# Recycling mica and carbonate-rich mine tailings in alkali-activated composites: A synergy with metakaolin Niu He, Abdulkareem Mariam, Sreenivasan Harisankar, Kantola Anu M., Havukainen Jouni, Horttanainen Mika, Telkki Ville-Veikko, Kinnunen Paivo, Illikainen Mirja This is a Final draft version of a publication published by Elsevier in Minerals Engineering **DOI:** 10.1016/j.mineng.2020.106535 Copyright of the original publication: © 2020 Elsevier Ltd. ## Please cite the publication as follows: Niu, H., Abdulkareem, M., Sreenivasan, H., Kantola, A.M., Havukainen, J., Horttanainen, M., Telkki, V.V., Kinnunen, P., Illikainen, M. (2020). Recycling mica and carbonate-rich mine tailings in alkali-activated composites: A synergy with metakaolin. Minerals Engineering, Vol 157, 106535. DOI: 10.1016/j.mineng.2020.106535 This is a parallel published version of an original publication. This version can differ from the original published article. | Recycling mica and carbonate-rich mine tailings in alkali-activated composites: a synergy with | |------------------------------------------------------------------------------------------------| | metakaolin | 1 2 He Niu <sup>a</sup>, Mariam Abdulkareem <sup>b</sup>, Harisankar Sreenivasan <sup>a</sup>, Anu M. Kantola <sup>c</sup>, Jouni Havukainen <sup>b</sup>, 4 Mika Horttanainen b, Ville-Veikko Telkki c, Paivo Kinnunen a\*, Mirja Illikainen a 5 6 7 - <sup>a</sup> Fibre and Particle Engineering Research Unit, University of Oulu, P.O. Box 4300, FI-90570, Oulu, Finland - 8 <sup>b</sup> Lappeenranta-Lahti University of Technology, School of Energy Systems, Department of Sustainability Science, - 9 P.O.Box 20, FI-53851, Lappeenranta, Finland - 10 <sup>c</sup> NMR Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, FI-90014 University of Oulu, Finland - 11 Abstract - 12 The main objective of this paper was to investigate the alkali activation of mine tailings (MT) after - 13 mechanochemical activation and the effect of metakaolin (MK) addition. Finnish mica-rich tailings from a - 14 phosphate mine were studied as precursors for alkali-activated materials (AAM) with a potential application - as a substitute for ordinary Portland cement (OPC). The principal physical properties (water absorption, 15 - apparent porosity and unconfined compressive strength) were measured for samples containing 30% to 70% 16 - 17 tailings. Zeolite phases such as natrolite and cancrinite were observed and the formation of C-(N)-A-S-H<sup>1</sup> - 18 and N-A-S-H gels was identified by XRD, DRIFT, FESEM-EDS and NMR technologies. A life cycle - 19 assessment (LCA) was conducted on specimens in comparison to OPC. This work indicated that phosphate - 20 MT can be recycled through alkali activation with lower CO<sub>2</sub> emission compared to all-metakaolin - 21 geopolymers and that the binder phase formed at the most promising tailings contents (60% to 70%) was C- - 22 (N)-A-S-H gel. - 23 Keywords: mine tailings; metakaolin; geopolymers; gel chemistry; life cycle assessment; zeolite; - 24 mechanochemical activation 25 26 27 # 1. Introduction - Greenhouse gas emissions are a global issue and the leading cause of the global climate change. One tonne of Portland cement manufactured produces approximately one tonne of carbon dioxide (Hasanbeigi et al., - 28 29 2010). Therefore, developing materials with lower CO<sub>2</sub> emission as alternative to the traditional Portland - 30 - cement is important. Alkali-activated materials (AAM) are cementitious binders that have been investigated - 31 for several decades with respect to their excellent performances and mechanical properties, refractory, and - 32 acid resistance (Bakharev, 2005; Duxson et al., 2007; Novais et al., 2018; Vickers et al., 2015). AAM can - 33 contribute to reduce the carbon footprint, especially when waste materials, such as fly ash, slag, waste rocks - and mine tailings are utilised (Kinnunen et al., 2018; MacKenzie et al., 2007; Maragkos et al., 2009; 34 - 35 Rattanasak and Chindaprasirt, 2009). - 36 AAM are produced from solid precursors under alkaline conditions, which involves both a high-calcium - 37 system and low-calcium system (geopolymer), containing C-(A)-S-H gel and N-A-S-H gel, respectively - 38 (Provis, 2013). Moreover, the coexistence of both cementitious binder gels; that is, C-(N)-A-S-H is possible. - 39 (Yip et al., 2005) The compatibility of C-S-H and N-A-S-H systems has been found to be highly susceptible - 40 to the threshold value of OH concentration, which also influences the gel formation sequences (S Alonso E-mail address: Paivo.Kinnunen@oulu.fi <sup>&</sup>lt;sup>1</sup> C-CaO, N-Na<sub>2</sub>O, A-Al<sub>2</sub>O<sub>3</sub>, S-SiO<sub>2</sub>, H-H<sub>2</sub>O <sup>\*</sup> Corresponding author. and Palomo, 2001; Santiago Alonso and Palomo, 2001). Calcium addition has also been used to modify the - 42 N-A-S-H gels, forming (N,C)-A-S-H gels under high pH conditions (>12) (García-Lodeiro et al., 2010). The - 43 product phase of sodium-silicate activation of Ca-containing aluminosilicate precursors consists of - amorphous C-A-S-H gel along with C-(N)-A-S-H gel (Myers et al., 2015). - 45 MT are currently underutilised industrial side streams, with potential to be used as a secondary raw material - in AAM. The usual disposal of phosphate MT is done by transporting them to storage impoundments - 47 (Kauppila et al., 2013). The storage of tailings poses an environmental risk and cost money and energy for - 48 construction and maintenance. Therefore, the reprocessing and remediation of mining waste is an interesting - 49 alternative. The Siilinjärvi phosphate MT (Eastern Finland) consists of 65% phlogopite mica (2:1-layer - lattice aluminosilicate) in addition to carbonates, silicates and apatite (O'Brien et al., 2015). It cannot be - directly used for alkali activation due to its poor chemical reactivity. Furthermore, the gel formation of MT- - based geopolymer is a complex issue as it depends on the specific minerals presenting in the tailings and has - been little explored so far. Since MT are not highly reactive precursors, they have been mostly used in - 54 conjunction with reactive raw materials, such as metallurgical slag. Thermal analysis was successfully - conducted on the tailings-slag geopolymers, indicating both C-S-H and C-A-S-H gels decomposition and - recrystallisation (J. Ye et al., 2014). Zhang et al. (Zhang, 2013) summarised that waste materials such as - 150 Tecrystanisation (J. 14 et al., 2014). Zhang et al. (Zhang, 2015) summarised that waste materials such as - 57 hematite tailings, gold MT, copper MT can be used for producing geopolymer bricks, among which the - 58 coexistence of CaCO<sub>3</sub> and N-A-S-H gel systems was achieved by introducing cement kiln dust for alkali - 59 activation (Ahmari and Zhang, 2013). These studies shed the light on the gel formation in tailings-based - 60 geopolymers and on how to guide the gel development in tailings-based geopolymers. - Pre-treatment is often necessary for MT before utilisation. S. Moukannaa et al. (Moukannaa et al., 2019, - 62 2018) studied the heat treatment and alkaline fusion on phosphate MT, and they also investigated the alkali - activation of such pre-treated tailings with fly ash and MK. Although this study carried out the recycling of - phosphate MT, the tailings consisted mainly of fluorapatite and quartz, and therefore the findings are not - relevant to the utilisation of mica and carbonate-rich side streams. In addition, high-energy pre-treatments - 66 can be energy and time consuming compared to mechanochemical treatment, which is a more efficient and - 67 greener method (Boldyreva, 2013). Mechanochemical activation, especially intensive grinding, can generate - 68 internal stress, induced by shear force and impact between particles and grinding media. In our previous - 69 research, the amorphisation of phlogopite-bearing phosphate MT by mechanochemical activation was - observed (Niu et al., 2020). Alkaline reactivity tests demonstrated that mechanochemical activation - 71 improved reactivity seen as increased silicon and aluminium dissolution rates in alkaline media. - 72 Mechanochemical activation has been conducted on different precursors, such as kaolin (Balczár et al., - 73 2016), fly ash (Mucsi et