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This thesis focuses on predicting remaining useful life (RUL) with classification approach. 

The methodology is demonstrated with NASA’s turbofan engine degradation dataset. 

Three classification systems with different multi-class divisions are constructed from RUL’s, 

systems consisting of 10, 6 and 4 classes, respectively. Random forest (RF) and neural 

network (NN) algorithms are used to train the classification models. The performance com-

parison between systems and algorithms along with the optimal hyperparameters are the 

principal questions to be answered in the scope of this study. The performance is measured 

with mainly Matthews correlation coefficient (MCC) and complemented with interpretations 

of confusion matrices. The results show that the parameters which were focused on, do 

not have huge impact on the model performance. The classification system with fewest 

classes performs much better compared to the other systems, which are closer to each 

other in terms of MCC. RF slightly outperforms NN in case of every classification system, 

although the NN parameters would need better optimization. Even though close to perfect 

classification was not achieved, the results of this study show that the proposed approach 

has potential, yet the class divisions especially need further consideration. 
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luokittelu

Tämän tutkielman tarkoituksena on ennustaa jäljellä olevaa käyttöikää käyttäen luokittelu-

malleja. Menetelmää havainnollistetaan NASA:n suihkuturbiinimoottorien vikojen kehitty-

mistä kuvaavalla sensoridatalla. Kolme luokittelujärjestelmää muodostetaan jakamalla jäl-

jellä oleva käyttöikä luokkiin. Järjestelmissä on 10, 6 ja 4 luokkaa. Luokittelumallien koulut-

tamisessa käytetään random forest (RF) ja neural network (NN) -algoritmeja. Luokittelujär-

jestelmien ja algoritmien välisen suorituskyvyn vertailu sekä optimaalisten parametrien sel-

vittäminen ovat tämän tutkielman keskiössä. Suorituskykyä mitataan pääasiassa Matthew-

sin korrelaatiokertoimella (MCC), jonka lisäksi hyödynnetään myös confusion matriiseja. 

Tulokset osoittavat, että tarkastelun alla olevat parametrit eivät ole kovin tärkeitä mallin 

suorituskyvyn kannalta. Vähiten luokkia sisältävä luokittelujärjestelmä tuottaa selvästi pa-

remmat tulokset verrattuna kahteen muuhun järjestelmään, jotka ovat suorituskyvyltään 

lähempänä toisiaan. RF suoriutuu paremmin kuin NN jokaisen luokittelujärjestelmän koh-

dalla, mutta NN:n parametrien optimointiin tulisi kiinnittää enemmän huomiota parhaan luo-

kittelutarkkuuden varmistamiseksi. Mikään malleista ei kuitenkaan yllä lähelle täydellistä 

luokittelutulosta. Siitä huolimatta tulokset osoittavat, että menetelmässä on potentiaalia, 

mutta erityisesti luokkajaotteluun tulisi kiinnittää tarkempaa huomiota. 
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1 Introduction 
The awareness and technologies concerning the Internet of Things (IoT) have expanded 

rapidly during the recent years and more is to come. This has already led to the industrial 

applications becoming more common, which has allowed the emerging of numerous new 

possibilities to connect physical objects with each other. Furthermore, these connections 

enable the collection of data related to the physical objects. 

At the same time, there have been major advancements in data science while the compu-

tational costs have continued to decrease. Therefore, problems that used to be hard to solve 

and computationally heavy and costly, have turned into rather feasible tasks due to the im-

provement of new techniques. 

The exponential increase of data provides an opportunity to analyze things with new ways 

and gain valuable information. One field where this information can offer new kind of benefit 

is maintenance. It is not cost-effective to perform maintenance actions too much in advance 

as preventive actions, when there is still operational lifetime remaining. By combining mas-

sive amounts of data with advanced analytics, the need of maintenance can be predicted 

before failures occur which allows actions to be made in more optimal time.  

The prediction approach in maintenance is often referred as predictive maintenance (PdM). 

It can be stated that the main purpose of PdM is to reduce maintenance related costs. In 

more detail, reducing the operational downtime and direct costs related to maintenance such 

as labour and spare materials. A popular measure of interest in literature is remaining useful 

life (RUL), which will be adapted to this study as well. 

In this study, the predictive maintenance will be considered from data-driven point of view. 

Machine learning (ML) techniques are one method to perform PdM as data-driven, and ML 

will be used as the focal point. The focus will be on classification algorithms, which are rather 

rarely used in similar kind of problem setting and this will be discussed more later on. NASA’s 

Turbofan Engine Degradation Simulation Dataset about simulated aircraft engines will be 

used to demonstrate the methodology. 
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1.1  Motivation 
The remaining useful life prediction is about forecasting a defined unit of time. In other 

words, the target variable is continuous and thus the problem categorizes as so-called re-

gression problem. The usual approach would be to use a model which’s function is to model 

continuous target variable. 

The usage of classification model in such situation instead might be not be considered nec-

essary or even reasonable as regression models should exploit the data better and hence 

provide better results. However, there seem to be some reasons why classification models 

could be considered over regression models. 

Böhm (2017) states that RUL prediction can be quite challenging task and possible prob-

lems could be related to uncertainty in measurement data, long horizon of prediction for 

small units of time. Fink, Zio & Weidman (2015) argue that classification approach is rea-

sonable procedure when the used data consist of many discrete variables as then other 

methods can be either not applicable, or applicable with notable limitations. 

Xue, Williams & Qiu (2011) suggest that reshaping the continuous problem into classification 

problem by determining “pre-failure” and “normal” states of a system is a commonly used 

approach in practice. Also Fink et al. (2015) point out that the classification approach 

matches the needs of practical application as the maintainers need to know whether a failure 

will occur within a beforehand decided time period, which can be modified easily. 

On the other hand, the transformation into classification might stabilize the end user ac-

ceptance (Böhm, 2017). Xue et al. (2011) add that especially binary classification has ad-

vantages in the form of easy usability and robustness. 

The reasons of using classification model instead of regression model might not exist within 

the used turbofan data. However, there are very few studies concerning the classification 

approach and therefore more evidence is requisite. Additionally, it is interesting to investi-

gate how well the classification approach performs with this particular data. 

 

1.2  Theoretical Framework 
This study will focus on remaining useful life (RUL) prediction with ML classification mod-

els, in particular random forest (RF) and neural network (NN) classifiers. The theoretical 

framework of this study can be better seen from Figure 1.  
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Figure 1. Theoretical Framework of the Study 

 

The literature on RUL prediction with classification models is rather narrow. Thus, some 

compromises regarding the literature selection might be required. Then, the focus will shift 

into empirical part focusing on how the classification approach performs with the turbofan 

data. 

 

1.3  Objectives and Research Questions 
The main goal of the study is to predict remaining useful life with classification methods. 

After some theoretical basics, this study will review previous literature about RUL prediction 

with classification approach. Regarding the previous literature, the first research question 

along with two subquestions are formed:  

1. How previous research has approached RUL-type problems with classifica-
tion? 
a. Which algorithms have been used the most in RUL classification? 
b. How the performance of classification models has been evaluated? 
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Additionally, the number of classification models is narrowed to two: random forest (RF) and 

neural network (NN). The reasons why these models are selected will be discussed in more 

detail in chapter 4. For both classifiers, parameters will have to be defined and it is one 

important part of the study to evaluate which parameters lead to the best results. Also, RF 

and NN performance comparison is essential. Two research questions are formed based 

on these aspects: 

2. What random forest and neural network parameters lead to the best perfor-
mance with the turbofan dataset? 

3. How random forest and neural network compare to each other with the turbo-
fan dataset? 

 

Finally, time intervals need to be defined for the classification of RUL and this issue will be 

addressed more specifically later in chapter 4. A good approach would be to evaluate the 

time required to take action regarding the maintenance issue. However, the purpose of this 

study is not to hypothesize about what would be a good and sufficient time interval to do so. 

Instead, the classification will be demonstrated with few different classification systems, 

which then will be compared. This leads to the final research question: 

4. How random forest and neural network classifiers perform for different classi-
fication systems with the turbofan dataset? 

 

1.4  Structure 
The structure of this thesis is now presented shortly. First, in chapter 2, predictive mainte-

nance and machine learning will be examined from theoretical point of view and some im-

portant concepts for the purpose of this study are explained. Chapter 3 contains a literature 

review about classification methods used in PdM. That is followed by the introduction of 

used methodology in this study in chapter 4. Chapter 5 will focus about the evaluating and 

discussing the results. Finally, conclusions will be drawn in chapter 6, along with discussion 

about the limitations concerning this study and suggestions about potential subjects for fur-

ther research. 
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2 Theory  
In this chapter, the concept of predictive maintenance (PdM) will be introduced. It will be 

examined how maintenance can be classified into preventive and corrective maintenance, 

and how predictive maintenance differs from these two. 

After reviewing the maintenance concept, a popular time measure in PdM literature, remain-

ing useful life (RUL), will be introduced and discussed. That is followed by a brief introduction 

of different approaches to implement predictive maintenance. 

Following the maintenance concept, the concept of Machine Learning (ML) will be ad-

dressed. Aside from the actual basic concept of ML, the three main ML paradigms will be 

briefly presented, and their differences compared.  

Finally, the theory part will focus more on classification which is the used approach and focal 

point in this study. The selected classification techniques will be discussed, and a short 

introduction of model evaluation will be included as well. 

 

2.1  Predictive Maintenance  
The field of predictive maintenance (PdM) has been studied widely in the past 20 or so 

years. During this time period, technical development and continuously increasing amount 

of data has led to better opportunities to utilize data in maintenance. PdM can help decrease 

maintenance costs and operational downtime, and therefore it is only reasonable that the 

literature about the subject has been and still is extensive. 

First of all, it is reasonable to define predictive maintenance. In order to do so, the concept 

of maintenance needs to be examined. Crespo Marquez (2007, 69) defines maintenance as 

a combination of actions which in intend to 1) retain an item in, or 2) restore an item to, a 

state in which the item can perform a given function. Therefore, the author suggests mainte-

nance classification into two main groups: actions striving for retaining given conditions (Pre-

ventive Maintenance) and actions to restore certain conditions (Corrective Maintenance). 

This division is further demonstrated in Figure 2 (Crespo Marquez, 2007, 70; Jardine, Lin & 

Banjevic, 2006). 
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Figure 2. Framework of Predictive Maintenance (after Crespo Marquez, 2007, 70; 
Jardine et al, 2006) 

 
Corrective maintenance is not the main focus in this study and therefore it is not necessary 

to investigate it further. That said, the focus will remain on preventive maintenance instead. 

The function of preventive maintenance is to carry out the maintenance actions before a 

failure happens. According to Crespo Marquez (2007, 70), preventive maintenance can be 

carried out based on either time or condition. 

 

Time-based (or predetermined) maintenance is put into practice according to some, usually 

established, time measure. The time measure can be for example a given time period or 

number of used units. However, time-based maintenance does not take into account the 

condition. (Crespo Marquez, 2007, 69-70) Due to the omission of condition, it can be argued 

that the object of maintenance might still be in sufficiently good condition to be used without 

maintenance. This could lead to constantly too early maintenance actions and unnecessary 

maintenance costs. 

 

Condition-based maintenance (CBM) relies on monitoring the performance or the parame-

ters of a certain item. This can be executed in continuous, on-request or scheduled manner. 
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(Crespo Marquez, 2007, 70) The aim of CBM is to avoid unnecessary maintenance actions 

and only recommend actions when it is actually necessary (Jardine et al., 2006). Therefore, 

efficient CBM can reduce maintenance costs by getting rid of unnecessary time-based 

maintenance actions. 

 

Jardine et al. (2006) propose that CBM can be further divided into diagnostics and prognos-

tic. Diagnostics focuses on fault detection, isolation and identification when they appear. 

Prognostics concentrates on failure or fault prediction before they emerge. Based on these 

definitions, it can be said that diagnostics is posterior, and prognostics is prior event analy-

sis. Consequently, prognostics can be argued to be more effective way to minimize opera-

tive downtime. Diagnostics becomes beneficial when prognostics (fault prediction) fails and 

failure actually occur. (Crespo Marquez, 2007, 310-314; Jardine et al., 2006)  

 

Considering everything previously covered, predictive maintenance will fall under prognos-

tics as suggested in Figure 2. PdM applies predictive tools to assess when maintenance 

actions are required in order to avoid failure (Carvalho et al., 2019). There are different 

approaches to PdM and those will be discussed more in subchapter 2.1.2. 

 

To summarize, predictive maintenance has an important role in maintenance. If executed 

efficiently, it can provide great cost-saving benefits. However, the prediction of maintenance 

need is not an easy task as perfect prediction accuracy is basically impossible to achieve 

(Carvalho et al., 2019) .  

 

In order to achieve benefits with PdM, a measure to be predicted is required. In this study, 

remaining useful life will be used as a measure. The concept of remaining useful life in PdM 

will therefore be introduced next. 

 

2.1.1 Remaining Useful Life 
Remaining Useful Life (RUL) is a widely used measure in prognostics and PdM literature 

when predicting time to machinery fault or failure. RUL measures the time remaining before 

an error or failure occurs in the machinery, given the current condition profile of the machin-

ery (Jardine et al., 2006). 
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The definition of RUL can be presented as a conditional random variable (Jardine et al., 

2006): 

                                                   𝑅𝑈𝐿	 = 	 (𝑇 − 𝑡)	|	𝑇 > 𝑡, 𝑍(𝑡)                                             (1) 

In the definition, T signifies a random variable of machinery’s time to failure, t stands for the 

current age of machinery and Z(t) refers to the machinery’s condition profile at current time. 

