 10 percent level among medium-sized stocks. 

 

It is again worth briefly noting the results concerning similar analyses for portfolios sorted 

on flight to liquidity and the depressed wealth effect, as they are quite different from the 

above. In the portfolios sorted on flight to liquidity, the expected level of illiquidity is not 

priced in any of the size groups. β3, which is priced in the full sample, is only priced among 

large stocks. β4, which is not priced in the full sample, receives a positive coefficient among 

small stocks, again representing a risk discount. Lastly, β5, which is not priced in the full 

sample, receives a negative coefficient among small stocks, and a positive one among large 

stocks. Among small stocks, this appears to be a consequence of the coefficient for β4. Fi-

nally, in portfolios sorted on the depressed wealth effect, the expected level of illiquidity is 

neither priced in any of the size groups. β2, which is priced in the full sample, is only priced 

among medium-sized stocks. β4, which is not priced in the full sample, is priced among 

medium-sized stocks. Lastly, β5, which is priced in the full sample, is not priced in any of 

the size groups. 

 

Overall, the results of Section 4.4 do not appear very robust to size groups with the 30/40/30 

split. There are no instances where the liquidity risk priced in the full sample is priced in all 

size groups. However, the results generally support the findings of Section 4.4 and shed new 

light on where the liquidity risks are priced. In terms of both illiquidity proxies, the main 

results appear to be mainly driven by medium-sized stocks and, to a lesser extent, large 

stocks. It is noted that caution should be exercised in generalizations. The results appear 

quite sensitive to the split, and many instances of a risk discount in small or large stocks lose 

their significance when the split is altered, for example to quartiles or quintiles.
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5 DISCUSSION 

 

This section discusses the economic implications of the liquidity risks and relates the results 

of this study to prior findings in the literature. Annual premia related to the liquidity risks 

are also computed to gain an understanding of the magnitude of the liquidity risks. Finally, 

limitations and generalizability of the study as well as further considerations are discussed 

separately. 

 

Generally, this study finds no evidence that the level of illiquidity is priced in the Frankfurt 

Stock Exchange (FSE). In unreported bivariate regressions, both AdjILLIQ and PQS are pos-

itively and significantly related to stock returns, but this relationship appears to be subsumed 

by other factors found in the sample, such as the size and value effects. These results con-

tradict prior findings of an illiquidity premium among German stocks (Hagemeister and 

Kempf, 2010; Koch, 2010). The contradiction to Koch (2010) is particularly noteworthy, as 

the study also controls for size and value factors and notes a reverse size effect, albeit over 

a different sample period. The differing sampling periods may explain the differing results, 

as the size effect among German stocks is not robust to time period (Artmann, Finter, and 

Kempf, 2012) and varies between market conditions (Amel-Zadeh, 2011).  

 

Commonality in liquidity, measured by β2 as the covariance between stock illiquidity and 

market illiquidity, describes a phenomenon where a stock becomes illiquid with the market. 

As described by Acharya and Pedersen (2005), when the market becomes illiquid, investors 

may choose to trade other assets with a lower degree of commonality, and therefore a lower 

cost of selling. Consequently, a return premium is required for holding an asset which be-

comes illiquid with the market. The results of this study indicate that such a return premium 

exists in the FSE. Moreover, the results are robust to the method in cross-sectional regres-

sions, and in terms of AdjILLIQ, generalize to a longer holding period. The results extend 

the findings of commonality in liquidity in German stocks (Johann et al., 2019) with a pricing 

implication. They also conform to those of Saad and Samet (2015) who find commonality 

priced in developed markets where Germany is included as a constituent. 

 

Flight to liquidity is measured by β3 as the covariance between stock returns and market 

illiquidity. A negative covariance would indicate that as the market becomes illiquid, returns 
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decrease, which is an undesirable trait for an asset. Consequently, investors accept lower 

returns from stocks which tend to yield higher returns during illiquid markets. The main 

results of this study give strong evidence for such a phenomenon in the FSE; β3 is priced 

negatively, which indicates that expected returns increase with the risk. The results are not 

robust to cross-sectional regressions but generalize to a longer holding period. The results 

extend those of Lee (2011) and Saad and Samet (2015) where Germany is grouped together 

with other developed markets at the country level. In fact, the results mainly contrast both; 

β3 is priced within developed markets only in Saad and Samet (2015), in a cross-sectional 

framework using nonlocal covariates. 

 

The third liquidity risk, the depressed wealth effect, is measured by β4 as the covariance 

between stock illiquidity and market returns. A negative covariance would indicate that the 

stock becomes illiquid during down markets, which is an undesirable trait as investors often 

seek to exit their positions in declining markets. Therefore, investors accept lower returns 

from stocks with lower illiquidity costs during market declines (Acharya and Pedersen, 

2005). In terms of spread (PQS), the main results give tentative evidence that investors in 

FSE are willing to accept lower returns from stocks which remain liquid in down markets. 

Cross-sectional regressions confirm the finding, and also provide evidence of pricing in 

terms of price impact (AdjILLIQ). The results concerning PQS are not robust to holding 

period. Further examination of pricing within size groups indicates that the risk is priced 

mainly among medium-sized and, to a lesser extent, large stocks. The results again extend 

those of Lee (2011) and Saad and Samet (2015) with more detail. Saad and Samet (2015) 

find β4 priced negatively in developed markets in a cross-sectional regression under partial 

integration, whereas Lee (2011) finds the risk only priced in developed countries with re-

spect to US and global covariates. 

 

Before discussing the annualized premia related to the above liquidity risks, it is worthwhile 

to note the nature of the illiquidity proxies. PQS is based on the bid-ask spread, and as such 

is more apt at describing the illiquidity cost of a single trade regardless of size. Private in-

vestors rarely engage in trades large enough to notably impact the price of a security and 

should therefore be more interested in results obtained using PQS. AdjILLIQ, on the other 

hand, is a proxy for cost per volume of transaction, and is therefore geared more towards the 

institutional investors engaging in large transactions which may actually impact the price. 
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The annualized premia related to the three liquidity risks are computed as the differences in 

annualized expected returns between the highest- and lowest-risk portfolios, attributable to 

the respective liquidity risks (Acharya and Pedersen, 2005). Similar to Saad and Samet 

(2015), the annualized risk premia are computed from the estimates for aggregate liquidity 

risk (λ5), which assumes that the risk premium for market- and liquidity risk are different. 

For example, the difference in returns attributable to commonality in liquidity is λ5(β2,p10–

β2,p1)12, and so forth. The values of λ5 are taken from the panel regressions for flight to 

liquidity-sorted portfolios using AdjILLIQ and commonality-sorted portfolios using PQS. 

These two are chosen as they are the most reliable estimates; λ5 is significant at the 5 and 1 

percent levels for AdjILLIQ and PQS, respectively. The values for β are the post-ranking 

betas reported in Table 3. 

 

When using AdjILLIQ and considering the model-implied one-month holding period, the 

annualized risk premia attributable to commonality in liquidity, flight to liquidity, and the 

depressed wealth effect are 0.11, 1.13, and 1.83 percent, respectively. The total annualized 

premium attributable to liquidity risk is therefore 3.07 percent. In terms of PQS, the figures 

tend to be slightly larger. The annualized premia for commonality in liquidity, flight to li-

quidity, and the depressed wealth effect are 0.48, 1.12, and 2.05 percent, respectively, and 

the total annualized premium attributable to liquidity risk is 3.66 percent. 

