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Abstract

The mechanical dynamics of modern machines very often depend on the

angular position of the driven axis. To obtain optimal control, such

applications typically require an advanced control structure such as an

adaptive controller. Moreover, the variation in the dynamics like changing

inertia, load torque, and viscous friction limits the performance and reduces

the energy efficiency. Energy savings can be obtained by using so-called

trajectory optimization techniques combined with feedforward control.

However, both optimization and adaptive control require the knowledge of the

position dependency of the mechanical parameters. In the case of

reciprocating mechanisms, for instance, this position dependency is significant.

Consequently, the mechanical parameters change rapidly at high operating

speed of the machine. This paper thus contributes towards fast and accurate

estimation of rapidly varying mechanical parameters. A sliding discrete

Fourier transform (SDFT) approach is proposed to track the inertia variation

of a reciprocating mechanism online. The feasibility is verified with

experiments on an industrial pick and place unit. Both the results on the real

machine and its CAD equivalent, modelled in a multibody dynamics software

package, are considered. In addition, the developed inertia tracking algorithm

is proven to be implementable in standard commercial drive components.
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1. Introduction

In modern machines, the mechanical structure driven by an electrical

machine has a large influence on the optimal trajectory, control and

dimensioning of the electrical actuator. The mechanical parameters of the

structure very often depend on the angular position of the driven axis.

Reciprocating mechanisms are widely used for machines performing repetitive

tasks because they have the advantage that a desired complex movement of

the follower linkage is achieved by a simple rotational movement of the driven

axis. However, an inherent property is that the reduced load parameters such

as the inertia and static torque depend on the position of that driven axis [1].

To avoid oversizing, sub-optimal control and unnecessary energy consumption

it is essential to know these variable parameters. Identifying the inertia,

among other parameters like load torque and friction is crucial for selection

and dimensioning of the motor [2], optimization of the trajectory setpoint

[3, 4] and the implementation of adaptive control [5] and feedforward control

[6].

In literature, a wide range of parameter and system identification

techniques are found. The approach is either based on time- or

frequency-domain observations and the identification is either performed

online or offline.

The most common offline method is the frequency response identification

with a PRBS-signal as additional torque. This is proven to be a successful

technique for linear systems [7] and even for non-linear systems in [8]. The

known drawback is that the system must remain unchanged during the rather

long identification experiment, which means that these methods are only valid

for time-invariant systems. The offline frequency methods are thus best suited
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for commissioning [9] of slowly varying systems where the parameters change

due to wear for example.

Common approaches among the offline time-domain methods are heuristic

algorithms. In [10] for example, a particle-swarm algorithm is used for

self-commissioning of a non-linear system with backlash. The disadvantage of

heuristic algorithms is the extensive tuning and long convergence time.

Furthermore, accurate estimates of inertia and friction are achieved with the

steady-state response method in [11], which can be considered as a multi-step

time-domain procedure. Yet this method, too, is only useful for systems with

nearly constant load parameters.

Online approaches are thus required for time-variant systems and are

typically performed using a recursive algorithm because of computational

efficiency. The most common time-domain approach is the recursive least

squares (RLS) algorithm. Accurate results with RLS are achieved in [12] for

the estimation of the coefficients of a high-order pulse-transfer function and in

[13] for the estimation of frequency responses. In both examples the system

parameters are constant and the convergence is rather slow. Faster

convergence is obtained in [14] for the estimation of the time-varying

coefficients of a second order pulse-transfer function. However, initial guesses

of the coefficients with an accuracy of ≈ 80% must be available and the

estimated coefficients are not converted into mechanical parameters. This

limitation of RLS is also clarified in [15] where the mechanical parameters of a

two-mass system are estimated. The RLS is designed for estimation of the

coefficients of a pulse-transfer function based on time samples of the input and

output signal. How to solve the relations between these coefficients and the

mechanical parameters is a complex and time-consuming task, especially for

high-order systems.

Kalman filters, known for their excellent noise cancellation, can also be

used for online estimation in the time-domain. The performance is proven in

[16] where step changes in the load torque of a theoretical two-mass system are
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accurately estimated in noisy conditions. Also a high variation of inertia is

tracked, but less precise. Next in [17] the parameters of a slider-crank

mechanism are estimated online. The cyclic variation of the load torque is

tracked accurately at high speed, but again the inertia variation tracking is

less precise. Important to note is that in both examples the tuning of the

estimation settings is extensive. An initial guess of the parameters is required

and the process and measurement noise statistics must be known in advance.

Less extensive tuning is obtained in [18] and [19] where the Kalman filter is

redesigned to act as a Fourier Transform for online estimation of a frequency

response. Yet again, the approach is only accurate for slowly time-varying

systems because of the rather long identification time.

Despite the efforts of the mentioned time-domain approaches for online

parameter estimation, a trade-off between convergence time and accuracy is

inevitable and extensive tuning is necessary. In order to estimate rapidly

changing system behaviour, a computationally efficient identification technique

without convergence and with noise cancellation is needed. The sliding

discrete Fourier transform (SDFT) satisfies that requirement. This technique

updates the phase and gain of the system at predefined frequencies at every

new time sample [20, 21, 22] without convergence. By analysing the system

response at frequencies much lower than high-frequency noise signals, the noise

is inherently cancelled. In recent work, this frequency-domain approach has

proven to be applicable for online estimation. A few examples are online load

angle estimation for stepping motor applications in [23] and online transfer

function estimation of a mechanical system with varying dynamics in [24].

