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Magnetically levitated machines use magnetic levitation to maintain the separation be-
tween the bearing races. They offer various benefits compared with other types of bear-
ings: no contact between the bearing races, the absence of lubrication, and suitability for
high-speed applications. Magnetically levitated machines can be divided into two groups:
active magnetic bearing (AMB) and bearingless machines.

An active magnetic bearing is the traditional magnetic bearing. AMBs use electromagnets
to maintain the rotor in a stable position. Bearingless machines are similar to AMB ma-
chines, but they use the same air gap for the generation of the torque-producing and levita-
tion flux. Magnetically levitated systems are unstable, complex, and nonlinear multi-input
multi-output systems. Thus, they require feedback control for stable operation. Further,
accurate modeling is essential for the robust control of these systems.

In this doctoral dissertation, the system identification aspect of magnetically levitated
systems is considered. In general, system identification refers to construction of mathe-
matical models of systems by measuring input-output data during an identification exper-
iment. System identification can assist in the modeling, and more accurate models can
be built with real data. In this dissertation, different excitation signals; pseudorandom
binary sequence (PRBS), chirp, stepped sine, and multisine are first applied to the AMB
system identification for single-input single-output and multi-input multi-output cases.
Next, the online identification of an AMB rotor–bearing system with a sliding discrete
Fourier transform with the direct and indirect identification is shown. Then, the identifi-
cation methods used for AMB machines are applied to bearingless machines. The effects
of noise and delay on the linearized plant identification accuracy based on nonlinear sim-
ulation models are examined. Finally, the AMB rotor–bearing system identification with
the PRBS for a multi-input multi-output system is presented.

The doctoral dissertation provides results for the identification of a magnetically levitated
system. Several laboratory test rigs were used to obtain the results. It is shown that the
methods used for the AMB system identification can be applied to bearingless machines.

Keywords: active magnetic bearings, bearingless machines, modeling, frequency domain
identification, system identification
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Nomenclature
To clarify the nomenclature used in Publications I–VI, some of the symbols below are
provided with their different meanings in the respective publications, indicated by (I)–
(VI).

Abbreviations
AMB active magnetic bearing
DFT discrete Fourier transform
DOF degree of freedom
DX drive-end x-axis
DY drive-end y-axis
FEM finite element method
FFT fast Fourier transform
FRF frequency response function
IPM interior permanent magnet
MIMO multi-input multi-output
NX non-drive-end x-axis
NY non-drive-end y-axis
PM permanent magnet
PRBS pseudorandom binary sequence
SDFT sliding discrete Fourier transform
SIMO single-input multi-output
SISO single-input single-output
SNR signal to noise ratio

Greek Symbols
α angle between a pole and the control axis deg
β rotation around axis rad
λ′m suspension force constant H/m
µ0 magnetic permeability of air H/m
Ω rotational speed rad/s
ωbw bandwidth of the power amplifier rad/s
Φ reduced mode shape function matrix
φ phase angle rad
ψ flux linkage Wb-turn
θ moment Nm

Symbols
A amplitude
A state matrix
Aair air gap cross-sectional area m2

B input matrix
C output matrix
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C(jωk) controller transfer function
d PRBS number of cells, (I, IV–V)
d distance from the center of mass
D feedforward matrix
DM mechanical model damping matrix
e natural logarithm
F force N
f excitation frequency Hz
F force vector
f0 chirp signal start frequency Hz
f1 chirp signal end frequency Hz
fr PRBS frequency resolution Hz
fs sampling frequency Hz
GM mechanical model gyroscopic matrix
g0 air gap between a pole and the rotor m
G0(jωk) open loop transfer function
Gcl(jωk) closed-loop transfer function
Gcc transfer function of the power amplifier
Gp gain of the feedback current control loop
i coil current A
I identity matrix
i current vector
ib bias current A
ic control current A
im electromagnet magnetizing current A
imax maximum current A
iref reference current A
Ix transversal moment of inertia about x-axis kgm2

Iy transversal moment of inertia about y-axis kgm2

Iz z-axis rotational moment of inertia kgm2

j imaginary unit
k chirp signal rate of change
K stiffness matrix
Ki current stiffness matrix N/A
Kx position stiffness matrix N/m
ki current stiffness N/A
ku velocity-induced voltage coefficient
kx position stiffness N/m
kx1 suspension position stiffness N/m
kx2 suspension position stiffness related to the q-axis motor drive current N/m
L PRBS number of data points, (I, IV–V)
L inductance H
l length
l length of the inductor core m
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lair length of the air gap m
m mass kg
M mass matrix
M ′ suspension force constant Wb/m
N PRBS signal length, (I, IV–V)
N number of samples, (III)
N number of coil turns
n index, (IV)
n time instant, (III)
N shape function matrix
Nf number of frequencies in the multisine signal
P number of nodes in the FEM analysis
q displacement vector
R resistance Ω
R(jωk) discrete Fourier transform of the reference signal
s Laplace variable
S nodal location
T chirp signal end time s
t time s
T1 transformation matrix
T2 transformation matrix
Ts transformation matrix
Ts sampling time
u voltage V
u input vector
U(jωk) discrete Fourier transform of the input signal
u(k) plant input
u1(k) AMB current reference signal
udc DC link voltage V
W magnetic energy J
w width of the inductor core m
W ′ magnetic coenergy J
w(k) excitation signal
x x-axis displacement m
x state vector
X(n) harmonic on the nth time instant
x(n) DFT/SDFT input signal
y y-axis displacement m
y output vector
Y (jωk) discrete Fourier transform of the output signal
y(k) plant output
y1(k) AMB measured current
y2(k) measured position signal
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Superscripts
g in global coordinates
H complex conjugate transpose
m in modal coordinates
T transpose

Subscripts
A bearing A
a actuator
B bearing B
b in bearing coordinates
c control current
d direct (d) axis
i element number
k index
lo lower electromagnet
m motor
q quadrature (q) axis
r rotor
s sensor
s suspension
up upper electromagnet
x x-axis/direction
y y-axis/direction
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1 Introduction
This chapter presents the motivation, background, objectives, and scope of this doctoral
dissertation. An introduction into magnetically levitated systems is given. System identi-
fication and rotor modeling are discussed in brief. The outline of the dissertation and the
scientific contributions are presented.

1.1 Motivation and background

Bearings are important machine elements used to reduce friction between moving parts
and constrain relative motion to the desired motion. One of the most common bearing
types is the rolling element bearing, which uses rollers to maintain the separation be-
tween the bearing races. This type of bearing is suitable for many applications, but it
suffers from the sliding friction. This will eventually lead to a bearing failure and a need
to replace the bearing. In some applications, the bearing failure time can be very short.
The mechanical bearing is also usually the first point of failure, and the lubrication oil or
grease may cause problems (Eaton et al., 2010). Advantages of mechanical bearings are
their affordability and capability to provide high force density.

A fluid bearing is one alternative to rolling element bearings. These bearings use ei-
ther gas or liquid, typically oil or working fluid, for example water, between the bearing
races. This allows fluid bearings to have no sliding friction, and they are able to support
high-load and high-speed applications better than rolling element bearings. However,
these bearings also have significant disadvantages: the liquid must stay inside the bear-
ing, which may be challenging to ensure. Furthermore, fluid bearings cannot be used in
extreme temperatures and processes where contamination is a problem. In particular, gas
bearings retain their low friction and low thermal effects at high speeds exceeding maxi-
mum allowable speeds for oil and roller bearings. Nevertheless, they face stability issues,
and their modeling can also be very challenging (Czolczynski, 1999).

An active magnetic bearing (AMB) is a type of bearing that uses magnetic levitation to
maintain the separation between the bearing races. This offers advantages over fluid and
rolling element bearings. As there is no contact between the bearing races and no lubri-
cation, AMBs can be used where contamination is a problem. They are also suitable for
high-speed applications, and the rotational speed is typically only limited by the material
strengths of the rotor (Schweitzer and Maslen, 2009). AMBs also have their disadvan-
tages; they need safety bearings in case of an AMB failure or power loss. The design of
AMBs is also not a simple task and requires knowledge of several fields of science. The
investment cost is also high. If large levitation forces are needed, AMBs may lengthen
the rotor so that it becomes supercritical, which is highly undesirable.

AMBs have been extensively studied at LUT University, producing many scientific publi-
cations and doctoral dissertations. Jastrzebski (2007) presented an FPGA-based LQ con-
trol of active magnetic bearings with the dSPACE platform. Hynynen (2011) focused on
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the system identification of AMBs in single-input single-output (SISO) and multi-input
multi-output (MIMO) cases using multisine and stepped sine signals. Smirnov (2012)
introduced an automatic commissioning procedure of a high-speed motor levitated with
AMBs.

In recent years, the bearingless machines have also become a research topic at LUT Uni-
versity. Several scientific publications and one doctoral dissertation have been published
on this topic (Jaatinen, 2019).

Bearingless machines use the same air gap for the generation of the torque-producing
and levitation flux. This allows them to be shorter than AMB machines thereby enabling
higher critical speeds; however, they are not able to produce as much levitation force as
standard AMB machines (Chiba, 2005). However, normally, the acting surfaces are much
larger, often ensuring sufficient forces.

AMBs and bearingless machines have also been investigated in numerous studies. In
(Gosiewski and Mystkowski, 2008), robust control of a radial AMB with a rigid rotor
was considered. (Mystkowski et al., 2018) discussed the use of the Newton observer for
estimation of the magnetic flux within the feedback control of a nonlinear AMB system.
In (Sokolov et al., 2019), modeling of a bearingless synchronous reluctance motor with
combined windings was presented. (Severson, 2018) addressed the usability of bearing-
less machines in industrial and transportation applications.

1.2 Objectives and scope of the dissertation

The main objective of the dissertation is to provide different system identification methods
for magnetically levitated systems. Different excitation signals (chirp or swept sine, mul-
tisine, pseudorandom binary sequence (PRBS), and stepped sine) are used for the system
identification. Direct and indirect identification and sliding discrete Fourier transform
(SDFT) are used for the AMB rotor–bearing system identification. The rotor–bearing
system identification of a bearingless machine is presented. SISO, single-input multiple-
output (SIMO), and MIMO identification are considered for the AMB machine and SISO
for the bearingless machine.

The main scope of the dissertation is in the nonparametric frequency domain estimation.
Parametric estimation is used only in Publication IV.

1.3 Introduction of magnetically levitated systems

A magnetically levitated system is a system where the rotor is supported by magnetic
levitation rather than by a standard rolling element bearing, film bearing, or the like.
Rolling element bearings are able to provide force densities of around 205 N/cm2, fluid
bearings around 69 N/cm2, and magnetically levitated systems around 80 N/cm2 (Clark
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et al., 2004). These systems can be divided into two groups: traditional AMB machines
and bearingless machines.

1.3.1 Active magnetic bearings (AMBs)

AMBs apply magnetic levitation to support the rotor in its nominal position. The simplest
magnetic levitation system is a one-degree-of-freedom (DOF) system, where one object
such as a ball made from a ferromagnetic material is levitated. The system consists of
one electromagnet, a displacement sensor for detecting the ball position, a controller, and
a current regulator, which amplifies the current command of the controller. With such a
system, stable levitation can be achieved, because without active control the system would
be unstable. When there is current flowing in the conductor, the electromagnet produces
a magnetic field, which produces a force that pulls the object towards it. An example of
such a system is shown in Fig. 1.1.

Displacement 
sensor

Controller

Ball

Power 
amplifier

Electromagnet

i,u

Figure 1.1. One-degree-of-freedom magnetic levitation system.

A typical AMB system consists of two radial (xy plane) AMBs and one axial (z-plane)
AMB. Three or more radial AMB planes are sometimes applied, for instance in (Jastrzeb-
ski et al., 2019). One radial AMB is thus a 2-DOF system, and the axial one is a 1-DOF
system. In total, this will result in a 5-DOF system. Typically, each degree of freedom
is controlled with two electromagnets. The purpose of using two electromagnets per one
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DOF is to provide force in both directions, because electromagnets can only provide posi-
tive pull force. Position information related to all degrees of freedom is also needed. This
requires a minimum of five position sensors or more, if differential or redundant mea-
surements are used. Safety bearings must also be used in case of an AMB failure, rotor
touchdown, or for safely holding the rotor while the system is not powered. An example
of a simple 5-DOF AMB system is shown in Fig. 1.2.

sensor

Radial 
bearing

sensor

Radial 
bearing

sensor

safety 
bearings

Axial 
bearing

Figure 1.2. Simple five-degree-of-freedom AMB system.

There are also different AMB actuator configurations. In the heteropolar configuration,
the polarities of the stator poles vary. In this case, the magnetic flux is confined to the
plane perpendicular to the axis of rotation. In the homopolar configuration, the stator
poles have the same polarity, and at least some of the flux passes axially along the rotor
(Schweitzer and Maslen, 2009).

In permanent magnet (PM) biased magnetic bearings, permanent magnet materials are
used to provide the bias magnetic flux. This has the advantage that the power loss re-
lated to maintaining the bias field is eliminated (Schweitzer and Maslen, 2009). They can
also be useful in vertically oriented machines as they eliminate the gravity force, which
is constant. One such example is a flywheel, where low power losses are essential. In
some setups, some degrees of freedom can be controlled totally passively with permanent
magnets only. Passive permanent magnet bearings often use Halbach arrays to increase
stiffness (Mystkowski and Ambroziak, 2010).

There are also hybrid AMBs, where both radial and axial forces can be generated. One
such example is the conical AMB. With this configuration, it is possible to generate also
axial forces (Katyayn and Agarwal, 2017). In setups where low axial forces are needed,
conical AMBs are one option. This also has the advantage that the rotor can be shorter as
there is no need for a separate axial AMB. Other solutions are also applied, for instance a
dead pole for combining axial and radial AMBs (Filatov et al., 2016).
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1.3.2 Bearingless machines

Bearingless machines use the same air gap for the generation of the torque-producing
and levitation flux. The radial levitation force generation with a 4-pole motor and a 2-
pole suspension winding is shown in Fig. 1.3. When the conductor 2a is energized, the
flux density in the air gap region 1 increases and the flux density in the air gap region 3
decreases. This produces a positive force in the x-direction. The same holds in Fig. 1.3b
when the current on the conductor 2a is reversed; the flux density in the air gap region 3
increases and the flux density in the air gap region 1 decreases, producing a negative force
in the x-direction. The same principle applies to the force generation in the y-direction as
shown in Fig. 1.4. Bearingless machines with combined windings and current injection
can also be applied (Jastrzebski et al., 2017b).

13

2

4

x

y

2a

2a

F

a)

13

2

4

x

y

2a

2a

F

b)

Ψ2a
Ψ2a

-Ψ2a
-Ψ2a

Figure 1.3. Bearingless machine levitation force generation in the x-direction; a) positive,
b) negative. 4-pole motor and a 2-pole suspension winding.
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F
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Ψ2b Ψ2b
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Figure 1.4. Bearingless machine levitation force generation in the y-direction; a) negative
b) positive. 4-pole motor and a 2-pole suspension winding.

1.4 Rotor modeling of magnetically levitated systems

The rotors of AMB systems and bearingless machines can be modeled as either rigid or
flexible. In the rigid rotor, the critical frequencies are higher than the maximum rotational
speed and the bandwidth of the position controller. In the flexible rotor, the critical fre-
quencies are lower than the maximum rotational speed. The rotor behavior at the critical
speed can be affected by the position controller and may be crossed during run-down and
run-up. Modeling of flexible rotors requires modeling of the elastic behavior of the rotor
(Lösch, 2002). It should be noted that pure rigid rotors do not exist, and typically, one or
more flexible modes are modeled even though the rotor is assumed rigid.

One rule of thumb is that the rotor is assumed rigid if the rotational speed is below 30–
50% of the first critical frequency. A Campbell diagram is a visual tool used to determine
if the rotor can be assumed rigid or flexible. The Campbell diagram plots the rotational
speed of the rotor and the flexible eigenfrequencies on the axes. The Campbell diagram
shows the splitting of the flexible eigenfrequencies caused by the gyroscopic forces when
the rotational speed increases. The flexible eigenfrequencies are split into forward modes,
which have an increasing frequency, and backward modes, which have a decreasing fre-
quency. The intersection points between the forward and backward modes and the rota-
tional speeds are called critical frequencies of the rotor. An example Campbell diagram
of the 10 kW AMB test rig rotor is shown in Fig. 1.5.
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Figure 1.5. Campbell diagram of the 10 kW AMB test rig rotor. The black dashed line
shows the rotor rotational speed.

1.5 System identification

System identification is a methodology of constructing mathematical models of systems.
System inputs and outputs are typically measured during an identification experiment,
and an experimental model is generated from this data set (Ljung, 1987).

For stable systems where operation without a controller is possible, the plant can be iden-
tified directly with open-loop identification methods. For unstable systems, such as AMB
rotor systems, the plant identification has to be performed with a closed-loop feedback.
However, the controller can affect the identification results. The closed-loop identification
can be divided into three subcategories: direct, indirect, and joint-input-output methods.
In the direct approach, the effect of the controller is neglected, and the plant is identified
as in the case of an open-loop system. In the indirect approach, the effect of the known
controller is taken into account by solving the open-loop transfer function from the iden-
tified closed-loop transfer function. In the joint-input-output approach, both the plant and
the feedback dynamics can be identified using the plant inputs and outputs as the system
outputs. The joint-input-output approach was discussed in (Anderson and Gevers, 1979).
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In the case of magnetically levitated systems, the system identification must be carried
out in the closed loop because the open-loop system is unstable. Typically, the first direct
approach is used as it is the easiest and requires no knowledge of the feedback loop. After
that, an indirect or joint-input-output approach should be used for better results.

In this dissertation, system identification is used for the magnetically levitated system
identification. Different excitation signals (chirp or swept sine, multisine, PRBS, and
stepped sine) and identification methods are applied.

1.6 Outline of the dissertation
This dissertation is presented in the following six chapters:

Chapter 1 shows the motivation, background, and objectives of the dissertation. An
overview of magnetically levitated systems and system identification is given.

Chapter 2 deals with a detailed analysis of magnetically levitated systems; AMB ma-
chines and bearingless machines. The basic theory for the magnetic levitation is pre-
sented. References of the analytical modeling of magnetically levitated systems are given.

Chapter 3 addresses the rotor modeling of AMB and bearingless machines. Rigid and
flexible models are discussed.

Chapter 4 gives a more detailed introduction to the system identification. Specific condi-
tions in magnetically levitated systems (unstable nature, nonlinearities, SISO, SIMO, and
MIMO identification) are provided.

Chapter 5 presents the simulation and experimental results with laboratory test rigs of
two AMB machines and one bearingless machine. A short description of each test rig
is given. The estimation errors, uncertainties in measurement signals, and identification
results are discussed in brief.

Chapter 6 summarizes the work and provides suggestions for future work.

1.7 Scientific contributions and publications
In this doctoral dissertation, an identification methodology was developed. The disserta-
tion provides the following scientific contributions:

• Pseudorandom binary sequence is applied to the AMB system identification in
SISO, SIMO, and MIMO cases.

• A comparison of different excitation signals (PRBS, chirp, stepped sine, and multi-
sine) in the SISO AMB system identification is made.
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• Online identification of an AMB rotor–bearing system is carried out with a sliding
discrete Fourier transform (DFT) using a multisine excitation signal in the SIMO
identification with the indirect and direct methods.

• The identification methods of AMB machines are applied to bearingless machines.

The following publications address the topics of this dissertation:

Publication I discusses the use of a pseudorandom binary sequence for the rotor–bearing
system identification of an AMB system in the SISO case. A comparison is made with the
stepped sine excitation signal, and it is shown that the PRBS provides adequate frequency
response estimation in the nonparametric case. Results of the inner current control loop
identification are also given. Furthermore, harmonic analysis of the rotor–bearing system
is presented with a constant amplitude stepped sine signal.

Publication II focuses on the commissioning of a 10 kW AMB test rig, which is used to
obtain the results presented in this publication and Publications I, III, and IV. The pub-
lication shows the same identification results as Publication I, and provides additional
results for the magnetic center identification with different rotor angles and the identifi-
cation of the current and position stiffnesses with static measurements. Results from the
rotational test of the machine are also given together with the analysis of the unbalance
compensation and the unbalance magnetic pull from the induction motor.

Publication III studies the online identification of the rotor–bearing system of an AMB
machine with the sliding DFT. A comparison of the nonparametric frequency response
estimates is made with a multisine excitation signal in the offline and online SISO and
SIMO cases with the direct and indirect closed-loop identification. It is found that the
SDFT provides accurate FRFs when compared with the offline ones.

Publication IV is a continuation of Publication I. It discusses the usage of several dif-
ferent excitation signals (chirp or swept sine, multisine, PRBS, and stepped sine) in the
rotor–bearing system identification with AMBs. The excitation signal properties are dis-
cussed, and a comparison of the excitation signals is made in the nonparametric frequency
response estimation SISO case. Results of the inner current control loop identification
are presented. Further, the current and position stiffnesses are identified with different
excitation signals and compared with the initial ones and the static measurements from
Publication II.

Publication V is related to and partially a continuation of Publication I and IV as it uses
the PRBS excitation signal in the AMB rotor–bearing system identification. The publi-
cation shows the usage of noncorrelated PRBS excitation signals for the nonparametric
frequency response identification of an AMB rotor–bearing system in a MIMO case. The
publication presents a hermetic steam turbo generator (HERGE) test rig.
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Publication VI is related to Publication I and IV as it uses the stepped sine excitation
signal but now to identify the rotor levitated with a bearingless machine. It is noted that
the identification of the rotor–bearing dynamics can be carried out similarly as with the
AMB system. This publication mainly focuses on the control design aspect of a 10 kW
bearingless permanent magnet synchronous motor.

The author has also published research results related to AMB and bearingless machines,
which are not covered in this dissertation:

1. Vuojolainen, J., Smirnov, A., Jastrzebski, R., Sillanpää, T., Behnam, G., Har-
tikainen, T., and Pyrhönen, O. (2016). Updating the model of a rotor with surface
mounted permanent magnets in an active magnetic bearing rotor system. In 15th
International Symposium on Magnetic Bearings (ISMB15), Kitakyushu, Japan, pp.
534–541.