RUL obviously is a continuous measure and majority of previous studies have also encoun-

tered the problem in that way, meaning regression approach has been used instead of clas-

sification approach. However, as discussed earlier, the purpose of this study is to take the 

less popular approach in the form of classification, as suggested by some studies. The for-

mation of classification framework for this study will be discussed in more detail in chapter 

4. 

 

2.1.2 Prediction Techniques for RUL 
The previous literature has identified various different models for RUL prediction. These 

models can be further categorized and grouped. Zhang, Si, Hu, & Lei (2018) , Jardine et al. 

(2006), Fink et al. (2015), Schwabacher & Goebel (2007) and Liao & Kottig (2014) have all 

proposed to categorize the models rather similarly based on the background of the models. 

The three main categories can be expressed as knowledge-based techniques, model-based 

techniques and data driven techniques. This division is demonstrated in Figure 3 based on 

the literature. The figure does not represent an unconditional truth about the divisions as 

different hybrids between the listed techniques are also possible. It rather serves as a way 

to showcase the focus of this study. 

The knowledge-based techniques usually require special knowledge concerning the ob-

served system. In addition, some failure data is typically needed, which can be expensive 

to acquire. The most common knowledge-based techniques include expert systems and 

fuzzy systems. They try to identify similarities between current situations and previous fail-

ures. (Zhang et al., 2018) 

The model-based techniques commonly rely on the physics of certain system. Predictions 

can be achieved with mathematical representations of the physics of a system’s degradation 

process. Physical models can be fairly accurate but in order to use them it is required to 
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possess a good knowledge of the system’s physics. The prediction accuracy is directly pro-

portional to the quality and accuracy of the used model. (Zhang et al., 2018) 

 

 

Figure 3. Classification of RUL Prediction Models (after Liao & Kottig, 2014; Fink et 
al., 2015; Zhang et al., 2018) 

 

The data-driven techniques utilize existing data to provide predictions. Fink et al. (2015) 

propose that the data could be either failure data or condition monitoring (CM) data. Zhang 

et al. (2018) argue that data-driven techniques are relatively more flexible compared to the 

other techniques, thus making data-driven techniques a popular method in RUL prediction. 

Data-driven techniques can be further divided into statistical approaches and artificial intel-

ligence techniques. Artificial intelligence techniques can be further split into machine learn-

ing (ML) and similarity-based techniques. 

According to Si, Wang, Hu & Zhou (2011), statistical approaches can be further divided into 

two categories based on the CM data and whether it is direct or indirect. Then, the direct 

CM statistical approaches would include methods such as regression analysis, Wiener pro-

cesses, Gamma processes and Markovian analysis. Indirect CM methods would cover sto-

chastic filtering, covariate-based hazard analysis and Hidden Markov and Semi-Markov 

modelling.  
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Regardless of the technique, in practical applications it is usual that a model/system is once 

created and then put into use. For machine learning techniques this means that the training 

is usually stopped at some point not continued after that except for some special cases. 

Retraining can be done but continuous training is not usual for most applications. 

In the scope of this study, the focus is placed on data-driven techniques, more precisely in 

artificial intelligence and machine learning. Therefore, it is not necessary to examine the 

other techniques any further, but rather concentrate on ML techniques. Machine learning 

will be covered more in the next subchapter 2.2. 

 

2.2  Machine Learning 
This subsection will introduce the basic idea of Machine Learning and its potential in Pre-

dictive Maintenance will be discussed. Then, different types of machine learning techniques 

(supervised, unsupervised, reinforcement learning) are briefly explained.  

Machine Learning (ML) is one of the major subfields of Artificial Intelligence (AI) as can be 

seen in Figure 4 (Vijipriya, Ashok, & Suppiah, 2016). The concept of ML is not new as it has 

existed since the 1970’s when the first algorithms were introduced (Louridas & Ebert, 2016). 

The increase in computational power and the persistently growing amount of available data 

combined with development in ML algorithms and theory has led to ML being one of the 

most rapidly growing fields in technology (Jordan & Mitchell, 2015).  

 

 

Figure 4. Major Subfields of AI and Basic ML Paradigms (after Vijipriya et al., 2016) 
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According to Jordan & Mitchell (2015), the field of machine learning is a crossing of computer 

science and statistics. Machine learning is based on past experience and aims to build com-

puters that able to improve automatically using that experience (Jordan & Mitchell, 2015).  

Machine learning can be divided depending on the used type of technique. Jordan & Mitchell 

(2015) suggest that these techniques can be divided into three main paradigms: supervised 

learning, unsupervised learning and reinforcement learning. Based on the problem setting, 

supervised and unsupervised learning can be divided even further, into classification and 

regression, and into clustering and dimension reduction, respectively (Louridas & Ebert, 

2016). The main paradigms of machine learning will be discussed more next. 

 

2.2.1 Main Paradigms of Machine Learning 
As mentioned, types of machine learning techniques can be divided into supervised learn-

ing, unsupervised learning and reinforcement learning. The differences of these types are 

in the way they use data. The supervised and unsupervised learning have in common that 

both use historic data for training phase, whereas reinforcement learning does not use his-

toric data as there is no training phase. 

Training the model means that historic data is given to the model as input and the model 

tries to identify patterns to produce an output. These patterns can then be used in prediction 

when new data is given as input. 

As presented in Figure 4, supervised learning techniques can be divided into regression and 

classification techniques. Basically, a problem would be regression-type when the desired 

output variable is continuous. An example for a regression problem would be house price 

(continuous) prediction or remaining useful life prediction, where certain time measure (con-

tinuous) would be used as predicted output variable. 

In classification-type of problems, the goal is to find the correct class for given inputs. The 

classification problem can be binary or multi-class. For example, whether a customer will 

default or not, is a binary task because the classes would be “yes or “no”. Multi-class task 

would then obviously have multiple possible classes, for example whether a customer be-

longs to group 1, 2 or 3. 

Supervised learning techniques are applicable, when the correct outputs are known. The 

outputs can also be called labels, the data may be called labeled if true outputs are known 
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and unlabeled if not. For regression problems, labeled historic data include the real values 

of output variable for individual instances. Labeled historic data in classification contain the 

correct classes of instances. 

The flow of supervised learning model is demonstrated in Figure 5. The training data, con-

sisting of the labeled historic data, is used with selected machine learning algorithm in order 

to create a ML model. Afterwards the model is trained, inputs of a new instance are intro-

duced to the model and it is able to create a prediction of a class or a value, depending on 

the problem type. 

 

 

Figure 5. Flow of Supervised Learning 

 

The historic data is usually divided into training and testing data. Training data is used to 

train the model and testing data is used to evaluate the model performance. Evaluation with 

training data would result in biased performance metrics as the model has formed the pat-

terns based on that data. Therefore, the testing data can be introduced as new data for the 

model, but because the correct outputs are known, the accuracy of the model predicting 

new instances can be addressed. The evaluation of supervised learning will be discussed 

later in more detail. 
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Unsupervised learning differs from supervised learning in the way that the training data is 

unlabeled. With huge amounts of data, the model may be able to find patterns of similarity. 

Therefore, the purpose is to let the model discover the outputs and apply them to new in-

stances. (Rebala, Ravi, & Churiwala, 2019) The flow of unsupervised learning is illustrated 

in Figure 6.  

 

 

Figure 6. Flow of Unsupervised Learning 

 

One technique of unsupervised learning is to identify and create groups from similar in-

stances. This problem setting is called clustering. Another unsupervised learning technique 

is called dimensionality reduction. Its function is to take the original set of data with various 

dimensions, and then lower the number of dimensions so that the aspects of data would be 

better captured. (Louridas & Ebert, 2016)  

The third one of basic machine learning paradigms, reinforcement learning, does not have 

similar training phase as the other two learning types have. Reinforcement learning is based 

on the model trying to learn from its own experience. Thus, it is based more on trial and 

error. The flow of reinforcement learning can be observed in Figure 7. 
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Reinforcement learning is useful in changing situations and when huge state space is in-

volved. Chess is a good example as the situation (data) is changing continuously whenever 

a move is made, and the model’s proposed next move has to take this changing environment 

into account. On the other hand, chess has close to infinite number of possible situations 

and brute force move optimization is not effective. Reinforcement learning models can learn 

through time to do actions based on the existing situation, aiming to maximize predefined 

goal. (Rebala et al., 2019, 22) 

 

 

Figure 7. Flow of Reinforcement Learning 

 

Based on all the information just presented, supervised learning is the most suitable ML 

approach for a remaining useful life prediction as the historic data is usually labeled. That 

holds true for the dataset used in this study as well. Therefore, the concentration will only 

be on supervised learning from now on. Also, as already mentioned, classification methods 

will be utilized in this study. Thus, the regression methods will not be introduced any further 

as the focus will be kept solely on classification. 
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2.3  Classification Techniques 
This subchapter will introduce the classification techniques used in this study, particularly 

random forest and neural network. Thus, any other techniques, such as SVM, KNN, LR or 

naïve Bayes, will not be introduced as those are not the focus of this study. The literature 

review will cover some other techniques, but it is not required to know the concepts behind 

these techniques. Decision tree is an exception as it is essential in order to understand the 

logic behind random forest. 

The reasons for selecting to use the techniques in question are discussed later in the meth-

odology chapter. Only a very brief introduction of the basic idea of these techniques will be 

presented. 

 

2.3.1 Decision Tree and Random Forest 
Decision tree (DT) is a non-parametric, simple classifier which adapts the structure of a 

hierarchical tree and it can be used to perform supervised classification tasks. The logic 

behind the DT is quite simple. It consists of branches, which are connected with decision 

nodes. Each decision node tests a value of particular feature, and based on the value, leads 

to split. This structure is repeated from the starting node until the terminal nodes. The more 

decision nodes there are, the more complex the DT classifier is. (Dougherty, 2013, 27)  

One benefit of DT is the interpretability as the rules from decision nodes can extracted and 

presented rather intuitively. The usage of DT’s is also quite fast and does not require huge 

computational power in case of classification. However, the classifier tends to overfit easily 

and it has problems when the number of classes increases. (Dougherty, 2013, 38) 

Random forest (RF) is an ensemble method which combines decision trees so that every 

tree is dependent of a randomly sampled vector of values with same distribution for each 

tree in the forest. The randomness in the process makes RF’s accurate predictors and due 

to law of large numbers, they do not overfit like DT’s. (Breiman, 2001)  

 

2.3.2 Neural Network 
Neural networks (NN) are biologically inspired computational models, consisting of elements 

called neurons and connections with weights between them. An NN typically consists of 

input layer and output layer, which are separated by number of hidden layers, usually from 
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one to three. The layers are formed by the neurons, which can connect to the neurons in 

previous and next layers. The main idea behind the model is that neurons take information, 

treat it accordingly in regard with selected activation function and then send the information 

to the next layer. Based on the value on the output layer, the weights between neurons are 

then adjusted so that desired predictive power is achieved. (Kubat, 2015, 91-93; Shanmu-

ganathan & Samarasinghe, 2016, 4-10)  

Neural network is a broad concept and many different modifications fall under the term. Four 

parameters can be considered to define an NN: the type of neurons, the connection archi-

tecture between neurons, the learning algorithm and the recall algorithm (Shanmuganathan 

& Samarasinghe, 2016, 7-8).  

 

2.4  Evaluation of Classification Models 
Evaluation of the models is an important part of the process as it is the only way to compare 

models with each other. It is possible to evaluate the models by two different aspects: how 

well they predict, and how efficient they are. However, only the classification power will be 

considered in this study. Some common evaluation metrics will be introduced and discussed 

in this subchapter. 

 

2.4.1 Binary Confusion Matrix 
Confusion matrix is a very popular approach to evaluate classification models. It provides 

the basis for many common evaluation metrics. A confusion matrix for binary problem is 

illustrated in Figure 8. As can be seen, it is a 2x2 matrix and reports the numbers of correctly 

and incorrectly classified observations. There exist four different possibilities, what an ob-

servation could be: 

•  True Positives (TP): predicted positive, actually positive  

•  False Positives (FP): predicted positive, actually negative  

•  False Negatives (FN): predicted negative, actually positive  

•  True Negatives (TN): predicted negative, actually negative  
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Figure 8. Binary Confusion Matrix 

 

Confusion matrix provides opportunity to calculate different evaluation metrics by using ra-

tios of the four outcomes. Table 1 summarizes some popular confusion matrix -based met-

rics for binary classification (Sokolova & Lapalme, 2009). According to Hossin & Sulaiman 

(2015), accuracy and its opposite misclassification rate (MR) are among the most used 

evaluation metrics. Accuracy and MR have their advantages as those are easy to com-

pute, can be used for both binary and multi-class tasks, and are easy to interpret (Hossin 

& Sulaiman, 2015). Jurman & Furlanello (2010) argue that the role of accuracy is to 

roughly give first expressions about classifier goodness. 