Moreover, the computational efficiency is proven in [25] where the estimation

algorithm is implemented on a real-time platform.

Motivated by the advantages, this paper proposes the SDFT for tracking

of the inherently varying inertia of a reciprocating mechanism. An industrial

pick and place unit, shown in figure 1, is used as a proof of concept. The

performance and applicability is first tested on a CAD equivalent of the machine
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Figure 1: An industrial pick and place unit, existing of a reciprocating mechanism

with a coupled simulation (co-simulation) approach. In a co-simulation, the

control algorithm is implemented in e.g. Matlab/Simulink, and the mechanical

structure is modelled in CAD software. By implementation of the estimation

algorithm in a commercial hardware component, the feasibility is also tested

on the real machine. Both the results from the real machine and its CAD

equivalent are compared with the inertia calculated from a theoretical model of

the machine. This calculation is a complex and time-consuming task and only

serves to have a valid reference inertia profile.

The paper is structured as follows. Section 2 shows the theoretical derivation

for the reference inertia profile. In section 3, the pick and place unit is simplified

to a two-mass system in order to clarify the impact of the varying inertia on the

system dynamics. Section 4 explains the principle of the SDFT algorithm and

how the algorithm is used to estimate the inertia. In section 5, the estimation

is done with co-simulations and the tuning for proper performance is discussed.

Finally, validation by measurements are presented in section 6.

2. Theoretical model

A simplified scheme of the machine is shown in figure 2. In the figure,

the different joints (A, B, C, D, E, F and G) and linkages are depicted. The

mechanism is driven at joint A, resulting in motion of the rotor position θ1. The

mass and inertia of each individual linkage is constant, but the reduced moment

5



rotor
cam

crank

sledge
rod1 rod2

x

y

B(xb,yb)

A(0,0)C(xc,yc) x’

y’

I(x’i,y’i)

D(xd,yd) E(xe,ye)

F(xf,yf) G(xg,yg)

θ2

θ1

θ3 θ4

θ5

Figure 2: Simplified scheme of the pick and place unit, with its joints and linkages

of inertia at the driven axis varies in function of this position. To determine the

reduced load inertia Jl(θ1), the kinetic energy of the mechanism is considered.

The total kinetic energy Etot resulting from the rotational motion at joint A is

written as:

Etot =
1

2
Jl(θ1)θ̇1 (1)

By rewriting (1), it is clear that the inertia Jl(θ1) is determined by dividing the

kinetic energy Etot by the angular velocity θ̇1 of the driven axis:

Jl(θ1) =
2Etot

θ̇1
(2)

The total kinetic energy Etot equals the sum of the kinetic energy of each linkage:

Etot = Ecam + Ecrank + Esledge + Erod1 + Erod2 (3)

Rod1 rotates around the fixed joint F with angular velocity θ̇3, rod2 rotates

around the fixed joint G with angular velocity θ̇4 and the cam rotates around

the fixed joint A with angular velocity θ̇1.

Erod1 =
1

2
Jrod1(θ̇3)2 Erod2 =

1

2
Jrod2(θ̇4)2 Ecam =

1

2
Jcam(θ̇1)2 (4)

The sledge performs a translational motion at joint C.

Esledge =
1

2
msledge(ẋ

2
c + ẏ2c ) (5)
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The crank rotates around joint C with angular velocity θ̇2, while joint C

translates in the x-direction with velocity ẋc and in the y-direction with

velocity ẏc. With the motion of the crank considered according to its local

x′y′-frame (as depicted in figure 2), the kinetic energy is determined [26]:

Ecrank =
1

2
mcrank(ẋ2c + ẏ2c )−mcrankẋ

′
cθ̇2ȳ

′
i

+mcrankẏ
′
cθ̇2x̄

′
i +

1

2
Jcrank(θ̇2)2 (6)

In (6), x̄′i and ȳ′i are the coordinates of the centre of mass I according to the

x′y′-frame. ẋ′c and ẏ′c are the components of the velocity of joint C with respect

to the same x′y′-frame. As shown in figure 2, the local x′y′-frame is rotated

with an angle θ2 according to the global xy-frame. After transforming to the

global frame, the kinetic energy of crank C is found:

Ecrank =
1

2
mcrank(ẋ2C + ẏ2C)−mcrank (ẋCcos(θ2) + ẏCsin(θ2)) θ̇2ȳ

′
I

+mcrank (−ẋCsin(θ2) + ẏCcos(θ2)) θ̇2x̄
′
I +

1

2
Jcrank(θ̇2)2 (7)

With kinematic analysis, the position and velocity of all joints are written in

function of the position θ1 and velocity θ̇1 of the driven joint A. The derivation

of the kinematic relations is described in the appendix 8.1.