2. Jastrzebski, R., Sillanpää, T., Jaatinen, P., Smirnov, A., Vuojolainen, J., Lindh, T.,
Laiho, A., and Pyrhönen, O. (2016). Automated Design of AMB Rotor Systems
with Standard Drive, Control Software and Hardware Technologies. In 15th In-
ternational Symposium on Magnetic Bearings (ISMB15), Kitakyushu, Japan, pp.
78–85.

3. Vuojolainen, J., Nevaranta, N., Jastrzebski, R., and Pyrhönen, O. (2018). MATLAB-
Based Tool for Teaching of Active Magnetic Bearing Design to Undergraduate Stu-
dents. In 2018 IEEE 18th International Power Electronics and Motion Control
Conference (PEMC), Budapest, Hungary, pp. 926–931.

4. Jaatinen, P., Vuojolainen, J., Sillanpää, T., Nevaranta, N., Jastrzebski, R., and
Pyrhönen, O. (2018). Motion Control of a Dual-Motor Interior Permanent Mag-
net Bearingless Machine. In 2018 IEEE 18th International Power Electronics and
Motion Control Conference (PEMC), Budapest, Hungary, pp. 717–722.

5. Vuojolainen, J., Jastrzebski, R., and Pyrhönen, O. (2018). Balancing of a Rotor
with Active Magnetic Bearing System: Comparison of One-and Two-Plane Bal-
ancing Procedures. In 2018 20th European Conference on Power Electronics and
Applications (EPE’18 ECCE Europe), Riga, Latvia, pp. P.1–P.7.

6. Jaatinen, P., Nevaranta, N., Vuojolainen, J., Jastrzebski, R., and Pyrhönen, O.
(2019). H∞ Control of a Dual Motor Bearingless Machine. In 2019 IEEE In-
ternational Electric Machines & Drives Conference (IEMDC), San Diego, USA,
pp. 875–881.

7. Jaatinen, P., Nevaranta, N., Vuojolainen, J., Lindh, T., and Pyrhönen, O. (2019).
Monitoring Concept for a High-Speed Machine Application with a Magnetically
Levitated Rotor System. In IECON 2019 - 45th Annual Conference of the IEEE
Industrial Electronics Society, Lisbon, Portugal, pp. 1204–1209.
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8. Nevaranta, N., Jaatinen, P., Vuojolainen, J., Sillanpää, T., and Pyrhönen, O. (2020).
Adaptive MIMO pole placement control for commissioning of a rotor system with
active magnetic bearings. Mechatronics, vol. 65, pp. 102313.
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2 Magnetically levitated systems

In this chapter, active magnetic bearing (AMB) machines and permanent magnet bear-
ingless machines are discussed in detail. The chapter provides a basic force generation
equation of a radial AMB, an equation for the power amplifier, and the basic force gener-
ation of a bearingless machine. The analytical modeling of magnetically levitated systems
is also discussed in brief. The purpose of this chapter is to provide the basic theory of
magnetic levitation systems.

2.1 Active magnetic bearings (AMBs)

This chapter presents the basic AMB dynamics and equations. The main focus is on the
radial AMB.

2.1.1 Radial actuator model

An electromagnet can only produce positive force. This can be noted from Eq. (2.1),
where the force equation of an electromagnet is given as

F =
µ0N

2i2Aair cosα

4l2air
, (2.1)

where µ0 is the magnetic permeability of air, i is the coil current, N is the number of coil
turns, α is the angle between a pole and the control axis, Aair is the air gap cross-sectional
area, and lair is the air gap. It can be seen that the force produced by the electromagnet is
highly nonlinear because of the relation to the square of the coil current and the inverse
square of the air gap.

In order to move the rotor along one axis (x or y), a pair of electromagnets is required.
The force generated by a pair of opposing electromagnets is

Fx = Fx,up − Fx,lo =
µ0N

2Aair cosα

4

(
i2x,up

(g0 − x)2
−

i2x,lo
(g0 + x)2

)
, (2.2)

where ix,up is the coil current of the upper electromagnet, ix,lo is the coil current of the
lower electromagnet, and g0 is the air gap between a pole and the rotor. For control
design purposes, Eq. (2.2) is linearized. The linearization point is assumed to be the
center position of the rotor x ∼ 0. For the current linearization, a bias current ib is used.
The bias current is selected to be less than or equal to half of the maximum coil current
imax (ib ≤ 0.5imax). Thus, the coil currents can be calculated as

ix,up =

{
ib + ic, if ic ≥ −ib,
0, if ic < −ib,

(2.3)
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ix,lo =

{
ib − ic, if ic ≤ ib,

0, if ic > ib,
(2.4)

where ic is the control current. The linearized force equation is

Fx = kiix,c + kxx, (2.5)

where ki is the current stiffness, and kx is the position stiffness. They can be calculated as

ki =
∂F

∂ic

∣∣∣
x=0,ic=0

=
µ0N

2ibAair cosα

g20
, (2.6)

kx =
∂F

∂x

∣∣∣
x=0,ic=0

=
µ0N

2i2bAair cosα

g30
. (2.7)

The linearized force shown in Eq. (2.5) holds the linearity well close to the operating
point, which is typically the case. In some special cases, such as flux saturation and very
low bias currents, more detailed and/or nonlinear models are required (Schweitzer and
Maslen, 2009).

2.1.2 Radial AMBs

Radial AMBs are used to support the rotor radially (xy plane). A typical configuration of
a radial AMB has eight or twelve poles (E-core). The E-core AMB structure is described
in (Allaire et al., 2016). In some cases, a higher pole count such as 16 might be used.
Radial bearings are laminated (both the stator and the rotor) to allow high flux densities
and low eddy currents. Fig. 2.1 shows an example of a 12-pole E-core radial AMB.

Figure 2.1. Radial AMB from the HERGE test rig, E-core 12 poles. (From Publication
V).
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2.1.3 Axial AMBs

An axial or thrust AMB is used to support the rotor in the axial direction (z-plane). Typ-
ically, it has a standard C-core structure. Compared with radial AMBs, axial AMBs are
seldom laminated. However, sometimes a segmented structure can be used (Jastrzebski
et al., 2019). A solid structure limits the flux density, and high eddy currents are gen-
erated. One reason for this is that thin sheets are not able to withstand stresses at high
rotational speeds. Fig. 2.2 shows an example of an axial AMB.

Figure 2.2. Axial AMB from the HERGE test rig. (From Publication V).

2.1.4 Power Electronics

AMBs need electricity for operation. Thus, they require controlled power amplifiers,
which generate the reference current iref (iref = ib ± ic). A simple block diagram of the
AMB system is shown in Fig. 2.3.

Gff 

Gp 1/sL-1 
iref

Current 
controller

+
++

Voltage 
saturation

-Udc...Udc

PWM +

ku

-

dx/dt

ki

im

R

--

+

kx

+

x

Power 
amplifier

Electromagnet

F

Figure 2.3. Block diagram of the linearized AMB model with the basic inner control loop.
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The voltage of the power amplifier is

u = L
di

dt
+Ri+ ku

dx

dt
, (2.8)

where R is the resistance of the coil, and L is the inductance. When neglecting mag-
netic saturation, hysteresis, eddy currents, and leakage flux paths, the equation for the
inductance L is written as

L =
N2µ0wl

2(g0 − x)
. (2.9)

According to Eq. (2.9), the inductance L is not constant but varies in the nonlinear model,
whereas in the linear model it has a constant value. ku is the velocity-induced voltage
coefficient, and it is approximately equal to half of the current stiffness ki. However, this
can be neglected in most applications as the magnitude is low compared with the voltage
of the coil (Schweitzer and Maslen, 2009). The resistance R can also be neglected as it is
very low. Based on these assumptions, a first-order model of the closed-loop dynamics of
the power amplifier can be written as

Gcc =
im
iref
≈ GP

sL+Gp

, (2.10)

where im is the magnetizing current of the electromagnet, and Gp is the gain of the feed-
back current control loop. In a similar way, based on the bandwidth of the power amplifier,
we obtain

Gcc ≈
ωbw

s+ ωbw
, (2.11)

where ωbw is the bandwidth of the power amplifier. Using the rise time of the first-order
approximation, the bandwith of the power amplifier is (Jastrzebski, 2007)

ωbw =
ln(9)udc
Limax

. (2.12)

2.2 Permanent magnet bearingless machines

Force generation of a bearingless machine can be calculated as follows. The flux linkages
of the motor and the suspension winding direct and quadrature axes (ψm,d, ψm,q, ψs,d,
ψs,q) can be calculated with

ψm,d
ψm,q
ψs,d
ψs,q

 =


Ld 0 M ′

dx −M ′
dy

0 Lq M ′
qy M ′

qx
M ′

dx M ′
qy Ls 0

−M ′
dy M ′

qx 0 Ls

 ∗

im,d
im,q
is,d
is,q

+


λm
0

λ′mx
−λ′my

 , (2.13)
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where Ld is the motor d-axis inductance, Lq is the motor q-axis inductance, Ls is the sus-
pension winding inductance, im,d and im,q are the motor drive winding currents, is,d and
is,q are the suspension winding currents, and λ′m and M ′

d and M ′
q are the suspension force

constants (Chiba, 2005). This equation does not take into account magnetic saturation,
rotor angle, eddy currents, and leakage fluxes. Now, the forces can be derived by using
the stored magnetic coenergy W ′

m

W ′
m = Wm =

1

2

[
im,d im,q is,d is,q

] 
ψm,d
ψm,q
ψs,d
ψs,q

 , (2.14)

Fx =
∂Wm

∂x
, (2.15)

Fy =
∂Wm

∂y
, (2.16)

where Wm is the magnetic energy, being equal to the magnetic coenergy W ′
m.

For a 4-pole interior permanent magnet (IPM) bearingless motor with 2-pole suspension
and separate windings (Jastrzebski et al., 2015; Jaatinen et al., 2015), linearized forces
are as follows. Assuming motor control for im,d = 0, adding the unbalance magnetic pull
(UMP), and neglecting gravity, linearized forces Fx and Fy are (λ′m = ki)[

Fx
Fy

]
=

[
(kx1 + kx2im,q)x
(kx1 + kx2im,q)y

]
+

[
1
2
ki M ′

qim,q
M ′

qim,q −1
2
ki

]
∗
[
is,d
is,q

]
, (2.17)

where kx1 is the suspension position stiffness, and kx2 is the position stiffness on the
suspension related to the q-axis motor drive current. This is comparable with AMBs; see
Eq. (2.5).

2.3 Analytical modeling

Analytical modeling of AMBs has been discussed in (Hynynen, 2011; Jastrzebski et al.,
2016). In (Jugo et al., 2008), analytical modeling of AMBs was performed in the har-
monic domain. In (Wang et al., 2017), analytical modeling method of AMBs was shown
taking into account the magnetic saturation. In (Romanenko et al., 2014), modeling of
losses in an AMB using a reluctance network method of fluxes in a heteropolar 8-pole
bearing was presented. In (Jastrzebski et al., 2019), modeling of radial and axial AMBs
was shown with the 3D FEM. In this work, the AMBs were modeled with lookup tables,
which were obtained from the FEM analysis of the AMB.
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(Jastrzebski et al., 2018) presented modeling and optimization of a bearingless motor
structure with the FEM. In (Jastrzebski et al., 2017a), modeling and control design simu-
lations were presented for a linear flux-switching permanent-magnet-levitated motor.

2.4 Differences between AMBs and Permanent magnet bearingless
machines

A bearingless motor actuator signal has an error angle (between the x and y-axes) resulting
from permeability changes caused by slots and poles and magnetomotive force variations.
For the nonrotating case, this translates into a dc offset error in the suspension force
vector (Chiba, 2005). A comprehensive analysis of the suspension force error angle in
a 10 kW bearingless test rig was presented in (Jaatinen, 2019). When rotating, there
will be modulated harmonics of 20–24 times the rotational frequency, and the highest
harmonic is four times the rotational frequency. For the mechanical model, there is no
difference between AMB and bearingless machines. The bearingless machine also has
a coupling between the actuators and the motor coils through mutual inductances. For
AMBs, the xy forces are symmetrical for the rotor in the center position. For the 4-pole
bearingless machine, the error angle was minimized in the machine design, and the forces
are symmetrical if the error angle is not taken into account. For example, for a 2-pole
rotor, there would have been significant differences between the x- and y-force vectors.
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3 Rotor modeling

In this chapter, rotor modeling of AMB and bearingless machines is presented. Rigid and
flexible rotor models are shown. The models are later compared with the identification
results.

The modeling of rigid and flexible rotors can be started from Newton’s II law of motion
in a linearized case

Mq̈(t) + (DM + ΩGM)q̇(t) + Kq(t) = F(t), (3.1)

where DM is the damping matrix, GM is the gyroscopic matrix, K is the stiffness matrix,
M is the mass matrix, Ω is the rotational speed, q is the displacement vector, and F is
the force vector. This equation can be used assuming that the rotational speed is constant,
displacements from the reference points are small, and the rotor is axisymmetric.

3.1 Rigid rotor model

In the rigid rotor, the critical frequencies are higher than the maximum rotational speed
and the bandwidth of the position controller. In this case, a rigid rotor with two radial
AMBs is considered. The model describes the rotor motion related to the center of the
mass with the state vector q =

[
x y βx βy

]T , where x and y denote displacements
along the axes and βx and βy rotations around those axes. Thus, a four-degree-of-freedom
(DOF) system is obtained. The fifth DOF is motion along the z-axis, but it is not coupled
with the x- and y-axes, and it is controlled separately with an axial AMB. Rotation around
the z-axis, which is the sixth DOF, is included as a multiplier in the gyroscopic (GM)
matrix. Some additional transformations are also required to shift the positions of the
sensors and the actuators to the center of mass. The resulting equation of motion for the
center of mass is

Mq̈ + ΩGMq̇ = F, (3.2)

where the matrices M, GM, and F are constructed as

M =


m 0 0 0
0 m 0 0
0 0 Ix 0
0 0 0 Iy

 , GM =


0 0 0 0
0 0 0 0
0 0 0 Iz
0 0 −Iz 0

 , F =


fx
fy
θx
θy

 , (3.3)

where Ix is the transversal moment of inertia about the x-axis, Iy is the transversal mo-
ment of inertia about the y-axis, Iz is the z-axis rotational moment of inertia, fx is the
force acting in the x-direction, θx is the moment applied to the x-axis, and fy and θy are
the force and moment of the y-axis/direction, respectively. The outputs in the sensor lo-
cations are qs =

[
xs,A ys,A xs,B ys,B

]T . This is demonstrated in Fig. 3.1.
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Figure 3.1. Rigid rotor coordinate systems.

An equation similar to the one written for the center of mass (Eq. (3.2)) can be given in
the bearing coordinates

Mbq̈b + ΩGbq̇b = Kxqb + Kiic, (3.4)

where the subscript b denotes the bearing coordinates qb =
[
xA yA xB yB

]
, and xA is

the x-axis displacement in bearing A; similarly, yA is the y-axis displacement in bearing
A, xB and yB are the x- and y-axis displacements in bearing B, respectively,
and ic =

[
ic,x,A ic,y,A ic,x,B ic,y,B

]
is the control current vector denoting the currents of

the electromagnets in bearings A and B in the x- and y-directions. The transformations
from the center of gravity coordinates to the bearing coordinates are made with

qb = T1q, Gb = TT
2 GMT2, Mb = TT

2 MT2,

qs = Tsq, T2 = T−11 ,
(3.5)

where the subscript s denotes the sensor coordinate system. The transformation matrices
are

T1 =


1 0 1 0
0 1 0 1
0 −dA 0 dB

−dA 0 dB 0

 , Ts =


1 0 1 0
0 1 0 1
0 −ds,A 0 ds,B

−ds,A 0 ds,B 0

 , (3.6)

where d is the distance from the sensor to the center of mass or the distance from the
center of mass to the corresponding bearing (see Fig. 3.1).

3.2 Flexible rotor model
In the flexible rotor, the critical frequencies are lower than the maximum rotational speed,
they can be affected by the position controller, and may be exceeded during run-down
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and run-up. Flexible rotors are modeled by dividing them into a finite set of similar
elements, which is known as FEM modeling. Usually, rotors are divided into 20–40
elements. Rotors are typically modeled with cylinders described as Timoshenko beam
elements (Timoshenko, 1921, 1922). The benefit of using Timoshenko beam elements is
that both the rotational inertia and the shear deformation are taken into account, which is
useful for short and thick rotors. Each element can be expressed as

Miq̈i + (Di + ΩGi)q̇i + Kiqi = Fi, (3.7)

where Di is the damping matrix, Gi is the gyroscopic matrix, Ki is the stiffness ma-
trix, Mi is the mass matrix, Ω is the rotational speed, Fi is the force vector, and qi =[
xi yi βx,i βy,i

]T is the state vector. The matrix structure is the same as shown in Eq.
(3.3); however, now the subscript i denotes the number of elements. An example of the
Timoshenko beam element and coordinate systems in the flexible rotor modeling is shown
in Fig. 3.2.

Ω Node i+1

Node i

x

xi    

Xi+1 Βx,i+1

Βx

s Βx,i

y

Yi+1

Yi

Βy,i+1

Βy

Βy,i

Figure 3.2. Timoshenko beam element and coordinates.

In the global coordinate system applying the shape function matrix N, the final shape of
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the rotor is

qg
i = N(s)qi, (3.8)

where the superscript g denotes the global coordinate system, and s is the longitudinal
coordinate of each node. Now, the equation of motion for the rotor can be written as

Mgq̈g + (Dg + ΩGg)q̇g + Kqg = Fg, (3.9)

where qg =
[
qg
1 qg

2 · · · qg
P

]T is the global displacement vector. However, Eq. (3.9)
has a high number of state variables, as it is the number of degrees of freedom multiplied
by the number of elements used for modeling of the rotor. Therefore, it is necessary to
reduce the number of state variables for the control purposes by using model reduction
techniques. Typically, only the first few flexible modes are necessary. Transferring Eq.
(3.9) into a modal one (Smirnov, 2012) gives

Mmq̈m + (Dm + ΩGm)q̇m + Kqm = Fm. (3.10)

The coordinate transformation is carried out with

qg = Φmqm, (3.11)

where Φm is the reduced mode shape function matrix in modal coordinates. Typically, the
mode shape function matrix is scaled so that the modal mass matrix becomes an identity
matrix Mm = (Φm)TMΦm = I. The matrices Mm, Dm, Gm, Km, Fm are obtained by
the following transformations

Mm = (Φm)TMΦm, Km = (Φm)TKΦm,

Gm = (Φm)TGΦm, Dm = (Φm)TDΦm,

Fm = (Φm)TFΦm.

(3.12)

3.3 Overall plant model

First, combining the linearized forces provided by the electromagnets with the equation
of motion for the flexible rotor yields

Mmq̈m + (Dm + ΩGm)q̇m + (Km + Km
x )qm = Km

i ic, (3.13)

where Km
i and Km

x are the translated current and position stiffnesses to the center of mass.
They can be obtained with

Km
i = (Φm)TSaKiΦ

m,

Km
x = (Φm)TSa(−Kx)Φ

m, (3.14)

where Sa includes the position of the actuators and Ss the position of the sensors.
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Equation (3.13) is expressed in the state space form

ẋr = Arxr + Bru,

yr = Crxr + Dru, (3.15)

where the matrices Ar, Br, Cr, Dr are

Ar =

[
0 I

−(Mm)−1(Km + Km
x ) −(Mm)−1(Dm + ΩGm)

]
,

Br =

[
0

−(Mm)−1Km
i

]
, Cr =

[
SsΦ

m 0
]
, Dr = 0. (3.16)

The system inputs are the control currents for the bearings u =
[
ic,x,A ic,y,A ic,x,B ic,y,B

]T ,
the outputs are the rotor positions yr =

[
xA yA xB yB

]
, and the states xr combine the

modal positions and the velocity xr =
[
q q̇

]T .
Now, for the overall model, the reduced rotor model is combined with the linearized
actuator dynamics

ẋ = Ax + Bu,

y = Cx + Du, (3.17)

A =

[
Aa 0

BrCa Ar

]
, B =

[
Ba

0

]
,

C =
[
0 Cr

]
, D = 0, (3.18)

where the state vector x combines the states of both the actuator and the rotor x =[
xa xr

]T . The subscript r denotes the rotor part and the subscript a the actuator part. The
actuator matrices are diagonal Ba = −Aa = diag(

[
ωbw ωbw ωbw ωbw

]
) and Ca = I4x4.

A simple linearization shown in Eq. (2.11) is used for each channel.

The presented overall plant model, however, contains mostly linear relations, and there
are some unmodeled dynamics. In reality, the relations are nonlinear, and for example
the force of an electromagnet is highly nonlinear (Eq. 2.1). The power amplifier also
has some dynamics, for instance a varying gain based on frequency. The same holds for
the sensors. There may also be a coupling between the radial and axial bearings and an
x-y coupling through actuators. Some unmodeled dynamics are for instance foundations,
shrink fits, and seals. The overall plant model is usually only a best guess and must be
updated based on the system identification results from a real machine.

The flexible rotor models were obtained by using RoBeDyn MATLAB toolbox. The



38 3 Rotor modeling

models are later compared with the identification results.
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4 System identification
In this chapter, the system identification theory is discussed. SISO and MIMO AMB and
bearingless machine identification is presented.

4.1 Frequency domain identification

The system identification of magnetically levitated systems is usually carried out in the
frequency domain. The identification must be carried out in a closed loop as the system
is unstable without a controller.