 

Similar to Acharya and Pedersen (2005) and Saad and Samet (2015), the premium attribut-

able to the depressed wealth effect consistently contributes the most to the total premium. 

Detailed comparison to prior studies is difficult, however, as the calculations tend to differ 

between studies. On one hand, Acharya and Pedersen (2005) assume equal risk premia for 

market- and liquidity risk and use the values of λ6 to compute annualized premia. On the 

other hand, Saad and Samet (2015) use the values of λ5 but compute differences in covari-

ance terms rather than post-ranking betas, and Lee (2011) uses λ2 through λ4. Consequently, 

the estimated total annualized premia vary greatly. Acharya and Pedersen (2005) estimate a 

premium of 1.1 percent in the US market, whereas Saad and Samet (2015) estimate premia 

of 0.73 and 1.91 percent in developed and emerging markets respectively, and Lee (2011) 

estimates premia of 1.53 and 5.58 percent globally and in emerging markets, respectively. 

Although a comparison of the annualized premia is arguably not meaningful, the results 
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nevertheless indicate that liquidity risk is priced in the FSE and should therefore be consid-

ered in portfolio diversification. 

 

5.1 Generalizability, limitations, and further research 

 

Regarding the generalizability of the findings, it should be borne in mind that the estimated 

premia are subject to the sample and method, and therefore may not generalize across time 

or to other specifications. The results of the size group regressions further indicate that the 

results may vary between size groups. It is noted that the split may affect the results, and 

therefore a more thorough examination is in order before drawing detailed conclusions on 

pricing of the risks within size groups. Nevertheless, the generic results in terms of finding 

premia for liquidity risks, aside from flight to liquidity (β3), appear fairly robust to the 

method. Moreover, the results remain consistent with a longer holding period in terms of 

AdjILLIQ, which implies generalizability to a more general setting beyond the LCAPM. 

 

Although the calibration for a longer holding period allows for a generalization beyond the 

LCAPM, it has a clear limitation. The empirically estimated holding period of 52 months is 

assumed to remain constant throughout the sample, which is a fairly strong assumption. The 

average holding period has been found to vary over time (Atkins and Dyl, 1997; Hagströmer, 

Hansson, and Nilsson, 2013) and ideally, the calibrated holding period would account for 

this. Another minor limitation worth noting is the possibility of a look-ahead bias in the 

estimation of innovations. The AR models are fitted using the entire time series, whereby 

innovations may be influenced by subsequent values of the time series. However, using one-

step ahead predictions as a remedy are likely to produce noisy innovations and potentially 

make liquidity events less explicit (Kim and Lee, 2014). The most notable limitation, how-

ever, is posed by the multicollinearity among the conditional illiquidity betas. This causes 

difficulty in estimating the joint significance of the liquidity risks. In cases where highly 

correlated betas are found significant when estimated separately, and obvious signs of mul-

ticollinearity such as sign flipping are detected in joint estimation, it is presumable that the 

risk remains significant. Moreover, the use of alternative estimation methods may be con-

sidered to strengthen the evidence. However, it remains a possibility that the method drives 

the difference and that the risk is not empirically relevant in joint estimation. 
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In future studies on the same topic, the generalizability of the results could be enhanced by 

a more detailed estimation of the average holding period, similar to Hagströmer, Hansson, 

and Nilsson (2013). As another matter, prior studies note a common component in various 

illiquidity proxies (Korajczyk and Sadka, 2008; Kim and Lee, 2014). Employing a variety 

of proxies and estimating their common component, assuming a sufficiently large sample, 

could produce less noisy estimates of illiquidity with an acceptable level of information loss. 

Another simple and informative addition to the literature would be to estimate the pricing of 

the liquidity risks under different timeframes, for example in bull and bear markets. Bara-

darannia and Peat (2013) note differences in the pricing of liquidity risk under very long 

timeframes, whereas Vu, Chai, and Do (2015) directly examine differences between bull and 

bear markets. Using a timeframe long enough to cover multiple bull and bear markets would 

be ideal for examining whether generalizable differences between the market conditions ex-

ist.  

 

Lastly, and partly heading into a different domain, as the time-variance of liquidity risk is 

evident, it would be worthwhile to consider its causes. There appears to be a budding litera-

ture on the topic. Of the papers cited in this study, Amihud et al. (2015) examine the influ-

ence of market openness and the adoption of the Euro on commonality in the illiquidity 

premium. Related to the liquidity risks, Karolyi, Lee, and van Dijk (2012) examine macroe-

conomic determinants of commonality, whereas Saad and Samet (2015) focus on macroe-

conomic determinants of the LCAPM liquidity risk premium. Insights from such studies 

should be relevant to both academics and practitioners. 
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6 CONCLUSIONS 

 

This thesis examined the pricing of the level of expected illiquidity and systematic liquidity 

risk in the Frankfurt Stock Exchange (FSE) by considering a sample of all stocks quoted at 

the FSE between 1.1.2000 and 31.12.2018. Illiquidity was measured by two proxies, AdjIL-

LIQ and PQS, which pertain to the price impact of a transaction and the bid-ask spread, 

respectively. Time-varying conditional liquidity risks were modeled at the portfolio level 

using a DCC-GARCH estimator, whereas their pricing was examined at the stock level by 

estimating a conditional version of the LCAPM using a fixed effects panel regression. Ad-

ditionally, the time-varying liquidity risks were examined for a trend. 

 

The results indicate that the relationship between the level of expected illiquidity and stock 

excess returns is not significant at conventional levels. The hypothesized illiquidity premium 

appears to be subsumed by other factors, such as the size and value effects. The three sys-

tematic liquidity risks considered in this study – commonality in liquidity, flight to liquidity, 

and the depressed wealth effect – are all significantly related to stock excess returns. The 

results concerning the latter are tentative and vary between the illiquidity proxies. Total an-

nualized premia attributable to liquidity risk are 3.07 and 3.66 percent with AdjILLIQ and 

PQS, respectively. Conforming to prior results in the literature, the depressed wealth effect 

is found to be the largest contributor to the annualized risk premium, followed by flight to 

liquidity and commonality in liquidity. The results hold when controlling for size, the book-

to-market ratio, and the free float ratio of a stock. Moreover, the results are fairly robust to 

an alternative estimation method in Fama-MacBeth (1973) regressions and generalize be-

yond the model-implied one-month holding period of the LCAPM in terms of AdjILLIQ. 

Regressions on subsamples of size groups indicate that the pricing of liquidity risk varies 

between small, medium-sized, and large stocks. 

 

The generic results of this study are quite similar between the illiquidity proxies used. 

Whether measured by the bid-ask spread or price impact, the covariances of stock and market 

returns and stock and market illiquidity represent a significant systematic risk which should 

be considered in portfolio diversification. Moreover, liquidity risk appears to vary over time 

with no clear trend. The results are relevant to both private investors and large-scale institu-

tional investors. The results obtained using PQS, which measures the illiquidity cost 
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regardless of transaction size, are particularly relevant to private investors, while institutional 

investors, who are likely to engage in trades large enough to sway prices, should find addi-

tional insight from the results obtained using AdjILLIQ. 

