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1 Introduction
Continual innovation in hardware and software technologies, such as sensors,
displays, processors, storage memory, and algorithms, has been crucial in changing
the paradigm of computing devices. Mobile  computing  has  advanced  rapidly
over the past decade, and the components found in such computing devices are
becoming increasingly smaller while remaining extremely powerful. The emergence
of quantified-self technologies, including wearable devices, is one of the most
evident examples of this technological development.
Wearable devices can be defined as, “smart electronic devices available in various
forms; located near or on the human body to sense and analyze physiological and
psychological data such as feelings, movements, heart rate, blood pressure, and so
forth, via applications either installed on the device itself or on an external device
(i.e., smartphones that are connected to the cloud)” (p.2) [1]. According to Motti
and Caine [2], “since the first sensors were produced, the wearable device field
has evolved exponentially” and “is characterized by body-worn devices, such as
clothing and accessories” (p.1820). Humans use wearable devices in their daily
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activities to gather and assess a diverse range of data “from internal states (as
mood or glucose level in the blood) to performance values (as pace or kilometers
run), from habits (as food, sleep) to actions (as visited places)” (p.1) [3]. Lee et
al.  [4] note that in many applications areas (“i.e. areas of wellness, healthcare,
assistance for the visually impaired, disaster relief, and public safety” (p.15), the
development of wearable devices has contributed significantly to enhancing the
quality of daily life of both individuals and society as a whole. It is expected that in
the upcoming year, virtual reality (VR) headsets, such as Samsung VR, will be used
as an alternative to conventional televisions, and Microsoft HoloLens and similar
devices will enhance human vision. In addition, it is anticipated that smartwatches
and mobile devices will assist users with health monitoring, for example, by making
it possible for patients to monitor a bacterial infection or their glucose levels. In
particular, wearable devices are more and more being seen as integral to a future in
which users will control devices remotely via the Internet.
Despite the potential benefits of wearable device usage, numerous researchers
have generally recognized that wearable technologies are failing to inspire long-
term adoption [5–7]. For example, Lazar et al. [6] find that their participants
abandoned almost 80% of their purchased wearable devices within the first 2 months
because of deficiencies in usability. Another study by Endeavor Partners [7] reports
that many wearable device users abandoned their devices within 6 months of initial
usage because of poor experiences. Clawson et al. [5] indicate that individuals
abandoned their wearable devices because (i) they were too complicated to use;
(ii) they were too complex to learn; or (iii) they failed to help the users achieve
their goals. Although the principal objective of these wearable devices is to provide
the user with higher levels of ease and flexibility [8] in data acquisition without
any degree of intrusiveness [9], usability is seen as one of the more influential
factors associated with device abundancy. Furthermore, Piwek et al. [10] state that
“wearable devices don’t add functional value that is already expected from personal
technology of that type, and they require too much effort, which breaks the seamless
user experience” (p.3). Moreover, Motti and Caine [2] assert that “by focusing on the
feasibility of an individual approach, often usability and wearability are neglected”
(p.1821) on wearable devices. As asserted by Abbas [11], “The outcome of good
usability is a greater likelihood of user acceptance. User acceptance is often the
difference between a product’s success or failure in the marketplace” (p.1764).
Trivedi [12] also states, “The user is concentrating on the usability of the device.
Therefore, usability has become an important parameter today” (p.69).
The term “usability” is derived from ISO standard 9241-11, where usability is
described as the “extent to which a product can be used by specified users to achieve
specified goals with effectiveness, efficiency and satisfaction in a specified context
of use” [13]. Usability can also be construed as the value that users derive from
using the technology or device. Gafni [14] states, “Usability is one of the most
important characteristics when targeting systems to wide audiences that need to
operate an intuitive system without direct training and support” (p.755). However,
inappropriate design, lack of context-awareness will affect the usability while
interacting with devices and interrupt individual to accomplish their goals [15, 16].
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Therefore, usability parameters are extremely important to the success of wearable
devices because they enable users to derive the full benefits of the device without
requiring specific training or additional guidance [11, 12, 16, 17].
We argue that to improve the usability of wearable devices and increase their
long-term use, it is first necessary to identify and then understand  usability-
related issues, especially regarding in which wearable device categories previous
research has addressed these issues. Thus, the current study undertakes a systematic
literature review (SLR) that follows the method presented by Petersen et al. [18].
An SLR presents an opportunity to closely review the current state-of-the-art [19]
by synthesizing evidence to signify critical implications [20], identify unresolved
problems, discover research trends, and create a basis for novel intervention.
The present work seeks to identify, understand, evaluate, and synthesize usabil-
ity issues in the wearable device’s domain including which usability evaluation
methodology has been applied by the researchers. The time span considered begins
in 2000, when based on Google trends and Motti and Caine [2] report, wearable
devices were first introduced and marketed,1 and ends in January 2018.
The rest of the paper is organized as follows: Sect. 2 presents a brief synopsis
of the motivation and related work; Sect. 3 discusses how the research process was
carried out to provide definitive results for the research questions (RQs); Sect. 4
presents the findings and interprets the results; Sect. 5 discusses the significance of
the results and presents the limitations of the study; and Sect. 6 concludes the work
by restating the main points made in the study and indicating future areas of study.
2 Related Work
As the field of mobile technology has advanced, wearable sensors that collect
data from human activity have  emerged [21]. Because these wearable devices
are completely different from mobile devices in terms of their size, functionality,
user interaction, and platform, their integration into people’s daily lives poses a
variety of challenges [22]. Finding the right balance between attributes such as
“accessibility, usability, and wearability” [23] in wearable device remains difficult.
One of the difficulties stems from the unique interaction modalities of these devices
compared with other computing devices, especially in terms of the input-output
mechanisms, which require a new design approach [2]. Because wearable devices
are a comparatively new  field of study,  there are inadequate number of studies
that have reviewed and analyzed usability and its relation to different types of
wearable devices. For example, Motti and Caine [2] literature review identifies
wearability principles. The study considers device characteristics, that is, hardware
and software, arguing that 20 human-centered principles could help designers
1The history of wearable technology – Past, present and future. https://wtvox.com/featured-news/
history-of-wearable-technology-2/
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understand the design process and facilitate design with the focus on “users’
wishes, interests, and requirements.” The study concludes that even though these
principles could overcome some obstacles, helping designers focus more on design
than human factors when developing novel wearables, trade-offs such as technical
and ergonomics requirements still require careful analysis. Similarly, Dhawale and
Wellington [24] use an ethnographic study to identify the usability characteristics of
activity monitoring devices and how these characteristics encourage the prolonged
use of such devices. They focus on identifying the usability issues of these particular
monitoring devices versus a larger sample with multiple wearable devices. The
study identifies six key usability characteristics that play a vital role for device users:
“display size of the screen, weight of the device, battery life, multitasking, social
engagement, and ease of use.” Other authors, for example, Jiang et al. [25] reviewed
how and why wearable devices are developed and why they have gained popularity
in recent years. Their work includes a consideration of the classification standards of
wearable devices, focusing mainly on software-related device characteristics issues.
The study concludes that even though wearable devices have gained momentum in
recent years, they are still at an immature stage of development. The authors claim,
“Hardware materials and battery life still has not had a breakthrough: limited screen
space makes the product design difficult, and application software is still in an initial
stage” (p.597).
One observation from these studies is that wearable devices are available in
various form factors (size, shape, style, etc.) and that these various form factors
and the environments the wearables are used within can affect usability, which in
turn impacts on the user acceptance and engagement. Another observation from
prior research suggests that previous studies have examined wearable devices and
identified usability issues such as screen size, battery life, connection, software and
are scattered across the literature, and there are relatively no studies that focus on
review and analyze usability and its relation to which types of wearable devices and
thus, a need to fill this research gap. Therefore, this chapter aims to fill this research
gap by presenting an in-depth, formal, and inclusive review. To present a holistic
overview of studies on usability issues related to wearable devices, the present study
builds a categorization scheme to identify various types of usability issues and how
they have been identified in previous studies.
3 Methods
Based on the guidelines provided by Kitchenham and Charters [26], Engström and
Runeson [27], and Petersen et al. [18], an SLR approach was adopted and applied
for the current study; these guidelines describe a streamlined SLR approach that
researchers follow to gather the necessary data from a pool of scientific literature and
how to evaluate and categorize the data in an unbiased way based on the relevancy
of the formulated research problem (Kitchenham and Charters [26]). Steiger et al.
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[19] assert that “conducting a systematic literature review is an efficient way to
select the best available research and facilitates research approaches by identifying
current existing research gaps and study limitations” (p.21).
The main advantage of an SLR approach is that it provides information about the
effects of a phenomenon across a wide range of settings and empirical methods with
the possibility to combine data using meta-analytic techniques [28]. The adopted
process consists of the following phases:
• Define the research questions (RQs), based on research goals and objectives.
• Develop a review protocol that specifies the search, selection, data extraction, and
synthesis strategies [29].
• Conduct a scientific literature search to identify the primary  literature  by
using generated search strings on electronic databases that consists of articles
from conference proceedings, and journal publications. Search string generation
sometimes requires an iterative approach before suitable search terms and values
can be found.
• Screen the preliminary set of identified literature by utilizing inclusion and
exclusion criteria (i.e., find the papers that fulfill the objectives given by the
research questions, etc.).
• Categorize the selected literature based on the set of keywords which is crucial
in identifying relevant primary studies [1].
• Present the results in a visual form (i.e., in graphs, tables, or other informative
graphical representations).