By substitution of the kinematic relations in (4), (5) and (7), the kinetic

energy of each link is obtained in function of the position θ1 and velocity θ̇1

of the driven axis. After taking the sum, as shown in (3), dividing it by the

angular velocity θ̇1 and rewriting, the equation for the reduced load inertia

Jl(θ1) is obtained:

Jl(θ1) = Jcam + Jcrank

(
|AB|
|CB|

)2(
sin(θ1 − θ3)

sin(θ2 − θ3)

)2

+ (Jrod1 + Jrod2)

(
|AB|
|FD|

)2(
sin(θ1 − θ2)

sin(θ3 − θ2)

)2

+ (mcrank +msledge)|AB|2
((

sin(θ1 − θ3)

sin(θ2 − θ3)

)2

− sin(2θ1 − θ2 − θ3)

sin(θ2 − θ3)

)

− 2ȳ′imcrank
|AB|2

|CB|

(
sin(θ1 − θ3)sin(θ2 − θ1)

sin(θ2 − θ3)

)
+ x̄′imcrank

|AB|2

|CB|

(
sin(θ1 − θ3)

sin2(θ2 − θ3)

(
sin(2θ2 − θ1 − θ3)− sin(θ1 − θ3)

))

(8)
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For convenience of the kinematic analysis, the rotor position θ1 is defined

according to the global xy-frame with a positive angle in counter clockwise

direction. But as depicted in figure 3, this definition does not agree with the

machine position θ. The origin of θ is located at an angle δ with a positive angle

in clockwise direction. The reduced inertia Jl(θ) in function of the machine

position θ is thus found by substitution of θ1 = δ − θ in (8). The theoretical

reference is plotted in figure 4. The reference is valid because it results from

the fundamental laws of energy conservation. Note that the maximum inertia

is about 18 times the minimum inertia.

x

y
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B
δ
θ
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y

A
B

δ

θ=0°

Figure 3: The machine in starting position (left) and in a certain position θ (right)
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Figure 4: Analytical calculation (8) of the reduced load inertia Jl(θ)
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3. Influence of inertia in the frequency domain

3.1. Simplification to a two-mass system

To clarify the influence of the load inertia on the mechanical dynamics,

a simplified model of the industrial pick and place unit is defined. With a

standard procedure in the drive software, described in the drive manual [27],

the gain characteristic of the real machine is identified at the position θa of high

inertia (see figure 4). The choice of this position is justified later in section 3.2.

The measured gain is shown in figure 5. Note that during the measurement

the system behaviour is not linear. Although the system parameters are nearly

constant because of the constant position setpoint, the velocity goes through

zero due to the added frequency-rich torque signal. As a result, static friction

is not negligible, leading to a biased frequency response. Despite the non-linear

effects, a clear pair of antiresonance and resonance is present. Representing

the machine as a two-mass system is thus a logical simplification [28, 29]. In

figure 6, a schematic representation of this simplified model is shown. The

simplification assumes that the driven rotor represented with the rotor inertia

10 100 1000
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-25

-20

-15

-10
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0

5

G
ai

n 
G

 [d
B

]

Two-mass system
Measurement

Figure 5: Measured and calculated frequency response of the pick and place unit and the

simplified two-mass system
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Jr is connected with the load by a spring-damper coupling. The stiffness of the

spring is represented with k and b is the damping coefficient of the damper. The

load is assumed to be the equivalent of all rigidly connected linkages, except the

rotor, and is represented with the load inertia Jl. The rotor and load damping

are represented respectively with br and bl.

T θ k

br

θl

bl

b

Jl(θl)Jr

Figure 6: Model of a damped two-mass system

The dynamics are described with the differential equations shown in (9).

After Laplace transformation of (9), the transfer function describing the

dynamic influence of the torque T on the velocity θ̇, is found in (10).

T − brθ̇ − b(θ̇ − θ̇l)− k(θ − θl) = Jrθ̈

−blθ̇l + b(θ̇ − θ̇l) + k(θ − θl) = Jlθ̈l
(9)

θ̇(s)

T (s)
=

Jls
2 + (b+ bl)s+ k

JrJls3 + ((Jr + Jl)b+ Jrbl + Jlbr)s2 + ((Jr + Jl)k + brbl + (br + bl)b)s+ (br + bl)k

(10)

Realistic values of the mechanical parameters in (10) are listed in Table 1.

The value of the rotor inertia Jr is found in the data-sheet of the motor. The

value of the load inertia Jl is read from the inertia profile in figure 4 at the

position θa of high inertia. The other parameters k, b, br and bl are found by

fitting the measured gain characteristic with the gain of (10) with a manual

trial and error approach. The result is shown in figure 5 with the mechanical

parameters listed in Table 1.
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Table 1: Mechanical parameters of the simplified two-mass system

Jr 3200 kg·mm2

k 4221 Nm/rad

b 0.396 Nms/rad

br 0.2 Nms/rad

bl 0.1 Nms/rad

3.2. Frequency regions of interest

The gain characteristics according to (10) for selected values of the load

inertia Jl and the constants in Table 1 are plotted in figure 7 in solid lines. The

three selected values are the maximum inertia at position θa, an average inertia

at position θb and the minimum inertia at position θc. The values are depicted

in figure 4 and listed in Table 2.

Table 2: Selected values of the load inertia Jl out of figure 4

Position θ [◦] Inertia Jl [kg·mm2]

θa 87 9319

θb 134 4927

θc 179 548

For each inertia value, the gain according to its equivalent pure inertial load

is plotted in a dashed line of -20 dB/dec. The transfer function of this rigid

undamped system is found by substitution of θ = θl and br = bl = 0 in (9):

θ̇(s)

T (s)
=

1

(Jr + Jl)s
(11)

Also in a dashed line, the gain of a pure inertial load existing of only the

rotor inertia Jr is plotted. A final characteristic is the static gain |G(s = 0)| of

(10) in a dotted line.

