

LAPPEENRANTA-LAHTI UNIVERSITY OF TECHNOLOGY LUT

School of Engineering Science

Software Engineering

Bachelor’s thesis

Elmer Häyrynen

EVALUATION OF STATE-OF-THE-ART WEB APPLICATION

VULNERABILITY SCANNERS

Examiners: Associate Professor Ari Happonen

Supervisors: Associate Professor Ari Happonen

ii

TIIVISTELMÄ

Lappeenrannan-Lahden teknillinen yliopisto LUT

School of Engineering Science

Tietotekniikan koulutusohjelma

Elmer Häyrynen

Nykyaikaisten verkkosovellusten tietoturvaskannereiden arviointitutkimus

Kandidaatintyö

2020

54 sivua, 0 kuvaa, 7 taulukkoa, 1 liite

Työn tarkastajat: Apulaisprofessori Ari Happonen

Hakusanat: verkkosivujen tietoturvaskannerit, verkkosivujen haavoittuvuudet,

penetraatiotestaus, vertailututkimus

Verkkosivujen tietoturva on yksi nykypäivän suurimmista ongelmista useiden perinteisten

palveluiden siirtyessä verkkoon uusien verkkoteknologioiden siivittämänä. Ketterien

metodien yleistynyt käyttö kehitysympäristöissä ovat nopeuttaneet sovelluksen

kehitysprosesseja sekä sovellustestausta, mutta sovellusten tietoturvatestaus sekä etenkin

penetraatiotestaus eivät ole vielä mukautuneet näihin muutoksiin. Tämä johtuu suurelta

osin perinteisen tietoturvatestauksen luonteesta, sillä testaaminen on usein manuaalista

sekä aikaa vievää työtä, joka vaatii vankkaa tietoturvaosaamista. Verkkosivujen

tietoturvaskannerit ovat työkaluja, jotka pyrkivät helpottamaan tietoturvatestauksen

sisällyttämistä sovelluskehityksen eri vaiheisiin automatisoimalla testausprosessia sekä

integroitumalla osaksi muita kehityksessä käytettäviä sovelluksia. Vaikka

tietoturvaskannerit ovat lähtökohtaisesti samaan tarkoitukseen suunniteltuja, ne eroavat

iii

usein keskenään haavoittuvuuksien kattavuuden, sovellusten yhteensopivuuden sekä

integraatiomahdollisuuksien suhteen. Tässä kandidaatintyössä analysoidaan ja vertaillaan

keskenään luokkansa parhaita verkkosivujen tietoturvaskannereita ja työn sisältö on jaettu

neljään osioon. Ensimmäisessä osiossa käydään läpi erilaisia verkkosivujen

haavoittuvuuksia sekä penetraatiotestauksen ja skannereiden roolia osana verkkosivun

kehitystä. Toisessa osiossa määritellään millä kriteereillä skannereita voidaan pitää

luokkansa parhaina sekä etsitään ja valitaan tutkimuksen kohteeksi kuvaukseen sopivia

skannereita olemassa olevasta kirjallisuudesta. Kolmannessa osiossa tutkimuksen tulokset

on esitetty kootusti ja neljännessä osiossa keskitytään tutkimuksen tulosten arviointiin sekä

vertailuun.

iv

ABSTRACT

Lappeenranta-Lahti University of Technology

School of Engineering Science

Software Engineering

Elmer Häyrynen

Evaluation of state-of-the-art web application vulnerability scanners

Bachelor’s Thesis

2020

54 pages, 0 figures, 7 tables, 1 appendix

Examiners: Associate Professor Ari Happonen

Keywords: web application security scanners, web application vulnerabilities, penetration

testing, comparison study

Security of web applications is one of the largest problems of today due to the

transformation of traditional services to online variants, fuelled by constantly evolving new

technologies. While the modern development and testing of web applications has become

faster and more efficient through the deployment agile methodologies, software security

testing and especially penetration testing is lacking as it’s traditionally a manual and time-

consuming process conducted by security experts. In order to include security testing into

various stages of software development life cycle, modern web application security

scanners have been developed in order to make integrated web application security a

reality through automation and integrating with the existing development related software.

Essentially web vulnerability scanners detect potential security vulnerabilities in web

application by performing automated tests, and while nearly all of them are based on

v

similar functionalities and aim to resolve the same core problem, there are vast differences

amongst them related to their threat detection capabilities, environment compatibility,

integration possibilities and usability. This thesis analyses and compares different state-of-

the-art web vulnerability scanners and consists of four main sections: the first section

covering the vulnerabilities related to modern web applications and explaining the role of

penetration testing and web application scanners in software development, the second

section defining the state-of-the-art web scanners, inspecting available literature and

benchmark studies for scanners that match the defined qualities and forming an assessment

criteria for the comparison study, the third part focusing in presenting the collected results

and the last section focusing around analysing the study outcomes.

1

TABLE OF CONTENTS

1 INTRODUCTION ... 5

1.1 BACKGROUND ... 5

1.2 GOALS AND DELIMITATIONS ... 6

1.3 STRUCTURE OF THESIS ... 7

2 WEB APPLICATION SECURITY .. 9

2.1 WEB-APPLICATION SECURITY THREATS .. 9

2.1.1 Injection ... 9

2.1.2 Broken authentication .. 10
2.1.3 Sensitive Data Exposure (SDE) .. 10

2.1.4 External entities (XXE) ... 10
2.1.5 Broken Access Control ... 11

2.1.6 Security Misconfiguration .. 11
2.1.7 Cross Site Scripting (XSS) .. 11

2.1.8 Insecure Deserialization... 12
2.1.9 Using Components with Known Vulnerabilities .. 12

2.1.10 Insufficient logging and monitoring .. 12

2.2 PENETRATION TESTING .. 13

2.3 AUTOMATED PENETRATION TESTING .. 14

3 STATE-OF-THE-ART WEB APPLICATION SCANNERS: SAMPLING AND

EVALUATION CRITERIA ... 18

3.1 WEB APPLICATION SCANNER STUDIES ... 18

3.2 WEB APPLICATION SCANNER SELECTION .. 21

3.3 THREAT DETECTION CAPABILITIES .. 22

3.3.1 Authentication .. 22

3.3.2 Authorization ... 24
3.3.3 Client-side attacks .. 25

3.3.4 Command execution ... 27
3.3.5 Information disclosure ... 30

3.4 DEVELOPMENT ENVIRONMENT SUPPORT ... 33

3.4.1 Architectural support ... 33
3.4.2 Usability .. 35

4 RESULTS .. 38

5 DISCUSSION AND CONCLUSIONS .. 41

6 SUMMARY .. 44

2

REFERENCES.. 45

APPENDIX 1: Results from the study

3

LIST OF SYMBOLS AND ABBREVIATIONS

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

CAPTCHA Completely Automated Public Turing Test To Tell Computers and Humans

Apart

CR Carriage Return

CRLF Carriage Return Line Feed

CSRF Cross-site Request Forgery

CTO Chief Technology Officer

CWE Common Weakness Enumeration

DAST Dynamic Application Security Testing

DOM Document Object Model

EU Europe Union

GDPR General Data Protection Regulation

HTML Hypertext Markup Language

HTTPS Hyper Transfer Text Protocol Secure

IBAN International Bank Account Number

ID Identifier

IFRAME Inline Frame

IMG Image

IP Internet Protocol

JS JavaScript

LDAP Lightweight Directory Access Protocol

LDAP Lightweight Directory Access Protocol

LF Line Feed

LFI Local file includes

N/A Not Applicable

NAT Network Access Translation

NoSQL Not only SQL

OS Operating System

OWASP Open Web Application Security Project

4

PCI Payment Card Industry

RFI Remote file includes

SAST Static Application Security Testing

SDE Sensitive Data Exposure

SDLC Software Development Life Cycle

SOAP Single Objects Access Protocol

SQL Structured Query Language

SSI Server-side Include

SSL Secure Sockets Layer

TLS Transport Layer Security

UI User Interface

URL Uniform Resource Locator

WASC Web Application Security Consortium

WAVSEP Web Application Vulnerability Scanner Evaluation Project

XML Extensible Markup Language

XPath XML Language Path

XPath XML Language path

XSS Cross-site scripting

XXE XML External Entity

ZAP Zed Attack Proxy

5

1 INTRODUCTION

This thesis evaluates and compares the differences of current state-of-the-art web

application vulnerability scanners designed for automated security testing of web

applications. The aim is to ease the process of choosing a suitable web application

vulnerability scanner for a software product by providing a report examining their

vulnerability detection features, integration possibilities and overall development

environment support for easy comparison.

1.1 Background

Due to rapid digital transformation of our society, understanding the presence of web

application vulnerabilities and the fundamentals of security testing in modern web

application development is the responsibility of all CTO’s in both private and public

companies as well as municipality units. This is emphasized when these instances go

through digital transformation towards knowledge companies (Kortelainen et. al. 2016;

Kortelainen et al. 2019), as transformative companies are most severely impacted by

security breaches. (Ko et al. 2009, p. 12) When managers understand the possible

vulnerabilities in web applications as well as the methods and tools used by the software

industry, they are better equipped to demand proper security measures and practices from

software providers in order to minimize the chances of potential security breaches.

In the context of web applications, penetration testing is most often used as black-box

testing method. Penetration testing focuses in finding potential security vulnerabilities

from the web-application by analysing the application’s execution and behaviour when

tests pass malicious inputs into the system. Due to the nature of penetration testing, the

amount of test cases can reach hundreds or thousands, thus rendering manual penetration a

non-viable option. To address this issue, automated penetration testing tools have been

developed in order to improve efficiency of penetration testing. (Antunes & Vieira 2014, p.

31.)

Automated penetration testing is most often achieved in one of the two ways: by ordering a

customized penetration testing solution from a team of security experts, which is

essentially a collection of customized and build-safe exploits created by the experts, that

6

are combined into a single executable package, (Stefinko et al. 2016, p. 490) or by using a

commercially available penetration testing tool for performing automatic web penetration

testing, usually referred to as web application vulnerability scanners, (Aarya et al. 2018 p.

124) but also referenced to as dynamic application security testing tool or DAST tool,

which this thesis will focus in examining and comparing. The main idea behind a web

application vulnerability scanner is that it crawls a target website and collects information

on possible data-entry points, which are then attacked by the scanner application by

sending malicious inputs into the system and analysing the system’s behaviour under

attack. (Fong et al. 2008) In the context of this text, a scanner, web application scanner,

web vulnerability scanner, web application vulnerability scanner and DAST tool all refer

to an application of this type. Even though penetration testing as an approach does not

require access to the actual source code (Antunes & Vieira 2014, p. 31), and as such is

much less platform-dependant than other security testing methodologies, the process

behind selecting a suitable web application vulnerability scanner for a system can often be

tedious, as they often differ greatly in terms of functionality, supported architectures,

vulnerability reporting methods, integration possibilities and cost.

The main advantage of having a functional web application vulnerability scanner testing

your system is that it can detect the vulnerabilities in the target system in real-time. In

addition to providing valuable information about the system’s current state of vulnerability,

having a functional web application vulnerability scanner tightly coupled with the

development process can aid in improving the overall security of the system by also

educating developers in building more secure systems. The downside is that vulnerability

scanners tend to find security vulnerabilities that are often considered to be “low hanging

fruits”, meaning that the results of a scan often miss various vulnerabilities that would be

detectable by a more through manual penetration testing. This might result in the scan

results creating a false sense of security for software developers and application managers

in cases this drawback is not properly understood.

1.2 Goals and delimitations

The goal of this thesis is to provide a table which includes the results of the examination

that can be used for comparing features and functionalities of various state-of-the-art

penetration testing tools, which will ease the process of selecting a suitable penetration

7

testing tool for a web application. The thesis will consist from three main phases. The first

phase will focus in examining web application vulnerabilities as well as explaining the role

of penetration testing and web application scanners in the modern web application

development. The second phase of the study will focus in defining and selecting state-of-

the-art web application vulnerability scanners for further analysis. In addition to this, the

section will also focus defining the assessment criteria so that the assessed tools can be

examined from various perspectives such as:

-Threat coverage: What type of vulnerabilities does the tool scan for?

-Reporting: How are the reports formed and presented to the user?

-System support: What kind of web applications are supported?

-Setting up: How are the tests created and maintained and what kind of preparations

are required?

-Usage: How are the tests conducted?

-Cost: What does the tool cost?

The last part of the study focuses in presenting and analysing the results of the study.

As stated by Stuttard & Pinto (2011, p. 781-784), the performance of an individual

penetration test tool is tightly coupled with the software being tested and different tools

excel in different type of applications and differ in their capability to address and identify

different types of vulnerabilities. In the context of this thesis, the focus will not be in the

efficiency and functionality of the web application vulnerability scanners.

The focus of this study is in examination of web application vulnerability scanners from

perspectives of software documentation provided by the respective software companies or

communities as well as existing literature that focuses in the field of automated penetration

testing.

1.3 Structure of thesis

Section 1 contains a deeper background view to the automated penetration testing and the

field of web application security as a subject, explaining the advantages, challenges and

topicality of these subjects. In addition, the challenges in modern web-application

penetration testing will be introduced as well as the role of automated penetration testing

8

tools in order to overcome them.

Section 2 defines the tools that qualify for this study and the assessment criteria for

conducting the research. Existing studies and information will be used in order to identify

state-of-the-art tools for this study and also to define the perspectives from which to assess

the selected tools and define the key functionalities and capabilities of each tool in order to

carry out the study. The process and results of studying each individual tool will be

presented in the Appendix 1 of this thesis.

Section 3 describes the overall results of the study by collecting the results of each

individually assessed tool into a comparison matrix for easy examination. Section 4

continues with further discussion about the overall results and section 5 concludes the

paper and proposes possible future work.

9

2 WEB APPLICATION SECURITY

Software security as a subject is all about taking security in account at all stages and

aspects of the development process. This means that in addition to building the software to

be secure, the personnel developing and designing the software, as well as the users using

the software must be educated in order to improve security. (Mcgraw 2004, p. 80) In

comparison to traditional software testing which is most often conducted by running

dynamic and functional tests in order to ensure the validity and correct functionality of the

application’s features, security of the system cannot be validated since security cannot be

addressed as set of features. (Arkin, Stender & McGraw 2005, p. 84)

2.1 Web-application security threats

The volume of attacks against web applications has increased substantially in the past

years (Sonicwall 2019), and according to the most recent Symantec Internet Security

Threat Report, on average approximately 953,800 web attacks are performed towards

websites every day. (Symantec ltd. 2019) These attacks are most often built to exploit a

design or security flaw in a web application in order to gain confidential data, and while

the variety of cybersecurity attacks and attack vectors is immense, the subject of common

web-application vulnerabilities is quite easy to perceive. A commonly referenced list of

most severe vulnerabilities is the OWASP Top 10-project, updated and maintained by the

OWASP-community. (OWASP org. 2017a) In addition to the OWASP Top 10 listing,

there are other more comprehensive listings such as the Web Application Security

Consortium Threat Classification (WASC 2009q), but the listings are often complementary

and contain similar vulnerabilities with different emphasis.

2.1.1 Injection

Injection is the most common security flaw in a web-application, according to OWASP

2017 Top-10 report. Injection occurs, when an attacking entity sends hostile request data to

the web application as a part of command or a query. The hostile data or script included as

a part of the query can then cause unwanted behaviour when it is executed by the backend,

such as executing unintended commands or accessing confidential data without proper

authorization. Injection flaws are most often found in the system’s data-access-layer,

including SQL, LDAP, XPath or NoSQL queries and other commands. (OWASP org.

10

2017b)

2.1.2 Broken authentication

Broken authentication refers to issues in the design of the website related to authenticating

the user’s session and identity. This is one of the vulnerabilities that cannot be

automatically identified through automated web vulnerability scanners, as traditionally

when performing penetration testing the tester does not have access to the code of the

target system and as such cannot identify these faults in system design. Issues that could

result in broken authentication vulnerabilities could for example be related to use of

insufficient cryptography in storing the user credentials in the web application backend

database. Some of the security issues connected to this area can be identified by automated

tools, such as exposed session id’s or the transmission of the user credentials over an

insecure connection, but these are insufficient in order to identify all broken authentication

related threats from the system. (OWASP org. 2017c)

2.1.3 Sensitive Data Exposure (SDE)

Sensitive data exposure occurs in cases where web applications and API’s do not protect

sensitive data sufficiently, which enables attackers to steal or modify included sensitive

data for conducting frauds or identity thefts. This is especially severe if the data handled by

the application contains data that falls under any form of privacy law such as the EU’s

General Data Protection Regulation or financial data protection laws such as the PCI Data

Security Standard. SDE is often caused by lack of strong protection and encryption in any

of the states when handling the sensitive data: storing, transferring or presenting it in an

application and as such, the possibility for this vulnerability is present in every application

that manages sensitive data. (OWASP org. 2017d)

2.1.4 External entities (XXE)

External entities are mainly a problem of legacy XML processors. The attack happens

when an XML entity which contains a reference to an external entity is processed by a

processor. This manipulation of XML contents often allows an attacker to inspect files on

the application server and to interact with any external entity or system that the web

application has access to. XXE vulnerability is present in applications that accept XML

11

directly or use XML uploads, especially from untrusted sources, any XML processor or

SOAP web services have their document type definitions enabled. (OWASP org. 2017e)

2.1.5 Broken Access Control

Broken access control refers to possible logical security problems included in web

applications. A classic example of this threat would be that a system has introduced a

profile system, in which users and their rights to access and modify system contents are

defined by their set role. Broken access control would mean that a user is able to access or

use the system features which they’re not intended to be able to do, resulting in unwanted

behaviour and a security flaw in terms of access control. To determine this kind of

behaviour, the tester would be required to have an extensive knowledge about the target

system in order to determine if the access control is broken. (OWASP org. 2017f)

2.1.6 Security Misconfiguration

Security misconfiguration happens when an application’s configuration causes a security

threat to the web application. This misconfiguration can happen at any level of the

application, such as platform, server, database and framework. The most common cases of

security misconfiguration are out-of-date software dependencies, insecure default accounts,

security settings in development frameworks and error handling that could result in severe

consequences such as the attackers being able to compromise the entire

application. (OWASP org. 2017g)

2.1.7 Cross Site Scripting (XSS)

XSS flaws occur in cases where a web application includes untrusted data in a new web

page without properly validating or escaping the current page, or in cases where the

application updates an existing page with data that is coming from the user through an API

which interprets this data into HTML or JavaScript. This allows attackers to execute

malicious JavaScript code in the victim’s browser, enabling them to modify the page

content or hijack sessions. This vulnerability was rated most severe web application

security flaw in 2007. It has since lowered to rank 7 in the newer 2017 report. (OWASP

org. 2007; OWASP org. 2017h)

12

2.1.8 Insecure Deserialization

Insecure deserialization refers to a vulnerability where Application and API’s deserialize

hostile data supplied by an attacker, which can then lead to application logic modification,

arbitrary remote code execution. Exploiting this vulnerability is usually quite difficult, as

exploits often need to be changed or tweaked in order to have an effect and thus require

frequent human assistance in order to be validated. (OWASP org. 2017i) When an

application deserializes untrusted data without sufficiently validating it, the application

enables the attacker to gain control of the code execution. In order to perform an attack of

this type, an attacker would require detailed knowledge of the source code of an

application in order to determine how to exploit insecure deserialization. (Netsparker ltd.