Petersen et al. [18] recommend that researchers doing SLRs should use alter-
native ways to present and visualize their results. Following the advice and based
on extracted data from the selected articles, the current SLR presents the results in
graphs, tables, and figures.
3.1 Research Questions
Tosi and Morasca [29] state that “defining research questions is an essential part
of the SLR, as they drive  the entire review  methodology” (p.19). The current
SLR identifies usability-related issues and user interface-related issues in wearable
devices, investigating how these issues were discovered. Petticrew and Roberts [30]
and Kitchenham et al. [31] both suggest using the population, intervention/issue,
comparison, and outcome (PICO) framework to formulate the SLR research ques-
tion. The PICO framework defines research questions by providing the criteria for
defining keywords, structuring the final search string, and formulating the inclusion
and exclusion criteria. The overall principles of PICO are applicable to any search
strategy; however, some PICO elements can be discarded depending on the nature of
the research. In the current study, the aims do not include comparing issues related to
wearable devices; instead, the focus is on discovering the pertinent issues. Because a
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comparison is beyond the scope of the current work, this element was thus omitted.
Hence, the following four research questions (RQs) were formulated:
RQ1: To date, what categories of usability issues related to wearable devices have
been discussed in the past, and which issues relating to wearables still persist and
need further investigation?
Rationale: Defines the basis of the SLR, allows us to identify, evaluate, and
categorize the range of usability issues and get an overview of the usability issues
through a categorization framework (i.e., the issues that have been presented and
discussed, along with their implications). The results that answer RQ1 will enable
the researchers, practitioners, and application developers to understand and obtain a
more holistic overview on which issues currently exist, what caused those issues to
appear in the first place, and which issues are associated with which type of wearable
device categories. The sub-question of RQ1 provides detailed information on the
challenges that still remain and the improvements required to alleviate them, serving
as a basis for future research directions. Previous studies indicate that usability as
factor that influences abandonment of the devices of the wearable devices; this
paper identifies and presents a categorization framework that allows researchers,
practitioners, and application developers to understand and obtain a more holistic
overview on which usability issues are associated with which type of wearable
device categories that act as the barriers to user adoption, facilitating the adoption
of wearable device.
RQ2: How have usability evaluation methods (UEMs) been applied to wearable
device evaluation and in which device categories?
Rationale: Identifies the range of the most commonly used UEMs and  their
subsets to obtain an overview  on which UEMs have  been employed to evaluate
the categories of wearable devices. The result obtained from RQ2 will enable
researchers, practitioners, and application developers to understand and make
decisions while selecting the UEM for a particular type of device evaluation.
3.2 Search Design and Process
The primary studies used in the current paper were identified using search strings on
scientific digital databases. In addition, a manual search was done through relevant
conference proceedings and journal publications, which is explained in detail below.
The automated search process was conducted on the following digital databases:
“IEEE Digital Library,” “ACM Digital Library,” “Springer Link,” “Science Direct,”
and “others: Google Scholar,” These databases were selected because they are the
preeminent sources of published research in the engineering field. The aim was to
find as many notable publications that discuss usability issues related to   wearable
A Comprehensive Framework of Usability Issues Related to the Wearable Devices 27
Acquire the main keywords
from the research questions
based on PICO
(Population, Issue, Context,
and Outcome) criteria.
Identify the synonyms and
acronyms or
alternative words.
Connect all the discovered
synonyms and acronyms or
alternative words using
the Boolean OR/AND
Connect all the major terms
to form the final search string
using the Boolean operators
AND/OR, the other relevant
terms
Ӓ
Ӓ Ӓ
Ӓ Ӓ
Phase 1 Phase 2 Phase 3 Phase 4
Fig. 1 Search string formulation process
devices as possible. Figure 1 shows the four phases of search string formulation
process presented by [1].
In Phase 1, the main keywords relating to the research questions (see Sect. 3.1)
were acquired using Population, Intervention, Comparison, and Outcome (PICO)
criteria2 (i.e., “wearable device” and (“usability issue”). Kitchenham et al. [31]
recommend the use of keywords from the comparison and outcome criteria when
formulating the search string; this was not carried out in the current work because
it is only a common procedure in the field of medical science. Kitchenham et al.
[31]  and Petersen  et  al.  [18] also note that using keywords from the comparison
and outcome criteria is not always applicable. In the present case, the use of
a comparison was discarded when the research questions were formulated, and
the outcome was not taken into account because the current study does not aim
to measure effects. In Phase 2, the identification of synonyms and acronyms or
alternative words took place. One of the constraints when formulating a search
string is that the resulting set should have the maximum possible coverage but
should remain at a manageable size. Therefore, several synonyms (“wearable
devices,” “wearable computing,” and “wearable technology ”) were used. In Phase
3, Boolean “OR” was applied to merge all the discovered synonyms and acronyms
or alternative words [1]. Lastly, in Phase 4, Boolean operator “AND” was applied to
connect all the keywords and to formulate the final search string for relevant articles
published after the year 2000 as (“wearable ” or “wearable device ” or “wearable
computing” or “wearable technology ”) AND (““usability issue ” or “usability”)
AND (“publication year >2000”).
In January 2018, an initial search was conducted utilizing the formulated search
string and the search utility of the selected digital databases. The final set of searches
was performed in February 2018. Additional search was also performed using online
web search engine “Google Scholar” to find if any further relevant articles exist and
“cross-check the final sets of retrieved papers to determine the relevance of each
paper” [2].
2PICO Criteria: http://learntech.physiol.ox.ac.uk/cochrane_tutorial/cochlibd0e84.php
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N=3271 N=350 N=84
3.3 Article Selection Process
The article selection process in the current study is defined as a process of extracting
the relevant publications with respect to the objective of the SLR based on inclusion
criteria (IC) and exclusion criteria (EC). Hence, in this context, the subsequent set
of IC and EC were formulated and applied to select the relevant publications:
• IC1: Publication is dated between 1/1/2000 and 02/2018.
• IC2: It comprises answers to at least one of the presented research questions,
which was determined by reading the title and abstracts.
• IC3: Publication is written in English.
• IC4: If various similar papers are outlined by the same author, only the most
current publication is used.
• EC1: Publication lies outside the wearable devices domain.
• EC2: The publication does not cover the usability-related topic within the
domains of wearable devices.
• EC3: Technical documentation or reports.
Based on the above ICs and ECs, the article selection process was conducted in
four individual phases, as shown in Fig. 2. During Phase 1, an automated search was
performed using search strings to identify potential studies. This preliminary search
yielded 3271 papers.
In Phase 2, the articles (title, keywords, and abstract) obtained in Phase 1 were
reviewed, and the ICs and ECs were applied to select the articles for the next
phase of the process. As a result, 350 articles were selected, and 3271 articles were
excluded. In Phase 3, a review of the full text of the selected original articles from the
previous phase was conducted to determine the articles’ relevance and whether the
articles should be included for further analysis. Finally, 84 articles were considered
suitable, while 266 were excluded because they were not relevant to the RQs, had
too little in the way of content, or were not in English (i.e., the abstract, keywords,
and title were in English, but the body of the article was in another language). Thus,
84 articles were identified as relevant primary studies for data extraction. Of the
84 studies reviewed, 34 were published in the ACM digital library and rest on the
other electronic databases (i.e., Springer, Science Direct, IEEE, BioMed Central,
Hindawi, Taylor and Francis, Journal of Medical Internet Research, and Journal of
Computer-Mediated Communication), respectively.
Fig. 2 Article selection process for choosing relevant primary studies
Literature search
(Databases: IEEE, ACM,
Springer, Science Direct,
others)
Search String
Exclusion based
on title, keywords,
abstractPhase 1 Phase 2 Phase 3
Exclusion based
on full text
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3.4 Data Extraction and Synthesis
Because the results presented in the current paper are based on the qualitative
assessment of the previous literature, the process of data extraction and synthesis
is described below. According to Welsh [32], in a qualitative data analysis, to avoid
human errors and when organizing the data, “it is important that researchers do
not reify either electronic or manual methods and instead combine the best features
of each” (p.5). Following this recommendation, both computer-based and manual
analysis techniques were applied. Furthermore, the approach applied for the data
extraction and synthesis process consisted of six phases.
In the first phase, all the relevant articles were exported to the NVivo data analysis
tool (version 11) [33] for data analysis from the Mendeley reference management
tool [34]. NVivo data analysis tool was applied because it allows for sophisticated
data coding and helps map out diagrammatically how the themes relate to each
other [32, 35]. After the final set of relevant articles were transferred to NVivo, the
initial nodes were created on NVivo based on the main themes: usability issues;
usability evaluation method; target group; wearable device categories; wearing
position; geographical locations; application domain; and age group. Further nodes
were created under the usability evaluation method based on the taxonomy of Ivory
and Hearst [36], that is, the method class, method type, automation type, and effort
level.
In the second phase, each relevant article was read, and important sections of the
text were coded. During the coding process, either phrases, paragraphs, or single
words were highlighted and added with links to the initial nodes (i.e., themes) from
Phase 1. For example, text from one study that was coded and added within the
“usability issues” node could be as follows: “all of them experienced automatic loss
of synchronization, making it difficult or impossible to update data or resulting in
an incorrect report” [37] (p.8).
To improve accuracy, printed copies of articles were read, and themes were
highlighted. Coded data from the NVivo and the highlighted data from the printed
copied were compared to see if patterns remained the same on the computer-
based and manual method. Some data were missing when analyzed with NVivo.