A first observation is that for each characteristic, a range of frequencies

is found where the gain according to the two-mass system (10) equals the gain
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Figure 7: Gain characteristic for the selected values of the load inertia Jl in solid lines and

their equivalent pure inertial load in dashed lines. The regions of interest f∗ in green are

suitable for inertia estimation.

according to its pure inertial load (11). This means that for these frequencies the

gain is only influenced by the rotor inertia Jr and load inertia Jl. Unfortunately

this region is not the same for all characteristics. At 20 Hz for example, the

gain of Jl(θa) equals the slope of -20 dB/dec but not for Jl(θb) and Jl(θc).

By observing the deviation of the slope of -20 dB/dec, the frequency range

can be divided in 5 regions. In each region, the gain of the two-mass system is

influenced by different mechanical parameters. As summarized in Table 3, R2

and R4 are the remaining regions of interest because of the reduced number of

describing parameters.

Region R2 is considered as the first frequency region f∗1 of interest where

the system is described as a damped one-mass system:

θ̇(s)

T (s)
=

1

(Jr + Jl)s+ (br + bl)
(12)

If the gain is measured inside f∗1 for varying positions, the load inertia Jl is

determined by converting the gain of (12) with a known value of the rotor inertia

Jr and the sum of the damping factors br and bl.

The transfer function in region R4, is found by substituting br = bl = 0 in
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Table 3: Observations from the gain characteristics of the two-mass system

Parameters Observation

R1 br, bl The gain at θc equals the static gain |G(s = 0)|.

R2 Jr, Jl, br, bl

At all positions, the slope deviates due to external

damping and not due to the spring-damper

coupling.

R3 Jr, Jl, br, bl, k, b

At θc the slope deviates due to external damping

and at θa the slope deviates due to the

spring-damper coupling.

R4 Jr, Jl, k, b
At all positions, the slope deviates due to the

spring-damper coupling.

R5 Jr

At all positions, the gain equals the pure inertial

load of the rotor. The spring-damper coupling is

not able to respond to the high frequency input

torque and the load inertia is not moving.

the transfer function (10) of the two-mass system:

θ̇(s)

T (s)
=

Jls
2 + bs+ k

JrJls3 + (Jr + Jl)bs2 + (Jr + Jl)ks
(13)

However, the slope of the gain between the antiresonance at position θa and

the resonance at position θc is very different for varying positions. At 200 Hz

for example, the slope at position θa and θb is positive while being negative at

position θc. By limiting region R4 until a frequency slightly before the

antiresonance at position θa, a second region of interest f∗2 is found. If the

gain is measured inside f∗2, the load inertia Jl is known by converting the gain

of (13) with the rotor inertia Jr, stiffness k and damping b as prior known

parameters.

3.3. Conversions from gain to inertia

As concluded previously with figure 7, the varying load inertia Jl can be

tracked by measuring the gain at varying positions. After calculation of the
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modulus of the transfer function (12), which is valid for frequencies inside the

region of interest f∗1, the conversion from gain G to load inertia Jl is found:

Jl =
1

ω

(√
1

G2
− (br + bl)2

)
− Jr (14)

Note that the frequency f is represented in (14) with ω = 2πf and that in figure

7 the gain G is represented in dB:

GdB = 20log(G) (15)

For frequencies inside the region of interest f∗2, the gain conversion is found in

a similar way from the modulus of the transfer function in (13):

Jl =
A+
√
B

C

A = (k − b2)G2Jrω
3 − (G2Jrk

2 + 1)kω

B = −G4J4
r b

2ω8 + 2G2J2
r b

2ω6 + (G2b2 − 1)b2ω4 + 2G2b2k2ω2 +G2k4

C = G2J2
r ω

5 − (2G2Jrk −G2b2 + 1)ω3 +G2k2ω

(16)

4. The SDFT approach

4.1. The SDFT algorithm

As concluded in the previous section 3, the inertia can be tracked for varying

positions if the frequency response at one specific frequency is measured. To do

so, the SDFT is of interest. This algorithm can determine frequency responses at

consecutive time stamps in a computationally efficient manner. Fourier analysis

can be used to determine fundamental components of a measured signal. At a

discrete time instance k the hth harmonic component Xh(k) based on a period

of N samples can be written as:

Xh(k) =

N−1∑
l=0

x(k − (N − 1) + l)e
−jh

2π

N
l

(17)

As illustrated in figure 8, one signal period of N samples is needed to calculate

the fundamental component. When a new measurement sample is available,
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x(k-N) x(k)

kk-N

Figure 8: Principle of the DFT applied on a sliding window [21]

(17) could be reconsidered to update the fundamental component. Summing

all measurement samples over one signal period according to (17) is time

consuming. However, at each new time instance n only the last sample x(n) is

added and the oldest sample x(n − N) is removed from the window. This

appealing property, which is exploited in [20, 21, 22], is used to implement the

frequency response estimation in a computationally efficient manner. The

Fourier component Xh(k) at time instance k is written as:

Xh(k) = x (k − (N − 1)) + x (k − (N − 1) + 1)) e
−jh

2π

N + x (k) e
−jh

2π

N
(N−1))

(18)

While the previous component Xh(k − 1) is written as:

Xh(k−1) = x (k −N)+x (k − (N − 1)) e
−jh

2π

N +x (k − 1) e
−jh

2π

N
(N−1))

(19)

After subtraction of (19) from (18):

Xh(k) = (Xh(k − 1)− x(k −N)) e
jh

2π

N + x(k)e
jh

2π

N
(N−1)

(20)

Moreover:

e
jh

2π

N = e
−jh

2π

N
(N−1)

(21)
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Finally, (20) is rewritten as:

Xh(k) = (Xh(k − 1) + x(k)− x(k −N)) e
jh

2π

N (22)

For clarification, (22) is represented graphically in figure 9. Note that (22) can

be interpreted as the angular shift of the previous Fourier component

Xh(k − 1)ej2πh/N minus the oldest sample x(k − N) plus the most recent

sample x(k). This SDFT approach is particularly interesting when only a

limited number of Fourier components Xh(k) needs to be known. This is the

case here as only one frequency, and therefore one fundamental component is

considered.

Figure 9 and (22) illustrate that regardless of the window length N , the

+

x(k)
+

-

z-N

+

z-1

ej2πh/N

x(k-N)

Xh(k)

Xh(k-1)

add the most recent sample

remove the oldest sample

Figure 9: Implementation of the SDFT algorithm [21]

SDFT only needs to determine one real sum, one complex sum and one

complex multiplication to compute a successive DFT output. The SDFT is

obviously computationally efficient.

4.2. Inertia estimation

Figure 10 shows how the SDFT algorithm and the conversion from gain

to inertia are combined to obtain an online inertia estimation. First of all, a

controller is designed with the objective that the closed-loop mechatronic system

is able to maintain constant speed under varying dynamics. This setpoint of

constant speed θ̇∗ is chosen with the intention to track the inertia profile with a

constant resolution. Because of the fixed discrete sample time ts and a constant

speed, the resolution ∆θ of the position is also fixed. At a certain time t, the

16



Controller
++

Ts

System
SDFT

θ

|T |f

Gain
to

inertia
Jl(θ)

f

Data processing

Mechatronic system

Tc Tθ* θ |θ |f

Jr, k, b

+

-

1/s

Jr, br, blA

Figure 10: Principle of inertia estimation

resolution ∆θ is found as:

∆θ(t) = θ(t)− θ(t− ts) (23)

Because the approach requires that the gain is tracked at a well-chosen

frequency f , both the input signal T and output signal θ̇ must contain a

fundamental component at this frequency f . This is achieved by adding an

additional sinusoidal torque Ts with a frequency f and amplitude A, resulting

in an input torque T that equals Tc + Ts. Next, both the input signal T and

output signal θ̇ of the system are filtered by the SDFT algorithm, shown in

figure 9 to obtain the amplitude at frequency f for both input and output.

The gain G is then found as:

G =
|θ̇|f
|T |f

(24)

Finally, by converting the measured gain G, the load inertia Jl is found in

function of time. By taking the actual position θ into account, the load inertia

Jl is found in function of the position θ. Depending on the selected frequency

f , the conversion is either according to (14) with Jr, br and bl as prior known

mechanical parameters or according to (16) with Jr, k and b as prior known

parameters. The inertia is thus calculated at every new time sample without

convergence.

Guidelines for tuning of the amplitude A, the speed setpoint θ̇∗, and selecting

the frequency f are presented in the next section 5.
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5. Co-simulation

5.1. Working principle

During the design phase of a machine, a CAD model is often available. In

this paper, Siemens NX is used to model the industrial pick and place unit.

Siemens NX, among other CAD packages, delivers the possibility to represent

the mechanical system in Matlab/Simulink. This representation is also called

a plant. Global simulation of both the controller modelled in Simulink and the

mechanical system modelled in Siemens NX, is then possible. This technique of

combining two different software packages is called a co-simulation. To clarify

the working principle of the proposed estimation method, a model is build in

Simulink existing of the algorithm in figure 10. The system is now replaced with

the plant of the CAD equivalent of the real machine.

Without the additional sinusoidal torque activated, a standard PI-controller

CPI is designed to maintain stable constant speed under varying dynamics:

CPI = Kp(1 +Ki
1

s
) (25)

The values Kp = 1.1 and Ki = 50 are found by obtaining a closed-loop

bandwidth 6 times lower than the antiresonance of the open-loop system in

figure 5. The step response for θ̇∗ = 180 ◦/s is shown in figure 11. The
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Figure 11: Step response without the added torque signal
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fluctuations around the setpoint confirm the desired stable operation of the

system under varying dynamics.

To illustrate the influence of the added torque on the input and output

signals of the system, a simulation is performed with a sampling time ts of

0.25 ms, which corresponds to the sampling time of the real-time platform used

for controlling the real machine. The other settings are a speed setpoint of θ̇∗

= 180◦/s, a frequency f = 10 Hz and amplitude A = 10 Nm of the sinusoidal

torque. The amplitude A is chosen from the static torque that varies between

-0,6 and 0,6 Nm due to gravity. In order to have a system response at frequency

f due to the load inertia, the amplitude A should be significantly more than the

static torque while considering the maximum motor torque Tmax of 41.6 Nm.