al., 2015), natural minerals (MacKenzie et al., 2007) and vanadium MT (Wei et al., - 74 2017) for the purpose of alkali activation; however, the effect of mechanochemical activation on phosphate - 75 MT has not been studied. - 76 Therefore, the aim of this work was to alkali-activate phosphate MT with various tailings/MK mass ratios - and to investigate the mechanism of gel formation in this complex multi-mineral system. Thus, it might be - 78 possible to guidance the utilization of mine tailings as secondary materials for construction and building - application. Life cycle assessment of the end-products was conducted and compared to similar construction - materials based on ordinary Portland cement (OPC). # 81 2. Materials and methods - 82 The metakaolin (MK; MetaMax, Aquaminerals Finland Ltd) was purchased from BASF (Germany) and the - phosphate MT were obtained from Siilinjärvi phosphate mining site (yearly production:10 Mt/a; Stock: - 84 280 Mt), Finland, which mainly consists of phlogopite (64%), dolomite (6%), calcite (14%) and tremolite - 85 (1.4%). The chemical compositions of both MK and MT are provided in - Table 1. The sodium hydroxide (VWR Chemicals, >97%) and sodium silicate solution (VWR Chemicals, - 87 SiO<sub>2</sub>: 26.8%, Na<sub>2</sub>O: 8.2%) were used as alkali activator. Twelve M NaOH solution was prepared before - 88 experiments and left overnight to cool down. The MT were subjected to mechanochemical activation (Vibratory disc mill; Retsch RS 200) before alkaliactivation according to our previous research. It indicated that 4-min ground raw tailings obtained a D50 of 7.22 $\mu$ m and a BET surface area of 6.9745 $\pm$ 0.0210 m<sup>2</sup>/g. In addition, it also generated around 40% of amorphous phase according to Rietveld refinement. The X-ray diffraction and DRIFT were also conducted on both precursors as provided in Figure A.1. The typical DRIFT bands of MK are shown in Figure A.1a, after which Table 1 provides the positions and assigned bands of MT. It should be noted that the shift of dolomite and calcite bands is significantly attributed to the pre-treatment and the Mg/Ca ratio in the initial composition. For instance, the bands in the range of 2,600 to 2,500 cm<sup>-1</sup> can be assigned to the combination of $v_1$ and $v_2$ modes, which is in line with the previous studies (Gunasekaran and Anbalagan, n.d.; Nguyen et al., 1991). The morphologies of MK and mechanically activated MT are shown in Figure A.2 using scanning electron microscope (FESEM, Zeiss). The particle shape of MT is normally irregular as MK. Table 1. Chemical composition of the raw materials by XRF analysis | Sample | SiO <sub>2</sub> | Al <sub>2</sub> O <sub>3</sub> | CaO | MgO | K <sub>2</sub> O | Fe <sub>2</sub> O <sub>3</sub> | P <sub>2</sub> O <sub>5</sub> | TiO <sub>2</sub> | MnO | Others | L.O.I. | |--------|------------------|--------------------------------|-------|-------|------------------|--------------------------------|-------------------------------|------------------|------|--------|--------| | PMT | 32.99 | 7.09 | 12.92 | 17.27 | 5.53 | 7.99 | 0.95 | 0.27 | 0.12 | 0.86 | 14.01 | | MK | 53 | 44.5 | - | _ | 0.1 | 0.4 | _ | 1.4 | _ | _ | 0.3 | ## 2.1 Preparation of alkali-activated samples The alkali-activation was subjected to the binary mixture of mechanochemically activated phosphate MT and MK. The mix design is given in Table 2. The mass ratio of sodium silicate solution and sodium hydroxide solution was fixed at 1.4 for all samples. The liquid to solid ratio was variable due to the rheological properties of the slurry; however, the samples named through PM 3/7 to PM 7/3 had a constant liquid/solid mass ratio of 0.35. Two precursors were dry-mixed for 5 min before alkali-activation. The slurry was thoroughly blended by a high shear mixer at 1,000 rpm for 5 min; thereafter, it was shaped by using Polyethylene moulds with dimensions of 20 mm in height and 25 mm in diameter. The vibrating machine (Vortex-Genie 2, Prolab Oy) was used to remove all air bubbles. The samples were demoulded after curing at 40 °C for 24 h and then continuously cured in a sealed plastic bag for 7 days. *Table 2. Experimental mix design for alkali-activated materials*\* | Sample name | PMT (Phosphate tailings)/wt% | MK<br>(Metakaolin)/wt% | H <sub>2</sub> O/Na | Na/Al | Si/Al | |-------------|------------------------------|------------------------|---------------------|-------|-------| | PM 0/10 | 0 | 100 | 4.31 | 0.59 | 1.31 | | PM 1/9 | 10 | 90 | 4.29 | 0.65 | 1.39 | | PM 2/8 | 20 | 80 | 4.07 | 0.72 | 1.49 | | PM 3/7 | 30 | 70 | 3.70 | 0.8 | 1.62 | | PM 4/6 | 40 | 60 | 3.69 | 0.9 | 1.77 | | PM 5/5 | 50 | 50 | 3.67 | 1.03 | 1.97 | | PM 6/4 | 60 | 40 | 3.65 | 1.2 | 2.24 | | PM 7/3 | 70 | 30 | 3.64 | 1.44 | 2.60 | | PM 8/2 | 80 | 20 | 2.54 | 1.79 | 3.14 | | PM 9/1 | 90 | 10 | 2.53 | 2.37 | 4.03 | | PM 10/0 | 100 | 0 | 4.07 | 3.47 | 5.72 | <sup>\*</sup> The calculated ratios are based on the assumption of fully reacted reactants. #### 2.2 Sample characterisation Physical properties, such as apparent porosity and water absorption were tested according to the standard EN-1936: 2006 (EN, 2007). After the preliminary UCS test of all the samples, subsequent characterisations were conducted on five samples in particular through PM 3/7 to PM 7/3, since they were synthesised under the same L/S ratio. The 7-day cured samples were crushed into pieces and mounted for scanning electron microscopy (SEM). Apart from the SEM analysis, the fragments were ground manually using pestle and - mortar and submerged in isopropanol to remove the loosely bound water, thereby ceasing the alkali - activation. The resulted powders were subsequently stored in a desiccator until measurement. - 122 X-ray diffraction analysis was subjected to a Rigaku SmartLab 4.5 kW, with the equipment parameters of Co - source (40 kV and 135 mA) $K_{\alpha}$ ( $K_{\alpha 1}$ =1.78892 Å; $K_{\alpha 2}$ = 1.79278 Å; $K_{\alpha 1}$ / $K_{\alpha 2}$ = 0.5), scan rate of 3 °/min and - 124 0.02 °/step. The phase identification was conducted using the PDXL2 Software Suite with integrated PDF-4 - 125 (2019) database. Chemical characterisation of hardened samples was performed by using diffuse reflectance - infrared Fourier transform (DRIFT). The spectra were collected using a Bruker Vertex 80v spectrometer - 127 (USA) with a range of 400 to 4,000 cm<sup>-1</sup>, and 40 scans were taken at a resolution of 1 cm<sup>-1</sup> for each sample. - The morphology of AAM was characterised with Zeiss ULTRA plus FESEM, with an acceleration voltage - of 5 kV. FESEM-EDS (Energy Dispersive X-ray Spectroscopy) analysis was conducted using FESEM with - an acceleration voltage of 15 kV and beam current of $120 \times 10^{-8}$ A. The polished cross-sections of PM - samples were subjected to at least 50 points analysis under the magnification of ×3000 and the working - distance was 6 to 8 mm. UCS was performed with the Zwick Roell 100kN machine with a loading force of 3 - mm/min until failure. Soaking tests were performed by immersing three hardened samples in deionised water - 134 (DI-water) for 24 h with a sample/water mass ratio of 1/3 for each batch, after which the liquid and the solid - were subjected to the inductively coupled plasma-optical emission spectroscopy (ICP-OES) and UCS, - 136 respectively. - 137 The <sup>27</sup>Al and <sup>29</sup>Si NMR spectra were obtained on a Bruker Advance III 300 spectrometer operating at 78.24 - 138 MHz for <sup>27</sup>Al and 59.65 MHz for <sup>29</sup>Si. For the purpose of conducting MAS experiments, the samples were - packed into 7 mm zirconia rotors, then rotated with a frequency of 7 kHz. For <sup>27</sup>Al, 2,048 scans were - accumulated with a repetition rate of 2 s, and for <sup>29</sup>Si the corresponding parameters were 8,192 scans and 3 s. - Neither proton decoupling nor cross polarisation was used. The chemical shifts were referenced to Al(NO<sub>3</sub>)<sub>3</sub> - and TMS (tetramethylsilane), for which the reference shifts were set to zero ppm. - 143 2.3 Life cycle assessment (LCA) - 144 LCA is a method for assessing and evaluating potential environmental impacts of a product or system. It is - performed in four phases: (1) goal and scope definition, (2) inventory phase, (3) impact assessment phase, - and (4) interpretation phase (EN ISO 14040, 2006). This method has been applied in assessing the - environmental impacts of numerous materials, including AAM (Abdulkareem et al., 2019; Passuello et al., - 148 2017; Petrillo et al., 2016). The goal of the study is to estimate and compare impacts generated from - developing alkali-activated binder from phosphate MT and MK in comparison to OPC. The study framework - considers the four processes of cradle-to-gate alkali-activated binder formulations, including raw material - production, waste beneficiation, mixing of constituents and associated emissions and energy consumptions. - 152 The functional unit is the production of 1 kg of binder. Excluded processes from this study include - transportation as it is assumed all raw materials considered in this study are locally produced and have - 133 transportation as it is assumed an raw materials considered in this study are locally produced and have - similar transportation distances. The use phase and end-of-life phase are also excluded from this study as it is - assumed that comparable and similar impacts are expected from these phases. - 156 The LCA study was performed using the Centrum voor Milieukunde Leiden (CML) 2016 method - 157 (Thinkstep, 2019). CML 2016 indicators provide information on the environmental issues associated with - inputs and outputs of the product system (EN ISO 14040, 2006). This assessment principally focuses on - 159 global warming potential (GWP), acidification potential (AP), eutrophication potential (EP) and abiotic - depletion potential (ADP fossil) impact categories. These impact categories are relevant for assessment of - emissions generated during the production of binders (C. Chen et al., 2010; Van Den Heede and De Belie, - 2012), which is the central issue of this study. Moreover, the characterisation method for these impacts are - 2012), which is the central issue of this study. Moreover, the characterisation method for these impacts are - better established than for the toxicity impacts, where both lack of reliable data and methodological - uncertainty reduce their reliability (Merrild et al., 2012). The LCA modelling was performed using the GaBi - 165 LCA modelling software (version 8.6.0.20). #### 166 2.4 life cycle inventory - 167 Life cycle inventory (LCI) is the phase where all unit processes included in the system boundary are - quantified. LCI data of the different processes considered in this study are listed in Appendix B. Data sources - 169 for Life cycle inventory 170 190 - 171 Table B.1. The data were collected from GaBi database, scientific literature and environmental reports from - industrial organisations. Unit processes such as sodium hydroxide, water and electricity were sourced from - 173 the GaBi database. The unit process of sodium silicate solution was modelled following the approach and - 174 LCI data from (Fawer et al., 1999). This solution is produced by dissolving sodium silicate lumps in water at - an elevated temperature and pressure to yield a solution with 37% of total solids which is thereafter filtered - 176 (Fawer et al., 1999). Data for energy production were adapted to the Finnish context, and geographical scope - of this study was limited to Finland, thus, a Finnish dataset was used. Where dataset for Finland is - unavailable, the EU-28 dataset was used. For the baseline study, CEM I as reported by (CEMBUREAU, - 179 2015) was used as a basis of comparison. It composed about 92.5% clinker as main constituent and minor - additional constituents. Environmental impacts of capital goods such as trucks, equipment, buildings were - not taken into account in this study. - Oven curing is required for alkali-activated binder during production is essential for initiating chemical - reaction of the binder at first instance. The energy consumed during curing in the lab was 1.87 MJ/kg at 40°C - 184 for 24 h. Mixing of the ingredients consumed 0.0045 MJ/kg and grinding of phosphate tailings consumed - 1.25 MJ/kg in the lab. Kaolin as reported from the GaBi database was already dried and milled. However, to - produce metakaolin, kaolin had to be calcined, consuming 2.5 MJ/kg of natural gas (Heath et al., 2014; NLK, - 187 2002). The synthesis conditions for the alkali-activated binders are defined at laboratory scale. Thus, energy - consumption is lower when full scale commercially tested technology is used. ## 189 3. Results and discussion ## 3.1 Physical properties - 191 The 7-day UCS of alkali-activated binders are shown in Figure 1a. The variation of MK amount had a - profound impact on the mechanical properties of tailings-metakaolin based geopolymers. It should be noted - that the mix design here is not optimal for the alkali-activation of MK, thereby the solely MK-based - 194 geopolymer obtained a rather low UCS. With lower amounts of substitution of MK by MT from 0% to 30%, - the UCS of each sample does not change considerably. When the proportion of MT continuously increases, - the growth of UCS can be seen until it reaches 70%, at which point it gains the highest UCS of more than 20 - MPa. Thereafter, the UCS diminishes with the incremental MT content. The mix design of samples - 198 containing 30% to 70% MT was otherwise identical; therefore, the following characterisations were - containing 50% to 70% MT was otherwise identical, therefore, the following characterisations were - conducted on these specimens. The samples were specially dubbed as 'PM samples' in the following part of - this article. Figure 1b demonstrates the variation of PM samples for water absorption and apparent porosity. - It is obvious that apparent porosity and water absorption substantially decreased from PM 6/4 to PM 7/3, - 202 indicating the formation of highly dense binder regarding to the Si/Al ratio close to 2.6. The apparent - 203 porosity has a good correlation with their strength results; that is, the increasing UCS varies with decreasing - apparent porosity and water absorption. Figure 1. a) Compressive strength of tailings-metakaolin based geopolymers after 7 days of curing, b) water absorption and apparent porosity of tailings-metakaolin based geopolymers after 7 days of curing. #### 3.2 XRD and DRIFT The diffractograms of PM samples are presented in Figure 2, in which XRD intensity was normalised by the strongest reflections of each sample in order to compare the relative intensities. The main crystalline phases of PM samples originate from MT, of which the mineralogical components include phlogopite (ICDD, PDF-4 #04-012-5381), calcite (ICDD, PDF-4 #04-012-0489), dolomite (ICDD, PDF-4 #04-015-9848), and tremolite (ICDD, PDF-4 #04-013-2249). A new phase conspicuously appeared in PM 3/7, PM 4/6 and PM 5/5 according to XRD pattern, which is ascribed to the reflection of vermiculite (ICDD, PDF-4 #04-017-7291). Vermiculite is structurally analogous to phlogopite and has both balanced cations (Mg<sup>2+</sup>, Ca<sup>2+</sup> and Na<sup>+</sup>) and water filling its interlayer. It should be mentioned that the K<sup>+</sup> becomes loosely bonded in the interlayer during mechanochemical activation. Thus, this transformation results from the cation exchange by smaller Na<sup>+</sup> during the alkali activation. The peak of SiO<sub>2</sub> at around 29°/20 corresponds to the trend of decreasing amount of raw metakaolin from PM 3/7 to PM 7/3. A new carbonate mineral, gaylussite, was formed by reacting MT (containing intermediate calcium of 14.75%) with alkali activator in PM 5/5. As for PM 6/4, a crystalline zeolite, natrolite, appeared alkali activation. Another crystalline phase, cancrinite, shows in the XRD pattern of PM 7/3, nucleating from gels and acting as the microaggregates embedded in the binder matrix (N. Ye et al., 2014). Figure 2. X-ray diffraction patterns of tailings-metakaolin based geopolymer samples. δ: gaylussite (PDF#04-010-3621); θ: natrolite (PDF#04-011-7181); λ: sodium calcium carbonate (PDF#04-02102551); \*: cancrinite (PDF#04-015-7815) Figure 3 shows DRIFT spectra of tailings-metakaolin based geopolymers, in which the band alternations prove the occurrence of geopolymerisation. The partial disappearance of in-plane vibration in Al-O-Si band at 665 cm<sup>-1</sup> (see Table A.1) indicates the decomposition of tetrahedral