Accuracy and MR also have their limitations. Neither metric offers very distinctive or distin-

guishable values. Additionally, both metrics are not informative about classes and tend to 

favor larger class if the data is imbalanced. (Hossin & Sulaiman, 2015) 

True positive rate (TPR), true negative rate (TNR), false positive rate (FPR) and precision 

pay attention to only one evaluation task as those focus on either positive or negative pre-

diction at a time. These are more informative about the classes and might be useful in more 

specific cases when certain class is preferred over others. On the other hand, there usually 

exists notable trade-offs between these metrics and imbalanced class distribution aggra-

vates situation even further.  
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Table 1. Evaluation Metrics based on Confusion Matrix (Sokolova & Lapalme, 2009) 

Metric Formula Evaluation focus 

Accuracy 
TP	 + 	TN

TP	 + 	TN	 + 	FP	 + 	FN Ratio of correct predictions over 
all predictions 

Misclassification Rate (MR) 1 – Accuracy Ratio of incorrect predictions over 
all predictions 

True Positive Rate (TPR)   
or Sensitivity 

TP
TP	 + 	FN Share of correctly classified posi-

tive instances 

True Negative Rate (TNR) 
or Specificity 

TN
TN	 + 	FP Share of correctly classified nega-

tive instances 

False Positive Rate (FPR) 
FP

FP	 + 	TN Share of incorrectly classified neg-
ative instances 

Precision 
TP

TP	 + 	FP Share of correct predictions over 
predicted positive instances 

F1-score 2 × 	!"#		×		"&'()*)+,
!"#		-		"&'()*)+,

 Harmonic mean of specificity and 
sensitivity 

 

F1-score is a metric that combines the information benefits of TPR and precision in a single 

value. It also allows to favor either TPR or precision if one is more desirable feature than the 

other. Nevertheless, F1-score is not as simple to understand compared to the previously 

introduced metrics. The simpler metrics provide a clear, easy to understand value that al-

lows the interpreter to comprehend what it actually means in reality. F1-score is a good 

measure to compare models, but its transferal into reality is more difficult. 

Thus, it can be said that each evaluation metric has its use. There are differences in their 

informativeness and interpretability. Different metrics suit for different situations and prob-

lems.  

 

2.4.2 Multi-class Confusion Matrix 
Confusion matrix can be crafted also for multi-class classification problems. An example of 

n-class confusion matrix is represented in Figure 9. The interpretation of multi-class confu-

sion matrix differs slightly from binary confusion matrix.  
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Figure 9. Multi-class Confusion Matrix 

 

Now each class needs to be addressed separately. The true positives lie on the main diag-

onal where each predicted class counterparts its true class. In Figure 9, Classi is selected 

to be under investigation and similarly to binary confusion matrix, false positives are lo-

cated in the same column and false negatives in the same row. 

The metrics introduced while ago for binary confusion matrix can be generalized for multi-

class cases. The calculation differs so that a metric will be calculated individually for each 

class which will be used to calculate an average. This can be conducted by either micro- or 

macro-averaging. Micro-averaging tends to favor bigger classes, whereas macro-averaging 

treats the classes equally regardless of the size. (Sokolova & Lapalme, 2009) 

 

2.4.3 Receiving Operating Characteristics Curve 
Receiving operating characteristic (ROC) curve is another metric that can be used to eval-

uate classification models. The curve is constructed by plotting true positive rate against 

false positive rate. Therefore, the curve visualizes the performance of the classifier by 
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showing the trade-off between TPR and FPR. (Fawcett, 2006) Figure 10 provides an exam-

ple of a ROC curve. 

 

Figure 10. Example of a ROC Curve 

As seen in Figure 10, a threshold for a random classifier can be drawn with a simple line on 

the diagonal. If the curve is above that threshold, the classifier performs better than coin flip. 

Perfect classifier would be obtained in the top left corner where TPR is 1 and FPR is 0. 

However, only graphical metric can make it troublesome to compare between models and 

a single number would be more convenient. Area under ROC curve (AUC) provides that by 

simply calculating the area below the curve, thus returning a single value between 0 and 1. 

AUC value of 1 therefore refers to perfect classifier and 0,5 to random classifier. (Fawcett, 

2006)  

AUC has been proven to be better metric than accuracy in performance evaluation (Hossin 

& Sulaiman, 2015). According to Bradley (1997), AUC also has some desirable benefits over 

accuracy. However, AUC do not have well established extension into multi-class classifica-

tion (Jurman & Furlanello, 2010; Sokolova & Lapalme, 2009), which limits its usability in 

more complex problems. 
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2.4.4 Matthews Correlation Coefficient 
Matthews correlation coefficient (MCC) was first introduced by Matthews (1975) for binary 

contingency table. According to Jurman & Furlanello (2010), MCC has then increased its 

popularity among machine learning applications as a good single value metric to summarize 

confusion matrix in binary classification. The MCC for binary confusion matrix can be calcu-

lated as follows (Jurman & Furlanello, 2010):  

 

                         𝑀𝐶𝐶!"#$%& =	
'(	×	'+,-(	×	-+

.('(0-()('(0-+)('+0-()('+0-+)
                        (2) 

 

However, MCC is not limited only to binary classification such as AUC is. Gorodkin (2004) 

proposed a generalization for MCC which can then be applied to multi-class confusion ma-

trix with additional indices: 

      	𝑀𝐶𝐶2345",64$77 =	
∑ 9!!9"#,	9#!9!"$
!,#,"&'

:∑ (∑ 9#!)(∑ 9())$
),(&'
)*!

$
#&'

$
!&' 	:∑ (∑ 9!#)(∑ 9)()$

),(&'
)*!

$
#&'

$
!&'

              (3)  

, where C means class, N is number of classes and indices i, l, m, f and g are referring to 

classes.  

MCC gets values between [-1,1], 1 meaning perfect classification and -1 perfect misclassi-

fication. If the confusion matrix is all zeros except for one column (all instances classified to 

the same class), the MCC gets value 0. MCC takes the class distribution better into consid-

eration compared to the previously introduced metrics, although it does not do it perfectly. 

On the other hand, MCC is rather easy to interpret compared to some more complex metrics. 

Thus, MCC compromises well between interpretability and discriminating the classes, mak-

ing it a good evaluation metric for general purposes. (Jurman & Furlanello, 2010)  

MCC will be used as the primary evaluation metric in this study. It will also be complemented 

with visualizations of confusion matrices. Chapter 4 will provide the reasons for this selection 

in more detail. 
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2.5  Validation 
The classification models, as any machine learning models, need to be validated in order 

to ensure that the model under examination can be generalized, i.e. the model is not over-

fitting and the results are not biased. The overfitting problem is highly likely if all of the data 

is used for training the model, and then conclusions are made using the same data. 

The so-called holdout method is one way to validate the model. The data is divided into two 

subsets, namely training set and testing (or holdout) set. There is no exact correct split ratio 

for that but usually something around 2/3 for training set and 1/3 for testing set is used. The 

model is trained with the training set and testing set will be used to evaluate the model. 

(Kohavi, 1995) This allows to test the model performance with data that is completely new 

to the model and therefore gives a better overview about the generalizability.  

The downside of leaving data for testing is that it reduces the amount of available data for 

training. There exists a trade-off between bias and variance when splitting the data. Larger 

training set decreases the bias but makes the testing set smaller, thus increasing the vari-

ance of test error estimate. (Kohavi, 1995) 

Also, if the testing set is only one random sample of the whole data, there is a possibility 

that it happens to be substantially good or bad sample, thus leading to misleading results. 

Then, the generability of the model might suffer. 

The model construction might have certain interphases, such as parameter optimization. 

The performance with different parameter combinations should be validated with some other 

data than the testing set in order to avoid specifically favorable parameters for the testing 

set. Separating an individual validation set would solve this, but it would reduce the number 

of observations in the training set. 

K-fold cross-validation can be used to validate the results during the interphases. It allows 

the usage of the whole training data, while still leaving the testing data independent. The k-

fold cross-validation method functions so that the training set will be divided into k subsam-

ples which are equal size. That is followed by the model training by using k-1 folds as training 

data and the additional subsample as testing data. This procedure is repeated k times, each 

time the testing sample being different. (Kohavi, 1995) Table 2 demonstrates 5-fold cross-

validation with additional testing set left out. 
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Table 2. Illustration of 5-fold Cross-validation with Separate Testing Dataset 

k = 5 

Whole Dataset 
            

Training Dataset Testing Dataset 
            

Training Validation   
            

Split 1 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Evaluation Metric 1 
Split 2 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Evaluation Metric 2 
Split 3 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Evaluation Metric 3 
Split 4 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Evaluation Metric 4 
Split 5 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Evaluation Metric 5 

            Average Evaluation Metric 
            

 

The performance obtained with cross-validation can be defined with average of all combi-

nations’ evaluation metrics (Arlot & Celisse, 2010). The procedure illustrated in Table 2 re-

flect the cross-validation to be used during the model construction phase while the final 

performance is evaluated using the separate testing set. 

This study will utilize the validation strategy presented in Table 2. Thus, the data will be 

divided into training and testing sets. Then, 5-fold cross-validation will be performed with the 

training set to optimize the parameters. Finally, the final models will be trained with whole 

training set and the evaluation will be done using the testing set. 
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3 Literature Review 
This chapter will focus on reviewing the earlier literature related to remaining useful life es-

timation with classification methods. First, the process of finding and selecting related liter-

ature will be shortly explained. That will be followed by the actual reviewing and discussing 

section. 

 

3.1  Search Process 
As it has been already mentioned earlier, the existing amount of research concerning RUL 

prediction with classification approach is rather limited. This fact made the construction of 

the literature review quite challenging as it should be about articles that somehow relate to 

the subject under investigation. 

Regardless of the challenges and limitations, a literature review has to be conducted. Web-

ster and Watson (2002) suggest that the searching process should be done using a struc-

tured approach in the determination of selected literature. The procedure used in this study 

is demonstrated in Figure 11. 

Finna was used as primary searching platform to begin the process but as explained soon, 

some other resources had to be used as well in order to collect somewhat sufficient amount 

of related literature. Finna is a platform that among other things has access to multiple da-

tabases containing articles published in scientific publications. Finna was used as the first 

option for searching as it covers wide range of publications and also grants access to them. 

Finna search provided 47 articles. Titles and abstracts of these articles were reviewed and 

based on that the relevant articles were chosen. Classification was the matter that was es-

pecially looked to be included in these articles. However, majority of them did not have an-

ything to with classification. After reviewing this set of articles, only three articles turned out 

to be relevant. 

Google Scholar was used next. Keywords “classification in RUL prediction” were used and 

the based on the title some potential articles were reviewed. Again, classification aspect was 

a demanded feature, and thus this action resulted in one more related article.  
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Figure 11. The Literature Search Process 

 

Lastly, the NASA prognostics center’s list of publications was reviewed. There is a total of 

around 100 articles related to prognostics, which of 68 are related to the turbofan dataset. 

Based on the title, the articles were reviewed, and potentially related articles were taken into 

further reviewing. Total of three articles were chosen from the NASA’s list.  

As suggested by Webster & Watson (2002), the articles were backward and forward tracked 

as well. This resulted into 11 new articles, making the total number of articles 17. Such a 

low number of articles is not desired but on the other hand the usage of classification in RUL 

prediction has clearly not been very popular method. Therefore, the literature review will 

have to be conducted with rather small amount of literature. The collection of literature could 

be considered to be representative sample of the related research, but not all-inclusive in 

any means. 

An observation from the search process is that very few of the articles actually mention 

classification in title or abstract, even though classification is the only methodology used. 

This makes the literature gathering rather difficult as there really is not any keywords these 

articles have in common. Too broad searches with tens of thousands of matches are not 

2

• Finna
• "Classifica2on" AND "Remaining useful life" (2tle) AND peer reviewed AND available
• Resulted to 47 ar2cles, reviewed based on 2tles and abstracts

1

• Google Scholar
• "Classifica2on in RUL predic2on"
• Reviewing first few pages of results based on 2tles and poten2al ar2cles looked in more detail

3
• NASA Prognostics Center
• Around 100 articles, reviewed based on titles and potential articles looked in more detail 

11
• Backward and forward tracking of articles

17
• Total Amount of ar-cles included in the literature review
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ideal as it is overly time consuming. Therefore, the more reasonable option was to find some 

articles and then backward and forward track them.  

As the supply of literature was narrow, some of the selected articles’ main focus is not solely 

in creating a classification framework for RUL prediction. Classification might have been 

used as a framework to investigate some other subjects, such as feature selection. On the 

other hand, most of the articles are not focused exactly on RUL prediction but are still han-

dling with very similar type of problem, such as health state or fault prediction. 

 

3.2  Review 
The reviewing will be carried out by going through all of the selected articles. The contents, 

methods and relevant results will be discussed, and especially matters that can be used to 

help create the methodology for this study will be evaluated with particular consideration.  

The literature review could be done as either author-centric or concept-centric (Webster & 

Watson, 2002). They argue that the review should be compiled as concept-centric as the 

concepts better determine the review’s framework. However, in the case of this study, the 

literature cannot be divided in clear concepts and therefore using purely concept-centric 

approach would not provide any more clearness than a mixture of the two approaches. 

As the number of articles is so scarce, every article will be reviewed independently. Table 3 

is composed to give a quick overview of the selected articles. After reviewing all articles, the 

findings will be summarized in a concept matrix which allows to examine the literature more 

from the concept perspective. 

Table 3 shows that only a few of the articles in principle focus on RUL prediction. There are 

different definitions for the problems such as failure, fault or maintenance need prediction. 