The input torque is shown in figure 12, the output speed in figure 13 and

the position in figure 11. As desired, both the low frequency signal due to the

inertia variation and the added frequency signal due to the sinusoidal torque
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are clearly present. The fluctuations around the desired speed are larger than

the ones in figure 11 due to the added torque. This is also clearly visible in

the position of the system. Consequently, the inertia is tracked with a varying

resolution ∆θ and not with the intention to have a constant resolution. This

property is taken into account for further analysis in the next sections where

the performance of the SDFT approach is investigated for different values of the

speed setpoint θ̇∗ and the excitation frequency f .

5.2. Selection of the additional excitation frequency

Figure 15 shows the results of three simulations with the same speed setpoint

of θ̇∗ = 180◦/s, the same amplitude A= 11.86 Nm and three different frequencies

f . The value A = 11.86 Nm is chosen to be the same value as used in the

measurements section 6. The value f = 10 Hz is chosen in the first frequency

region of interest f∗1, see figure 7, where the gain is converted according to

(14). In that case, the prior known parameters are the rotor inertia Jr, the

rotor damping br and load damping bl. The next value f = 80 Hz is chosen in

the second frequency region of interest f∗2 where the gain is converted according

to (16). The prior known parameters in that region are the rotor inertia Jr, the

flexibility k and damping b of the coupling. For the next value of f = 160 Hz

the same conversion (16) is needed.

The results show that only in the case of f = 80 Hz, a clear correspondence

between the estimated inertia and the theoretical reference obtained with (8) is
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Figure 15: Influence of the frequency f on the inertia estimation

found. The result obtained with f = 10 Hz shows that the shape of the profile

is correct, despite a clear tracking error and fluctuations.

In the case of f = 160 Hz the load inertia is only accurately tracked at

positions of low inertia. This confirms that although the same prior known

parameters as in f = 80 Hz are needed for the conversion (16), the frequency

must be chosen inside region f∗2. Figure 7 shows that the antiresonance at

different positions shifts to the left if the inertia increases. If the frequency is

chosen above the antiresonance frequency at high inertia, the gain is not situated

before the antiresonance for all positions and thus not correctly converted.

Together with the close-up view in figure 15, it is also clear that the lower

the frequency f , the higher the tracking error. This is explained by

considering the lagging behaviour of the SDFT algorithm [20]. As described in

[23] and illustrated in figure 8 it takes one full SDFT window, existing of N

samples, to obtain a completely updated SDFT result and thus an inertia

value after conversion. In this case the time window δt is equal to the period

of the additional torque Ts:

δt =
1

f
= Nts (26)

In figure 16 a close-up view of the output position in figure 14 is shown. At time
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tk, the full window from tk−N until tk is needed to obtain a result. Since the

inertia is estimated in function of the position, this time window δt = tk− tk−N
is transformed to a position window δθ:

δθ = θ(tk)− θ(tk−N ) (27)

This position window is also called a position lag because it is a result of the

lagging behaviour of the SDFT. Due to the obvious oscillations of the position,

the position lag δθ is variable.

The first consequence is that the estimated inertia profile lags according to

the position lag δθ. This is clearly visible in figure 15 in the case of f = 10

Hz. The higher the frequency f , the lower the time window δt, the higher the

position lag δθ. This lagging error is a known error because the position is

measured and therefore compensation is possible.

The second consequence of the position lag is clarified with the help of the

theoretical inertia profile in figure 17. During a certain position lag δθ, the

load inertia Jl is variable. This means that for every window of the SDFT, an

averaged inertia Ĵl is estimated which is not the correct value. The higher the

lag δθ, the larger this averaging error. This consequence is represented with

oscillations in the inertia profile, which is clearly visible at f = 10 Hz in figure

15. Because the load inertia is to be estimated, this error is unknown and cannot
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be compensated.

Due to the uncorrectable averaging error it can be concluded that choosing

the frequency in the lower region f∗1 is not of interest for fast and accurate

estimation of the rapidly changing inertia. By choosing the frequency f higher

in region f∗2, the time window of the SDFT is smaller leading to more accurate

results.

A final important condition for the selection of the frequency f relates to

the fact that the SDFT-algorithm is a discrete algorithm with a sample time ts.

Therefore, the number of samples N of the SDFT-window must be an integer

value and more than 20 for accurate reproduction of the sine wave at frequency

f :

N =
1

fts
≥ 20 (28)

5.3. Influence of the speed setpoint

Continuing with an additional frequency f of 80 Hz, the influence of the

speed setpoint θ̇∗ is investigated. Figure 18 shows the results of two simulations

with the same amplitude A = 11.86 Nm and two different values of the speed

setpoint θ̇∗.
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Figure 18: Influence of the speed setpoint θ̇∗ on the inertia estimation
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Again, the lagging behaviour is clear. The higher the speed setpoint, the

higher the position lag and thus the higher the tracking error. This conclusion

is explained by looking at the average slope in figure 16. The figure shows the

average slope for a speed setpoint of 180 ◦/s. If this setpoint is doubled, the

slope and consequently the position lag δθ is also doubled for the same time

window δt.

The achievable accuracy of the estimated inertia profile hence depends on

the operating speed of the machine. The higher the speed, the less accurate the

result and vice versa. Figure 18 however shows that a full inertia profile with a

maximum value of 18 times the minimum value is accurately estimated within

1 s. This validates that the proposed SDFT method contributes towards fast

and accurate estimation of rapidly varying mechanical parameters.