Those data that were missing were added to NVivo. Following this, a node list was
generated for debriefing to other researchers. According to Impellizzeri and Bizzini
[38], “Data extraction must be accurate and unbiased and therefore, to reduce
possible errors, it should be performed by at least two reviewers” (p.499). Based on
this recommendation, in the third phase, the initial data sets were reviewed by two
members of the research team to confirm that the intended meaning was accurate and
appropriate for further analysis. Furthermore, there were no disagreements between
the initial datasets.
Because the main goal of the current study is to identify, evaluate, and categorize
(i) the usability issues related to wearable devices and (ii) the types of usability
evaluation methods that have been discussed in the literature, after the final
agreement, in the fourth phase, data related within the node to usability issues
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and the usability evaluation method were further coded. Nowell et al. [39] note,
“Sections of text can be coded in as many different themes as they fit, being
uncoded, coded once, or coded as many times as deemed relevant by the researcher”
(p.6). For example, for text from one study, “preliminary graphical icons was
cumbersome because the icons often . . . represent” (p.1125) [40] were coded under
theme iconography because it described the usability issues related to the icons.
For the manual approach, each text was coded on a printed list of usability issues
that were identified in Phase 2, and a theme was given to each identified usability
issue. The final sets of data were exported to excel. Data on excel and Nvivo were
compared, showing that some themes on Nvivo were missing during the coding of
the primary studies. To obtain the agreement among raters and assess intra-rater
reliability, we applied Cohen’s kappa, in which two raters separately rate the data.
The final percent agreement was 0.976, which we can interpret as almost perfect
agreement based on Cohen’s suggestion that “values 0 as indicating no agreement
and 0.01 – 0.20 as none to slight, 0.21 – 0.40 as fair, 0.41 – 0.60 as moderate,
0.61 – 0.80 as substantial, and 0.81 – 1.00 as almost perfect agreement”(p.6) [41].
A total of 14 data fields were created, which included the following data for each
primary source included in the study: study ID (S1, S2, . . . ), title of the paper,
citation, year of publication(s), research focus, type of publication, name of the
database where the publication was retrieved from. The data that were relevant to
what was obtained through the coding process were exported in excel for further
analysis and include the following: usability issues (if applicable), wearable device
categories (if applicable), wearing position (if applicable), usability evaluation
method (UEM) (if applicable), geographical locations (if applicable), application
domain (if applicable), and age group. Extracted data were recorded into data fields
and are described in more detail online (https://doi.org/10.5281/zenodo.1476457).
4 Results
This section presents the results that were consolidated from the final set of 84
articles (see Appendix A) based on the RQs formulated in Sect. 3.1. The results are
presented in the form of graphs, tables with analysis based on the recommendation
by  Petersen  et  al.  [18].  As  shown  in  Fig. 3, out of 84 articles, 59 were from
conferences (70.23%), and the rest were from journals (29.76%). One reason for
this may be because the wearable topic has picked up momentum recently, and
conferences have a shorter time to publish when compared with an article. However,
the increase in the number of publications shows that the field is becoming more
important and that people are paying attention to these issues, which is in line
with [42], where they claim, “The significant number of papers in conferences and
journals is an indicator that the concept has started to get consolidated” (p.51).
Additionally, the study led to the identification of 19 types of wearable devices
utilized in the research articles. The identified devices and how they are distributed
are shown in Fig. 4. Most of the studies were carried out utilizing smartwatches,
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Fig. 3 Descriptive statistics of the publications, age group, and domains of the selected papers
activity tracker/monitor, and wristbands, which are followed by head-mounted
displays (HMD) with a binocular configuration (worn over both eyes), either
opaque or transparent, for example, virtual reality and smart glasses with AR,
and head-mounted displays (HMD) with a monocular configuration (worn over
one eye) that is transparent, for example, smart glasses. We speculate that using
both commercially off-the-shelf and prototype devices in the selected studies is the
reason for having numerous types of wearable device categories.
Additionally, as displayed in Appendix, these identified devices are worn on
the wrist (44/84), head (20/84), chest (4/84), finger (3/84), knee (1/84), and the
remaining on other parts of the body, such as arms, neck, waist, or feet. The current
trend of wearables is mostly wrist-worn and head-worn; however, other body-worn
devices are gaining momentum.
In the following section, we discuss how each research question was answered.
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Smart watch
Activity tracker/monitor
Wristband
Smart clothing
Head-mounted display (HMD) with monocular configuration
Head-mounted display (HMD) with binocular  configuration
Smart bracelet
Chest-mounted devices
Smart Headphones
Arm band
Smart shoe
Smart ring
Smart knee support
Head-worn terminal/body motion monitor
Wearable tele-echography robot
Inertial sensor pack
Smart headband
Smart jewelry
Smart wig
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Fig. 4 Categories of wearable technology used in the study
4.1 RQ1: To Date, What Categories of Usability Issues Related
to Wearable Devices Have Been Discussed in the Past,
and Which Issues Relating to Wearables Still Persist
and Need Further Investigation?
The overall aim of this research question was to identify, evaluate, and categorize
the set of usability issues related to wearable technologies that have been discussed
prior to 2018. The analysis of the primary studies prompted the identification of
20 different types of usability issues related to wearable devices.  An example
of each in relation to the type of wearable device category is shown in Table
1. As shown in Table 1, most of the identified usability issues are related to
smartwatches (15/20), wristbands (12/20), activity trackers/monitors (18/20), head-
mounted displays (HMD) with a binocular (worn over both eyes), either opaque or
transparent (15/20), and head-mounted displays (HMD) with a monocular (worn
over  one eye eyes), transparent (14/20). Therefore, we believe the issues related
to the devices need immediate attention because these are the most available
devices on the market. Similarly, Table 1 also shows that out of the 20 usability
issues, screen size, aesthetics (physical design, material, and color), interaction
techniques (auditory, visual, gesture, and haptic feedback), wearing position, and
motion artifacts were the most reported.
Based on [16, 43], the identified issues in Table 1 were further condensed into
device characteristics (see Sect. 4.1.1) and the deployment of wearable devices on
the body and external devices (see Sect. 4.1.2).
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Smart knee support X X X
Chest-mounted devices X X X
Head-mounted display (HMD) with binocular configuration
(worn over both eye) opaque or transparent, for example,
virtual reality, smart glasses with AR
X X X X X X X X X X X X X X X
Head-mounted display (HMD) with monocular
configuration (worn over one eye) transparent, for example,
smart glass
X X X X X X X X X X X X X X
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Device Characteristics
Ally and Gardiner [43] specify that smart mobile computing device characteristics
can be classified mainly by two components: physical and user interface aspects.
Specifically, the physical component concerns product aesthetics that relate to the
external look and feel and internal components, such as sensors, processor, memory,
power supply, and transceiver [43, 44]. Lee et al. [4] define the user interface as the
way in which users interact with devices while managing their interactions with
other machines and the people who are connected to the device.
The categorization resulted in 15 issues related to the device characteristics (out
of which 20 were related to the user interface and four to the device’s physical
aspects). We further clustered the user interface issues based on the user interface
fundamentals explained by Dennis et al. [45], who state that “the user interface
includes three fundamental parts: the output mechanism (the way in which the
system provides the user with information), the input mechanism (the way in
which the system captures the information), and the navigation mechanism (the
way in which the user gives instructions to the system)” (p.314). The input and
navigation mechanisms are combined in the current work because both mechanisms
relate to receiving the instructions and system capturing from the user. Nine issues
regarding the input and navigation mechanisms were found, and five issues related
to the output mechanism were discovered. Moreover, two issues were found to
be associated with both the Output mechanism, input and navigation mechanism
aspects of the device. A summary of mapped usability issues associated with the
device characteristics is shown in Table2.
Each of the usability issues relating to device characteristics (both user interface
and physical) are discussed below to clarify how they impacted the use of wearables
among individuals.
Screen size: Considering that most, if not all, other computing devices have
screens, wearables are an oddity in that many of them do not  have  screens.
Devices with screens play a vital role in providing better user-device interaction
and increase user engagement while delivering content such as quantified-self data,
online manuals, and training tools with augmenting devices [24, 46]. Dhawale and
Wellington [24] find that screen size was significantly important for participants
because “it makes the user interaction with the device easier, smoother and more
engaging” (p.41). However, to deliver the wearability, portability, and fashionable
characteristics required [47], wearables are designed with very limited display
size and shape. For example, head-mounted devices are designed with limited
display and shape, and the visual field is only a small central region (23 degrees)
[48]. Having such a limited display size and shape restricts the input, output, and
navigation capabilities of the devices. Wichrowski et al. [49] use head-mounted
display (HMD) with monocular (worn over one eye) configuration for example,
Google  Glass  as  a  wearable  device  and  find  that  “screen  size  is  too  small  to
convey a fairly substantial amount of information” (p.4). Similarly, Kim [50] find
that screen size and shape affects the information quality and inhibits the content-
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Table  2 Summary of the mapped usability and user interface issues associated with wearable
devices related to device characteristics (table representations)
Usability issues
categories
Usability issues
subcategories Fundamental
Associated usability
issues
Device
characteristics
User interface Output
mechanism
Screen size
Screen display
Lack of screen
Color contrast
Interaction techniques (visual, auditor,
and haptic feedback)
Input and
navigation
mechanism
Screen size
Interaction techniques (gesture,
auditory)
Button location
Device vontext (text, time, and
visualization)
Navigation
Iconography
Elements (text/button)
Interaction with the application
Color contrast
Physical External look
and feel
Aesthetics (physical design, material,
color)
Weight
Internal
component
Battery
Memory size
relevant thoughts among users. For example, Kim [50] report, “The large screens
inhibited participants from generating thoughts about the specific contents of the
given information, such that the messages presented on the large screens elicited
fewer content-relevant thoughts than the messages presented on the small screens”
(p.131). Moreover, having a small screen size not only limits devices to delivering
information, but it also reduces the usability while interacting with the devices and
the individuals’ intended goals while performing certain tasks, such as reading the
messages, navigating within the application, and typing messages. For example,
Pulli et al. [51] note the issue of display size: “The display size was too small
for easy reading” (p.1125). This can increase the number of user errors, affect
efficiency, and alter the individual’s decision to continue using the device for a
longer period of time [24,52].