2019b)

2.1.9 Using Components with Known Vulnerabilities

This vulnerability is the result of applications being constructed on top of different

frameworks and components provided by 3rd parties, which can easily lead to cases where

the development teams do not fully understand which components they use in their

application or how to keep all of them updated. (OWASP org. 2017j) It’s typical that

automated security solutions can have checks for known vulnerable frameworks, platforms

and applications, but maintaining a database containing all the vulnerable components and

applications is virtually impossible. (Netsparker ltd. 2019b) Determining the exploitability

and vulnerabilities of these components requires manual work and should always be on the

responsibility of the developers. (OWASP org. 2017j)

2.1.10 Insufficient logging and monitoring

Occasionally, the developers of the software have not included accurate enough logging

and monitoring systems related to the system. This enables the attackers to conduct vast

attacks against systems without the administrators being aware of the situation and

therefore being not able to respond to the threat. An example of insufficient monitoring

would that a system does not monitor or log the user’s log in credentials with related IP

addresses, enabling the attackers to perform a brute-force attack to find out possible user

credentials. (OWASP org. 2017k)

13

2.2 Penetration testing

Penetration testing in the context of web applications is a commonly used black-box

testing method which resolves around passing multiple malicious inputs to the target

system from the attacker’s perspective in order to reveal vulnerabilities in the target web

application. Penetration testing as an approach does not require access to the actual source

code, and as such is much less platform-dependant than other security testing

methodologies. (Antunes & Vieira 2014, p. 30)

While being one of the most commonly applied method out of all the software security

best practices, penetration testing is also the one that is being misapplied most commonly.

Traditionally it is most often performed by security consultants assessing the software as a

part of the final acceptance phase. However, a late lifecycle penetration testing tends to

uncover underlying security problems such as architectural mistakes or common

vulnerabilities too late, severely affecting the budget and development time of the software

in case they must be dealt with before the software can be delivered. As a tool for

measuring the security of the system, penetration testing is most efficient once it is

integrated into the development process in a way that the results of the tests can be used to

improve the practices of software design, deployment and implementation. (Arkin, Stender

& McGraw 2005, p. 84).

Penetration testing as a manual process is very complex and tedious process, as the

security specialists conducting the testing are often required to have various years of

relevant experience and a wide skillset. The specialists typically create their own exploits,

which they modify accordingly to the target being tested. Conducting a comprehensive and

through-out manual penetration testing usually requires multiple of specialists with

different skillsets, rendering most organizations unable to maintain an in-house team or

contract a manual penetration testing team often. (Stefinko et al. 2016, p. 490)

The usual process of penetration testing is conducted in three parts. First part focuses in

gathering information about the target web application. Second part focuses in using the

gathered information in order to conduct the vulnerability analysis, which is directed

towards various parts of the web application such as business logic, authentication,

authorization, session management, data validation, denial of service etc. The last phase is

14

the vulnerability analysis step, where the uncovered vulnerabilities are targeted by attacks

in order to identify the possible exploitations and gather information about the

vulnerability’s overall effect for the system. (Aarya et al. 2018, p. 124)

2.3 Automated penetration testing

As manual penetration testing is often seen as ineffective in terms of both money and time,

automated penetration testing is often considered as a more effective alternative solution.

Automated penetration testing tools are often created by a team of security experts which

complete a through-out research of the system for vulnerabilities, build custom tests to run

against the system for testing purposes and finally combine these tools into a single

executable package. (Stefinko et al. 2016, p. 190) Another solution for this problem in the

context of web applications is using a web vulnerability scanner, which is essentially an

automated tool for testing web applications for the presence of common vulnerabilities and

security problems. (Aarya et al. 2018, p. 124)

Web vulnerability scanners are essentially automated programs designed to examine web

applications for security vulnerabilities and possible evidence of software coding errors.

Web scanners operate by exploring an application by crawling through every web page of

the application and performing automated penetration tests against the uncovered access

points in the discovered pages, which involves generation of malicious inputs and

subsequent evaluation of the target application’s response to these inputs. (Fong et al.

2008) It’s important to understand that the web vulnerability scanners mainly focus in

identifying vulnerabilities from the web application which is the second phase of

penetration testing process.

Automation in software development has become topical recently due to the

transformation from traditional software development methods towards agile

methodologies. The agile methodology has decreased the duration of development cycles

drastically, and the change can be clearly seen in the emphasis of automation in traditional

software quality assurance. According to Crispin et al., rather than relying solely on the

tester, software quality is emphasized to be everyone’s responsibility and a continuous

process executed alongside the development process. This is achieved through a heavy

15

emphasis on automation. (Crispin & Gregory 2009, Foreword section, p. XXIII)

 Manual penetration testing Automated penetration testing

Testing process − Manual process, non-

standard

− Time consuming

− Expensive

− High amount of
customization required to

work with target application

− Fast, standardized process

− Repeatability

− Good compatibility without

much customization

Vulnerability /

Attack vector

database

management

− Manual maintenance

− Need of customizing attacks

to different platforms

− Attack database

automatically maintained

− Preconstructed attack codes

for multiple platforms

Reporting − Often requires manual data-

collection

− Automated reporting

capabilities

Cleanup − Manual undo of changes to

the system every time
vulnerabilities are found, as

tests can damage system

data

− Can offer clean-up solutions

Training − Testers need to learn a vast

amount of different ways of

testing

− Testing can be customized

and is time-consuming

− Difficult to adopt by other

than skilful testers

− Training for automated tools

is easier, as all tools can be

executed using the same UI

− Easily adoptable by other

than just testers

16

Cost − Cost consists mainly from

the work that it takes to

conduct a comprehensive

penetration test, conducted
by either in-house testers or

external security consultants.

− Cost consists mainly of the

software licenses or monthly

fees. Initial required work is

much lower than in manual

testing.

Accuracy − Very accurate if conducted

correctly by professionals

with required skillsets

− Customization of test cases

towards target system and

human factor provide greatly

increased accuracy

− Possible false alarms

− Most often finds the “low

hanging fruits” when it

comes to vulnerabilities

− Results may vary greatly

depending on the target

system architecture and

configuration

Table 1: Comparison between manual and automated penetration testing methods

Table 1 is a comparison between automated and manual penetration testing methods based

on a similar table presented in a study conducted by Stefinko et al. (2016) which suggests

that automated penetration testing methods have multiple advantages over traditional

manual methods. These advantages are emphasized even more due to transformation

towards agile methods requiring more speed, flexibility and integration possibilities from

the testing tools. Automated penetration testing tools also have some drawbacks, and in

order to integrate them into the development process, these drawbacks must also be

understood and considered in order to avoid unwanted results.

In comparison to manual penetration testing, automated penetration testing does not

provide as extensive test-data coverage as the manual penetration testing, increasing the

false-positive and false-negative findings rates of the used tools. (Huang et al. 2017 p. 82).

The core problem in automated penetration testing tools is that in in order to identify

vulnerabilities in practice, the tools must analyse the output of the web application. Not

being able to access or analyse the application’s internal behaviour decreases the reliability

and accuracy of these tools. (Antunes & Vieira 2014, p. 32) The rates are often improved

over time as the tools are taught to handle system specific cases and better filter the

vulnerabilities. This does, however, lead to larger amount of work required from the

personnel and can potentially harm trust towards the scanning system reports, causing

17

negative effects in terms of improving system security.

The detection coverage rate is another main point of interest when it comes to the web

application security scanners. In a research conducted by Antunes and Vieira (2014), four

different web vulnerability scanners were compared between each other and the results

displayed that none of the four was able to detect even one third of the total number of

known vulnerabilities in the test site. The detection coverage rates differ greatly between

the scanners, and in addition to differences between scanners, the detection coverage rate

also depends highly on the system being tested. (Stuttard & Pinto 2011, 781-784) The low

detection coverage rate, however, does not tell the entire truth, as the web vulnerability

scanners often find undetected vulnerabilities which are preceded by other similar

vulnerabilities, which can more easily be detected once the first has been fixed. (Antunes

& Vieira 2014, 34) The deficiency of vulnerabilities web vulnerability scanners can find is

good to keep in mind, as using one might otherwise provide a false sense of security to the

development personnel.

18

3 STATE-OF-THE-ART WEB APPLICATION SCANNERS:

SAMPLING AND EVALUATION CRITERIA

The study will focus on web vulnerability scanners, that can be considered state-of-the-art.

State-of-the-art can be understood as ‘very modern and using the most recent ideas and

methods’ (Cambridge Advanced Learner’s Dictionary & Thesaurus 2020, state-of-the-art

entry). When applying this definition into the context of web vulnerability scanners, they

are ‘very modern’ in cases where they have recently been or are still being actively

developed. Respectively, web security scanners are considered to use ‘the most recent

ideas and methods’ in cases where they are capable of identifying and responding to the

most recent attack vectors and providing support to modern website development

frameworks and trends. In the context of this study, web application scanners are

considered state-of-the-art when they fulfil the aforementioned criteria.

Today, various vulnerability scanners exist, including both commercial and open source

tools. These tools differ from each other in many ways, such as methods that the use to

identify threats, cost of the software, integration possibilities and even in terms of threat

detection effectiveness. The large number of different available tools has led to numerous

studies focusing in analysing and comparing the effectiveness of various web scanners,

which will be used in this study to identify current state-of-the-art web scanners.

3.1 Web application scanner studies

OWASP has created a benchmarking platform consisting of thousands of test cases for

evaluating the speed, coverage and accuracy of both SAST and DAST tools. The

benchmark has gathered results for various open-source tools, presented in table 2 and also

commercial tools presented in table 3, but due to the fact that each commercial tool has

licenses defining when their produced results can be released/made public, they have not

revealed exact results of these commercial tools as it might be against the tool’s licenses.

The OWASP benchmark also states that they haven’t been able to get a clean run against

the benchmark from various tools and therefore the results are not available as a

comparison chart, but rather they provide instructions for the user on how to run the

benchmark on a selection of tools. (OWASP org. 2020b)

19

Table 2: Commercial tools supported by the OWASP Benchmark

Application Vendor

Acunetix web vulnerability scanner Acunetix ltd.

Burp Pro Portswigger

HCL (Formerly IBM) AppScan HCL Technologies ltd.

Fortify WebInspect Micro Focus (Formally HPE)

Netsparker Netsparker ltd.

Qualys web app scanner Qualys Inc.

AppSpider Rapid7 ltd.

Table 3: Open source tools supported by the OWASP Benchmark

Application Source

Zed Attack Proxy (ZAP) www.zaproxy.org (OWASP project)

Arachni www.arachni-scanner.com

The OWASP also provides a listing of vulnerability scanning tools which has multiple

tools presented which are missing from the benchmarking study. OWASP states on the

listing page that they are aware of the Web Application Vulnerability Scanner Evaluation

Project, while they do not directly endorse the results of the study or any DAST tool that

the study evaluates. However, they admit that the WAVSEP study has far more detail on

DAST tools and their features than their DAST page and encourages anyone interested in

researching or selecting DAST tools for their projects to inspect the results of the study.

(OWASP org. 2020f)

WAVSEP DAST benchmark test for automated penetration testing tools is a recurring

study conducted by Shay Chen, an independent information security researcher and

analyst. The study analyses and compares various features of both commercial and open-

source tools for performing automated penetration testing, providing a good overview of

the current level of development in the field of web scanners. (Chen 2017) The web

application scanners examined in the WAVSEP DAST Benchmark 2017/2018 consist of a

selection of the most popular and recent web application scanners and the results of this

study are widely referenced throughout the infosec community.

20

Table 4: Commercial tools analyzed in WAVSEP DAST Benchmark 2017/2018

Application Version Vendor

Appsider v6.14.060 Rapid7 ltd, acquirer of NTO

Netsparker v4.8 Netsparker ltd.

Acunetix v11.0.x, build 171181742 Acunetix ltd.

Burpsuite v17.10XX Portswigger

WebInspect v17.10XX HPE

WebCruiser v3.5.4 Janusec

AppScan v9.0.0.999 build 466 IBM

When comparing the sampling of commercial scanners analysed in the WAVSEP DAST

benchmark and the OWASP benchmark, the uniformity is obvious, with the exception that

the OWASP listing is more up-to-date as it also presents some of the tool ownership

changes that have occurred after the 2017/2018 WAVSEP DAST benchmark.

Table 5: Open source tools analyzed in WAVSEP DAST Benchmark 2017/2018

Application Version Source

Zed Attack Proxy (ZAP) 2.6.0 www.zaproxy.org (OWASP

project)

Arachni 1.5-0.5.11 www.arachni-scanner.com

IronWASP 0.9.8.6 ironwasp.org

WATOBO v0.9.22 watobo.sourceforge.net

W3AF 1.6 w3af.org

Vega 1.0 subgraph.com/vega

Wapiti 2.3.0 wapiti.sourceforge.io

Skipfish 2.1.0 tools.kali.org/web-

applications/skipfish

XSSer 1.6.1 xsser.03c8.net/

Regarding the analysed open source tools presented in both the WAVSEP DAST and

OWASP Benchmark, the WAVSEP sampling is much larger than the one used in the

21

OWASP benchmark, and the common tools examined are the Zed Attack Proxy and the

Arachni. Mburano & Si (2018) have further investigated these scanners in their recent

evaluation study in 2018. The study focuses in analysing both scanners using the results

from OWASP and WAVSEP benchmarks. The study notes, that while Arachni and ZAP

are not considered to be on par with the commercial scanners, they provide consistent

results, have a wide number of contributors and have grown to be quite popular among

penetration testers due to their easy obtainability and virtually zero cost.

3.2 Web Application Scanner selection

Based on the scanners evaluated and included in the benchmarks and studies discussed

above, the base sampling of scanners for this study will consist of the scanners present in

both the examined benchmark studies. Tools that have been selected for this study are

presented in table 6. In order to reduce the overall work required for completing this study,

the scope was narrowed down to examining four different commercial scanners and two

different open-source scanners.

When examining the commercial scanners further, it was most often important to decide

the version to examine, as most of the commercial tools offer a variety of versions for

supporting different types of clients: security professionals which most often only need

strong single user tools, organizations which often need possibilities to integrate the

scanners into their SDLC software. In the context of this study the focus is on the

organizational or enterprise versions of these software whenever possible as they provide

support for various SDLC integrations and enhanced threat detection features which are

some of the largest advantages achievable by web application vulnerability scanners.

When examining the open source scanners, the two scanners present in both the OWASP

and WAVSEP DAST benchmarks were the ZAP and Arachni. The selection of these two

was also supported by the study by Mburano & Si (2018) as they redeemed these scanners

to have a good status among the web application security tester community.

Table 6: Tools qualified for the study

Application Vendor / source

22

Acunetix Premium Acunetix ltd.

Burp Suite Enterprise Portswigger

NetSparker Team Netsparket ltd.

AppSpider Enterprise Rapid7 ltd.

Zed Attack Proxy OWASP project

Arachni www.arachni-scanner.com

3.3 Threat detection capabilities

A web application scanner’s main task is to scan a system for multiple types of security

problems, both vulnerabilities and architectural weaknesses. The OWASP Top-10 listing

of vulnerabilities is a good baseline for representing the most critical security risks to web

applications (OWASP org. 2017a), but in the context of web application security scanners

it’s hard to use as a baseline since the scanners are not able to tackle all of the presented

issues due to their nature as vulnerabilities. (Netsparker ltd. 2019b) Another similar project

aimed at identifying critical security flaws with an even broader perspective is the Web

Application Security Consortium project. The project is a highly cooperative effort to

clarify the threats to the security of a web application, and the authors consist of

application developers, security professionals, software vendors and compliance auditors.