4.1.1 Closed-loop identification

In the closed-loop identification, the effect of the controller is also included in the mea-
sured frequency response functions (FRFs). There are three closed-loop identification
approaches: the first is the direct approach, which is typically used during initial identifi-
cation or when there is no information of the feedback. In the direct approach, the effect
of the controller is omitted and the open-loop model is calculated directly from the plant
input u(k) and output signals y(k)

G0(jωk) =
Y (ωk)

U(ωk)
. (4.1)

The second approach is the indirect approach. In the indirect approach, the effect of the
controller is taken into account. However, the indirect approach is sensitive to errors in
the controller transfer function, such as deviation from a linear regulation. In the indi-
rect approach, the open-loop model is calculated from the closed-loop transfer function
Gcl(jωk) between the measured plant output y(k) and the excitation signal w(k) when the
controller model is known

G0(jωk) =
Gcl(jωk)

1−Gcl(jωk)C0(jωk)
. (4.2)

The third approach is the joint-input-output approach. With this method, both the plant
and feedback dynamics can be identified. A disadvantage is that knowledge of the refer-
ence signal is needed. In the joint-input-output approach, the excitation signal w(k) is the
system input, and the plant input u(k) and the plant output y(k) are considered system
outputs

G0(jωk) =
Y (ωk)R(ωk)

H

U(ωk)R(ωk)H
, (4.3)

where R(ωk) is the reference signal. A block diagram for these different closed-loop



40 4 System identification

identification approaches is presented in Fig. 4.1.

R(ωk) +
G0(jωk)-

C0(jωk)

U(ωk) Y(ωk)

Figure 4.1. Plant (G0(jωk)) identification with feedback controller (C0(jωk)) . R(ωk) is
the reference signal, U(ωk) is the measured input and Y (ωk) is the measured output.

In this dissertation, the direct approach is mainly used. The indirect approach is employed
only in Publication II.

4.1.2 Sliding discrete Fourier transform (SDFT)

Discrete Fourier transform is a way of determining discrete-time signal’s frequency spec-
trum. This however is a complex operation and requires the summing and multiplication
of all the measurement samples over a full measurement window with an exponential
function. An alternative for DFT is the SDFT algorithm which works on sample-by-
sample basis utilizing a sliding window and is suitable for real-time spectral analysis.
Within a period of N samples, at a specific time instant n the kth-order harmonic is ob-
tained with

Xk(n) =
N−1∑
l=0

x(n− (N − 1) + l)e−jk(2π/N)l. (4.4)

The SDFT’s basic form can be derived from Eq. (4.4) as (Jacobsen and Lyons, 2003)

Xk(n) = (Xk(n− 1) + x(n)− x(n−N))ejk(2π/N). (4.5)

The Eq. (4.5) shows the main principle of the SDFT. The SDFT uses a moving window
where the calculation of a new DFT bin is calculated from the previous DFT result. Fig-
ure 4.2 illustrates the implementation and the principle of the SDFT. The computational
efficiency of the SDFT is based on that at each time instant n, from the window, the oldest
measurement sample is removed and the newest sample is added to the sum as shown in
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Fig. 4.2a. The SDFT tracks the signals used in the identification as depicted in Fig. 4.2b.
For the SDFT, the most suitable excitation signal would be multisine that would have the
same excitation frequencies that are tracked with the SDFT.

+
+x(n)

x(n-N)

-

z-1

ej2πk/N

Xk(n-1)

Xk(n)Add the most recent sample

remove the oldest sample

z-N

+

Memory/Buffer Resonator

 
a) 

 
b) 

Figure 4.2. Principle of the SDFT; a) implementation and b) demonstration of the SDFT
window (yellow region) plotted over two periods of the multisine excitation signal in the
time domain. (From Publication III).

4.1.3 Offline vs. online identification

Offline identification is the traditional way of identification. In the offline identification,
the identification data are postprocessed offline. Typically, data are processed with the
fast Fourier transform (FFT), which is a computationally efficient way of calculating DFT.
Here, the benefit compared with the online identification is that all of the frequency com-
ponents are analyzed with the FFT. Offline identification is suitable for initial identifica-
tion and for example updating the FEM model.

Online identification is the other way of identification. In the online identification, the
data are processed online. FFT is not suitable for online identification because it requires
recalculation of the whole Fourier transform, requiring too many calculations after the
data are modified. Here, the SDFT is used for the online identification, which works on a
sample-by-sample basis using a moving window and is suitable for online identification.
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Typically, not all of the frequencies are tracked with SDFT, which is the key difference
between online and offline identification. The resolution depends on the selected samples
N , and can be chosen freely. With a large N , a resolution comparable with offline iden-
tification is achieved. The online identification is suitable for diagnostics and tracking
frequencies of interest such as the critical frequencies.

4.2 Excitation signals
Selection of the excitation signal is an important part of the system identification. This
selection is usually based on prespecified criteria and the type of the identification prob-
lem (Pintelon and Schoukens, 2012). This dissertation studies closed-loop identification
of magnetically levitated systems using various excitation signals. A pseudorandom bi-
nary sequence (PRBS) excitation signal is used in Publication I, II, IV, and V, chirp or
swept sine in Publication IV, multisine in Publication III and IV, and stepped sine in
Publication I, II, IV, and VI.

4.2.1 Pseudorandom binary sequence (PRBS)

Pseudorandom binary sequence (PRBS) presented in Fig. 4.3a is an identification excita-
tion signal that alters between two levels; amplitudes -A and +A. Properties of the PRBS
include: it’s generation is easy and the PRBS is periodic and deterministic. The PRBS
also has an optimal spectrum for the excitation signal, a controllable spectral energy and
a high spectral energy over a wide band range. The basic PRBS is defined by the selected
excitation frequency f and the number of cells d . The length N of the PRBS is obtained
with

N = 2d − 1. (4.6)

The frequency resolution fr of the PRBS is expressed as

fr =
fs
N
. (4.7)

where fs is the sampling frequency. The PRBS identification data needs L data points for
saving

L =
Nfs
f
. (4.8)

The maximum length N is limited by the maximum available L and the ratio of the sam-
pling and excitation frequency fs/f , as shown in Eq. (4.8). If you want to increase the
frequency resolution fr defined by Eq. (4.7) it can be accomplished with a lower N , a
higher f and a higher fs.
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4.2.2 Chirp

A chirp signal (see Fig. 4.3b ), is an identification excitation signal in which the frequency
either increases or decreases in one period. It’s also known as a sweep or swept signal.
There are typically two groups the chirp signals are divided into: exponential/geometrical
and linear. In the exponential/geometrical group the frequency varies geometrically and
in the linear group linearly with time. In this dissertation, a linear chirp signal with a
sinusoidal waveform is applied. Linear chirp signal’s instantaneous frequency f(t) is
express as

f(t) = f0 + kt, (4.9)

where f0 is the start frequency, k is the rate of frequency change and t is the current time.
The rate of frequency change k is obtained with

k =
f1 − f0
T

, (4.10)

where f1 is the end frequency and T is the end time after the the frequency change from
f0 to f1 (either increasing or decreasing). The equation of the linear sine chirp signal is
(Pintelon and Schoukens, 2012)

u(t) = A · sin
(

2π ·
(
f0t+

k

2
t2
))
, (4.11)

where A is the amplitude of the chirp signal. With chirp signal the frequency content of
the signal can be somewhat controlled. In the case of AMB system identification, chirp
signals have been used in (Inman et al., 2005; Lanzon and Tsiotras, 2005).

4.2.3 Multisine

A multisine signal illustrated in Fig. 4.3c, is obtained with

u(t) =

Nf∑
n=1

An · cos(2πfnt+ φn), (4.12)

where Nf is the total number of frequencies over n indices, An is the amplitude, fn is the
frequency, and φn is the phase of the n th sine wave component. The phases of these sine
wave components are randomly chosen from the interval [0, 2π]. The multisine signals
used in the AMB system identification must be designed so that the frequency spectrum of
the signal avoids the harmonics produced by the nonlinearities of the system as discussed
in (Hynynen and Jastrzebski, 2009; Hynynen et al., 2010). In this dissertation similar
guidelines are adopted and the multisine signal used consist of four bands where for each
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band the frequency resolution, the start and end frequencies and the amplitudes can be
chosen freely.

4.2.4 Stepped sine

A single sine wave has all of its power at one frequency only. In order to cover the whole
frequency range, several sine waves with different frequencies and amplitudes are excited
separately. This is known as a stepped sine depicted in Fig. 4.3d. In general, the amplitude
An and the frequencyfn can be chosen freely for each sine wave. The stepped sine wave
is described with the following equation

u(t) = An · sin
(

2πfnt
)
. (4.13)

In this dissertation an adaptive amplitude stepped sine is used. In the adaptive amplitude
stepped sine the frequency fn is selected freely and in order to keep the magnetically
levitated system in the linear region and to get an acceptable response the amplitude An
adjusted between prespecified limits (Smirnov, 2012).

                                                                
                      a) PRBS                                    b) Chirp                                c) Multisine                            d) Stepped sine 

  

 

 

Figure 4.3. Excitation signal comparison in the frequency domain (upper row) and the
time domain (bottom row). (From Publication IV).

4.2.5 Comparison of the excitation signal properties

Table 4.1 shows a comparison of the excitation signal properties presented in the previous
sections. In general, the PRBS is the best option for initial identifications, where the SNR
is not the most important criterion and fast identifications are preferred. For more accurate
identification, either multisine or stepped sine is required.
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Table 4.1. Summary of the comparison of different excitation signals with respect to their
embedded implementation in an AMB system. (*) individual excitation frequencies and
amplitudes can be controlled.

PRBS Chirp Multisine Stepped sine

Complexity low med high med

Execution time short short short long

Memory consumption high high high low

SNR low med med high

Controllability of excitation frequency low low high* high*

Controllability of excitation amplitude low low high* high*

4.3 Special cases in the magnetically levitated system identification
The identification of magnetically levitated systems must be carried out in a closed loop.
The identification must also be carried out when the rotor is levitating in a stable posi-
tion. It should be noted that a rotor-stator contact must be avoided as it would falsify the
identification results (Schweitzer and Maslen, 2009). There are several transfer functions
that can be identified from AMB systems, such as the open-loop plant (rotor model/rotor–
bearing system), controller, input sensitivity, output sensitivity, and inner current control
loop (ISO 14839-3, 2006). In this dissertation, the focus is on the inner current control
loop and rotor–bearing system identification.

4.3.1 Inner current control loop

In the current control loop identification, the effect of the reference control current on the
measured coil current is identified. Typically, the inner current control loop is approx-
imated as a first-order system, presented in Eq. (2.11). The inner current control loop
identification is shown in Fig. 4.4a. In this dissertation, the SISO inner current control
loop identification is used in Publication I and IV.

4.3.2 Rotor–bearing system

Rotor–bearing system identification is used for control design purposes and to verify the
accuracy of the rotor model and rotor–bearing dynamics. The rotor model consists mainly
of mechanical resonances and antiresonances. Figure 4.4b shows the block diagram of the
rotor–bearing system identification. The rotor–bearing system identification can be car-
ried out in a SISO or MIMO loop. The SISO loop identification is useful for initial iden-
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Figure 4.4. Block diagram of the AMB system with input and output signals used in the
identification (dotted grey lines); a) identification of the bearing (inner current control
loop) dynamics using the current reference signal u1(k) and the measured current y1(k)
and b) identification of the rotor–bearing system model using the current reference signal
u1(k) and the measured position signal y2(k). (Adapted from Publication IV).

tification as it cannot identify the coupling between the axes. The single-input multiple
output (SIMO) is an alternative to the SISO identification, and it can show some effects
of the coupling because now all the outputs are measured. The MIMO identification is
the best option if accurate results of the cross coupling between the axes are required.

In this dissertation, the SISO rotor–bearing system identification is used in Publication I,
II, IV, and VI, the SIMO identification in Publication III, and the MIMO identification
in Publication V.

4.3.3 Disturbances in the measured data

Usually, the measurement data contain disturbances. In the case of AMB systems there are
several sources of disturbances in the measured data; for example, sensors and actuator
surfaces have always some runout. A further source of disturbances is the mechanical
tolerances in the manufactured prototypes, in particular, air gaps and clearances. Again, a
nonconcentric assembly and the motor can cause disturbances to the measured data. Other
sources of disturbances are gravity and loads, such as impellers and flywheels. Thermal
effects (dimension and resistance changes) can also cause disturbances. The effect of
nearby power amplifiers and electromagnetic fields on sensor signals as well as the effect
of base/ground vibrations are also sources of disturbances. Finally, plant dynamics will
change over time as a result of aging, reassembly, and other reasons.
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5 Experimental results
In this chapter, system identification results are presented. Details of the test rigs used in
this work are given.

The results of the inner current control loop and rotor–bearing system identification pre-
sented here are used to tune the control model applied to the controller synthesis. The
results could also be used during the run time for the diagnostics of the system. Measure-
ment data were detrended before the identification tests.

The position measurement is constructed of oversampled analog position input signals
sampled at 100 kHz, and five measurements are then averaged. This results in a band-
width of 9 kHz. The current measurement has a bandwidth of 7 kHz.

There are several sources of uncertainties in the measurement signals and the identifica-
tion results. One source of uncertainty is the position sensor. The position sensor used in
the 10 kW AMB test rig is SKF’s CMSS 65-002-RM-12-5A eddy current sensor. In the
product specifications, this sensor has excellent properties, such as linearity of +-25.4 µm.
However, when assembled to the AMB system, the sensor calibration (sensor gain and off-
set) based on the assumed clearance will increase the uncertainty. The sensor calibration
has been discussed in (Smirnov, 2012; Webster and Eren, 2014). Further, the manufactur-
ing tolerances, electrical noise, and switching are sources of uncertainty. Other sources
of uncertainties in the measurement signals and the identification results are the runout of
the sensor and actuator surfaces. The rotor angle is also a source of uncertainty especially
in the 10 kW AMB test rig, where there was no angle measurement and the angle was
unknown between the measurements. Temperature also causes uncertainty because of the
thermal expansion. This is most relevant to the HERGE test rig, where there are consid-
erable temperature differences between the hot and cold machine. In HERGE, the rotor
mass is 265 kg, and the rotor dimensions are relatively large compared with the air gaps
of the AMBs. Finally, the current control of the actuator and the current measurement
accuracy also cause uncertainty.

The measurements were not statistically analyzed, as it would require many additional
measurements in the same conditions and be very time consuming. However, a statistical
analysis is planned to be carried out in a future study. This statistical analysis could be
used for example for monitoring and diagnostics of the system.

5.1 10 kW AMB test rig

The first test rig consists of two standard radial AMBs, an axial AMB, and a 10 kW 30,000
rpm induction motor. The sampling frequency is fs = 20 kHz. This test rig is discussed
in more detail in Publication II. The 10 kW AMB test rig is shown in Fig. 5.1.
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Figure 5.1. 10 kW AMB test rig; a) radial bearing non-drive-end, b) axial bearing, c)
induction motor, and d) radial bearing drive-end. (From Publication IV).

First, the simulation results with the 10 kW AMB test rig are illustrated in Fig. 5.2. The
time span from 0 to 0.2 s shows the simulated lift-up and the +100 µm position reference
given on the drive-end x-axis (DX). Then, from 0.2 s to 2.7 s, the excitation on the drive-
end x-axis with the PRBS is depicted. Finally, from 2.7 s to 3.0 s, the steady state is shown.

Next, the results of the inner current control loop are presented. PRBS, chirp, multisine,
and stepped sine excitation signals with the following properties are used.

• The PRBS excitation signal has a frequency of f = 3.33 kHz with d = 11 cells
and an amplitude of 2.5 A, resulting in a frequency resolution of fr = 1.63 Hz. Ten
periods are collected with the maximum of one second per period.

• The chirp excitation signal has a start frequency of f0 = 5 Hz, an end frequency of
f1 = 1 kHz, and an amplitude of 1 A. The end time is T = 1 s. Ten periods are
collected with the maximum of one second per period.

• The multisine excitation signal has the following four bands, and ten periods with
the maximum of one second per period are collected:

1. From 1 Hz to 19 Hz with 2 Hz steps and a 10 mA amplitude.

2. From 23 Hz to 200 Hz with 4 Hz steps and a 50 mA amplitude.

3. From 203 Hz to 399 Hz with 2 Hz steps and an 80 mA amplitude.

4. From 403 Hz to 698 Hz with 5 Hz steps and a 120 mA amplitude.

• The adaptive amplitude stepped sine excitation signal has a frequency range from
1 Hz to 750 Hz with the maximum amplitude of 2.5 A and 250 frequency points,
resulting in a frequency resolution of fr = 3.01 Hz.
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Figure 5.2. Simulation results with the 10 kW AMB test rig. DX and DY are the drive-
end x-axis and y-axis, respectively. NX and NY are the non-drive-end x-axis and y-axis,
respectively.

Fig. 5.3 presents the results of the inner current control loop identification. It can be
seen that all the excitation signals show good correspondence with the approximated in-
ner current control loop model. However, in the frequency region below 100 Hz there are
variations between the excitation signals. This is a result of the excitation signal ampli-
tudes in this specific region.

Next, the results of the rotor–bearing system are presented. The same excitation signals
are used as previously. Fig. 5.4 presents the results of the rotor–bearing system identifi-
cation. The results show that all the excitation signals provide a good accuracy compared
with the FEM model on the slope up to the first resonance frequency (10 Hz to 280 Hz)
on the drive-end x-axis and y-axis (DX and DY). After the first resonance frequency there
is more variation between the identification results and the FEM model, but the second
resonance frequency located at approx. 560 Hz is visible in all of them.

A similar accuracy can be seen on the non-drive-end x-axis and y-axis (NX and NY);
however, there is a noticeable offset between the FEM model and the excitation signals.
Now, the results are similar and accurate up to the second resonance frequency (560 Hz).
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b) DY 

 
c) NX 
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Figure 5.3. Comparison of the inner current control loop transfer functions. DX and DY
are the drive-end x-axis and y-axis, respectively. NX and NY are the non-drive-end x-axis
and y-axis, respectively. (From Publication IV).

The PRBS excitation signal was also used to identify the simulation model of the 10 kW
AMB test rig with and without simulated noise. This is shown in Fig. 5.5.

It can be noted that the PRBS excitation signal provides a very good accuracy compared
with the FEM model in the simulation with no noise added. When noise is added, the
accurate zero detection is impaired. A slightly worse accuracy was found with the exper-
imental results shown in Fig. 5.4.

Finally, the results of the online identification with the sliding DFT are presented for the
rotor–bearing system. The same multisine excitation signal is used for these results as
previously. However, now only some of the frequencies are tracked with the SDFT {1,
3, 5, 7, 9, 13, 15, 19, 23, 27, 31, 39, 47, 59, 71, 95, 119, 143, 167, 191, 227, 281, 289,
299, 335, 371, 413, 448, 473, 498, 533, 563, 593, 623, 653, 698} Hz in order to see the
tracked frequencies more clearly. The window length is selected as N = 2500, and the
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a) DX

b) DY

c) NX

d) NY

280 hz 560 hz

Figure 5.4. Comparison of the open-loop transfer functions of the rotor–bearing system.
DX and DY are the drive-end x-axis and y-axis, respectively. NX and NY are the non-
drive-end x-axis and y-axis, respectively. (From Publication IV).

sampling time Ts as 400 µs. The upper part of Fig. 5.6 shows the SISO-identified fre-
quency response of the SDFT against the direct offline-identified model and the reference
rotor–bearing system model. The lower part of Fig. 5.6, again, shows the SISO-identified-
frequency response of the SDFT against the indirect offline-identified model and the FEM
rotor–bearing system model. The results show that the SDFT is suitable for the online di-
agnostics purposes.

The online SDFT is also demonstrated with the SIMO identification with the direct offline-
identified rotor–bearing system model (Fig. 5.7). A slightly larger deviation can be seen
in the SDFT compared with the SISO case. However, the SDFT still captures the sys-
tem dynamics similarly to the offline direct identification approach, which is based on
multisine excitation.
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Figure 5.5. Comparison of the open-loop transfer functions of the rotor–bearing system
in a simulation with the PRBS excitation signal. DX and DY are the drive-end x-axis and
y-axis, respectively. NX and NY are the non-drive-end x-axis and y-axis, respectively.
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Figure 5.6. Comparison of the online (SDFT) and offline SISO-identified frequency re-
sponses of the rotor–bearing system with the reference model. The upper figure shows the
direct identification case and the lower figure the indirect one. (From Publication III).
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Figure 5.7. Comparison of the online (SDFT) and offline directly identified frequency
responses of the rotor–bearing system in the SIMO case. From the drive-end x-axis to
the a) drive-end x-axis, b) drive-end y-axis, c) non-drive-end x-axis, and d) non-drive-end
y-axis. The green line indicates the offline directly identified model and the dots show the
online model. (From Publication III).
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5.2 10 kW bearingless test rig
The second test rig used in this dissertation is a twin bearingless IPM machine with a 5 kW
power per motor unit (total power 10 kW), 30,000 rpm, and an axial AMB. The sampling
frequency is fs = 20 kHz. This test rig is discussed in more detail in Publication VI. The
10 kW bearingless test rig is shown in Fig. 5.8.

Figure 5.8. 10 kW Bearingless test rig. The axial AMB is in the middle of the machine
and the bearingless motors are located on both ends. (From Publication VI).

For the bearingless test rig, the rotor–bearing system is identified in the SISO case. An
adaptive amplitude stepped sine is used with a frequency range of 1 Hz to 750 Hz with
250 points, resulting in a fr = 3.01 Hz frequency resolution and the maximum amplitude
of 0.75 A. This result is shown in Fig. 5.9. It can be noted that the rotor–bearing system
can be identified accurately as was the case with the traditional AMB system. The first
resonance frequency at 560 Hz is clearly visible. A slight difference can be noticed in
the location of the first resonance frequency between the identified model and the rotor
model, likely resulting from inaccuracies in the modeling.
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Figure 5.9. Rotor–bearing system identification of the bearingless machine in the SISO
case on the drive-end x-axis (DX). The red line indicates the stepped-sine-identified model
and the blue one the initial rotor model.

5.3 Hermetic steam turbo generator

The third test rig is a vertically oriented high-speed induction generator with two radial
AMBs and one axial AMB. The nominal power of the generator is 1 MW and the speed
12,500 rpm. The sampling frequency is fs = 10 kHz. This test rig is discussed in more
detail in Publication V. The test rig is shown in Fig. 5.10.

For the hermetic steam turbo generator (HERGE), the rotor–bearing system identification
is performed for SISO and MIMO cases with the PRBS excitation signal. The PRBS is
constructed such that it is uncorrelated between the inputs (Publication V). The PRBS
excitation signal has a frequency of f = 1.67 kHz with d = 15 cells, resulting in a fre-
quency resolution of fr = 0.31 Hz and an amplitude of 0.5 A.