layers in amorphous phlogopite and suggested that mechanochemical activated MT participated in the alkali activation. In addition, the weakened band at 720 cm<sup>-1</sup> of MK during alkali activation is assigned to symmetric Al-O-Si stretching vibration (Mo et al., 2014). The frequency at 780 to 790 cm<sup>-1</sup> appearing demonstrated the unreacted SiO<sub>2</sub> in the original MK (Fernández-Jiménez and Palomo, 2005). The original Si-O-T band of MK in the region of 1,300 cm<sup>-1</sup> no longer existed in any of the PM samples due to the dissolution in alkali activator; therefore, the new band appeared at 1,200 cm<sup>-1</sup> in PM 3/7, representing the Si-OH stretching vibrations in the resulting geopolymers (Mo et al., 2014). Furthermore, this band (dash line) progressively shifted to a lower frequency with the incremental content of MT, showing that more polycondensation occurred. Another evidence is the bending band of Si-O shifting to a lower frequencies (700 cm<sup>-1</sup>), which was also characterised as the formation of geopolymers (Palomo and Glasser, 1992). Two distinct broad bands were situated at approximately 3,450 cm<sup>-1</sup> and 1,650 cm<sup>-1</sup>, representing the O-H stretching band and O-H bending band, respectively, which indicates the occurrence of polycondensation (Chindaprasirt et al., 2009). It is interesting that the sharpest O-H stretching (3,711 cm<sup>-1</sup>) for the trioctahedral group (Mg<sub>3</sub>(OH)) practically disappeared, compared to that of raw tailings (see Table A.1). This observation can be interpreted to mean that the crystal phlogopite degradation likely occurred during the alkali activation. The presence of the band at approximately 1,460 cm<sup>-1</sup> <sup>1</sup> in all PM samples has been ascribed to sodium carbonate (Gadsden, 1975). Another significant band between 2,000 to 2,200 cm<sup>-1</sup> was assigned to the stretching vibration of the functional group of Na<sub>2</sub>CO<sub>3</sub>; that is, carbonate minerals, generated by reacting alkali activator with MT (Bouaissi, 2019). The hint of the formation of cancrinite can be found by the following assignments: 879 cm<sup>-1</sup> for C-O bend (CO<sub>3</sub><sup>2-</sup>) and 1,400 cm<sup>-1</sup> for C-O stretch (CO<sub>3</sub><sup>2-</sup>), which is in line with the results of previous studies (Król et al., 2018; Mozgawa, 2001; N. Ye et al., 2014). Once combined with the results of XRD, the study indicated that there was no crystalline cancrinite in PM 6/4, and the new carbonate mineral was assigned to sodium calcium carbonate (Figure 2). Furthermore, the weak bands at 736 cm<sup>-1</sup> and 759 cm<sup>-1</sup> could be attributed to the formation of T-O bonds in the interconnected tetrahedra in PM 6/4. The formation of single four ring (S4R) was in accordance with the previous study which stated that the band range of 720-760 cm<sup>-1</sup> is assigned to the formation of natrolite zeolite (four-membered rings) (Fernández-Jiménez and Palomo, 2005; Mozgawa, 2001). The new peak appeared at 760 cm<sup>-1</sup> in the spectrum of PM 7/3 which is assigned to v<sub>4</sub> Si-O which was found in other blended gel system of C-S-H and N-A-S-H (García-Lodeiro et al., 2008). Figure 3. DRIFT spectra of the tailings-metakaolin based geopolymer samples # 3.3 SEM and EDS 228 229 230 231 232 233 234235 236 237238 239240 241 242243 244 245 246 247 248249 250251 252 253 254 255256 257258 259260 261 262 263 The transformation from phlogopite into vermiculite was observed in PM 3/7 and PM 4/6 (Figure 4), in which the morphology resembled the light weight aggregates (expanded vermiculite) implanted in cement matrix (Mladenovič et al., 2004). The formation of vermiculite partially resulted from the expended interlayer of phlogopite by mechanochemical activation; however, it differed from the vermiculite with Mg<sup>2+</sup> and H<sub>2</sub>O filling in interlayers (Smith Aitken, 1965). Since the mechanochemically activated MT can release more K<sup>+</sup> ions during the alkaline activation, it can be replaced by smaller Na<sup>+</sup> ions by cation exchange forming Na<sup>+</sup>-H<sub>2</sub>O interlayers. From the morphology of PM 3/7, original particles are entrained in the matrix suggesting a lack of dissolution in PM 3/7. While dissolved particles from MT generate more binder gels in PM 4/6 (fewer original particles compared to PM 3/7), it can be postulated that the polycondensation stopped after MK dissolution. The Si/Al ratio for PM 3/7 and PM 4/6 was 1.62 and 1.77, respectively. According to the research by Oelkers et al. (Oelkers and Gislason, 2001), easily dissolved aluminate units can be adsorbed on reactant surfaces, thereby decreasing the dissolution of silicate units. This unbalanced dissolution leads to a lack of formation of geopolymeric linkages. Accompanied with large residues of unreacted MT, the resulting materials exhibits rather poor mechanical strength. 264 265 266267 268 269270 271 272 273 274 275 276277 278 279 280281 282283 284 285 286 287 288 289 290 291292 293 294 295 296 297 298 Figure 4. SEM images of a) PM 3/7 and b) PM 4/6 The gel morphology of PM 5/5 exhibited distinctly different features compared with PM 3/7 and PM 4/6, where the calcium-rich gel, sodium-deficient matrix (light grey), displayed a clear boundary with the sodium-rich (darker grey) one according to the elemental mappings (Figure 5). The calcium-rich gel had unreacted calcite (or crystalline calcite) particles embedded, in which amorphous calcite was the source of calcium for the generation of C-A-S-H binder. When alkali activators were introduced, amorphous calcite can react with sodium hydroxide, generating calcium species Ca(OH)<sub>2</sub> (neutral) and Na<sub>2</sub>Ca(CO<sub>3</sub>)<sub>2</sub>·5H<sub>2</sub>O (gaylussite). The presence of gaylussite was confirmed by using XRD and DRIFT analyses (Figure 2 and Figure 3). The monomeric units of Si and Al tetrahedra were dissolved from MK into alkaline activator, forming N-A-S-H and C-(N)-A-S-H gels. Ca-rich species are prone to react with Ca-bearing species; thereafter, reaction with Si and Al species occurs. Thus, this phenomenon explains how amorphous calcite dissolution favours the generation of C-(N)-A-S-H binder, whilst Na-rich regions displayed pronounced propensity towards N-A-S-H gel. Additionally, at which alkaline concentration is higher than 10 M, the N-A-S-H gel becomes the main product, whilst C-S-H gel is the secondary phase when calcium hydroxide exists (Santiago Alonso and Palomo, 2001). Consequently, amorphous carbonate minerals (calcite, dolomite) can react with the alkaline activator to generate more dissolved calcium ions; these calcium ions are incorporated in amorphous alkaline aluminosilicate hydrates. The dissolution of calcium ions led to the formation of a halo in the Ca mapping around the crystalline calcite particles. It can be interpreted that the boundary between the two gels formed a gaylussite ring (bright green in the Ca map), which resulted from the high aqueous pH in N-A-S-H gel impeding the dissolution of Ca cation. This gaylussite ring prevented the interaction between C-(N)-A-S-H and N-A-S-H gels, decreasing the compatibility of these gels which in turn led to undesirable mechanical properties. Figure 5. FESEM back-scattered electron (BSE) images and elemental maps for the PM 5/5 The scanning electron miscroscopy (SEM) image of PM 6/4 (Figure 6) reveals the crystallisation of the zeolite phase among gel binders. The main substances, natrolite and C-(N)-A-S-H phases, formed in the final product after alkali activation. The bundles of fibres or fan-like crystals in PM 6/4 have been ascribed to the formation of natrolite zeolite, which was produced by breaking the T-O bonds of chemically reactive precursors and regeopolymerisation (Huang et al., 2016; Slaty et al., 2015). The energy dispersive spectra of these two phases are provided in Figure 6 (P1 and P2). The nucleation of natrolite has been hypothesised as arising from the presence of NaOH, MK, activated MT and the curing conditions as depicted below (El Hafid and Hajjaji, 2015). $$\begin{array}{c} \textit{precursors}\;(\textit{calcite}, \textit{dolomite}) + \textit{alkali}\;\textit{activator} \xrightarrow{\textit{initial