(WASC 2009q) The following list of targeted vulnerabilities is based on the WASC

criteria for assessing web application security scanners, which in turn is essentially

extracted from the WASC Threat classification 2.0 enlisting.

3.3.1 Authentication

Authentication aims mainly at replying to the question “who are you?” Essentially

authentication policy aims at describing certifications for users that identify them from the

system perspective. Authentication is often used in conjunction with authorization policy

and privacy policy in order to solve the fundamental problem of access control and privacy

protection. (Yongsheng et al. 2010, p. 236) Authentication issues in web application

systems open a possibility for attackers to gain access to the system through an existing

account which they may obtain through various methods.

23

Brute force attack is a method where an unknown value such as password is determined

through an automated process which tries a vast quantity of possible values. Passwords are

the classic example of brute forcing, but the technique also applies to various other

identification methods such as guessing session identifiers, finding possible hidden

directories and files within the system, or even guessing credit card information. Web

application scanners can be used to detect and verify brute force attacks by identifying

insufficient account lockdown policies within the system, as well as issues with

unthoughtful logging measures that for example return a different login failure messages

for valid and invalid usernames. (WASC 2009a)

Insufficient authentication happens when a web application allows the attacker to access

sensitive information or functionality without having to properly authenticate within the

system. Traditionally some resources of a website, such as administrative resources are

protected by simply hiding their location within a system by not linking it to anywhere on

the main web site. It’s important to understand that while the resource is unknown to the

attacker, it can still be accessed through a direct URL path, which can be discovered

through various methods, such as crawling through error messages, referrer logs, brute

forcing etc. (WASC 2009h)

Weak password recovery validation refers to a case where an application allows an

attacker to obtain, change or recover another user’s password through the mechanism

designed to provide means for the user to gain access to their account in cases they have

forgotten password. This is most often possible in cases where the information required to

validate a user’s password is either easy to be guessed or bypassed. Main methods of web

application scanners for performing this action are directed brute force attacks towards the

recovery system. (CWE 2020; WhiteHat Security Inc. 2020)

Lack of SSL on login pages is easily detectable by web application scanners and refers to

cases where the login pages are not supporting the HTTPS protocol. When an application

does not use any sort of SSL or TLS protection for their access, it opens multiple

possibilities for attackers, such as server spoofing, man-in-the-middle types of attacks.

Failure to use the SSL protection on the website also enables communication phishing

24

since the communication between the server and user remains unencrypted. (SSL.com

2019)

Auto-complete not disabled on password parameters refers to a case where password input

field values do not have the AutoComplete -attribute of the HTML input fields set to off.

This enables scenarios where the browser caches the input passwords enabling them to be

re-used without the user’s consent. This is something that is often easily detectible by web

application scanners by examining the html structure of the target application. (OWASP

org. 2014b)

3.3.2 Authorization

Authorization or access control most often answers to the question “What can you do?” It

acts in conjunction with the authentication policy and determines what processes, features

and documents the authenticated user may access and use. (Yongsheng et al. 2010)

Authorization issues in a web application context can often leads to the display of data to

the user that they should not see, or to complete processes that they’re not intended to be

able to do. This is somewhat tricky to detect with automated penetration testing tools, as

authorization and security misconfiguration often require vast knowledge of the target

system and it’s functionalities, as the context of what is allowed and what isn’t is

sometimes hard to pass to the scanner software. There are however some cases that the

scanners are often able to detect. (Netsparker ltd. 2019b)

Credential / session prediction refers to a case where the unique identifier value of a user is

guessed by the attacker, enabling them to issue web site requests with the compromised

user’s privileges. This is in some cases easily detectable by the scanners, as the session

ID’s are often generated using proprietary algorithms and then stored in a cookie, hidden

form-fields or URL parameters. This allows the web scanner to either brute force or

calculate a session ID and switch the value of its current session to the new one in order to

compromise the system. (WASC 2009c)

Insufficient authorization results in cases where an application does not perform vast

enough authorization checks in order to confirm that the user is performing an action or

25

accessing data in an intended manner. Checking this vulnerability with a web application

scanner is tricky due to fact that modeling system privileges into the web scanner is often

impossible. However, for example in some cases where documents are accessed by altering

URL parameters such as ID’s, modifying the parameters might grant access to a document

otherwise inaccessible and this can be detected using a scanner. (WASC 2009i)

Insufficient session expiration vulnerability occurs in a case where a web application

allows an attacker to reuse old session identifiers or credentials for authorization purposes.

This is enabled when a web application does not correctly handle session expiration and

exposes a site to attacks that steal or reuse user’s authorization tokens. Session should be

invalidated by the web application after a predefined time of inactivity has occurred,

usually referred to as timeout, or by enabling the user to invalidate their own session as a

result of logging out. (WASC 2009j)

Session fixation is a vulnerability where an attacker forces a user’s session ID to an

explicit value. The fixing of the user’s session ID is achieved through Cross-site scripting

exploits or reusing previously made HTTP requests, vastly depending on the target site’s

architecture. After the attacker has successfully fixed a user’s session identifier, they will

simply wait for the user to log back to the system and after they’ve done so, use the set

identifier to hijack their session and privileges to the system. (WASC 2009n)

3.3.3 Client-side attacks

Client-side attacks refer to attacks that target the users of a web application through their

own system. Client-side attacks allow the attackers to gain information without having to

worry about the heavily protected server-side application, as some of the web application

users are prone to client-side attacks due to lack of proper anti-virus, firewall or anti-

spyware on their client-side hardware. The traditional examples of introducing spyware or

keylogging methods are not something that the scanner are generally unable to detect, but

on the other hand the scanners can be useful in detecting some of the more advanced types

of client-side attacks which take place in between the client and the server. (Oriyano &

Shimonski 2012, p. 25-26)

26

Content spoofing is an attack where the attacker injects a malicious payload to the client

that is treated as legitimate content of a web application. This is most often enabled by

either text only content spoofing, in which the attacker is able to alter the text content of a

target page to their liking, or cases of markup reflected content spoofing, where web pages

that are using dynamically built html are attacked in a way that the generated html is

compromised by injecting malicious code into the parameters. This attack essentially

exploits the trust relationship between the user and the web application and is often used in

order to create fake web pages including login forms, false press releases etc. This

vulnerability is often tied to the cross-site scripting vulnerability. (WASC 2009b)

Cross-site scripting is an attack where malicious code is echoed to and executed by the

client’s browser. When the code gets executed, it will run within the security context of the

hosting web site and thus has the ability to read, modify and transmit multiple types of

sensitive data of the browser, such as cookie information or even lead to browser

redirection to harmful websites for even more malicious content and exploitation. Cross-

site scripting can be classified into three types: Persistent, Non-persistent and DOM-based

attacks. Persistent attacks refer to cases where the attack payload is stored on the server

side, Non-persistent to the cases where the attack payload is stored on an external URL,

and the DOM types to cases where the attacker abuses the runtime embedding of attacker

data in the client side from within a page that is served via the web server. (WASC 2009d)

XSS vulnerabilities are ranked 7th on the OWASP top-10 listing of 2017, and as such are

one of the most severe threats to modern web application security. (OWASP org. 2017a)

HTML injection is an attack where an attacker can control an input point through which

they can inject malicious HTML code into a vulnerable web page. This can lead to

multiple various consequences such as theft of cookies, or more generally the alteration of

the legitimate page content. This most often occurs when the user input is not correctly

sanitized and the output is not encoded, which is essentially easily detectible by the web

application scanners. (OWASP org. 2014a)

Cross-site request forgery is an attack where an end user is forced to execute unwanted

actions on a web application where they currently have an active session. CSRF attacks

27

target specifically state-changing request and as such do not involve data thievery, since

the attacker has no access to see the server response to the forged request. It’s sometimes

possible that the CSRF stack is stored on the vulnerable site, accomplished by simply

storing and IMG or IFRAME tag in a field that accepts html, or by a more complex XSS

attack. This amplifies the severity of the attack as it increases the likelihood of the victim

visiting and viewing the malicious page while also ensuring that the victim is authenticated

to the site already. (OWASP org, 2018)

3.3.4 Command execution

Command execution vulnerabilities refer to cases where the attackers find a way to execute

arbitrary code on your servers in order to compromise them. Remote code execution is one

of the most severe security issues, as it can be used to obtain remote control over a

machine and even the entire system. After the attackers gain access to the system, they will

thrive to escalate their privileges on the server in order to install malicious scripts or

backdoors for later exploitation. (Sommestad et al. 2012; Hacksplaining 2020)

Format string attack occurs when string formatting library features are used to access other

memory space, through which the flow of the application can be altered. This vulnerability

occurs when user-supplied data is used directly as a formatting string input for certain C or

C++ functions, such as “fprintf”, “printf”, “sprint” etc. An attacker may pass a format

string consisting of “printf” conversion characters, such as “%f”, “%p”, “%n” etc. as a

parameter value to the web application, and this may lead to execution of arbitrary code on

the server side, reading other data values off the execution stack or even cause

segmentation faults and software crashes. Attacks of this type are easily producible and can

be easily executed by a web application scanner. (WASC 2009f)

LDAP injection is an attack that aims to exploit web sites that construct LDAP statements

based on inputs supplied by the users. Lightweight Directory Access Protocol (LDAP) is

an open-standard protocol that is used for querying and manipulating X.500 directory

services. As the protocol is being run over internet transport protocols, web applications

can use user-supplied inputs in order to create custom LDAP statements for dynamic web

page requests. The vulnerability occurs in cases where the user-supplied input is not

28

sanitized strictly enough, allowing the attackers to alter the construction of an LDAP

statement. The forged statement then runs with the same privileges as an unaltered one,

leading to compromise of rights to manage anything inside the LDAP tree. The advanced

exploitation techniques available in SQL injection can also be applied to LDAP injection

to some extent. (WASC 2009k)

OS command injection is an attack that aims to execute unauthorized operating system

commands. It’s essentially a result of mixing untrusted code and untrusted data, and

possible only when an application accepts untrusted input data in order to build OS

commands in an insecure manner without proper data sanitization or proper calling of

external programs. Since the malicious commands produced by the attacker are executed

under the privileges of the component that primarily executes these commands, the

attacker can leverage this vulnerability in order to gain access or damage unreachable parts

of the software, such as OS directories and system files. (WASC 2009l)

SQL injection is an attack that is aimed to exploit applications that construct SQL

statements based on user-supplied input data. The vulnerability compromises the logic of

SQL queries sent to the database, and as such can grant the attacker control of all database

resources that are accessible by the user, including the ability to execute commands on the

host system. SQL injection can be categorized into two subcategories: traditional SQL

injection where the errors provided by the SQL backend give information to the attackers

and give them valuable information regarding their exploits, and cases of Blind SQL

injection where detailed error messages are not provided to the attacker and the

information about the success of the query must be gathered by other means, such as

differential timing analysis or the manipulation of the user-visible state of the application.

Multiple reliable exploits for SQL injection attacks already exist, and web application

scanners generally have a very good level of detection related to uncover underlying SQL

injection flaws in the system. (WASC 2009o)

SSI injection is a server-side attack that enables an attacker to send malicious code into a

web application that is later executed locally by the web server. It essentially exploits the

web application’s lack of sanitization of user-supplied data before it is inserted into a

29

server-side interpreted HTML file, and is most common in websites where a web

application inserts user-supplied data into the source of the web page, such as message

boards or content management systems. This vulnerability essentially enables the attacker

to execute arbitrary OS commands or include a restricted file’s contents to the page once it

is served the next time. (WASC 2009p)

XPath injection is an attack that focuses in exploiting applications that construct XML Path

language queries based on user input in order to query or navigate XML documents. The

syntax of XPath is somewhat similar than that of SQL and it’s possible to form SQL-like

queries using XPath. In case the unsafe user input is embedded to the XPath query, this

may cause data injection to the query resulting it to perform unintentionally. Much like the

SQL injection, XPath injection can be easily detected using a web application scanner that

includes a pre-configured set of reliable XPath injection attacks. (WASC 2009r)

HTTP header injection / response splitting, also referred to as CRLF (Carriage Return and

Line Feed) vulnerability occurs when data enters a web application through an untrusted

source, most often a HTTP request, after which the data is included in an HTTP response

header which is sent to the user without being validated for malicious content. To mount a

successful exploit, an application must allow input that contains both CR and LF characters

into the header, while also having a vulnerable underlying platform. The CR and LF

characters enable attackers to control the remaining headers and body of the response that

the application tries to send, while also allowing them to create additional responses

entirely constructed by them. Successful HTTP header injection and response splitting

causes a flaw for executing more related attacks, such as XSS and page hijacking.

(OWASP org. 2020a)

Remote file includes refers to a vulnerability that is designed to exploit dynamic file

include mechanisms of web applications. Almost all web applications support file

inclusion, and in cases where the application receives a path to a file as input for a web

page and fails to sanitize it properly, an attacker can modify the value to direct the

application into executing remote files with malicious code. As the malicious code is then

run by the server, in case the file include is not properly protected, the malicious code can

30

compromise the entire system. (WASC 2009m)

Local file includes is a vulnerability that occurs when a web application downloads and

executes a remote file. This is most common in cases where the application uses a path to a

file located on the server as an input. If an attacker manages to upload a malicious file to

the server, modifying the target file path value in the code can trick the server into

executing the malicious file. In a worst-case scenario, this can lead to information

disclosure, remote code execution or even XSS vulnerabilities. (Netsparker ltd. 2019a)

Potential malicious file uploads present a serious threat to various applications. The first

step in multiple attack vectors is to be able to store malicious code on the target server,

after which the only task needed is a way to get the code executed. Unrestricted file

uploads open a way to achieve the first part without much effort, and the consequences of

this vulnerability vary from complete system takeover to client side attacks, and the sheer

range of the possible consequences is in-line with the high impact rating of this

vulnerability. In order to protect against this kind of vulnerability, an application should

always analyze every interaction a web application has with files and carefully consider

about what kind of processing and interpreting is safe. (OWASP org. 2020e)

3.3.5 Information disclosure

Information disclosure or sensitive data exposure has been one of the most common

impactful attack vectors over the last few years. This vulnerability is possible in all cases

of software where sensitive data is being handled, such as passwords, credit card numbers,

health records or other personal or business information. This kind of data needs to be

properly protected, particularly in cases it’s data that’s treated as sensitive data in terms of

the EU GDPR regulation. When assessing if an application is vulnerable for information

disclosure types of attack, it’s important to make sure that all of the used transmission

protocols are encrypted and all traffic between the system hardware such as servers, load

balancers and backend systems is verified. Other points of interest are the used

cryptographic algorithms, the use of crypto keys throughout the system and the enforcing

of encryption through user agent security directives and headers. This vulnerability is

ranked as the 3rd most severe in the most recent OWASP top 10 listing from the year 2017

31

(OWASP org. 2017a), and as such is on high priority list when it comes to assessing the

features of a web application scanner.

Directory indexing is an automated web server function, that lists all of the files located

within the requested directory in case the normal base file, such as index.html is not

present. Traditionally when the user requests the main page of a website, they type in the

URL using the domain name and the requested page name. The web server then processes

this request and searches the root directory for the specified document and display it to the

client. In cases that this page is not present, the server will run a dynamic directory listing

and send the result to the client, equivalent to that of a Unix ls command within the

directory and showing all of the results in the resulting HTML. This can unintentionally

lead to leakage of possible sensitive data within the directory to the attacker that they

aren’t meant to be able to see, such as backup, temporary or hidden files within the system.

(WASC 2009e)

Information leakage is an application vulnerability where the application unintentionally

leaks sensitive data, such as technical details, environment or user specific data of the

system. This sensitive data can then be used by the attacker in order to exploit the

application, the running environment or the system users. This is most often a result of

HTML or script comments which contain sensitive information about the system’s

functionality, misconfiguration of the server or application or cases where the page

responses for valid and invalid data are different. (WASC 2009g)

Path traversal, also known as dot-dot-slash, directory traversal or backtracking is an attack

that aims to gain access to files outside the web root folder. This is often achieved by

manipulating the load file path variables with various “dot-dot-slash” sequence variations

in order to access files otherwise inaccessible through the system. These files could include

system source code or otherwise critical information such as configuration files, which

give the attacker valuable information about the application’s functionality in order to

exploit the system further. (OWASP org. 2020d)

Predictable resource location vulnerability, also referred to as insecure indexing occurs

32

when server-side resources, such as admin pages, file backups, uploaded files or system

logs are located in easy-to-guess locations on the server. Since the data resources are

referenced through auto-incremented primary keys, it’s sometimes easy for the attacker to

guess other valid values by brute force methods and gain access to these critical

information files. Once again, the information within these files is valuable to the attacker,

as it gives them valuable information about the structure and functionality of the web

application based on which they can construct better attacks. (OWASP org. 2013)

Insecure HTTP methods is a vulnerability that takes advantage of the methods supported

by the HTTP that have a possibility to be used for nefarious causes. PUT method allows a

client to upload files to the web server and as such opens a possibility for uploading

malicious files. DELETE method allows a client to delete files located on the web server,

which can be exploited by the attacker in order to deface a website. CONNECT method

could allow the attacker to use the website as a proxy and lastly the TRACE method

reports back to the client every string that has been sent to the server and is intended as a

tool for debugging process, but it could be used by the attackers in order to create a Cross

Site Tracing attack. (OWASP org. 2020c)

Default web server files often refer to default installation or welcome pages which are pre-

installed on servers such as the Microsoft IIS or Apache. This most often indicated that the

server is newly installed and is yet to be properly configured before the actual use. In often

cases, these servers are rarely monitored or patched, and provide attackers with an easy

target that is unlikely to be spotted by the corresponding administrators. (Acunetix 2020b;

Beyond Security 2020)

Testing and diagnostics pages refer to a vulnerability, where the testing and diagnostics

pages aimed strictly at helping developers in testing their code or debug sections of

application are visible and accessible through the directory. These pages often contain a lot

of sensitive information related to the system’s functionality and as such the access to these

pages should always be restricted. One of the common examples for this kind of page are

the ASP.NET diagnostics pages, which are aimed at identifying environment problems

after production deployment. (Acunetix 2020a)

33

Internal IP address disclosure, sometimes also referred to as private IP address disclosure is

a vulnerability that occurs when an attacker manages to determine the private internal IP

address of the system which is usually a lot more difficult to find as the public IP address

which is typically protected by a firewall using NAT protocol to direct the public address

to the server’s internal address. The internal IP address is often used by the internal system

but leaking it to a remote system and from there to an attacker can aid in executing various

network-layer attacks in order to compromise the organization’s internal infrastructure.