First, the results of the SISO rotor–bearing system identification are presented (Fig. 5.11).
The results show that the MIMO PRBS provides adequate correspondence with the model
especially on the non-drive-end axes (NX and NY). On the drive-end axes (DX and DY),
the accuracy is very good up to the second resonance frequency.

Second, the results of the MIMO rotor–bearing system identification are presented (Fig.
5.12). In the results, the first resonance frequency is visible on all of the FRFs. The cross
coupling can also be clearly seen.

Finally, results are provided for the SISO rotor–bearing system identification in the MIMO
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Figure 5.10. Hermetic steam turbo generator test rig. (From Publication V).

excitation when the rotor is rotating at 90 Hz (Fig. 5.13). It can be seen that the rotor–
bearing system identification can also be carried out while the rotor is rotating.
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a)  b) 

c)         d) 

Figure 5.11. Estimated SISO frequency response functions of the rotor–bearing system
from the identification tests compared with the initial mathematical model; a) from the
non-drive-end x-axis current to the x-axis position NX-NX, b) NY-NY, c) DX-DX, and d)
DY-DY. (From Publication V).
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Figure 5.12. Estimated MIMO frequency response functions of the rotor–bearing system
from the identification tests; a) NX-NX, b) NX-NY, c) NX-DX, d) NX-DY, e) NY-NX, f)
NY-NY, g) NY-DX, h) NY-DY, i) DX-NX, j) DX-NY, k) DX-DX, l) DX-DY, m) DY-NX,
n) DY-NY, o) DY-DX, and p) DY-DY. (From Publication V).
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Figure 5.13. Estimated SISO frequency response functions of the rotor–bearing system
from the identification tests compared with the initial mathematical model when the rotor
is rotating at 90 Hz.
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6 Conclusions
In this chapter, the main results of the study are discussed and conclusions are drawn.
Suggestions for future work are given.

6.1 Summary

This doctoral dissertation focused on the system identification of magnetically levitated
systems. Both offline and online identification methods as well as different excitation
signals were considered. First, the theory of the magnetically levitated systems was pre-
sented. Then, the rotor modeling was addressed, after which the system identification the-
ory and special cases in the magnetically levitated system identification were discussed.
Finally, the results of the system identification were presented for magnetically levitated
systems. The estimation errors, uncertainties in measurement signals, and identification
results were discussed in brief.

First, simulation and identification results were shown for a 10 kW AMB test rig. It
was noted that the PRBS, chirp, multisine, and stepped sine can be used for the offline
SISO identification of the inner current loop and the rotor–bearing system. For the rotor–
bearing system, identification results where shown with the PRBS also in the simulation
case. Then, the online SIMO identification of the rotor–bearing system was presented
with the sliding DFT using multisine and comparing the results with the offline identifi-
cation. It was found that the SDFT provides adequate results compared with the offline
identification and the FEM model.

Next, identification results were given for the 10 kW bearingless test rig. It was shown
that the stepped sine offline SISO identification of the rotor–bearing system can be used
directly also for bearingless machines. This was one of the key scientific contributions of
this dissertation and shows that other identification methods can be converted from AMB
systems to bearingless machines. The bearingless test rig is also more linear than the
AMB test rig because of the linearizing effect of the permanent magnets.

Finally, identification results were shown for the HERGE test rig. First, results with the
PRBS for the offline SISO identification of the rotor–bearing system were provided. Then,
results were given for the MIMO identification with an uncorrelated PRBS signal. It was
found that the MIMO PRBS yields results comparable with the SISO case and that the
cross coupling is clearly visible. Finally, results were given for a case where the rotor was
rotating at 90 Hz.

The presented identification methods are all suitable for magnetically levitated systems.
The SISO and SIMO PRBS identification would be the most suitable method for initial
identification, where a high accuracy is not needed; it is also based on easy generation
of the PRBS excitation signal. If a higher accuracy is needed, either chirp, multisine, or
stepped sine excitation should be used. Stepped sine has the highest accuracy in the SISO
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and SIMO identification, but it cannot be used for the MIMO identification, and it is very
time consuming. The MIMO identification is the most accurate method, and can be used
with the PRBS and multisine excitation signals; however, this requires careful design of
the excitation signals for each axis so that they do not correlate with each other. The
MIMO multisine excitation would be the choice for the most accurate identification.

For the discussed closed-loop identification approaches (direct, indirect, and joint-input-
output), the direct approach is the most suitable one for initial identification, as it does not
require knowledge of the controller. For more accurate identification, either an indirect
or a joint-input-output approach should be used. The indirect approach is suitable if the
controller transfer function is well known and linear. The most accurate method would be
the joint-input-output approach. A disadvantage of the join-input-output approach is that
knowledge of the reference signal is needed.

6.2 Future Work
Future work could focus on testing of the MIMO identification of bearingless machines.
A nonlinear distortion analysis in SISO and MIMO cases could also be performed on both
AMBs and bearingless machines. More identification tests could also be carried out when
the rotor is rotating. Further topics of study could be identification of a healthy machine
vs. a damaged one, or including for instance touching, added delay, motor pull, or rotor
reassembly. Further comparisons between simulated and experimental identification tests
could also be made. The estimation errors could be analyzed by repeating the same ex-
citation test multiple times and then performing a statistical analysis. This analysis could
be applied to monitoring and diagnostics of the system.
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A Appendix
Example MATLAB identification code with PRBS excitation signal.
data analysis.m

l o a d ( ’ p r b s \D a t a 1 1 0 4 2 0 1 6 1 1 4 8 5 2 . mat ’ )
f p r b s = d a t a e x c d x ( : , 1 ) ; %g e t t h e f r e q u e n c y v e c t o r

%c a l c u l a t e t h e FRFs
d x d x p r b s = p r b s b o d e d B ( d a t a e x c d x ( : , 3 ) ,
d a t a e x c d x ( : , 7 ) ) ;
d x d y p r b s = p r b s b o d e d B ( d a t a e x c d x ( : , 3 ) ,
d a t a e x c d x ( : , 8 ) ) ;
d x n x p r b s = p r b s b o d e d B ( d a t a e x c d x ( : , 3 ) ,
d a t a e x c d x ( : , 9 ) ) ;
d x n y p r b s = p r b s b o d e d B ( d a t a e x c d x ( : , 3 ) ,
d a t a e x c d x ( : , 1 0 ) ) ;

d y d x p r b s = p r b s b o d e d B ( d a t a e x c d y ( : , 4 ) ,
d a t a e x c d y ( : , 7 ) ) ;
d y d y p r b s = p r b s b o d e d B ( d a t a e x c d y ( : , 4 ) ,
d a t a e x c d y ( : , 8 ) ) ;
d y n x p r b s = p r b s b o d e d B ( d a t a e x c d y ( : , 4 ) ,
d a t a e x c d y ( : , 9 ) ) ;
d y n y p r b s = p r b s b o d e d B ( d a t a e x c d y ( : , 4 ) ,
d a t a e x c d y ( : , 1 0 ) ) ;

n x d x p r b s = p r b s b o d e d B ( d a t a e x c n x ( : , 5 ) ,
d a t a e x c n x ( : , 7 ) ) ;
n x d y p r b s = p r b s b o d e d B ( d a t a e x c n x ( : , 5 ) ,
d a t a e x c n x ( : , 8 ) ) ;
n x n x p r b s = p r b s b o d e d B ( d a t a e x c n x ( : , 5 ) ,
d a t a e x c n x ( : , 9 ) ) ;
n x n y p r b s = p r b s b o d e d B ( d a t a e x c n x ( : , 5 ) ,
d a t a e x c n x ( : , 1 0 ) ) ;

n y d x p r b s = p r b s b o d e d B ( d a t a e x c n y ( : , 6 ) ,
d a t a e x c n y ( : , 7 ) ) ;
n y d y p r b s = p r b s b o d e d B ( d a t a e x c n y ( : , 6 ) ,
d a t a e x c n y ( : , 8 ) ) ;
n y n x p r b s = p r b s b o d e d B ( d a t a e x c n y ( : , 6 ) ,
d a t a e x c n y ( : , 9 ) ) ;
n y n y p r b s = p r b s b o d e d B ( d a t a e x c n y ( : , 6 ) ,
d a t a e x c n y ( : , 1 0 ) ) ;

e u d x p r b s =db2mag ( p r b s b o d e d B ( d a t a e x c d x ( : , 2 ) ,
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d a t a e x c d x ( : , 3 ) ) ) ;
e u d y p r b s =db2mag ( p r b s b o d e d B ( d a t a e x c d y ( : , 2 ) ,
d a t a e x c d y ( : , 4 ) ) ) ;
e u n x p r b s =db2mag ( p r b s b o d e d B ( d a t a e x c n x ( : , 2 ) ,
d a t a e x c n x ( : , 5 ) ) ) ;
e u n y p r b s =db2mag ( p r b s b o d e d B ( d a t a e x c n y ( : , 2 ) ,
d a t a e x c n y ( : , 6 ) ) ) ;

prbs bode dB.m

f u n c t i o n [ out dB , o u t p h a s e , h ] = p r b s b o d e d B (
i n s e q , o u t s e q )
X = f f t ( i n s e q ) ; % i n p u t s p e c t r u m
Y = f f t ( o u t s e q ) ; % o u t p u t s p e c t r u m
%4) Power s p e c t r u m of t h e i n p u t and c r o s s power
s p e c t r u m between t h e i n p u t and o u t p u t :
Rxx = c o n j (X) . ∗X; % power s p e c t r u m of i n p u t
Rxy = c o n j (X) . ∗Y; % c r o s s power s p e c t r u m between
i n p u t and o u t p u t

% 5) Di v i de t h e c r o s s power s p e c t r u m by t h e
power s p e c t r u m
Hxy = Rxy . / Rxx ; % f r e q u e n c y r e s p o n s e
% 6) Computing g a i n and phase
out dB = db ( Hxy ) ; % g a i n i n d e c i b e l s
p = unwrap ( a n g l e ( Hxy ) ) ; % phase i n r a d i a n s
( unwrap command i s needed t o a v o i d f u l l c y c l e
phase jumps )
%p= a n g l e ( Hxy ) ;
o u t p h a s e = p ∗180 / p i ; % phase i n d e g r e e s
(180 d e g r e e s i s s u b t r a c t e d f o r s o f t w a r e r e a s o n s )
h=complex ( db2mag ( ou t dB ) . ∗ cosd ( o u t p h a s e ) ,
db2mag ( ou t dB ) . ∗ s i n d ( o u t p h a s e ) ) ;

end
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Abstract 
This paper examines usage of a pseudorandom binary sequence (PRBS) in system identification of the rotor-
bearing system in active magnetic bearings (AMBs). In the work, PRBS system identification is compared with 
adaptive amplitude stepped sine identification. PRBS is a deterministic, periodic signal varying between two 
levels. A stepped sine wave is a type of sine wave that has all the energy on one frequency only. The paper 
compares the running time, memory consumption and accuracy of the identification methods studied. A five 
degree-of-freedom (DOF) AMB testrig is used to test the accuracy of the stepped sine and PRBS system 
identification approaches. Both methods are implemented in a real-time open automation system. Required 
running time of the PRBS identification was significantly shorter than that of the stepped sine identification, but 
more memory was needed for data points. The accuracy of both identification methods was similar at lower 
frequencies, but at higher frequencies there was greater fluctuation with PRBS identification than when using 
the stepped sine method. The results show the suitability of using a PRBS in AMB rotor-bearing system 
identification. The PRBS based approach would be the choice for initial fast identifications of the system, while 
the stepped sine method would remain as the choice when focusing on identification at specific and higher 
frequencies. 

Keywords: System identification, Frequency response function (FRF), Active magnetic bearing (AMB),  
Pseudorandom binary sequence (PRBS), Stepped sine  

 
1. Introduction 

 
System identification is the construction of a mathematical model of a dynamical system based on observed and 

measured data from the system. Input-output data of the system are recorded during specific identification experiments 
to make the input-output data maximally informative (Ljung, 1987). Different types of identification experiments are 
used depending on the system to be analyzed. One approach is to use step and impulse signals to obtain identification 
data from the step and impulse responses of the system. Sine waves can also be used in identification experiments, for 
example, multisines or stepped sines. A multisine is a sine wave where power is divided into different frequencies, and a 
stepped sine is a sine wave that has all the power on one frequency only. Random signals such as random Gaussian 
signals and pseudorandom binary sequence signals have also been used in the identification experiments, for example, 
by (Shariff, et al., 2013), (Fairweather, et al., 2011). Multi-level pseudorandom signals have been applied for nonlinear 
system identification, for example, by (Braun, et al., 1999). 

For active magnetic bearing (AMB) rotor-bearing system identification, which is the application studied in this work, 
sine wave based identification experiments have been performed by a number of researchers: stepped sine identification 
experiments were used by (Gähler, 1998), (Lösch, 2002) and (Vuojolainen, 2015), and multisine identification by 
(Hynynen, 2011). 

This paper applies a pseudorandom binary sequence (PRBS) in system identification of a five degrees-of-freedom 
(DOF) AMB rotor-bearing system. The suitability of a PRBS approach for AMB rotor-bearing system identification is 
investigated, and the performance of the PRBS system identification is evaluated and compared with that of an adaptive 
amplitude stepped sine identification algorithm presented by (Vuojolainen, 2015). Accuracy, memory consumption and 
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running time are the evaluation criteria used. To the best of the authors’ knowledge, no results for the application of PRBS 
in AMB rotor-bearing system identification and diagnostics have been presented in the literature. 

The paper starts by describing the pseudorandom binary sequence and adaptive amplitude stepped sine signal 
approaches. Experimental results from utilization of the methods in rotor-bearing system identification are then given. 
The identification results are evaluated and compared with a nominal finite element method (FEM) model of the rotor. 
In addition, the inner current control loop from the reference control current to the measured control current from the 
electromagnets is identified. Nonlinearity in the system is investigated with a constant amplitude stepped sine by 
analyzing the harmonics in the frequency response of the rotor displacement. Finally, conclusions are drawn about the 
suitability of the PRBS based approach for AMB rotor-bearing system identification. 
 
Nomenclature 

 
A amplitude 
d order of the PRBS 
DX drive end x-axis 
DY drive end y-axis 
f excitation frequency 

 frequency resolution 
 sampling frequency 

G transfer function 
L number of data points 
N length of the PRBS 
NX non-drive end x-axis 
NY non-drive end y-axis 
U plant input(reference control current) 

 plant output(rotor displacement) 
 plant output(measured control current) 

Z axial z-axis 
 
2. Methods 
 

Pseudorandom binary sequence is a type of binary signal which can be used in the system identification. Adaptive 
amplitude stepped sine is a type of signal where the sine wave amplitude is adjusted to get an acceptable response and is 
used in the system identification. Nonlinearities in the system can be analyzed with looking at the harmonics present in 
the frequency response of the rotor displacement. 
 
2.1 Pseudorandom binary sequence 
 

A pseudorandom binary sequence is a periodic, deterministic signal that varies between two levels, typically between 
amplitudes +A and –A. The pseudorandomness of the signal means that although it is deterministic, it seems to behave 
like a real random sequence and is hard to predict.  

Binary signals such as pseudorandom binary sequence have an optimal spectrum for the excitation signal. They are 
easy to generate, have controllable spectral energy and high spectral energy over a wide band range. 

The PRBS is determined by the selected excitation frequency f and the order d. Length N of the PRBS is calculated 
with: 

.             (1)  
An example of a third order PRBS signal is shown in Fig. 1a. Figure 1b shows a higher, seventh order PRBS signal. The 
amplitude of both signals is 1. Using Eq. (1), the length of the third order PRBS signal is 7 and the length of the seventh 
order PRBS signal is 127. PRBS excitation frequency is 3.33 kHz. 
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Frequency resolution  of the pseudorandom binary sequence is: 

,            (2)  

where f is the selected excitation (PRBS generation) frequency and  is the length of the PRBS. The number of data 
points L needed to save the PRBS identification data is: 

,            (3)  

where  is the sampling frequency used, which is 20 kHz in this case. A maximum of one second of the PRBS 
identification can be saved based on memory consumption considerations. The maximum number of data points in this 
case is thus 20 000. Now Eq. (3) can be reformulated as the following inequality: 

.                    (4)  

Substituting the value of sampling frequency  in Eq. (4) yields: 

.            (5)  

Equation (5) shows that the length N of the PRBS and the excitation frequency f have to be chosen based on the maximum 
number of data points to be saved and the sampling frequency . Multiplying Eq. (5) with excitation frequency f and 
dividing by the length N gives:  

.            (6)  

From Eq. (2), which defines the frequency resolution  of the PRBS signal, and Eq. (6) it can be noted that the frequency 
resolution of the PRBS is constrained to being equal or greater than one. Equation (2) shows that by decreasing the 
excitation frequency f and increasing the length N, a higher frequency resolution  is achieved. The maximum value of 
the length N is limited by the maximum number of data points L and the ratio of , as seen in Eq. (3). Thus, higher 
frequency resolution can be achieved by increasing the sampling frequency  and the maximum number of data points 
L and decreasing the excitation frequency . 

PRBS identification was implemented in a real-time open automation system. In this implementation, the order of 
the PRBS can be chosen from 3 to 13 (where 14 is a limit from Eq. (5)). The amplitude and the number of PRBS 
measurement periods can be chosen freely. A minimum of two periods of the PRBS signal is used. The first period is a 
transient period, and data points related to the transient period are discarded because they lead to incorrect results. Data 
points related to the second period (measurement period) are saved and used for the identification. If two or more 
measurement periods are used, an average over the measurement periods is calculated and saved. The use of two or more 
measurement periods enables a better signal-to-noise ratio (SNR) to be achieved and the effect of possible outliers 
(measurement errors) to be minimized. 

An advantage of the PRBS identification is the short runtime required, with ten measurement periods a maximum 

Fig. 1b Example of a seventh order PRBS. Fig. 1a Example of a third order PRBS. 
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of 11 s per axis is needed. A disadvantage is the large amount of memory needed to save the data, which in this case 
comprise 20 000 data points. 
 
2.2 Adaptive amplitude stepped sine 
 

A stepped sine is a type of sine wave where all the power is on one frequency only. Consequently, the SNR of the 
stepped sine is very high. In this paper, an adaptive amplitude stepped sine algorithm presented by (Vuojolainen, 2015) 
is used. Adaptive amplitude means that the sine wave amplitude is adjusted to get an acceptable response. An advantage 
of the adaptive amplitude stepped sine identification algorithm is that memory is needed only for 250 data points. 
However, the runtime is long, up to 12 minutes per axis, because every frequency has to be excited separately, and a 
waiting time is used between frequencies and if the amplitude is adjusted. 

 
2.3 Harmonic analysis of nonlinear systems 
 

Nonlinear systems produce additional harmonics in the frequency response. These harmonics degrade the quality of 
the measured frequency response functions (FRFs). Quadratic systems generate harmonics that are on the second multiple 
of the excited frequency. If a system contains harmonics that are on the odd multiple of the excited frequency, these 
harmonics add to the signal power of the excited frequency and are unwanted (Hynynen, 2011). In the case under study 
in this work, the rotor-bearing system is quadratic and the odd harmonics are analyzed. Harmonics are analyzed from the 
spectrum of the rotor displacement for the excited axis. In this study they are analyzed for the drive end x-axis (DX) 
using a constant amplitude stepped sine. 
 
3. Experiments and results of the system identification 
 

A five degree-of-freedom AMB testrig was used to test the PRBS and adaptive amplitude stepped sine system 
identification approaches. The testrig consists of two radial and one axial active magnetic bearing. For the PRBS 
identification, the excitation frequency was 3.33 kHz, the order was 11, the frequency resolution was 1.63 Hz, the 
amplitude was 2.5 A, and ten measurement periods were used. For the adaptive amplitude stepped sine identification, the 
frequency range was from 1 Hz to 750 Hz, the frequency resolution was 3.01 Hz, and the maximum sine wave amplitude 
was 2.5 A. A simple FRF, an empirical transfer function, was used to form the experimental transfer functions based on 
the identifications. 

In the harmonic analysis of the rotor-bearing system, two different frequency bands were used, both of which used 
a sine wave amplitude of 2.5 A and step size of 4 Hz. The first frequency band was from 2 Hz to 146 Hz and the second 
frequency band was from 150 Hz to 302 Hz. 
 
3.1 Rotor-bearing system identification 
 

For the rotor-bearing system identification, excitation was applied at the reference control current. The plant input 
U and output  were measured for the corresponding axis to form the open loop plant transfer function from the 
reference control current to the rotor displacement. The open loop plant transfer function G is written as:  

.           (7)  
After forming the open loop plant transfer functions for the PRBS and adaptive amplitude stepped sine system 

identification, respectively, the transfer functions and the FEM-model rotor transfer function were compared. The 
comparison is shown in Fig. 2. 
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From Fig. 2, it can be seen that when compared to the FEM-model of the rotor, both the adaptive amplitude stepped sine 
and PRBS identification yield similar accuracy. The stepped sine identification has less fluctuation than the PRBS 
identification, particularly in the frequency range after the first resonance/anti-resonance frequency pair located at around 
280 Hz and 290 Hz on the radial axes. On the Z-axis PRBS identification starts to have more fluctuation at around 220 
Hz. PRBS identification on the other hand matches the model more accurately on the first resonance/anti-resonance 
frequency pair on the radial axes. PRBS has higher resolution 1.63 Hz compared to the stepped sine with 3.01 Hz 
resolution. 
 
3.2 Inner current control loop identification 
 

For the inner current control loop identification, excitation was applied at the reference control current. The plant 
input U and output  were measured for the corresponding axis to form the transfer function from the reference control 
current to the measured control current. Transfer function  from the reference control current to the measured control 
current is written as: 

.           (8)  
Comparison between the stepped sine and the PRBS identification of the inner current control loop is shown in 

Fig. 3. 
 