Screen display: The screen display is one of the more influential factors that
causes usability issues among individual’s interactions with the device because of
the display’s size, position, or shape [49, 53], technology, such as small prismatic
crystal [49], or configuration, such as monocular (i.e., worn over one eye) and
transparent or binocular (i.e., worn over  both eyes) and transparent [54–56].    For
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example, Delabrida et al. [54] report that the lenses of head-mounted wearables with
an opaque binocular display configuration increased the smartphone screen resolu-
tion, leading to higher image resolution and a usability issue among participants.
Similarly, Laramee and Ware [56] find that wearable devices with a transparent
monocular display configuration negatively impacted the task performance, such as
reading and viewing against anything other than uniform background. In addition,
McGill  et  al.  [57] report that participants found the opaque view quite disruptive
while using HMD devices. Kaewkannate and Kim [37] find that for participants, it
was difficult to see the text in sunlight using the current wearable displays.
Lack of screen: To explore new possibilities when it comes to making devices
lighter, many device manufacturers have physically discarded the screen; only
sensors are used to track the users’ daily activities, such as sleep and physical
activity, and the data are presented through external devices, such as a smartphone
or computer. This state-of-the-art technique has the advantage of utilizing a non-
visual user interface (UI) in terms of (i) wearability, for example, being light weight;
and (ii) in reducing issues with remembering individuals, for example, charging
devices [58]; however, the study identifies that having a non-visual interface brings
additional usability challenges. For example, Kaewkannate and Kim [37] find that
there are issues related to interaction with the devices (i.e., the device does not
respond while tapping its surface); needing to use the apps on external devices to
view the information; and data inaccuracy because of the synchronization between
the external devices and the wearable.
Color contrast: Color contrast assists individuals in viewing and interacting with
content; it consists of elements (i.e., color, text, and graphics) in a dark and bright-
light environment. However, the current review indicates that (i) poor color contrast
between the background of the user interface and the color of the text affect
readability [59] and (ii) visual cues with a higher color contrast have less reaction
time among participants [60]. For instance, in the study by Holzinger et al. [59],
a participant commented: “Dark grey text? On a light grey background, it is very
difficult to read” (p.4). Similarly, Costanza et al. [60] find that when visual cues with
a bright color contrast were delivered on the eyewear display of the user, the reaction
time was quicker than when there were visual clues with a dim contrast. Wichrowski
et  al.  [49] also state, “All personal graphic elements must meet the requirements
of usability. For example: too detailed graphic elements or too many colors can
interfere with readability and may not be visible on Google Glass. Therefore, it is
necessary to create graphics from a limited number of elements and colors” (p.3).
Interaction technique: Jacob [61] state, “An interaction technique is a way of
using a physical input/output device to perform a generic task in a human–computer
dialogue and represents an abstraction of some common class of interactive tasks,
for example, choosing one of several objects shown on a display screen. Research
in this area studies the primitive elements of human–computer dialogues, which
apply across a wide variety of individual applications” (p.1). Many of the review
papers reveal that wearable devices, from smartwatches to the HMDs, provide many
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different ways of interaction through several in- and output modalities, including
auditory [62], visual [63], haptic feedback (i.e., tactile, kinesthetic) [64], and gesture
(i.e., touch, head) [65–68], to enhance the user experience.
Although these interaction techniques have bought new opportunities when it
comes to improving the user experience within the interaction domain, the current
study shows that it also opens up usability challenges. For example, Kaewkannate
and Kim [37] find kinesthetic feedback that relates to force feedback sensed from
muscles, joints, and nerves when the user receives output from the device, such
as vibrations caused irritation among users during evaluation. One of the causes
was because of excessive vibration before the device went into sleep mode. In
addition, both Lazar et al. [6] and Zhang and Rau [69] report concerns from
participants regarding receiving active feedback, that is, notifications from devices
while performing a task. For example, participants commented, “I don’t want to
receive messages when I am doing the exercise” [69].
Regarding the touch gesture, studies report the reasons why users encountered
problems while interacting with the device’s surface. For instance, the studies note
that maintaining touch [70] and touch sensitivity on the device [71, 72], which
require frequent tapping on the device surface [68], were some challenges users
encountered with tapping. In addition, Pulli et al. [51] analyze tap detection, finding
that when users selected a too low detection threshold on the device, they suffered
slight pain in their finger. Other studies show that there may be additional challenges
related to tapping. For instance, Wichrowski et al. [49] find some participants
reported swipe gestures caused challenges because of the placement of the device,
for example, “for many students it was not natural to use swipe gestures close to the
head” (p.9).
In line with the above challenges, studies indicate that poor speech recognition
[49, 62, 63] by the device and needing silence for speech input [62] were the main
challenges users discovered while conducting auditory interactions. For example,
Neto  et  al.  [62] report that users experienced difficulties while interacting with
the device when starting the gear face recognition (GFR) system through speech
synthesis. Similarly, Lawo et al. [63] find that using voice as the interaction
technique was difficult for participants with an accent. Wichrowski et al. [49] also
observe that Google Glass sometimes incorrectly interpreted voice commands.
Button location: The button acts as the meditator between the user and wearable
devices, in this case being the item responsible for triggering actions. A user can
touch the button either to give instructions or navigate the content within the device.
The location of the buttons on both the hardware or on the screen of the wearable
devices can affect users’ actions and may lead to serious mistakes. Rasche et al.
[73] point out, “The activity tracker just had one button to interact with. Participants
reported this interaction design to be difficult and annoying. They had problems
feeling the button under the silicon tracker display wristband. The navigation of the
activity worked by pushing the button. For example, it was necessary to press the
button twice to get the actual time, which was reported to be annoying” (p.1414). Ye
et al. [74] also “observed participants feeling along the far side of the wrist to  find
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the top edge of the “Select” button or along the near side to find the bottom edge
of the ‘Home’ button” (p.7). Holzinger et al. [59] assess the behavioral intention
and user acceptance of a wrist device. They find that the manual alarm button of
the device they study “tended to stick, requiring more pressure to activate than was
compatible with an elderly person in need of help” (p.4).
Device context (text, time, and visualization): The literature review indicates
that issues surrounding the context of the device were influenced by the text, time,
graphics, and visualizations during the interactions with wearables. For example,
Altenhoff et al.  [75] observe that participants had issues using devices when they
realized that there was no option to input decimal amounts (e.g., 10.5 ounces of
water). Rasche et al. [73] find that participants would substitute their wrist watch
if the trackers permanently displayed the time of day. Ananthanarayan et al. [76]
observe that participants found circular LED displays were harder to count and
calculate. Device with the Knee-shaped visualizations received a mixed response.
The non-linear display was found to be complicated and aesthetically unpleasing
among participants.
Navigation: The literature review shows that navigation allows users to easily
access the information using (i) touch technologies, such as analog resistive and
capacitive, through swipe and tap to navigate within the user interface; (ii) a control
button on the side to navigate within the user interface; and (iii) capacitive touchpads
with or without light-emitting diode (LED) patterns in conjunction with external
devices [37, 75, 77, 78]. However, at the same time, small screen sizes, gesture,
buttons, or the lack of a screen, and the limits of user usage behavior [79] (i.e.,
keep their eyes locked on the device while conducting interactions) impact the
efficiency and usability, which includes swiping, difficulties locating settings, menus
or icons, and unintentional interruptions during interactions. For example, Thorpe
et  al.  [80] find that participants had difficulties “to know when to stop swiping
through the menu on wristwatch” (p.300). Altenhoff et al. [75] discover that several
of the Jawbone Up participants had trouble locating and understanding the alarm.
Furthermore, one participant was confused about the “smart sleep” setting: “ . . . .
but is that before or after?” (p.243). Wulf et al. [81] observe that “initiating the
speech interaction by pressing the physical button sometimes led to the problem
that the participants forgot to push the button and started speaking without the
system listening to them . . . nor could receive the user’s command . . . Moreover,
the interaction was sometimes interrupted unintentionally by pressing the activation
button again so that the previous conversation and dialogue was erased and the
system got restarted” (p.204). In addition, Kaewkannate and Kim [37] show that
it is difficult to navigate simultaneously on an app installed on external devices and
one installed on wearable devices.
Iconography: The results from the previous studies [51, 75, 80] indicate that an
icon allows users to (i) launch an application on devices and (ii) navigate within a
user interface to locate functionalities. However, at the same time, the studies on
this point out that unintuitive application icons or a poor presentation of the  icons
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on without a text label on an application has a negative  impact on the usability.
For example, Thorpe et al. [80] show that it was difficult for participants to find
a functionality based on the icon’s name application on a device user interface.
Similarly, Pulli et al. [51] find graphical icons without a label give users more
problems when it comes to recognizing their clear association with the function
behind the icons in a first-time interaction with the application, for example, a
“mobile phone” icon was confused with a “door icon” [51] (p.1125).