The private IP address is most often leaked in scenarios where it’s included in HTTP

responses, debug messages or used in back-end server load balancing systems, and as

stated before it should always be masked in order to prevent these types of attacks.

(Chapple & Seidl 2018, pp. 166; Portswigger 2020)

3.4 Development environment support

The development environment support in this case refers to the web application security

scanner’s ability to function across various types of web applications as well as different

development environments. While the scanners can detect a vast amount of cross-platform

vulnerabilities, their actual functionality is often defined by their support for various web

application architectures. In addition to being able to analyze the system, it’s also vital for

the scanners to be able to be integrated to the development lifecycle, as this is essentially

one of the most fundamental advantages of automated penetration testing over traditional

methodologies.

3.4.1 Architectural support

Architectural support focuses in examining the web application scanner’s support for

different architectures and so-called scan barriers. Scan barriers are barriers that prevent

the scanner from working in the target environment, for example security measures such as

CAPTCHA codes and CSRF tokens designed to prevent various types of attack vectors

from occurring. The architectural support points selected for this study are based mainly on

the scan barriers enlisted in the WAVSEP DAST 2017/2018 benchmark with a few

additions and modifications. (Chen 2017)

34

Single page application support, or support for multiple domains is crucial as the current

trend of development leans towards creating single page applications. SPAs consist from

an individual page that is updated independently on each user’s action, which removes the

need to reload the entire page as in classic web application. (Joseph 2015, p. 29-30) Instead

of reloading the site, the state is updated by AJAX and detecting the change on the

application can be tricky even for the modern web application scanners.

Custom authentication headers and cookies refer to cases where an application requires the

user to be identified by customized headers or cookies, as the same applies for scanners in

order to scan and test the system. These are often session related information which is

managed in web applications through various different methods such as URL based and

embedded session ID’s, hidden post fields which store the session ID information within

the form fields that are submitted to the application and lastly cookies which preserve

knowledge of the client browser and can technically also store information beyond single

dynamic sessions, referred to as “persistent cookies”. (Kumar et al. 2014) The web

application scanner’s ability to set custom cookie and header values is crucial as it enables

it to use the target application with a customizable level of access and authority defined

through the pre-defined authentication values.

CAPTCHA support is required in cases where the application is protected by a CAPTCHA

verification designed to identify whether the user is a human or an automated system. (Von

Ahn et al. 2008, p. 1465) At it’s very core, It’s the purpose of a CAPTCHA check to

prevent the scanner from submitting a form or accessing a feature of the application, and as

such it’s often a hard barrier for the scanner and entirely prevents it from assessing

protected parts the target application. Cases where the checks are present can be managed

for example by manually flagging the sites containing CAPTCHA checks and allowing a

user to manually enter the required values or patterns during a scan. (Acunetix 2009)

Field value autofill support is tightly coupled with the web application scanner’s ability to

handle websites with various forms. Form fields contain custom checks in many cases,

requiring the input to fulfil certain criteria and this can be difficult for the scanners to

handle. For example in case of Netsparker, the default set of preconfigured values is

35

enough for traversing most of the forms, but in cases where the required form values

require custom data types such as IBAN numbers or different kinds of ID’s, the user can

easily configure some additional values to the library that the scanner will then be able to

use. (Netsparker 2020)

3.4.2 Usability

Usability assessment criteria in this thesis focuses around the features of the web

application security scanner that are related to the actual process of analysing a web

application with the scanner apart from actual scanner configuration to overcome scan

barriers. This aspect mainly focuses in the scanner’s ability to provide the using personnel

with valuable information about the state of the system, integrate with various tools related

to the software development lifecycle. The basis for this evaluation is mainly in the WASC

web application security scanner evaluation criteria with some additions. (WASC 2009r)

Scanners often present the results of the scans in their user interface, but the ability to

output different types of reports is essential for spreading the knowledge about the state of

security of the software throughout the developing company. There are various types of

reports that the scanner should be able to output: Firstly, the Executive summary which

provides a concise recap of the results of a scan and allows the tester to determine the

severity of the results easily and without much effort. Secondly, a technical detail report

which provides technical information related to the issues, including all of the used request

and provided response data, as well as a list of all URL and host information so that the

developers know exactly how to reproduce the identified issue, and lastly the Delta report

which essentially focuses in comparing results of past scans and provides trends and

development data over time. All these reports should also be exportable from the system

user interface in some form that is easy for the user to handle, such as pdf or html. (WASC

2009r)

Another key aspect to assess is the actual scanning procedure. Scheduled scanning is often

the most convenient way to maintain a steady monitoring framework. In addition to

scheduled scanning, the users should also be able to pause and resume an ongoing scan so

that the tester can resume the scan at later date instead of having to start all over again.

Real-time scan status monitoring is also an important feature, as this could include

36

information valuable to the tester such as the types of tests being conducted as well as the

completion percentage of a scan and the overall scan history of the target application.

Another important aspect to look for is scan logging, as logs produced by the scanner help

the testers debug the scanner’s behaviour when encountering problems. The tools should

also have support for running multiple simultaneous scans since organizations often have

multiple web applications or in cases where different testers want to assess different parts

of the same system simultaneously. Lastly, the scanner should support multiple users, since

scanning the web application could easily be distributed across the company to different

testers. The way the application handles multiple users depends on the nature of the

application, as some require the user to have the web application scanner installed on their

local computer, while others provide a centralized web-based interface which multiple

users can use simultaneously. (WASC 2009r)

Regarding the user experience point of view, it’s desirable that the web application scanner

has a client application with a graphical user interface. In addition to a graphical user

interface of the desktop-application or web-based application, some tools provide a

traditional command line interface for the more experienced users with advanced

command options and configuration files used to define the scan settings. (WASC 2009r)

These interfaces vary a lot between different types of applications and assessing their

usability could be considered as a preference question and as such is not assessed in the

context of this study.

One of the best ways to integrate the web application scanner into the development process

is by extending the scanner’s functionality by integrating it with other systems used in the

development process, including ticketing and bug-tracking systems such as Jira, browser

automation systems such as Selenium and continuous integration systems, such as Jenkins.

In addition to these external system integrations, having a dedicated API for the web

application scanner provides the company with a powerful interface for carrying out

custom integration projects. (WASC 2009r)

Last parameter considered in the section of usability is the actual cost of the scanner. Most

often commercial web scanners have quire complex pricing models, differentiating

37

between various license types and the amount of target websites planned for scanning

procedures. However, this is an interesting aspect to include especially when reflecting the

results of commercial web scanners on the open source alternatives.

38

4 RESULTS

The study was conducted using the assessment criteria described in section 3 of this thesis

and is entirely based on the documentation available from the product, provided by the

vendors or related communities. The results for each individual tool assessment with

corresponding sources and an overview of the tool are available in the appendix 1 of this

thesis. In cases where information related to supporting specific assessment criterion was

not found (N/A), criterion is treated as unsupported in the context of this study. This is due

to fact that product documentation was used as a main source of information and it does

not provide any information related to unsupported features by default. The table legend is

as follows: ✔: Supported, ✔: Partially or insufficiently supported, ✖: N/A or Not

supported.

Table 7: Results of the study.

 Acunetix

Premium

Burp Suite

Enterprise

NetSparker

Team

AppSpider

Enterprise

Arachni ZAP

Vendor / Source Acunetix PortSwigger

ltd.

Netsparker

ltd.

Rapid7 ltd. Sarosys

LLC

ZAP dev

team

Authentication 4/5 1/5 3/5 4/5 3/5 3/5

Brute force ✔ ✖ ✔ ✔ ✔ ✔

Insufficient authentication ✖ ✖ ✖ ✔ ✖ ✔

Weak password recovery

validation

✔ ✖ ✖ ✖ ✖ ✖

Lack of SSL protection on

login pages

✔ ✖ ✔ ✔ ✔ ✔

Auto-complete not disabled

on password fields

✔ ✔ ✔ ✔ ✔ ✖

Authorization 1/4 0/4 2/4 4/4 1/4 3/4

Credential and session

prediction

✖ ✖ ✔ ✔ ✖ ✔

Insufficient authorization ✖ ✖ ✔ ✔ ✖ ✔

Insufficient session

expiration

✖ ✖ ✖ ✔ ✖ ✖

Session fixation ✔ ✖ ✖ ✔ ✔ ✔

Client-side attacks 7/7 4/7 5/7 5/7 4/7 4/7

Content spoofing ✔ ✖ ✔ ✖ ✖ ✖

39

Reflected XSS ✔ ✔ ✔ ✔ ✔ ✔

Persistent XSS ✔ ✔ ✔ ✔ ✔ ✔

DOM-based XSS ✔ ✔ ✔ ✔ ✔ ✔

Cross-Frame Scripting ✔ ✖ ✖ ✖ ✖ ✖

HTML Injection ✔ ✖ ✖ ✔ ✖ ✖

CSRF ✔ ✔ ✔ ✔ ✔ ✔

Command execution 11/11 10/11 7/11 11/11 8/11 9/11

Format string attack ✔ ✖ ✖ ✔ ✖ ✔

LDAP injection ✔ ✔ ✖ ✔ ✔ ✔

OS command injection ✔ ✔ ✔ ✔ ✔ ✔

SQL injection ✔ ✔ ✔ ✔ ✔ ✔

Blind SQL injection ✔ ✔ ✔ ✔ ✔ ✔

SSI injection ✔ ✔ ✖ ✔ ✖ ✔

XPath injection ✔ ✔ ✖ ✔ ✔ ✔

HTTP header injection /

response splitting

✔ ✔ ✔ ✔ ✔ ✔

Remote file includes ✔ ✔ ✔ ✔ ✔ ✔

Local file includes ✔ ✔ ✔ ✔ ✔ ✖

Potential malicious file

uploads

✔ ✔ ✔ ✔ ✖ ✖

Information disclosure 7/8 5/8 7/8 6/8 6/8 6/8

Directory indexing ✔ ✔ ✔ ✔ ✔ ✔

Information leakage ✔ ✔ ✔ ✔ ✔ ✔

Path traversal ✔ ✔ ✔ ✔ ✔ ✔

Predictable resource

location

✖ ✖ ✔ ✔ ✔ ✔

Insecure HTTP methods

enabled

✔ ✔ ✔ ✖ ✔ ✔

Default web server files ✔ ✖ ✔ ✖ ✖ ✖

Testing and diagnostics

pages

✔ ✖ ✖ ✔ ✖ ✖

Internal IP Address

disclosure

✔ ✔ ✔ ✔ ✔ ✔

Architectural support 5/5 4.5/5 5/5 5/5 5/5 4/5

40

SPA support ✔ ✔ ✔ ✔ ✔ ✔

Custom authentication

headers

✔ ✖ ✔ ✔ ✔ ✔

Custom authentication

cookies

✔ ✔ ✔ ✔ ✔ ✔

CAPTCHA support ✔ ✖ ✔ ✔ ✔ ✖

Field value autofill support ✔ ✔ ✔ ✔ ✔ ✔

Usability 16/17 15/17 15.5 17/17 14/17 12/17

Executive summary ✔ ✔ ✔ ✔ ✔ ✔

Technical detail report ✔ ✔ ✔ ✔ ✔ ✔

Delta report ✔ ✔ ✔ ✔ ✖ ✖

Compliance reports ✔ ✖ ✔ ✔ ✔ ✖

Report exporting ✔ ✔ ✔ ✔ ✔ ✔

Scheduled scanning ✔ ✔ ✔ ✔ ✔ ✔

Scanning pause and resume ✔ ✔ ✔ ✔ ✔ ✔

Real-time scan monitoring ✔ ✔ ✔ ✔ ✔ ✔

Scan logging ✔ ✖ ✔ ✔ ✔ ✔

Multiple simultaneous scans

support

✔ ✔ ✔ ✔ ✔ ✖

Multi-user support ✔ ✔ ✔ ✔ ✔ ✖

GUI ✔ ✔ ✔ ✔ ✔ ✔

CLI ✖ ✖ ✖ ✔ ✔ ✔

Ticketing / bug tracking

system integration

✔ ✔ ✔ ✔ ✖ ✔

Browser automation

integration

✔ ✔ ✔ ✔ ✖ ✔

CI integration ✔ ✔ ✔ ✔ ✔ ✔

API ✔ ✔ ✔ ✔ ✔ ✔

Cost $6995/year $3999/year On

premise

On

premise

Free Free

Overall 50/56

89%

35,5/56

63%

43,5/56

78%

51/56

91%

40/56

71%

41/56

73%

41

5 DISCUSSION AND CONCLUSIONS

Overall results have quite significant differences, and the two scanners to stand out are the

Acunetix and the AppSpider which have the highest overall scores. When looking at the

results for assessing threat detection capabilities, most of the tools have quite similar

results when examining client-side attacks, command execution and information

disclosure, but this is simply due to the fact that the criterion included in these sections

consist mainly from various attack vectors. In comparison, when assessing Authorization

and Authentication, there is a lot more dispersion between the results. It is understandable,

as detecting the authentication and authorization issues through web scanners is generally

treated as impossible, but some of these tools do provide methods for automating parts of

the work required to uncover vulnerabilities related to these topics. The overall level of

architectural support in the results is very similar across all assessed tools despite their

initial cost or provider, but it’s obvious that the free tools fall short of the commercial

scanner’s results in this category.

One of the more interesting takes related to an individual scanner was the division of

features and tools between different Burp Suite editions. The Enterprise version offers only

the web application scanner without the manual tools and therefore lacks support for

various methods as they are intended to be uncoverable using some of the manual tools. If

the enterprise edition would also provide these manual tools for the purposes of testing

personnel in the company, the coverage of assessment criteria would resulted in at 51

points which is on-par with the AppSpider that boasted the top-score of this assessment. If

one would be interested in purchasing an overall solution for both scanning and manual

testing the Burp Suite would be a very interesting product, but it’s a shame that the

enterprise version lacks the manual tools essential for conducting a throughout penetration

testing process.

Information availability was vastly different throughout the assessed tools. Most of the

commercial tools provided very large amounts of information through their documentation

and websites, but in order to assess the tool’s support for an individual feature proved to be

cumbersome and very time-consuming, as the documentation was often very decentralized.

Acunetix, Burp Suite and Netsparker provided a convenient enlisting of vulnerabilities

42

that the tool can identify, while the AppSpider relied on more brochure-like concept where

all vulnerabilities detectable by the tool are listed on a simplified pdf document. When

studying the architectural support, the information was even more hard to find and

combine and often required using google search towards site contents in order to find

relevant information. The free tools, on the other hand surprised with how well the features

are documented. Both assessed tools had very good level of documentation related to both

the general vulnerability detection features and the architectural support features of each

tool through the official pages, but also through the provided GitHub pages as they provide

excellent insights on individual feature development and ticketing history. Arachni also

referenced the results of the WAVSEP DAST benchmark in the documentation to provide

a quick overview of the tool’s functionalities and features.

The most difficult part of the assessment process was determining if a feature is not

supported opposed to the fact that it’s just not documented. was difficult. There was rarely

any information directly pointing out that the feature is not supported or planned, and

generally this information was only available by inspecting support forums for questions

related to the topics and analyzing the staff responses. This proved to be quite challenging

as well, as the support forum questions generally are marked as solved based on the

information available at that point and are not updated accordingly even if the feature is

added later.

Overall, comparing different tools is very hard, and as such work required to determine the

most suitable for an application and the corresponding development environment can

prove to be difficult. There are few significant reasons behind this: Firstly, many of the

assessed scanners use different vocabulary for describing similar features. For example,

HTTP header injection can also be referenced to as Response-splitting or CRLF injection,

which in the context of the scanner documentation all refer to the same type of

vulnerability. Secondly, the sheer amount of information related to a product is often

decentralized to different forms of documentation, such as online documentations,

brochures, guidebooks, videos and blog posts making it difficult to get a clear overlook of

the supported features. And lastly, it’s very hard to establish a functional criteria of

evaluation for this type of assessment. The WASC assessment criteria for DAST tools that

43

was used as a reference for this study and is also widely used throughout other similar

studies such as the OWASP and the WAVSEP DAST benchmarks, actually dates back to

2009 and as such some of the assessment criterion presented in that framework are

helplessly outdated today. (WASC 2009r; OWASP org. 2020f; Chen 2017) A good

example related to this is the ‘Auto-complete not disabled on password fields’ assessment

criteria, which is essentially useless today since majority of browsers will override any use

of ‘autocomplete=”off”’ since early 2014 with regards to password forms and as a result

it’s commonly not recommended to disable this feature. (OWASP org. 2014b)

In conclusion to DAST scanner comparison being both difficult and exhaustive, the

simplest way to compare these tools is through examining the results of a benchmark or

comparison study such as this one. The WAVSEP DAST benchmark is one of the most

comprehensive studies available related to the topic and provides a very vast criteria of

evaluation for covering and comparing as many aspects of these tools and their

functionalities as possible. The results of the WAVSEP are also conveniently gathered to

the sectoolmarket.com webpage (Chen 2015) and are very easy to compare. The main

problem with this kind of study is however that the tools are constantly evolving, and the

results presented in the most recent WAVSEP DAST benchmark are collected during a

time period from 2011 to 2016. (Chen 2017) The results presented in this thesis are not as

encompassing as the results of WAVSEP study, but they provide a good overview of the

assessed scanners and indirectly reflect the state and availability of documentation related

to them.