 
 
 
 
 
 

 
 
 

Fig. 2 Comparison of the open loop plant transfer functions, from the reference control current U to the rotor displacement 
 for the corresponding axis. D is the drive end, N is the non-drive end and Z is the axial direction. 
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From Fig. 3, it can be noted that in the frequency range below 100 Hz on the radial axes, the PRBS identification has less 
fluctuation between the identified points. On the Z-axis, PRBS identification has less fluctuation up to 30 Hz. On the 
radial axes, inner current control loop identification results start to converge at around 100 Hz, except on the NY-axis 
where convergence begins at around 150 Hz. On the Z-axis convergence occurs at around 30 Hz. After the convergence 
point, fluctuation in the PRBS identification starts to increase on all axes. 
 
3.3 Harmonic analysis of the rotor-bearing system 
 

In the harmonic analysis of the rotor-bearing system, excitation was applied at the reference control current on the 
DX-axis and the spectrum of the output  (rotor displacement) was measured. Figure 4 shows the harmonic analysis 
of the frequency band from 2 Hz to 146 Hz in 4 Hz steps. Figure 5 shows the harmonic analysis of the frequency band 
from 150 Hz to 302 Hz in 4 Hz steps. 

From Fig. 4, it can be seen that there are harmonics in the rotor-bearing system. A second harmonic, implying a 
quadratic system, is visible. A third harmonic, which is unwanted, is clearly visible. Other harmonics such as the fourth, 
sixth and unwanted fifth harmonic can be noted, especially at lower frequencies. 

In Fig. 5, the second harmonic is clearly visible. The unwanted third harmonic is also visible but has less amplitude 
than in the harmonic analysis presented in Fig. 4. A fourth harmonic can also be seen. Other harmonics are not visible. 

 
 
 
 
 
 
 
 

 
 

Fig. 3 Comparison of the inner current control loop transfer functions, from the reference control current U to the measured 
control current  for the corresponding axis. D is the drive end, N is the non-drive end and Z is the axial direction. 
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4. Discussion 
 

Stepped sine and multisine identification experiments have typically been used in AMB rotor-bearing system 
identification. The results in this paper show the suitability of using a PRBS based approach in AMB rotor-bearing system 
identification. Comparison between the PRBS system identification and the adaptive amplitude stepped sine system 
identification showed that the required runtime of the stepped sine system identification is longer than that of the PRBS 
system identification. However, less memory is needed. The accuracy of the stepped sine system identification of the 
rotor-bearing system was greater at higher frequencies and the approach also produced more accurate results for inner 

Fig. 4 Harmonic analysis of the rotor-bearing system on the drive end x-axis (DX). Frequencies from 2 Hz to 146 Hz in 4 
Hz steps were excited. The second and third harmonics show clearly. 

Fig. 5 Harmonic analysis of the rotor-bearing system on the drive end x-axis (DX). Frequencies from 150 Hz to 302 Hz in 
4 Hz steps were excited. The second harmonic is clearly seen and a small third harmonic is present. 

624



current control loop system identification at higher frequencies. The PRBS system identification had better accuracy for 
inner current control loop system identification at lower frequencies. Both identification methods had similar accuracy 
for rotor-bearing system identification at lower frequencies, but the PRBS system identification matched better the first 
resonance/anti-resonance frequency pair on the radial axes. 

The harmonic analysis demonstrated that the second harmonic is clearly visible, indicating that the rotor-bearing 
system is quadratic. An unwanted third harmonic is also visible, especially at lower frequencies in the frequency band 
from 2 Hz to 146 Hz. 
 
5. Conclusion 
 

Use of a PRBS based approach was found to be feasible for AMB rotor-bearing system identification. The required 
running time is shorter than with stepped sine identification, but more memory is needed to store data points. The 
accuracy of both identification methods was similar for rotor-bearing system identification at lower frequencies. For 
inner current control loop identification, PRBS identification was more accurate at lower frequencies. Stepped sine 
identification was more accurate for rotor-bearing system identification at higher frequencies and gave better results for 
inner current control loop identification. 

PRBS would be the first choice for fast and safe identification and diagnostics of the system. Other identification 
methods such as the stepped sine approach used in this work and multisine approaches could then be used to obtain a 
more accurate correspondence between the experimentally identified model and the FEM-model of the rotor, especially 
at higher frequencies. 

Future work could include the testing of multi-level PRBS identification in rotor-bearing system identification. 
Additionally, the effect of adapting the amplitude of the PRBS signal based on noise and the maximum response of 
previous experiments could be investigated. 
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Abstract— This paper presents an online nonparametric 

frequency response estimation approach for the identification of 

rotor dynamics of a high-speed machine supported by an active 

magnetic bearing (AMB) system. The closed-loop identification 

estimation approaches (direct and indirect) are based on a sliding 

discrete Fourier transform (SDFT) method that is applied in 

conjunction with a known multisine excitation signal design. The 

feasibility of the proposed identification approach is verified with 

experimental results on an AMB system. According to the results, 

the SDFT-based identification approach is applicable to online 

identification of rotor system dynamics in a computationally 

efficient manner. 

Keywords— Active magnetic bearing (AMB) system, 

monitoring, online identification, sliding discrete Fourier 

transform (SDFT) 

I.  INTRODUCTION  

VER the recent years, different active magnetic 

bearing (AMB) rotor systems have become essential 

in demanding industry applications such as high-

speed levitated blowers, pumps, generators, centrifugal 

compressors, and gas-turbine engines, to name but a few. This 

trend follows the increasing advantages in high-speed 

technology along with improvements in the calculation 

capacity of modern power electronics devices. In order to 

obtain fast and precise AMB systems, a successful design 

relies on a wide range of factors: complex control electronics, 

accurate plant modeling, modal analysis of rotor dynamics, 

and challenging control system design based on system 

identification. 

Particularly, in the case of AMB systems it is of great 

importance to have adequate analytical models for control 

design in order to achieve a robust high-performance control 

system. Consequently, over the years, a great deal of effort has 

been made to develop system identification-based 

commissioning tools for AMB systems [1]. So far, the off-line 

identification of AMB systems has been performed to obtain 

parameter estimates, that is, physical values for controller 

design purposes. Even though most of the modeling and 

analysis is typically carried out in the frequency domain, time 

domain parameter estimation is also important particularly 

from the viewpoint of controller design.   

Several off-line closed-loop identification methods can be 

found in the literature, and an extensive overview of 

identification and modeling approaches for AMB systems has 

been provided in [2]. In [3], a neural network auto-regressive 

model with an exogenous inputs (NNARX) structure has been 

proposed to identify the dynamics of an AMB system. 

Another approach has been introduced in [4], where a genetic-

algorithm-based weighted least squares (GA-WLS) approach 

is introduced for robust control design based on the basis of 

the identified models so that the performance is optimized in 

terms of H∞. Subspace-method-based identification has also 

been applied for example in [5], where a predictor-based 

subspace identification (PBSID) algorithm is presented and 

used for robust control design. In [6], least-squares-based 

parametric identification for an SISO AMB system is 

presented using a weighting function to reduce the effect of 

high frequencies on the model fitting. In [7], parametric 

MIMO multivariable identification for AMB systems is 

presented; it is capable of estimating both rigid body and 

flexible modes robustly, while other methods reported in the 

literature are claimed to be incapable of this. Furthermore, in 

[8], closed-loop identification of an AMB rotor system has 

been studied by applying a joint input and output approach to 

obtain an MIMO model.  

Despite the extensive development of system identification 

methods for commissioning purposes, there are only a few 

studies available on the issues related to the real-time 

identification of AMB systems. In [9] and [10], diagnostics of 

an AMB system has been performed by taking a signal-based 

approach combined with a fuzzy logic system for fault 

classification. A least-mean-squares algorithm has been 

proposed in [11] for online identification of the current and 

position stiffness of an AMB system. Another real-time 

identification approach has been reported in [12], where a 

model-free imbalance compensation method is proposed based 

on online identification of the Fourier coefficient of the rotor 

imbalance disturbance. The extended Kalman filter (EKF) is a 
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popular online identification tool for nonlinear systems, and it 

has been studied in [13] and [14] in the case of AMB systems. 

This paper addresses issues in the monitoring and 

diagnostic options of an AMB system in the frequency 

domain. Motivated by the features of the sliding discrete 

Fourier transform (SDFT) in [15], the objective of this paper is 

to study nonparametric model estimation of an AMB system 

in real time. The SDFT is applied to nonparametric 

identification at a selected set of frequencies in conjunction 

with a multisine excitation signal input design. Moreover, the 

SDFT is applied for direct and indirect closed-loop 

identification purposes.  

The paper is organized as follows: Section II describes the 

problem statement by introducing the frequency response 

identification of rotor dynamics supported by an active 

magnetic bearing (AMB) system. In addition, application of 

the SDFT to closed-loop identification is discussed. After that, 

in Section III, the proposed approach is verified by 

experimental tests and analyzed. Section IV concludes the 

paper.  

II. PROBLEM STATEMENT 

Owing to stability, performance, or safety constraints, 

identification of industrial systems must often be performed in 

a closed loop. An AMB system is a typical example of a 

closed-loop identification case, where identification must be 

carried out in closed-loop conditions because of the unstable 

open-loop system dynamics. A general principle of the closed-

loop identification experiment for the AMB system dynamics 

is illustrated in Fig. 1, where the excitation signal is 

superposed to the current references of the radial bearing 

control. Naturally, depending on the AMB system 

configuration, the controller topology for the axial (z-

direction) and radial (x- and y-direction) positions differs from 

Fig. 1, and thus, it has to be designed case specifically, but the 

fundamental control objective in the identification experiment 

is basically the same: to obtain frequency response functions 

that describe the dynamics of the MIMO system, that is, the 

drive end (the load side dynamics) and non-drive end 

dynamics, and the coupling between them.  

   In this paper, online identification of the AMB system 

dynamics is considered by applying a frequency domain 

nonparametric estimation approach at the frequencies where 

the excitation is provided. Online monitoring of these 

frequencies is carried out by applying a DFT algorithm that 

provides benefits in terms of computational efficiency and 

real-time performance. Thus, the well-known real-time DFT 

algorithm, sliding discrete fourier transform (SDFT), is 

considered in this paper for the online identification purposes. 

With the SDFT changes in the frequency response of the 

system dynamics due to e.g. unbalance, crack in the rotor, 

aging and thermal expansion can be monitored. However, it is 

pointed out that the main contribution of this paper is on 

introducing a real-time identification approach that can be 

considered for diagnostics purposes in AMB systems. Hence, 

the diagnostics options of actual failures is not discussed in 

this paper.  

 

A. Frequency domain identification 

   Frequency domain identification approaches are well-

established and of great importance for AMB commissioning 

purposes. The most straightforward nonparametric 

identification approach of the frequency response function of 

an SISO system is an empirical transfer function estimate 

(ETFE) defined by 
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where Y(ωk) and U(ωk) represent the DFT of the input u(n) 

and output y(n) signals. The DFT of a signal x(n) over one 

period N of samples can be expressed in the form  
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   The ETFE (1) can be extended to MIMO systems, leading to 

an empirical frequency response matrix (ETRM) estimate [8] 
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with the input U(ωk) and output Y(ωk)  matrices that contain 

the DFTs of all input and output signals. It is pointed out that 

in this paper, the identification problem is treated as a single 

input multiple output (SIMO) so that the excitation signal is 

superposed to the drive end x-axis controller. In the case of the 

AMB system under study, the outputs of the SIMO system are 

the drive end x-axis position, the drive end y-axis position, the 

non-drive end x-axis position, and the non-drive end y-axis 

position constituting a 1x4 SIMO system. The focus of this 

paper is on SISO identification, that is, identification of the 

drive end dynamics, and thus, SIMO system identification is 

only considered for demonstration purposes. 
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Fig. 1. General principle of a closed-loop identification experiment for an 

AMB system. 
 

 



 

B. Sliding discrete fourier transform 

The frequency spectrum of a discrete-time signal can be 

determined by a discrete Fourier transform, which, in practice, 

requires that all the measurement samples over a full 

measurement window are summed and multiplied by an 

exponential function. The SDFT algorithm is feasible for 

computationally efficient real-time spectral analysis by the 

sliding window that works on a sample-by-sample basis. At a 

specific time instant n, the kth-order harmonic can be 

calculated within a period of N samples as   
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   From (4), the basic form of the SDFT can be derived [16], 

leading to the following expression 
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  This form describes the main principle of the SDFT, where 

the computational efficiency is based on the moving window, 

which can be applied to calculate a new DFT bin from the 

previous DFT result.  

   The implementation and principle of the SDFT are 

illustrated in Fig. 2. The SDFT algorithm is based on the fact 

that at each time instant n only the newest measurement 

sample is added to the sum, and at the same time, the oldest 

measurement sample is removed from the window as depicted 

in Fig. 2 a). The main idea behind the SDFT is to obtain 

moving window-type processing for real-time spectral 

analysis, that is, the signals used in the identification are 

tracked as illustrated in Fig. 2 b) on a sample-by-sample basis.  

C. Closed-loop identification 

In this paper, the SDFT is applied to direct and indirect 

closed-loop identification of the AMB system dynamics. In 

the direct identification approach, the influence of the 

feedback controller is omitted, and the approach is applied 

directly to the measured input u(k) and output y(k) signals. 

Correspondingly, the main idea behind the indirect 

identification relies on the fact that the open-loop model 

G0(jω) is solved from the identified closed-loop transfer 

function Gcl(jω) between the measured output y(k) and the 

excitation signal w(k) as follows 
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by exploiting the knowledge of the controller C(jω). It is 

pointed out that, to the authors’ knowledge, the indirect 

closed-loop approach has not been widely applied to AMB 

system identification thus far [17]. In this paper, a model-

based linear quadratic Gaussian multi-input multi-output 

controller with known parameters is considered during the 

identification experiment. Therefore, the open-loop model can 

be solved indirectly. The controller weighting matrices have 

been optimized using loop shaping and evolutionary 

principles, which have been reported, for example in [18],[19] 

and [20]. In general, the initial synthesis is performed using 

the assumed plant model. The identified model can be 

employed in the refined controller synthesized with the 

aforementioned genetic tuning. 

III. EXPERIMENTAL RESULTS 

An AMB test rig is used to validate the offline direct and 

indirect closed-loop identification and the proposed online 

SDFT identification approaches. The test rig is discussed in 

detail in [21] and shown in Fig. 3. A multisine signal with a 

frequency range of 1–700 Hz with four separate bands having 

different frequency resolutions and amplitudes is considered 

as an excitation signal. The first band has a frequency range of 

{1, 19} with 2 Hz resolution and amplitude of 10 mA, the 

second band {23, 199} with 4 Hz resolution and amplitude of 

50 mA, the third band {203, 399} with 2 Hz resolution and 

+
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   a) 

 
b) 

Fig. 2. Principle of the SDFT: a) implementation and b) demonstration of 

the SDFT window (yellow region) plotted over two periods of the 
multisine excitation signal in the time domain. 

 

 

 
    

Fig. 3. Experimental test rig a) radial bearing modules, b) axial bearing 
modules, c) induction motor, and d) test bench. Description of control 

electronics can be found in detail in [19]. 

 



 

amplitude of 80 mA, and the fourth band {403, 698} with 5 

Hz resolution and 120 mA amplitude.  

   For illustrative purposes only, some of the excited 

frequencies are tracked with the SDFT. The following 

frequencies are considered: {1, 3, 5, 7, 9, 13, 15, 19, 23, 27, 

31, 39, 47, 59, 71, 95, 119, 143, 167, 191, 227, 281, 289, 299, 

335, 371, 413, 448, 473, 498, 533, 563, 593, 623, 653, 698} 

Hz. Naturally, the selected set of frequencies determines the 

parametrization of the SDFT algorithm, that is, the required 

resonators and the window length N as shown in [15]. In this 

paper, the window length is selected as N = 2500 and the 

sampling time Ts as 400 µs.   

   First, the proposed identification approach is studied by 

identifying the nonparametric SISO model of the drive end x-

axis dynamics. In the upper part of Fig. 4, the directly online-

identified SISO frequency response is compared with the 

offline post-processed one and shown with the reference 

model. The reference model in Fig. 4 refers to a mathematical 

model obtained from a FEM-based rotor dynamic analysis. It 

is pointed out that, the flexible modes of the FEM-model has 

been updated based on system identification experiments with 

a pseudo random binary signal (PRBS) [22] and using a 

method presented in [23]. It is also emphasized that this model 

is for illustrative purposes only in order to show that the 

identified system dynamics with the proposed method are 

close to the assumed ones, e.g. the modeled resonance 

frequencies. Hence, the results of the proposed online 

identification approach (dots) are compared, and thus, 

validated against the offline identified ones (solid lines) in Fig. 

4.  

   Moreover, the zoom in Fig. 4 is taken from the frequency 

region around the flexible modes to verify the effectiveness of 

the SDFT for frequency response estimation. Based on the 

results, the estimated frequency responses in Fig. 4 are quite 

similar with only minor differences, and thus, it is evident that 

the SDFT provides reasonable estimates of the rotor dynamics 

over the excited frequency band at the selected set of 

frequencies.  Thus, it is clear that the SDFT is feasible for 

online system diagnostics purposes. To further validate these 

observations, in the lower part of Fig. 4, the drive end x-axis 

system dynamics are also identified indirectly with the SDFT 

by applying (6) and comparing this result with the off-line 

post-processed frequency response. Again, the online and off-

line result agree remarkably well, although some minor 

differences in the amplitude response can be detected in the 

frequency region around the flexible modes and in the DC 

region. By comparing the direct and indirect identification 

approaches in Fig. 4, the results are similar but the indirect 

identification method has a slightly better correspondence with 

the model in the DC region and up to the 40 Hz frequency, as 

expected. 

To further demonstrate the SDFT algorithm performance, 

the SIMO system dynamics of the AMB system is directly and 

indirectly identified based on (3). In Fig. 5, the direct online 

frequency response of the SIMO AMB system identification is 

shown and compared with the offline post-processed one and 

in Fig. 6 with the indirect one, respectively. The zoom is taken 

from the frequency region that constitutes the dominant 

flexible system dynamics. Evidently, the SIMO system 

identification results in Figs. 5 and 6 show a slightly higher 

deviation when comparing the results with the SISO case. This 

result is expected because of the fundamental difference 

between the off-line and online identification approaches. 

Moreover, it is pointed out that the excitation signal has been 

 

 

 

 
Fig. 4 Comparison of the online (SDFT) and off-line SISO identified frequency responses with the reference model. The upper figure shows the direct 

identification case and the lower figure the indirect one. 
 

 

 



 

superposed to the drive end x-axis current control in order to 

obtain a representative nonparametric model of its dynamics. 

For this reason, it is obvious that the coupled system dynamics 

cannot be identified accurately from this experiment only. 

Nevertheless, based on the results, it is clear that the SDFT 

tracks the selected frequencies remarkably well and captures 

      

      a)             b) 

 
       c)              d) 

 
 
Fig. 5 Comparison of the online (SDFT) and off-line directly identified frequency responses in the SIMO case. From the drive end x-axis to the  a) drive end x-

axis, b) drive end y-axis, c) non-drive end x-axis, and d) non-drive end y-axis. The green line indicates the off-line directly identified model and the dots show the 
online model. 

 

         a)            b) 

 
       c)              d) 

 
 
Fig. 6 Comparison of the online (SDFT) and off-line indirectly identified frequency responses in the SIMO case. From the drive end x-axis to the  a) drive end x-

axis, b) drive end y-axis, c) non-drive end x-axis, and d) non-drive end y-axis. The red line indicates the off-line indirectly identified model, and the dots show the 
online model. 

 



 

the essential system dynamics similarly as the off-line 

identification approach.  

 

IV. CONCLUSION 

The real-time nonparametric closed-loop identification of 

the AMB system dynamics with an SDFT-based identification 

approach has been studied and analyzed. The discussion has 

covered the direct and indirect identification of the SISO and 

SIMO system dynamics. Based on the results of this paper, the 

SDFT can track the selected set of frequencies in real time, 

and more importantly, provide valid estimates of the AMB 

system dynamics at these frequencies. This property is 

important as it allows to design the excitation signal so that the 

SDFT method is feasible for system monitoring and 

diagnostics purposes, which is of significance in the future 

research. Adequate online identification method is of great 

importance as part of fault diagnostics routine in order to 

obtain information about the rotor faults, which are possible in 

AMB systems.  

The experimental results show that the proposed method is 

applicable to determination of the frequency responses of the 

AMB system dynamics in real time on a sample-by-sample 

basis. Both the direct and indirect approaches have given valid 

estimates compared with the reference model and the 

corresponding frequency response obtained by offline 

identification. More importantly, the results demonstrate that 

the SDFT is applicable to the SIMO AMB system 

identification. In the DC region, the indirect identification has 

a somewhat better correspondence with the reference model 

than the direct identification. Thus, the indirect identification 

would be the preferred choice if the controller and the 

excitation signals were known. 
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Abstract

Active magnetic bearings (AMBs) offer frictionless suspension, vibration insulation, programmable stiff-
ness, and damping, among other advantages, in levitated rotor applications. However, AMBs are in-
herently unstable and require accurate system models for the high-performance model-based multi-input
multi-output control of rotor position. Control electronics with high calculation capacity and accurate sen-
sors of AMBs provide an opportunity to implement various identification schemes. A variety of artificial
excitation signal-based identification methods can thus be achieved with no additional hardware. In this
paper, a selection of excitation signals, namely the pseudorandom binary sequence (PRBS), chirp signal,
multisine, and stepped sine are presented, applied, and compared with the AMB system identification.
From the identification experiments, the rotor-bearing system, the inner current control loop, and values of
position and current stiffness are identified. Unlike recently published works considering excitation-based
identification of AMB rotor systems, it is demonstrated that identification of the rotor system dynamics
can be carried out using various well-established excitation signals. Application and feasibility of these
excitation signals in AMB rotor systems are analyzed based on experimental results.