stage}, 40\,^{\circ}\text{C}} \textit{gaylussite} \; + \textit{Aluminosilicate}\;\textit{species} \\ \xrightarrow{\textit{final stage}, 40\,^{\circ}\text{C}} \; \text{natrolite} + \; \text{C} - (\text{N}) - \text{A} - \text{S} - \text{H} \end{array}$$ There is some evidence to suggest that natrolite is likely formed on the vermiculite where the reflections of vermiculite vanished in XRD pattern (Figure 2). Therefore, it is reasonable to assume that the natrolite crystallised from the aluminosilicate tetrahedral layers with the supplementation of MK and alkali activator. Figure 6. SEM micrographs of PM 6/4 and energy dispersive spactra of fibrous phase (P1) and gel matrix (P2) In the image of PM 7/3, the tailings-metakaolin based geopolymers consisted of densely geopolymeric matrix (Figure 7). The Mg- and K-bearing particles in mapping images represented unreacted MT (phlogopite) due to its poor alkali reactivity and structural stability. This result is also in line with its lowest apparent porosity. It should be noted that the formation of zeolite-like products results from the alkalinity and composition of raw materials (Criado et al., 2007). Unlike chemically reactive raw materials (calcinated materials), the inert MT precursor must be first pre-treated in order to supply more soluble aluminosilicate phases. In this work, the pre-treatment was still insufficient for the alkali activation, unless the supplement of MK for the inadequate aluminium content in phosphate MT. The morphology in the SEM image contained column-shaped grains, which has been assigned to the formation of C-(N)-A-S-H phase (S. Chen et al., 2010). The generation of C-(N)-A-S-H gel is believed to occur at the expense of N-A-S-H phase through the ion exchange mechanism; in addition, PM 7/3 possessed the highest calcium content. This phenomenon was ascribed to the assumption proposed by I. Garcia-Lodeiro (Garcia-Lodeiro et al., 2011). Nevertheless, it slightly differed from this case regarding to the effect of pH, as the pH was 12.67 (>12) for PM 7/3. The existence of C-(N)-A-S-H was confirmed, which meant that the formation of such gel is depended on not only the ion exchange mechanism but also the alkaline reaction between carbonate minerals (tailings) and MK. Furthermore, it can be hypothesised that the formation of cancrinite is ascribed to the recrystallization from C-(N)-A-S-H gel; however, crystalline cancrinite was not observed in the SEM images probably due to its scale and the complex matrix of C-(N)-A-S-H gel. From the perspective of UCS, PM 7/3 presents a promising UCS compared to other PM samples. Poor mechanical properties have been attributed to the amount of crystalline phase in the resulting samples, in which gel-to-crystal transformation leads to the reduction of mechanical strength due to the occurrence of open porosity and microcracking occurring in this course (Palomo and Glasser, 1992). 318319 320 321 322 323 324325 326 327328 329 330 331 332 333334 335336 337338 339 340341 342343 344 345346 347348 349 350 351 352 Figure 7. FESEM secondary electron images and elemental maps for the PM 7/3 The minerology of MT generates complex compositions in the AAM as displayed in the ternary diagrams (Figure 8). The raw tailings barely contained sodium content, whereas it was rich in calcium. Additionally, the MT had a wider cluster in the CaO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> diagram, which is due to calcium-containing minerals such as calcite and dolomite. Thus, the data of raw tailings are not taken into account during chemical analysis in this section. The Na<sub>2</sub>O-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> diagram displayed more clustered EDS data points than those in the CaO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> counterpart. PM 3/7 exhibited no correlation with geopolymeric gel formation in both diagrams, thereby showing rather weak UCS. However, PM 4/6 and PM 5/5 generated N-A-S-H and Na-rich C-(N)-A-S-H gel after alkali activation, illustrating the increase of UCS which almost doubled that of PM 3/7. N-A-S-H gel predominantly formed in the Na<sub>2</sub>O-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> system of PM 5/5; these results were consistent with the observation in SEM. The data points of PM 6/4 located in the N-A-S-H gel area which are genuinely assigned to the natrolite, and the Na-rich C-(N)-A-S-H gel which has confirmed in preceding results. With MT content increased to 70%, it promotes the formation of C-(N)-A-S-H gel and the (re)crystallisation of cancrinite is developed. Compared with PM 7/3, PM 5/5 and PM 6/4 predominantly consisted of Na-rich C-(N)-A-S-H gel. Figure 8. Projection of alkali-activated materials chemistry onto the i) Na<sub>2</sub>O-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> ternary diagram and ii) CaO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> ternary diagram showing the elemental composition of cured PM samples for 7 days and raw materials. The regions of C-(N)-A-S-H and N-A-S-H were approximately from (Walkley et al., 2016), (Ismail et al., 2014) and (van Deventer et al., 2015). The ternary diagram explicitly illustrated the development of gel formation with the increasing tailings content. At a lower content of sodium ions (Na/Al<1), the accumulation of free alumina units occurred, thereby preventing further polycondensation. With the incremental Na/Al ratio, it facilitated the alkali activation; thereafter, it produced not only N-A-S-H gel but also C-(N)-A-S-H gel after the appearance of sodium calcium carbonate and calcium hydroxide. ## 3.4 <sup>29</sup>Si and <sup>27</sup>Al MAS NMR The results of the NMR analysis are shown in Figure 9. Among all the products, analysis was performed for three samples: PM 3/7, PM 5/5 and PM 7/3 (which have low, medium and high compressive strength, respectively). Among all the reactants, measurements were done only for MK. Measurement of MT was unsuccessful due to its high iron content. The results of the <sup>29</sup>Si NMR analysis are depicted in Figure 9a. The spectrum of MK displayed a broad amorphous component involving mainly Q<sup>4</sup> and Q<sup>3</sup> species. The high strength product, PM 7/3, displayed mainly Q<sup>2</sup> species, which indicated the presence of non-cross-linked C-(N)-A-S-H units. The spectrum of medium strength product PM 5/5 was similar to PM 7/3, except there was a slight shift of the main peak to the right (indicating more non-cross-linked C-(N)-A-S-H phase) and the emergence of a small hump converting Q<sup>4</sup> and Q<sup>3</sup> species (indicating N-A-S-H phase). In the case of the low-strength sample, PM 3/7, the most dominant feature was a strong peak close to Q<sup>4</sup> and Q<sup>3</sup> species (indicating N-A-S-H phase). It is also possible that Q<sup>3</sup> species formed part of cross-linked C-(N)-A-S-H. Contribution from Q<sup>2</sup> species was a shoulder feature (indicating presence of non-cross-linked C-(N)-A-S-H). Another important feature of this sample is a considerable broad hump covering Q<sup>1</sup> and Q<sup>0</sup> species. This feature indicated the presence of sodium silicate species, which do not contribute to compressive strength like C-(N)-A-S-H. This is one of the reasons for PM3/7 displaying low strength. The results of the $^{27}$ Al NMR analysis of are depicted in Figure 9b. MK consists of tetrahedral, pentahedral and octahedral aluminum species. The high-strength product, PM 7/3 consisted tetrahedral aluminum species, which indicated the presence of non-cross-linked C-(N)-A-S-H units. The spectrum of medium strength product PM 5/5 was similar to PM 7/3, except for the slight shift of the tetrahedral peak to the left. In the case of the low strength sample (PM 3/7), a similar tetrahedral component was visible. Notably, C-(N)-A-S-H had tetrahedral aluminum; hence, the spectra of all the products exhibited a similar tetrahedral component. However, there was a small shift of this component towards right as we move from PM 7/3 to PM 3/7. This feature was due to the fact that the chemical shift values of aluminum follows the order: (Al<sup>4</sup> in $^{2}$ ) (Al<sup>4</sup> in $^{3}$ ) (Al<sup>4</sup> in $^{3}$ ) (Houston et al., 2009; Myers et al., 2015). The low strength sample