44

6 SUMMARY

The attacks against web applications have increased drastically in the past years and the

severity of breaches has increased as more and more of our sensitive information is being

handled through web applications and services. Penetration testing is an effective measure

to test web applications for such vulnerabilities, but as it’s often tedious and time-

consuming manual labor, dynamic application security scanners have been introduced to

gain a quick overall assessment about the current state of security of a web application and

can be easily integrated to the SDLC for easy monitoring. Today, there are multiple

different DAST tools available, both commercial and open source and while all of them are

developed for the same purpose, their set of features in terms of functionality and usability

is often very different from each other and need to be closely examined as a part of the

process of selecting such tool. However, assessing and comparing these tools is very hard

as universal assessment framework does not exist, searching information related to these

tools in order to compare them takes a lot of time and dedication, and even so, the results

of the search are not valid after a couple of years as the tools improve current and develop

new features to respond to the evolving set of web application security vulnerabilities.

When assessing and comparing the currently available DAST solutions, they do provide

excellent possibilities for automating traditional penetration testing processes and provide

easy means for integrating them to the SDLC. While there are differences among the

assessed tools, the results suggest that a clear classification between these assessed tools is

hard to provide. While one of the evident classifications present in the selection of assessed

tools is the commercial and open-source diversion, the results suggest that this

classification is not reflected in the results of the study. It must be noted that this study’s

results are based solely on the existing materials and documentation and the actual results

are not based on benchmarking the subject applications. It would be an interesting topic for

a future study to investigate how well these results are reflected in a benchmark study.

Another interesting view would be to conduct a case-study in order to examine the process

of selecting any of the examined DAST tools for a company, and the process of integrating

the selected tool into an actual software development environment and the overall effects

of this integration after it’s been deployed.

45

REFERENCES

Aarya, P., Rajan, A., Sachin, K., Gopi, R. & Sreenu, G. 2018. Web Scanning: Existing

Techniques and Future. Second International Conference on Intelligent Computing and

Control Systems (ICICCS), Madurai, India, doi: 10.1109/ICCONS.2018.8662934

Acunetix, 2009, New Acunetix WVS V6.5 build; better support for CAPTCHA and

modern authentication mechanisms, online, available at

<https://www.acunetix.com/blog/releases/better-support-for-captcha-and-modern-

authentication-mechanisms/>, accessed 19.3.2020

Acunetix, 2020a, Web vulnerabilities index: ASP.NET diagnostic page, online, available

at: < https://www.acunetix.com/vulnerabilities/web/asp-net-diagnostic-page/>, accessed

4.4.2020

Acunetix, 2020b, Web vulnerabilities index: Web server default welcome page, online,

available at: < https://www.acunetix.com/vulnerabilities/web/web-server-default-welcome-

page/ >, accessed 4.4.2020

Antunes, N. & Vieira, M. 2014. Penetration Testing for Web Services. Computer, vol.

47(2), pp. 30-36. doi:10.1109/MC.2013.409

Arkin, B., Stender, S., McGraw, G. 2005. Software penetration testing. IEEE Security &

Privacy, vol. 3(1), pp. 84-87. doi:10.1109/MSP.2005.23

Beyond Security, 2020, Finding and Fixing Vulnerabilities in Microsoft IIS Default Page,

a Low Risk Vulnerability, online, available at: < https://beyondsecurity.com/scan-pentest-

network-vulnerabilities-microsoft-iis-default-page.html >, accessed 4.4.2020

Chapple, M., & Seidl, D. 2019. CompTIA PenTest+ Study Guide: Exam PT0-001, [eBook]

John Wiley & Sons, Inc. ISBN:9781119549420 472 pages

46

Chen, S. 2015, Price and Feature Comparison of Web Application Scanners, online,

available at <http://www.sectoolmarket.com/price-and-feature-comparison-of-web-

application-scanners-unified-list.html >, accessed 6.4.2020

Chen, S. 2017, The 2017/2019 WAVSEP DAST Benchmark: Evaluation of Web

Application Vulnerability Scanners in Modern Pentest/SSDLC Usage Scenarios, 2017,

online, available at: <http://sectooladdict.blogspot.com/2017/11/wavsep-2017-evaluating-

dast-against.html> accessed 22.01.2020

Crispin, L. & Gregory, J. 2009. Agile testing: A practical guide for testers and agile teams.

Upper Saddle River, NJ: Addison-Wesley. ISBN: 9780321534460, 533 pages

CWE, 2020, CWE-640: Weak Password Recovery Mechanisms for Forgotten Passwords,

online, available at <https://cwe.mitre.org/data/definitions/640.html>, accessed on

4.4.2020

Fong, E., Gaucher, R., Okun, V. & Black, P. 2008. Building a Test Suite for Web

Application Scanners, Proceedings of the 41st Annual Hawaii International Conference on

System Sciences (HICSS 2008), pp. 478-478. doi: 10.1109/HICSS.2008.79

Hacksplaining, 2020, Protecting against command execution attacks, online, available at <

https://www.hacksplaining.com/prevention/command-execution >, accessed 4.4.2020

Huang, H., Zhang, Z., Cheng, H. & Shieh, S. W. 2017. Web Application Security: Threats,

Countermeasures, and Pitfalls. Computer, 50(6), pp. 81-85. doi: 10.1109/MC.2017.183

Joseph, R. 2015. Single Page Application and Canvas Drawing. International Journal of

Web & Semantic Technology, 6(1), pp. 29-37. doi: 10.5121/ijwest.2015.6103

Ko, M., Osei-Bryson, K. & Dorantes, C. 2009. Investigating the Impact of Publicly

Announced Information Security Breaches on Three Performance Indicators of the

47

Breached Firms. Information Resources Management Journal, 22(2), pp. 1-21.

doi:10.4018/irmj.2009040101

Kortelainen, H., Happonen, A., Hanski, J. (2019), "From asset provider to knowledge

company - transformation in the digital era", In Lecture Notes in Mechanical Engineering,

ISSN: 2195-4356, pp. 333-341, doi: 10.1007/978-3-319-95711-1_33

Kortelainen, H., Happonen, A., Kinnunen, S-K. (2016), Fleet Service Generation –

Challenges in Corporate Asset Management, Lecture Notes in Mechanical Engineering,

Springer, pp. 373–380, doi: 10.1007/978-3-319-27064-7_35

Mburano, B. & Si, W. 2018. Evaluation of Web Vulnerability Scanners Based on OWASP

Benchmark. 26th International Conference on Systems Engineering (ICSEng), Sydney,

Australia, pp. 1-6. doi: 10.1109/ICSENG.2018.8638176

Mcgraw, G. 2004. Software security. IEEE Security & Privacy, 2(2), pp. 80-83.

doi:10.1109/MSECP.2004.1281254

Netsparker ltd. 2019a, Local File Inclusion Vulnerability, online, available at

<https://www.netsparker.com/blog/web-security/local-file-inclusion-vulnerability/>,

accessed 22.3.2020

Netsparker ltd. 2019b, OWASP Top 10 Web Application Vulnerabilities, online, available

at <https://www.netsparker.com/blog/web-security/owasp-top-10/>, accessed 26.3.2020

Netsparker ltd. 2020, Configuring Predefined Web Form Values in Netsparker Web

Security Scanners, online, available at <https://www.netsparker.com/blog/docs-and-

faqs/configure-predefined-web-form-values-web-vulnerability-scanner/>, accessed

23.3.2020

Oriyano, S. & Shimonski, R. 2012. Client-Side Attacks and Defense, [eBook] Syngress

Publishing, ISBN:1597495905 296 pages

48

OWASP org. 2007, OWASP Top 10 2007, online, available at

<https://www.owasp.org/index.php/Top_10_2007>, accessed 3.12.2019

OWASP org. 2013, OWASP Periodic Table of Vulnerabilities – Brute Force predictable

Resource Location / insecure Indexing, online, available at

<https://wiki.owasp.org/index.php/OWASP_Periodic_Table_of_Vulnerabilities_-

_Brute_Force_Predictable_Resource_Location/Insecure_Indexing>, accessed 28.2.2020

OWASP org. 2014a, Testing for HTML Injection (OTG-CLIENT-003), online, available at

<https://www.owasp.org/index.php/Testing_for_HTML_Injection_(OTG-CLIENT-003)>,

accessed 15.3.2020

OWASP org. 2014b, Testing for Vulnerable Remember Password (OTH-AUTHN-005),

online, available at

<https://wiki.owasp.org/index.php/Testing_for_Vulnerable_Remember_Password_(OTG-

AUTHN-005)>, accessed 15.3.2020

OWASP org. 2017a, OWASP Top Ten project, online, available at

<https://owasp.org/www-project-top-ten/>, accessed 4.4.2020

OWASP org. 2017b, A1-Injection, online, available at <https://owasp.org/www-project-

top-ten/OWASP_Top_Ten_2017/Top_10-2017_A1-Injection>, accessed 02.12.2019

OWASP org. 2017c, A2-Broken Authentication, online, available at

<https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A2-

Broken_Authentication>, accessed 02.12.2019

OWASP org. 2017d, A3-Sensitive Data Exposure, online, available at

<https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A3-

Sensitive_Data_Exposure>, accessed 02.12.2019

49

OWASP org. 2017e, A4-XML External Entities (XXE), online, available at

<https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A4-

XML_External_Entities_(XXE)>, accessed 02.12.2019

OWASP org. 2017f, A5-Broken Access Control, online, available at

<https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A5-

Broken_Access_Control>, accessed 02.12.2019

OWASP org. 2017g, A6-Security Misconfiguration, online, available at

<https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A6-

Security_Misconfiguration>, accessed 02.12.2019

OWASP org. 2017h, A7-Cross-Site Scripting, online, available at

<https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A7-

Cross-Site_Scripting_(XSS)>, accessed 02.12.2019

OWASP org. 2017i, A8-Insecure Deserialization, online, available at

<https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A8-

Insecure_Deserialization>, accessed 02.12.2019

OWASP org. 2017j, A9-Using Components With Known Vulnerabilities, online, available

at <https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A9-

Using_Components_with_Known_Vulnerabilities>, accessed 02.12.2019

OWASP org. 2017k, A10-Insufficient Logging & Monitoring, online, available at

<https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A10-

Insufficient_Logging%252526Monitoring>, accessed 02.12.2019

OWASP org. 2018, Cross-Site Request Forgery (CSRF), online, available at

<https://wiki.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)>, accessed

22.3.2020

50

OWASP org. 2020a, HTTP Response Splitting, online, available at

<https://owasp.org/www-community/attacks/HTTP_Response_Splitting>, accessed

24.3.2020

OWASP org. 2020b, OWASP Benchmark, online, available at < https://owasp.org/www-

project-benchmark/#div-tool_support>,

OWASP org. 2020c, OWASP Web Security Testing Guide – Test HTTP Methods, online,

available at <https://github.com/OWASP/wstg/tree/master/document>, accessed 28.3.2020

OWASP org. 2020d, Path Traversal, online, available at <https://owasp.org/www-

community/attacks/Path_Traversal>, accessed 6.2.2020

OWASP org. 2020e, Unrestricted File Upload, online, available at

<https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload>, accessed

22.3.2020

OWASP org. 2020f, Vulnerability scanning tools, online, available at

<https://owasp.org/www-community/Vulnerability_Scanning_Tools>, accessed 27.3.2020

Portswigger ltd. 2020, Private IP addresses disclosed, online, available at: <

https://portswigger.net/kb/issues/00600300_private-ip-addresses-disclosed>, accessed

4.4.2020

retire.js / E. Oftedal, 2019, Retire.js, online, available at:

<https://retirejs.github.io/retire.js/>, accessed 6.4.2020

Sommestad, T., Holm, H. & Ekstedt, M. 2012. Estimates of success rates of remote

arbitrary code execution attacks. Information Management & Computer Security, 20(2),

pp. 107-122. doi:10.1108/09685221211235625

51

Sonicwall, 2019, Sonicwall Cyber Threat Report, online, available at

<https://www.sonicwall.com/resources/white-papers/2019-sonicwall-cyber-threat-report/>,

accessed 6.4.2020

SSL.com, 2019, What is SSL, online, available at <https://www.ssl.com/faqs/faq-what-is-

ssl/>, accessed 24.3.2020

Stefinko, Y., Piskozub, A. & Banakh, R. 2016. Manual and automated penetration testing.

Benefits and drawbacks. Modern tendency, 13th International Conference on Modern

Problems of Radio Engineering, Telecommunications and Computer Science (TCSET),

Lviv, pp. 488-491 doi: 10.1109/TCSET.2016.7452095

Stuttard, D. & Pinto, M. 2011. The web application hacker’s handbook: Finding and

exploiting security flaws, 2nd edition [eBook]. Indianapolis, IN: John Wiley & Sons, Inc.

pp. 878.

Symantec ltd. 2019, Internet Security Threat Report 2019 vol. 24, online, available at:

https://resource.elq.symantec.com/LP=6819 accessed on 6.11.2019

Von Ahn, L, Maurer, B, Mcmillen, C, Abraham, D. & Blum, M. 2008. reCAPTCHA:

Human-based character recognition via Web security measures. Science (New York, N.Y.),

321(5895), p. 1465-1468. doi:10.1126/science.1160379

WASC, 2009a, Brute Force, online, available at

<http://projects.webappsec.org/w/page/13246915/Brute%20Force >, accessed 24.3.2020

WASC, 2009b, Content Spoofing, online, available at

<http://projects.webappsec.org/w/page/13246917/Content%20Spoofing>, accessed

22.3.2020

52

WASC, 2009c, Credential and Session Prediction, online, available at

<http://projects.webappsec.org/w/page/13246918/Credential%20and%20Session%20Predi

ction>, accessed 27.3.2020

WASC, 2009d, Cross Site Scripting, online, available at

<http://projects.webappsec.org/w/page/13246920/Cross%20Site%20Scripting>, accessed

22.3.2020

WASC, 2009e, Directory Indexing, online, available at

<http://projects.webappsec.org/w/page/13246922/Directory%20Indexing>, accessed

22.3.2020

WASC, 2009f, Format String Attack, online, available at

<http://projects.webappsec.org/w/page/13246926/Format%20String>, accessed 22.3.2020

WASC, 2009g, Information Leakage, online, available at

<http://projects.webappsec.org/w/page/13246936/Information%20Leakage>, accessed

20.3.2020

WASC, 2009h, Insufficient Authentication, online, available at

<http://projects.webappsec.org/w/page/13246939/Insufficient%20Authentication>,

accessed 24.3.2020

WASC, 2009i, Insufficient Authorization, online, available at

<http://projects.webappsec.org/w/page/13246940/Insufficient%20Authorization>,

accessed 22.3.2020

WASC, 2009j, Insufficient Session Expiration, online, available at

<http://projects.webappsec.org/w/page/13246944/Insufficient%20Session%20Expiration>,

accessed 25.3.2020

53

WASC, 2009k, LDAP Injection, online, available at

<http://projects.webappsec.org/w/page/13246947/LDAP%20Injection>, accessed

23.3.2020

WASC, 2009l, OS Commanding, online, available at

<http://projects.webappsec.org/w/page/13246950/OS%20Commanding>, accessed

24.3.2020

WASC, 2009m, Remote File Inclusion, online, available at

<http://projects.webappsec.org/w/page/13246955/Remote%20File%20Inclusion>,

accessed 25.3.2020

WASC, 2009n, Session Fixation, online, available at

<http://projects.webappsec.org/w/page/13246960/Session%20Fixation>, accessed

22.3.2020

WASC, 2009o, SQL Injection, online, available at

<http://projects.webappsec.org/w/page/13246963/SQL%20Injection>, accessed 25.3.2020

WASC, 2009p, SSI Injection, online, available at

<http://projects.webappsec.org/w/page/13246964/SSI%20Injection>, accessed 25.3.2020

WASC, 2009q, The WASC Threat Classification v2.0, online, available at

<http://projects.webappsec.org/w/page/13246978/Threat%20Classification>, accessed

24.3.2020

WASC, 2009r, Web Application Security Scanner Evaluation Criteria, online, available at

<http://projects.webappsec.org/w/page/13246986/Web%20Application%20Security%20Sc

anner%20Evaluation%20Criteria>, accessed 22.3.2020

54

WASC, 2009s, XPath Injection, online, available at

<http://projects.webappsec.org/w/page/13247005/XPath%20Injection>, accessed

25.3.2020

WhiteHat Security Inc, 2020, Weak Password Recovery Validation, online, available at <

https://www.whitehatsec.com/glossary/content/weak-password-recovery-validation >,

accessed 4.4.2020

Yongsheng, Z., Cuicui, S., Jing, Y. & Ying, W. 2010. Web Services Security Policy.

