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Abstract

This paper addresses multi-user multi-cluster massive multiple-input-multiple-output (MIMO) sys-

tems with non-orthogonal multiple access (NOMA). Assuming the downlink mode, and taking into

consideration the impact of imperfect successive interference cancellation (SIC), an in-depth analytical

analysis is carried out, in which closed-form expressions for the outage probability and ergodic rates are

derived. Subsequently, the power allocation coefficients of users within each sub-group are optimized

to maximize fairness. The considered power optimization is simplified to a convex problem, which

makes it possible to obtain the optimal solution via Karush-Kuhn-Tucker (KKT) conditions. Based

on the achieved solution, we propose an iterative algorithm to provide fairness also among different

sub-groups. Simulation results alongside with insightful discussions are provided to investigate the

impact of imperfect SIC and demonstrate the fairness superiority of the proposed dynamic power

allocation policies. For example, our results show that if the residual error propagation levels are high,
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the employment of orthogonal multiple access (OMA) is always preferable than NOMA. It is also shown

that the proposed power allocation outperforms conventional massive MIMO-NOMA setups operating

with fixed power allocation strategies in terms of outage probability.

Index Terms

Fairness maximization, imperfect SIC, massive MIMO, NOMA.

I. INTRODUCTION

Advances in technologies and the rise of new applications, such as unmanned vehicles, smart

homes, smart grid, and massive sensor networks, are triggering an accelerated growth in the

number of devices connected to communication systems. As an attempt to support this explosive

trend, the 5th generation of wireless networks (5G) is being developed, and the first commercial

systems have been deployed worldwide. 5G and beyond networks are expected to support

a variety of demanding requisites, going from massive connectivity and ultra-low latency to

improved user fairness [1]. Massive multiple-input-multiple-output (MIMO) is being credited as

one of the key enabling components of 5G [2]. In particular, by employing a very large number

of antennas and exploiting the space domain to multiplex different users, the massive MIMO

technology has the potential to reduce system latency and to provide remarkable connectivity

gains. Power-domain non-orthogonal multiple access (NOMA) is another promising technology

for the future-generation wireless systems that allow multiple users to be served in parallel within

the same frequency and time slot. The relying concept of NOMA consists of superposing the

data symbols of different users in the power domain at the base station (BS) and employing

successive interference cancellation (SIC) at the receivers. With such features, NOMA can also

provide massive connectivity capabilities and a reduction in latency to the network.

If the NOMA technique is applied to massive MIMO, the achievable spectral and connectivity

improvements are shown to be even greater [3]–[5]. However, if the transmission power is not

well allocated within the MIMO-NOMA network, the performance of some users can be severely

compromised. For instance, the adoption of fixed power allocation policies in NOMA can be very

beneficial to users with good channel conditions, however, it can be extremely disadvantageous

to users that suffer from strong channel attenuation [6]. To improve the average performance

of the weaker users, one could decrease as much as possible the power allocated to the strong

ones so that a certain degree of fairness could be achieved [7]. However, such a strategy can
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severely impact the system sum-rate, and, due to the random behavior of the wireless channels,

it will also result in unequal data rates. This characteristic can be detrimental to certain emerging

applications. For example, in the upcoming industrial internet of things, it can be very important

that all terminals experience similar data rates [8]. In such scenarios, the employment of fixed

allocation policies can make some of the terminals not able to meet their minimum requirements

and result in a poor network performance. Besides, 5G and beyond are expected to support the

concept of network slicing, which is to create isolated logical networks, i.e., slices, each dedicated

to a subset of terminals with specific requirements [9]. Since within each slice users are expected

to share identical requisites, it will be crucial to perform a fair distribution of resources, which is a

feature that fixed power allocation is not capable of providing. Therefore, more sophisticated and

adaptive power allocation strategies are important and necessary to guarantee fairness in future

MIMO-NOMA networks. In addition, the majority of existing works make the strong assumption

that SIC can be carried out perfectly, which is idealistic and difficult to hold in practice. In real-

world deployments, various impairments such as fast varying channels, atmospheric absorption,

strong channel correlation, and hardware issues, can degrade the signal reception and introduce

errors during the detection of transmitted symbols [10], [11]. As a result, since the recovery of

each symbol with SIC depends on previous decodings, errors will inevitably propagate and impact

the system performance. This makes SIC residual error propagation an important parameter that

must be considered while designing realistic massive MIMO-NOMA systems.

A. Related Works

A few NOMA-related works have considered the impact of imperfect SIC. For instance, in

[10], a massive MIMO-NOMA system with non-orthogonal channel estimation and SIC error

propagation was investigated. The work considered a single-cell downlink scenario, where a

single multi-antenna BS communicates with multiple single-antenna users. In particular, the

authors derived a lower bound expression for the spectral efficiency and developed iterative

optimization algorithms for maximizing the weighted sum spectral efficiency. The provided

numerical results validated the analytical approximation, although the gap between the bounds

and simulation curves were not very tight. The work in [12] proposed a sub-optimum iterative

algorithm for maximizing the sum-rate of a downlink MIMO-NOMA network. By equipping

both BS and users with two antennas, the paper provided results for two very specific scenarios,

in which a high and a low value of SIC residual error was considered. However, intermediate
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error levels were not investigated. In [13], the authors analyzed the outage probability and

minimized the total transmit power of a multi-carrier NOMA system by modeling the SIC error

propagation as a complex Gaussian random variable. Complementary geometric programming

and arithmetic geometric mean approximation techniques were used to transform the non-convex

formulated problem into a convex one. The heterogeneous networks case was considered in [14].

By taking into consideration various sources of interference, such as inter-cell interference, power

disparity, and imperfect SIC, the work proposed user clustering and power-bandwidth allocation

algorithms. The impact of imperfect SIC in the uplink of MIMO-NOMA systems employing

the concept of virtualized wireless networks (VWN) was studied in [15], in which algorithms

based on successive convex approximation and complementary geometric programming were

proposed for power and sub-carrier allocation. A massive MIMO-NOMA system with distributed

antenna arrays was investigated in [16]. In this contribution, a closed-form expression for the

ergodic sum-rate was derived. In [17], by taking into consideration SIC error propagation and

in-phase and quadrature-phase imbalance, the performance of a full-duplex relaying system was

investigated. The study of α-µ fading channels in cooperative NOMA networks with hardware

impairments was considered in [18], and the work in [19] addressed the application of deep

learning techniques to MIMO-NOMA systems with imperfect SIC decoding.

Some contributions have addressed fairness in NOMA systems, although none of them have

considered the effects of imperfect SIC. For example, by assuming that SIC can be carried out

perfectly, the work in [20] investigated the impact of power allocation on the fairness of a simple

system where a single-antenna BS serves multiple single-antenna users. The authors developed

low-complexity bisection-based iterative algorithms to optimally solve the optimization problem.

In [21], the fairness of user clustering in a multi-user MIMO-NOMA setup was considered.

Bisection algorithms were also adopted to optimize the power of users within each cluster. In

addition, three sub-optimum clustering algorithms have been proposed. A fair NOMA protocol,

in which the user capacity is always at least equal to the capacity achieved with orthogonal

multiple access (OMA), was proposed in [22]. The referred work pairs near and cell-edge single-

antenna users to form NOMA groups, based on which the power allocation coefficients are

determined. The outage probability was also investigated. The authors of [23] and [24] proposed

user clustering algorithms based on proportional fairness to balance between throughput and

fairness. [23] also presented an optimal power allocation for maximizing the system sum-rate
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such that the rate of weak users is guaranteed to be equal to that achieved with OMA. In [6],

the authors developed dynamic resource allocation policies, which are optimally obtained via

Lagrangian dual decomposition. The millimeter-wave MIMO-NOMA case was addressed in [25],

in which spatial sparsity was exploited to propose sub-optimum power allocation solutions.

B. Motivation and Contributions

Even though there are numerous contributions showing that massive MIMO-NOMA systems

can provide remarkable spectral gains and outperform the massive MIMO-OMA counterpart, the

majority of these works do not consider the impact of imperfect SIC decoding. In addition, to

the best of the authors’ knowledge, only a very limited number of works investigates fairness

in massive MIMO-NOMA networks, and none of them have considered SIC error propagation.