 

This thesis contributes to the literature in several ways. Firstly, to the knowledge of the au-

thor, this study is first in providing a country-level estimation of a conditional version of the 

LCAPM in the German market. Prior studies have mainly grouped Germany together with 

other developed markets. Moreover, prior findings of commonality in liquidity (Kempf and 

Mayston, 2008; Johann et al., 2019) are extended with a pricing implication. Lastly, this 

study controls for the free float ratio of a stock due to its idiosyncratic effect on liquidity, 

which has not been considered in prior literature. 

 

The results could be refined by more detailed and time-varying estimates of the average 

holding period of the investor. Moreover, a lengthier sample period and estimation of the 

LCAPM using several periods of bull and bear markets could provide further insight into 

generalizable differences in the pricing of liquidity risk under different market conditions.
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APPENDICES 

 

APPENDIX 1: AUTOCORRELATION TESTS FOR MARKET SERIES. 

Table 14. Autocorrelation tests for market returns and illiquidity. 
This table reports the results of the Breusch-Godfrey LM test for autocorrelation. The test was conducted for 

up to two lags of market returns, illiquidity, and innovations in illiquidity. The table lists the t-statistic for each 

coefficient and the corresponding p-value below in parentheses. 

  CDAX  

Return    

 Lag 1 1.655  

  (0.099)  

 Lag 2 -0.629  

  (0.530)  

  PQS AdjILLIQ 

Illiquidity    

 Lag 1 13.984* 13.166* 

  (0.000) (0.000) 

 Lag 2 1.018 1.798 

  (0.310) (0.074) 

Innovations    

 Lag 1 0.001 -0.064 

  (0.999) (0.949) 

 Lag 2 0.046 0.086 

  (0.963) (0.932) 

H0: No autocorrelation. * indicates significance at the 5% level. 
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APPENDIX 2: AUTOCORRELATION TESTS FOR PORTFOLIO SERIES. 

Table 15. Autocorrelation tests for portfolio illiquidity using AdjILLIQ. 
This table reports the results of the Breusch-Godfrey LM test for autocorrelation. The test was conducted for up to two lags of the illiquidity series of each portfolio. The 

table lists the t-statistic for each coefficient and the corresponding p-value below in parentheses. 

Portfolio  1 2 3 4 5 6 7 8 9 10 

Panel A: β2 (commonality) sorted portfolios 

Illiquidity            

 Lag 1 7.123* 9.010* 6.641* 10.263* 10.029* 9.119* 9.056* 10.392* 7.653* 8.710* 

  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

 Lag 2 7.072* 4.814* 6.134* 1.870 2.519* 3.388* 4.075* 2.275* 6.438* 4.564* 

  (0.000) (0.000) (0.000) (0.063) (0.013) (0.001) (0.000) (0.024) (0.000) (0.000) 

            

Panel B: β3 (flight to liquidity) sorted portfolios 

Illiquidity            

 Lag 1 8.944* 7.428* 8.465* 9.177* 8.576* 9.386* 8.387* 8.004* 8.064* 7.741* 

  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

 Lag 2 4.030* 6.864* 4.528* 3.534* 4.157* 3.457* 4.706* 4.968* 5.239* 6.079* 

  (0.000) (0.000) (0.000) (0.001) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000) 

            

Panel C: β4 (depressed wealth effect) sorted portfolios 

Illiquidity            

 Lag 1 7.990* 7.882* 7.835* 10.122* 9.926* 9.013* 10.679* 8.716* 10.039* 7.771* 

  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

 Lag 2 5.795* 5.840* 5.722* 2.281* 2.533* 3.461* 0.721 2.805* 2.134* 6.097* 

  (0.000) (0.000) (0.000) (0.024) (0.012) (0.001) (0.472) (0.006) (0.034) (0.000) 

H0: No autocorrelation. * indicates significance at the 5% level. 
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Table 16. Autocorrelation tests for portfolio illiquidity using PQS. 
This table reports the results of the Breusch-Godfrey LM test for autocorrelation. The test was conducted for up to two lags of the illiquidity series of each portfolio. The 

table lists the t-statistic for each coefficient and the corresponding p-value below in parentheses. 

Portfolio  1 2 3 4 5 6 7 8 9 10 

Panel A: β2 (commonality) sorted portfolios 

Illiquidity            

 Lag 1 11.115* 9.442* 11.786* 14.577* 12.040* 13.192* 11.193* 9.532* 10.537* 10.198* 

  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

 Lag 2 1.942 3.851* 1.019 -1.729 0.702 -0.392 1.628 3.721* 2.392* 2.919* 

  (0.054) (0.000) (0.310) (0.086) (0.484) (0.696) (0.105) (0.000) (0.018) (0.004) 

            

Panel B: β3 (flight to liquidity) sorted portfolios 

Illiquidity            

 Lag 1 12.599* 12.812* 12.647* 11.830* 11.800* 10.890* 9.717* 12.227* 10.299* 10.874* 

  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

 Lag 2 0.038 -0.125 0.049 0.904 1.055 1.889 3.470* 0.487 2.668* 1.996* 

  (0.970) (0.900) (0.961) (0.367) (0.293) (0.061) (0.001) (0.627) (0.008) (0.048) 

            

Panel C: β4 (depressed wealth effect) sorted portfolios 

Illiquidity            

 Lag 1 11.216* 11.675* 11.564* 13.429* 13.651* 10.081* 11.314* 11.431* 11.993* 12.590* 

  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

 Lag 2 1.675 1.131 1.233 -0.606 -1.001 2.990* 1.571 1.387 0.514 0.214 

  (0.096) (0.260) (0.219) (0.545) (0.318) (0.003) (0.118) (0.167) (0.608) (0.831) 

H0: No autocorrelation. * indicates significance at the 5% level. 
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Table 17. Autocorrelation tests for innovations in portfolio illiquidity using AdjILLIQ. 
This table reports the results of the Breusch-Godfrey LM test for autocorrelation. The test was conducted for up to two lags of the innovation series of each portfolio. The 

table lists the t-statistic for each coefficient and the corresponding p-value below in parentheses. 

Portfolio  1 2 3 4 5 6 7 8 9 10 

Panel A: β2 (commonality) sorted portfolios 

Illiquidity (innovation) 

 Lag 1 -0.080 -0.144 -0.565 -0.279 -0.420 -0.769 0.126 -0.200 0.476 -0.856 

  (0.936) (0.886) (0.573) (0.781) (0.675) (0.443) (0.900) (0.842) (0.635) (0.393) 

 Lag 2 -0.421 -0.621 -1.031 -0.470 -0.346 -0.754 0.110 -0.392 0.835 -1.106 

  (0.674) (0.536) (0.304) (0.639) (0.730) (0.452) (0.912) (0.696) (0.405) (0.271) 

            

Panel B: β3 (flight to liquidity) sorted portfolios 

Illiquidity (innovation) 

 Lag 1 -0.173 0.093 -0.059 -0.131 -0.765 -0.135 -0.031 0.025 -0.837 -0.632 

  (0.863) (0.926) (0.953) (0.896) (0.446) (0.893) (0.975) (0.980) (0.404) (0.529) 

 Lag 2 -0.700 -0.160 -0.044 -0.285 -1.414 -0.542 -0.227 -0.381 -1.670 -0.990 

  (0.485) (0.873) (0.965) (0.776) (0.159) (0.589) (0.821) (0.704) (0.097) (0.324) 

            

Panel C: β4 (depressed wealth effect) sorted portfolios 

Illiquidity (innovation) 

 Lag 1 -0.172 0.289 -0.777 -0.017 -0.020 -0.018 -1.103 -0.020 -0.829 -0.645 

  (0.863) (0.773) (0.438) (0.986) (0.984) (0.986) (0.271) (0.984) (0.409) (0.520) 

 Lag 2 -0.477 0.594 -1.442 -0.252 -0.511 -0.247 -1.017 -0.212 -0.593 -1.820 

  (0.634) (0.553) (0.151) (0.802) (0.610) (0.805) (0.311) (0.832) (0.554) (0.071) 

H0: No autocorrelation. * indicates significance at the 5% level. 
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Table 18. Autocorrelation tests for innovations in portfolio illiquidity using PQS. 
This table reports the results of the Breusch-Godfrey LM test for autocorrelation. The test was conducted for up to two lags of the innovation series of each portfolio. The 

table lists the t-statistic for each coefficient and the corresponding p-value below in parentheses. 