In practice, the objective can be viewed to be the same or at least very similar as these 

studies try to predict whether a failure will happen in a given amount of time. Phrases time 

interval and time frame will be used when discussing this amount of time. 
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Table 3. Summary of Reviewed Literature 

Author(s), year Objective Used data 

Letourneau, Famili & Matwin, 
1999 

Aircraft component replacement 
need prediction Data of 34 aircrafts 

Yang & Letourneau, 2005 Failure prediction with multiple 
classifier system Train wheel data 

Yang & Letourneau, 2009 Two-stage classification to esti-
mate time-to-failure Train wheel data 

Georgescu, Berger, Willett, 
Azam & Ghoshal, 2010 Feature reduction 

NASA's turbofan dataset, 
breast cancer dataset, iono-
sphere dataset 

Kusiak & Li, 2011 Fault and fault category prediction 
with classification Wind turbine data 

Xue, Williams & Qiu, 2011 
Creating a noise-label framework 
for classification models in fault 
prediction 

Bearing dataset and NASA's 
turbofan dataset 

Zaluski, Letourneau, Bird & 
Yang, 2011 

Predicting the need of component 
replacement with classification Aircraft component data 

Zhao, Georgescu & Willett, 
2011 Feature reduction NASA's turbofan dataset 

Bluvband, Porotsky & Tropper, 
2014 

Comparison of regression and clas-
sification models for critical zone 
prediction 

NASA's turbofan dataset 

Kauschke, Schweizer, Fiebrig & 
Janssen, 2014  

Failure prediction with classifica-
tion DB Schenker Rail data 

Li, Parikh, He, Qian, Li, Fang & 
Hampapur, 2014 

Alarm and failure prediction with 
classification 

Train-, maintenance-, weather- 
and schedule data 

Fink, Zio & Weidmann, 2015 RUL prediction with classification Discrete-event data of railway 
operations disruptions 

Kauschke, Janssen & 
Schweizer, 2015 

Failure prediction with classifica-
tion 

DB Schenker Rail system log 
data 

Zhao, Al Iqbal, Bennett & Ji, 
2016 Fault prediction with classification Wind turbine data 

Böhm, 2017 RUL prediction with classification Railway switch engine data 
Al Iqbal, Zhao, Ji & Bennett, 
2018 

Fault detection and prediction 
with classification Wind turbine data 

Allah Bukhsh, Saeed, 
Stipanovic & Doree, 2019 

Maintenance need and type pre-
diction Railway switch engine data 
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The review is divided into two parts. The first part focuses on binary classification and the 

second part include the review on multi-class classification. This procedure allows the liter-

ature review to take a step closer into concept-centric approach. 

 

3.2.1 Previous Research on Binary Classification 
Letourneau, Famili & Matwin (1999) used classification technique to predict the need of 

component replacements in aircrafts. They viewed the problem as a binary classification 

task, replace or do not replace component. Data of 16 different components was used and 

the time interval was determined separately for each component, ranging between 10 and 

40 units of time. They used KNN, C4.5 decision tree and naïve Bayes as algorithms and 

calculated own scoring function for evaluation. It was founded that none of the algorithms 

outperforms other algorithms for every component. 

Yang & Letourneau (2005) implemented a multiple classifier system to predict train wheel 

failures using decision trees and naïve Bayes along with additional cost information. The 

multiple classifier system was created by first conducting base-level models for different 

features, which were used to create new training dataset. Then, meta-level models were 

made with the new training set. The meta-level model predicted 97% of failures with an 8% 

false alert rate. They did not find the algorithms to be much different in terms of performance. 

Yang & Letourneau (2009) developed a two-stage classification system to predict train 

wheel failures. The first stage was a binary classification determining whether fault would 

occur and if positive, the second stage would predict when the fault occurs with a 4-class 

classification. As in their previous study, decision tree and naïve Bayes were used as algo-

rithms. Regarding the binary classification, it was found out that 97% of failures could be 

predicted with an 8% false positive rate, and these results very similar compared to the 

previously obtained results.  

Georgescu, Berger, Willett, Azam & Ghoshal (2010) and Zhao, Georgescu & Willett (2011) 

were investigating feature reduction for classification using NASA’s turbofan dataset among 

other datasets. Support vector machine (SVM) and proximal support vector machine were 

the used algorithms and accuracy the used performance metric for both studies.  

Regarding these two studies, the interest lies in the results obtained with the turbofan da-

taset as it is the only one related to predictive maintenance. The earlier study used a time 
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interval of 15 units of time before failure to create binary classes, and around 70% accuracy 

was reached (Georgescu et al., 2010). The later study used mean RUL as the time interval 

for binary classification and resulted in similar results with 70% accuracy (Zhao et al., 2011). 

Both studies discovered that better accuracy is achieved when less features were included 

in the models for the turbofan dataset and principal component analysis (PCA) performed 

as the best feature reduction algorithm. 

Kusiak & Li (2011) performed binary classification to predict faults of wind turbines with ar-

tificial neural network (NN), NN ensemble, boosted tree algorithm (BTA) and SVM. Perfor-

mance was measured with accuracy, true positive rate (TPR, also sensitivity or recall) and 

true negative rate (TNR, also specificity). NN ensemble was found to be the best one with 

74% accuracy, 83% TPR and 65% TNR but the differences to regular NN were minor and 

partially mixed.  

Xue, Williams & Qiu (2011) also performed fault prediction with binary classification. Their 

main objective was to build a framework for noisy labels, and this was demonstrated with 

bearing and turbofan datasets using different time intervals and portions of training data. 

Logistic regression (LR) was used to train models and area under curve (AUC) to evaluate 

them. They were able to obtain rather good results with their framework as the reported AUC 

values were over 0.85 for most of the combinations of time intervals and training data por-

tions and some combinations were close to 1. 

Zaluski, Letourneau, Bird & Yang (2011) predicted the need of component replacement for 

aircraft by the means of classification. They tested a total of 18 different algorithms for two 

different datasets and used two custom evaluation metrics, scoring function and problem 

detection rate, along with TPR and precision. The results show that none of the utilized 

algorithms generated accurate predictions in terms of TPR (5-87%) or precision (31-85%), 

while both never being on a high level at the same time. 

Bluvband, Porotsky & Tropper (2014) compared classification and regression approach in 

critical zone prediction and the comparison was carried out by using the turbofan dataset. 

They utilized SVM and SVR (support vector regression) as algorithms and for classification 

time interval of 20 units of time before failure to separate the binary classes. Three custom 

scoring functions which emphasize early and late predictions were used to compare SVM 

and SVR models. It was found that classification outperforms regression in terms of these 

scoring functions. 
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Kauschke, Schweizer, Fiebrig & Janssen (2014) researched train component failure predic-

tion by utilizing system log data. Binary classification was applied to predict failure of a single 

component and the experiments were produced for different timeframes. They used random 

forest (RF), sequential minimal optimization (SMO), JRip and J48 as algorithms and perfor-

mance was measured with AUC, F1-score, precision and TPR. The result showed that RF 

produces the best outcomes, even if the data is highly imbalanced. However, by addressing 

the imbalance by increasing the timeframe, better results can be achieved. 

Li, Parikh, He, Qian, Li, Fang & Hampapur (2014) applied binary classification to predict 

failure alarms and train component faults. The alarm prediction for two different time inter-

vals was done with SVM and DT as a benchmark while TPR and FPR were used to measure 

performance. It was found that SVM performs better than DT. However, they focused on 

minimizing the FPR on the expense of TPR. The portion of false positives was very close to 

zero but then only 45,4% of the true positives could be identified. The fault prediction was 

carried out with only DT with focus on rule simplification and user interpretability which lead 

to TPR of 97% and FPR of 0,23%. 

To the best knowledge, Fink et al. (2015) are one of the few who actually approached the 

problem especially as remaining useful life prediction and then reshaped it into a classifica-

tion problem. They predicted the RUL of train components using binary classification and 

extreme learning machine (ELM) and neural network as algorithms. The performance of the 

models was measured by TPR, TNR and misclassification rate (MR). ELM outperformed NN 

by far with this data, and NN performed almost as a random classifier with about 50% MR. 

Kauschke, Janssen & Schweizer (2015) utilized binary classification to predict train failures. 

Random forest, JRip and Bayesian network were the used algorithms with different time 

intervals and feature selection algorithms. AUC, accuracy, TPR and precision were the em-

ployed performance metrics. RF turned out to be performing the best out the tested algo-

rithms. 

Zhao, Al Iqbal, Bennett & Ji (2016) and Al Iqbal, Zhao, Ji & Bennett (2018) proposed a soft 

label binary classification framework to wind predict wind turbine faults. The soft labeling 

was implemented to deal with uncertainty in the label information. Zhao et al. (2016) used 

SVM and k-nearest neighbors (KNN) with different loss functions. SVM with the proposed 

soft labeling technique performed the best. Al Iqbal et al. (2018) added RF along with SVM 
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and KNN, and it was found that RF outperformed the other algorithms. Both studies utilized 

AUC to measure performance. 

Allah Bukhsh, Saeed, Stipanovic & Doree (2019) applied binary classification to predict 

maintenance need of railway switches. They used tree-based algorithms DT, RF and gradi-

ent boosted tree. Performance was measured using accuracy, MR, F1-score and kappa. 

Gradient boosted tree slightly outperformed the other two algorithms in terms of every met-

ric, but the differences were rather marginal. 

 

3.2.2 Previous Research on Multi-class Classification 
Yang & Letourneau (2009) as discussed in the previous subchapter, included a 4-class clas-

sification as the second stage of their model for train wheel fault prediction. Similar to the 

first stage binary classification, decision tree and naïve Bayes were used as algorithms. The 

multi-class classification was executed both individually and as part of two-stage classifica-

tion. Comparison with the binary model shows that the problem detection rate was signifi-

cantly lower and the false alert rate higher for the multi-class model. However, the two-stage 

classifier resulted in lower false alert rate than either binary or multi-class model but was the 

worst one to detect problems. Based on these results, it can be stated that binary model 

seems to perform better than multi-class model but including two stages into the model do 

not provide improvement in the results. 

Zhao et al. (2011) also experimented multi-class classification along with binary model. As 

discussed earlier, they worked with the turbofan dataset and created three different 4-class 

classification systems. It is notable that the lowest thresholds for all three systems are quite 

high, 75, 125 and 150, meaning that the first class includes all the observations with RUL 

lower than these.  

To consider these from PdM point of view, it is reasonable to question whether it provides 

any useful information about the remaining useful life and maintenance need. On the other 

hand, Zhao et al. (2011) were not focusing on PdM rather feature selection. Regardless, it 

was found that the performance increases when the lowest threshold is increased. Addition-

ally, fewer number of features mainly resulted in better results. 

Böhm (2017) performed prediction of railway switch engine remaining useful life with multi-

class classification. Two classification systems were constructed and the time intervals to 
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separate classes differed significantly to any previous study. Geometric sequence (2x) was 

used to determine the thresholds and this resulted into 14 classes, the smallest class con-

taining observations with less than 1,5 hours to failure and largest class containing obser-

vations with over 256 days to failure. The other system’s class boundaries were manually 

picked, including 10 classes. 

Böhm (2017) used NN, SVM, DT and KNN algorithms to create models. Matthews correla-

tion coefficient (MCC) was used as a single value metric and confusion matrix as a more 

comprehensive metric to measure performance of the models. It was found that SVM with 

radial basis function kernel worked the best as MCC values were close to one for both class 

formations. The confusion matrices showed that the smaller classes were more difficult to 

get right compared to the larger classes.  

 

3.3  Summary of Literature Review 
The literature review provided answers for the first research question “How previous re-

search has approached RUL-type problems with classification?” and for the subquestions 

under it. Table 4 represents a concept matrix which summarizes the main findings. 

It can be seen from Table 4 that both binary and multi-class classification have been utilized 

when approaching RUL-type problems. However, the binary approach has been much more 

popular as only three out of 17 reviewed studies applied multi-class classification. Therefore, 

it looks like multi-class approach is more in need of further research. 

Binary classification is arguable the simpler, and probably also the more robust way to solve 

the problem. On the other hand, the multi-class approach provides more informative 

knowledge about the remaining useful life but as said, the complexity increases which pre-

sumably affects the performance.  

Other observation regarding the first research question is that the used time intervals varied 

a lot between studies. Some studies had rather short time intervals, and some had very 

large. Obviously, it is dependent on the data and there is no correct time interval to choose 

that would be ideal for each RUL prediction case. The time intervals need to be determined 

by considering the real-life applications so that maintenance actions can be made in proper 

time. 
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Table 4. Concept matrix 
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The time interval selection also affects the class balance. This is especially true for binary 

classification as if the time interval is short, it means there are lot less observations in that 

class. The imbalance of classes might cause some trouble, and therefore it can be said 

there is at least some sort of trade-off. 

Table 4 also provides an answer to the subquestion “Which algorithms have been used most 

in RUL classification?”. Wide range of different algorithms have been used. Support vector 

machine (SVM) and decision tree (DT) are among the most used algorithms and those have 

been used quite steadily during the whole time period covered in the review. It is also no-

ticeable that the usage of random forest (RF) has increased during the recent years. 

Based on the received results in the literature, a conclusion can be made that no algorithm 

is superior to others. The results for different algorithms have proved to fluctuate a lot be-

tween and even within studies. Different algorithms suit better for different data, in other 

words, the algorithms are data specific and cannot be generalized too broadly. 