Given the aforementioned research gap, this paper aims to design, analyze, and optimize the

performance of a massive MIMO-NOMA network under the impact of residual error propagation

from imperfect SIC. More details and the main original contributions provided in this work are

summarized as follows.

• Inspired by the works in [3], [4], and assuming that the users are confined within multiple

clusters of scatterers, we employ at the BS a two-stage precoder. Specifically, the first-stage

precoder, which is intended to eliminate inter-cluster interference, is designed based only

on the slowly varying covariance matrices of interfering clusters. By its turn, the second-

stage precoder is responsible for directing the superposed symbols to the corresponding

NOMA sub-groups, where each sub-group is formed by two users so that the computational

complexity of SIC is reduced. This strategy provides attractive advantages to massive

MIMO-NOMA setups, such as less processing overload and reduced feedback overhead.

• Assuming first a fixed power allocation policy, a novel analytical framework for the proposed

massive MIMO-NOMA network is developed. In particular, by considering the impact of

residual error from imperfect SIC, we derive the system signal-to-interference-plus-noise

ratio (SINR) expression and carry out a statistical characterization of the effective channel

gains. Then, based on this initial analysis, exact closed-form expressions for the outage

probability and for the users’ ergodic rates are derived, whose accuracies are validated

through numerical and simulation examples. The obtained analytical results provide a prac-

tical alternative for designing massive MIMO-NOMA systems with imperfect SIC decoding.
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• Next, we develop a more sophisticated dynamic power allocation that maximizes the achiev-

able rates of users with worst channel conditions within each NOMA sub-group. More

specifically, the optimization problem is formulated to guarantee that weaker users never

experience a rate less than what is achieved by the stronger ones, and the optimal solution

is obtained via Karush-Kuhn-Tucker (KKT) conditions. Then, to balance the data rates also

among different sub-groups, we propose an iterative algorithm that extends the fairness

concept to all users within the spatial clusters so that all terminals can reach identical

performance levels, i.e., maximum fairness is provided.

• Simulation results alongside with insightful discussions are provided to investigate the

impact of imperfect SIC and demonstrate the fairness superiority of the proposed dynamic

power allocation policies. For example, our results show that if the residual error propagation

levels are high, the employment of OMA is always preferable than NOMA. It is also shown

that the proposed power allocation outperforms conventional massive MIMO-NOMA setups

operating with fixed power allocation strategies in terms of outage probability.

Notation and Special Functions: Bold-faced lower-case letters denotes vectors and upper-case

represent matrices. The ith element of a vector a is denoted by [a]i and the (ij) entry of a matrix

A by [A]ij . The Hermitian transposition of A is represented by AH and the trace by tr{A}. In

addition, 0M×N denotes the M ×N matrix with all zero entries, E[·] denotes expectation, Γ(·)

is the Gamma function [26, eq. (8.310.1)], γ(·, ·) is the lower incomplete Gamma function [26,

eq. (8.350.1)], and Ei(·) corresponds to the exponential integral [26, eq. (8.211.1)].

II. SYSTEM MODEL

We consider a single-cell scenario where one elevated BS is communicating in downlink mode

with L multi-antenna users. The BS is equipped with a uniform linear array of M transmit

antenna elements, which are separated by half a wavelength, i.e., λ/2. Moreover, each user is

equipped with N receive antennas, in which we assume that M is much greater than N , i.e.,

M � N , which characterizes a typical massive MIMO setup. The users are considered to be

uniformly distributed within S spatial clusters of scatterers, modeled by the one-ring scattering

model [27]. Within each cluster, the BS subdivides the users into G smaller sub-groups, each
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Fig. 1: System model. Users within each spatial cluster are organized into multiple sub-groups.

one containing 2 users1, as illustrated in Fig. 1. Then, power-domain NOMA is employed within

each sub-group. Given the described scenario, and applying the Karhunen-Loeve transform [27],

the channel matrix for the kth user in the gth sub-group in the sth cluster, can be expressed by

Hsgk =

√
Φd−ηsg UsΛ

1
2
s Gsgk ∈ CM×N , (1)

which has covariance matrix given by E{HsgkH
H
sgk} = Φd−ηsg Rs ∈ CM×M , with rank denoted

by rs. Λs ∈ Rr∗s×r∗s
>0 represents a diagonal matrix formed by the first r∗s dominant eigenvalues of

Rs, sorted out in decreasing order, in which r∗s ≤ rs. Us ∈ CM×r∗s is a matrix of eigenvectors

corresponding to the dominant eigenvalues of Rs, and Gsgk ∈ Cr∗s×N is the fast varying channel

matrix, which has complex Gaussian distributed entries with zero-mean and unit-variance. dsg

is the distance of the gth sub-group from the BS, η is the path-loss exponent, and Φ is a gain

parameter that is adjusted based on the desired performance of the receivers [28]. Moreover, all

users confined within the sth cluster are assumed to share identical2 covariance matrices Rs,

whose entries can be generated by [27]

[Rs]mm′ =
1

2δs

∫ δs

−δs
e−j

2π
λ

[cos(φ+ϕs),sin(φ+ϕs)](am−am′ )dφ, (2)

where δs and ϕs are, respectively, the angular spread and the azimuth angle of the sth spatial

cluster, φ corresponds to the angle of arrival of incident planar waves at the BS, and am, am′

are the Cartesian coordinates of the antenna elements m and m′, for 1 ≤ m,m′ ≤M .

1Given that SIC is an interference-limited technique, the consideration of a large number of users per sub-group can lead
to performance degradation (due to decoding error propagation), increase in detection and hardware complexities, and higher
energy consumption. Therefore, small sub-groups (usually of two users) are preferable in practical downlink NOMA systems
[7].

2The assumption of users sharing identical covariance matrices cannot be exactly satisfied in real-world scenarios. However, as
stated in [27], if users within the same cluster of scatterers are grouped properly, this condition can be efficiently approximated.
Even though user grouping is an important topic and an active area of research [14], it goes beyond the scope of this work.
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At the BS, the symbols for users within each sub-group are superposed and transmitted through

the wireless channels. Then, the kth user in the gth sub-group receives the following signal

ysgk = HH
sgk

S∑
n=1

Bn

G∑
i=1

vni

2∑
j=1

√
αnijxnij + nsgk, (3)

where ngk ∈ CN×1 is a noise vector with entries following the complex Gaussian distribution

with zero-mean and variance σ2
n. The variable αnij denotes the power coefficient, and xnij is

the symbol intended for the jth user in the ith sub-group at the nth cluster. Bn ∈ CM×V is the

beamforming matrix responsible for eliminating the interference from other clusters, where V

is a parameter that defines the number of parallel effective transmissions, and vni ∈ CV×1 is the

precoding vector designed to assign the superposed symbols to the corresponding sub-groups.

A. Beamforming Design

The beamforming matrix Bs is designed to focus the signal transmission to a desired spatial

cluster s, such that everywhere else outside the area of interest the propagation is nulled out.

To achieve this spatial directivity, Bs is constructed based on the null space spanned by the

nonzero eigenmodes of the covariance matrices of interfering clusters [27]. To this end, we

define U−s = [U1, · · · ,Us−1,Us+1, · · · ,US] and denote its last M − (S− 1)r∗s left eigenvectors

by E0
s ∈ CM×M−(S−1)r∗s , which corresponds to the vanishing eigenmodes of U−s . As a result,

due to the dimension of E0
s, the constraint M > (S − 1)r∗s must be satisfied.

Given that (E0
s)
HU−s = 0, the matrix H̃sgk = (E0

s)
HUsΛ

1
2
s Gsgk is orthogonal to the r∗s

dominant eigenmodes of interfering clusters, and it has covariance matrix given by R̃s =

H̃sgkH̃
H
sgk = (E0

s)
HRsE

0
s = FsRsF

H
s , where Fs represents the left eigenvectors of R̃s. Then,

by defining the first V eigenvectors of Fs by F1
s ∈ CM−(S−1)r∗s×V , the beamforming matrix Bs

is finally obtained, as follows

Bs = E0
sF

1
s ∈ CM×V , (4)

where S ≤ V ≤ (M − (S − 1)r∗s) and V ≤ r∗s ≤ rs.