Elements (font/button): The results show that the form factor of the devices, such
as smaller font size, made it harder for participants to read the devices’ screens. For
example, Holzinger et al. [59] report that participants wanted to adjust the size of
the text when they were not wearing their glasses. Wichrowski et al. [49] also show
the suggestions they received about using larger fonts for better readability.
Interaction with the application: According to Carter [82], the usability chal-
lenges associated with interactions with the application developed because of too
many steps that the user had to go through, which deterred the user from completing
the task. Other than issues caused by too many steps, Altenhoff et al. [75] note issues
that were influenced by the data provided by the wearable device, which affected
the users’ first experiences with the application; they further explain that users’ first
impressions of the application may have lasting effects on user engagement.
Battery life: All wearable devices require higher processing power to accumulate
and process data through multiple sensors. In addition, the devices consist of smaller
battery sizes that are bottlenecked by the wearable device’s shape, weight, and size
[23]. In addition, the devices are either integrated with a display or require external
devices with Bluetooth connectivity to show processed data. This results in higher
battery consumption and limited battery lifetime. Ahanathapillai et al. [83] state
that the “hardware used . . . is limited in battery life and offers between 5 and 8
hours when used continually . . . [this] is recognized as a significant limitation of the
hardware” (p.28). Similarly, Sultan [84] points out, “Battery life need to be longer
than what is currently available” (p.525). Yang et al. [85] find that an issue with
battery life is interrupting data collection, and as a result, devices showed lower
quantified-self data, for example, number of steps. Shih et al. [58] and Koskimäki
et  al.  [86] note that issues related to battery life required the user to partake in
an additional behavior, such as remembering to charge the device and putting the
device on after recharging. For example, Shih et al. [58] state how one participant
stated, “It was quite annoying for me remember to wear the device and also to
charge it every day” (p.6). Similarly, Thorpe et al. [80] find a higher consumption
of battery life impacted older users with dementia because of their challenges in
locating the charging port and inserting the cable. In another study,  Albrecht et
al.  [87] find the battery life of smart glasses drained quicker than other devices,
such as camera, which was used in parallel during the experiment. They point to
the concern of human battery interactions (HBI) [88]. For example, “In medical
settings, a cable running down from Glass to an external battery pack may raise
concerns with respect to hygiene as well as add potential for Glass to be pulled
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off the user’s nose if something (e.g., a fastener on the physician’s surgical gown)
inadvertently pulled on this cable” (p.11).
Weight: Although the main aim of wearable devices is to provide users with
wearability and portability, the current literature review identifies “weight” as one
of the influential usability issues for individuals. Furthermore, the results indicate
that the impact of the weight of the devices increased the feeling of attachment
among individuals which relates to discomfort [89]. It has also been shown that
weight influences device usage. For example, participants in the study of Dhawale
and Wellington [24] stated, “Smartwatches to be distracting and bit heavy after a
long day of using it” (p.42). Further, Spagnolli et al. [90] assess user acceptance of
wearable symbiotic devices and emphasize “ . . . lighter and more discrete wearable
devices are better appreciated compared to bulkier and more noticeable ones” (p.96)
for individuals.
Memory size: The amount of memory required in wearable devices increases
when the device runs a more memory-intense operating system, more applications,
and performs heavy tasks (i.e., fetching and parsing data from a cloud or external
devices and background apps). Less memory means limitations on the type of
applications and tasks that can be performed. According to Oakley et al. [91],
when designing applications for low-end devices with slow central processing units
(CPU), manufacturers and content providers should consider utilizing comparative
textual feedback because these devices may not be able to smoothly process image
or video information. Delabrida et al. [54] state that memory events represent the
main bottleneck in their experiments.
Aesthetics: Wearable devices that are worn outside the body are considered high-
tech devices and fashion accessories [47]. The current literature review identifies,
irrespective of age, that this dual consideration impacted usability, which is mainly
influenced by aesthetic elements, that is, physical design, color, and materials of the
wearable devices during human–wearable interaction. For example, both Rodríguez
et al. [71] and Ananthanarayan et al. [76] find that the physical design of the device
caused difficulties for participants when attaching the devices to their bodies. Ju
and Spasojevic [92] also uncover that the design played an important role for the
acceptance of smart jewelry. Similarly, Shih et al. [58] show participants felt the
device was cumbersome and intrusive when worn during their daily activities. Ye et
al. [74] show how participants also suggested changes with the design, for example,
being easily customizable, after using the prototype wearable device. The wearable
device’s size ultimately determined the degree of daily use. Goto et al. [93] show
how participants stated that the size of the watch was one of the constraints that
affected its usability; the problem was that the size of the device was inconvenient
for users to wear in their daily activities. In agreement with Goto et al. [93], Kondo
et al. [94] find that the device size was too large for the participants to use. In other
study, Nirjon et al. [95] note how the participants commented that the size of the
used wearable ring was larger than a typical ring, making it uncomfortable for all-
day wear.
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In addition, Abbate et al. [96] show that the shape of the wearable device
impacted the usability among participants, here mainly because of the bulkiness
and shape of the devices during sleep, which initially made it almost impossible to
carry out sleep tests. Abbate et al. [96] state that when they repeatedly modified
the device and moved the battery/transmitter, elderly users enjoyed wearing the
wearable caps at night. Further, Abbate et al. [96] also suggest that ergonomic
and aesthetic modifications would be necessary for improving the level of usability
and acceptability, especially in an elderly user population: “ . . . the elderly are
attached to a specific aesthetic dress code, characteristic of their likes/dislikes . . .
[they] prefer simple, loose, and comfortable dress, and therefore, the focus should
be on a retro style” (p.6). Abbate et al. [96] also find that providing devices in the
participants’ favorite colors made the wearable devices more acceptable.
Moreover, the current literature review shows that the material and color used
on the devices also impacted usability. For example, the wearable devices utilized
by [86] for early detection of migraine attacks caused skin irritation among the
participants. Similarly, Rodríguez et al. [71] discovers that materials and color
applied on the device also impacted usability. In their study, participants suggested
the use of different colors or plastic material on the devices. Rapp and Cena [4] find
that the color of the tracking devices made it difficult for participants to integrate
the device into their daily lives. For example, participants pointed out, “A light blue
bracelet could fit with a casual dress for going out with friends, but not with a night
dress for formal situations, where she liked more unnoticeable colors” (p.142). In
addition, Brun et al. [65] state, “due to the chosen material, the utility stretch straps
were judged too small not big enough for some heads, or it could stick with long
hair” (p.7), which caused the participants discomfort.
Deployment of Wearable Devices and External Devices
Liu et al. [16] classify each technology by its location on the body. According to
Liu et al. [16], “Technology can be on the body (such as wearables), inside the body
(such as implants), and carried next to the body (smart phones)” (p.2). Employing
a similar classification approach, the issues noted when reviewing the papers were
clustered into categories related to the deployment of wearable devices on the body
and the corresponding categories: external devices that are carried next to the body
(e.g., smartphones). The results of the classification summary are shown in Table 3.
Table  3 Summary of the mapped usability and user interface issues associated with wearable
devices related to external devices and deployment of wearable devices on the body (Table
representations)
Usability issues categories Usability issues subcategories
External devices and deployment of
wearable devices on the body
Wearing position, motion artifacts, data accuracy, device
connectivity, applications installed on external devices
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Each of the usability issues related to the deployment of wearable devices,
including external devices, are discussed below to clarify how they impacted the
use rate.
Wearing position: Wearable devices are either worn on the outside of the body in
the form of a watch or on the inner part of the body as an implant. Although the goal
of the wearable device is to provide better wearability when the device is worn on
different parts of the body, Fang and Chang [97] show that the wearing position of
wearable devices impacts individuals’ interests, anxiety, visibility, and readability.
Similarly, Rodríguez et al. [71] report that when device was worn on the waist
during experiment, readability was low. In addition, other studies emphasize that
performing a task could be impacted by the wearing position. For example, Carter
et al. [82] note how it was difficult for participants to interact with an application to
type with the watch hand and difficult to lift the arm to view the screen. Additionally,
Chen et al. [79] say that although individuals had accurate results from their physical
activity while using wearable devices, such as pedometers and accelerometers,
when the devices were worn on the waist, they had difficulties during toileting and
dressing. Zhang and Rau [69] also report that many participants could not see the
content on the watch clearly when jogging because of body vibration and distortion.
Moreover, Nirjon et al. [95] state that when using a wearable ring, placing the fingers
and palm flat on a surface impacted the user while typing.
In addition, there are usability issues from the wearing position that are caused
by a halo-effect between the individual and device characteristics. For example, in
the study by Rodríguez et al. [71], participants indicated that where the device was
positioned on the waist did not adjust to meet heavier body types: “I am bigger
and fat” (p.8). Mizuno and Kume [98] observe a similar pattern while evaluating a
glasses-like wearable nasal skin temperature measurement device: “For some test
subjects, differences in the distance from the thermopile sensors attached to the
glasses and the nose or forehead caused by head or face shape variations prevented
appropriate measurements” (p.730). Similarly, Yoo et al. [99] note that devices such
as a watch or a wristband, which can be worn on the wrist or waist (e.g., abdominal
binder), are more easily accommodated than a head-worn device. For example, they
state “the head is hardly suitable for patients because they don’t frequently wear
even a hat” (p.364).