Portfolio  1 2 3 4 5 6 7 8 9 10 

Panel A: β2 (commonality) sorted portfolios 

Illiquidity (innovation) 

 Lag 1 -0.232 -1.018 -0.115 0.007 -0.328 -0.084 -0.012 -0.193 -0.075 -0.032 

  (0.817) (0.310) (0.908) (0.995) (0.743) (0.933) (0.991) (0.847) (0.940) (0.975) 

 Lag 2 -0.201 -0.583 -0.191 -0.050 -0.118 -0.008 0.064 -0.648 -0.654 0.108 

  (0.841) (0.560) (0.849) (0.960) (0.906) (0.993) (0.949) (0.518) (0.514) (0.914) 

            

Panel B: β3 (flight to liquidity) sorted portfolios 

Illiquidity (innovation) 

 Lag 1 0.009 0.054 -0.264 -0.111 -0.319 -0.013 -0.281 0.085 -0.120 -0.304 

  (0.993) (0.957) (0.792) (0.912) (0.750) (0.990) (0.779) (0.932) (0.904) (0.762) 

 Lag 2 0.012 -0.224 0.061 -0.216 -0.224 0.019 -0.317 -0.150 -0.423 -0.700 

  (0.990) (0.823) (0.952) (0.829) (0.823) (0.985) (0.752) (0.881) (0.673) (0.485) 

            

Panel C: β4 (depressed wealth effect) sorted portfolios 

Illiquidity (innovation) 

 Lag 1 0.003 -0.082 -0.019 -0.205 0.202 -0.133 0.036 -0.081 -0.072 -0.345 

  (0.997) (0.935) (0.985) (0.838) (0.840) (0.894) (0.972) (0.935) (0.943) (0.730) 

 Lag 2 -0.027 -0.102 -0.115 0.332 -0.307 -0.084 -0.139 -0.214 -0.107 0.657 

  (0.978) (0.919) (0.908) (0.741) (0.759) (0.933) (0.889) (0.831) (0.915) (0.512) 

H0: No autocorrelation. * indicates significance at the 5% level. 
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Table 19. Autocorrelation tests for returns of portfolios sorted using AdjILLIQ. 
This table reports the results of the Breusch-Godfrey LM test for autocorrelation. The test was conducted for up to two lags of the return series of each portfolio. The table 

lists the t-statistic for each coefficient and the corresponding p-value below in parentheses. 

Portfolio  1 2 3 4 5 6 7 8 9 10 

Panel A: β2 (commonality) sorted portfolios 

Illiquidity            

 Lag 1 3.330* 3.576* 2.761* 3.332* 3.568* 3.421* 3.998* 3.533* 4.045* 3.604* 

  (0.001) (0.000) (0.006) (0.001) (0.000) (0.001) (0.000) (0.001) (0.000) (0.000) 

 Lag 2 0.885 -2.167* -0.814 -0.902 -0.585 -0.049 -1.207 0.996 -0.834 1.080 

  (0.378) (0.032) (0.417) (0.369) (0.559) (0.961) (0.229) (0.321) (0.406) (0.282) 

            

Panel B: β3 (flight to liquidity) sorted portfolios 

Illiquidity            

 Lag 1 3.802* 3.976* 3.656* 4.235* 4.217* 3.592* 3.664* 3.181* 2.618* 2.827* 

  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.002) (0.010) (0.005) 

 Lag 2 -1.224 -0.113 -0.138 0.264 -0.611 -0.407 -0.908 0.158 -0.653 1.011 

  (0.223) (0.910) (0.890) (0.792) (0.542) (0.685) (0.365) (0.874) (0.515) (0.314) 

            

Panel C: β4 (depressed wealth effect) sorted portfolios 

Illiquidity            

 Lag 1 3.421* 3.671* 4.186* 4.190* 3.790* 3.317* 3.029* 3.500* 2.950* 2.515* 

  (0.001) (0.000) (0.000) (0.000) (0.000) (0.001) (0.003) (0.001) (0.004) (0.013) 

 Lag 2 0.037 -0.293 -0.162 0.214 -0.552 -0.587 -1.737 -1.610 -0.100 1.441 

  (0.971) (0.770) (0.871) (0.831) (0.582) (0.558) (0.084) (0.109) (0.920) (0.152) 

H0: No autocorrelation. * indicates significance at the 5% level. 
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Table 20. Autocorrelation tests for returns of portfolios sorted using PQS. 
This table reports the results of the Breusch-Godfrey LM test for autocorrelation. The test was conducted for up to two lags of the return series of each portfolio. The table 

lists the t-statistic for each coefficient and the corresponding p-value below in parentheses. 

Portfolio  1 2 3 4 5 6 7 8 9 10 

Panel A: β2 (commonality) sorted portfolios 

Illiquidity            

 Lag 1 3.184* 2.963* 3.567* 3.845* 3.664* 4.173* 4.344* 3.461* 4.290* 3.878* 

  (0.002) (0.004) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000) 

 Lag 2 0.630 -0.462 -0.921 -0.778 -1.408 -0.513 0.535 -0.661 0.638 -0.065 

  (0.529) (0.645) (0.358) (0.437) (0.161) (0.609) (0.594) (0.510) (0.524) (0.949) 

            

Panel B: β3 (flight to liquidity) sorted portfolios 

Illiquidity            

 Lag 1 3.959* 4.199* 3.083* 3.035* 3.709* 4.039* 4.058* 3.914* 3.597* 3.273* 

  (0.000) (0.000) (0.002) (0.003) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) 

 Lag 2 -1.364 -1.568 0.449 0.226 0.427 -0.636 -0.223 0.158 0.585 0.189 

  (0.175) (0.119) (0.654) (0.821) (0.670) (0.526) (0.824) (0.875) (0.559) (0.850) 

            

Panel C: β4 (depressed wealth effect) sorted portfolios 

Illiquidity            

 Lag 1 3.334* 3.997* 4.560* 3.738* 3.108* 3.360* 3.564* 3.724* 4.787* 4.042* 

  (0.001) (0.000) (0.000) (0.000) (0.002) (0.001) (0.000) (0.000) (0.000) (0.000) 

 Lag 2 0.539 0.392 -0.737 -0.786 -0.537 -0.782 -0.926 -0.893 0.320 0.448 

  (0.591) (0.696) (0.462) (0.433) (0.592) (0.436) (0.356) (0.373) (0.749) (0.655) 

H0: No autocorrelation. * indicates significance at the 5% level. 
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APPENDIX 3: UNIT ROOT AND STATIONARITY TESTS FOR PORTFOLIO SERIES. 