It is noteworthy that the number of dominant eigenvalues r∗s will determine the amount of

interference that will leak from other clusters3. Specifically, the inter-cluster interference will

3As discussed in [4] and [27], finding the optimum value of r∗s depends on the parameters and requisites of each specific
system, such as the number of antennas, desired number of clusters, and maximum interference level, which is not a trivial task
and goes beyond the scope of this work. We configure this parameter not aiming its optimally, but to achieve a good system
performance and to satisfy the beamforming design constraints.
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approach zero as r∗s approaches to the rank rs, such that, when r∗s = rs, HH
sgkBs′ = 0, ∀s 6= s′.

However, since part of the eigenvalues can be very small, i.e., ≈ 0, the extreme choice r∗s = rs

is usually not efficient, and it does not result in significant performance improvements [4], [27].

In addition, given that S < M/r∗s +1, increasing r∗s will reduce the maximum number of clusters

S. In particular, due to the beamforming constraints, we set the dominant eigenvalues parameter

to r∗s = min {rs, b(M − V )/(S − 1)c}.

More clarifications for the precoding vector vsg are now provided. We design vsg to assign

the superimposed symbols to each corresponding NOMA sub-group, such that it should not

introduce additional power, i.e., ‖vsg‖2 = 1. This can be accomplished by defining vsg as

vsg = [ 01×(g−1) , 1 , 01×(V−g) ]T , ∀g = 1, · · · , G. (5)

Note that the above design associates the gth effective data stream to the gth NOMA sub-group,

and it does not modify by any form the data messages. Besides, to construct the beamformers,

it is not necessary to acquire the fast fading channel matrices Gsgk at the BS, that is, only

the channel covariance matrices are required. And given that Rs varies slowly, the users only

need to measure it once after several coherence intervals. Once this statistical information is

obtained, users can feed it back to the BS with low feedback overhead [27]. As a result, it is

reasonable to assume that all the channel information can be accurately estimated at the users’

side through downlink training techniques4. Therefore, as in [3]–[5], we consider that Rs is

known in the system (at both BS and users), and that Gsgk can be estimated perfectly5 by

the users’ terminals. Also, since Bs only addresses the inter-cluster interference, the users still

need to employ some reception technique for canceling the remaining intra-cluster interference.

Details for signal reception are provided next.

B. Signal Reception

For simplicity, from this point forward, we drop the subscript corresponding to the spatial

cluster, e.g., we represent ysgk as ygk. Accordingly, assuming that the beamforming matrix Bs

4Channel estimation and acquisition are critical in massive MIMO and are topics of ongoing interest in the literature (see
[29] and references therein, for example). However, the investigation of such topics goes beyond the scope of this work.

5In practice, the estimation of the fast varying channel matrices, Gsgk, is usually not perfect. Therefore, the investigation of
the impact of channel estimation errors on our proposed massive MIMO-NOMA design arises as an interesting future direction.
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successfully suppresses all inter-cluster interferences, the superposed signal observed by the kth

user, k ∈ {1, 2}, in the gth sub-group can be rewritten as

ygk = HH
gkB

G∑
i=1

vi

2∑
j=1

√
αijxij + ngk. (6)

To eliminate the remaining inter-group interference, the users employ a zero-forcing receiver.

Therefore, the detection matrix can be defined by H†gk = [(HH
gkB)HHH

gkB]−1(HH
gkB)H , which

corresponds to the pseudo-inverse of the virtual channel. Note that, in order to construct the

zero-forcing receiver, the users need to have access also to the beamforming matrices. Since, in

our design, B is built based only on the channel covariance matrices, which vary slowly, such

beamforming information can be efficiently informed back to the users, imposing low overhead.

After the received signal has been filtered through H†gk, the kth user in the gth group achieves

the following data vector

x̂gk =


√
α11x11 +

√
α12x12

...
√
αG1xG1 +

√
αG2xG2

+ H†gkngk. (7)

Note that the zero-forcing receiver has decoupled the signal in (6) into G parallel symbols,

each one belonging to a different sub-group. This enables the users within the gth NOMA

sub-group to apply SIC to their corresponding superposed symbol, i.e., the gth element of x̂gk.

III. PERFORMANCE ANALYSIS FOR FIXED POWER ALLOCATION

In this section, the performance of the proposed massive MIMO-NOMA system operating

under fixed power allocation policy is investigated. Specifically, by considering the impact of

residual error from imperfect SIC decoding, we derive the SINR experienced by the users and

identify the statistical distributions of the effective channel gains, based on which closed-form

analytical expressions for the outage probability and for the users’ ergodic rates are obtained.

A. SINR Analysis

In our design, the users within each sub-group are organized by the BS in ascending order

based on their effective channel gains, that is, the first user has the lowest gain and the second user

the highest one. Following the SIC protocol, the weak user retrieves its data symbol directly from

(7) and treats the message intended for the second user as interference, so no further processing is

required. On the other hand, the second user, which has the best channel condition, first decodes
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the message intended for the first user and, subsequently, recovers its own data symbol [3]–

[5]. Ideally, the strong user can recover its information without interference, but, as previously

discussed, this is difficult to happen in practice. In real deployments, due to many impairments,

the strong users may achieve an imperfect estimation of the symbols intended to the weak users

and suffer from residual interference. On these grounds, as in [10], [14], [15], we model the

effects of imperfect SIC as a function of the interfering power. More specifically, the kth user

in the gth sub-group will recover the following symbol

x̂gk =


√
αg1xg1
↑

symbol of interest

+
√
αg2xg2
↑

interference

+ [H†g1ng1]g
↑

noise

, if k = 1,

√
αg2xg2
↑

symbol of interest

+
√
µαg1xg1
↑

residual SIC interference

+ [H†g2ng2]g
↑

noise

, if k = 2,
(8)

in which µ ∈ [0, 1] is the error propagation factor that models the impact of imperfect SIC, where

µ = 1 represents the scenario of maximum interference, and µ = 0 corresponds to the ideal case

of perfect SIC. As demonstrated in [30], [31], the error factor µ can be easily calculated at the

receivers by dividing the variance of the interference term, which can be obtained by averaging a

large number of samples, by the power allocated to the interfering user, e.g., supposing that x̃g1

is the symbol intended for the user 1 estimated at user 2 during the SIC process, the error factor

can be computed as6 µ = E{|√αg1(x1 − x̃1)|2}/αg1. In practice, the value of µ will depend on

factors such as the type of the receiver, channel characteristics, and hardware sensibility [14],

[15]. Considering the signal model in (8), the SINR achieved by each user during each NOMA

decoding is defined in the following Lemma.

Lemma I: Supposing that the users within each sub-group are sorted out in increasing order

based on their effective channel gains, the SINR achieved at the current kth user, 1 ≤ k ≤ 2,

when decoding the symbol that belongs to the ith user, 1 ≤ i ≤ 2, is obtained by

γigk =
ρ%gkαgi

ρ%gkα?gi + 1
, for 1 ≤ i ≤ k ≤ 2, (9)

6Note that in our analysis, we model µ as a deterministic parameter. However, since the residual SIC interference term in (8)
can be approximated by a Gaussian distribution [30], µ can also be modeled as a chi-squared random variable, as in [13]. This
possibility arises as a potential extension of this work.
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where %gk = 1

[H†gkH
†H
gk ]gg

is the effective channel gain, ρ = 1/σ2
n denotes the signal-to-noise ratio

(SNR), and α?gi corresponds to the interference power, which is given by

α?gi =

αg2, for i = 1,

µαg1, for i = k = 2,
(10)

Proof: Please, see Appendix A. �

Observe that, since users are ordered based on their effective channel gains, to enable NOMA,

they are required to feed the gains %gk back to the BS at each coherence interval. However, since

%gk is just a scalar parameter, such a task will result in low additional overhead only [32].