PM 3/7 displayed an additional component at approximately 80 ppm which may belong to low-connectivity aluminate species (Faust and Ribeiro, n.d.; Sagoe-Crentsil and Weng, 2006). Since these species do not contribute to strength-enhancing C-(N)-A-S-H phase, it may contribute towards the low strength of PM 3/7. Figure 9. The results of a) <sup>29</sup>Si NMR and b) <sup>27</sup>Al NMR analysis for products and reactants. ## 3.5 Soaking test The soaking test can affect the UCS of PM samples (Figure 10), and the decrease of UCS has also been observed in other studies (Boutterin and Davidovits, 2003). There is a synergetic effect between the swelling pressure and regeopolymerization for PM samples. For PM 3/7 and PM 4/6, there is a significant leaching of Al species which means that the geopolymeric reaction was unfulfilled, furthermore, there was less formation of aluminosilicate hydrates indicating a weak and porous matrix. However, dissolvable Al species took part in the regeopolymerization, which expresses large effect than swelling repulsion between particles resulting in a higher soaked strength. There is a different situation for PM 5/5, PM 6/4 and PM 7/3, where geopolymerization was achieved thereby the effect of swelling pressure is more conspicuous, leading to a lower strength. The filtrate was collected and subjected to ICP-OES analysis. The least leaching of sodium concentration in PM 3/7 could be attributed to the strongly bonded sodium cations with negative units such as $Si_4O_8(OH)_6^{4-}$ , $SiO(OH)_3^{-}$ and $SiO_2(OH)_2^{2-}$ , forming a rather weak matrix (Panias et al., 2007). Another piece of evidence is the high concentration of Al in solution, indicating a lower amount of aluminium taken part in alkali activation. As for PM 5/5 and PM 6/4, they consisted of lower amounts of C-(N)-A-S-H gel, revealing the decrease of UCS. It is reasonable to assume that C-(N)-A-S-H gel has higher water-solubility, when compared with N-A-S-H and C-A-S-H gels. Another assumption is that K<sup>+</sup> ions were dissolved from more soluble phases, and this induced capillary force resulting in microcracks within interfaces or grain boundaries. PM 7/3 had the highest degree of alkali activation and displayed the lowest leaching content of aluminium among all PM samples. Interestingly, it was the sample that was most affected by the 24-h soaking, simultaneously showing the lowest water absorption and porosity (Figure 1b). These findings might be explained by the presence of cancrinite (Figure 11). Structural alternation occurred in the cancrinite-like (C-N-A-S-H) gel, in which water can easily penetrate into the cancrinite structure. Cancrinite can be found in nature as a porous mineral, of which the fundamental layers of six-membered rings of SiO<sub>4</sub> and AlO<sub>4</sub> tetrahedra are stacked along the c-axis in an AB-AB sequence (Hackbarth et al., 1999). There are two types of cages within cancrinite structures: 11-hedral cavities and ε-cages along with 12-ring channels as depicted in Figure 11. The largest discrepancy of UCS in PM 7/3 after soaking might be explained by the structural destabilisation of cancrinite-like (C-N-A-S-H) gel, in which water can easily stab into cancrinite structure. Moreover, the limited space in cages and clogged channels results in the blocking of pore structure, thereby preventing extra water entering. It continues exerting pressure to the porous structure during cage expansion, leading to the low UCS (Liu et al., 2007). Therefore, the weakened alkali-activated structures presented undesirable compressive strength after a 24-h soaking, displaying the lowest water absorption and porosity. Figure 11. Schematic structure change of cancrinite after soaking test (aluminosilicate tetrahedra in grey). ## 3.6. Life cycle assessment Figure 12 shows GWP, AP, EP and ADP (fossil) LCA results for the different alkali-activated binders in comparison to OPC. For the strongest alkali-activated binder PM 7/3, excellent performances were exhibited in impact categories GWP, AP and EP, with 50%, 16% and 18% less emissions than Portland cement, respectively. The significant contributors in these impact categories for PM 7/3 were the alkaline solution (sodium silicate and sodium hydroxide) and curing which accounted for 52% and 24% respectively for GWP, 62% and 27% respectively for AP, and 67% and 21% for EP. Furthermore, regarding PM 7/3, ADP (fossil) displayed a significant 61% increase in energy consumption when compared to Portland cement, with alkaline solution, MK and curing; contributing 51%, 24% and 20% respectively. The high amount of energy is associated with energy consumed during production of alkaline solution (Fawer et al., 1999) and in calcining kaolin to MK (Heath et al., 2014). Phosphate mining beneficiation exhibited minimal contribution (less than 10%) in all impact categories. This is because only beneficiation impacts were considered, as phosphate tailings were considered as wastes in this study. Furthermore, MK displayed minimal contribution in AP and EP impact categories, but slightly higher contribution in GWP (19%). Phosphate MT and MK alkali-activated binders have shown a significant reduction in global warming; in particular they constitute only 8% of global CO<sub>2</sub> emissions (Andrew, 2018). Alkaline solution has been highlighted as the material that contribute the most to the environmental burdens of alkali-activated binders, and studies have recommended using silica rich waste materials as a substitute to conventional alkaline solution (Abdulkareem et al., 2019; Passuello et al., 2017). With respect to curing, waste heat can be used for energy, thereby increasing the environmental performance of the binder. This LCA study highlights the relevance of using waste materials in the development of alkali-activated binders. Not only are significant impact reductions achieved, but a useful alternative to simply disposing waste residues (which may eventually lead to contamination) is provided. Figure 12. Life cycle impact assessment results for alkali-activated binder in comparison to CEM I. # 5. Conclusion This study investigated the synthesis of AAM using mechanochemically activated phosphate MT with MK as (calcium) aluminosilicate precursors. The geopolymer with the higher content of tailings (60% to 70%) displayed the best mechanical properties (>20 MPa). There were two main factors to consider: 1) The mechanochemical activation improves the chemical reactivity of tailings, and 2) the presence of calcium-rich carbonate minerals accelerates the formation of C-(N)-A-S-H binder. The chemical process of alkali-activated phosphate tailings-metakaolin based geopolymers appear to more complicated due to the appearance of the C-(N)-A-S-H binder. New zeolites, such as natrolite (which was fibre-like) and cancrinite (which was column-like) formed. With the increment of tailings quantity (>70%), water requirement was lowered due to more favourable particle shape. Although the highest compressive strength was achieved with 70% tailings, water resistance in PM 7/3 still required further improvement. The recycling of MT significantly depends on its chemical and mineralogical composition, and its interactions with alkaline activators. From the view of circular economy, this study provides a potential method to recycle mine tailings with high added value rather than landfill or impoundment. The manufacturing of tailings-based geopolymers gives huge opportunities for local availability such as minimizing traffic expense and maximizing sustainability. Particularly, it considerably decreases CO<sub>2</sub> emissions in comparison with OPC. According to the performance of tailings-based geopolymers, such a material displayed promising properties for construction applications, such as brick manufacturing. # Acknowledgement The authors gratefully acknowledge the financial support from the Academy of Finland [grants #292526, #319676 and #326291] and the European Union's EU Framework Programme for Research and Innovation Horizon 2020 [Grant Agreement No 812580 ("SULTAN", https://etn-sultan.eu)]. The authors would like to thank Pasi Juntunen for the assistance in FESEM measurement, Mr. Pekka Tanskanen and Mr. Marcin Selent for their assistance in XRD analysis, Mr. Aki-Petteri Pokka for the assistance in compressive strength measurement. Mr. Jarno Karvonen and Mr. Jani Österlund are acknowledged for their contribution in laboratory experiments. V.