Table 21. Unit root and stationarity tests for innovations in portfolio illiquidity using AdjILLIQ. 
This table reports the results of the ADF, PP, and KPSS tests for innovations in portfolio illiquidity. Both ADF and PP test for a unit root; AR refers to a test with an 

autoregressive null model, and ARD to a test with an autoregressive with drift null model. KPSS tests for stationarity. The table lists the test statistic for each portfolio and 

the corresponding critical value at the 5% level in the rightmost column. 

Portfolio  1 2 3 4 5 6 7 8 9 10 
Critical 

value 

Panel A: β2 (commonality) sorted portfolios  

ADF test (AR) -3.781* -0.876 -5.460* -5.622* -3.664* -3.508* -4.135* -3.696* -3.484* -3.756* -1.942 

ADF test (ARD) -3.769* -0.696 -5.442* -5.606* -3.650* -3.494* -4.116* -3.682* -3.469* -3.743* -2.881 

PP test (AR) -12.955* -12.813* -14.545* -15.431* -13.559* -13.955* -12.806* -13.085* -12.366* -14.627* -1.942 

PP test (ARD) -12.910* -12.771* -14.487* -15.360* -13.510* -13.904* -12.761* -13.043* -12.326* -14.568* -2.880 

KPSS test 0.039 0.142 0.052 0.051 0.046 0.056 0.068 0.043 0.067 0.069 0.146 

             

Panel B: β3 (flight to liquidity) sorted portfolios  

ADF test (AR) -3.148* -3.144* -4.564* -4.387* -4.908* -4.288* -3.953* -3.655* -3.532* -4.411* -1.942 

ADF test (ARD) -3.135* -3.134* -4.548* -4.372* -4.891* -4.269* -3.942* -3.633* -3.519* -4.392* -2.881 

PP test (AR) -13.363* -12.789* -12.809* -13.390* -14.877* -13.676* -13.792* -12.770* -14.112* -14.904* -1.942 

PP test (ARD) -13.315* -12.752* -12.769* -13.340* -14.818* -13.619* -13.736* -12.719* -14.060* -14.840* -2.880 

KPSS test 0.056 0.057 0.048 0.049 0.055 0.066 0.061 0.073 0.039 0.056 0.146 

            

Panel C: β4 (depressed wealth effect) sorted portfolios 

ADF test (AR) -3.029* -3.289* -4.101* -4.139* -3.768* -4.709* -3.833* -3.928* -2.809* -3.385* -1.942 

ADF test (ARD) -3.021* -3.276* -4.083* -4.124* -3.746* -4.692* -3.819* -3.894* -2.789 -3.374* -2.881 

PP test (AR) -13.125* -12.531* -14.210* -13.433* -14.157* -14.069* -16.678* -13.878* -13.641* -13.936* -1.942 

PP test (ARD) -13.082* -12.492* -14.155* -13.381* -14.094* -14.009* -16.605* -13.816* -13.596* -13.883* -2.880 

KPSS test 0.056 0.062 0.062 0.039 0.087 0.050 0.048 0.063 0.067 0.068 0.146 

ADF and PP H0: Unit root exists. KPSS H0: Stationary series. * indicates significance at the 5% level. 

 

 

 

 



109 

 

Table 22. Unit root and stationarity tests for innovations in portfolio illiquidity using PQS. 
This table reports the results of the ADF, PP, and KPSS tests for innovations in portfolio illiquidity. Both ADF and PP test for a unit root; AR refers to a test with an 

autoregressive null model, and ARD to a test with an autoregressive with drift null model. KPSS tests for stationarity. The table lists the test statistic for each portfolio and 

the corresponding critical value at the 5% level in the rightmost column. 

Portfolio  1 2 3 4 5 6 7 8 9 10 
Critical 

value 

Panel A: β2 (commonality) sorted portfolios  

ADF test (AR) -2.515* -3.786* -4.178* -4.746* -4.182* -3.893* -5.184* -3.917* -3.974* -3.282* -1.942 

ADF test (ARD) -2.419 -3.773* -4.161* -4.731* -4.167* -3.880* -5.165* -3.906* -3.961* -3.265* -2.881 

PP test (AR) -13.161* -14.220* -13.575* -13.225* -14.959* -13.064* -13.101* -13.202* -13.336* -12.950* -1.942 

PP test (ARD) -13.115* -14.171* -13.522* -13.174* -14.911* -13.021* -13.053* -13.155* -13.286* -12.913* -2.880 

KPSS test 0.076 0.043 0.079 0.063 0.061 0.039 0.041 0.047 0.038 0.046 0.146 

             

Panel B: β3 (flight to liquidity) sorted portfolios  

ADF test (AR) -3.802* -3.627* -4.284* -3.252* -3.048* -4.626* -4.033* -4.509* -4.123* -4.624* -1.942 

ADF test (ARD) -3.787* -3.616* -4.251* -3.241* -3.035* -4.610* -4.020* -4.493* -4.110* -4.598* -2.881 

PP test (AR) -12.717* -12.829* -13.370* -13.371* -13.493* -13.805* -13.678* -12.875* -13.016* -15.913* -1.942 

PP test (ARD) -12.675* -12.785* -13.322* -13.321* -13.445* -13.747* -13.626* -12.831* -12.971* -15.838* -2.880 

KPSS test 0.043 0.045 0.072 0.040 0.060 0.044 0.067 0.048 0.041 0.058 0.146 

            

Panel C: β4 (depressed wealth effect) sorted portfolios 

ADF test (AR) -3.573* -3.826* -4.330* -4.346* -4.939* -3.714* -3.907* -3.915* -4.105* -4.087* -1.942 

ADF test (ARD) -3.556* -3.813* -4.313* -4.333* -4.920* -3.700* -3.886* -3.903* -4.091* -4.060* -2.881 

PP test (AR) -12.943* -12.963* -13.519* -14.315* -13.304* -13.063* -13.260* -13.235* -13.444* -13.346* -1.942 

PP test (ARD) -12.899* -12.921* -13.466* -14.257* -13.251* -13.019* -13.214* -13.187* -13.392* -13.300* -2.880 

KPSS test 0.052 0.053 0.048 0.063 0.044 0.041 0.056 0.070 0.037 0.043 0.146 

ADF and PP H0: Unit root exists. KPSS H0: Stationary series. * indicates significance at the 5% level. 
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Table 23. Unit root and stationarity tests for returns of portfolios sorted using AdjILLIQ. 
This table reports the results of the ADF, PP, and KPSS tests for portfolio returns. Both ADF and PP test for a unit root; AR refers to a test with an autoregressive null model, 

and ARD to a test with an autoregressive with drift null model. KPSS tests for stationarity. The table lists the test statistic for each portfolio and the corresponding critical 

value at the 5% level in the rightmost column. 