B. Statistical Characterization of the Effective Channel Gains

Before obtaining the desired outage probability and ergodic rate expressions, we need to

statistically characterize the effective channel gains. As one can observe in (A-1), %gk is the

inverse of the gth element on the main diagonal of the following matrix

H†gkH
†H
gk = [(HH

gkB)HHH
gkB]−1(HH

gkB)HHH
gkB([(HH

gkB)HHH
gkB]−1)H = (BHHgkH

H
gkB)−1

=
(
BHΦd−ηg (UΛ

1
2 Ggk)(UΛ

1
2 Ggk)

HB
)−1

=
1

Φd−ηg

(
BHRB

)−1 ∈ CV×V . (11)

As demonstrated in [3], [4], since Ggk consists of a complex Gaussian distributed matrix,

the resulting matrix
(
BHRB

)−1 is inverse Wishart distributed with N ≥ V − 1 degrees of

freedom. Consequently, the unordered effective channel gain %gk = 1

[H†gkH
†H
gk ]gg

follows a Gamma

distribution with shape parameter N −V + 1 and scale parameter given by Φd−ηg [(BHRB)−1]gg.

However, since the BS sorts the users out in ascending order, we need to find the probability

density function (PDF) of the ordered effective channel gains. To this end, we use the theory of

order statistics, which allow us to achieve the desired PDF in the following way [33]

f%gk(x) = K

(
K − 1

k − 1

)K−k∑
i=0

(−1)i
(
K − k
i

)
f̃%gk(x)F̃%gk(x)k−1+i, (12)

where f̃%gk(x) and F̃%gk(x) are, respectively, the PDF and the cumulative distribution function

(CDF) of unordered gains, which are provided in [3], [4]. Then, by using the fact that in our

considered scenario K = 2, the PDF for the ordered gain of user 1 can be achieved as

f%g1(x) = 2[f̃%gk(x)− f̃%gk(x)F̃%gk(x)] =
2βϑg
Γ(ϑ)

[
xϑ−1e−βgx − xϑ−1e−βgx

γ(ϑ, βgx)

Γ(ϑ)

]
, (13)
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and for user 2 as

f%g2(x) = 2f̃%gk(x)F̃%gk(x) =
2βϑg
Γ(ϑ)

xϑ−1e−βgx
γ(ϑ, βgx)

Γ(ϑ)
, (14)

in which, for notation simplicity, we have defined ϑ = N−V +1 and βg = Φd−ηg [(BHRB)−1]gg.

C. Outage Probability

The outage probability for the kth user, in the gth sub-group, represented by Pgk, is the

probability of achieving a data rate less than the target rate, Tgi, required to decode the message

intended to the ith user, i ≤ k ∈ {1, 2}, and it can be defined as [3], [4]

Pgk = P [log2(1 + γigk) < Tgi], ∀i = 1, · · · , k. (15)

Note from (15) that user 1 (weak user) will face an outage event only when its achieved data

rate is not enough to satisfy its own target rate, i.e., when log2(1 + γ1
g1) < Tg1. While user 2

(strong user) will experience outage either if log2(1+γ1
g2) < Tg1 or log2(1+γ2

g2) < Tg2. Also see

that, due to (10), the outage probability of the strong user will be also impacted by residual SIC

interference. Closed-form expressions for the outage probability are provided in the following

proposition.

Proposition I: Assuming that %g1 < %g2, and considering imperfect SIC, the exact closed-

form expressions for the outage probability achieved by users 1 and 2, can be derived as follows:

• For user 1:

Pg1 =


2γ(ϑ,ρ−1βgLg1)

Γ(ϑ)
−
[
γ(ϑ,ρ−1βgLg1)

Γ(ϑ)

]2

, if Lg1 ≥ 0,

1, otherwise.
(16)

• For user 2:

Pg2 =


[
γ(ϑ,ρ−1βg max{Lg1,Lg2})

Γ(ϑ)

]2

, if min {Lg1,Lg2} ≥ 0,

1, otherwise,
(17)

where Lg1 = 2Tg1−1

αg1−αg2(2Tg1−1)
, and Lg2 = 2Tg2−1

αg2−µαg1(2Tg2−1)
.

Proof: Please, see Appendix B. �

D. Ergodic Rates

In this subsection, we analyze the ergodic rates experienced by each user within the sub-

groups. In particular, it is considered that the strong user cannot decode perfectly the symbol

intended to the weak user. As a consequence, its achievable rate, which is resulted from the
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SINR observed while decoding its own data symbol, will be impacted by residual interference.

Under this consideration, the instantaneous data rate achieved by the first user can be written as

Rg1 = log2(1 + γ1
g1) = log2

(
1 +

ρ%g1αg1
ρ%g1αg2 + 1

)
, (18)

and, for the second user, the data rate is given by

Rg2 = log2(1 + γ2
g2) = log2

(
1 +

ρ%g2αg2
ρ%g2µαg1 + 1

)
. (19)

From (18) and (19), exact closed-form expressions for the users’ ergodic rates will be derived,

which are presented in Proposition II.

Proposition II: In presence of residual error propagation from imperfect SIC, exact closed-

form expressions for the ergodic rates of users 1 and 2 can be obtained as follows:

• For user 1:

R̄g1 = ξ1(κg1)− ξ1(κ̃g1), (20)

where κg1 = ρ(αg1 + αg2), κ̃g1 = ραg2, and

ξ1(κ) =



∑ϑ−1
i=0

1
2ϑ+i−1 ln(2)Γ(ϑ)i!

∑ϑ+i−1
m=0

(ϑ+i−1)!
(ϑ+i−m−1)!

[
(−1)ϑ+i−m−2(
κ

2βg

)ϑ+i−m−1 e
2βg
κ Ei

(
−2βg

κ

)
+
∑ϑ+i−m−1

n=1
(n−1)!(

− κ
2βg

)ϑ+i−m−n−1

]
, if ϑ > 1,

− 1
ln(2)

e
2βg
κ Ei

(
−2βg

κ

)
, if ϑ = 1.

• For user 2:

R̄g2 =

ξ2(κg2)− ξ2(κ̃g2), if µ > 0,

ξ2(κg2), if µ = 0,
(21)

where κg2 = ρ(µαg1 + αg2), κ̃g2 = ρµαg1, and

ξ2(κ) =



2
ln(2)

∑ϑ−1
m=0

1
(ϑ−m−1)!

[
(−1)ϑ−m−2(
κ
βg

)ϑ−m−1 e
βg
κ Ei

(
−βg

κ

)
+
∑ϑ−m−1

n=1
(n−1)!(

− κ
βg

)ϑ−m−n−1

]
− ξ1(κ), if ϑ > 1,

− 2
ln(2)

e
βg
κ Ei

(
−βg

κ

)
− ξ1(κ), if ϑ = 1.

Proof: Please, see Appendix C. �

Note that as long as we have SIC error propagation, there will be a negative term in (21), i.e.,

−ξ2(κ̃g2), which indicates degradation in the rate of the strong user. In fact, numerical results

show that ξ2(κ) is an increasing function of the SNR ρ. However, when ρ → ∞, the negative

term in (21) will make the expression to converge to a saturation point, which means that the
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achievable data rate at the strong user will be always capped if µ 6= 0. Similar behavior can be

observed in the expression for the weak user, in (20). Nevertheless, since it does not perform

SIC, its rate ceiling will be independent of µ. More details are provided in Section V, where

we perform an insightful numerical analysis.

IV. ENHANCING USER FAIRNESS THROUGH DYNAMIC POWER ALLOCATION

Even though fixed power allocation policy, which was considered in the previous section, is

simpler to employ and has been widely adopted in several previous works [3], [4], [32], it can

lead to low data rates at the weaker users. As mentioned before, such an unbalanced performance

can be very detrimental to certain 5G applications with strict fairness requirements. Therefore, in

this section, we develop dynamic power allocation protocols for enhancing user fairness within

the proposed massive MIMO-NOMA network. More details are provided next.

A. Power Allocation within the NOMA Sub-Groups

First, we focus on enhancing user fairness only within each NOMA sub-group. Specifically,

the BS needs to distribute the power resources between the two users within the sub-groups

in such a way that their rates become balanced. Given that the weak users face the worst

channel conditions, we must ensure that their rates are greater than or equal to that achieved

by the stronger ones, i.e., log2

(
1 + ρ%g1αg1

ρ%g1αg2+1

)
≥ log2

(
1 + ρ%g2αg2

ρ%g2µαg1+1

)
. With this in mind, our

objective can be accomplished with the following optimization problem

max
αg1,αg2

{Rg2} (22a)

s.t. Rg1 ≥ Rg2, (22b)

αg1 + αg2 = ᾱg, (22c)

αg1 ≥ 0, αg2 ≥ 0, (22d)

where ᾱg denotes the total transmit power available for the gth sub-group.