Keywords: Active magnetic bearings (AMB), magnetic levitation, chirp signal, frequency-domain analy-
sis, multisine, pseudorandom binary sequence (PRBS), stepped sine, system identification

1 Introduction

Excitation signal-based identification routines are of
key importance in the commissioning phase of active
magnetic bearing (AMB) levitated rotor systems. Ac-
curate models obtained by system identification are
needed in order to design high-performance controllers
(Noshadi et al., 2016), and they have an increasingly
important role for diagnostic (Schuhmann et al., 2012)
and monitoring purposes (Quinn et al., 2005), (Aenis
et al., 2002), (Tiwiri and Chougale, 2014). A common
choice for the excitation signal is a sine-wave-based
spectrally rich signal, such as a multisine or swept si-
nusoid signal with a frequency content covering the de-
sired frequency bands. In addition, a stepped sine is a
typical signal choice for AMB commissioning purposes

to guarantee rich excitation at a specific frequency at
the time.

In the literature covering either modeling or control
issues of AMB-levitated rotor systems, sine-wave-based
excitation signals have been widely applied in identifi-
cation experiments to obtain an adequate model for
the system dynamics. In (Smirnov, 2012), an au-
tomatic commissioning approach for an AMB system
has been proposed where stepped sine has been con-
sidered as an excitation signal to identify frequency
responses. Similarly, in (Ahn et al., 2003), stepped
sine has been applied for closed-loop identification to
obtain a rigid body model for controller design. In
(Hynynen and Jastrzebski, 2009), (Hynynen et al.,
2010), optimized multisine signals have been proposed
for closed-loop rotor system identification to avoid har-
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monics produced by a nonlinear system. Although the
commissioning and monitoring of an AMB-supported
motor system is mostly based on the use of stepped
sine or multisine (Smirnov, 2012)– (Kulesza, 2014),
when moving towards advanced online identification
routines, other signals such as the pseudorandom bi-
nary sequence (PRBS) and chirp should also be con-
sidered. Despite the extensive research in the field of
closed-loop identification of AMB systems, there are
only a few studies available where other excitation sig-
nals have been applied, or their feasibility to AMB sys-
tem identification has been discussed. In (Vuojolainen
et al., 2016), (Jastrzebski et al., 2016b), the PRBS
has been introduced to study high-frequency bending
modes in rotor dynamics. In addition, in (Garcia
et al., 2016), PRBS is used for performance assessment
of a bearingless motor to identify sensitivity functions.
Moreover, in (Noshadi et al., 2016), (Inman et al.,
2005), (Wroblewski et al., 2012), (Fang et al., 2013),
(Tang et al., 2016), and (Lanzon and Tsiotras, 2005),
chirp has been applied for the identification of rotor
system dynamics. However, these studies do not pro-
vide any analysis of the obtained frequency responses
as the main focus is on the identification for control, in
other words, the models are evaluated to be represen-
tative in frequency regions that are relevant for control
design purposes.

Despite the wide practical application of excitation-
based identification routines for AMB systems, it ap-
pears that no papers have compared or discussed the
applicability of different excitation signals for such a
complex plant. In this paper, the feasibility of different
types of excitation signals for identification of an AMB-
levitated rotor system is studied. The excitation sig-
nals under consideration are PRBS, chirp signal, multi-
sine, and stepped sine. An experimental six-degree-of-
freedom modular AMB rotor system is taken as a test
case machine. Based on the experimental identification
results obtained with various excitation signals, the ro-
tor dynamics, the inner current control loop dynamics,
and the position stiffness and current stiffness values
are identified for time-continuous linear models. These
values are used to validate the identification results,
and more importantly, a comparison between the dif-
ferent excitation signals is provided for the first time
for such a comprehensive and complex plant model.
Moreover, the identified position and current stiffness
values are compared with static measurements using a
force gauge, which is another key contribution of this
paper. It is pointed out that the results presented in
this paper are of importance in coupled AMB rotor
model identification, levitation system diagnostics, and
monitoring.

The paper is constructed as follows. First, the prop-

erties of all the excitation signals under study, namely
the PRBS, chirp signal, multisine, and stepped sine are
introduced and described in Section 2. After that, an
identification problem of an active magnetic bearing
system is discussed in Section 3 in brief. In Section
4, the experimental conditions for all excitation signals
are given and identification results for the rotor-bearing
system, inner current control loop, and position and
current stiffness values are reported. Finally, conclu-
sions are drawn by comparing the frequency responses
and the estimated stiffness values obtained from the
identification experiments with different excitation sig-
nals.

2 Excitation signals

Sufficiently rich excitation signals, in other words, gen-
erators of persistent excitation are of key importance
to guarantee informative input-output data for system
identification. Naturally, depending on the identifica-
tion problem, distinct criteria direct the choice of the
excitation signal Pintelon and Schoukens (2012). This
paper studies closed-loop identification of an AMB-
levitated system using various excitations signals.

2.1 PRBS

Pseudorandom binary sequence (PRBS) shown in
Fig. 1 a) is an excitation signal that is deterministic
and periodic and varies between two levels, amplitudes
+A and -A. The PRBS is easy to generate, and it
has controllable spectral energy, a high spectral energy
over a wide band range, and an optimal spectrum for
the excitation signal. The basic PRBS is defined by
the number of cells d and the selected excitation fre-
quency f . With the number of cells d , the length N of
the PRBS is calculated as

N = 2d − 1. (1)

The frequency resolution fr of the PRBS is calculated
by

fr =
fs
N
. (2)

where fs is the sampling frequency. The number of
data points L needed to save the PRBS identification
data is

L =
Nfs
f

. (3)

The maximum length N is limited by the maximum
available L and the ratio fs/f , as seen in (3). Now,
if we want to increase fr defined by (2), this can be
achieved with a higher fs, a higher f , and a lower N .
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2.2 Chirp

Chirp signal (see Fig. 1 b) ), also known as sweep or
swept signal, is an identification excitation signal in
which the frequency is swept up or down in one period.
Chirp signals are typically divided into two groups: lin-
ear, in which the frequency of the signal varies linearly
with time, and exponential/geometrical, in which the
frequency varies with geometric progression. In this
paper, a linear chirp signal with a sinusoidal waveform
is applied. The instantaneous frequency of the linear
chirp signal can be calculated by

f(t) = f0 + kt, (4)

where f0 is the starting frequency, t is the current
time, and k is the rate of frequency change, which can
be obtained by

k =
f1 − f0
T

, (5)

where f1 is the final frequency and T is the final time
after the sweep from f0 to f1. The equation of the sine
chirp signal is Pintelon and Schoukens (2012)

u(t) = A · sin
(

2π ·
(
f0t+

k

2
t2
))
, (6)

where A is the amplitude of the chirp signal. Chirp sig-
nals have been widely applied in AMB identification
owing to their main advantage Inman et al. (2005)–
Lanzon and Tsiotras (2005): at least to some degree,
the frequency content of the signal can be controlled,
and hence, its power can be concentrated on a spe-
cific frequency range, in other words, regions that are
relevant for control design purposes.

2.3 Multisine

A multisine signal depicted in Fig. 1 c), with phases of
the sine waves chosen randomly from the interval [0,
2π], can be determined by

u(t) =

Nf∑

n=1

An · cos(2πfnt+ φn), (7)

where Nf is the total number of frequencies over n in-
dices, An is the amplitude, fn is the frequency, and φn
is the phase of the nth sine wave component. When ap-
plied to AMB system identification, the multisine sig-
nal must be carefully designed as discussed in Hynynen
and Jastrzebski (2009), Hynynen et al. (2010), where
the excitation signal amplitude content has been de-
signed to avoid the harmonics produced by the nonlin-
earities in the system. By adopting the same guide-
lines, the multisine signal implemented in this study is

generated by using a maximum of four bands, where
the starting and final frequencies, the frequency reso-
lution, and the amplitude can be chosen freely for each
band.

2.4 Stepped Sine

Stepped sine is a type of sine wave that has all the
power at one frequency only as illustrated in Fig. 1
d). Therefore, several frequencies have to be excited
separately to cover the required frequency range. Each
component has a frequency fn and an amplitude An,
which, in general, can be chosen freely. The equation
of the stepped sine wave is

u(t) = An · sin
(

2π · fnt
)
, (8)

In this paper, an adaptive amplitude stepped sine is
considered where the frequency fn is selected freely,
but the amplitude An is adjusted to get an acceptable
response and to keep the system in the linear region
Smirnov (2012). The method is based on prespeci-
fied minimum and maximum limits in which the am-
plitude of the signal is controlled until a desirable value
is reached.

3 Identification of an Active
Magnetic Bearing System

Owing to its unstable open-loop system dynamics, an
active-magnetic-bearing-supported rotor system is a
typical example of a closed-loop identification problem.
Naturally, the excitation signal can be superposed to
different locations of the control structure, that is, the
reference or controller output, in order to identify an
open-loop plant model or analyze different properties
(sensitivities) of the achieved closed-loop system Lar-
sonneur (2009).

In Fig. 2, a block diagram of the closed-loop con-
trolled AMB system illustrates the excitation and sig-
nal locations considered in this paper, where ru denotes
the excitation signal at the position control output,
which is summed with the control current constituting
the plant input u1. The measured current of the AMB
is denoted by y1 and the rotor position by y2.

It is emphasized that the AMB system identifica-
tion must be carried out during system levitation, when
the feedback control is operating actively Larsonneur
(2009). In this paper, the transfer functions are iden-
tified by a direct approach, where the influence of the
feedback is omitted. The main advantage of this ap-
proach is that the knowledge of the controller is not
needed, but depending on the identification problem,
it has the disadvantage leading to biased estimates

3
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                      a) PRBS                                    b) Chirp                                c) Multisine                            d) Stepped sine 

  

 

 

Figure 1: Comparison of the excitation signals in the frequency (upper row) and time domains (bottom row).
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Figure 2: Block diagram of the AMB system with in-
put and output signals used in the identifica-
tion (dotted grey lines). a) Identification of
bearing (current control loop) dynamics us-
ing the current reference signal u1(k) and the
measured current y1(k) and b) identification
of rotor-bearing dynamics using the current
reference signal u1(k) and the measured po-
sition signal y2(k).

in some cases. Alternatives for a direct approach in-
clude an indirect approach and a joint-input-output ap-
proach Hynynen (2011). In the indirect approach, the
closed-loop transfer function from the reference signal
to the plant output is estimated. In the joint-input-
output approach, the transfer function is estimated
with the reference signal, and both the plant input
and output are considered as outputs. It is pointed out

that direct identification has provided accurate models
for controller design of an AMB system in several pa-
pers Aenis et al. (2002), Smirnov (2012), Vuojolainen
et al. (2016), Jastrzebski et al. (2016b), and Wrob-
lewski et al. (2012), and therefore, the same approach
is considered here. Moreover, the empirical transfer
function estimation (ETFE) is used for the transfer
function identification in this paper. The transfer func-
tions are estimated for the SISO case only, that is, by
exciting one current reference input of the system and
then the dynamics are identified from the measured
outputs.

4 Experimental Results

An AMB test rig is used to test PRBS, chirp signal,
multisine, and stepped sine excitation signals. The
AMB test rig consists of two radial and one axial AMB,
resulting in a six-DOF system. The picture of the test
rig is shown in Fig. 3. The test rig is discussed in
detail in Jastrzebski et al. (2016b), where the stable
rotational operation is shown.

All excitation signals are generated by Simulink in
the Beckhoff TwinCAT environment. The Beckhoff
TwinCAT environment is described in more detail in
Jastrzebski et al. (2016a). The PRBS, chirp signal,
and multisine are limited to a one-second period based
on the memory consumption considerations, and the
number of periods of the excitation sequence has to be
at least two. This is because the first period is the
transient period, and the data points related to this

4
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Figure 3: Experimental test rig. A) radial bearing non-drive-end, B) axial bearing, C) induction motor, and D)
radial bearing drive-end.

period are discarded as they lead to incorrect results.
Naturally, if three or more periods are used, an average
over the periods is calculated and saved to increase the
signal to noise ratio (SNR) and to minimize the effect
of measurement errors.

In this paper, the excitation signals are designed
with the following properties. The PRBS signal has
a frequency of 3.33 kHz with eleven cells, resulting in a
frequency resolution of 1.63 Hz. The amplitude is 2.5
A, and ten periods are collected. The chirp signal has
a starting frequency of 5 Hz and a final frequency of
1 kHz. The amplitude is chosen as 1.0 A, and a one-
second sweep and ten periods are considered. Again,
the multisine signal has four bands, and ten periods are
recorded. The first band is from 1 Hz to 19 Hz in 2 Hz
steps with an amplitude of 10 mA. The second band
is from 23 Hz to 199 Hz in 4 Hz steps, the amplitude
being 50 mA. The third band is from 203 Hz to 399 Hz
in 2 Hz steps, and the amplitude is 80 mA. Finally, the
fourth band is from 403 Hz to 698 Hz in 5 Hz steps,
and the amplitude is set to 120 mA. The stepped sine
has a frequency range from 1 Hz to 750 Hz, and 250
points are used. Thus, the frequency resolution is 3.01
Hz while the maximum amplitude is 2.5 A.

4.1 Rotor-Bearing System Identification

To identify the rotor-bearing system, excitation is ap-
plied at the reference control current as depicted in
Fig. 2 b). The plant input u1(k) and output y2(k) sig-
nals are measured for the corresponding axis, and the

open-loop transfer function from the reference control
current to the rotor displacement is obtained. This
open-loop transfer function can be written as

G(jω) =
Y2(jω)

U1(jω)
, (9)

where Y2(jω) and U1(jω) represent the Discrete Fourier
Transform (DFT) of the input and output signals. Af-
ter the open-loop plant transfer functions have been
obtained according to all of the identification results
with different excitation signals, a comparison is made
with the rotor transfer function of the Finite Element
Method (FEM) model. In this paper, the FEM model
is considered as a mathematical reference model that
is based on the rotor dimensions. The obtained fre-
quency responses from the identification experiments
using different excitations are shown in Fig. 4. In ad-
dition, a zoom is taken from the frequency range {220,
800} Hz covering the flexible dynamics to compare the
estimated frequency response.

Based on the identified frequency responses on the
drive-end x- and y-axes (DX and DY), all excitation
signals yield a similar accuracy compared with the
FEM model on the slope to the first resonance fre-
quency (frequency range from 10 Hz to 280 Hz). As
expected, after the first resonance frequency, all the es-
timated frequency responses start to diverge from the
FEM model results. Nevertheless, it is important to
notice that the identification tests carried out with dif-
ferent excitation signals are still able to identify the
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a) DX 

 
b) DY 

 
c) NX 

 
d) NY 

 

Figure 4: Comparison of the open-loop transfer functions of the rotor-bearing system. DX and DY denote the
drive-end x-axis and y-axis, and NX and NY denote the non-drive-end x-axis and y-axis, respectively.

second resonance frequency located at 560 Hz. In the
frequency range from 1 Hz to 10 Hz, which refers to
the DC gain values, there is some variation between
the identification methods.

Again, based on the identification results given in
Fig. 4 c) and d), all of the tested excitation signals yield
a similar accuracy from the slope to the second reso-
nance frequency compared with the FEM model on the
non-drive-end x- and y-axes (NX and NY). However,
there is a noticeable offset between the FEM model and
the identification results in this frequency range. Rea-
sons for this are the nonlinear gain and steady-state
errors in the inner current control loops and the uncer-
tain transportation and PWM delay in the applied in-
dustrial drives connected through the CAN bus. Varia-
tion in the parameters of the inner current control loops
is observed in the explicit inner-loop frequency-based
identification and the static identification.

4.2 Inner Current Control Loop
Identification

In the inner current control loop identification, exci-
tation is applied at the reference control current as
depicted in Fig. 2 a). The plant input u1 and out-
put y1 signals are measured for the corresponding axis,
and the open-loop transfer function from the reference
control current to the rotor displacement is generated.
This transfer function can be written as

G(jω) =
Y1(jω)

U1(jω)
. (10)

where Y1(jω) represents the DFT of the output sig-
nal y1(k). The estimated frequency responses are com-
pared with an approximated model for the inner con-
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a) DX 

 
b) DY 

 
c) NX 

 
d) NY 

 

Figure 5: Comparison of the inner current control loop transfer functions. DX and DY are the drive-end x-axis
and y-axis, respectively. NX and NY are the non-drive-end x-axis and y-axis, respectively.

trol loop expressed as

Gm(jω) =
ω1

jω + ω1
, (11)

where ω1 is the cutoff frequency, in this case 380 Hz.
This first-order approximation can be considered accu-
rate enough for the inner current control loop model. A
comparison between the frequency response functions
obtained with the PRBS-, chirp-signal-, multisine-, and
stepped-sine-based identification experiments and an
approximated model based on (11) of the inner cur-
rent control loop are shown in Fig. 5.

It can be seen that all the identification results are
in good correspondence with the approximated model.
On average, above the 100 Hz frequency, all excitation
signals yield similar results. As expected, the largest
discrepancy between the estimated frequency responses
is observable in the frequency range below 100 Hz.

Especially, on the non-drive-end and drive-end x-axes
(NX and DX), the multisine and stepped sine produce
different results in this frequency range compared with
the results obtained from other experiments. This can
be explained by the difference between the excitation
signals, in this case the amplitudes in this specific fre-
quency region. Nevertheless, the results obtained from
different identification experiments are in a satisfac-
tory agreement, thereby indicating that similar system
dynamics can be estimated.

4.3 Position and Current Stiffness
Identification

In this paper, the identification results are validated
by estimating a parametric modal model for the rigid
part. In general, the parameter estimation of rigid and
flexible modal models of AMB-supported rotor systems
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can be treated separately Hynynen (2011) and Gahler
et al. (1997). The general analytical parametric model
for the rigid modes can be expressed in the form Hyny-
nen (2011)

Gr(jω) =
(s2 − z21)

(s2 − p21)(s2 − p22)
, (12)

where z and p represent the zeros and poles of the
system. The rigid model dynamics can be expressed
with the position stiffness values kxD and kxN and the
current stiffness values kiD and kiN , and thus, these
are chosen as parameters to be estimated. Moreover,
by considering certain fixed system dynamics, (12) can
be derived for the drive-end x - and y- axis as

Gr,D(jω) =
kiD · d(s2 − c(kxD + kxN ))

(s2 − a(kxD + kxN ))(s2 − b(kxD + kxN ))
,

(13)

and correspondingly, for the non-driven end x - and y-
axes

Gr,N(jω) =
kiN · d(s2 − c(kxD + kxN ))

(s2 − a(kxD + kxN ))(s2 − b(kxD + kxN ))
.

(14)

It is pointed out that now the parameters a, b, c, and d
describe the above-mentioned fixed system dynamics,
that is, the parameters contain information about the
sensor and actuator locations and transformation of the
modal parameters into physical coordinates. In this
paper, the fixed denominator parameters for the AMB
system under study are a = 0.05453 and b = 0.08494
for both the drive-end and non-drive-end rigid models.
The numerator fixed parameters c and d , instead, are
slightly different for the drive end (c = 0.06880,d =
0.1162) and non-drive end (c = 0.06873,d = 0.1168),
respectively. All these fixed parameters are constant
assuming that changes are only made to the position
and current stiffness values and are thus different for
different rotor-bearing models.

By selecting M frequency points, the best fit for the
position and current stiffness values of the analytical
models can be iteratively searched by minimizing the
error function. Naturally, the general form of the error
function is the same for all axes, and thus, here the
drive-end x -axis is given as an example

JDX(θ) =

M∑

i=1

wi |Ge,DX(jωi)−Gr,D(jωi ,θ)|2, (15)

where θ = [kiD kxD kiN kxN ] is the parameter vec-
tor to be estimated, Ge,DX(jω) are the experimental

frequency response data, and wi is a weighting func-
tion. Motivated by the method presented in Wrob-
lewski et al. (2012), where flexible modes of a FEM
model have been updated based on identification ex-
periments, in this paper, the rigid model is fitted by
considering the well-known Nelder-Mead function min-
imization method and excitation frequencies in the fre-
quency range of only {1, 200} Hz as these frequencies
correspond mainly to the rigid model. Both the drive-
end x - and y-axes and the non-drive-end x - and y-axes
are fitted the same, and thus, the total error function
is written as

Jtot(θ) = JDX(θ) + JDY(θ) + JNX(θ) + JNY(θ). (16)

For the PRBS, M = 122 frequency points are used,
for the chirp M = 196, for the multisine M = 54, and
for the stepped sine M = 67. The weighting function
wi is selected so that the frequencies in the range of {10,
100} Hz are weighted with 2.5 and the other frequencies
with 1.

The identified position and current stiffness values
are also compared with static measurements with a
force gauge. A force gauge manufactured by PCE In-
struments, type PCE-FB2k, model H3-C3-300kg-3B,
is used. This force gauge has a measuring range up to
2000 N and a resolution of 0.5 N. For the measurement,
the rotor is connected with an elastic rope to a crane.
The force gauge is connected between the rope and the
crane. A comparison of the identified position and cur-
rent stiffness values between all the excitation signals
and the static measurements is given in Table 1.

Table 1 shows that the results obtained by using dif-
ferent excitation signals provide very similar results for
the current stiffness at both the drive and non-drive
ends. Compared with the initial assumption in the
FEM modeling there is an about 55 % increase. The
identification methods provide similar results for the
position stiffness at the drive end, but the value of the
static measurement is around 2.5 times higher than the
identified results. At the non-drive end, the position
stiffness value has a higher variation between the iden-
tification methods, but the variation is within a reason-
able range. Again, the value of the static measurement
is around 2.5 times as high as with the identification
methods. This can be attributed to the nonlinear be-
havior of the position stiffness. The applied differential
driving mode effectively linearizes the current stiffness
but not the position stiffness. An analytical example
of this is shown in Fig. 6, where Fig. 6 a) shows the
behavior of the current force relation (current stiffness)
and Fig. 6 b) the behavior of the position force relation
(position stiffness).

To further analyze the estimated parameters, a few
remarks should be made. First, the position stiffness

8
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 a)                  b) 

Figure 6: Analytical example of the linearization of (a)
current force (current stiffness) and (b) po-
sition force (position stiffness) relation. The
dotted line indicates the modeled nonlinear
behavior and the solid line the assumed lin-
ear behavior.

is influenced by the steady state in the inner loops,
which can obscure the error in the estimation. Still, it
should be noticed that the estimated values are closer
to the initial FEM model assumption than the ones ob-
tained from the static position stiffness measurement.
Second, the excitation signal has been superposed to
the current control reference signal, which has an in-
fluence on the position stiffness estimation. For the
current stiffness identification, instead, the frequency-
domain identification seems to be appropriate as the
results with the tested excitation signals are close to
the static measurement. The challenges of identifying
the stiffness (presented in Table 1), the combined inner
current control loop (including PWM), and mechanical
runout Kim and Lee (1997) contribute to the dc gain
errors of the frequency-dependent plots Fig. 4. Never-
theless, the estimated parameters from the frequency
domain observations are reasonable, and a good cor-
respondence between the identification experiments is
obtained, indicating that all of the studied excitation
signals are suitable for identification of such system
dynamics.