Portfolio  1 2 3 4 5 6 7 8 9 10 
Critical 

value 

Panel A: β2 (commonality) sorted portfolios  

ADF test (AR) -2.926* -3.578* -3.243* -3.182* -3.093* -3.049* -3.286* -2.571* -3.220* -2.584* -1.942 

ADF test (ARD) -3.105* -3.561* -3.205* -3.159* -3.012* -3.075* -3.235* -2.602 -3.204* -2.487 -2.881 

PP test (AR) -10.198* -9.826* -10.624* -10.281* -9.690* -9.703* -9.673* -9.564* -9.029* -9.868* -1.942 

PP test (ARD) -10.128* -9.798* -10.595* -10.245* -9.651* -9.664* -9.643* -9.536* -9.021* -9.837* -2.879 

KPSS test 0.048 0.050 0.065 0.058 0.076 0.078 0.073 0.073 0.083 0.076 0.146 

             

Panel B: β3 (flight to liquidity) sorted portfolios  

ADF test (AR) -2.819* -3.234* -3.001* -2.980* -2.993* -3.307* -3.139* -3.318* -3.014* -2.199* -1.942 

ADF test (ARD) -2.775 -3.180* -2.930* -3.056* -3.086* -3.380* -3.118* -3.372* -3.001* -2.083 -2.881 

PP test (AR) -9.670* -9.331* -9.732* -8.978* -9.721* -9.838* -9.804* -10.035* -10.416* -10.430* -1.942 

PP test (ARD) -9.648* -9.294* -9.700* -8.941* -9.689* -9.794* -9.774* -9.994* -10.407* -10.384* -2.879 

KPSS test 0.067 0.072 0.064 0.060 0.067 0.052 0.077 0.064 0.091 0.077 0.146 

            

Panel C: β4 (depressed wealth effect) sorted portfolios 

ADF test (AR) -2.698* -2.976* -2.932* -2.714* -2.710* -3.223* -3.206* -3.585* -2.911* -2.475* -1.942 

ADF test (ARD) -2.549 -2.981* -2.949* -2.705 -2.642 -3.335* -3.263* -3.525* -2.919* -2.487 -2.881 

PP test (AR) -9.601* -9.640* -9.303* -9.161* -9.785* -10.128* -10.372* -9.940* -10.347* -10.773* -1.942 

PP test (ARD) -9.583* -9.610* -9.290* -9.119* -9.754* -10.081* -10.332* -9.906* -10.328* -10.748* -2.879 

KPSS test 0.089 0.062 0.057 0.081 0.069 0.049 0.057 0.061 0.079 0.078 0.146 

ADF and PP H0: Unit root exists. KPSS H0: Stationary series. * indicates significance at the 5% level. 
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Table 24. Unit root and stationarity tests for returns of portfolios sorted using PQS. 
This table reports the results of the ADF, PP, and KPSS tests for portfolio returns. Both ADF and PP test for a unit root; AR refers to a test with an autoregressive null model, 

and ARD to a test with an autoregressive with drift null model. KPSS tests for stationarity. The table lists the test statistic for each portfolio and the corresponding critical 

value at the 5% level in the rightmost column. 

Portfolio  1 2 3 4 5 6 7 8 9 10 
Critical 

value 

Panel A: β2 (commonality) sorted portfolios  

ADF test (AR) -2.527* -3.291* -3.109* -3.250* -3.197* -3.032* -3.037* -3.050* -2.734* -2.685* -1.942 

ADF test (ARD) -2.555 -3.429* -3.090* -3.289* -3.196* -3.082* -2.988* -3.008* -2.686 -2.653 -2.881 

PP test (AR) -10.173* -10.507* -9.990* -9.438* -9.718* -9.397* -8.872* -9.942* -9.095* -9.720* -1.942 

PP test (ARD) -10.135* -10.473* -9.949* -9.390* -9.661* -9.376* -8.838* -9.931* -9.064* -9.754* -2.879 

KPSS test 0.086 0.055 0.060 0.048 0.061 0.059 0.063 0.080 0.084 0.081 0.146 

             

Panel B: β3 (flight to liquidity) sorted portfolios  

ADF test (AR) -3.006* -3.271* -3.091* -2.948* -3.307* -3.030* -3.374* -2.907* -2.480* -2.455* -1.942 

ADF test (ARD) -2.934* -3.501* -3.101* -2.883* -3.518* -3.034* -3.416* -2.867 -2.525 -2.361 -2.881 

PP test (AR) -9.724* -9.704* -10.131* -9.920* -9.805* -9.504* -9.436* -9.684* -9.820* -9.987* -1.942 

PP test (ARD) -9.705* -9.703* -10.098* -9.883* -9.800* -9.477* -9.404* -9.663* -9.769* -9.949* -2.879 

KPSS test 0.068 0.064 0.046 0.060 0.071 0.080 0.056 0.069 0.076 0.091 0.146 

            

Panel C: β4 (depressed wealth effect) sorted portfolios 

ADF test (AR) -2.974* -3.079* -3.240* -3.305* -2.891* -2.926* -3.378* -3.260* -2.858* -2.653* -1.942 

ADF test (ARD) -2.899* -3.102* -3.238* -3.257* -2.878 -2.874 -3.536* -3.406* -2.804 -2.670 -2.881 

PP test (AR) -9.381* -9.395* -8.973* -9.735* -10.382* -10.191* -9.916* -9.796* -8.795* -9.208* -1.942 

PP test (ARD) -9.389* -9.398* -8.940* -9.702* -10.339* -10.152* -9.875* -9.755* -8.766* -9.153* -2.879 

KPSS test 0.089 0.062 0.057 0.081 0.069 0.049 0.057 0.061 0.079 0.078 0.146 

ADF and PP H0: Unit root exists. KPSS H0: Stationary series. * indicates significance at the 5% level. 
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APPENDIX 4: UNIT ROOT AND STATIONARITY TESTS FOR MARKET SERIES. 

Table 25. Unit root and stationarity tests for market series. 
This table reports the results of the ADF, PP, and KPSS tests for market series. Both ADF and PP test for a 

unit root; AR refers to a test with an autoregressive null model, and ARD to a test with an autoregressive with 

drift null model. KPSS tests for stationarity. The table lists the test statistic for each series and the correspond-

ing critical value at the 5% level below in parentheses. 

 AdjILLIQ PQS CDAX Returns 

ADF AR -4.072* -4.064* -3.906* 

 (-1.942) (-1.942) (-1.942) 

ADF ARD -4.060* -4.059* -4.017* 

 (-2.875) (-2.875) (-2.875) 

PP AR -15.075* -14.994* -13.620* 

 (-1.942) (-1.942) (-1.942) 

PP ARD -15.043* -14.961* -13.608* 

 (-2.875) (-2.875) (-2.875) 

KPSS 0.047 0.047 0.074 

 (0.146) (0.146) (0.146) 

ADF and PP H0: Unit root exists. KPSS H0: Stationary series. * indicates significance at the 5% level. 
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APPENDIX 5: MODEL SPECIFICATION TESTS FOR PANEL REGRESSIONS. 

Table 26. Breusch-Pagan LM test for panel effects. 
The Breusch-Pagan LM test determines whether the variance in error terms across panel variables is zero (i.e. 

no panel effect). The numbering corresponds to the regression specifications as per Equations (28)–(34), and 

the portfolio sorting is denoted by β2, β3, and β4. The test statistic follows a Chi-bar-square distribution with 1 

degree of freedom. The table lists the test statistic and corresponding p-value below in parentheses. * indicates 

significance at the 1% level. 