Given that log2(·) is a monotonic increasing function, from the constraint (22b), it follows
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that ρ%g1αg1
ρ%g1αg2+1

≥ ρ%g2αg2
ρ%g2µαg1+1

. As a result, the problem (22) can be simplified to

max
αg1,αg2

{
log2

(
1 +

ρ%g2αg2
ρ%g2µαg1 + 1

)}
(23a)

s.t. %g1%g2α2
g2 − µ%g1%g2α2

g1 + %g2αg2ρ
−1 ≤ %g1αg1ρ

−1, (23b)

αg1 + αg2 = ᾱg, (23c)

αg1 ≥ 0, αg2 ≥ 0. (23d)

Then, by letting αg1 = ᾱg − αg2, the constraint in (23b) becomes α2
g2(%g1%g2 − µ%g1%g2) +

αg2(%g1ρ
−1 +%g2ρ

−1 + 2µ%g1%g2ᾱg)− (%g1ρ
−1ᾱg +µ%g1%g2ᾱ

2
g) ≤ 0, and (23) can be rewritten as

max
αg2

{
log2

(
1 +

ρ%g2αg2
ρ%g2µ(ᾱg − αg2) + 1

)}
(24a)

s.t. α2
g2(%g1%g2 − µ%g1%g2) + αg2(%g1ρ

−1 + %g2ρ
−1 + 2µ%g1%g2ᾱg)

− (%g1ρ
−1ᾱg + µ%g1%g2ᾱ

2
g) ≤ 0, (24b)

αg2 ≥ 0. (24c)

By using the fact that log2

(
1 + ρ%g2αg2

ρ%g2µ(ᾱg−αg2)+1

)
increases monotonically with αg2, the prob-

lem (24) can be reduced to the optimization of only αg2, as follows

min
αg2
− {αg2} (25a)

s.t. α2
g2(%g1%g2 − µ%g1%g2) + αg2(%g1ρ

−1 + %g2ρ
−1 + 2µ%g1%g2ᾱg)

− (%g1ρ
−1ᾱg + µ%g1%g2ᾱ

2
g) ≤ 0, (25b)

− αg2 ≤ 0, (25c)

The optimal solution for (25) is given in the following proposition.

Proposition III: The optimization problem in (25) is convex and, consequently, has a global

optimal solution, which is given in closed-form by

α∗g2 =


1

2(%g1%g2−µ%g1%g2)
[−(%g1ρ

−1 + %g2ρ
−1 + 2µ%g1%g2ᾱg)

+
√

(%g1ρ−1 + %g2ρ−1 + 2µ%g1%g2ᾱg)2 + 4%g1%g2(1− µ)(%g1ρ−1ᾱg + µ%g1%g2ᾱ2
g)
]
, if 0 ≤ µ < 1,

(%g1ρ
−1ᾱg + µ%g1%g2ᾱ

2
g)/(%g1ρ

−1 + %g2ρ
−1 + 2µ%g1%g2ᾱg), if µ = 1,

(26)

and

α∗g1 = ᾱg − α∗g2. (27)
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Proof: Please, see Appendix D. �

Note that the calculation of the solution above requires knowledge of the error propagation

factor µ and the effective channel gains %gk,∀g, k. Since the gains %gk are already needed at

the BS for enabling NOMA, they can be directly used in power allocation. On the other hand,

as clarified in Subsection III-A, µ can be estimated at the receiver’s side through long-term

measurements. Therefore, this scalar parameter can be fed back to the BS with little impact on

the feedback overhead, and the optimum power allocation in (26) and (27) can be computed.

B. Providing Fairness Among Sub-Groups

In the last subsection, we have developed a dynamic power allocation policy for providing

fairness to the users within each NOMA sub-group. However, users located at different sub-

groups can still experience different performance levels. This represents an unfair distribution

of resources since some groups can achieve high data rates while others can be almost in a

state of outage. In view of this, in this subsection, we develop a strategy for improving fairness

also among different sub-groups. For achieving this goal, we propose an iterative algorithm that

enables the BS to provide a fair power allocation for all users in all sub-groups within each

cluster so that all terminals can reach identical data rates. The basic idea is to, at each iteration,

transfer a certain amount of power, denoted by ∆α, from the best to the worst sub-group, and

to use the dynamic power allocation derived in the last subsection to iteratively rebalance each

user’s individual rate. This iterative solution is shown in Algorithm 1. As one can observe, in the

first stage of the algorithm, we calculate the users’ power allocation coefficients by using (26)

and (27) and compute the resulting sum-rate, Rg, for each sub-group. Then, in lines 7 and 8, the

indexes of sub-groups with the highest and lowest sum-rate are selected, which are represented

by ĝ and ǧ, respectively. After that, we calculate the amount of power ∆α that needs to be

reallocated from the group ĝ to the group ǧ. This process repeats until the sum-rate difference

between the best and worst sub-group reaches a value lower than a predefined threshold ε.

Observe that, since this iterative approach is computed based on the effective channel gains,

%gk,∀g, k, the BS will be required to execute Algorithm 1 at each coherence interval.

The value of ∆α is determined by the amount of power that is required to balance the data

rates of the strongest users from the best and worst sub-groups, in which, in this section, we

assume that µ = 0, i.e., SIC is carried out perfectly. ∆α is calculated in the following proposition.
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Algorithm 1: Iterative Algorithm for Fairness Among Sub-Groups
Input: ε, ρ, %g1, %g2.

1 Set the initial available power to ᾱg = 1,∀g;
2 do
3 for g = 1 to G do
4 Calculate α∗g2 and α∗g1 using (26) and (27), respectively;
5 Calculate the sub-group’s sum-rate by Rg = Rg1 +Rg2;
6 end
7 ĝ = argmax(Rg : ∀g ∈ {1, 2, · · · , G});
8 ǧ = argmin(Rg : ∀g ∈ {1, 2, · · · , G});
9 Calculate ∆α using (28);

10 Update ᾱĝ = ᾱĝ −∆α;
11 Update ᾱǧ = ᾱǧ + ∆α;
12 ε∗ = Rĝ −Rǧ;
13 while ε∗ > ε;

Proposition IV: The amount of power ∆α needed to balance the rates of the strongest users

from the sub-groups with the highest and lowest sum-rate, assuming perfect SIC7, is given by

∆α =
−A2 ±

√
A2

2 − 4A1A3

2A1

, (28)

where

A1 = 4%2
ǧ1%ǧ2ρ

−1 + 4K1, A2 = 2A1K3 + 16K2K1,

A3 = K2
3 − 4K2

%2
ǧ1

%2
ĝ1

(%ĝ1ρ
−1 + %ĝ2ρ

−1)2 − 16K2K1ᾱĝ,

and

K1 =
%2
ǧ1

%2
ĝ1

%2
ĝ1%ĝ2ρ

−1, K2 = (%ǧ1ρ
−1 + %ǧ2ρ

−1 − %ǧ1
%ĝ1

(%ĝ1ρ
−1 + %ĝ2ρ

−1))2,

K3 = (%ǧ1ρ
−1 + %ǧ2ρ

−1)2 + 4%2
ǧ1%ǧ2ρ

−1ᾱǧ −K2 −
%2
ǧ1

%2
ĝ1

(%ǧ1ρ
−1 + %ǧ2ρ

−1)2 − 4K1ᾱĝ.