Finally, the answer for the second subquestion “How the performance of classification mod-

els has been evaluated?” can as well be found from Table 4. Accuracy, true positive rate 

(TPR) and area under curve (AUC) have been popular choices to measure performance. 

Additionally, other simple metrics based on confusion matrix such as TNR, FPR, MR or 

precision have been used quite a lot. These are quite straightforward and easy to use and 

interpret which is probably why these have been extensively selected even though they 

might have some weaknesses. 

In some studies, own scoring functions have been calculated or more complex confusion 

matrix -based metrics such as F1-score and Matthews correlation coefficient (MCC) have 

been applied to measure performance. Using more advanced metrics might provide better 

understanding about the performance but can be more difficult to interpret in real-life cases. 
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4 Methodology 
This chapter will introduce the methodology that will be used in the empirical part of the 

study. Figure 12 visualize the process of creating a ML model. First, the data used to illus-

trate the methodology has to be selected and gathered. 

Secondly, the problem setting itself needs to be addressed. The continuous RUL prediction 

needs to be converted into a form of classification problem. Then, the data probably requires 

some pre-processing before it can used to train the model. 

 

 

Figure 12. Model Creation Process 

 

Additionally, the selection of classification models used will be discussed. After all these 

preparations, the models can be trained and validated. Finally, evaluation can be done, and 

models compared with each other. The results will be presented and discussed in chapter 

5. 
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4.1  Data 
NASA’s Turbofan Engine Degradation Simulation Dataset was selected because the da-

taset had good amount of observations and it was easy to access. The dataset is publicly 

available on The Prognostics Data Repository, a dataset collection which focuses only on 

prognostics data (NASA Prognostics Center, 2020).  

The simulation of turbofan engine degradation has been carried out by using Commercial 

Modular Aero-Propulsion System Simulation (C-MAPSS), which is a turbofan engine simu-

lation environment. The dataset consists of four independent subsets, that were each sim-

ulated under unequal combinations of conditions and fault modes. (Saxena & Goebel, 2008) 

The descriptions of the four independent datasets are presented in Table 5. As mentioned, 

the combination of conditions and fault modes is different between each set. Also, the num-

ber of simulated units is different, thus leading to different number of observations in each 

subset.  

 

Table 5. Description of the Turbofan Dataset 

Data 
subset 

Number of Train 
Units 

Number of Test 
Units Conditions Fault Modes 

FD001 100 100 ONE (Sea Level) HPC Degradation 

FD002 260 259 SIX HPC Degradation 

FD003 100 100 ONE (Sea Level) 
HPC Degradation, 

Fan Degradation 

FD004 248 249 SIX 
HPC Degradation, 

Fan Degradation 

 

The structure of the dataset is shown in Table 6. Each data subset consists of particular 

number of units representing individual engines, and a time series of cycles is provided for 

each unit. Thus, the data can be considered to represent a fleet of similar type engines. At 

the start of the time series, every unit starts with different, unknown degree of initial usage 

and variation of manufacturing. However, the usage and variation are normal and not con-

sidered to be a fault condition. (Saxena & Goebel, 2008)  
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At the start of each time series, the units are operating normally, and the faults develop 

over time. The difference between train and test sets is that the train sets have the com-

plete time series until failure, whereas time series of test sets end before failure happens 

and there is still remaining useful life left. The test sets also include the true RUL values 

(bolded in Table 6) at the last included cycle. (Saxena & Goebel, 2008)  

Additionally, the time series contain three operational setting values and 21 sensors val-

ues. The operational settings illustrate the conditions and affect the performance of an en-

gine significantly. The sensor values contain measurement values from actual sensors in 

an engine and the fault should be recognized from these values. (Saxena & Goebel, 2008)  

 

Table 6. The Structure of the Turbofan Data (Dataset FD001) 
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The RUL column on the right-hand side was not provided with the dataset hence it is calcu-

lated based on the cycle. For train sets, the last cycle gets RUL of zero as the failure occurs 

during that cycle. Then, RUL is raised by one for each cycle until the beginning of time series 

is reached. For test sets, the RUL was provided for the last given cycle. Then similarly to 

the train set treatment, it was raised by one until the first observation. 

 

4.2  Classification Framework 
As already made clear earlier, this study takes a rather rarely used approach for RUL pre-

diction in form of classification. Predicting remaining useful life can be rather challenging 

task, especially if uncertainty is involved in measurement data and the prediction horizon is 

long compared to the unit of time (Böhm, 2017). It can be stated that at least the prediction 

horizon in the case of this study is rather long for the most parts as can be observed from 

Figure 13. Majority of the observations have RUL over 100 cycles. 

In addition, it is not too informative to know the exact RUL when it is high. Classification 

approach can address this issue if the class structure is defined accordingly. Therefore, a 

well-defined classification model could provide near the same amount of useful information 

as a regression model would. However, it must be addressed that converting the problem 

into classification form will cause losing the time series feature from the data set. 

In order to use classification methods for RUL prediction, the continuous problem has to be 

first converted into discrete problem. That said, the RUL has to be divided into intervals 

covering certain time periods. However, defining the intervals can be challenging. 

The best approach for defining the intervals should be considered to be based on the nec-

essary lead time to predict failures (Böhm, 2017). After all, the reason to predict RUL in the 

first place is to know when to take maintenance actions before it is too late. 

If considering turbofans, the maintenance actions involve at least workforce and spare parts. 

Furthermore, some spare parts might require ordering if those are not being held at stock. 

This would have to be considered in the required lead time as time needed before mainte-

nance could be performed gets longer. Also, the maintenance means that the turbofan in 

question cannot be used. Hence, scheduling of maintenance is important as it is assumed 

that having the whole fleet maintained simultaneously is not desirable.  
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A modifiable binary classification model like suggested by Fink et al. (2015) could be con-

sidered if the lead time is known. Nevertheless, it could be considered slightly uncertain and 

less informative as it does not tell whether the selected threshold is close or not and there-

fore might require rather quick actions. 

On the other hand, it must be addressed that the approach which requires modifying would 

not be practical. In most real applications, it is expected that predictive models are trained 

for some time and then put into practice whereupon the training will stop. The models might 

be retrained occasionally, but constant, continuing training is not usually the case, except 

for some special applications. Thus, the approach which requires a lot of continuous modi-

fying would not fit the needs of most practical applications. 

The multiclass framework proposed by Böhm (2017) should be considered more informa-

tive, thus not requiring the changing of time intervals. Even when using a multiclass model, 

the information about lead time should be considered and the intervals set in accordance 

with those. But as mentioned earlier, the purpose of this study is not to investigate the re-

quired lead time to perform maintenance on turbofan engines, rather the focus is on show-

casing the classification approach to the RUL problem. 

Thus, the intervals in this study will not take into account the actual required lead time. How-

ever, three different multiclass interval settings will be formed, and it is reasonable to as-

sume that at least one of these should include close to realistic lead times. Nevertheless, 

none of the three formed classification systems cannot be justified from practical standpoint. 

The first two systems are based purely on mathematics which will be discussed more 

shortly. The last system will be formed manually with focus on creating some distinction to 

the other two systems, thus no precise practical aspect is considered. 

Before defining the intervals, the distribution of RUL should be examined. The distribution 

of whole dataset divided into train and test sets can be seen in Figure 13. Both the train sets 

combined, and the test sets combined contain the time series of 708 units. As the train set 

consisted of time series until the failure, there are fixed number (708) of observations for 

RUL from zero to 127, and after that the number of observations per RUL value begins to 

decline rather rapidly.  
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Figure 13. Distribution of RUL Values for Train and Test Sets 

 

The time series in test sets were cut before failure occurred and thus there are less obser-

vations with small RUL values. The smallest value is six and it appears only eight times. The 

number of smaller values (RUL under 50) is significantly lower than the number of most 

common values (around RUL of 100-200). That could be problematic when converted into 

classes if the given train and test sets would be preserved as they are because train and 

test sets would be completely differently distributed. 

The options would be to use only the train set and divide it into again into train and test set, 

which would keep the class distribution more even. Another option is to combine train and 

test sets together, and then randomly split them into train and test sets. The latter option 

seems more reasonable because in reality, it is probable that the new data introduced for 

the model is more similar to the current test set than to the train set. Another reason why 
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both sets should be included is that the overall number of data points the model can learn 

from is much larger. If test set was left out, the data would be 104897 instances smaller 

whereas with test set, it consists of 265256 observations. 

It is reasonable to assume that the desired intervals are higher resolution for small RUL 

values and lower resolution for long RUL values. This meaning that it is more important to 

know whether the RUL is 5 or 15 than it is to know whether the RUL is 150 or 200. Here, 

the assumption is that the time needed to react is on the lower side of the RUL distribution, 

probably for most applications something between one and 50 units of time, depending from 

the unit of time. Therefore, the considered intervals should be shorter near zero and become 

longer when RUL increases. 

Böhm (2017) suggests a geometric sequence (2x) to represent intervals, which is easy to 

implement, mathematically precise and fits well to the requirement of better resolution for 

small RUL values. This will be used as way to create the intervals. The classes will be formed 

with geometric sequence as follows: 

𝑅𝑈𝐿	𝑐𝑙𝑎𝑠𝑠 = 	 9
1:	0									 ≤ 		𝑅𝑈𝐿		 ≤ 	 2!													
	𝑖:	2"#$ 				< 		𝑅𝑈𝐿		 ≤ 	 2"#%										
	10:	2& 							< 		𝑅𝑈𝐿																														

                       (4) 

 , 𝑤ℎ𝑒𝑟𝑒	𝑖 = 2, 3, 4, … , 9																																																																																					     

With this class division, there are total of 10 classes. The numbers of observations in each 

class are shown in Figure 14. The number of observations in the first classes is very small 

compared to the latter classes, thus the data is highly unbalanced, which was supposed. 

Another classification system will be constructed so the performances can be compared. 

The second system should be a little simpler at the beginning when RUL values are small, 

but at the same time still have somewhat shorter intervals for smaller values. Then, the 

classes with small RUL values should not be as highly unbalanced as the previous classifi-

cation system created, and it should still have the ability to focus on smaller RUL values. 

Again, the geometric sequence can be utilized with the modification to the first interval 

bound: 

𝑅𝑈𝐿	𝑐𝑙𝑎𝑠𝑠 = 	 9
	1:	0																				 ≤ 		𝑅𝑈𝐿	 ≤ 	2! × 10															
	𝑖:	2"#$ × 10					 < 		𝑅𝑈𝐿	 ≤ 	2"#% 	× 10										
	6:	2' × 10								 < 		𝑅𝑈𝐿																																						

                  (5) 

, 𝑤ℎ𝑒𝑟𝑒	𝑖 = 2, 3, 4, 5																																																											 
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This kind of class formation leads into six classes. The class distribution is visualized in 

Figure 14 along with the first system’s distribution. Like said, the second classification sys-

tem has slightly more equal classes. Of course, there still is huge difference in class size 

between the first two and the last two classes, but compared to the differences in system 1, 

it is much more acceptable.  

One more classification system will be created in order to reduce the number of classes 

even further. The last system is not based on any clear sequence. It is constructed by simply 

selecting thresholds so that the lowest interval is wider compared to system 2 and the next 

few classes would still be relevantly informative. The system 3 has four classes which are 

determined in the following way: 

𝑅𝑈𝐿	𝑐𝑙𝑎𝑠𝑠 = 	K

	1:		001		 ≤ 		𝑅𝑈𝐿		 ≤ 		201									
2:		201		 < 		𝑅𝑈𝐿		 ≤ 		601								
3:		601		 < 		𝑅𝑈𝐿		 ≤ 		100								
	4:		100		 < 		𝑅𝑈𝐿		 < 100											

		                                (6) 

 

As the interval of the smallest class was lengthened, the number of observations in that 

class obviously increases which can be seen from Figure 14. The time intervals of the next 

two classes are equal length but rather small so that some information regarding the 

maintenance need is provided. This leads to the last class being very large both in terms 

of time and number of observations. 

The classes could be shaped so that all classes would be close to equal. However, in order 

to do so, the first classes would have to cover longer interval, which would lead to weakening 

resolution. For example, it could be assumed to be important to know whether there is 10 or 

30 days (or cycles) before failure occurs. On the other hand, the classes with high RUL 

could be adjusted to shorter intervals. This would lead to a lot higher number of classes and 

those classes not providing too much information as in practice it should not be too relevant 

to know whether the RUL is 300 or 400. Therefore, these three classification systems are 

used and investigated in this study. 
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Figure 14. Class Distributions 

Supposedly, system 2 should be able to perform better than system 1. That is because 

system 2 has lesser number of classes and the distributions are better. Furthermore, it is 

expected that system 3 will perform better than system 2, and even though it has one class 

being much more unequal, the sensor values should be relatively constant at higher RUL 

values. It remains to be seen whether these presumptions are correct when the models are 

created and compared. And if so, it is also interesting to see how much differences there 

are in terms of performance.  

 

4.3  Data Pre-processing and Feature Selection 
The next step is to perform data pre-processing. Figure 15 illustrates the data treatment 

done in this study. The dataset was complete in respect to no missing data. Thus, no further 

actions were required to deal with any incomplete instances. 
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A portion of the pre-processing is already done. First, the RUL variable was calculated. Like 

mentioned before, for train set this was done using the cycle variable by reversing it. For 

test set, the provided RUL for the last cycle was used to generate RUL’s for anterior cycles. 