Motion artifacts: To recognize users’ activities while at a state of rest or in motion,
wearable devices are embedded with a network of sensors; here, designers make the
assumption that the device is worn in the predetermined orientation position relative
to the individual’s body [100]. However, the predetermined position may gradually
change because of an incorrect wearing position or wrong body movements while at
a state of rest or in motion. Although motion artifacts do not have a direct impact on
the individual, the current study shows that motion artifacts have a usability effect
through the quality of data delivered, that is, through inaccurate data. For example,
Ahanathapillai et al. [83] measure the parameters from an accelerometer on the wrist
as an indicator of wrist movements. The results show that the measurement changed
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from medium to high with lots of wrist movement, rather than a recording of low
activity data. Moreover, Ahanathapillai et al. [83] also report the presence of motion
artifacts because of the movement of the fingertip of the subject, which, in this case,
may have produced inaccurate heart rate measurements. Similarly, Klingeberg and
Schilling [101] also find arm movements caused distortion on pressure signals. In
other study, Chen et al. [79] report that the number of steps captured by wrist-worn
devices was more than the participants actually walked, stating that this may have
been “because that the wearable device used in this study took into account the arm
movements. Therefore, it is unclear how much counts come from walking” (p.37).
Data accuracy: Wearable devices capture and provide digital data, such as
quantified-self, image, location, audio, and video with the help of embedded sensors
and camera. Those data are either used by individuals to monitor their activities
or track their health conditions for their well-being or for entertainment purpose.
However, the literature review shows that usability is disrupted by a deluge of
inaccurate data caused by (i) motion artifacts; (ii) device connectivity; and (iii)
physical conditions. For example, in the study of Liang et al. [102], the participants
reported wrist-worn devices were shown to be “asleep” while “reading,” causing
“issue of trust” among users. Altenhoff et al. [75] observe that participants had
problems trusting sleep data after the first night a device failed to accurately report
the time they fell asleep. In the same study, one participant was surprised when
upon first syncing the band and app, the app displayed about 80 steps before she
had taken any actual steps, which she then commented on the third day, “I feel like
I would just use it when working out to figure out what I’d actually done and for
sleep but not walking because it’s not accurate” (p.244). One participant in a study
by Kaewkannate and Kim [37] responded, “the display to check the tracking status
requires a smart-phone. Sometimes, data are inaccurate because of lost syncing to
the smartphone” (p.8). Masai et al. [103] report that sensor data were saturated
when the sensors were exposed to ambient light, that is, sunlight, which caused a
smart eye wearable to deliver incorrect data of the wearer’s facial expression.
Device connectivity: Most wearable devices do not include a built-in  global
system for mobile communications (GSM) or a global positioning system (GPS)
module; they often pair with external devices such as smartphones or a computer
using Bluetooth or Wi-Fi to exchange data and deliver relevant information.
However, the results from the review show that the initial pairing between devices
is either difficult, or when paired, the connectivity is unreliable. For example,
Wichrowski et al. [49] study Google Glass and had problems pairing the wearable
with smartphone devices via a Bluetooth connection. According to Wulf et al. [81],
a steady and reliable Internet connection could substantially increase the usability
for speech-only interactions for wearable systems; this unreliable connectivity
resulted in inaccurate data. Similarly, Kaewkannate and Kim [37] report that the
automatic loss of synchronization between wearable and external devices made
it difficult to update data or resulted in inaccurate data. This demand for a
connection impacted the usability of users. Moreover, Thorpe et al. [80] observe
that the Bluetooth connection between the wearable and external device   dropped
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unexpectedly, requiring participants to reset the wearable device. Further, Rasche et
al.  [73] observe that even though the necessary graphical interface was integrated
into the app, the installed application on external devices demanded a Bluetooth
connection, which was difficult to handle for most participants.
Application installed on an external device: The literature review shows that
because of technological and design challenges, the wearable devices used in the
previous study mostly work in parallel with mobile devices. For example, when
a certain action is performed on wearable devices, such as fitness tracking, the
reaction is displayed on an application installed on a mobile device. However,
the current analysis shows that having to use applications installed on external
devices imposes higher mental effort and stress for users because of concerns related
to interruption, installation, and actions that must be performed. For example,
Ananthanarayan et al. [76] find that with smartphones as the external device,
participants were concerned about being interrupted by texts and phone calls, losing
focus, and having to prop up the phone for a better viewing angle. Rasche et al. [73]
observe that participants needed to maintain a higher mental effort to install the app
on external devices and get the activity tracker to work. Rapp and Cena [22] show
that one participant became stressed about the action she had to perform to view the
data, for example, “take out the phone, open the app, and explore the graphs and
numbers, which she termed ‘a laborious task’” (p.141). In another study made by
Dhawale and Wellington [24], participants indicated concern regarding having an
application on the external devices and viewing this application while performing a
physical activity because of what the participants perceived as risk associated with
the device screen getting damaged. In addition to this, Kaewkannate and Kim [37]
evaluate wearable devices with an application installed on the external devices, and
they emphasize the usability concerns related to interacting with the application that
is installed on external devices, for example, difficulty with using the food log and
calorie tracking tool in the user interface (UI) of the application.
In summary, following Ally and Gardiner [43]  and  Liu  et  al.  [16], the cat-
egorization resulted in 18 issues related to the device characteristics, including
shared issues between UI fundamentals, three issues related to the deployment of
wearable devices on the body, and three issues related to external devices, in which
data accuracy is added separately to each category. Although all categories were
important, analysis shows that issues associated with the deployment on the body,
external devices, and physical (i.e. aesthetics) have the most influences on user
interaction.
Combining the identified usability issues, it is useful to understand and assess
the relationship between the usability issues related to the device characteristics,
deployment of the wearables on the body, and the use of external devices; to do
this, the constructed categorization framework is given in Fig. 5, which combines
a total of 20 usability issues and gives the holistic view of overall usability issues
that currently exist in all type of wearable devices. Furthermore, the categorization
framework clearly shows that some of the usability issues related to the   wearable
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Input and Navigation Mechanism:
the way the device captures the information and how user provides
instructions to the device and tells it what to do
Fig. 5 Usability issues categorization framework based on the reviewed paper
devices share common themes across other categories (Fig. 5). For example, both
device connectivity and deployment share the cause of data inaccuracy.
However, the categorization framework does not show which type of issues
categories and subcategories is related to what type of wearable device. Therefore,
the categorization framework was further reviewed in relation to the wearable
device categories presented in Table 1. Table 4 provides the overview  of each
type of wearable device category, usability issues categories, and subcategories and
associated usability issues.
4.2 Q2: How Have Usability Evaluation Methods (UEMs)
Been Applied to Wearable Device Evaluation and in which
Device Categories?
This section summarizes which evaluation methods have been applied to identify the
issues discussed in Sect. 4.1. To answer the first part of RQ2, the methods reported
in the primary studies were analyzed and grouped into a taxonomy, as proposed by
Device
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Applications EXTERNALDEVICES Usability DEPLOYMENT Motion Artifacts
Data Accuracy Data Accuracy
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Table 4 Summary of the usability issues based on the categorization framework in Fig. 5
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External devices Data accuracy X X X
Applications X X X X X X
Device connectivity X X X X X
Deployment Data accuracy X X X X
Motion artifacts X X X X X X X
Wearing position X X X X X X X X X X X X X
Device  characteristics  Physical ExternalLook and feel Aesthetics (physical design, material, color) X X X X X X X X X X X X X
InternalComponent Weight X
X X
X
X
X
X
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X
XBattery X
Memory size X
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User Interface Input and navigation mechanism Iconography X X X X
Color contrast X
Screen size X
Device context (text, time/visualization) X X X X X X X X
Navigation X X X X
Elements (text/button) X X X X
Button location X X X X
Interaction with the application X X X X X X
Interaction techniques (gesture/auditory) X X X X X
Output mechanism Interaction techniques (visual, auditory, haptic feedback) X X X X X X X X
Color contrast X X X
Lack of screen X
Screen display X X X X X
Screen size X X X X X
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Ivory and Hearst [36]. Accordingly, the UEMs can be grouped into four dimensions,
as follows:
Method class: This comprises the method, such as usability testing and simulation,
and is entirely conducted at a high level. This usability evaluation method can be
further classified into the following five classes [36]:
• Testing: With the intent of finding the usability issues, an evaluator watches user
while they are using the evaluated applications/devices.
• Inspection: An evaluator creates and utilizes a set of evaluation guidelines or
heuristics to assess the possible usability issues related to applications/devices.
• Inquiry: The extent to which users share their usability experiences with the
evaluators regarding the evaluated applications/devices via methods such as
interviews or surveys is examined.
• Analytical modeling: This is the degree to which an evaluator predicts the
usability issues of the evaluated applications through modeling tools.
• Simulation: This is the extent to which an evaluator discovers the usability issues
by deploying simulation tools of the applications as if the user is interacting in
reality.
Of these five method classes, “testing, inspection, and inquiry are suitable for
both formative evaluation” [36] (i.e., the evaluator identifies specific usability
problems that are already known before conducting the evaluation) and summative
evaluation (i.e., the evaluator obtains general evaluations of usability) purposes,
where there are “analytical modeling and simulation” are appropriate for the
performance evaluation of users.
Method type: This represents how the usability evaluation (UE) is performed
under the method class and with a range of UEMs, such as performance measure-
ment and think-aloud.
Automation type: This represents the use of highly automated techniques for the
UE in which a software tool is utilized to simulate the user’s action in capturing
the data, for example, the software tool automatically records the usability data by
logging the user interface usage [36], analyzing it (i.e., the software installed on the
devices automatically records usability issues), and critiquing it (i.e., the software
installed on the devices analyze the usability issues and suggest improvements).