 1 2 3 4 5 6 7 

Panel A: AdjILLIQ portfolios 

β2 51.49* 44.64* 53.87* 43.49* 46.99* 51.41* 43.94* 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

β3 51.49* 53.80* 55.76* 52.86* 55.14* 51.48* 54.41* 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

β4 51.49* 45.96* 54.17* 46.94* 49.14* 51.43* 47.66* 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

        

Panel B: PQS portfolios 

β2 28.29* 31.06* 30.67* 29.35* 30.55* 28.25* 30.55* 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

β3 28.29* 28.23* 30.69* 28.29* 29.18* 28.24* 30.14* 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

β4 28.29* 30.57* 30.18* 28.52* 29.39* 28.25* 31.30* 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

H0: Error variance across panel variables is zero. 

 

 

Table 27. Hausman specification test. 
The Hausman specification test compares fixed and random effects estimates to determine whether there is a 

systematic difference between fixed and random effects estimates (i.e. fixed effects). The numbering corre-

sponds to the regression specifications as per Equations (28)–(34), and the portfolio sorting is denoted by β2, 

β3, and β4. The table lists the Chi-square test statistic and corresponding p-value below in parentheses. * indi-

cates significance at the 1% level. 

 1 2 3 4 5 6 7 

Panel A: AdjILLIQ portfolios 

β2 376.98* 389.58* 394.37* 387.66* 378.40* 375.42* 414.79* 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

β3 376.98* 381.74* 405.22* 382.49* 385.97* 375.58* 405.06* 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

β4 376.98* 384.83* 397.69* 397.42* 378.72* 375.81* 410.27* 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

        

Panel B: PQS portfolios 

β2 488.90* 498.50* 498.02* 506.41* 500.23* 487.39* 522.98* 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

β3 488.90* 495.67* 494.45* 497.35* 493.90* 487.55* 511.28* 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

β4 488.90* 505.06* 509.03* 507.73* 503.96* 487.45* 529.10* 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

H0: Difference in coefficients is not systematic. 
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Table 28. Wald test for time fixed effects. 
Factor variables for time periods are added to the fixed effects regression, and a Wald test is performed to 

determine whether the coefficients for the time periods are jointly different from 0 (i.e. time fixed effects). The 

numbering corresponds to the regression specifications as per Equations (28)–(34), and the portfolio sorting is 

denoted by β2, β3, and β4. The table lists the F-statistic and corresponding p-value below in parentheses. * 

indicates significance at the 1% level. 

 1 2 3 4 5 6 7 

Panel A: AdjILLIQ portfolios 

β2 55.68* 55.42* 55.43* 55.43* 55.35* 55.69* 55.34* 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

β3 55.68* 55.45* 55.43* 55.48* 55.38* 55.69* 55.40* 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

β4 55.68* 55.55* 55.46* 55.59* 55.49* 55.69* 55.49* 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

        

Panel B: PQS portfolios 

β2 49.59* 49.44* 49.29* 49.46* 49.34* 49.59* 49.30* 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

β3 49.59* 49.41* 49.27* 49.49* 49.36* 49.59* 49.25* 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

β4 49.59* 49.41* 49.26* 49.50* 49.36* 49.59* 49.23* 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

H0: Coefficients for time periods are jointly 0. 
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APPENDIX 6: PANEL REGRESSIONS WITH AN ENDOGENOUS HOLDING PERIOD. 

Table 29. Fixed effects panel regressions with an endogenous holding period using AdjILLIQ. 
The numbering in the leftmost column corresponds to the model specification as per Equations (28)–(34). The excess returns, expected illiquidity cost, and illiquidity betas 

are scaled by the empirically estimated holding period. Special cases of the relation 𝐸(𝑟𝑡
𝑖 − 𝑟𝑡

𝑓
) − 𝜅𝐸(𝑐𝑡

𝑝
) = 𝛼𝑡 + 𝜆1𝛽𝑡

1𝑖 + 𝜆2𝛽𝑡
2𝑖 + 𝜆3𝛽𝑡

3𝑖 + 𝜆4𝛽𝑡
4𝑖 + 𝜆5𝛽𝑡

5𝑖 + 𝜆6𝛽𝑡
6𝑖 +

𝛾1𝐵𝑀𝑡
𝑖 + 𝛾2𝐹𝐹𝑡

𝑖 + 𝛾3𝑆𝑖𝑧𝑒𝑡
𝑖 + 𝜀𝑡

𝑖 are considered in each specification. BM and Size are natural logarithms of book-to-market ratio and market capitalization, respectively. 

FF is the free float ratio of a stock. The table lists the parameter estimate and the corresponding robust t-statistic below in parentheses. *, **, and *** indicate significance at 

10%, 5%, and 1% levels, respectively.  

 α E(c) β1 β2 β3 β4 β5 β6 ln(Sz) ln(BM) FF 

Panel A: β2 (commonality) sorted portfolios 

1 -0.000 0.019 -0.002      0.000* 0.000*** 0.000 

 (-0.92) (−) (-0.68)      (1.77) (9.31) (0.19) 

2 -0.000 0.019 -0.002 4.333***     0.000** 0.000*** 0.000 

 (-1.32) (−) (-0.64) (3.03)     (1.98) (9.38) (0.25) 

3 -0.000* 0.019 -0.002  -0.561**    0.000* 0.000*** 0.000 

 (-1.74) (−) (-0.73)  (-2.58)    (1.82) (9.34) (0.18) 

4 -0.000 0.019 -0.002   -0.132*   0.000* 0.000*** 0.000 

 (-1.05) (−) (-0.66)   (-1.96)   (1.84) (9.32) (0.22) 

5 -0.000 0.019 -0.002    0.182***  0.000* 0.000*** 0.000 

 (-1.37) (−) (-0.67)    (2.77)  (1.90) (9.34) (0.23) 

6 -0.000 0.019      -0.002 0.000* 0.000*** 0.000 

 (-0.93) (−)      (-0.62) (1.77) (9.30) (0.19) 

7 -0.000** 0.019 -0.002 5.492** -0.516** 0.095   0.000** 0.000*** 0.000 

 (-2.05) (−) (-0.69) (2.16) (-2.39) (0.75)   (2.02) (9.43) (0.24) 
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Table 29 continued. 
 α E(c) β1 β2 β3 β4 β5 β6 ln(Sz) ln(BM) FF 

Panel B: β3 (flight to liquidity) sorted portfolios 

1 -0.000 0.019 -0.002      0.000* 0.000*** 0.000 

 (-0.92) (−) (-0.68)      (1.77) (9.31) (0.19) 

2 -0.000 0.019 -0.002 2.503     0.000* 0.000*** 0.000 

 (-1.01) (−) (-0.77) (1.01)     (1.77) (9.29) (0.18) 

3 -0.000 0.019 -0.003  -0.537**    0.000* 0.000*** 0.000 

 (-1.57) (−) (-1.37)  (-2.45)    (1.77) (9.32) (0.17) 

4 -0.000 0.019 -0.002   -0.012   0.000* 0.000*** 0.000 

 (-0.92) (−) (-0.69)   (-0.15)   (1.77) (9.30) (0.19) 

5 -0.000 0.019 -0.002    0.109  0.000* 0.000*** 0.000 

 (-1.09) (−) (-0.89)    (1.50)  (1.76) (9.29) (0.17) 

6 -0.000 0.019      -0.002 0.000* 0.000*** 0.000 

 (-0.92) (−)      (-0.65) (1.77) (9.30) (0.19) 

7 -0.000 0.019 -0.004 1.568 -0.519** 0.010   0.000* 0.000*** 0.000 

 (-1.59) (−) (-1.39) (0.54) (-2.44) (0.11)   (1.76) (9.31) (0.16) 