Proof: Please, see Appendix E. �

C. Computational Complexity of Algorithm 1

In this subsection, we provide the worst-case computational complexity of the proposed power

allocation solution shown in Algorithm 1. As in [34], we consider summations, multiplications,

comparisons, and square-roots as the most relevant and time-consuming operations. The pro-

posed algorithm is iterative, and the number of iterations, denoted here by I , depends on the

7Due to the complicated expression in (26), obtaining a closed-form solution for ∆α considering imperfect SIC becomes a
very challenging task. Thus, a different approach for computing ∆α is necessary when µ 6= 0, but this is left for future works.
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predefined threshold ε. This shows a clear trade-off between the accuracy of the solutions and

the computational complexity. Between lines 3 and 6 of Algorithm 1, at each iteration, the power

allocation coefficients for strong and weak users are computed for each sub-group according to

equations (26) and (27) and, then, the sum-rate of each sub-group is calculated. Note that, in

(26), the variables %g1 , %g2 , µ and ρ do not change along the iterations. In fact, only the sub-

group’s power budget, ᾱ, changes. As a result, the number of summations, multiplications, and

square-root operations performed at each algorithm iteration are 6G, 8G, and G, respectively.

In line 5, we have G summations per iteration. In lines 7 and 8, we have the search for the

maximum and minimum sub-group’s data rate, respectively. Thereby, in each line, the algorithm

performs G − 1 comparisons. In the calculation of (28), in line 9, the number of summations,

multiplications, and square-root operations are 7, 8, and 1 per iteration, respectively. Lastly,

in lines from 10 to 12, we have 3 summations per iteration. To sum up, the total number of

operations for a given number of iterations, I , is 17IG + 17I . Consequently, we can conclude

that the worst-case computational complexity of Algorithm 1 is O (IG).

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we investigate the performance of the proposed massive MIMO-NOMA system

under the impact of imperfect SIC employing both fixed and dynamic power allocation policies.

We also present performance comparisons with conventional massive MIMO-OMA scheme,

whose implementation details can be found in [4]. We configure the BS with a uniform linear

array of M = 90 antennas, which is transmitting information to users that are distributed among

S = 4 spatial clusters, each one having a diameter of D = 50 m and an angular spread of

δ = 10°, which corresponds to a distance of L = D
2 tan(δ)

∼= 141 m from the BS to the center

of the cluster. In addition, we configure the direction of the antenna array to the cluster that is

being analyzed, i.e., the first cluster, which is located at the azimuth angle of ϕ = 7°, so that

the array gain is maximized. Within each cluster, if not stated otherwise, there are G = V = 2

NOMA sub-groups with K = 2 users each, and we focus on the first sub-group, which is located

at 115 m from the BS. The path-loss exponent is set to η = 2, and the array gain parameter to

Φ = 4 × 104. Moreover, when fixed power allocation is considered, the power coefficients of

users 1 and 2 are configured as α1 = 5/8 and α2 = 3/8, respectively. All provided simulation

results are generated by averaging extensive random channel realizations.
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Fig. 2: Impact of imperfect SIC on the users’ ergodic rates for different number of receive
antennas.

A. Fixed Power Allocation Results

In this subsection, the performance analysis derived in Section III is validated, in which, in all

figures, a perfect agreement between analytical and simulated curves can be visualized. Besides,

all results provided in this subsection are generated by employing a fixed power allocation policy.

Fig. 2 shows the ergodic rates in terms of transmit SNR for different levels of SIC error

propagation and various numbers of receive antennas. As one can notice, when perfect SIC is

considered, by increasing the number of receive antennas, the performance of the strong user

is improved for all considered SNR range. However, when there is some residual error from

imperfect SIC, the maximum achievable rate decreases as µ gets higher. For instance, for an

error factor of µ = 0.005, when ρ = 30dB and N = 2, the strong user’s rate reaches a limit

of 6.82 bits per channel use (BPCU), which represents a reduction of 4.4 BPCU if compared

with the perfect SIC case considering the same value of transmit SNR. When µ = 0.5, the

impact on the performance of the strong user is even more severe, where regardless of how

many antennas are employed, a rate of only 1.14 BPCU can be reached, which is lower than

that achievable by the weak user. This behavior is justified by the fact that when ρ → ∞, if

µ > 0, Rg2 → log2

(
1 + αg2

µαg1

)
. Therefore, if there is some residual SIC error and αg1 > 0, there

will be always a rate ceiling for the strong user, as anticipated in the Subsection III-D.

In Fig. 3, the ergodic sum-rate performance achieved with the proposed massive MIMO-

NOMA system is compared with conventional massive MIMO-OMA counterpart, in which

the impact of imperfect SIC is investigated. One can see that when the error factor is greater
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Fig. 3: Simulated ergodic sum-rate curves for massive MIMO-NOMA system with imperfect
SIC and conventional massive MIMO-OMA counterpart.

than zero, at some point the MIMO-OMA system outperforms the MIMO-NOMA design. This

behavior show us that employing NOMA is not always advantageous when SIC imperfection

is significant. For example, when µ = 0.005 and N = 2, from 16dB onward, the OMA sum-

rate performance becomes superior to that achieved by the NOMA scheme, which saturates at

8.33 BPCU. When µ = 0.1, either for N = 2 and N = 6, the MIMO-OMA system always

achieves higher performance than the massive MIMO-NOMA system, meaning that when error

propagation is high, the employment of OMA is always preferable.

Figs. 4 and 5 show the outage probability curves for different numbers of receive antennas,

target rates, and error propagation factors. In Fig. 4, by fixing the target rates of weak and strong

users at 1.4 BPCU, one can see that when the error factor gets higher than 0.36, with just a

tiny error increase, the performance of the strong user is severely degraded. In particular, when

N = 4 and µ is increased from 0.363 to 0.366, the outage probability of the strong user becomes

worse even than that achieved by the weak user employing N = 2 receive antennas for SNR

values lower than 36dB. This fast degradation happens because the maximum achievable rate of

the strong user shifts very close to its target data rate when µ reaches values above 0.36, i.e.,

Rg2 → log2

(
1 + αg2

0.36αg1

)
≈ 1.4 BPCU when ρ → ∞. As a result, from low to moderate SNR

ranges, the strong user will face an increased probability of achieving a throughput lower than

its target rate, which explains the observed behavior. In Fig. 5, we can observe the impact of SIC

error propagation for different sets of target rates. One can realize that for higher target values,

the outage probability performance becomes more sensible to imperfect SIC. For example, by
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setting the target rates of both users to 1 BPCU, when µ is increased from 0 to 0.5, the outage

curve of the strong user shifted only 6dB to the right. On the other hand, when T1 = 1.4 and

T2 = 2.8 BPCU, for an error factor of only µ = 0.1, the strong user requires approximately 12dB

more SNR to reach the same performance of that achieved when perfect SIC is considered.

B. Dynamic Power Allocation Results

Now, the dynamic power allocation policies achieved in Section IV are investigated. Fig. 6

demonstrates the effectiveness of the optimum solution obtained in Proposition III, in which
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Fig. 6: Ergodic rates for strong and weak users in massive MIMO-NOMA system with dynamic
and fixed power allocation policies (N = 2).

the ergodic rates of weak and strong users employing fixed and dynamic power allocation are

shown. One can see that, with fixed power allocation, the performance of the weak user is strongly

impacted, such that its ergodic rate reaches a very low limit for higher values of transmit SNR. In

contrast, the strong user experiences high data rates even when SIC error propagation is present.

This illustrates an unfair resource allocation. On the other hand, the dynamic policy provides

great benefits to the weak user, improving fairness within the sub-group. As one can observe,

the rates of the two users are balanced so that both achieve an acceptable performance. For

instance, for an SNR of 22dB when perfect SIC is considered, both users can reach a rate of

4.82 BPCU with dynamic power allocation, what represents an improvement of 3.43 BPCU to

the weak user if compared with that achieved with fixed policy of only 1.39 BPCU.

Considering perfect SIC, Fig. 7 brings the ergodic rate curves for various values of receive

antennas, exclusively for the weak user within the considered sub-group. As one can see, in the

fixed power allocation, regardless of how many receive antennas are employed or how much the

transmit SNR is improved, the achievable rate approaches a common limiting value. This does not

happen with the proposed dynamic allocation. As it can be observed, the performance continues

to increase even for higher SNR values. For example, considering a transmit SNR of 24dB and

N = 10 receive antennas, the dynamic allocation can achieve a rate of 6.92 BPCU, which is

almost 5 times greater than the achieved with the fixed policy. Fig. 8 compares the ergodic

sum-rate curves achieved in MIMO-NOMA and MIMO-OMA systems. One can realize that

dynamic allocation causes a slight decrease in the performance of the MIMO-NOMA scheme.
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Fig. 8: Ergodic sum-rate curves for massive MIMO-NOMA and MIMO-OMA systems with
dynamic and fixed power allocation policies (µ = 0).