International Conference on Multimedia Information Networking and Security, Nanjing,

Jiangsu. pp. 236-239, doi: 10.1109/MINES.2010.223

Appendix 1

I

APPENDIX 1. Results from the study

AppSpider Enterprise

AppSpider Enterprise is an on-premise, dynamic web application security scanner by

Rapid7 ltd, designed for scanning web and mobile applications for vulnerabilities by

DevSecOps teams and enterprise-wide users. The core of the AppSpider scanner is in the

Universal Translator system, which interprets new technologies such as AJAX, HTML5

and JSON which are the most used technologies in today’s web and mobile applications

and sophisticated attack methodologies. [1]

The company behind the product also delivers other solutions for similar purposes:

InsightAppSec offers similar threat detection features when compared to the AppSpider

software but is an entirely cloud-based solution instead of an on-premise solution. Rapid7

also provides the Managed AppSec, which is essentially an all-round application security

solution where the Rapid7 provides expert support for managing and running the scans and

validating the vulnerabilities. [2]

On general level, the AppSpider had an easily accessible and vast documentation which

eased the process of assessing this tool. The only problem encountered was that in some

cases the documentation referred to the Professional version of the AppSpider scanner,

which apparently is not available anymore, and in some cases where you follow links to

the AppSpider material [3], the website would actually provide you with material that is

labeled as InsightAppSec material [4]. A conclusion was made that since AppSpider

Enterprise is the company’s oldest and most developed product, it’s very likely to support

the same set of threat detection as the InsightAppSec software at parts, and also due to the

fact that it’s essentially the most valuable license available on the AppSpider software that

it most likely also provides all of the features that the AppSpider professional does that in

the context of this study, the focus will be in the provided material and if it’s referenced as

a set of features for the AppSpider Enterprise anywhere on the site, it will be treated as

such despite the material not specifically stating to be that of AppSpider Enterprise.

 AppSpider Source

Appendix 1

II

Overview

sources

 [1] https://appspider.help.rapid7.com/docs/welcome-to-

appspider

[2]

https://www.rapid7.com/products/appspider/download/editi

ons/

[3] https://www.rapid7.com/products/appspider/features/

[4] https://www.rapid7.com/globalassets/_pdfs/product-

and-service-briefs/rapid7-insightappsec-appspider-attack-

types-datasheet.pdf

Authentication

Brute force Yes Support for both HTTP and form-based authentication:

https://www.rapid7.com/globalassets/_pdfs/product-and-

service-briefs/rapid7-insightappsec-appspider-attack-types-

datasheet.pdf

Insufficient

authentication

Yes https://appspider.help.rapid7.com/docs/attack-module-

details

Weak password

recovery

validation

N/A

Lack of SSL

protection on

login pages

Yes Support for checking SSL Strength in general:

https://www.rapid7.com/globalassets/_pdfs/product-and-

service-briefs/rapid7-insightappsec-appspider-attack-types-

datasheet.pdf

Auto-complete

not disabled on

password fields

Yes https://appspider.help.rapid7.com/docs/attack-module-

details

Authorization

Credential and

session

prediction

Yes https://appspider.help.rapid7.com/docs/attack-module-

details

Insufficient

authorization

Yes https://appspider.help.rapid7.com/docs/attack-module-

details

Insufficient

session

expiration

Yes https://appspider.help.rapid7.com/docs/attack-module-

details

Session

fixation

Yes https://www.rapid7.com/globalassets/_pdfs/product-and-

service-briefs/rapid7-insightappsec-appspider-attack-types-

datasheet.pdf

Client-side

attacks

Content

spoofing

N/A

Reflected XSS Yes https://www.rapid7.com/globalassets/_pdfs/product-and-

service-briefs/rapid7-insightappsec-appspider-attack-types-

datasheet.pdf

Persistent XSS Yes https://www.rapid7.com/globalassets/_pdfs/product-and-

service-briefs/rapid7-insightappsec-appspider-attack-types-

Appendix 1

III

datasheet.pdf

DOM-based

XSS

Yes https://www.rapid7.com/globalassets/_pdfs/product-and-

service-briefs/rapid7-insightappsec-appspider-attack-types-

datasheet.pdf

Cross-Frame

Scripting

N/A

HTML

Injection

Yes https://appspider.help.rapid7.com/docs/attack-module-

details

CSRF Yes https://appspider.help.rapid7.com/docs/attack-module-

details

Command

execution

Format string

attack

Yes https://appspider.help.rapid7.com/docs/attack-module-

details

LDAP injection Yes https://www.rapid7.com/globalassets/_pdfs/product-and-

service-briefs/rapid7-insightappsec-appspider-attack-types-

datasheet.pdf

OS command

injection

Yes Referred to as OS Commanding:

https://www.rapid7.com/globalassets/_pdfs/product-and-

service-briefs/rapid7-insightappsec-appspider-attack-types-

datasheet.pdf

SQL injection Yes https://www.rapid7.com/globalassets/_pdfs/product-and-

service-briefs/rapid7-insightappsec-appspider-attack-types-

datasheet.pdf

Blind SQL

injection

Yes https://www.rapid7.com/globalassets/_pdfs/product-and-

service-briefs/rapid7-insightappsec-appspider-attack-types-

datasheet.pdf

SSI injection Yes https://www.rapid7.com/globalassets/_pdfs/product-and-

service-briefs/rapid7-insightappsec-appspider-attack-types-

datasheet.pdf

XPath injection Yes https://www.rapid7.com/globalassets/_pdfs/product-and-

service-briefs/rapid7-insightappsec-appspider-attack-types-

datasheet.pdf

HTTP header

injection /

response

splitting

Yes https://www.rapid7.com/globalassets/_pdfs/product-and-

service-briefs/rapid7-insightappsec-appspider-attack-types-

datasheet.pdf

Remote file

includes

Yes https://appspider.help.rapid7.com/docs/attack-module-

details

Local file

includes

Yes https://appspider.help.rapid7.com/docs/attack-module-

details

Potential

malicious file

uploads

Yes Referred to as Arbitrary file upload:

https://www.rapid7.com/globalassets/_pdfs/product-and-

service-briefs/rapid7-insightappsec-appspider-attack-types-

datasheet.pdf

Information

disclosure

Appendix 1

IV

Directory

indexing

Yes https://www.rapid7.com/globalassets/_pdfs/product-and-

service-briefs/rapid7-insightappsec-appspider-attack-types-

datasheet.pdf

Information

leakage

Yes Response data and SQL errors:

https://www.rapid7.com/globalassets/_pdfs/product-and-

service-briefs/rapid7-insightappsec-appspider-attack-types-

datasheet.pdf

Path traversal Yes https://appspider.help.rapid7.com/docs/how-to-test-the-

web-application-automated

Predictable

resource

location

Yes https://www.rapid7.com/globalassets/_pdfs/product-and-

service-briefs/rapid7-insightappsec-appspider-attack-types-

datasheet.pdf

Insecure HTTP

methods

enabled

N/A

Default web

server files

N/A

Testing and

diagnostics

pages

Yes ASP.Net misconfiguration:

https://appspider.help.rapid7.com/docs/attack-module-

details

Internal IP

Address

disclosure

Yes https://appspider.help.rapid7.com/docs/attack-module-

details

Architectural

support

SPA support Yes https://www.rapid7.com/globalassets/_pdfs/product-and-

service-briefs/rapid7-feature-brief-appsec-universal-

translator.pdf

Custom

authentication

headers

Yes https://appspider.help.rapid7.com/docs/http-headers

Custom

authentication

cookies

Yes https://appspider.help.rapid7.com/docs/http-headers

CAPTCHA

support

Yes https://appspider.help.rapid7.com/docs/authentication

Field value

autofill support

Yes https://appspider.help.rapid7.com/docs/parameters-training

Usability

Executive

summary

Yes https://appspider.help.rapid7.com/docs/reporting

Technical

detail report

Yes https://appspider.help.rapid7.com/docs/reporting

Delta report Yes https://www.rapid7.com/globalassets/external/docs/downlo

ad/AppSpider_Enterprise_User_Guide.pdf

Compliance

reports

Yes https://www.rapid7.com/products/appspider/download/editi

ons/

Appendix 1

V

Report

exporting

Yes https://www.rapid7.com/globalassets/external/docs/downlo

ad/AppSpider_Enterprise_User_Guide.pdf

Scheduled

scanning

Yes https://www.rapid7.com/globalassets/external/docs/downlo

ad/AppSpider_Enterprise_User_Guide.pdf

Scanning pause

and resume

Yes https://www.rapid7.com/globalassets/external/docs/downlo

ad/AppSpider_Enterprise_User_Guide.pdf

Real-time scan

monitoring

Yes https://appspider.help.rapid7.com/docs/scan-status

Scan logging Yes https://appspider.help.rapid7.com/docs/monitor-an-

ongoing-scan

Multiple

simultaneous

scans support

Yes https://appspider.help.rapid7.com/docs/installing-

appspider-enterprise

Multi-user

support

Yes https://appspider.help.rapid7.com/docs/installing-

appspider-enterprise

GUI Yes https://appspider.help.rapid7.com/docs/appspider-pro-

quick-start-guide

CLI Yes https://appspider.help.rapid7.com/docs/installing-

appspider-enterprise

Ticketing / Bug

tracking system

integration

Yes https://www.rapid7.com/products/appspider/integrations/

Browser

automation

integration

Yes https://www.rapid7.com/globalassets/_pdfs/product-and-

service-briefs/rapid7-feature-brief-appsec-universal-

translator.pdf

CI integration Yes https://www.rapid7.com/products/appspider/integrations/

API Yes https://appspider.help.rapid7.com/docs/attack-module-api-

overview

Cost N/A Informed as on-premise at

https://www.rapid7.com/products/appspider/download/editi

ons/

Acunetix Premium

Acunetix premium is a web application security scanner provided by a company also titled

as Accunetix. The premium version of the scanner is primarily intended for medium-to-

large organizations that are required to secure multiple websites and web applications and

wish to incorporate the scanning measures to their DevOps and issue management

infrastructures Acunetix claims to maintain the best level of security in larger organizations

through strong automation and integration and C++ based engine, deemed to be fast and

optimized to discover vulnerabilities using as few requests as possible. [1]

Appendix 1

VI

Acunetix provides documentation about their core features mainly in the forms of blog

posts which are provided by the professional security engineers working for the company.

There is not that much information publicly available regarding the attack modules.

Instead, they have provided a list of vulnerabilities detectable by their system as an

indexed list which does not differentiate between products. [2] However, according to the

documentation, the premium version provides all of the available features of the

vulnerability assessment engine, it’s fair to assume that the list contains vulnerabilities

detectable by the Acunetix premium scanner. [3]

 Acunetix Source

Overview

sources

 [1] https://www.acunetix.com/product/premium/

[2] https://www.acunetix.com/vulnerabilities/web/

[3] https://www.acunetix.com/ordering/

Authenticatio

n

Brute force Yes Weak passwords detected using brute force:

https://www.acunetix.com/vulnerabilities/web/tag/brutefor

ce-possible/

Insufficient

authentication

N/A

Weak password

recovery

validation

Yes https://www.acunetix.com/blog/articles/password-reset-

poisoning/

Lack of SSL

protection on

login pages

Yes https://www.acunetix.com/vulnerabilities/web/sensitive-

data-not-encrypted/

Auto-complete

not disabled on

password fields

Yes https://www.acunetix.com/vulnerabilities/web/password-

type-input-with-auto-complete-enabled/

Authorization

Credential and

session

prediction

N/A

Insufficient

authorization

N/A

Insufficient

session

expiration

N/A

Session

fixation

Yes Manual confirmation required:

https://www.acunetix.com/vulnerabilities/web/session-

fixation/

Client-side

Appendix 1

VII

attacks

Content

spoofing

Yes Both XSS and PHP mail based:

https://www.acunetix.com/vulnerabilities/web/microsoft-

sharepoint-xss-spoofing-vulnerability/ and

https://www.acunetix.com/vulnerabilities/web/php-mail-

function-ascii-control-character-header-spoofing-

vulnerability/

Reflected XSS Yes https://www.acunetix.com/vulnerability-scanner/xss-

vulnerability-scanning/

Persistent XSS Yes https://www.acunetix.com/vulnerability-scanner/xss-

vulnerability-scanning/

DOM-based

XSS

Yes https://www.acunetix.com/vulnerability-scanner/xss-

vulnerability-scanning/

Cross-Frame

Scripting

Yes https://www.acunetix.com/vulnerabilities/web/cross-

frame-scripting/

HTML

Injection

Yes https://www.acunetix.com/vulnerabilities/web/html-

injection/

CSRF Yes Various examples,

https://www.acunetix.com/vulnerabilities/web/tag/csrf/

Command

execution

Format string

attack

Yes https://www.acunetix.com/vulnerabilities/web/uncontrolle

d-format-string/

LDAP injection Yes https://www.acunetix.com/vulnerabilities/web/ldap-

injection/

OS command

injection

Yes Detection for example Struts2, WordPress and Apache

environments:

https://www.acunetix.com/vulnerabilities/web/struts2-

xwork-remote-command-execution/,

https://www.acunetix.com/vulnerabilities/web/wordpress-

2-1-1-command-execution-backdoor-vulnerability-2-1-1-

2-1-1/ and

https://www.acunetix.com/vulnerabilities/web/apache-

struts2-remote-command-execution-s2-045/

SQL injection Yes https://www.acunetix.com/vulnerabilities/web/sql-

injection/

Blind SQL

injection

Yes https://www.acunetix.com/vulnerabilities/web/blind-sql-

injection/

SSI injection Yes https://www.acunetix.com/vulnerabilities/web/server-side-

javascript-injection/

XPath injection Yes https://www.acunetix.com/vulnerabilities/web/xpath-

injection-vulnerability/

HTTP header

injection /

response

splitting

Yes https://www.acunetix.com/vulnerabilities/web/crlf-

injection-http-response-splitting/

Remote file Yes https://www.acunetix.com/vulnerabilities/web/tag/file-

Appendix 1

VIII

includes inclusion/

Local file

includes

Yes https://www.acunetix.com/vulnerabilities/web/tag/file-

inclusion/

Potential

malicious file

uploads

Yes https://www.acunetix.com/vulnerabilities/web/file-upload/

Information

disclosure

Directory

indexing

Yes https://www.acunetix.com/vulnerabilities/web/directory-

listing/

Information

leakage

Yes https://www.acunetix.com/blog/web-security-zone/how-to-

stop-backup-leaking-sensitive-information/

Path traversal Yes Detects multiple known path traversal vulnerabilities in

various components:

https://www.acunetix.com/vulnerabilities/web/cisco-

adaptive-security-appliance-asa-path-traversal/,

https://www.acunetix.com/vulnerabilities/web/path-

traversal-via-misconfigured-nginx-alias/ and

https://www.acunetix.com/vulnerabilities/web/tomcat-

path-traversal-via-reverse-proxy-mapping/

Predictable

resource

location

N/A

Insecure HTTP

methods

enabled

Yes Detects OPTIONS, CONNECT and TRACE methods:

https://www.acunetix.com/vulnerabilities/web/options-

method-is-enabled/,

https://www.acunetix.com/vulnerabilities/web/apache-

proxy-http-connect-method-enabled/ and

https://www.acunetix.com/vulnerabilities/web/trace-

method-is-enabled/

Default web

server files

Yes https://www.acunetix.com/vulnerabilities/web/web-server-

default-welcome-page/

Testing and

diagnostics

pages

Yes https://www.acunetix.com/vulnerabilities/web/asp-net-

diagnostic-page/

Internal IP

Address

disclosure

Yes Manual confirmation is required:

https://www.acunetix.com/vulnerabilities/web/possible-

internal-ip-address-disclosure/

Architectural

support

SPA support Yes https://www.acunetix.com/vulnerability-scanner/web-

application-security/

Custom

authentication

headers

Yes https://www.acunetix.com/blog/docs/scan-http-

authentication-protected-area/

Custom

authentication

Yes https://www.acunetix.com/blog/docs/scanning-for-

vulnerabilities-using-custom-cookies/

Appendix 1

IX

cookies

CAPTCHA

support

Yes https://www.acunetix.com/blog/releases/better-support-

for-captcha-and-modern-authentication-mechanisms/

Field value

autofill support

Yes https://www.acunetix.com/blog/docs/acunetix-wvs-input-

fields/

Usability

Executive

summary

Yes https://www.acunetix.com/support/docs/types-reports/

Technical

detail report

Yes https://www.acunetix.com/support/docs/types-reports/

Delta report Yes https://www.acunetix.com/support/docs/types-reports/

Compliance

reports

Yes https://www.acunetix.com/support/docs/types-reports/

Report

exporting

Yes https://www.acunetix.com/support/docs/wvs/generating-

reports/

Scheduled

scanning

Yes https://www.acunetix.com/blog/docs/how-to-schedule-

future-and-recurrent-scans/

Scanning pause

and resume

Yes https://www.acunetix.com/blog/docs/can-i-pause-a-scan/

Real-time scan

monitoring

Yes,

indirect

reference

on faq

https://www.acunetix.com/blog/docs/my-scan-seems-to-

be-stuck/

Scan logging Yes https://www.acunetix.com/blog/docs/enable-logging-scan/

Multiple

simultaneous

scans support

Yes https://www.acunetix.com/blog/docs/how-to-scan-large-

websites/

Multi-user

support

Yes https://www.acunetix.com/support/docs/wvs/configuring-

users/

GUI Yes https://www.acunetix.com/support/docs/wvs/installing-

acunetix-wvs/

CLI N/A

Ticketing / Bug

tracking system

integration

Yes https://www.acunetix.com/vulnerability-scanner/acunetix-

integrations/

Browser

automation

integration

Yes https://www.acunetix.com/blog/docs/what-are-import-

files/

CI integration Yes https://www.acunetix.com/vulnerability-scanner/acunetix-

integrations/

API Yes https://www.acunetix.com/support/api-documentation/

Cost $6995 /

year for

max 5

websites

https://www.acunetix.com/ordering/

Appendix 1

X

Netsparker Team

Netsparker Team is a cloud-based web application scanner targeted towards medium and

large organizations, providing a complete workflow solution for both assessing and

managing security vulnerabilities. It provides various integration possibilities to the

existing SDLC solutions and enables the teams to fully automate various processes that are

otherwise handled manually. [1] Netsparker also provides the unique Proof-Based-

Scanning™ technology, which simulates the activities of a penetration tester in order to

verify the scan results and sort out possible false positives, resulting in a very low rate of

false positives. [2] Netsparker Team includes access to both versions of the scanner, the