-V.T. thanks the Academy of Finland (grants #289649, 294027 and 319216) for the financial support. # Appendix A. Fundamental information of precursors Figure A.1. a) DRIFT spactra of raw materials b) XRD patterns of raw materials. $SiO_2$ (#04-007-2627), A: anatase (#00-064-0803), T: tremolite (#04-013-2249). Figure A.2. a) SEM secondary electron micrographs of metakaolin, b) SEM secondary electron micrographs of 4-min ground phosphate mine tailings. Table A.1. Description of main bands of 4-min ground phosphate mine tailings | Wavenumber (cm <sup>-1</sup> ) | Band characterization | Reference | |--------------------------------|--------------------------------------|-----------------| | 3711 | OH-stretching vibration (phlogopite) | (Bigham et al., | | 3665 OH-stretching vibration Group I (tremolite) 1974; Schingaro et al., 2013 (Najorka and Gottschalk, 2003) (Maserschmidt, 1985; Nguyen et al., 1991) (Nguyen et al., 1991) (Nguyen et al., 1991) (Nguyen et al., 1991) (Nguyen et al., 2001; Rehman and Bonfield, 1997) (Clark, n.d.) (Rese et al., 2001; Farmer, 1974) (Nguyen Farmer | | | | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Al., 2013 Najorka and Gottschalk, 2003 Sass OH-stretching vibration Group II (tremolite) Gottschalk, 2003 (Najorka and Gottschalk, 2003) (Najorka and Gottschalk, 2003) (Messerschmidt, 1985; Nguyen et al., 1991) 2873 Carbonate (calcite) Carbonate (calcite) Carbonate (calcite) (Messerschmidt, 1985; Nguyen et al., 1991) (Messerschmidt, 1985; Nguyen et al., 1991) (Gunasekaran and Anbalagan, n.d.; Nguyen et al., 1991) (Messerschmidt, 1985; (Messeran and Anbalagan, n.d.; Nguyen et al., 1991) (Messer et al., 2001; Rehman and Bonfield, 1997) (Clark, n.d.) (Rees et al., 2001; Rehman and Bonfield, 1997) (Bigham et al., 2001; Farmer, 1974) (Farmer, 1974) (Farmer, 1974) (Farmer, 1974) (Gunasekaran and Anbalagan, n.d.) (Bigham et al., 2001; Farmer, 1974) | | | | | 3665 OH-stretching vibration Group I (tremolite) 3535 OH-stretching vibration Group III (tremolite) 3535 OH-stretching vibration Group III (tremolite) 2979 Carbonate $v_2$ overtone (dolomite) 2873 Carbonate (calcite) 3538 Carbonate (calcite) 3539 $v_2 + v_4$ combination mode (dolomite, calcite) 3540 $v_2 + v_4$ combination mode (dolomite, calcite) 3551 $v_3 + v_4$ combination mode (dolomite, calcite) 3551 $v_4 + v_4$ combination mode (dolomite, calcite) 3552 $v_4 + v_4$ combination mode (dolomite, calcite) 3553 $v_4 + v_4$ combination mode (dolomite, calcite) 3554 $v_4 + v_4$ combination mode (dolomite, calcite) 3555 $v_4 + v_4$ combination mode (dolomite, calcite) 3565 $v_4 + v_4$ combination mode (dolomite, calcite) 3576 $v_4 + v_4$ combination mode (dolomite, calcite) 3577 $v_4 + v_4$ combination mode (dolomite, calcite) 3578 $v_4 + v_4$ combination mode (dolomite, calcite) 3579 3570 $v_4 + v_4$ combination mode (dolomite, calcite) 3570 $v_4 + v_4$ combination mode (dolomite, calcite) 3570 $v_4 + v_4$ combination mode (dolomite, calcite) 370 | | | | | Sottschalk, 2003 (Najorka and Gottschalk, 2003) (Najorka and Gottschalk, 2003) (Najorka and Gottschalk, 2003) (Messerschmidt, 1985; Nguyen et al., 1991) (Messerschmidt, 1985; Nguyen et al., 1991) (Messerschmidt, 1985; Nguyen et al., 1991) (Gunasckaran and Anbalagan, n.d.; Nguyen et al., 1991) (Gunasckaran and Anbalagan, n.d.; Nguyen et al., 1991) (Nguyen 2001; Farmer, 1974) (Ng | | | | | Carbonate ν₂ overtone (dolomite) | 3665 | OH-stretching vibration Group I (tremolite) | | | Carbonate $v_2$ overtone (dolomite) Carbonate $v_2$ overtone (dolomite) Carbonate (calcite) $v_3$ (apatite) $v$ | | | | | 2979 Carbonate $v_2$ overtone (dolomite) (Messerschmidt, 1985; Nguyen et al., 1991) 2873 Carbonate (calcite) (Messerschmidt, 1985; Nguyen et al., 1991) 2519 $2v_2+v_4$ combination mode (dolomite, calcite) (Gunasekaran and Anbalagan, n.d.; Nguyen et al., 1991) 1795 Carbonate (calcite) (Nguyen et al., 1991) 1635 Carbonate $v_3$ (apatite) (Bigham et al., 2001; Rehman and Bonfield, 1997) 1395 C-O Asymmetric stretching $v_3$ (dolomite, calcite) (Clark, n.d.) (Rees et al., 2007) 974 Non-diagnostic Si-O stretching (phlogopite) (Bigham et al., 2001; Farmer, 1974) 905 Out-of-plane bending $v_2$ (dolomite, calcite) (Farmer, 1974; Rehman and Bonfield, 1997) 823 Apical Al-O bond from AlO <sub>4</sub> (phlogopite) (Bigham et al., 2001; Farmer, 1974) 732 In-plane bending $v_4$ (dolomite, calcite) (Gunasekaran and Anbalagan, n.d.) (Bigham et al., 2001; Farmer, 1974) 665 In-plane vibration (phlogopite) (Gunasekaran and Anbalagan, n.d.) (Bigham et al., 2001; Farmer, 1974) 665 In-plane vibration (phlogopite) (Bigham et al., 2001; Farmer, 1974) 628 OH vibration (phlogopite) (Bigham et al., 2001; Farmer, 1974) 628 OH vibration (phlogopite) (Bigham et al., 2001; Farmer, 1974) 628 OH vibration (phlogopite) (Bigham et al., 2001; Farmer, 1974) | 3535 | OH-stretching vibration Group III (tremolite) | | | 1985; Nguyen et al., 1991 (Messerschmidt, 1985; Nguyen et al., 1991) | | | The state of s | | 2873 Carbonate (calcite) 2873 Carbonate (calcite) 2874 Carbonate (calcite) 2875 $2\nu_2+\nu_4$ combination mode (dolomite, calcite) 2876 $2\nu_2+\nu_4$ combination mode (dolomite, calcite) 2877 Carbonate (calcite) 2878 Carbonate (calcite) 2879 Carbonate $\nu_3$ (apatite) 2870 Carbonate $\nu_3$ (apatite) 2871 Carbonate $\nu_3$ (apatite) 2872 Carbonate $\nu_3$ (apatite) 2873 Carbonate $\nu_3$ (apatite) 2874 Carbonate $\nu_3$ (apatite) 2875 Carbonate $\nu_3$ (apatite) 2876 Carbonate $\nu_3$ (apatite) 2876 Carbonate $\nu_3$ (apatite) 2877 Carbonate $\nu_3$ (apatite) 2878 Carbonate $\nu_3$ (apatite) 288 Apical Al-O bond from AlO4 (phlogopite) 288 Apical Al-O bond from AlO4 (phlogopite) 289 Apical Al-O bond from AlO4 (phlogopite) 290 Carbonate $\nu_3$ (dolomite, calcite) Carb | 2979 | Carbonate $v_2$ overtone (dolomite) | | | 2873 Carbonate (calcite) (Messerschmidt, 1985; Nguyen et al., 1991) (Gunasekaran and Anbalagan, n.d.; Nguyen et al., 1991) (Gunasekaran and Anbalagan, n.d.; Nguyen et al., 1991) (Nguyen 2001; Rehman and Bonfield, 1997) (Clark, n.d.) (Rees et al., 2001; Farmer, 1974) (Nguyen | | | | | 2519 $2\nu_2+\nu_4$ combination mode (dolomite, calcite) (Gunasekaran and Anbalagan, n.d.; Nguyen et al., 1991) (Suyen 2001; Rehman and Bonfield, 1997) (Suyen et al., 2001; Rehman and Bonfield, 1997) (Suyen et al., 2001; Farmer, 1974) | 2052 | | | | 2519 $2\nu_2+\nu_4$ combination mode (dolomite, calcite) 1795 Carbonate (calcite) 1795 Carbonate $\nu_3$ (apatite) 1635 Carbonate $\nu_3$ (apatite) 1635 Carbonate $\nu_3$ (apatite) 1635 Carbonate $\nu_3$ (apatite) 1635 Carbonate $\nu_3$ (dolomite, calcite) 1636 Si-O-T (T: Si or Al) (phlogopite) 1637 Non-diagnostic Si-O stretching (phlogopite) 1794 Non-diagnostic Si-O stretching (phlogopite) 1795 Out-of-plane bending $\nu_2$ (dolomite, calcite) 1796 Asymmetric deformation $\nu_4$ (apatite) 1797 Asymmetric deformation $\nu_4$ (apatite) 1798 Asymmetric deformation $\nu_4$ (apatite) 1799 (Gunasekaran and Anbalagan, n.d.) 1799 (Gunasekaran and Anbalagan, n.d.) 1799 (Gunasekaran and Anbalagan, n.d.) 1791 1792 (Glark, n.d.) 1794 (Farmer, 1974) 1794 (Gunasekaran and Anbalagan, n.d.) 1795 (Gligham et al., 2001; Farmer, 1974) 1794 (Bigham et al., 2001; Farmer, 1974) 1794 (Bigham et al., 2001; Farmer, 1974) | 2873 | Carbonate (calcite) | | | 2519 $2\nu_2+\nu_4$ combination mode (dolomite, calcite) (Gunasekaran and Anbalagan, n.d.; Nguyen et al., 1991) 1795 Carbonate (calcite) (Nguyen et al., 1991) 1635 Carbonate $\nu_3$ (apatite) (Bigham et al., 2001; Rehman and Bonfield, 1997) 1395 C-O Asymmetric stretching $\nu_3$ (dolomite, calcite) (Clark, n.d.) (Rees et al., 2007) 1396 Non-diagnostic Si-O stretching (phlogopite) (Bigham et al., 2001; Farmer, 1974) 1397 Out-of-plane bending $\nu_2$ (dolomite, calcite) (Farmer, 1974) 1398 Apical Al-O bond from AlO <sub>4</sub> (phlogopite) (Gunasekaran and Bonfield, 1997) 1399 Perpendicular vibration (phlogopite) (Gunasekaran and Anbalagan, n.d.) (Bigham et al., 2001; Farmer, 1974) 1390 (Gunasekaran and Anbalagan, n.d.) (Bigham et al., 2001; Farmer, 1974) 1391 (Gunasekaran and Anbalagan, n.d.) (Bigham et al., 2001; Farmer, 1974) 1392 (Gunasekaran