Panel C: β4 (depressed wealth effect) sorted portfolios 

1 -0.000 0.019 -0.002      0.000* 0.000*** 0.000 

 (-0.92) (−) (-0.68)      (1.77) (9.31) (0.19) 

2 -0.000 0.019 -0.002 3.917***     0.000* 0.000*** 0.000 

 (-1.23) (−) (-0.67) (2.68)     (1.91) (9.28) (0.25) 

3 -0.001** 0.019 -0.002  -0.969***    0.000* 0.000*** 0.000 

 (-2.34) (−) (-0.81)  (-4.03)    (1.85) (9.40) (0.28) 

4 -0.000 0.019 -0.002   -0.039   0.000* 0.000*** 0.000 

 (-0.95) (−) (-0.68)   (-0.58)   (1.79) (9.29) (0.20) 

5 -0.000 0.019 -0.002    0.111*  0.000* 0.000*** 0.000 

 (-1.18) (−) (-0.69)    (1.86)  (1.84) (9.29) (0.24) 

6 -0.000 0.019      -0.002 0.000* 0.000*** 0.000 

 (-0.92) (−)      (-0.64) (1.77) (9.30) (0.19) 

7 -0.001*** 0.019 -0.002 6.671*** -0.941*** 0.212**   0.000** 0.000*** 0.000 

 (-2.61) (−) (-0.80) (3.00) (-3.88) (2.08)   (1.98) (9.41) (0.31) 
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Table 30. Fixed effects panel regressions with an endogenous holding period using PQS. 
The numbering in the leftmost column corresponds to the model specification as per Equations (28)–(34). The excess returns, expected illiquidity cost, and illiquidity betas 

are scaled by the empirically estimated holding period. Special cases of the relation 𝐸(𝑟𝑡
𝑖 − 𝑟𝑡

𝑓
) − 𝜅𝐸(𝑐𝑡

𝑝
) = 𝛼𝑡 + 𝜆1𝛽𝑡

1𝑖 + 𝜆2𝛽𝑡
2𝑖 + 𝜆3𝛽𝑡

3𝑖 + 𝜆4𝛽𝑡
4𝑖 + 𝜆5𝛽𝑡

5𝑖 + 𝜆6𝛽𝑡
6𝑖 +

𝛾1𝐵𝑀𝑡
𝑖 + 𝛾2𝐹𝐹𝑡

𝑖 + 𝛾3𝑆𝑖𝑧𝑒𝑡
𝑖 + 𝜀𝑡

𝑖 are considered in each specification. BM and Size are natural logarithms of book-to-market ratio and market capitalization, respectively. 

FF is the free float ratio of a stock. The table lists the parameter estimate and the corresponding robust t-statistic below in parentheses. *, **, and *** indicate significance at 

10%, 5%, and 1% levels, respectively.  

 α E(c) β1 β2 β3 β4 β5 β6 ln(Sz) ln(BM) FF 

Panel A: β2 (commonality) sorted portfolios 

1 -0.001*** 0.019 0.001      0.000*** 0.000*** 0.000 

 (-5.37) (−) (0.25)      (4.25) (2.77) (0.65) 

2 -0.002*** 0.019 0.001 0.603     0.000*** 0.000*** 0.000 

 (-5.57) (−) (0.22) (1.00)     (4.33) (2.78) (0.67) 

3 -0.002*** 0.019 0.000  -0.390**    0.000*** 0.000*** 0.000 

 (-5.93) (−) (0.12)  (-2.39)    (4.23) (2.74) (0.62) 

4 -0.002*** 0.019 0.001   -0.078   0.000*** 0.000*** 0.000 

 (-5.45) (−) (0.21)   (-1.30)   (4.30) (2.78) (0.65) 

5 -0.002*** 0.019 0.001    0.086  0.000*** 0.000*** 0.000 

 (-5.68) (−) (0.17)    (1.65)  (4.30) (2.78) (0.64) 

6 -0.001*** 0.019      0.001 0.000*** 0.000*** 0.000 

 (-5.39) (−)      (0.33) (4.25) (2.77) (0.64) 

7 -0.002*** 0.019 0.000 0.147 -0.357** -0.047   0.000*** 0.000*** 0.000 

 (-5.93) (−) (0.10) (0.13) (-2.24) (-0.39)   (4.30) (2.74) (0.63) 
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Table 30 continued. 
 α E(c) β1 β2 β3 β4 β5 β6 ln(Sz) ln(BM) FF 

Panel B: β3 (flight to liquidity) sorted portfolios 

1 -0.001*** 0.019 0.001      0.000*** 0.000*** 0.000 

 (-5.37) (−) (0.25)      (4.25) (2.77) (0.65) 

2 -0.001*** 0.019 0.001 -0.010     0.000*** 0.000*** 0.000 

 (-5.44) (−) (0.25) (-0.01)     (4.27) (2.78) (0.65) 

3 -0.002*** 0.019 -0.001  -0.348**    0.000*** 0.000*** 0.000 

 (-5.88) (−) (-0.20)  (-2.30)    (4.29) (2.77) (0.63) 

4 -0.001*** 0.019 0.001   0.001   0.000*** 0.000*** 0.000 

 (-5.37) (−) (0.25)   (0.01)   (4.26) (2.77) (0.65) 

5 -0.002*** 0.019 0.000    0.022  0.000*** 0.000*** 0.000 

 (-5.45) (−) (0.16)    (0.52)  (4.27) (2.77) (0.64) 

6 -0.001*** 0.019      0.001 0.000*** 0.000*** 0.000 

 (-5.38) (−)      (0.28) (4.25) (2.77) (0.65) 

7 -0.002*** 0.019 -0.000 0.242 -0.412*** 0.059   0.000*** 0.000*** 0.000 

 (-6.00) (−) (-0.15) (0.28) (-2.81) (1.06)   (4.30) (2.78) (0.63) 

Panel C: β4 (depressed wealth effect) sorted portfolios 

1 -0.001*** 0.019 0.001      0.000*** 0.000*** 0.000 

 (-5.37) (−) (0.25)      (4.25) (2.77) (0.65) 

2 -0.002*** 0.019 0.001 0.442     0.000*** 0.000*** 0.000 

 (-5.52) (−) (0.24) (0.73)     (4.33) (2.78) (0.65) 

3 -0.002*** 0.019 0.001  -0.337**    0.000*** 0.000*** 0.000 

 (-5.61) (−) (0.20)  (-2.01)    (4.25) (2.76) (0.62) 

4 -0.002*** 0.019 0.001   -0.046   0.000*** 0.000*** 0.000 

 (-5.44) (−) (0.20)   (-1.12)   (4.31) (2.79) (0.64) 

5 -0.002*** 0.019 0.001    0.053  0.000*** 0.000*** 0.000 

 (-5.57) (−) (0.18)    (1.47)  (4.31) (2.79) (0.64) 

6 -0.001*** 0.019      0.001 0.000*** 0.000*** 0.000 

 (-5.38) (−)      (0.31) (4.25) (2.77) (0.64) 

7 -0.002*** 0.019 0.000 0.317 -0.339** -0.022   0.000*** 0.000*** 0.000 

 (-5.81) (−) (0.16) (0.44) (-2.02) (-0.45)   (4.33) (2.77) (0.62) 
 