Then, three classification system variables were created by using the RUL variable. This 

process has been already explained in more detail in the previous subchapter. 

 

 

Figure 15. Data Treatment Process 

 

The range of values for different features were on quite diverse scales as could be noticed 

earlier on Table 6. Therefore, data normalization is recommended in order to avoid possible 

problems with biased variable importance due to high absolute differences in values. Nor-

malization changes the structure so that the relative differences remain the same, but the 

values lie on a smaller scale.  

The normalization is performed by using the so-called z-score normalization. The z-score 

normalization calculates new values by subtracting the column mean from the original value 

and then dividing the remainder by column standard deviation. 

Technically, all of the provided features were continuous and therefore normalization was 

applied to all features. However, closer looks at features showed that some of them were 

more categorical than continuous as each of them did have only 2-6 different values across 

all observations. 
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Training set 68 % Tes2ng set 32 %

Data for analysis
3 target variables with 22 features

Removal of features
Sensors 10 & 19

Transformation into categorical
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Normaliza,on
Z-score normaliza2on

Adding new variables
RUL, RUL classes

Original data
24 features, 265256 instances
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Considering the fairly large number of observations, it could be assumed that these values 

are the only ones that can ever appear. However, this can turn out to be quite naive expec-

tation if other values are actually possible in reality. On the other hand, the algorithms were 

not able to handle these variables as continuous and therefore total of five features were 

turned into categorical variables. These features were operational setting 3 and sensors 1, 

5, 16 and 18. 

Finally, two features were cut out due to similarity and limited amount of values. Sensor 19 

was perfectly correlated with operational setting 3 and thus was not providing any new in-

formation. Sensor 10 had similar problems with continuity as the few other features. 21 dif-

ferent values existed across the observations hence making it closer to a continuous varia-

ble than the previous ones but again, the algorithms could not handle it as continuous. 

Therefore, it was left out as it seemed more probable that a value outside these 21 values 

could occur in future which would then be unknown to the model. 

The processed data consists of 22 features and three dependent variables which represent 

the different classification systems. Some further feature reduction could have been done 

but as the number of features is rather low anyway, it was decided to keep the rest of the 

features to get as much information as possible. Fewer number of features could be more 

efficient in terms of computational requirements and in practice could be the better option if 

it would lead to similar results. Nevertheless, this study will take advantage of all the usable 

features. 

As the last pre-processing step, the data will be divided into training and testing sets. As all 

of the data is used and the pre-determined datasets have different combinations of operating 

conditions and fault modes, certain amount of observations will be taken from each dataset 

for training and testing sets. 

The division will not be done as random sampling because testing set is desired to be con-

sisting of full unit data. This approach aims to create the testing set so that it would represent 

data of new engines that the model has not encountered before. Also, it keeps class distri-

bution somewhat similar between training and testing sets as both have full RUL cycles of 

units. 

The division is executed by selecting the first 70 units of FD001 and FD003, and the first 

170 units of FD002 and FD004 for the training set and the rest for the testing set. This leads 

approximately to 68/32 % -split.  
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4.4  Classification Algorithms 
The problem type has now been changed as the continuous RUL is converted into discrete 

classes and the faced problem is now a multiclass classification task. Like discussed in 

chapter 2, supervised methods can be used because the data set is labeled. Various differ-

ent classification techniques exist which can be used to solve a classification problem.  

In essence, there is no generally best algorithm to solve a problem, which is also known as 

the “No Free Lunch” -theorem. This holds true even for algorithms that are generally suita-

ble. A technique’s ability to solve a certain problem can be heavily dependent about the 

used algorithm and parameters, thus the configuration might determine the success of a 

technique for a given problem. (Duda, Hart, & Stork, 2012, 454-458) 

Many different algorithms could be included and see how they perform with the data used 

in this study. However, as just discussed, some algorithms could be very dependent of pa-

rameters, thus adequate testing would be computationally exhaustive and time consuming. 

Due to this, only two different algorithms will be considered. 

Fernandez-Delgado, Cernadas & Barro (2014) performed extensive testing with 179 algo-

rithms from 17 different families and found that RF’s and SVM’s are the top two families 

while the different versions of NN’s also performed well. Even though there is no real reason 

why these techniques should work the best with this data, they should be considered to be 

tested out as they generally seem to perform well. 

SVM is computationally quite heavy technique to use, especially when non-linear kernels 

are considered. Additionally, SVM’s are much more prone to parameters compared to some 

other algorithms (Probst, Boulesteix, & Bischl, 2019a). Hence, experimentations with SVM 

are not included in this study due to lack of sufficient computing power. 

The models will therefore be created using RF and NN. The computations are done using 

R and there are various packages which can be used. For RF model, randomForest -func-

tion of the package with the same name is selected. There exist a lot of options for NN 

model, but rather basic feed-forward NN is used. The model will be created with h2o -pack-

age’s deeplearning -function as it allows to connect to an open source external parallel com-

puting system which makes the computations more efficient. 
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4.5  Evaluation Metrics 
The evaluation metrics were introduced and discussed in more detail earlier in chapter 2. 

Böhm (2017) put together a good set of properties a metric should have for this kind of 

problem, and these properties should largely hold true for this dataset as well: 

• The metric desirably would be applicable to both binary and multi-class cases. Even 

though it is not crucial for this particular study, for future comparisons it might be a 

useful feature to have. 
• It should be invariable to class distributions as there is no certainty about future class 

distributions. 

• The metric should be able to tolerate noise in class memberships as the intervals are 

manually designed and not absolute truths. 

• The classes with smaller number of observations should be treated equally to classes 

with higher number of observations. 
• The metric should also be able to distinguish small changes in performance. 

 

Apparently, there is no perfect metric that would tackle all of these issues. Thus, MCC will 

be used as it can be extended for both binary and multi-class cases, it handles unbalanced 

class distributions and noise well, and also express smaller changes in confusion matrix 

rather well. It is not completely invariable against changing class distributions but is less 

sensitive compared to most of the other metrics. (Jurman & Furlanello, 2010) 

MCC gives a single number to compare the model performance. However, the interpretation 

of MCC for real world is rather difficult and hence simple visualizations of confusion matrices 

will be used to see how different classes are treated. The confusion matrix approach will 

only be used for the final model evaluation, not for parameter optimization. 

The hyperparameter optimization will be performed with training data and 5-fold cross-vali-

dation. Then, the final evaluation will be performed by using the whole training set to train 

the models, and testing set will be used to evaluate the performance. 
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5 Results 
This chapter will present the results found out in this study. First, the issue of hyperparam-

eter optimization will be addressed. After tuning the parameters, the final models will be 

created, and the results will be displayed for each classification system and both chosen 

algorithms.  

 

5.1  Hyperparameter Optimization 
The simplest way to train the models would be by just using the default hyperparameters. 

However, it is expected that using these presets would lead to inferior performance com-

pared to well optimized parameters. At least it is useful to test how the different hyperpa-

rameters affect the performance and see if better performance can be achieved. 

The two chosen classification algorithms both provide an opportunity to change multiple 

hyperparameters. Hyperparameter optimization can be computationally a rather heavy task, 

especially if done systematically. One way to perform it would be using ready-made grid 

search algorithms to find the optimal combination of hyperparameters. However, in the 

scope of this study, there exists a problem with this grid search approach. As MCC will be 

used as the only numerical evaluation metric, it would be desirable to use it to optimize the 

hyperparameters as well. The grid search algorithms usually use some simpler metric such 

as error to determine the best hyperparameter combination. 

Another issue with grid searches is that those simply provide the founded best hyperparam-

eters. Therefore, comparisons cannot be made, and the user needs to adapt the offered 

hyperparameters without better knowledge. Thus, it is decided to do the grid search manu-

ally even though it might be more time consuming and require some compromises in number 

of optimized hyperparameters. 

The hyperparameter optimization will be performed with the training data and validated with 

5-fold cross-validation. Each classification system will be considered individually for both 

algorithms which means total of six optimizations. MCC will be used as the metric to com-

pare different parameter combinations. 
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5.1.1 Random Forest 
Random forest algorithm is not as dependent from hyperparameters as it is able to generate 

good results with default settings (Fernandez-Delgado et al., 2014). Probst et al. (2019a) 

argue that RF is far less tunable compared to some other algorithms such as SVM in terms 

of achieving better performance. 

The studies of Probst et al. (2019a) and Probst, Wright & Boulesteix (2019b)  show that the 

hyperparameter tuning of RF lead to only marginal performance improvements. Regardless 

of that, some testing will be done to see whether it holds true for this specific data. 

Random forest has several hyperparameters that can be tuned. These parameters are mtry, 

nodesize, sample size, replacement, number of trees and splitting rule (Probst et al., 2019b). 

This study will only consider tuning of nodesize and number of trees while the other param-

eters will be kept at default values. Nodesize defines the number of observations in the 

terminal node and the meaning of number of trees is quite self-evident. 

The number of trees should rather large, but the optimal number depends on the properties 

of the data (Probst et al., 2019b). Oshiro, Perez & Baranauskas (2012)  concluded with large 

number of datasets that 100 trees is usually sufficient number of trees in order to achieve 

good performance. Therefore, 100 trees will be used as the minimum number of trees and 

larger numbers will be experimented to see if any improvements can be obtained. Number 

of trees from 100 to 500 with interval of 100 trees were chosen to be used. 

The default value for nodesize is usually 1 and Probst et al. (2019a) suggest that it generally 

results in good performance but in some cases increasing it might be optimal. To find out 

how it affects the results with this particular data, few different, increasing values will be 

experimented. Nodesizes 1, 100, 1000 and 10000 will be used as the number of observa-

tions is quite large. 

Figures 16-18 display visualizations of average MCC’s of cross-validation for random forest 

systems 1-3 with different parameter combinations. Appendix 1 provides the exact average 

values for every system and each combination along with the average standard deviations 

within number of trees. 

Figure 16 shows and Appendix 1 confirms that the difference between number of trees is 

almost meaningless as MCC changes only in the third decimal. The nodesize on the other 

hand is much more significant. There is a wide difference between nodesizes 10000 and 1, 
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although it was expected. However, the difference between 1 and 100 is very small, only in 

the third decimal. The MCC of system 1 hovers around 0,4 with nodesizes 1 and 100. 

 

 

Figure 16. Average MCC’s of RF System 1 with Different Nodesizes and Number of 
Trees 

 

From Figure 17 it can be noted that the overall performance of system 2 seem to be on a 

slightly higher level with MCC around 0,45 compared to system 1. Otherwise, the same 

observations can be done as number of trees does not have an effect on the performance 

and different nodesizes influence similarly to system 1. 
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Figure 17. Average MCC’s of RF System 2 with Different Nodesizes and Number of 
Trees 

 

Figure 18 indicates that the similar conclusions can also be extended to class system 3. The 

MCC with nodesizes 1 and 100 are close to 0,6 which is much higher than the other two 

systems. 

Some additional random experiments with the other hyperparameters were also done to see 

if those would have had more impact. Any significantly different results were not found and 

due to the computational limits, any further systematic experimentations were consequently 

not done. The low average standard deviations imply that the differences between cross-

validation folds were low, which indicates that the model was working steadily regardless of 

the fold. 
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Figure 18. Average MCC’s of RF System 3 with Different Nodesizes and Number of 
Trees 

 

Based on these findings, the final models will be trained with nodesize of 1. As seen, the 

number of trees did not have huge effect and therefore it should not matter too much which 

number is chosen. Nevertheless, because this testing was done, it could might as well be 

used to choose the number of trees which resulted in best MCC, even though the differences 

are marginal. This means 300 trees for systems 1 and 2, and 400 trees for system 3, if the 

lowest maximums are chosen from Appendix 1. 

The second research question “What random forest and neural network parameters lead to 

the best performance for the turbofan dataset?” can now be answered for the part of random 

forest. The answer is not perfectly complete due to the issues discussed but it can be said 

that smaller nodesize seems to lead to better results and the number of trees does not have 

consistent best value, given that the other used parameters are set to default values. 
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5.1.2 Neural Network 
Neural networks have much more hyperparameters that can be tuned. For example, the 

deeplearning-function of h2o-package which is used in this study to train the NN has tens 

of different parameters, although not all them are relevant for the model created in this study. 

Regardless, there are way too many options to systematically investigate in the context of 

this study and automatic grid search algorithms are not ideal as discussed earlier. 

Even though comprehensive parameter tuning cannot be done, it still good to do some test-

ing like in case of RF. The way to perform parameter optimization for NN is adopted from 

Böhm (2017), thus it is chosen to try different combinations of number of hidden layers and 

neurons per layer. The meaning of these parameters easy to understand as it is clear to 

understand what their role is in the method. Number of layers is kept rather small as only 1-

3 layers are tested while the neurons per layer will vary between 10 and 200, increasing by 

10. 

Like in the case of RF, Figures 19-21 display visualizations of average MCC’s of cross-

validation for neural network systems 1-3 with different parameter combinations. Appendix 

2 provides the exact average values for every system and each combination along with the 

average standard deviations within the number of hidden layers. 