Effort level: This is the level of human effort required while executing the UEM
dimension (method class and method type). The effort level can be (i) minimal
effort (MF) (i.e., does not require interface usage); (ii) formal use (F) (i.e.,
requires completion of specifically selected task); (iii) informal use (IF) (requires
the completion of a freely chosen task); or (iv) model development (requires the
evaluator to develop the UI model to employ the method) [36].
Table 5, which represents the answers to the second part of RQ2, contains
wearable categories, usability evaluation method type (UEMT), usability evaluation
method class (UEMC), automation type, and effort level. As shown in Table 5, a
Table 5 Studies reporting the use of each evaluation method
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Inquiry Interview N F, IF x x x x x x x x
Questionnaire N IF x x x x x x x x x x x
Diary N IF x x x
Survey (pre-post) N F x x x x x x x
Observation N F x x x x x
Self-reporting logs C F x x
User feedback N IF x x
Focus group x x x x x
Testing Think aloud protocol N IF x x
Log file analysis N, C M, F x x x x x x x x x
Performance measurement N, C IF, F x x x x x x x x
Question-asking protocol N IF x
Inspection Feature N x x
Perspective based N x
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review of the 84 studies revealed that 78 studies did include a UE. In the studies, 14
different method types were applied to understand the usability of the 19 types of
wearable device categories. Regarding the automation type, three studies apply the
application to record the usability data (C), and others do this using an evaluator with
either freely chosen task or specific selected task without any level of automation
supported (N). The literature review indicates that the studies have adopted effort
level (i.e., formal use, and informal use, model use). To gain an overview of how the
UEM type was conducted within a method class, the obtained method types were
grouped based on five method classes. After grouping, three method classes were
identified: inquiry, inspection, and testing. However, the results show that none of
the studies applied analytical modeling.
More specifically, we can see from Table 5 that out of 14 obtained evaluation
method types, 41 studies adopt multiple evaluation methods to gather multiple
sources of data to get a better overview of wearable devices from the users’ perspec-
tive. In most of the studies, the interview UEM type was applied during usability
evaluation sessions. For example, Altenhoff et al. [75] apply multiple evaluation
methods, including think-aloud, post-survey, and interviews (i.e., unstructured), to
evaluate two different activity trackers and their associated applications. The think-
aloud protocol allowed participants to speak and perform the task by, for example,
setting up an activity tracker device and its associated application, allowing the
evaluator to collect data such as time-on-task and average error. To gather the overall
experience of the device usage, and eliminate the issues of reactivity, participant’s
verbal abilities, and validity [104], researchers further apply additional usability
methods, such as a through post-survey and interview.
Additionally,  Rasche  et  al.  [73] evaluate the usability of the activity trackers
by utilizing DIN ISO 20282-2 and applying the think-aloud protocol. Because
the think-aloud protocol itself cannot grasp the mental effort of the participants,
the researchers adopt the Rating Scale of Mental Effort (RSME) unidimensional
instrument. Moreover, Rasche et al. [73] use interviews and different questionnaires;
first, the Post Study System Usability Questionnaire (PSSUQ) is used at different
times to understand the participants’ attitudes about the product and changes in
perceived usability [105]; the MeCue questionnaire is also used “to evaluate the
perceived aesthetics of the activity tracker, the stigmatization of using it, the wearing
position, and the intention of usage” (p.1412); a technical affinity questionnaire
is used to understand if technical affinity changes during the process of getting
used to the application by participants. In summary, having different questionnaires
allowed the researchers to gather data from different angles and understand the
participants’ attitudes toward usability, requirements, motivation, mental effort, and
technical affinity of activity tracker. Additionally, Fang and Chang [97] use a pre-
test questionnaire to finalize the contents of the formal questionnaires.
On the other hand, the current study also identifies that the type of experimental
tasks and period of use of devices also influences how users perceive the hedonic
and pragmatic values of the evaluated devices or user interfaces [50]. In the reviewed
papers, the researchers who adopted longitudinal usability testing with informal
use collect more data to understand what effect the adoption of the device or  user
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interface has. For example, Shih et al. [58] gather the logs of the usage data from
activity trackers, collecting the usage pattern and issues of remembering, physical
design and aesthetics, data management, integration and sharing, and data accuracy.
Lazar et al. [6] discuss the advantages of conducting a long-term usability evaluation
with a freely chosen task and selected device while conducting the interviews later,
here stating, “By allowing participants to choose devices and then interviewing them
several months later, we were able to see the ways people integrated devices into
their lives or abandoned them and the factors for doing so” (p.644).
Apart from the adoption of multiple usability evaluation approaches, not all the
usability evaluation method types are suited for individuals with impairments. For
example, Kashimoto et al. [106] apply the Wizard of Oz method with unstructured
interviews during the iterative usability test for the development of a smart glass
prototype. During the evaluation, Kashimoto et al. [106] find it was difficult for
older adults with dementia to stay in a stationary position for a long time, focus,
and accomplish the navigational task, which resulted in the researchers gathering
unsatisfactory data for further analysis. However, the qualitative data were gathered
through interviews. All the methods are also not suitable for participants with a
minimal education level. For example, Sin et al. [107] apply four usability constructs
that is, ease of use, efficiency, effectiveness, and user satisfaction, to evaluate their
prototype. While collecting the data to measure the system’s usability through a
system usability scale (SUS), the researchers find the participant’s had a lack of
formal education, and as a result, all the questions had to be read by “the researcher,
and they only were asked to point their answer on a graphical Likert scale” (p.124).
5 Findings and Recommendations
In addition to usability issues, the current study revealed additional findings,
especially regarding the (i) social-technical aspects, (ii) effect of usability, and (iii)
individual preferences of wearables. For example, the study conducted by Bower
and Sturman [108] finds that participants were concerned about the privacy of
people taking their photos and recording videos of them. Although, an interaction
technique facilitates the user experience, similarly, Ye et al. [74] show that the
interaction technique also brings social-technical challenges. For example, in their
study, participants had difficulties using speech as the interaction techniques in a
public environment because of privacy concerns. Similarly, in the study of Wulf et
al.  [81], some of the older adults were concerned about using speech interaction
in public and felt uncomfortable doing so. We also found that a barrier, such as a
design flaw on the physical design of the device or implementation bug on the user
interface, causes frustration, fatigue among individuals with impairments at faster
rate than with individuals without impairments [62]. Similarly, in another study
conducted by Wulf et al.  [81], the emotions of the users’ reactions changed when
the speech interaction did not function properly. Angelini et al. [109] also find that
older adults have different preferences of the devices, stating, “The medical feature
54 J. Khakurel et al.
should not emerge in the product and should be presented as an accessory feature,
which, however, will be appreciated by their relatives” (p.431). Similarly, Ye et al.
[74] show that the aesthetics aspect of the device is relatively important for visually
impaired participants.
Although we provided a comprehensive overview of the usability issues through
a categorization framework and category summary (see Table 4), the literature
review shows that these identified issues are still unsolved and need immediate
attention from technology designers, researchers, and application developers. In this
section, we discuss some of the obstacles, including design; individual preferences;
device usage; and data, that are causing the identified usability issues and have
been discussed and need further investigation. Furthermore, these challenges still
persist because some aspects of the characteristics of wearable devices, such as
the wearing position, do not satisfy an individual’s daily hedonic or utilitarian
(practical) needs, affecting their emotions, personal taste, self-expressive dimension
(social and altruistic value), aesthetic, and functionally related values [110–112].
The SLR shows that background of wearable devices is becoming increasingly
heterogeneous because of the rapid rise of (i) several categories of wearable devices,
such as smartwatches, pedometers, implants, and HMDs and (ii) an embracing of
the culture for monitoring, tracking, delivering, augmenting, and assisting purposes
in both one’s personal and work environment [1]. In addition, one of the insights
gained from the SLR is that the usability issues surrounding the user interface,
product aesthetics which can degrade user performance and user dissatisfaction
[113], are related to the attributes of the user’s characteristics, such as age and
the user’s background [74, 114]. Designing the user interface (i.e., visual interface
and non-visual wearable interface) and the product aesthetics for wearability,
accessibility, and readability which fulfills attributes of user’s characteristics poses
trade-off challenges to both device manufacturer and the application developers.
Although many researchers try to offset these issues through with user-centric
design approaches [67, 80] or by applying universal design principles and guidelines
[15, 23, 115, 116], challenges still persist. Gandy et al. [15] state, “making devices
that all individual can access at all times isn’t always possible” (p.19). For example,
we believe that these challenges persist because the design guidelines are usually
created based on the individual’s characteristics, such as age and disability, without
looking at the individual’s daily different use contexts and the device form factors.
Kim et al. [117] state that, “Different usability problems are experienced more often
according to different use contexts” (p.9). Because wearable devices can be utilized
in various use contexts within the work environment and home and because they
have versatile input systems in various form factors, including smart clothing, ring,
necklace, wristband, and on the body [118], it is critical for research community to
find ways to overcome future challenges.