5.4. Sensitivity of the prior known mechanical parameters

A drawback is that the proposed SDFT method requires that three

mechanical parameters are known in advance. An exact value of the rotor

inertia Jr is easily found in a data-sheet of the motor. But finding exact values

for the flexibility k and damping b of the spring-damper coupling might be a

difficult task in practice. As mentioned in section 3.1 an option is to find k

and b by fitting a measured gain characteristic to the transfer function of a

damped two-mass system. Because the measurement inherently contains

non-linearities, the manual fitting procedure leads to an uncertain guess. This

uncertainty of both k and b is taken into account by presenting the sensitivity

analysis in figure 19. In the analysis, the roughly found values of k and b are

considered to be the exact values of the system model.

In the figure, the reference inertia profile is plotted together with an

estimated profile with exact values of k and b and settings f = 80 Hz, θ̇∗ =

360 ◦/s and A = 11.86 Nm. In the upper plot, the sensitivity related to k is

observed by including estimations with the exact value of b and adjusted

values of k ± 5% and k ± 10%. In the lower plot, the sensitivity related to b is

observed by including estimations with the exact value of k and adjusted
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Figure 19: Sensitivity related to uncertain values of the flexibility k and damping b.

values of b ± 200% and b ± 400% with a lower boundary of b = 0. Obviously,

negative values of the damping b do not exist in practice.

For convenience, the estimated profiles Jl are corrected with the position lag

δθ and are thus shifted:

Jl(θs) = Jl(θ − δθ) (29)

The figure shows that at positions of low inertia a wrong guess of k and b

does not result in a wrong estimation of the load inertia. The reason for that is

clarified with the observations from the gain characteristic in figure 7 in section

3.2. Rough guesses of k and b only affect the estimation at high inertia.

A next conclusion is that the flexibility k is the most sensitive parameter.

While an error of k ± 10% results in an inaccuracy of (Jku−Jkd)/Jki ≈ 11%, it

takes an error of b+ 400% to have an inaccuracy of only (Jbu−Jbi)/Jbi ≈ 5%.

6. Measurements

To enable online tracking of the varying inertia of the real machine, the

Simulink code used for co-simulation in figure 10 is implemented in the

real-time hardware target. The implementation is carried out with the PLC

25



Beckhoff/TwinCAT environment. The system in figure 10 is now replaced

with the equivalent input and output signals of the PLC in torque mode. As

mentioned, the fixed sample time ts of the real-time platform is 0.25 ms.

The measurement settings are based on the investigated tuning rules with the

co-simulation approach and are listed in Table 4. In the TwinCAT environment,

Table 4: Measurement settings

A [Nm] f [Hz] θ̇∗ [◦/s]

1 11.86 80 180

2 11.86 80 360

3 11.86 160 180

the amplitude is specified as a percentage of the maximum motor torque. For

all measurements this value is set to 28.5%, resulting in an amplitude A of 11.86

Nm. For illustration, a badly chosen frequency f = 160 Hz is included.

For the measurement with index 1, the input and output signals are shown

in figures 20, 21 and 22. Figure 20 shows the torque Tm and figure 21 shows the
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measured speed θ̇, together with the setpoint θ̇∗. In figure 22, a close-up view of

the measured position θ is shown. When comparing the measured signals with

the equivalent signals obtained through co-simulation in figures 12, 13 and 14 it

is clear that the system behaviour during the estimation routine is very similar,

except for the obvious noise.

In figure 23, the results of the proposed SDFT approach for online tracking

of varying inertia are presented. In the case of f = 160 Hz the estimated inertia

is completely wrong. This confirms that the frequency must be selected inside

the region of interest and choosing a higher frequency with the intention to limit
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Figure 23: Online tracking of the load inertia with the settings in Table 4
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the position lag δθ is not valid.

In the case of f = 80 Hz a clear correspondence is found with the

theoretical reference and therefore the approach is proven to be valid, even in

noisy conditions. The inherent error due to the position lag δθ is again clearly

present. However, despite the doubled speed of θ̇∗ = 360 ◦/s compared with θ̇∗

= 180 ◦/s and thus doubled lag, the tracking error is rather the same. As

indicated with the sensitivity analysis in section 5.4, the uncertain values of

flexibility k and damping b lead to an estimation that is smoother and more

accurate at low inertia than at high inertia.

7. Conclusion

This paper presented a SDFT approach for online tracking of rapidly varying

inertia. The feasibility of the method has been verified on an industrial machine

and its CAD equivalent, modelled in a multibody dynamics software package.

A theoretical reference of the inertia variation has been derived from the kinetic

energy of a theoretical model of the machine. This theoretical approach has

proven to be time-consuming and requires the knowledge of the mass properties

of all linkages of the mechanism, which motivates online estimation.

Based on the results, the online SDFT approach is valid for both real

machines and their CAD equivalent. The conditions for proper performance

are clarified and a summarizing flowchart is given in the appendix. An

inherent property of the SDFT is the lagging behaviour. By respecting the

proposed guidelines, the estimation errors due to this lagging behaviour can be

limited.

Furthermore it has been proven that the SDFT can track the system response

online without any prior known mechanical parameters. Still, the conversion

from the system response to the inertia requires information concerning the

mechanical load. However, the presented guidelines prove that the number of

prior known mechanical parameters can be reduced. For example, the approach
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is valid for machines containing kinetic friction without having information of

this mechanical parameter.