This is because, in order to enhance fairness, the optimization problem in (22) decreases the

strong users’ rates, which impacts the system sum-rate. However, it is noteworthy that, for all

values of receive antennas, the performance achieved in the MIMO-NOMA system employing

dynamic power allocation can still outperform the conventional MIMO-OMA counterpart.

Fig. 9 demonstrates the benefits of the dynamic power allocation on the outage probability. It

is interesting to observe that, in addition to the fairness improvements, the outage performance of

both weak and strong users is remarkably improved. For instance, with N = 4 receive antennas,

when employing the dynamic policy, the strong user requires roughly 12dB less SNR to reach the
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Fig. 10: Ergodic rates for users in different sub-groups employing different power allocation
policies (d1 = 115m; d2 = 150m;N = 4;µ = 0).

same outage level of that achieved with fixed power allocation. The performance gains obtained

by the weak user with dynamic allocation are even more impressive, in which a remarkable gain

of 20dB can be achieved.

At last, by considering different power allocation protocols, Fig. 10 plots the ergodic rates

for users within two different sub-groups, one located at 115m and other at 150m from the BS.

It becomes clear that, even though the optimization problem in (22) is capable of providing

fairness to users within the same sub-group, users from other sub-groups can still experience

different performance levels, which, in some applications, might not be desirable. This figure also
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illustrates the performance of the iterative algorithm proposed in Section IV-B, which provides

fairness also among different sub-groups. We see that, when the referred algorithm is adopted,

the rates of users from the worst sub-group are improved at the cost of reducing the performance

of users from the best one. However, if we compare with fixed power allocation, Algorithm 1 is

very beneficial to the weak users independently of the group. For example, for an SNR of 24dB,

all users employing the iterative algorithm can reach a rate of 4.9 BPCU, which represents a

gain of 3.5 BPCU for all weak users when adopting the fixed policy.

VI. CONCLUSIONS

In this paper, by modeling residual error propagation from imperfect SIC, the performance

of a massive MIMO-NOMA network was investigated. In particular, the detailed design of

beamformers and detection matrices were presented, an in-depth analytical analysis was carried

out, and optimum power allocation for maximizing the rates of weak users within each sub-group

was derived. An iterative algorithm for providing fairness among different sub-groups was also

proposed. The simulation results demonstrated that the developed dynamic power allocation

provides remarkable fairness enhancements and, at the same time, enormous performance gains

in terms of outage probability. It also became evident that when SIC error propagation is present,

the employment of NOMA is not always advantageous.

APPENDIX A

PROOF OF LEMMA I

From (8), it is straightforward to see that the current kth user, 1 ≤ k ≤ 2, decodes the first

message, i.e., the message intended to the first user, with the following SINR

γ1
gk =

|√αg1xg1|2

|√αg2xg2|2 + |[H†gkngk]g|2
=

1

[H†gkH
†H
gk ]gg

αg1

1

[H†gkH
†H
gk ]gg

αg2 + σ2
n

. (A-1)

For convenience, let %gk = 1

[H†gkH
†H
gk ]gg

be the effective channel gain, and let ρ = 1/σ2
n represent

the transmit SNR. Given these definitions, (A-1) can be rewritten as

γ1
gk =

ρ%gkαg1
ρ%gkαg2 + 1

, for 1 ≤ k ≤ 2. (A-2)

Note that, since user 2 is the strongest one, it will decode its own message with some residual

interference, resulting in the following SINR

γ2
g2 =

ρ%g2αg2
ρ%g2µαg1 + 1

. (A-3)
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Then, for achieving a general SINR expression valid for both users, the following is defined

α?gi =

αg2, for i = 1,

µαg1, for i = k = 2.
(A-4)

Lastly, by combining (A-2), (A-3), and (A-4), the final SINR expression is obtained, as follows

γigk =
ρ%gkαgi

ρ%gkα?gi + 1
, for 1 ≤ i ≤ k ≤ 2, (A-5)

which completes the proof. �

APPENDIX B

PROOF OF PROPOSITION I

The outage probability expression in (15) can be rewritten as follows

Pgk = P

[
log2

(
1 +

ρ%gkαgi
ρ%gkα?gi + 1

)
< Tgi

]
= P

[
%gk <

2Tgi − 1

ρ(αgi − α?gi(2Tgi − 1))

]
, (B-1)

in which, for user 1 (the weak user), (B-1) can be simplified as

Pg1 = P

[
%g1 <

ρ−1(2Tg1 − 1)

αg1 − αg2(2Tg1 − 1)

]
= P

[
%g1 < ρ−1Lg1

]
, (B-2)

while, for user 2 (the strong user), (B-1) becomes

Pg2 = P

[
%g2 < ρ−1 max

{
2Tg1 − 1

αg1 − αg2(2Tg1 − 1)
,

2Tg2 − 1

αg2 − µαg1(2Tg2 − 1)

}]
= P

[
%g2 < ρ−1 max {Lg1,Lg2}

]
, (B-3)

in which, for simplicity, we have defined Lg1 = 2Tg1−1

αg1−αg2(2Tg1−1)
and Lg2 = 2Tg2−1

αg2−µαg1(2Tg2−1)
.

As one can observe, (B-2) and (B-3) are equivalent to the CDF of the effective channel gains

of users 1 and 2, respectively. Consequently, the outage probability expressions can be obtained

by integrating the PDFs in (13) and (14), in which, for user 1, it results in

Pg1 =
2βϑg
Γ(ϑ)

[∫ ρ−1Lg1

0

xϑ−1e−βgxdx−
∫ ρ−1Lg1

0

xϑ−1e−βgx
γ(ϑ, βgx)

Γ(ϑ)
dx

]

=


2γ(ϑ,ρ−1βgLg1)

Γ(ϑ)
−
[
γ(ϑ,ρ−1βgLg1)

Γ(ϑ)

]2

, if Lg1 ≥ 0,

1, otherwise,
(B-4)

while, for user 2, the following is obtained

Pg2 =


[
γ(ϑ,ρ−1βg max{Lg1,Lg2})

Γ(ϑ)

]2

, if min {Lg1,Lg2} ≥ 0,

1, otherwise,
(B-5)

which completes the proof. �
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APPENDIX C

PROOF OF PROPOSITION II

The ergodic rates for users 1 and 2, can be obtained by calculating the expected value of their

instantaneous rates. Then, firstly, let us rewrite the rate expression of user 1, in (18), as follows

Rg1 = log2

(
1 + ρ(αg1 + αg2)%g1

1 + ραg2%g1

)
= log2 (1 + κg1%g1)− log2 (1 + κ̃g1%g1) , (C-1)

and, for user 2, as

Rg2 = log2

(
1 + ρ(µαg1 + αg2)%g2

1 + ρµαg1%g2

)
= log2 (1 + κg2%g2)− log2 (1 + κ̃g2%g2) , (C-2)

in which, for notation convenience, it has been defined κg1 = ρ(αg1 + αg2), κ̃g1 = ραg2,

κg2 = ρ(µαg1 + αg2), and κ̃g2 = ρµαg1.

Given the expression in (C-1), the ergodic rate for user 1 can be expressed as

R̄g1 =

∫ ∞
0

log2 (1 + κg1x) f%g1(x)dx−
∫ ∞

0

log2 (1 + κ̃g1x) f%g1(x)dx = ξ1(κg1)− ξ1(κ̃g1).

(C-3)

Then, by invoking the PDF of %g1, provided in (13), ξ1(κ) can be calculated as follows

ξ1(κ) =
2βϑg
Γ(ϑ)

[∫ ∞
0

log2 (1 + κx)xϑ−1e−βgxdx−
∫ ∞

0

log2 (1 + κx)xϑ−1e−βgx
γ(ϑ, βgx)

Γ(ϑ)
dx

]
.