Although one of the major goals of wearables that depend on sensors is to
mediate the experience of reality between the individual and data and develop an
intimate relationship between them [119], when either one or multiple wearables
are connected to a single hub, that is, an external device, and the information is
delivered using a single user interface on the external devices, a challenge   arises
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regarding the data quality standard (i.e., availability, usability, reliability, relevance,
and presentation quality) [120]. For example, the SLR reveals that the data quality
standard is obstructed by suboptimal app crashes; poor synchronization of data
because of a lack of connectivity; and motion artifacts. Looking closer at this
challenge, the impact of data quality will have a significant implication for user
experiences [121], more negative and arousing subjective feelings of excessive self-
monitoring, a false sense of security, or may fuel a self-driven misdiagnosis [10] that
can demoralize users’ emotions, ability, and motivation, impacting the success of the
applications. For example, Fogg [122] asserts that for behavior to happen, a person
must have sufficient motivation, sufficient ability, and an effective trigger. Similarly,
Zadra and Clore [123] point out that emotions can routinely alter the perceptions of
individuals, here stating, “positive moods encourage one to maintain one’s current
way of looking at things, and that negative moods encourage a change” (p.10). To
improve the quality of the data from the app, utilizing the early prediction approach
for application crashes presented by Xia et al. [121], which is based on a naive Bayes
model, before releasing the apps to the individuals should be considered. Similarly,
the research community and technology designers should consider looking for
techniques to improve the usability challenges regarding the poor synchronization of
the data. One way is to use future complementary wireless networking techniques,
such as “light fidelity (Li-Fi)” or “data through illumination  (D-light),” which
both provide additional free and vast wireless capacity, along with the ability to
enhance the spectrum efficiency of existing radio frequency (RF) networks [124].
Although Li-Fi requires light to pass through the device, this technique could be
implemented in wearable devices such as smartwatches and pedometers, which have
a user interface and could easily interact with the light for data transmission, hence
improving communication, speed, flexibility, and usability [125]. Similarly, another
way to improve the quality of the quantified data is by reducing the impact of the
time discrepancies in the data itself, which usually occur during the data fusion from
multiple wearable devices converging with the external devices. Here, either model
presented  by  Xu  et  al.  [126] can be applied: a single-modal normal distribution
(SMND) model for devices in which the data are generated with static frequency,
for example, heart rate data, or a multi-modal normal distribution (MMND) model
for devices in which data are generated with a dynamic frequency, for example,
the step data collected by a smartwatch. Although we discussed improving the data
by reducing the time discrepancies and using complementary wireless technology,
looking closer, the main issue still remains when it comes to motion artifacts because
of predetermined and orientation positioning relative to the individual’s body [100],
sources of nuisance, such as measurement noise [127], and failure to recognize
activity by the sensors. We suggest that technology designers and researchers should
consider utilizing the K-nearest neighbor (KNN) and its ensemble classification
method with a proper choice of key parameters. This will have significant impact
on the recognition accuracy when it comes to designing a robust and responsive
machine learning in the wearables, as described by [40].
Beyond the user interface and data challenges, the additional major challenges
that the SLR shows with regards to current device manufacturers face in under-
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standing the individual preferences and device usage such as which sort of device
shape and size, material do individual prefer; preferred position to wear  the
device, are those devices utilized for tracking physical activities, adopted as fashion
accessories or used for educational or entertainment purposes. Abbate et al. [96]
assert, “Ergonomic and aesthetic modifications are necessary to improve the level
of usability and acceptability” (p.231). One way to move forward is to improve the
design of the product’s aesthetics, making them unique in their design, keeping them
lightweight, choosing materials that depend less on the internal components and
instead using a modular-based approach where individuals can change the device’s
external look and feel based on their daily needs. The question is then how to design
a device that is more lightweight than what is available now. One possibility could
be reducing the battery size and increasing battery life by (i) utilizing the work
presented by Shen et al. [128], which is based on graphene-based supercapacitor
fabrics with a high energy density and load-bearing capability or by (ii) harvesting
energy from alternative sources, such as heat and motion from the body in the
form of kinetic or thermal energy [129]. In addition, implementing these techniques
would not only improve the weight, but also reduce the charging inconvenience
[130], improving wearing behavior and ultimately leading to long-term use.
In the future, when more wearable devices such as HMDs are utilized for
daily use purposes, more challenges with the visual interface design will appear,
especially with the “output,” that is, how much information will be delivered to
the user and for which type of devices. For example, delivering information on
the screen display of a HMD may not be the same as delivering information on
smartwatches or external devices because information on a HMD will create a
visual distraction and further complexity. In addition to delivering information, other
challenges are the usage modes with wearable devices, the user interface, and the
wearable’s associated applications on external devices. For example, when multiple
wearable devices become part of the user’s daily life, the user will have different
usage modes, such as sequential usage (i.e., moving from one device to another at
different times to accomplish a task) or simultaneous usage (i.e., using more than
one device at the same time for either a related or an unrelated activity) [131]. This
could cause challenges related to usability, learnability, effectiveness, efficiency,
memorability, errors, user satisfaction, task-technology fit, accessibility, orientation
clues, conciseness, and cognitive load [132–134].
To  conclude, the categorization framework and category summary (see    Table
4) show that the usability challenges related to wearable devices are well known
in the human–computer interaction (HCI) field; however, one could argue that
these challenges still persist because the research  community  within  the  HCI
field is focused on identifying and solving problems by conducting usability
evaluations, using less targeted participants who are within a specific geographic
location, rather than understanding the emotions and perceptions of larger groups
of individuals, applications from a demographic context (e.g., age, gender, impair-
ments, education level, employment status, and culture) [135]. Moreover,    device
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manufacturers (i) are more focused on horizontal innovation, which solely implies
changes in the current product characteristics; and vertical innovation, where new
additional features are implemented, or the technical characteristics are improved
to compete with other device manufacturers [136]; (ii) sponsored validation tests
which may not be independently verified and may be difficult to understand and
replicate individually [70]. Additionally, application developers are more focused
on developing applications without understanding the users’ needs. For example,
commercial off-the-shelf (COTS) wearable devices are mostly designed by the
designer, who is located in a specific location, who does not have knowledge of
other culture, and who simply localized user interface based on the translation.
Similarly, application developers create an application in one geographic location
and target it to different locations through the application store. Although this allows
device manufacturers and application developers to release their products to be used
everywhere, sometimes with support and special features for use in a specific locale
[137], issues arise from the cultural context, including the “anthropological culture,”
“symbolic culture,” and “culture as community” [138]. Smith and Yetim [139] state,
“Effective strategies that address cultural issues in both the product and the process
of information systems development now often are critical to systems success” (p.2).
In considering how to increase the adoption of wearables by individuals, future
research should incorporate greater variations of larger groups of individuals to
analyze their emotions, and perceptions toward existing wearable devices within
a certain demographic context (e.g., age, gender, impairments, education level,
employment status, and culture) [135].
On the other hand, most of the reviewed papers perform usability evaluations
with devices that are in the prototype phase or with devices that are already
available on the market. Usability evaluations throughout the design cycle of product
development are critical to ensure that the products are usable. There is currently
no usability evaluation method for detecting and mapping usability issues from the
initial stage of the development process of wearable devices to their release. Because
wearable devices need to be reliable and wearable, the traceability of the usability
evaluation together with users from different demographic contexts is crucial during
each further stage of the development process to identify user needs and eliminate
usability issues. Further research should be oriented toward identifying possible
usability evaluation methods and integrating effective usability evaluations into the
wearable development process. The results obtained from each usability evaluation
can thus be effectively evaluated to ensure the reliability of the wearable devices
to create commercially viable devices. There are different categories of wearable
devices, as well as usability evaluation methods.
The limitations of the current study relate to its reliance on the articles from
previous research and the inclusion and exclusion criteria. In addition, the search
keywords were limited to “usability issues” when “wearable devices” was the
targeted keyword. However,  access to relevant papers depends on the precision
of the search strings. Because the current study only concentrated on the above-
58 J. Khakurel et al.
listed search keywords, it is possible that other relevant articles could have been
retrieved with different sets of keywords. The search also produced non-relevant
articles and low-quality publications that were ignored. In addition, the main search
was conducted only in English, which limits the results and maximizes bias.
6 Conclusion
In different product forms, wearable devices are appearing rapidly in the market,
but the usability of them is challenging. Although many studies conduct a usability
evaluation, a comprehensive overview on which types of usability issues currently
exist for which types of devices is lacking. The uniqueness of the current work is in
it filling this gap by identifying, analyzing, and providing a comprehensive overview
of current trends of usability issues found in relevant studies. The review has
revealed that in current research, usability challenges related to wearable devices can
be categorized into device characteristics, deployment on the body, and the external
devices used to synch with the wearables. In many cases, the usability issues are
caused by a halo effect within device characteristics or device characteristics and
wearing position. For example, data inaccuracy is caused by motion artifacts or by
device connectivity.
Overall, the proposed categorization framework and category summary (see
Table 4), of the usability issues generated from prior studies shows researchers,
practitioners, and application developers in the wearable domain what challenges
they have to consider to improve the design of the various types of wearable devices.
Although the presented categorization framework, and category summary (see Table
4) provides an overview, there are still challenges that must be overcome in terms
of design; individual preferences [140]; device usage; and data, all of which are
causing the identified usability issues. Improving these open challenges will likely
improve the adoption of wearable devices, however requiring to strengthen coordi-
nation between researchers, practitioners, and application developers. Additionally,
the current study identified the most frequently used evaluation methods (i.e., types
and classes, automation, and simulations) utilized for measuring the usability of
wearable devices. It was found that experiments, surveys and questionnaires, and
interviews were the most employed UEMs type and that inquiry was the most
common UEM class. Moreover, the summary (see Table 5) provides an overview
that can be used by practitioners and application developers to understand and make
decisions while selecting the UEM for a particular type of device evaluation.
The present study can, however, be used as a basis for further studies to (i)
extend new usability issues for upcoming wearable devices; (ii) discover how a
categorization framework of usability issues varies across different demographics
(i.e., age, culture, and gender); (iii) quantitatively identify the predominant usability
issues from the proposed categorization framework; and (iv) extend usability
evaluation method for new type of wearable devices.
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