Nonetheless, a drawback is that values of the stiffness and damping of an

equivalent spring-damper coupling between rotor and load must be known in

advance. Even a rough estimation of these parameters leads to an accurate

result of the inertia profile in 1 second. A sensitivity analysis confirms that the

remaining inaccuracy of the estimated profile is mainly due to these uncertain

values.

When comparing the proposed method with existing methods like the

recursive least-squares algorithm the main progresses are that the mechanical

parameter is directly estimated leading to faster convergence, noise has nearly

no influence on the estimation and less prior known parameters are needed.

The SDFT approach is thus considered as a contribution towards fast and

accurate estimation of rapidly varying mechanical parameters.

Finally, the developed estimation algorithm has proven to be implementable

in a commercial real-time platform.

8. Appendix

8.1. Kinematic relations

By considering three kinematic loops, ABC, DEGF and ABCDF (see figure

2), the kinematic relations are found with complex vector analysis of planar

mechanisms with multiple loops [30]. After position analysis, the geometric

relations are:

θ3 = θ4 = 2tan−1

(
−b−

√
b2 − 4ac

2a

)
(30)

θ2 = sin−1
(
|AB|sin(θ1) + yc

|CB|

)
(31)

xc = − xf − |DC|sin(θ5)− |FD|cos(θ3) (32)

yc = − yf − |DC|sin(θ5)− |FD|sin(θ3) (33)
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After taking the continuous derivative, the velocity relations are found:

θ̇3 = θ̇4 =
|AB|sin(θ1 − θ2)

|FD|sin(θ3 − θ2)
θ̇1 (34)

θ̇2 =
|AB|sin(θ1 − θ3)

|CB|sin(θ2 − θ3)
θ̇1 (35)

ẋc =

(
−|AB|sin(θ1) +

|AB|sin(θ1 − θ3)

sin(θ2 − θ3)
sin(θ2)

)
θ̇1 (36)

ẏc =

(
−|AB|sin(θ1 − θ3)

sin(θ2 − θ3)
cos(θ2) + |AB|cos(θ1)

)
θ̇1 (37)

Note that the distance between two joints of the same link are geometric

constants. For example, |AB| in (31), which is the distance between joints A

and B is a constant. Also note that the angle θ5, as depicted in figure 2, is a

geometric constant. In (30) and (31), a, b and c are auxiliary variables:

a = −h1 − h5 − cos(θ1)(1 + h3)− h4sin(θ1) (38)

b = 2(sin(θ1) + h2) (39)

c = h1 − h5 + cos(θ1)(1− h3)− h4sin(θ1) (40)

In (38), (39) and (40), h1, h2, h3, h4 and h5 are auxiliary constants:

h1 = −xf − |DC|cos(θ5)

|AB|
(41)

h2 = −yf − |DC|sin(θ5)

|AB|
(42)

h3 = −xf − |DC|cos(θ5)

|FD|
(43)

h4 = −yf − |DC|sin(θ5)

|FD|
(44)

h5 =
|AB|2 + |FD|2 − |CB|2 + (−yf − |DC|sin(θ5))2 + (−xf − |DC|cos(θ5))2

2|AB||FD| (45)

The kinematic relations are now solved and can be used for the theoretical

derivation of the reference inertia profile in section 2.

8.2. Flowchart

A summarizing flowchart for online tracking of varying inertia is given in

figure 24. The first step is to obtain the mechanical load parameters of the

30



simplified two-mass system. The rotor inertia Jr is found in a data-sheet of the

motor. An option for finding the values of the stiffness k and damping b of the

spring-damper coupling between rotor and load is through a model fit with a

measured frequency response of the machine. The measurement is done at the

position θmax of maximum inertia because the additional frequency f is also

selected based on this characteristic in the next step.

The position θmax of maximum inertia corresponds to the position where

the distance from the centre of mass of all linkages to the driven joint is

largest. By considering this property, the position θmax is easily found for

simple mechanisms like for instance a crank-shaft mechanism. But for more
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Figure 24: Flowchart for online tracking of varying inertia
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complex mechanisms like the pick and place unit, the location of the centre of

mass is difficult to imagine. If a CAD model is available, the position θmax is

found with motion simulations [31]. If not, an alternative is to measure the

frequency response at multiple positions. The position θmax of maximum

inertia then corresponds with the position where the antiresonance is lowest.

Also a few practical limitations need to be known in advance. The maximum

motor torque Tmax is found in a data-sheet of the motor. From a manual of the

real-time platform, the sample time ts is found.

Next, the estimation settings are tuned. The additional frequency f is

selected in the region of interest f∗ (located slightly before the antiresonance

frequency at the position of maximum inertia) while considering that the

number of samples N must be an integer value greater than 20. Afterwards,

the PI-settings of the speed controller are tuned without the additional torque

signal activated. The remaining settings, being the amplitude A of the

additional torque and the speed setpoint θ̇∗ are then experimentally tuned by

using a co-simulation with the CAD equivalent. But if desired, the settings

can be directly tuned on the real machine.

The final step is to execute the inertia estimation algorithm online and

evaluate the result. Based on the expected position lag δθ, the estimation

settings can be re-tuned. This iteration is depicted with the recurring line in

the flowchart.
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