(C-4)

Next, by applying the series representation of the incomplete gamma function to the second

integral in (C-4), we obtain

ξ1(κ) =
ϑ−1∑
i=0

2βϑ+i
g

Γ(ϑ)i!

∫ ∞
0

log2 (1 + κx)xϑ+i−1e−2βgxdx. (C-5)

Lastly, after some algebraic manipulation and applying results from [26], we achieve the

desired solution, as follows

ξ1(κ) =



∑ϑ−1
i=0

1
2ϑ+i−1 ln(2)Γ(ϑ)i!

∑ϑ+i−1
m=0

(ϑ+i−1)!
(ϑ+i−m−1)!

[
(−1)ϑ+i−m−2(
κ

2βg

)ϑ+i−m−1 e
2βg
κ Ei

(
−2βg

κ

)
+
∑ϑ+i−m−1

n=1
(n−1)!(

− κ
2βg

)ϑ+i−m−n−1

]
, if ϑ > 1,

− 1
ln(2)

e
2βg
κ Ei

(
−2βg

κ

)
, if ϑ = 1.

Now, we focus on the second user, in which, from (C-2), its ergodic rate can be obtained as

R̄g2 =

∫ ∞
0

log2 (1 + κg2x) f%g2(x)dx−
∫ ∞

0

log2 (1 + κ̃g2x) f%g2(x)dx = ξ2(κg2)− ξ2(κ̃g2),

(C-6)
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where ξ2(κ) can be derived as

ξ2(κ) =
2βϑg

ln(2)Γ(ϑ)

∫ ∞
0

ln (1 + κx)xϑ−1e−βgxdx−
ϑ−1∑
i=0

2βϑ+i
g

ln(2)Γ(ϑ)i!

∫ ∞
0

ln (1 + κx)xϑ+i−1e−2βgxdx

=
2βϑg

ln(2)Γ(ϑ)

∫ ∞
0

ln (1 + κx)xϑ−1e−βgxdx− ξ1(κ). (C-7)

Finally, by doing some manipulations in (C-7), and also using results from [26], we obtain

the following solution

ξ2(κ) =



2
ln(2)

∑ϑ−1
m=0

1
(ϑ−m−1)!

[
(−1)ϑ−m−2(
κ
βg

)ϑ−m−1 e
βg
κ Ei

(
−βg

κ

)
+
∑ϑ−m−1

n=1
(n−1)!(

− κ
βg

)ϑ−m−n−1

]
− ξ1(κ), if ϑ > 1,

− 2
ln(2)

e
βg
κ Ei

(
−βg

κ

)
− ξ1(κ), if ϑ = 1,

which completes the proof. �

APPENDIX D

PROOF OF PROPOSITION III

Clearly, the objective function in (25a) is linear and the function on the left-hand-side of

constraint (25b) consists in a quadratic polynomial. As %gk ≥ 0, ∀ g, k, the constraint in (25b)

is convex. This makes (25) a convex optimization problem. Therefore, the KKT conditions are

necessary and sufficient to determine the global optimal solution of the considered problem [35].

The Lagrangian function of (25) can be written as

L(αg2, ω, ν) = −αg2 + ω[α2
g2(%g1%g2 − µ%g1%g2) + αg2(%g1ρ

−1 + %g2ρ
−1 + 2µ%g1%g2ᾱg)

− (%g1ρ
−1ᾱg + µ%g1%g2ᾱ

2
g)]− ναg2, (D-1)

where ω ≥ 0 and ν ≥ 0 are, respectively, the Lagrangian multipliers associated with the

constraints (25b) and (25c). The KKT conditions are summarized as follows

∇L(αg2, ω, ν) = 0, (D-2a)

ω[α2
g2(%g1%g2 − µ%g1%g2) + αg2(%g1ρ

−1 + %g2ρ
−1 + 2µ%g1%g2ᾱg)

− (%g1ρ
−1ᾱg + µ%g1%g2ᾱ

2
g)] = 0, (D-2b)

− ναg2 = 0. (D-2c)
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Assuming that αg2 > 0, from (D-2c) it can be concluded that ν = 0. Then, from (D-2a), the

value of ω is easily determined as follows

ω = (2αg2(%g1%g2 − µ%g1%g2) + %g1ρ
−1 + %g2ρ

−1 + 2µ%g1%g2ᾱg)
−1. (D-3)

Considering that the expression in (D-3) never reaches zero, and that 0 ≤ µ < 1, the solution

for (D-2b) can be obtained from the following quadratic equation

α2
g2(%g1%g2 − µ%g1%g2) + αg2(%g1ρ

−1 + %g2ρ
−1 + 2µ%g1%g2ᾱg)− (%g1ρ

−1ᾱg + µ%g1%g2ᾱ
2
g) = 0.

(D-4)

If µ = 1, (D-4) becomes the following linear equation

αg2(%g1ρ
−1 + %g2ρ

−1 + 2µ%g1%g2ᾱg)− (%g1ρ
−1ᾱg + µ%g1%g2ᾱ

2
g) = 0. (D-5)

Therefore, the optimal power allocation for user 2 can be obtained by calculating the zeros

of (D-4), if 0 ≤ µ < 1, or solving (D-5), if µ = 1, as follows

α∗g2 =


1

2(%g1%g2−µ%g1%g2)
[−(%g1ρ

−1 + %g2ρ
−1 + 2µ%g1%g2ᾱg)

+
√

(%g1ρ−1 + %g2ρ−1 + 2µ%g1%g2ᾱg)2 + 4%g1%g2(1− µ)(%g1ρ−1ᾱg + µ%g1%g2ᾱ2
g)
]
, if 0 ≤ µ < 1,

(%g1ρ
−1ᾱg + µ%g1%g2ᾱ

2
g)/(%g1ρ

−1 + %g2ρ
−1 + 2µ%g1%g2ᾱg), if µ = 1,

(D-6)

which completes the proof. �

APPENDIX E

PROOF OF PROPOSITION IV

The amount of power ∆α can be calculated by equalizing the rate expressions of the two

strongest users of interest, in which, by considering that µ = 0, the following is obtained

Rĝ2 = Rǧ2 =⇒ log2

(
1 + ρ%ĝ2α

∗
ĝ2

)
= log2

(
1 + ρ%ǧ2α

∗
ǧ2

)
=⇒ α∗ĝ2%ĝ2 = α∗ǧ2%ǧ2. (E-1)

Next, by replacing α∗ĝ2 and α∗ǧ2 by their corresponding closed-form expressions, (E-1) becomes

− 2%ǧ1%ĝ1ρ
−1 − 2%ǧ1%ĝ2ρ

−1 + 2%ǧ1

√
(%ĝ1ρ−1 + %ĝ2ρ−1)2 + 4%2

ĝ1%ĝ2ρ
−1(ᾱĝ −∆α)

= −2%ĝ1%ǧ1ρ
−1 − 2%ĝ1%ǧ2ρ

−1 + 2%ĝ1

√
(%ǧ1ρ−1 + %ǧ2ρ−1)2 + 4%2

ǧ1%ǧ2ρ
−1(ᾱǧ + ∆α). (E-2)

Then, after some algebraic manipulation, and defining K1 =
%2
ǧ1

%2
ĝ1
%2
ĝ1%ĝ2ρ

−1, K2 = (%ǧ1ρ
−1 +

%ǧ2ρ
−1− %ǧ1

%ĝ1
(%ĝ1ρ

−1 +%ĝ2ρ
−1))2, K3 = ((%ǧ1ρ

−1 +%ǧ2ρ
−1)2 +4%2

ǧ1%ǧ2ρ
−1ᾱǧ−K2−

%2
ǧ1

%2
ĝ1

(%ǧ1ρ
−1 +
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%ǧ2ρ
−1)2 − 4K1ᾱĝ), A1 = 4%2

ǧ1%ǧ2ρ
−1 + 4K1, A2 = 2A1K3 + 16K2K1, and A3 = (K2

3 −

4K2
%2
ǧ1

%2
ĝ1

(%ĝ1ρ
−1 + %ĝ2ρ

−1)2 − 16K2K1ᾱĝ), we achieve the following quadratic equation

A1∆2
α + A2∆α + A3 = 0. (E-3)

The final result is obtained by calculating the zeros of (E-3). This completes the proof. �
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