Standard and the Enterprise version [3]

On a general level, Netsparker provides a good amount of information about their various

products and features through their Support pages which contain various information

related to using the actual products [4], but also valuable information about the

vulnerabilities that the application is able to detect through the vulnerability index. [5] In

addition to providing information about their products and it’s capabilities, the company

also runs various blogs focusing on covering various security vulnerabilities related to web

applications, product updates and usage in addition to covering the role of web application

security scanners in the field of cyber security from somewhat neutral perspective, which is

definitely a nice add to the already extensive amount of information provided on their

website. [6]

 Netsparker

Team

Source

Overview

sources

 [1] https://www.netsparker.com/product/team/

[2]

https://www.netsparker.com/features/advanced/accurate-

proof-based-scanning-technology/

[3] https://www.netsparker.com/support/netsparker-

editions/#Netsparker-Standard

[4] https://www.netsparker.com/support/

[5] https://www.netsparker.com/web-vulnerability-

scanner/vulnerabilities/

[6] https://www.netsparker.com/blog/

Authentication

Brute force Yes https://www.netsparker.com/support/configuring-scan-

policies-netsparker/

Appendix 1

XI

Insufficient

authentication

N/A

Weak password

recovery

validation

N/A

Lack of SSL

protection on

login pages

Yes https://www.netsparker.com/web-vulnerability-

scanner/vulnerabilities/ssltls-not-implemented/

Auto-complete

not disabled on

password fields

Yes

https://www.netsparker.com/web-vulnerability-

scanner/vulnerabilities/autocomplete-enabled-password-

field/

Authorization

Credential and

session

prediction

Yes Supports basic authentication credentials:

https://www.netsparker.com/web-vulnerability-

scanner/vulnerabilities/weak-basic-authentication-

credentials/

Insufficient

authorization

Yes Tested using HTTP request builder tool:

https://www.netsparker.com/blog/web-security/owasp-top-

10/

Insufficient

session

expiration

N/A

Session

fixation

N/A

Client-side

attacks

Content

spoofing

Yes In form of Frame injection to include spoofed content on

the site: https://www.netsparker.com/web-vulnerability-

scanner/vulnerabilities/frame-injection/

Reflected XSS Yes https://www.netsparker.com/website-security-scanner/xss-

vulnerability-scanner/

Persistent XSS Yes https://www.netsparker.com/website-security-scanner/xss-

vulnerability-scanner/

DOM-based

XSS

Yes https://www.netsparker.com/website-security-scanner/xss-

vulnerability-scanner/

Cross-Frame

Scripting

N/A

HTML

Injection

N/A

CSRF Yes https://www.netsparker.com/web-vulnerability-

scanner/vulnerabilities/cross-site-request-forgery/

Command

execution

Format string

attack

N/A

LDAP injection N/A

OS command Yes Both Out of band and blind types:

Appendix 1

XII

injection https://www.netsparker.com/web-vulnerability-

scanner/vulnerabilities/out-of-band-command-injection/

and https://www.netsparker.com/web-vulnerability-

scanner/vulnerabilities/blind-command-injection/

SQL injection Yes https://www.netsparker.com/website-security-scanner/sql-

injection-vulnerability-scanner/

Blind SQL

injection

Yes https://www.netsparker.com/web-vulnerability-

scanner/vulnerabilities/blind-sql-injection/

SSI injection N/A

XPath injection N/A

HTTP header

injection /

response

splitting

Yes https://www.netsparker.com/web-vulnerability-

scanner/vulnerabilities/http-header-injection/

Remote file

includes

Yes https://www.netsparker.com/web-vulnerability-

scanner/vulnerabilities/cross-site-scripting-via-remote-file-

inclusion/

Local file

includes

Yes https://www.netsparker.com/web-vulnerability-

scanner/vulnerabilities/code-execution-via-local-file-

inclusion/

Potential

malicious file

uploads

Yes https://www.netsparker.com/web-vulnerability-

scanner/vulnerabilities/code-execution-via-file-upload/

Information

disclosure

Directory

indexing

Yes Supported on various server platforms:

https://www.netsparker.com/web-vulnerability-

scanner/vulnerabilities/directory-listing-iis/,

https://www.netsparker.com/web-vulnerability-

scanner/vulnerabilities/directory-listing-aspnet-server/,

https://www.netsparker.com/web-vulnerability-

scanner/vulnerabilities/directory-listing-apache/ and more.

Information

leakage

Yes Detection of various information leak disclosure types:

https://www.netsparker.com/web-vulnerability-

scanner/vulnerabilities/social-security-number-disclosure/,

https://www.netsparker.com/web-vulnerability-

scanner/vulnerabilities/username-disclosure-microsoft-sql-

server/, https://www.netsparker.com/web-vulnerability-

scanner/vulnerabilities/username-disclosure-mysql/,

https://www.netsparker.com/web-vulnerability-

scanner/vulnerabilities/credit-card-disclosure/ and more.

Path traversal Yes Included in the LFI checks:

https://www.netsparker.com/web-vulnerability-

scanner/vulnerabilities/code-execution-via-local-file-

inclusion/ referenced in

https://www.netsparker.com/blog/news/comparison-web-

vulnerability-scanners-netsparker-2013-2014/

Predictable Yes Forced browsing tool:

Appendix 1

XIII

resource

location

https://www.netsparker.com/support/common-directories/

Insecure HTTP

methods

enabled

Yes Detects OPTIONS, TRACE/TRACK and openly

redirected POST methods:

https://www.netsparker.com/web-vulnerability-

scanner/vulnerabilities/options-method-enabled/,

https://www.netsparker.com/web-vulnerability-

scanner/vulnerabilities/tracetrack-method-detected/ and

https://www.netsparker.com/web-vulnerability-

scanner/vulnerabilities/open-redirection-in-post-method/

Default web

server files

Yes Detects for apache, CakePHP, Tomcat and various IIS

versions: https://www.netsparker.com/web-vulnerability-

scanner/vulnerabilities/default-page-detected-apache/,

https://www.netsparker.com/web-vulnerability-

scanner/vulnerabilities/default-page-detected-cakephp-

framework/, https://www.netsparker.com/web-

vulnerability-scanner/vulnerabilities/default-page-

detected-tomcat/ and https://www.netsparker.com/web-

vulnerability-scanner/vulnerabilities/default-page-

detected-iis-100/

Testing and

diagnostics

pages

N/A

Internal IP

Address

disclosure

Yes https://www.netsparker.com/web-vulnerability-

scanner/vulnerabilities/internal-ip-address-disclosure/

Architectural

support

SPA support Yes https://www.netsparker.com/support/scanning-single-

page-applications/

Custom

authentication

headers

Yes https://www.netsparker.com/support/creating-new-scan-

netsparker/

Custom

authentication

cookies

Yes https://www.netsparker.com/support/creating-new-scan-

netsparker/

CAPTCHA

support

Yes https://www.netsparker.com/support/creating-new-scan-

netsparker/ and

https://www.netsparker.com/support/configuring-scan-

policies-netsparker/

Field value

autofill support

Yes https://www.netsparker.com/blog/docs-and-

faqs/configure-predefined-web-form-values-web-

vulnerability-scanner/

Usability

Executive

summary

Yes https://www.netsparker.com/support/reviewing-scan-

results-imported-vulnerabilities/ and

https://www.netsparker.com/support/report-templates-

netsparker/

Appendix 1

XIV

Technical

detail report

Yes https://www.netsparker.com/support/reviewing-scan-

results-imported-vulnerabilities/ and

https://www.netsparker.com/support/report-templates-

netsparker/

Delta report Yes https://www.netsparker.com/support/generating-viewing-

reports-netsparker-enterprise/ and

https://www.netsparker.com/support/report-templates-

netsparker/

Compliance

reports

Yes https://www.netsparker.com/support/report-templates-

netsparker/

Report

exporting

Yes https://www.netsparker.com/support/report-templates-

netsparker/

Scheduled

scanning

Yes https://www.netsparker.com/support/scheduling-scans/

Scanning pause

and resume

Yes https://www.netsparker.com/blog/releases/september-

2019-update-netsparker-enterprise/

Real-time scan

monitoring

Yes https://www.netsparker.com/support/introduction-

dashboards-netsparker/

Scan logging Yes https://www.netsparker.com/support/introduction-

dashboards-netsparker/

Multiple

simultaneous

scans support

Yes

For individual websites:

https://www.netsparker.com/support/website-groups-

netsparker-enterprise/

Multi-user

support

Yes https://www.netsparker.com/features/advanced/boost-

security-team-collaboration/

GUI Yes https://www.netsparker.com/product/enterprise/

CLI No Only for standard version:

https://www.netsparker.com/support/command-line-

interface-netsparker-standard/

Ticketing / Bug

tracking system

integration

Yes https://www.netsparker.com/support/category/integrations/

Browser

automation

integration

Partial Supports selenium as part of manual crawling process:

https://www.netsparker.com/support/manual-crawling-

proxy-mode-netsparker/

CI integration Yes https://www.netsparker.com/support/category/integrations/

API Yes https://www.netsparkercloud.com/docs/index

Cost On

premise,

more than

50 websites

supported

https://www.netsparker.com/pricing/

Burp Suite Enterprise

Burp suite enterprise is essentially a web application scanner based on the technology

empowering the Burp suite penetration testing toolkit loved by penetration testers

Appendix 1

XV

worldwide. The enterprise version is fitted with simplified user interfaces, automation,

scheduling, scaling and integration possibilities to support enterprise environment and

make the DevSecOps a reality. [1]

Burp suite family consists of three products: the community version containing the

essential manual tools for penetration testing, the professional version providing more

advanced manual tools and the web vulnerability scanner, but lacking the scheduling and

repeating, as well as scaling and CI integration capabilities, and lastly the Enterprise

version, which unfortunately does not provide any manual tools for the testers. [2] This is a

very interesting diversion between the available versions as many of the assessment criteria

could be easily tested manually using the advanced tools and provided instructions, but the

actual web vulnerability scanner of the enterprise edition is unable to detect or handle. The

enterprise version also does not support community developed extensions available

through the BApp store, [3] which provide support for some quite essential features outside

of the functionalities provided by the burp suite. [4]

When assessing the Burp Suite Enterprise, the tests cases that could be manually tested by

using the advanced penetration testing tools available through the burp professional edition

or an extension available in the BApp store are also documented in the assessment criteria

for later review in the discussions section of the actual thesis.

 Burp suite

Enterprise

Source

Overview

sources

 [1] https://portswigger.net/burp/enterprise

[2] https://portswigger.net/burp

[3] https://forum.portswigger.net/thread/burp-enterprise-

and-extensions-support-d9f0e6fb

[4] https://portswigger.net/bappstore

Authentication

Brute force N/A Manual testing available through the tools provided in

professional version: https://portswigger.net/support/using-

burp-to-brute-force-a-login-page

Insufficient

authentication

N/A Manual testing available through the tools provided in

professional version: https://portswigger.net/support/using-

burp-to-attack-authentication and

https://portswigger.net/support/using-sql-injection-to-

bypass-authentication in particular

Weak N/A Manual testing available through the tools provided in

Appendix 1

XVI

password

recovery

validation

professional version: https://blog.appsecco.com/mass-

account-pwning-or-how-we-hacked-multiple-user-

accounts-using-weak-reset-tokens-for-passwords-

c2d6c0831377

Lack of SSL

protection on

login pages

N/A Is available through an extension, but extensions are not

yet supported on the enterprise version:

https://portswigger.net/bappstore/474b3c575a1a4584aa44d

fefc70f269d

Auto-complete

not disabled

on password

fields

Yes https://portswigger.net/kb/issues/00500800_password-

field-with-autocomplete-enabled

Authorization

Credential and

session

prediction

N/A

Insufficient

authorization

N/A Available through an extension, but extensions are not yet

supported on the enterprise version:

https://portswigger.net/support/using-burp-to-test-for-

missing-function-level-access-control

Insufficient

session

expiration

N/A Available through an extension, but extensions are not yet

supported on the enterprise version:

https://portswigger.net/bappstore/c4bfd29882974712a1d69

c6d8f05874e

Session

fixation

N/A Manual testing available through the tools provided in

professional version: https://portswigger.net/support/using-

burp-to-hack-cookies-and-manipulate-sessions

Client-side

attacks

Content

spoofing

N/A

Reflected XSS Yes https://portswigger.net/web-security/cross-site-

scripting/reflected

Persistent XSS Yes https://portswigger.net/web-security/cross-site-

scripting/stored

DOM-based

XSS

Yes https://portswigger.net/web-security/cross-site-

scripting/dom-based

Cross-Frame

Scripting

N/A

HTML

Injection

N/A Manual testing available through the tools provided in

professional version:

https://subscription.packtpub.com/book/networking_and_s

ervers/9781789531732/9/ch09lvl1sec74/testing-for-html-

injection

CSRF Yes https://portswigger.net/web-security/csrf

Command

execution

Appendix 1

XVII

Format string

attack

N/A

LDAP

injection

Yes https://portswigger.net/kb/issues/00100500_ldap-injection

OS command

injection

Yes https://portswigger.net/web-security/os-command-injection

SQL injection Yes https://portswigger.net/web-security/sql-injection

Blind SQL

injection

Yes https://portswigger.net/support/using-burp-to-detect-blind-

sql-injection-bugs

SSI injection Yes https://portswigger.net/kb/issues/00101100_ssi-injection

XPath

injection

Yes https://portswigger.net/kb/issues/00100600_xpath-

injection

HTTP header

injection /

response

splitting

Yes https://portswigger.net/kb/issues/00200200_http-response-

header-injection

Remote file

includes

Yes https://portswigger.net/kb/issues/00100b00_file-path-

manipulation

Local file

includes

Yes https://portswigger.net/kb/issues/00100b00_file-path-

manipulation

Potential

malicious file

uploads

Yes https://portswigger.net/kb/issues/00500980_file-upload-

functionality

Information

disclosure

Directory

indexing

Yes https://portswigger.net/kb/issues/00600100_directory-

listing

Information

leakage

Yes,

support for

various

cases

https://portswigger.net/kb/issues/00600500_credit-card-

numbers-disclosed,

https://portswigger.net/kb/issues/00600550_private-key-

disclosed,

https://portswigger.net/kb/issues/00600400_social-

security-numbers-disclosed,

https://portswigger.net/kb/issues/00600300_private-ip-

addresses-disclosed,

https://portswigger.net/kb/issues/00600200_email-

addresses-disclosed and more.