Figure 19 shows that system 1 has no huge differences between different combinations of 

hidden layers and number of neurons. The average MCC is around 0,35 for each tested 

combination. The exact numbers of Appendix 2 show that NN with 3 layers perform slightly 

better as the it has highest minimum and maximum MCC’s. 
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Figure 19. Average MCC’s of NN System 1 with Different Number of Hidden Layers 
and Neurons per Layer 

 

Also, system 2 has very flat area displayed in Figure 20. The surface is at MCC around 0,4 

which is little higher than system 1. The same effect was observed with RF as well. Again, 

quick look at Appendix 2 shows that three layers slightly outperform the lesser number of 

layers, but the difference is very small. 
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Figure 20. Average MCC’s of NN System 2 with Different Number of Hidden Layers 
and Neurons per Layer 

 

Figure 21 shows the results for system 3. It undergoes a substantial increase in performance 

compared to the other two systems as the again quite flat surface is located between MCC’s 

of 0,55 and 0,6. The differences the first two systems had between number of layers has 

now almost completely disappeared. Two layers provide the maximum MCC, even though 

it should not matter much as the difference is so small. 
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Figure 21. Average MCC’s of NN System 3 with Different Number of Hidden Layers 
and Neurons per Layer 

 

As there are so many different parameters to be changed with NN, even any random exper-

imentations with other parameters were not done. This could be interesting topic to investi-

gate more, but it is so large topic that it should considered to focus solely on that. As with 

RF, the average standards deviations were low, which indicates that the model was working 

steadily regardless of the fold. 

These findings suggest that systems 1 and 2 should be trained with three hidden layers and 

in the case of system 3 this parameter is not too important but the maximum MCC was found 

with two layers which will be used. There is some variance of MCC within the layers with 

different number of neurons and each system will be trained with the number of neurons 

which performed the best. Therefore, based on Appendix 2, 130, 120 and 130 neurons per 
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layer are chosen respectively to systems 1, 2 and 3 to keep the number of neurons similar 

for all models. 

The second research question “What random forest and neural network parameters lead to 

the best performance for the turbofan dataset?” can be addressed now by the part of neural 

network as well. Similarly to RF, no clear answer can be given as further testing should be 

done in order to discover more meaningful answers. For the more complicated class sys-

tems, 3 three hidden layers provided slightly better results while the number of neurons was 

very specific to the system. 

 

5.2  Final Model Evaluation 
The results of final models are presented and discussed in this subchapter. The models are 

trained with the training set which includes 179661 observations and the evaluated with the 

testing set which consists of 85595 observations. After reviewing the final models, the last 

two research questions will be answered. 

As discussed, the final models will be evaluated and compared with the MCC’s and addi-

tionally, confusion matrices with appropriate visualizations will be reported to further inves-

tigate the models. The confusion matrix values are presented as ratios to the real class. The 

absolute numbers can be found from Appendix 3. 

 

5.2.1 Final evaluation of Random Forest Models 
The confusion matrix with visualization for RF with class system 1 is presented in Figure 22. 

The confusion matrix shows the share of true class each node has. The MCC for this model 

is 0,391, which is at the same level than it was when parameters were optimized. The MCC 

itself reveals that the model is not performing very well as it is quite far from the best value 

1.  

The confusion matrix shows that there is a lot of deviations between the predicted and actual 

classes. The perfect case would have ones on the diagonal, thus meaning that each class 

was predicted correctly. Interestingly, around half of the observations of the smallest class 

are predicted correctly, whereas respectively, only 2,1% and 7,9% of the next two classes 

were predicted correctly. This could indicate that the sensor values during the last cycle are 

clearly different and identifiable from the sensor values with few more cycles of lifetime left. 
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Figure 22. Confusion Matrix of RF System 1 with Visualization 

Another observation can be made regarding the deviations between classes. The smaller 

classes have more clearly spread distribution compared to the higher classes. Especially, 

the first three true classes have significant portions of predictions to five different classes, 

and the as can be seen from the visualization, the bars are low. The bars seem to grow, and 

the predictions are made to fewer classes as the classes get higher. This is somewhat ex-

pected as the intervals are increasing, meaning that number of observations per class in-

crease. Also, the sensor values are expected to be more constant as the units are consid-

ered to be healthier the higher the class is. 
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Regardless, the share of correct predictions per class is not very high in general. Only the 

256-class has relatively high true positive rate with 82,9 %. The last class should have def-

initely been included in the previous class as almost 90 % of the observations were predicted 

to belong to that. 

Figure 23 provides the same information about RF system 2. The MCC of 0,429 for this 

model is also approximately on the same level as it was for for the parameter optimization 

trials. The MCC is only slightly higher than it was for RF system 1 but the confusion matrix 

looks much better. There are not as much deviations as there was with system 1 and the 

shares of correct predictions are on a sligthly higher level. 

 

 

Figure 23. Confusion Matrix of RF System 2 with Visualization 
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The most important take is the 82,9 % true positive rate for the first class which is much 

better than in the case of the larger system. After all, the smallest class is the most 

interesting class in order to take maintenance actions before failure. Therefore, the rate of 

correct classifications should desirably be as high as possible. The model still misclassifies 

17,1 % of the first class, meaning that a lot of observations near a failure would have not 

been recognised. On the other hand, the amount of misclassified early predictions is not 

extremely high, only 18,1 % of true 20-class observations and very low for other classes, 

hence meaning that too early maintenance actions would not lead to wasted remaining 

useful life. 

Aside from the first class, the model distinctly struggles to separate the other classes from 

their neighbouring classes. The true positive rate for the other classes vary between 44-65 

%, while the neighbouring classes practically add up to the rest. 

The confusion matrix of the final RF model with classification system 3 is presented in Figure 

24. As for the previous models, the MCC of 0,59 is on similar level than for the parameter 

tuning experimentations. Furthermore, the MCC of RF system 3 is undeniably the highest 

so far thus implying dominance over the other two RF models. Reducing the number of 

classes undoutebly improved the overall performance, which was expected due to reduced 

number of classes. 

Even so, the true positive rate of the first class is slightly lower than it was for RF system 2. 

This is interesting and somewhat confusing, as the interval was increased from 10 to 20 

RUL. One explanation could be that for most instances, the sensors would still be giving 

rather normal values closer RUL of 20. Therefore, it is possible that the model would not be 

able to recognize as precisely the difference for example between RUL’s of 15 and 30 cycles 

as well as it could for example the difference between RUL’s of 8 and 15 cycles. 

Further testing would be required to find the optimal threshold where the model could find 

the difference better. However, pushing the first threshold even further away from failure 

might not lead to any improvements as similar issue could arise at other thresholds as well. 

Also, pushing the threshold further would reduce the benefits from the maintenance point of 

view. 

The model misclassifies 17,6 % of the true first class observations which again is quite a lot. 

However, the system 3 model produces far less early predictions for the first class compared 

to the previous model. 
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The model has difficulties with the 100-class which is mostly misclassified to belong into the 

last class. Removing the 100-class could make the model better, or it might lead to the 60-

class being misclassified into the last class. Thus, keeping the 100-class might be a good 

idea as it is probably not as important for maintenance actions and scheduling.  

 

 

Figure 24. Confusion Matrix of RF System 3 with Visualization 

 

Based on both the MCC’s and confusion matrices, a conclusion that RF system 3 outper-

forms the other two models fairly easily can be made. The remaining research questions will 

be answered after exploring the final results of NN models as well.  
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5.2.2 Final evaluation of Neural Network Models 
The confusion matrix with visualization for NN with class system 1 is presented in Figure 25. 

The 0,354 MCC is approximately on the same level as it was for the parameter optimization 

models. It is slightly lower than it was for the RF system 1 model, which was the case for 

the parameter optimization results as well. 

 

 

Figure 25. Confusion Matrix of NN System 1 with Visualization 
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The confusion matrix looks somewhat similar than it did for the equivalent RF model. Espe-

cially the smaller classes are very deviated, and the bar height is low. However, the true 

positive rate of the smallest class is much lower than it was for RF, only 32,6 %. Otherwise, 

any major observations cannot be made that would differentiate system 1 RF and NN mod-

els from each other. 

The results of NN classification system 2 are showcased in Figure 26. The MCC of 0,397 is 

in line with the earlier experiments. Therefore, the MCC for NN system 2 is slightly higher 

than it was for NN system 1, but slightly lower than it was for RF system 2. Similarly to RF, 

the deviations are much more subtle compared to system 1. 

 

 

Figure 26. Confusion Matrix of NN System 2 with Visualization 
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The smallest class has so far the highest true positive rate, 86,6 %. That said, this model 

has problems to predict the second class, as only 34,2 % of the true observations are cor-

rectly predicted. The ratios on the diagonal are comparable to the equivalent RF model, and 

in general higher than NN system 1. Rather than wide range deviations, each class’ neigh-

bouring classes seem to include most of the misclassifications which was the case for the 

equivalent RF model as well. Hence, system 2 seems to perform better than system 1 also 

with NN. 

Finally, the confusion matrix of NN system 3 is presented in Figure 27. Once again, the MCC 

(0,543) is on the corresponding level to the parameter optimization results. It falls a bit be-

hind the equivalent RF model’s MCC, but the visualized confusion matrix looks to some 

extent alike. 

 

Figur 27. Confusion Matrix of NN System 3 with Visualization 
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The most interesting take out of this model is the clearly lower ratio of correctly predicted 

values for the first class as it is almost 10 and 15 percentage points below the RF system 3 

and NN system 2, respectively. This combined with lower MCC leaves the NN system 3 

lagging behind the RF system 3, even though rest of the class specific true positive rates 

are rather similar. 

 

5.3  Summary of Results 
The results consisted of the parameter optimization part and the final model evaluation part. 

The second research question concerning the best parameter combinations was already 

addressed earlier and thus will not be discussed again in this section. 

The research question 3 and 4 are still not answered. The newly presented results on final 

models allow to cover these questions. The third research question was “How random forest 

and neural network compare to each other with the turbofan dataset?”. The simplest way to 

compare RF and NN in general is to take a look at the MCC’s of equivalent class systems. 

Table X summarizes the MCC’s of all trained models. 

 

Table 7. MCC's of All Models 

MCC RF NN 
System 1 0,392 0,354 
System 2 0,429 0,397 
System 3 0,590 0,543 

 

Comparison shows that RF outperforms NN with every system. However, the differences 

between equivalent systems are not drastically huge, only 0,032-0,047 MCC. It might be 

possible to further narrow these differences or even flip them around with additional param-

eter optimization for NN. Although, with only these few parameters optimized, RF is able to 

outperform NN by a fraction, thus making it more suitable for the turbofan dataset. 

The last research question “How random forest and neural network classifiers perform for 

different classification systems with the turbofan dataset?” can be answered by comparing 

the MCC’s between different class systems within an algorithm. System 3 was by far the 

best out the three systems. This is most likely due to the much simpler class structure. 
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System 2 seems to perform slightly better than system 1, even though the difference is not 

very massive in terms of MCC. This is an interesting finding because system 1 is after all 

much more specific for the small classes. This could indicate that better, more thoughtful 

construction of the smaller class intervals could lead to improved performance. 

Comparison between system 3 and the other two systems reveal that it is reasonable to 

aggregate the higher classes together to achieve more accurate overall predictions. Sys-

tems 2 and 3 tend to mix higher classes with neighbouring classes, hence the benefit of 

having separate higher classes disappears and having just one or maybe two high classes 

could be enough. Of course, this also depends about the specific practical needs concerning 

the classification as in some applications it might be desired to get knowledge about the 

higher RUL as well. 

One could argue that these are just results of one random sample as the final evaluation 

was based only on the test set performance, and not for example cross-validation. However, 

the results obtained during parameter optimization are in line with the final results, and since 

5-fold cross-validation was used to optimize the parameters, it can be suggested that the 

test set represent the whole data rather well and the results should be reliable enough. 
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6 Conclusions and Further Research 
This study’s purpose was to showcase a classification approach for remaining useful life 

(RUL) prediction in the predictive maintenance framework. The methodology was demon-

strated by using the NASA turbofan dataset.  

First, some theory concerning predictive maintenance and machine learning was introduced 

to give a basic understanding about the methods and concepts used later on. Then, a liter-

ature review concentrating on classification in RUL prediction was conducted. The first set 

of research questions were tied specifically to the literature review:   

1. How previous research has approached RUL-type problems with classifica-
tion? 

a. Which algorithms have been used the most in RUL classification? 
b. How the performance of classification models has been evaluated? 

By conducting the review, these questions were able to be answered. First of all, there were 

no single exact way to form a classification framework for RUL prediction problem. The ap-

proach is heavily dependent about the used data, which leads back to the practical applica-

tion. Both Binary and multi-class classification has been used to convert the continuous 

problem into discrete problem, yet binary approach has been widely more popular. The time 

interval settings have also varied a lot, which is only logical as those are and should be 

highly dependent on the application. 

The review also revealed that wide range of classification algorithms have been used to 

solve the problem. Support vector machine and decision tree were among the most used 

ones, and the popularity of random forest (RF) had increased during the recent years. No 

ultimately best algorithm could be identified as different data usually requires different algo-

rithms for the best results. The obtained results have also been varying a lot between stud-

ies. 

Previous studies have used many different metrics to evaluate the performance. Accuracy, 

true positive rate (TPR) and area under curve (AUC) have been the most popular measures. 

Also, some other simple confusion matrix -based metrics have been used commonly. Less 

frequently some more complex confusion matrix -based metrics such as Matthews correla-

tion coefficient (MCC), or some custom scoring functions have been used as well. 
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Following the literature review, the methodology used in this study was introduced and dis-

cussed. This included introduction to the used turbofan dataset, construction of three differ-

ent classification systems, data pre-processing and selection of the classification algorithms 

and appropriate evaluation metrics. It was chosen to use RF and neural network (NN) clas-

sifiers to train the models while MCC and confusion matrix with visualization were chosen 

to be used in performance evaluation. 