5 Conclusion

All the excitation signals presented in this paper, viz.
the PRBS, chirp signal, multisine, and stepped sine,
were found to be suitable for the identification of the
rotor-bearing system, inner current control loop, and
the position and current stiffness of an AMB system.
The results indicated that all of the compared exci-
tation signals are applicable for AMB system identifi-

Table 1: Estimated Position and Current Stiffness
Compared with the Initial FEM Model and
Static Measurement with A Force Gauge

Method kxD [kN/m] kiD [N/A] kxN [kN/m] kiN [N/A]

Initial FEM Model 97.30 19.4 97.30 19.4

PRBS 148.00 31.04 132.00 31.04

Chirp 156.00 31.04 126.00 31.04

Multisine 156.00 31.04 148.00 31.04

Stepped sine 156.00 31.04 155.00 31.03

Static measurement 390.21 30.00 390.21 30.00

cation, and more importantly, based on the identified
frequency responses and estimated stiffness parameters
they provide similar results.

To sum up, no final decision could be made on the
’best’ excitation signal for AMB system identification.
The decision on the signal to be applied could be made
based on the considerations presented in this paper.
The authors propose the PRBS for first and fast iden-
tification of the system in the commissioning phase,
and the stepped sine to obtain more accurate results
especially at higher and specific frequencies. The anal-
ysis of the excitation signals and their selection have
a significant impact on identification, diagnostics, and
monitoring of various levitation systems. The obtained
results are generalizable to a wide variety of such con-
trol systems.

Future research could focus on testing the indirect
and joint input-output approach for transfer function
identification. Further, the system could be modified
so that the excitation could be applied at the position
control input. When this modification has been made,
the position stiffness identification in the frequency do-
main could be repeated.
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Abstract. High-speed machine technology with magnetically levitated rotor systems has become

 

interesting solution in modern compressor, pump and turbo applications. Often, the

 

commissioning of such machines is system identification-based with injected artificially

 

generated excitation. In this paper a statistically uncorrelated PRBS design is proposed for multi-

input multi-output MIMO system that gives the possibility to utilize same PRBS signal for all

 

inputs. The proposed routine is validated with an experimental high-speed generator with active 

magnetic bearings (AMBs). The obtained frequency responses are validated by comparing the

 

results with the mathematical model.  

1. Introduction 
System identification based commissioning with artificially generated excitation signals is in a key role

 

in modern high-speed machines with magnetically levitated rotor systems. To obtain high-performance

 

model-based control the identification data is needed to update the model of the rotor system. In general,

 

the literature covering the identification of multiple input multiple output (MIMO) dynamics of such

 

machines the applied excitation signals are based on multi-sine [1], stepped sine [2], chirp [3], [4], [5]

 

or pseudo-random binary signal (PRBS) [6] designs. Typically the identification experiments are

 

simplified and carried out in a single input multiple output (SIMO) or SISO manner. This is often

 

justified, as the model used for control design can be updated based on such experiments. Some studies

 

considers MIMO experiments in AMB systems, but the identification has been carried out in a two 

degree of freedom (2-DOF) manner [7], [8]. 

It is well known that, AMB supported rotor system is unstable and nonlinear in nature, hence the

 

identification must be carried out in a closed loop and the nonlinearities has an effect to the obtained

 

results. However, when the identification experiments is carried out in a narrow and almost linear

 

position region, the excitation signal type can be freely selected. In [9] it is shown that different

 

excitation signals produce similar identification results, when applied for commissioning purpose of

 

AMB supported rotor system. This paper addressed issues in MIMO identification experiments of a

 

high-speed machine by considering PRBS excitation signal that is designed to be statistically

 

uncorrelated for MIMO identification experiments. This gives the possibility to inject the same

 

excitation signal design for all the inputs simultaneously. The proposed routine is validated with a high 

speed machine, namely a 1 MW and 12 500 rpm hermetic steam turbo generator. 

2. Identification of flexible rotor system 
In Figure 1 the generalized structure of the MIMO closed loop identification is depicted where multiple 

PRBS excitation signal injection is considered. The PRBS excitation are superposed to the position
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control output and signals used for the identification are the excitation and the measured input (current 

references) and output (positions) signals. 
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Figure 1. The MIMO closed loop identification experiment. 

2.1. Closed-Loop Identification Experiments 

The general expression for the direct frequency response estimation from the input and output signals 

can be expressed by the ratio of spectral density functions as follows 

 G(jω)=
Suy(jω)

Suu(jω)
 , (1) 

where Suy(jω) is the cross spectral estimate between input u(t) and output y(t) signals and the Suu(jω) is 

the auto spectral estimate of the input signal. In the case of MIMO systems, the frequency response 

estimation of p input and q output system can be expressed in a similar form 

 GH(jω)
[p×q]

=Suu
−1(jω)

[p×q]
∙ Syy(jω)

[p×q]
 , (2) 

where GH(jω) is the Hermitian of the frequency response matrix. The radial controller is a H∞ type that 

is tuned based on mixed sensitivity synthesis method. The controller K is found by minimizing 

 ‖
WsS

WuKS
‖

∞

≤ 1 , (3) 

where S is the sensitivity function and Ws is its design weight whereas the Wu is the design weight for 

the control effort. The sensitivity weight is selected as 

 Ws(s)=

s

Ms
 + ωB

s + ωBA
 , (4) 

where the parameter A indicates the steady state error and initially selected as 0.001. The ωB is the 

crossover frequency that is here selected as 67.5 rad/s. The Ms = 2 is selected that indicates the desired 

maximum peak of the sensitivity functions. The control effort is limited by following first order weight 
 

 WU(s)=
s + 

 ωBC
MU

AUs + ωBC
 , (5) 

where ωBC is the controller bandwidth and MU maximum gain of K(s)S(s). Values of ωBC = 10000, MU = 

50 and AU = 4 has been selected for the radial controller control effort design. 

2.2. PRBS Design 

To design a PRBS signal several good guidelines can be found, like [10]. In the case of MIMO system, 

the same PRBS can be used if it is time shifted [11] to make them statistically uncorrelated by 

 ru,m(t)=Am∙uPRBS(t− θm),         m=1 ,2 ,… , p (6) 
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where Am is the amplitude of the signal, and the time shift can be selected as θm = N·Tsw·(m− 1)/p, where 

N is the length of the signal with the switching time Tsw. The length of the signal is determined by the 

amount of shift registers d as 

 𝑁 =2d − 1 (7) 

An example of a statistically uncorrelated 6-cell PRBS with a switching time of Tsw = 6 · Ts (when Ts 

= 0.0067s) design for a system with four inputs is shown in Fig. 2 a), where the time shift of 0.63 seconds 

is shown with red arrows. The effective band of the PRBS show in Fig. 2 b) can be expressed as 

 f
BW

=
1

3∙Tsw
 , (8) 

representing the -3 dB drop in the signal. Hence, the frequencies to be covered with the effective band 

is important to consider in the PRBS design. A practical selection for the PRBS switching time is [12] 

 Tsw≈
2.5

𝜔max
 , (9) 

where ωmax can be often taken as a desired bandwidth of the closed loop system. In an AMB supported 

rotor system the signal should in general cover the frequencies of the rigid modes, and depending on the 

case, at least the first flexible mode. In Fig. 2 c) the PRBS generator is shown, that is, a maximum length 

binary signal generator with XOR feedback. Depending on the desired length of the shift register, the 

optimal maximum length signal is obtained by following the guidelines given in [13].  
 

 

Figure 2. a) 

Uncorrelated 

PRBS design 

for system 

with four 

inputs, 

b) frequency 

spectrum and 

c) generation 

of PRBS. 

3. Hermetic steam turbo generator 

The high speed turbo generator consist of two main components; the turbine part and the electric 

machine. The generator is an induction generator with nominal power of 1 MW and 12 500 rpm that is 

controlled with ACSM1 frequency converters. The control and the excitation signals are implemented 

by Beckhoff’s TwinCAT. The experimental system is shown in Fig. 3 a)–c). The radial and axial 

bearings are shown in Fig. 3 b) and the main parameters in Table 1.  

Table 1. The parameters of axial and radial AMBs. 

Value Axial AMB Radial AMB 1 Radial AMB 2 

Current Stiffness [N/A] 581 170 270 

Position Stiffness [N/µm] 5.68 1.19 1.88 

Max. Force [N] 1110 1760 6360 

Number of poles 2 12 12 

Number of winding turns 65 54 85 

Material X20Cr13 SURAM270-35A0 SURAM270-35A 
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                   a)                             b)                                        c) 

Figure 3. a) Design of 

the generator, b) design 

of the axial and radial 

AMBs, and c) the 

experimental generator 

system. 

4. Experimental results 

The MIMO identification routine under study is considered during full levitation but without rotation. 

This stage correspond to initial commissioning step needed for identification for control [14]. The data 

acquisition and control is operated in a sample level of Ts = 100 µs. The 6 times repeated PRBSs are 

generated with a 15-cell generator operating at 6 · Ts with amplitude of 0.5 A. The initial mathematical 

model based on the mechanical design is used for comparison of the experimental results. 

 

 

Figure 4. The frequency responses 

from the identification tests compared 

to the initial mathematical model; a) 

from the nondriven end x-axis current 

to x axis position Nx-Nx, b) Ny-Ny, c) 

Dx-Dx and d) Dy-Dy. 

 

The experimentally obtained frequency responses (Nx-Nx, Ny-Ny, Dx-Dx, Dy-Dy) are shown in 

Fig. 4 and compared to the mathematical model of the rotor dynamics. It can be observed that the MIMO 

PRBS identification experiment provide reasonable results when compared to the modeled ones. The 

resonances can be clearly seen and the dynamics correspond well to each other. In Fig. 5, the MIMO 

frequency responses are shown for all input-output pairs of the measurement. The first resonance is 

clearly visible on all of the responses as well as the cross-coupling dynamics. On the same coordinate 

axis response but on the different end (e.g Dx-Nx) the responses are more accurate and the second 

resonance and first/second anti-resonances are also visible in some cases.  
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Figure 5. 

Estimated 

MIMO 

frequency 

response 

functions 

from the 

identification 

tests.  

a) Nx-Nx,  

b) Nx-Ny,  

c) Nx-Dx,  

d) Nx-Dy,  

e) Ny-Nx,  

f) Ny-Ny,  

g) Ny-Dx,  

h) Ny-Dy,  

i) Dx-Nx,  

j) Dx-Ny,  

k) Dx-Dx,  

l) Dx-Dy,  

m) Dy-Nx, 

n) Dy-Ny,  

o) Dy-Dx,  

p) Dy-Dy. 

 

5. Conclusions 

This paper studied the commissioning of an AMB supported high-speed generator by applying MIMO 

identification experiments. A statistically uncorrelated PRBS design was considered as an excitation 

signal that was injected to the controlled inputs simultaneously. Based on the obtained frequency 

responses, the proposed PRBS-based identification routine provides straightforward approach for the 

commissioning of a MIMO system. More importantly, the PRBS gives several advantages for MIMO 

system identification of AMB dynamics; it is relatively easy to design, implement and generate.  
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Abstract

The bearingless permanent magnet synchronous motor (BPMSM) is a compact motor structure that
combines the motoring and bearing functions based on well-designed integrated windings for generating
both torque and magnetic suspension force. In order to achieve a successful high-performance control
design for the BPMSM, an adequate model of the rotor dynamics is essential. This paper proposes
simplified multiple-input and multiple-output (MIMO) control approaches, namely the pole placement and
the linear-quadratic regulator (LQR), that allow to carry out identification experiments in full levitation.
Additionally, the stability of the MIMO levitation controller is verified with the rotation tests. Compared
with other recently published works, the novelty of this paper is to experimentally demonstrate that a
stable fully levitated five-degrees-of-freedom (5-DOF) operation of a bearingless machine can be achieved
by the proposed approach, and thereby, options for commissioning of such a system are obtained.

Keywords: Bearingless, magnetic levitation, MIMO control, self-levitating, system identification, 5-DOF

1 Introduction

Operation in the high-speed region is very beneficial
especially in the field of compressor applications. The
compressor pressure ratio and mass flow rate can be
raised by increasing the rotational speed Yoon et al.
(2013). In the speed range of 20 000 r/min and
over, the electrical motor efficiency can be increased
by achieving the minimum weight-power ratio. It is
clear that operating in the high-speed region increases
both the motor and compressor efficiency. Nowadays
there is a growing interest in high-speed technology,
where the traditional bearing solution is replaced by a
more advanced solution, namely active magnetic bear-
ings (AMBs) Gerhard Schweitzer (2009). The well-
known benefits of AMBs are contact-free operation,
active control of the rotor, and self diagnostic prop-
erties. As AMBs do not need oil lubrication because of
the magnetic levitation of the rotor, they are the most

suitable solution for oil-free compressor applications in
the fields of pharmacy and food industry. However,
one drawback of the AMBs is that they extend the
total length of the rotor as the radial and axial mag-
netic bearings need a certain amount of space, which
results in an increased axial length of the rotor shaft
along with a larger and more complicated motor struc-
ture. Depending on the operational speed and rotor
mechanical dimensions, this extra length can lower the
flexible mode frequencies to the operating region. This
is an unwanted feature as the operation close to the
flexible mode is difficult. From the viewpoint of the
overall system behavior, and especially with respect to
controllability, it is advantageous that the rotor does
not need to pass flexible modes.

Reducing the rotor length, simultaneously keeping
the benefits of the traditional AMBs, a self-levitating
or bearingless motor technology can be applied Chiba
et al. (2009). In a bearingless motor, one stator pro-
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duces both the levitation force to support the rotor and
the torque for rotation. This can be achieved by the use
of separate windings or by different common winding
configurations in one stator unit Chiba et al. (2013).
Because the windings are of a three-phase type for both
generating torque and levitation force, commercial mo-
tor drives can be used, and thus, the amount of power
electronics is decreased compared with the traditional
AMB configuration.

Bearingless operation is possible also with single-
stator disc-shape motors Mitterhofer and Amrhein
(2012). Other applications that exploit the benefits of
bearingless operation are artificial hearts Hoshi et al.
(2006) and canned pump Warberger et al. (2010) ap-
plications, where a long air gap length is needed. How-
ever, in this paper, a standard horizontal-type machine
equipped with two bearings is considered. The machine
type with two or more supporting bearings can handle
a higher loading force caused by the weight and mass
flow of the impeller wheel.

In general, when dealing with high-speed machines,
it is important to analyze the rotor behavior Swanson
et al. (2008). As a result of the dynamic properties
of the rotor structure, bending occurs when the rota-
tion speed is increased. Without qualitative analysis of
the rotor dynamics, the rotor operating point in nom-
inal operation can be close to the rotor flexible mode.
Thus, it is of great importance that in the machine
commissioning phase, the rotor dynamics are identified
in order to verify the flexible modes of the rotor Noh
et al. (2017). A common method is to use an impulse
hammer with vibration sensors to conduct the mode
analysis. Naturally, as the AMB system is equipped
with a displacement sensor and power electronics, the
rotor identification can be made in the system without
removing the rotor.

In recent years, a variety of different bearingless ma-
chine setups have been introduced in the literature,
and their control has become a topic of significant in-
terest. The five-degrees-of-freedom (5-DOF) control of
a bearingless machine has been reported in Takemoto
et al. (2009); Yamamoto et al. (2011); Severson et al.
(2017), and other studies have considered the combina-
tion of a bearingless motor and a magnetic bearing in
Cao et al. (2017); Schneider and Binder (2007). Here,
the 5-DOF operation refers to two radial xy-planes and
one axial z-plane of the control axes. Note, however,
that many of the reported prototypes are laboratory
versions, where all degrees of freedom (DOF) have not
been evaluated. It is also worth emphasizing that in
these examples the most common structure is a bear-
ingless motor with a ball bearing supporting the other
end of the rotor Chiba et al. (2013); Sun et al. (2016a);
Ooshima et al. (2015); Yang et al. (2010); Huang et al.

(2014). Although there are a few publications where
the system has one bearingless motor, it is not shown
or reported how the conical movement of the rotor is
stabilized Qiu et al. (2015); Sun et al. (2016b); Xue
et al. (2015); Yang and Chen (2009); Chen and Hof-
mann (2011); Cao et al. (2016); Zhang et al. (2016);
Zhao and Zhu (2017). In addition, a common factor
in all these publications is that they apply PID-based
position controllers. To the authors’ knowledge, only
the model-based controller has been addressed in Mes-
sager and Binder (2016) for machines of the horizontal
dual bearingless motor type. Another approach based
on a linear-quadratic regulator (LQR) controller for a
bearingless motor has been introduced in Kauss et al.
(2008). However, the presented prototype is 2-DOF
and the other end is supported by a ball bearing.

In order to conduct rotor identification, the rotor
must be fully levitated. The aim of this paper is to
study MIMO control approaches that provide a stable
fully levitated operation of a bearingless machine. The
novelty of this paper compared with the previously re-
ported studies is that it provides experimental results
that show the actual 5-DOF operation of a bearingless
machine, and more importantly, introduces results of
the full levitation. For this purpose, a 4-DOF MIMO
controller is used for the radial position control. The
axial position is controlled with an axial AMB, and
it is separated from the radial controller. Rigid body
is used as an initial rotor model. Pole placement and
LQR radial position controllers are used, and the suit-
ability of the controllers is discussed. The designed
4-DOF radial controllers are simulated and tested in
a 10 kW dual motor interior permanent magnet bear-
ingless machine. Additionally, the stability of the levi-
tation control is verified with low-speed rotation tests.
Finally, system identification experiments are carried
out with the pole placement and the LQR controller
by superposing a stepped sine excitation signal to the
system.

2 Problem statement

To operate in a high-speed region, the dynamic prop-
erties of the rotor must be known. An initial analysis
of the rotor dynamics is normally done with analytical
tools, by which the natural frequencies of the rotor are
found. However, experimental tests are mandatory to
verify the model and detect possible defects of the ro-
tor. One common method to carry out experimental
modal analysis is to use an impulse hammer, which in-
cludes for example an integral piezoelectric accelerom-
eter sensor to produce the excitation to the rotor and
measure the applied force Kolondzovski et al. (2010).
When the rotor system is equipped with AMBs, the
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same modal analysis can be done in the system. Simi-
larly as in the impulse hammer test, the AMBs produce
the excitation signal and displacement sensors are used
to measure the vibration of the rotor. Based on the re-
sults, the natural frequencies of the rotor can be found.
The obtained results can be used to improve the ana-
lytical model by updating the rigid and flexible modes,
thereby resulting in a more accurate system model.

To simplify this procedure in a bearingless machine,
the rotor can be levitated without a rotating field as
the rotor identification is made at a standstill. In this
case, the decoupling of the torque and levitation wind-
ings can be ignored. When knowing the rotor angle and
transforming the three-phase windings into a 2-phase
system, the control principles of traditional AMB sys-
tems can be adopted.

2.1 System description

The prototype machine consists of two identical in-
terior permanent magnet (IPM) bearingless motors
(BMs) together with an axial magnetic bearing. Fig. 1.
depicts the prototype machine. The axial magnetic
bearing is in the middle of the machine, and bearing-
less motors are placed on opposite sides of the machine.
This provides a symmetrical rotor structure when the
load is not considered. A block diagram of the full
control system is shown in Fig. 2. The rotor position
is measured with an eddy-current sensor differentially
from the radial direction and single ended from the
axial direction. A non-contact encoder is placed on
the right side of the machine to sense the rotor angle.
Moreover, five industrial motor drives are used to oper-
ate the machine: one is needed for the axial bearing and
two for the torque and radial force production for each
BM. Each motor drive includes a field programmable
gate array (FPGA), where the inner loop current con-
troller is implemented. A block diagram of the inner
current control loop is illustrated in Fig. 3. The upper-
level control is implemented in a Beckhoff industrial
PC, and the communication between the industrial PC
and the motor passes through an EtherCAT industrial
fieldbus. The sampling time of the control system is
50 µs.

3 Model of the system

In this paper, the rigid rotor model is used to tune
the proposed control approaches. In general, a mathe-
matical model of the system can be presented using a
state-space representation

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
(1)

 

Non-drive end Drive end 

Figure 1: Photograph of the 10kW dual motor bear-
ingless machine. The axial AMB is in the
middle of the machine and bearingless mo-
tors are located on both ends.
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Figure 2: Block diagram describes the overview of the
system configuration. All controllers are im-
plemented on a Beckhoff industrial PC shown
in far left. In total, five 3-phase motor
drives are used to produce levitation force
and torque. Three drives are allocated for the
5-DOF levitation purposes, and both motors
are driven separately. The rotor position in
5-DOF is measured together with the rotor
angular position.

where A is the system matrix, B is the input matrix,
and C is the output matrix. The vectors x and u are
state and input vectors, respectively. In this paper,
separate models for the axial and radial directions are
used as the coupling is not strong. In the axial direc-
tion, the rotor is modeled as a point mass, whereas in
the radial direction, a rigid body rotor model is used.
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Figure 3: Block diagram of the PI current controller
scheme applied to motor drives that produce
the radial force. ABC: three-phase reference
frame and DQ: rotor reference frame.