Path traversal Yes https://portswigger.net/web-security/file-path-traversal

Predictable

resource

location

N/A Manual testing available through the tools provided in

professional version with FuzzDB attack pattern

dictionary: https://github.com/fuzzdb-project/fuzzdb

Insecure

HTTP

methods

enabled

Yes

https://portswigger.net/kb/issues/00500a00_http-trace-

method-is-enabled

Default web

server files

N/A

Appendix 1

XVIII

Testing and

diagnostics

pages

N/A

Internal IP

Address

disclosure

Yes https://portswigger.net/kb/issues/00600300_private-ip-

addresses-disclosed

Architectural

support

SPA support Partial Improvements to the SPA scanning functionalities are

included on the 2020 roadmap:

https://portswigger.net/burp/documentation/scanner/crawli

ng, https://forum.portswigger.net/thread/scan-a-single-

page-application-with-enterprise-scanner-c8086510 and

https://portswigger.net/blog/burp-suite-roadmap-for-2020

Custom

authentication

headers

N/A Available through an extension, but extensions are not yet

supported on the enterprise version:

https://portswigger.net/bappstore/807907f5380c4cb38748e

f4fc1d8cdbc

Custom

authentication

cookies

Yes https://portswigger.net/support/manually-setting-a-cookie-

for-burp-suites-crawl-and-audit

CAPTCHA

support

N/A Available through an extension, but extensions are not yet

supported on the enterprise version:

https://forum.portswigger.net/thread/bypass-racaptcha-on-

website-login-7d4d792c and

https://github.com/TimGuenther/burp-reCAPTCHA

Field value

autofill

support

Yes https://portswigger.net/blog/mobp-custom-form-filling-

rules and

Usability

Executive

summary

Yes https://portswigger.net/burp/documentation/desktop/scanni

ng/reporting-results#report-details and

https://portswigger.net/burp/samplereport/burpscannersam

plereport

Technical

detail report

Yes https://portswigger.net/burp/documentation/desktop/scanni

ng/reporting-results#report-details and

https://portswigger.net/burp/samplereport/burpscannersam

plereport

Delta report Yes https://portswigger.net/burp/releases/enterprise-edition-1-

0-10beta

Compliance

reports

No https://forum.portswigger.net/thread/owasp-top-10-

reporting-fab55562f3bfa

Report

exporting

Yes Both XML and HTML:

https://portswigger.net/burp/documentation/desktop/scanni

ng/reporting-results#report-details

Scheduled

scanning

Yes https://portswigger.net/burp/documentation/enterprise/refer

ence/scans

Scanning Yes https://portswigger.net/burp/documentation/desktop/dashb

Appendix 1

XIX

pause and

resume

oard/task-execution-settings

Real-time scan

monitoring

Yes https://portswigger.net/burp/documentation/enterprise/refer

ence/scans

Scan logging N/A Available through an extension, but extensions are not yet

supported on the enterprise version:

https://portswigger.net/bappstore/1edf849a4df447158c041

41e9a4e67db

Multiple

simultaneous

scans support

Yes https://portswigger.net/burp/documentation/desktop/scanni

ng and https://portswigger.net/blog/enterprise-edition-

performing-scans

Multi-user

support

Yes https://portswigger.net/blog/enterprise-edition-configuring-

your-team

GUI Yes Referenced in various documentations throughout the site

such as

https://portswigger.net/burp/documentation/enterprise/refer

ence/settings/updates and

https://portswigger.net/burp/documentation/enterprise/getti

ng-started/system-requirements

CLI N/A Available through an extension, but extensions are not yet

supported on the enterprise version:

https://portswigger.net/bappstore/d54b11f7af3c4dfeb6b81f

b5db72e381

Ticketing /

Bug tracking

system

integration

Yes

https://portswigger.net/burp/documentation/enterprise/refer

ence/settings/jira-integration

Browser

automation

integration

Yes https://portswigger.net/support/using-burp-with-selenium

CI integration Yes Through native plugins :

https://portswigger.net/burp/extender/ci-integration and

https://portswigger.net/burp/documentation/enterprise/refer

ence/rest-api

API Yes https://portswigger.net/burp/documentation/enterprise/refer

ence/rest-api

Cost $3999 / year

for 1 site +

$399 for

each

additional

website

https://portswigger.net/pricing

Arachni

Arachni is a web application security scanner based on the open ruby framework, open-

source development and public source code access for anyone. The scanner is multi-

Appendix 1

XX

platform and supports all major operating systems, windows Mac OS X and Linux. The

scanner is equipped with support for a multitude of vulnerabilities, supports multiple users

and even provides a REST API for supporting custom integrations. [1] The scanner also

provides WIVET scores that are top tier of the industry [2] and supports various modern

web applications through an integrated browser engine.[1]

Arachni provides a simple overview of the framework’s features through their website,

including most of the supported vulnerabilities, scanning features and setting up

information. [3] Some of the features were also accurately documented within the source

code comments and the official GitHub page for the application acted as a secondary

source of information for conducting this study. [4]

 Arachni Source

Overview

sources

 [1] https://www.arachni-scanner.com/

[2] http://sectoolmarket.com/wivet-score-unified-list.html

[3] https://www.arachni-scanner.com/features/framework/

[4] https://github.com/Arachni/arachni

Authentication

Brute force Yes Through dictionary attacker plugin for both HTTP and

session authentication: https://www.arachni-

scanner.com/features/framework/

Insufficient

authentication

N/A

Weak

password

recovery

validation

N/A

Lack of SSL

protection on

login pages

Yes https://github.com/Arachni/arachni/blob/0428b9db1b8b15c2

796692e646da21e27668676e/components/checks/passive/gr

ep/unencrypted_password_forms.rb

Auto-complete

not disabled

on password

fields

Yes https://github.com/Arachni/arachni/blob/master/components/

checks/passive/grep/password_autocomplete.rb

Authorization

Credential and

session

prediction

N/A

Insufficient

authorization

N/A

Insufficient

session

N/A

Appendix 1

XXI

expiration

Session

fixation

Yes https://github.com/Arachni/arachni/blob/master/components/

checks/active/session_fixation.rb

Client-side

attacks

Content

spoofing

N/A

Reflected XSS Yes https://www.arachni-scanner.com/features/framework/,

https://github.com/Arachni/arachni/blob/master/components/

checks/active/xss_event.rb

Persistent XSS Yes https://www.arachni-scanner.com/features/framework/,

https://github.com/Arachni/arachni/blob/master/components/

checks/active/xss_event.rb

DOM-based

XSS

Yes https://www.arachni-scanner.com/features/framework/

Cross-Frame

Scripting

N/A

HTML

Injection

N/A

CSRF Yes https://www.arachni-scanner.com/features/framework/

Command

execution

Format string

attack

N/A

LDAP

injection

Yes https://www.arachni-scanner.com/features/framework/

OS command

injection

Yes

https://www.arachni-scanner.com/features/framework/

SQL injection Yes https://www.arachni-scanner.com/features/framework/

Blind SQL

injection

Yes https://www.arachni-scanner.com/features/framework/

SSI injection

XPath

injection

Yes https://www.arachni-scanner.com/features/framework/

HTTP header

injection /

response

splitting

Yes https://www.arachni-scanner.com/features/framework/

Remote file

includes

Yes https://www.arachni-scanner.com/features/framework/

Local file

includes

Yes

https://www.arachni-scanner.com/features/framework/

Potential

malicious file

uploads

N/A

Information

disclosure

Yes https://www.arachni-scanner.com/features/framework/

Appendix 1

XXII

Directory

indexing

Yes https://www.arachni-scanner.com/features/framework/

Information

leakage

Yes Backup directories and files:

https://github.com/Arachni/arachni/blob/0428b9db1b8b15c2

796692e646da21e27668676e/components/checks/passive/ba

ckup_files.rb and

https://github.com/Arachni/arachni/blob/0428b9db1b8b15c2

796692e646da21e27668676e/components/checks/passive/ba

ckup_directories.rb

Path traversal Yes https://www.arachni-scanner.com/features/framework/

Predictable

resource

location

Yes https://github.com/Arachni/arachni/blob/0428b9db1b8b15c2

796692e646da21e27668676e/components/checks/passive/co

mmon_admin_interfaces.rb

Insecure

HTTP

methods

enabled

Yes

https://www.arachni-scanner.com/features/framework/

Default web

server files

N/A

Testing and

diagnostics

pages

N/A

Internal IP

Address

disclosure

Yes https://www.arachni-scanner.com/features/framework/

Architectural

support

SPA support Yes https://www.arachni-scanner.com/ and https://www.arachni-

scanner.com/features/framework/crawl-coverage-

vulnerability-detection/#vulnerability-detection

Custom

authentication

headers

Yes

https://www.arachni-scanner.com/features/framework/

Custom

authentication

cookies

Yes https://www.arachni-scanner.com/features/framework/

CAPTCHA

support

Yes Requires the use of proxy plugin:

https://github.com/Arachni/arachni/issues/851

Field value

autofill

support

Yes https://www.arachni-scanner.com/features/framework/

Usability

Executive

summary

Yes

https://rubydoc.info/github/Arachni/arachni#Reporters

HTML version

Technical

detail report

Yes https://rubydoc.info/github/Arachni/arachni#Reporters XML

/ text versions contain lots of technical details

Delta report N/A

Appendix 1

XXIII

Compliance

reports

Yes https://rubydoc.info/github/Arachni/arachni#Reporters

HTML version

Report

exporting

Yes https://rubydoc.info/github/Arachni/arachni#Reporters and

https://www.arachni-scanner.com/features/web-user-

interface/

Scheduled

scanning

Yes https://www.arachni-scanner.com/features/web-user-

interface/

Scanning

pause and

resume

Yes https://www.arachni-scanner.com/features/framework/

Real-time scan

monitoring

Yes

https://www.arachni-

scanner.com/features/framework/distributed-architecture/

Scan logging Yes http://support.arachni-

scanner.com/discussions/questions/4991-arachni-log-files

and https://github.com/Arachni/arachni/wiki/Command-line-

user-interface#output-debug

Multiple

simultaneous

scans support

Yes https://www.arachni-

scanner.com/features/framework/distributed-architecture/

Multi-user

support

Yes

https://www.arachni-scanner.com/features/web-user-

interface/

GUI Yes https://www.arachni-scanner.com/features/web-user-

interface/, https://www.arachni-

scanner.com/features/framework/

CLI Yes https://www.arachni-scanner.com/screenshots/command-

line-interface/, https://www.arachni-

scanner.com/features/framework/

Ticketing /

Bug tracking

system

integration

N/A

Browser

automation

integration

N/A

CI integration Yes Jenkins provides an integration plugin:

https://plugins.jenkins.io/arachni-scanner/

API Yes REST and RPC support:

https://github.com/Arachni/arachni/wiki/REST-API and

https://github.com/Arachni/arachni/wiki/RPC-API

Cost Free

Zed Attack Proxy

OWASP Zed Attack Proxy, more commonly known as ZAP is entitled as the “world’s

most popular free, open-source web security tool.” [1] There is a vast community behind

the project, consisting from various developers from around the world. [2] The application

Appendix 1

XXIV

provides tools for both manual and automatic penetration testing, focusing to derive the

penetration testing process into three simple steps: exploring the target web application by

crawler while running passive scans against the site, attacking the site using active testing

tools and lastly reporting the results back to the user. [3] ZAP also provides various

possibilities for external integrations through a dedicated API and existing plugin solutions

for various other software [4], enabling various types of SDLC pipeline integrations. The

software is also highly modular, as multiple features are available to be integrated to the

core product through add-ons, making it easy to customize the feature set based on the

requirements of the target application. [5]

There is generally a good amount of information available about the ZAP and it’s usage

through the documentation available on the home website [6], but also through a vast

community of users maintaining active discussion forums [7] and lastly the issue tracking

and management systems presented on the related GitHub pages. [8]

 ZAP Source

Overview

sources

 [1] https://www.zaproxy.org/

[2] https://github.com/zaproxy/zaproxy/pulse

[3] https://www.zaproxy.org/getting-started/

[4] https://www.zaproxy.org/docs/api/#introduction

[5] https://www.zaproxy.org/docs/desktop/addons/

[6] https://www.zaproxy.org/docs/

[7] https://groups.google.com/forum/#!forum/zaproxy-users

[8] https://github.com/zaproxy

Authentication

Brute force Yes https://www.zaproxy.org/docs/desktop/addons/fuzzer/

Insufficient

authentication

Yes Username enumeration plugin (beta):

https://www.zaproxy.org/docs/desktop/addons/active-scan-

rules-beta/

Weak

password

recovery

validation

N/A

Lack of SSL

protection on

login pages

Yes https://www.zaproxy.org/docs/desktop/addons/passive-scan-

rules/

Auto-complete

not disabled

on password

fields

N/A

Authorization

Credential and Yes https://www.zaproxy.org/docs/desktop/addons/token-

Appendix 1

XXV

session

prediction

generator/

Insufficient

authorization

Yes https://www.zaproxy.org/docs/desktop/addons/access-

control-testing/

Insufficient

session

expiration

N/A

Session

fixation

Yes Beta plugin available:

https://www.zaproxy.org/docs/desktop/addons/active-scan-

rules-beta/

Client-side

attacks

Content

spoofing

N/A

Reflected XSS Yes https://www.zaproxy.org/docs/desktop/addons/active-scan-

rules/

Persistent XSS Yes https://www.zaproxy.org/docs/desktop/addons/active-scan-

rules/

DOM-based

XSS

Yes

https://www.zaproxy.org/docs/desktop/addons/dom-xss-

active-scan-rule/

Cross-Frame

Scripting

N/A

HTML

Injection

N/A

CSRF Yes https://www.zaproxy.org/docs/desktop/addons/passive-

scan-rules/

Command

execution

Format string

attack

Yes https://www.zaproxy.org/docs/desktop/addons/active-scan-

rules/

LDAP

injection

Yes Alpha plugin available:

https://www.zaproxy.org/docs/desktop/addons/active-scan-

rules-alpha/

OS command

injection

Yes https://www.zaproxy.org/docs/desktop/addons/active-scan-

rules/

SQL injection Yes https://www.zaproxy.org/docs/desktop/addons/active-scan-

rules/ and

https://www.zaproxy.org/docs/desktop/addons/active-scan-

rules-beta/

Blind SQL

injection

Yes https://www.zaproxy.org/docs/desktop/addons/advanced-

sqlinjection-scanner/ and https://github.com/zaproxy/zap-

extensions/blob/master/addOns/sqliplugin/src/main/java/org/

zaproxy/zap/extension/sqliplugin/SQLInjectionPlugin.java

SSI injection Yes https://www.zaproxy.org/docs/desktop/addons/active-scan-

rules/

XPath Yes Beta plugin available:

Appendix 1

XXVI

injection https://www.zaproxy.org/docs/desktop/addons/active-scan-

rules-beta/

HTTP header

injection /

response

splitting

Yes CRLF injection:

https://www.zaproxy.org/docs/desktop/addons/active-scan-

rules/

Remote file

includes

Yes https://www.zaproxy.org/docs/desktop/addons/active-scan-

rules/

Local file

includes

N/A

Potential

malicious file

uploads

N/A

Information

disclosure

Directory

indexing

Yes https://www.zaproxy.org/docs/desktop/addons/active-scan-

rules/

Information

leakage

Yes Source code, backup file and various other information

disclosure checks:

https://www.zaproxy.org/docs/desktop/addons/active-scan-

rules/, https://www.zaproxy.org/docs/desktop/addons/active-

scan-rules-beta/ and

https://www.zaproxy.org/docs/desktop/addons/passive-scan-

rules/

Path traversal Yes https://www.zaproxy.org/docs/desktop/addons/active-scan-

rules/

Predictable

resource

location

Yes Forced browsing plugin:

https://www.zaproxy.org/docs/desktop/addons/forced-

browse/

Insecure

HTTP

methods

enabled

Yes Beta plugin available:

https://www.zaproxy.org/docs/desktop/addons/active-scan-

rules-beta/

Default web

server files

N/A

Testing and

diagnostics

pages

N/A

Internal IP

Address

disclosure

Yes

https://www.zaproxy.org/docs/desktop/addons/passive-scan-

rules/

Architectural

support

SPA support Yes https://www.zaproxy.org/docs/desktop/start/features/structpa

rams/ and

https://www.zaproxy.org/docs/desktop/addons/ajax-spider/

for native support and

https://blog.xaviermaso.com/2018/10/01/Scanning-modern-

Appendix 1

XXVII

web-applications-with-OWASP-ZAP.html#zap-and-modern-

web-applications for improved support

Custom

authentication

headers

Yes https://www.zaproxy.org/docs/desktop/start/features/session

management/,

https://www.zaproxy.org/docs/desktop/start/features/httpsess

ions/ and

https://www.zaproxy.org/docs/desktop/start/features/authenti

cation/

Custom

authentication

cookies

Yes https://www.zaproxy.org/docs/desktop/start/features/session

management/ and

https://www.zaproxy.org/docs/desktop/start/features/httpsess

ions/

CAPTCHA

support

N/A

Field value

autofill

support

Yes

https://www.zaproxy.org/docs/desktop/addons/form-handler/

Usability

Executive

summary

Yes https://www.zaproxy.org/docs/desktop/ui/tlmenu/report/,

https://www.zaproxy.org/docs/desktop/addons/custom-

report/, also supports exporting data to BIRT for

visualization https://www.eclipse.org/birt/

Technical

detail report

Yes https://www.zaproxy.org/docs/desktop/ui/tlmenu/report/,

https://www.zaproxy.org/docs/desktop/addons/custom-

report/,

Delta report N/A

Compliance

reports

N/A

Report

exporting

Yes https://www.zaproxy.org/docs/desktop/addons/export-report/

Scheduled

scanning

Partial This can be achieved through Jenkins integration, API or

CLI Quick start add-on:

https://groups.google.com/forum/#!topic/zaproxy-

develop/Vn63NRIsN6E, https://plugins.jenkins.io/zap/,

https://www.zaproxy.org/docs/api/ and

https://github.com/zaproxy/zaproxy/issues/5226

https://www.zaproxy.org/docs/desktop/addons/quick-start/

Scanning

pause and

resume

Partial. Scanner and passive scans can be paused and resumed, but

Scanner and passive scans can be paused and resumed, but

active scans can only be paused or stopped by setting

breakpoints, and cannot be resumed:

https://www.zaproxy.org/docs/desktop/ui/tabs/spider/,

https://www.zaproxy.org/docs/api/#using-spider,

https://www.zaproxy.org/docs/desktop/ui/tabs/breakpoints/

and https://www.zaproxy.org/docs/api/#using-active-scan

Real-time scan

monitoring

Yes https://www.zaproxy.org/docs/desktop/ui/dialogs/scanprogre

ss/

Scan logging Yes https://www.zaproxy.org/faq/how-do-you-configure-zap-

Appendix 1

XXVIII

logging/

Multiple

simultaneous

scans support

N/A

Multi-user

support

N/A

GUI Yes https://www.zaproxy.org/getting-started/ and

https://www.zaproxy.org/docs/desktop/ui/

CLI Yes https://www.zaproxy.org/docs/desktop/cmdline/

Ticketing /

Bug tracking

system

integration

Yes

https://www.zaproxy.org/docs/desktop/addons/bug-tracker/

Browser

automation

integration

Yes https://www.zaproxy.org/docs/desktop/addons/selenium/

CI integration Yes https://plugins.jenkins.io/zap/ and possible through the

docker https://github.com/zaproxy/zaproxy/wiki/Docker

API Yes https://www.zaproxy.org/docs/api/

Cost Free