Lastly, the results were presented. To begin the results section, hyperparameter optimiza-

tion was performed for all three systems and both algorithms. The second research question 

was formed with respect to the parameter optimization:  

2. What random forest and neural network parameters lead to the best perfor-
mance with the turbofan dataset? 

Due to limited computing power, some simplification had to be done within the optimization. 

Thus, only two parameters per algorithms were chose to be focused on. For RF, number of 

trees and nodesize, and for NN, number of hidden layers and number of neurons per layer 

were concentrated on. In the case of RF, the number of trees had close to no effect on the 

performance and best results were obtained when nodesize was set to 1. The optimal NN 

parameters changed depending on the class system, but the differences were rather mar-

ginal in case of both chosen parameters. 

The final models were trained and evaluated after deciding the optimal parameter combina-

tions. The last two research question were formed to address the final model evaluation and 

comparison: 

3. How random forest and neural network compare to each other with the turbo-
fan dataset? 

4. How random forest and neural network classifiers perform for different classi-
fication systems with the turbofan dataset? 

The overall comparisons of performance between both the algorithms and the systems were 

done by MCC. More detailed analysis with respect to the confusion matrices was provided 

in chapter 5. It was found that with these exact parameters considered, the RF performed 

better than NN with all class systems, although the differences between equivalent class 

systems were rather low, the difference in MCC varying between 0,032-0,047. Thus, further 

NN parameter tuning might change the relationship. 
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The differences between systems were found to be more important. System 3 with the low-

est number of classes easily outperformed the other two systems. The difference between 

systems 1 and 2 was much smaller in terms of MCC but confusion matrices showed that 

there was much more deviation with system 1. 

A conclusion can be made that the choice of algorithm is not as important as the proper 

construction of the class system, at least when these two algorithms are examined. The 

MCC’s for system 3 were 0,59 (RF) and 0,54 (NN), meaning that both models were quite far 

from perfect classification, but there definitely exist potential with this framework. Further 

experimenting with different class intervals, better parameter optimization and possibly other 

algorithms should be considered. 

A good division of the classes should consider the practical application and provide useful 

information for the user. Thus, each application should have unique classification system 

depending on the aspects that define the maintenance process, such as the required time 

to perform maintenance. 

Also, it is important to understand the meaning of different false predictions. False positive, 

or early predictions in this context, for the small classes can be considered to lead to early 

maintenance actions, meaning that some remaining useful life is wasted. But if the misclas-

sification is not far, the loss is rather insignificant. However, false negatives (late predictions) 

could turn out to be fatal, especially for the smaller classes. It could mean that failure hap-

pens before the need of maintenance is noticed. These factors should be considered when 

forming and testing class systems. 

Comparison to previous studies is rather difficult due to different data and evaluation met-

rics. The only study that used MCC as metric was Böhm (2017). That study resulted in very 

high MCC’s close to one but as said, different data was used. However, the it shows that for 

some datasets, this approach can work very well. This study was not able to reach that high 

level of performance, hence further research is required. The results of this study cannot be 

generalized to be applied to other datasets. 

When considering classification to predict remaining useful life, the focus should lie on the 

practical application. Mainly, the classes should be formed with maintenance requirements 

in mind. Essentially, that is the only way to actually reduce costs and prevent failures in real 

life. 
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6.1  Limitations and Further Research 
Some limitations concerning this study need to be addressed as they affected the method-

ologies used. These limitations also provide some ideas about future research possibilities. 

First of all, computational limitations proved to be one of the most significant limiting aspects.  

Computational limitations affected especially the parameter optimization, where compro-

mises had to be done. It is possible that the models were not performing at their best possi-

ble level, due to non-optimal parameters. For RF, it is unlikely that this was the case, but for 

NN it is more likely. Additionally, some classification algorithms, such as SVM, could not be 

considered due to limited computing power. For future research, extensive parameter test-

ing in addition to experimenting with other classification algorithms is suggested to investi-

gate whether improved results can be achieved. 

Another limitation is related to the class constructions of the systems. No practical justifica-

tions were used when creating the systems. This limits the practical usefulness of the re-

sults, although the data was simulated and provided time units (cycles) might not be trans-

ferrable into real world anyways. Also, the class systems were created without preliminary 

testing, meaning that it is probable that more optimal systems could be created via extensive 

experimentations. Therefore, future research could make the classification system construc-

tion the focal point either by taking the practical view into consideration, or alternatively test-

ing different systems more comprehensively in quest for finding the most optimal solution. 

This could include also binary classification to be compared with multi-class cases. 

The empirical part of this study was conducted by using the whole turbofan dataset. Initially, 

it was provided as four different datasets with different settings and fault modes. The aggre-

gation of the datasets into one resulted in decent outcome, but each dataset could have 

treated individually. This could have led to better results in general. Also, almost all of the 

features were used to train the models. Future studies using this dataset could consider 

different approaches to the mentioned issues.  

Even though the results of this study show that there exists some potential about the meth-

odology for this kind of task, it cannot be generalized to be applicable for other datasets. 

The results might be very good or on the other hand very bad, depending on the specific 

data under consideration and some other factors. Experiments using similar methodology 

for different data could be considered to get more evidence about the effectiveness and 

generability of this approach. 
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Appendices 
Class System 

1 
Number of Trees Average STD 

of CV Folds 100 200 300 400 500 

N
od

es
ize

 1 0,401 0,404 0,407 0,406 0,407 0,002 
100 0,398 0,400 0,400 0,401 0,401 0,003 

1000 0,352 0,353 0,353 0,354 0,353 0,004 
10000 0,243 0,244 0,243 0,243 0,245 0,003 

Min 0,243 0,244 0,243 0,243 0,245   
Max 0,401 0,404 0,407 0,406 0,407   

                
Class System 

2 
Number of Trees Average STD 

of CV Folds 100 200 300 400 500 

N
od

es
ize

 1 0,445 0,449 0,451 0,451 0,450 0,002 
100 0,445 0,446 0,447 0,446 0,447 0,004 

1000 0,399 0,398 0,399 0,399 0,400 0,004 
10000 0,274 0,276 0,277 0,275 0,277 0,005 

Min 0,274 0,276 0,277 0,275 0,277   
Max 0,445 0,449 0,451 0,451 0,450   

                
Class System 

3 
Number of Trees Average STD 

of CV Folds 100 200 300 400 500 

N
od

es
ize

 1 0,598 0,601 0,600 0,602 0,601 0,004 
100 0,597 0,597 0,598 0,597 0,598 0,004 

1000 0,558 0,558 0,561 0,560 0,559 0,002 
10000 0,388 0,389 0,389 0,389 0,389 0,004 

Min 0,388 0,389 0,389 0,389 0,389   
Max 0,598 0,601 0,600 0,602 0,601   

 

Appendix 1. Average MCC's of All RF Systems 
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Class System 
1 

Hidden Layers Average 
STD of CV 

Folds 1 2 3 

N
eu

ro
ns

 p
er

 L
ay

er
 

10 0,335 0,352 0,355 0,009 
20 0,344 0,351 0,362 0,007 
30 0,345 0,358 0,360 0,006 
40 0,341 0,357 0,358 0,008 
50 0,331 0,357 0,360 0,005 
60 0,340 0,359 0,362 0,008 
70 0,344 0,360 0,366 0,005 
80 0,342 0,362 0,364 0,007 
90 0,340 0,359 0,360 0,007 

100 0,340 0,360 0,366 0,008 
110 0,346 0,361 0,366 0,007 
120 0,345 0,360 0,358 0,008 
130 0,347 0,359 0,366 0,006 
140 0,346 0,361 0,365 0,005 
150 0,345 0,364 0,365 0,007 
160 0,345 0,363 0,366 0,005 
170 0,345 0,361 0,366 0,007 
180 0,348 0,363 0,365 0,006 
190 0,348 0,363 0,364 0,006 
200 0,351 0,364 0,365 0,006 

Min 0,331 0,351 0,355   
Max 0,351 0,364 0,366   

            

Class System 
2 

Hidden Layers Average 
STD of CV 

Folds 1 2 3 

N
eu

ro
ns

 p
er

 L
ay

er
 

10 0,379 0,392 0,398 0,009 
20 0,385 0,389 0,404 0,009 
30 0,380 0,400 0,404 0,009 
40 0,393 0,390 0,407 0,008 
50 0,393 0,400 0,405 0,006 
60 0,387 0,400 0,402 0,005 
70 0,386 0,401 0,405 0,006 
80 0,391 0,401 0,406 0,007 
90 0,392 0,396 0,405 0,006 

100 0,394 0,400 0,403 0,006 
110 0,384 0,403 0,406 0,006 
120 0,384 0,400 0,409 0,008 
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130 0,389 0,401 0,408 0,006 
140 0,395 0,403 0,408 0,003 
150 0,397 0,404 0,404 0,007 
160 0,393 0,406 0,404 0,006 
170 0,398 0,404 0,407 0,004 
180 0,396 0,400 0,403 0,005 
190 0,400 0,402 0,404 0,006 
200 0,395 0,406 0,405 0,007 

Min 0,379 0,389 0,398   
Max 0,400 0,406 0,409   

            

Class System 
3 

Hidden Layers Average 
STD of CV 

Folds 1 2 3 

N
eu

ro
ns

 p
er

 L
ay

er
 

10 0,544 0,551 0,556 0,007 
20 0,553 0,562 0,564 0,007 
30 0,553 0,562 0,567 0,006 
40 0,553 0,567 0,568 0,006 
50 0,556 0,556 0,565 0,006 
60 0,549 0,563 0,565 0,010 
70 0,560 0,569 0,568 0,007 
80 0,553 0,570 0,567 0,005 
90 0,556 0,567 0,568 0,006 

100 0,557 0,568 0,570 0,005 
110 0,551 0,565 0,569 0,007 
120 0,556 0,571 0,569 0,007 
130 0,554 0,573 0,570 0,006 
140 0,559 0,566 0,569 0,006 
150 0,557 0,567 0,568 0,010 
160 0,559 0,565 0,570 0,005 
170 0,561 0,568 0,571 0,006 
180 0,558 0,572 0,569 0,004 
190 0,564 0,570 0,570 0,007 
200 0,560 0,571 0,571 0,005 

Min 0,544 0,551 0,556   
Max 0,564 0,573 0,571   

 

Appendix 2. Average MCC's of All NN Systems 
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RF System 1 Predicted Class 
N = 85595 1 2 4 8 16 32 64 128 256 >256 

Tr
ue

 C
la

ss
 

1 243 19 40 94 57 13 0 0 0 0 
2 56 5 31 83 51 7 0 0 0 0 
4 74 3 37 178 154 20 0 0 0 0 
8 45 1 24 287 484 104 2 0 0 0 

16 11 0 6 151 1059 783 51 0 0 0 
32 1 0 0 12 436 2460 1414 197 12 0 
64 4 2 1 2 23 966 4765 3346 864 0 

128 1 0 2 4 18 64 1918 10186 11339 48 
256 8 3 0 12 22 32 148 5387 30138 626 

>256 0 0 0 0 0 0 1 255 6261 444 
                        
RF System 2 Predicted Class         
N = 85595 10 20 40 80 160 >160         

Tr
ue

 C
la

ss
 

10 2158 387 58 0 0 0         
20 485 1205 899 81 3 0         
40 70 555 3022 1795 369 2         
80 28 39 1181 5650 5690 404         

160 0 4 76 2334 20251 8401         
>160 28 24 40 182 11318 18856         

                        
RF System 3 Predicted Class             
N = 85595 20 60 100 >100             

Tr
ue

 C
la

ss
 20 4345 927 2 2             

60 724 8050 1471 1846             
100 42 2206 2975 8685             

>100 54 565 1689 52012             
                        
NN System 

1 Predicted Class 
N = 85595 1 2 4 8 16 32 64 128 256 >256 

Tr
ue

 C
la

ss
 

1 152 12 134 145 13 10 0 0 0 0 
2 56 1 59 92 14 11 0 0 0 0 
4 80 6 109 194 42 35 0 0 0 0 
8 85 5 119 368 184 180 5 1 0 0 

16 34 0 61 396 416 1114 35 5 0 0 
32 6 0 6 117 226 3002 920 213 42 0 
64 0 0 1 11 13 1890 3881 2695 1482 0 

128 0 0 1 3 7 207 2154 7310 13791 107 
256 0 0 2 17 8 49 233 3907 30831 1329 

>256 0 0 0 0 0 0 2 186 5662 1111 
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NN System 

2 Predicted Class         
N = 85595 10 20 40 80 160 >160         

Tr
ue

 C
la

ss
 

10 2253 282 68 0 0 0         
20 794 915 914 50 0 0         
40 213 587 3355 1385 268 5         
80 27 59 1973 5753 4561 619         

160 0 4 218 3988 17572 9284         
>160 27 20 55 648 10726 18972         

                        
NN System 

3 Predicted Class             
N = 85595 20 60 100 >100             

Tr
ue

 C
la

ss
 20 3845 1404 18 9             

60 513 6941 1952 2685             
100 26 1470 2975 9437             

>100 41 344 2006 51929             
 

Appendix 3. Confusion Matrix Absolute Values of All Models 

 