3.1 Rotor model

General form of the rotor model is presented in the
following:

Mq̈(t) + (D + ΩG)q̇(t) + Kq(t) = F(t), (2)

where M is the mass matrix, D is the damping matrix,
Ω is the rotational speed, G is the gyroscopic matrix,
K is the stiffness matrix, F is the force applied to the
rotor and q is the displacement vector of the rotor.
This model can be simplified to a rigid rotor model,
which describes the rotor movement with respect to
the center of the rotor mass Smirnov (2012)

Mq̈(t) + ΩGq̇(t) = F(t), (3)

where M is the diagonal matrix including rotor
mass and inertia at the center of mass, q =[
x y αx αy

]T
is the vector that describes the ro-

tor position in the xy-axis and the angle around
the corresponding axis at the center of mass. As
the displacement sensors and the magnetic bearings
are not located at the center of mass, a coordi-
nate transformation is needed for the control de-
sign and simulation purposes. To acquire the ab-
solute location in the xy-axis of the sensors, qs =[
xD,s yD,s xND,s yND,s

]T
and the magnetic bear-

ing locations, qb =
[
xD,b yD,b xND,b yND,b

]T
at

the drive and non-drive end of the machine, the follow-
ing transformation matrices are applied

qb =




1 0 0 −a
0 1 −a 0
1 0 0 b
0 1 b 0




︸ ︷︷ ︸
Tb

q, qs =




1 0 0 −c
0 1 −c 0
1 0 0 d
0 1 d 0




︸ ︷︷ ︸
Ts

q,

(4)

where a, b are the drive-end and non-drive-end bearing
locations from the center of the rotor mass, respectively

and c, d are the drive-end and non-drive-end sensor
locations from the center of mass. Rotor cross-sectional
view is illustrated in Fig. 4.

Radial forces produced by the bearingless machine
can be presented by the following equation

F(t) = Kxqb + Kiic, (5)

where F is the total linearized radial force generated
by the bearingless machine, qb is the rotor position at
the bearing location, ic is the control current to the lev-
itation windings, Kx is the diagonal position stiffness
matrix, and Ki is the diagonal current stiffness ma-
trix. The total force depends on the rotor position and
current in the levitation windings. The coefficients Kx

and Ki can be determined experimentally by different
tests and measurements. Parameters of the prototype
machine are listed in Table 1.

In Fig. 5 a) the position stiffness value is determined
by moving the rotor in the air gap, and the force caused
by the unbalance pull of the permanent magnets is
measured. From this measurement, the slope of the
position stiffness can be calculated, Kx = 4fx/4 Px.
The current stiffness is measured by applying current in
the levitation windings and measuring the correspond-
ing radial force. Similarly, from the measured slope,
the current stiffness can be calculated, Ki = 4fx/4iL.
It can be seen that the measured values are closely
matching the FEM simulations presented in Fig. 5.
Measured values are used in the control design. The
force measurement setup is described in more detail in
Jaatinen et al. (2016).

The rigid rotor model presented in (3) can be fur-
ther simplified by neglecting the gyroscopic matrix as
the rotor is not rotating during the identification, that
is, Ω = 0. Furthermore, this simplification is also valid
for the rotating system when axial length of the ro-
tor is much greater than the rotor diameter thus the
gyroscopic effect is then negligible Gerhard Schweitzer
(2009). By substituting (4) and (5) into (3), a simpli-
fied rigid rotor model is achieved

Mbq̈b = Kxqb + Kiic. (6)

where Mb = (T−1
b )TMT−1

b is the mass matrix in the
bearing plane. In the state-space form, the simplified
rotor model is written as

Ar =

[
0 I

(Mb)
−1Kx 0

]
,

Br =

[
0

(Mb)
−1Ki

]
,

Cr =
[
TsT

−1
b 0

]
.

(7)
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Figure 4: Cross-sectional view of the rotor in the pro-
totype system. Locations of the bearingless
motors and the sensor surfaces are measured
respect of the center of mass.

   
a)                                                                           b) 

Figure 5: Simulated and measured current and posi-
tion stiffnesses. The current stiffness can be
calculated from the slope presented in a). In
the same manner, the position stiffness can
be calculated from the slope presented in b).

3.2 Actuator model

The actuator consists of the dynamics of the inner cur-
rent control loop. A straightforward method to model
the actuator dynamics is to use the bandwidth of the
current controller

Ga =
ωbw

s+ ωbw
, (8)

where Ga is the approximate transfer function of the
inner current loop and ωbw is the bandwidth of the
current controller.

In the simulation, the inner control loop consists of
the PI controller, the motor drive model, and the bear-
ingless motor model including the levitation windings.
The motor drive is modeled as two-stage switching with
a pulse width modulator. The bearingless motor is
modeled in the dq reference frame as

ud = Rid +
d

dt
Ldid − ωLqiq,

uq = Riq +
d

dt
Lqiq + ωLdid,

(9)

where u is the voltage over the levitation windings, R
is the resistance of the levitation windings, L is the

inductance of the levitation windings, i is the current
of the levitation windings, and ω is the electrical angle.

3.3 Full model

A full model can be produced by combining the rotor
model with the actuator model.

A =

[
Aa 0

BrCa Ar

]
, B =

[
Ba

0

]
,

C =
[
0 Cr

]
,

(10)

where Ba = −Aa = diag
[
ωbw ωbw ωbw ωbw

]
is

the current controller bandwidth, and the rigid rotor
model matrices are denoted by the subscript r .

3.4 Axial AMB model

The axial direction of the rotor can be controlled sep-
arately as the coupling to the radial direction is negli-
gible in the center of the air gap. As the axial AMB
controls only 1-DOF, the model of the rotor can be
simplified to a point mass model

mq̈ = Kxqa +Kiic, (11)

where m is the rotor mass, qa is the acceleration of
the rotor, Ki is the current stiffness, and Kx is the
position stiffness.

4 MIMO control of a bearingless
machine

In the literature, there are many publications that ad-
dress the issues of the MIMO control of traditional
AMB systems equipped with two radial and one axial
AMBs Yoon et al. (2013); Gerhard Schweitzer (2009).
The same principles can be adopted to the bearingless
machine control. However, there are two major dif-
ferences compared with the traditional AMB system.
Firstly, the rotating magnetic flux that generates the
levitating force is synchronous with the rotor rotation.
Secondly, decoupling of the motor control from the lev-
itation control is required. If the decoupling param-
eters are correctly identified, the motor control does
not affect the performance of the levitation controller
Ooshima et al. (2004). It is emphasized that in this
paper, the decoupling controller is not taken into con-
sideration as the rotor identification is conducted with
a nonrotating rotor. Moreover, a 4-DOF MIMO radial
controller with a PID-type axial controller for commis-
sioning and rotor identification purposes is tuned based
on a rigid rotor model.
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Table 1: Machine parameters

Parameter Symbol Value Unit

Nominal speed Ωnom 30 000 r/min

Nominal power per motor unit Pnom 5 kW

Rotor mass m 11.65 kg

Rotor inertia J 0.232 kgm2

Resistance, levitation winding R 0.27 Ω

Inductance, levitation winding L 3.27 mH

BM location a, b 107.5 mm

Position sensor location c, d 211 mm

Air gap length lδ 0.6 mm

Rotor length lr 480 mm

BM lamination stack length lrl 61 mm

BM lamination diameter drl 68.8 mm

BM stator outer diameter ds 150 mm

Axial disk thickness la 8 mm

Axial disk diameter da 112 mm

Rotor shaft diameter drs 33 mm

Current stiffness, measured Ki 29 N/A

Position stiffness, measured Kx 672 N/mm

Current stiffness, FEM Ki,FEM 29.6 N/A

Position stiffness, FEM Kx,FEM 618 N/mm

Maximum input deviation unmax 2 A

Maximum output deviation mn 25 µm

Furthermore, an additional coordinate transforma-
tion is needed when comparing the bearingless system
with the traditional AMB system. In Fig. 6, the prin-
ciple of the radial force generation both in the x and
y directions is shown. Here, the three-phase winding
is transformed into a two-phase presentation. When
the rotor is in a certain angular position, for instance
0 deg, where the poles are parallel with the station-
ary xy-reference frame, the corresponding two-phase
current produces force in that axis. By changing the
polarity of the current, the force direction can be re-
versed. By taking into account the rotation of the ro-
tor in the coordinate transformation, the force can be
generated at any angle. A radial position control-loop
block diagram is presented in Fig. 7. Note the coor-
dinate transformation between the position controller
and the inner current controller.

4.1 State-feedback control with pole
placement

One common control method for handling state equa-
tions is state feedback with pole placement, in which
the locations of the closed-loop poles are selected to ob-

tain the desired performance. As all states are not mea-
surable, a state estimator is also needed. To remove
the steady-state error, an integral state is augmented
to the state feedback controller. The full discrete-time
state equation can be written Franklin et al. (2010)

[
x(k + 1)
xI(k + 1)

]
=

[
Φ 0
C I

] [
x(k)
xI(k)

]
+

[
Γ
0

]
u(k)−

[
0
I

]
r(k),

(12)

where Φ, Γ are discretized system state and input ma-
trices, C is the output matrix, I is the identity matrix,
x is the system state vector, xI is the integral state
vector, u is the system input vector, and r is the ref-
erence input vector. The feedback law is then written
as

u(k) = −
[
K KI

] [ x(k)
xI(k)

]
, (13)

where K is the state feedback gain and KI is the inte-
grator gain.

The state estimator uses the following presentation

x̂(k + 1) = Φx̂(k) + Γu(k) + L(y(k)−Cx̂(k)),
(14)

where x̂ is the estimated state vector and L is the feed-
back gain of the state estimator. In this paper, the
state feedback controller is designed by using the prin-
ciples presented in Gerhard Schweitzer (2009).

The main drawback of the pole-placement-based
tuning is that it is not very intuitive. Secondly, when
the system degree increases, also the number of poles to
be placed increases, resulting in a more complex tuning
problem. This is an important factor to be acknowl-
edged, especially when including flexible modes to the
control model.

4.2 Linear-quadratic regulator

There are other control methods that facilitate con-
troller tuning by providing more intuitive tools, which
do not need direct manipulation of the poles. One of
these optimal control methods is the linear-quadratic
regulator (LQR). The controller tuning is based on
minimization of the quadratic cost function

J =
1

2

N∑

k=0

[xT (k)Q1x(k) + uT (k)Q2u(k)], (15)

where J is the cost function, x is the state vector, u
is the input vector, Q1 is the output weight function,
and Q2 is the input weight function. The weighting
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Figure 6: Description of radial force generation in a permanent magnet bearingless motor. The three-phase
windings are transformed into a two-phase presentation in the xy plane. The currents of the two-phase
windings are denoted by ix and iy. The principle of producing radial force in the x -axis is shown in
a). By applying current to the x phase windings, the flux is increased and decreased opposite to the
air gap in x -axis. This flux unbalance produces the radial force. By applying negative current, the
force direction can be reversed. In a similar fashion, the radial force in the y-axis can be produced by
applying current in the y-phase winding.
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Figure 7: Block diagram of the position control loop.

functions are diagonal matrices that affect the states
and inputs of the system. There are different methods
to determine the weighting functions Q1 and Q2. One
of the methods is called Bryson’s rule Franklin et al.
(2010), where the effect of the state weight on the out-
put follows

Q1 = CT Q̄1C. (16)

The weights are selected for the output by deciding
how large a deviation of the output is acceptable

Q̄1,n =




1/m2
1 0 · · · 0

0 1/m2
2 · · · 0

...
...

. . .
...

0 0 · · · 1/m2
n


 , (17)

where mn is the maximum deviation of the output sig-
nal. The weights for the inputs are selected by the
maximum input signal amplitude

Q2,n =




1/u21max 0 · · · 0
0 1/u22max · · · 0
...

...
. . .

...
0 0 · · · 1/u2nmax


 ,

(18)

where unmax is the maximum input signal deviation.
Table 1 lists the values selected for the weights m and
u based on several simulation iterations.

When designing the LQR-based controller, the de-
gree of freedom is lower (two parameters) than with
the pole placement method, where eight poles have to
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Figure 8: Block diagram of the state feedback con-
troller. A state estimator is necessary for
generating the full state vector including ro-
tor acceleration, which is not measurable.
Naturally, an integral action is added to re-
move the steady-state error.

be selected. This difference is amplified in the case of
the flexible plant model, where more states are added
to the system plant.

5 Experimental Results

Both controllers are tested with the prototype bearing-
less machine. First, the initial lift-up test is conducted
and compared with simulations in Fig. 9. The rotor
position is shown during the initial lift-up with the pole
placement and the LQR controller. At the beginning
of the test, the rotor is resting on the backup bear-
ings, where it is levitated to the center of the air gap.
Based on the simulations, it can be noted that the pole
placement controller has a higher overshoot, but both
controllers provide full levitation.

In Figs. 10 and 11, the current in the dq reference
frame is shown for the pole placement controller and
the LQR controller during the rotor lift-up sequence.
Because of the unbalanced magnetic pull of the em-
bedded magnets in the rotor, a high current peak is
needed to lift the rotor away from the backup bearings
to the center of the air gap. Based on the results, it
can be concluded that both of the proposed controllers
meet the requirement of levitating the rotor. It can
also be seen that a good correspondence between the
simulations and measurements is achieved. From the
current RMS values in the steady-state situation we
can notice that the LQR controller provides lower cur-
rent demand. It is pointed out, however, that there is
one notable difference between the BMs in the exper-
imental test; the ND-end has a smaller current ripple
than the D-end.

5.1 System Identification

As was shown in Fig. 9, both the proposed control ap-
proaches provided a stable fully levitated operation of
the bearingless machine. Thus, system identification

 
a)                                                                b) 

 
c)                                                                 d) 

Figure 9: Simulated and measured rotor lift-up from
the backup bearings. Initially, the rotor is
lying on the backup bearings, and after the
controller is enabled, the rotor is magneti-
cally levitated to the operating point, that
is the origin (x, y) = (0, 0). Simulation and
measurement results for the pole placement
controller are shown in a) and b), and for the
LQR controller in c) and d).

experiments can be carried out when the rotor is lev-
itating by superposing artificially generated excitation
signals to the control system. In this paper, an adap-
tive amplitude stepped sine signal is considered with
a frequency band from 1 Hz to 750 Hz in order to
validate the suitability of the control approaches for
commissioning purposes. System identification exper-
iments are carried out with both control approaches.
In Fig. 12, the experimentally obtained frequency re-
sponses are shown. Uncertainty is shown in the low
frequency area (<10 Hz) as it is challenging to identify
the DC-area with the motor inverter. Also the closed
loop controller influences to the low frequency region
limiting the accuracy of identification. Nevertheless,
identified rotor model for both controllers is matching
closely to the initial rigid rotor model. Identified rotor
model can be further use in the control design where
the flexible part is included. Evidently, the system
rotor dynamics can be identified in the full-levitation
mode similarly as with the 5-DOF AMB system Vuo-
jolainen et al. (2017).
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a)                                                                 b) 

 
c)                                                                  d) 

Figure 10: Simulated and measured DQ currents dur-
ing the rotor lift-up with the pole placement
controller. Simulation of the DQ axis cur-
rent of the D-end and the ND-end motor
are shown in a) and b), respectively. The
measured DQ axis current of the D-end and
the ND-end motor are shown in c) and d),
respectively. Steady state RMS values for
current in the simulation a) and b) are 2 A.
For the measured steady state RMS current
values c) 2.3 A and d) 2.4 A.

5.2 Rotational tests

To further validate the observations reported in this
paper, rotational tests are carried out with modest
velocity of 150 and 300 r/min. The measured cur-
rents from the motor and levitation coils are shown
with the measured position during the rotation test
for both speeds in Fig. 13 and Fig. 14. Note, that,
for illustrative purposes the rotational test are carried
out only with the LQR based control approach. These
results clearly indicate that the proposed control ap-
proach produces stable levitation also during rotation.
Torque for the rotation is produced with the D-end
motor windings without the decoupling in the levita-
tion controller. The average fluctuation of the positon
measurement during the rotation is 2.5 µm, which is
caused by the sensor noise and the runout of the sensor
surface together with the unbalance of the rotor. By
comparing rotor position measurements in Fig. 13 and
Fig. 14 it can be noticed that D-end orbit is affected
the most from the rotation speed change. Fundamen-
tal orbit change of the rotor position with rotor speed
from 150 to 300 r/min is for D-end from 2.15 µm to

 
a)                                                                 b) 

 
c)                                                                  d) 

Figure 11: Simulated and measured DQ currents dur-
ing the rotor lift-up when using the LQR
controller. Simulation of the DQ axis cur-
rent of the D-end and the ND-end motor are
shown in a) and b), respectively. The mea-
sured DQ axis currents of the D-end and
the ND-end motor are shown in c) and d),
respectively. Steady state RMS values for
current in the simulation a) and b) are 2 A.
For the measured steady state RMS current
values c) 2.2 A and d) 2.3 A.

 

Figure 12: Frequency response plot where the result
of the experimental identification with the
stepped sine method is compared with the
rigid body rotor model. The experimental
result shows the first flexible mode peak.

2.1 µm and for ND-end 4.5 µm to 3.2 µm. Effect of the
cross-coupling between the levitation and the torque
windings in D-end is seen from the results.
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a)                                                                 b) 

 
c)                                                                  d) 

 
e) 

Figure 13: Rotation test with speed of 150 r/min. Mea-
sured rotor position is shown for D-end and
ND-end in a) and b), respectively. Levita-
tion winding current for D-end and ND-end
is shown in c) and d). respectively. Torque
producing current in the D-end motor wind-
ings is shown in e). The motor currents
are represented in αβ -armature reference
frame.

6 Summary of the Commissioning
Steps

A summary of the commissioning steps is given to ex-
plicate the connection between the proposed control
methods and the control system.

� Step I: Derivation of the rigid system model (2)
using the rotor mass m and the inertia J with
the position stiffness Kx and current stiffness Ki

parameters obtained from the FEM and validated
by experiments (see Fig. 5). To derive the full
model used for the control design (10), the inner
current controller dynamics (14) is considered.

� Step II: MIMO state space controller design con-
sidering pole placement or LQR. The initial se-

 
a)                                                                 b) 

 
c)                                                                  d) 

 
e) 

Figure 14: Rotation test with speed of 300 r/min. Mea-
sured rotor position is shown for D-end and
ND-end in a) and b), respectively. Levita-
tion winding current for D-end and ND-end
is shown in c) and d). respectively. Torque
producing current in the D-end motor wind-
ings is shown in e). The motor currents
are represented in αβ -armature reference
frame.

lection for the pole placement control is to place
all the poles in the same location, that is, z =

e−
√

Kx
m ·Ts , which corresponds to the eigenvalue

for a spring-mass-system with a negative stiffness.
The LQR can be straightforwardly designed with
Bryson’s rule by selecting reasonable maximum
input signal and output deviation limits for the
controller. A good initial selection for the maxi-
mum output deviation is to consider smaller val-
ues for the deviation than the values given in the
ISO standard ISO 14839-2:2004(E) (2004), where
the acceptable rotor vibration with respect to the
air-gap length in magnetic levitation applications
is recommended. Here, a value of 0.083·Cmin is
considered, where Cmin is the minimum clearance.
The maximum levitation current can be used as
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the initial value for the input deviation. An ac-
ceptable control effort can be achieved by tuning
the input deviation, and thus, in this paper, the
selected input deviation is 2 A.

� Step III: Estimator design (14) based on the sys-
tem model, The estimator can be tuned by using
the general guidelines given for instance in Mes-
sager and Binder (2016) , Franklin et al. (2010)
so that the observer poles are around 4–10 times
faster than the closed-loop poles. Here, a ten times
faster design is considered.

� Step IV: Check in the simulation that the desired
response and dynamics are obtained for the lift-up
test (see example in Fig. 9 a) and c)). If the
requirements are not met, redesign the controller
and the estimator in Steps II and III.

� Steps V–VI: Experimental lift-up test, where the
basic functionality of the controller is further ver-
ified. After that, identification tests supported
with a model validation routine should be carried
out. Here, the adaptive amplitude stepped sine
Vuojolainen et al. (2017) is used as an excitation
signal in the identification experiments.

After the proposed commissioning routine, the natural
next step is the controller retuning based on the iden-
tified model, if the initial mathematical model does
not correspond to the identified one. This step is im-
portant, especially if there is some identified dynam-
ics, such as cross-coupling, which should be considered
in the final controller design for the rotation over the
whole speed range. To this end, previous studies fo-
cusing on the control of different bearingless machine
applications Zhang et al. (2016), Zhao and Zhu (2017)
have shown that PID-based controllers are useful tools
for stabilizing a rigid rotor. However, a MIMO con-
troller should be considered as a final controller as it
is more straightforward to tune in order to adequately
stabilize the complex dynamics in the case of a flex-
ible rotor Yoon et al. (2013). Moreover, in general,
when considering a magnetically levitated high-speed
motor application with a very high speed requirement,
the PID controller has certain shortcomings that can
destabilize the system for example if there are flexible
modes within the controller bandwidth. When com-
missioning is carried out with a MIMO controller, the
final control law can be designed using the same al-
gorithm straightforwardly. In this case, this ensures a
better cooperation between bearingless motors for the
stabilization of the system and stable rotational oper-
ation over the whole speed range.

7 Conclusion

Commissioning steps for fully levitated bearingless ma-
chine using the model based control approach is pre-
sented. It is beneficial to apply the MIMO control prin-
ciples over very traditional PID-based control struc-
tures, which do not take into account the coupling of
the rotor system. In this paper, it was shown that
the well-established MIMO AMB control principles can
be straightforwardly applied to a bearingless machine
system. By comparing the adopted controllers, it is
shown that the LQR outperforms the pole placement
controller. Designing an LQR-based controller is much
more straightforward as a result of the more intuitive
tuning methods. Secondly, weighting-function-based
controllers are not sensitive to a model order change as
the weights affect the inputs and outputs but not the
states themselves. Updating a rigid body rotor model
to a flexible model would increase the number of poles
to be tuned. Naturally, the pole placement controller
is more suitable for simpler systems than a complex
MIMO system, such as a 4-DOF levitated rotor sys-
tem, but in this paper, it was only considered as an
example MIMO control case for a bearingless machine.

The results presented in this paper are important as
the 5-DOF operation of bearingless machines has not
been comprehensively analyzed in the literature thus
far. The 5-DOF operation was shown and analyzed
with two distinct MIMO control approaches using sim-
ple rigid rotor model. The proposed controllers can be
applied for commissioning purposes, and it was experi-
mentally shown that artificial-excitation-based system
identification experiments can be carried out during
full levitation operation. Additionally, stability of the
LQR based levitation controller was verified with the
low-speed rotation tests.
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