and Anbalagan, n.d.) (Bigham et al., 2001; Farmer, 1974) 1395 (Gunasekaran and Anbalagan, n.d.) (Bigham et al., 2001; Farmer, 1974) 1396 (Bigham et al., 2001; Farmer, 1974) 1396 (Bigham et al., 2001; Farmer, 1974) 1391 (Bigham et al., 2001; Farmer, 1974) 1391 (Bigham et al., 2001; Farmer, 1974) 1392 (Bigham et al., 2001; Farmer, 1974) 1393 (Bigham et al., 2001; Farmer, 1974) | | | | | Anbalagan, n.d.; Nguyen et al., 1991) 1795 | 2510 | | | | Nguyen et al., 1991) 1795 Carbonate (calcite) (Nguyen et al., 1991) (Nguyen et al., 1991) (Righam et al., 2001; Rehman and Bonfield, 1997) (Clark, n.d.) (Rees et al., 2007) (Clark, n.d.) (Rees et al., 2007) (Clark, n.d.) (Rees et al., 2007) (Bigham et al., 2001; Farmer, 1974) (Farmer, 1974; Rehman and Bonfield, 1997) (Clark, n.d.) (Rees et al., 2007) (Bigham et al., 2001; Farmer, 1974) (Farmer, 1974; Rehman and Bonfield, 1997) (Bigham et al., 2001; Farmer, 1974) (Gunasekaran and Anbalagan, n.d.) (Bigham et al., 2001; Farmer, 1974) (Gunasekaran and Anbalagan, n.d.) (Bigham et al., 2001; Farmer, 1974) (Gunasekaran and Anbalagan, n.d.) (Bigham et al., 2001; Farmer, 1974) | 2519 | $2v_2+v_4$ combination mode (dolomite, calcite) | - | | 1795 Carbonate (calcite) (Nguyen et al., 1991) 1635 Carbonate $v_3$ (apatite) (Bigham et al., 2001; Rehman and Bonfield, 1997) 1395 C-O Asymmetric stretching $v_3$ (dolomite, calcite) 1162 Si-O-T (T: Si or Al) (phlogopite) (Clark, n.d.) 974 Non-diagnostic Si-O stretching (phlogopite) (Bigham et al., 2001; Farmer, 1974) 905 Out-of-plane bending $v_2$ (dolomite, calcite) (Farmer, 1974; Rehman and Bonfield, 1997) 823 Apical Al-O bond from AlO <sub>4</sub> (phlogopite) (Bigham et al., 2001; Farmer, 1974) 732 In-plane bending $v_4$ (dolomite, calcite) (Gunasekaran and Anbalagan, n.d.) 693 Perpendicular vibration (phlogopite) (Bigham et al., 2001; Farmer, 1974) 665 In-plane vibration of Al-O-Si (phlogopite) (Bigham et al., 2001; Farmer, 1974) 668 OH vibration (phlogopite) (Bigham et al., 2001; Farmer, 1974) 679 Asymmetric deformation $v_4$ (apatite) (Veiderma et al., 4) | | | | | 1795 Carbonate (calcite) (Nguyen et al., 1991) 1635 Carbonate $v_3$ (apatite) (Bigham et al., 2001; Rehman and Bonfield, 1997) 1395 C-O Asymmetric stretching $v_3$ (dolomite, calcite) 1162 Si-O-T (T: Si or Al) (phlogopite) (Rees et al., 2007) 974 Non-diagnostic Si-O stretching (phlogopite) (Bigham et al., 2001; Farmer, 1974) 905 Out-of-plane bending $v_2$ (dolomite, calcite) (Farmer, 1974; Rehman and Bonfield, 1997) 823 Apical Al-O bond from AlO <sub>4</sub> (phlogopite) (Bigham et al., 2001; Farmer, 1974) 732 In-plane bending $v_4$ (dolomite, calcite) (Gunasekaran and Anbalagan, n.d.) 693 Perpendicular vibration (phlogopite) (Bigham et al., 2001; Farmer, 1974) 665 In-plane vibration of Al-O-Si (phlogopite) (Bigham et al., 2001; Farmer, 1974) 668 OH vibration (phlogopite) (Bigham et al., 2001; Farmer, 1974) 679 Asymmetric deformation $v_4$ (apatite) (Veiderma et al., 4001; Farmer, 1974) | | | • | | 1635 Carbonate $v_3$ (apatite) 1636 Carbonate $v_3$ (apatite) 1739 C-O Asymmetric stretching $v_3$ (dolomite, calcite) 1739 C-O Asymmetric stretching $v_3$ (dolomite, calcite) 1730 Si-O-T (T: Si or Al) (phlogopite) 1731 Non-diagnostic Si-O stretching (phlogopite) 1732 Out-of-plane bending $v_2$ (dolomite, calcite) 1732 Apical Al-O bond from AlO <sub>4</sub> (phlogopite) 1732 In-plane bending $v_4$ (dolomite, calcite) 1733 Perpendicular vibration (phlogopite) 1734 (Gunasekaran and Anbalagan, n.d.) 1755 In-plane vibration (phlogopite) 1756 Asymmetric deformation $v_4$ (apatite) 1757 (Veiderma et al., 2001; Farmer, 1974) 1758 Asymmetric deformation $v_4$ (apatite) 1759 (Veiderma et al., 2001; Farmer, 1974) 1750 (Veiderma et al., 2001; Farmer, 1974) | 1705 | | , | | 1635 Carbonate $v_3$ (apatite) (Bigham et al., 2001; Rehman and Bonfield, 1997) 1395 C-O Asymmetric stretching $v_3$ (dolomite, calcite) 1162 Si-O-T (T: Si or Al) (phlogopite) (Rees et al., 2007) 974 Non-diagnostic Si-O stretching (phlogopite) (Bigham et al., 2001; Farmer, 1974) 905 Out-of-plane bending $v_2$ (dolomite, calcite) (Farmer, 1974; Rehman and Bonfield, 1997) 823 Apical Al-O bond from AlO <sub>4</sub> (phlogopite) (Bigham et al., 2001; Farmer, 1974) 732 In-plane bending $v_4$ (dolomite, calcite) (Gunasekaran and Anbalagan, n.d.) 693 Perpendicular vibration (phlogopite) (Bigham et al., 2001; Farmer, 1974) 665 In-plane vibration of Al-O-Si (phlogopite) (Bigham et al., 2001; Farmer, 1974) 668 OH vibration (phlogopite) (Bigham et al., 2001; Farmer, 1974) 679 Asymmetric deformation $v_4$ (apatite) (Veiderma et al., 4001; Farmer, 1974) | 1/95 | Carbonate (calcite) | | | 1395 C-O Asymmetric stretching $v_3$ (dolomite, calcite) 1162 Si-O-T (T: Si or Al) (phlogopite) 974 Non-diagnostic Si-O stretching (phlogopite) 905 Out-of-plane bending $v_2$ (dolomite, calcite) 823 Apical Al-O bond from AlO <sub>4</sub> (phlogopite) 823 Apical Al-O bond from AlO <sub>4</sub> (phlogopite) 824 In-plane bending $v_4$ (dolomite, calcite) 625 In-plane vibration of Al-O-Si (phlogopite) 626 OH vibration (phlogopite) 627 Asymmetric deformation $v_4$ (apatite) 628 OH vibration (phlogopite) 629 Asymmetric deformation $v_4$ (apatite) 630 (Clark, n.d.) (Rees et al., 2007) (Bigham et al., 2001; Farmer, 1974) (Clark, n.d.) (Rees et al., 2007) (Bigham et al., 2001; Farmer, 1974) (Bigham et al., 2001; Farmer, 1974) (Bigham et al., 2001; Farmer, 1974) (Clark, n.d.) (Rees et al., 2007) (Bigham et al., 2001; Farmer, 1974) (Bigham et al., 2001; Farmer, 1974) (Bigham et al., 2001; Farmer, 1974) (Clark, n.d.) (Rees et al., 2007) (Bigham et al., 2001; Farmer, 1974) (Bigham et al., 2001; Farmer, 1974) (Clark, n.d.) (Rees et al., 2007) (Bigham et al., 2001; Farmer, 1974) (Clark, n.d.) (Rees et al., 2007) (Bigham et al., 2001; Farmer, 1974) (Bigham et al., 2001; Farmer, 1974) (Clark, n.d.) (Rees et al., 2007) | 1625 | Coulomate (anotite) | , | | 1395 C-O Asymmetric stretching $v_3$ (dolomite, calcite) 1162 Si-O-T (T: Si or Al) (phlogopite) 974 Non-diagnostic Si-O stretching (phlogopite) 975 Out-of-plane bending $v_2$ (dolomite, calcite) 826 Apical Al-O bond from AlO <sub>4</sub> (phlogopite) 977 In-plane bending $v_4$ (dolomite, calcite) 978 Perpendicular vibration (phlogopite) 979 Asymmetric deformation $v_4$ (apatite) 820 Asymmetric deformation (pulogopite) 820 Bonfield, 1997) (Clark, n.d.) (Rees et al., 2007) (Righam et al., 2001; Farmer, 1974) (Bigham et al., 2001; Farmer, 1974) (Gunasekaran and Anbalagan, n.d.) (Bigham et al., 2001; Farmer, 1974) | 1033 | Carbonate $v_3$ (apatite) | | | 1395 C-O Asymmetric stretching $v_3$ (dolomite, calcite) 1162 Si-O-T (T: Si or Al) (phlogopite) (Rees et al., 2007) 974 Non-diagnostic Si-O stretching (phlogopite) (Bigham et al., 2001; Farmer, 1974) 905 Out-of-plane bending $v_2$ (dolomite, calcite) (Farmer, 1974; Rehman and Bonfield, 1997) 823 Apical Al-O bond from AlO <sub>4</sub> (phlogopite) (Bigham et al., 2001; Farmer, 1974) 732 In-plane bending $v_4$ (dolomite, calcite) (Gunasekaran and Anbalagan, n.d.) 693 Perpendicular vibration (phlogopite) (Bigham et al., 2001; Farmer, 1974) 665 In-plane vibration of Al-O-Si (phlogopite) (Bigham et al., 2001; Farmer, 1974) 668 OH vibration (phlogopite) (Bigham et al., 2001; Farmer, 1974) 679 Asymmetric deformation $v_4$ (apatite) (Veiderma et al., (Veiderma et al., 2001; Farmer, 1974) | | | | | 1162 Si-O-T (T: Si or Al) (phlogopite) (Rees et al., 2007) 974 Non-diagnostic Si-O stretching (phlogopite) (Bigham et al., 2001; Farmer, 1974) 905 Out-of-plane bending $v_2$ (dolomite, calcite) (Farmer, 1974; Rehman and Bonfield, 1997) 823 Apical Al-O bond from AlO <sub>4</sub> (phlogopite) (Bigham et al., 2001; Farmer, 1974) 732 In-plane bending $v_4$ (dolomite, calcite) (Gunasekaran and Anbalagan, n.d.) 693 Perpendicular vibration (phlogopite) (Bigham et al., 2001; Farmer, 1974) 665 In-plane vibration of Al-O-Si (phlogopite) (Bigham et al., 2001; Farmer, 1974) 668 OH vibration (phlogopite) (Bigham et al., 2001; Farmer, 1974) 679 Asymmetric deformation $v_4$ (apatite) (Veiderma et al., | 1205 | C O Asymmetric stratching vs. (delemite, calcite) | | | Non-diagnostic Si-O stretching (phlogopite) (Bigham et al., 2001; Farmer, 1974) 905 Out-of-plane bending $v_2$ (dolomite, calcite) (Farmer, 1974; Rehman and Bonfield, 1997) 823 Apical Al-O bond from AlO <sub>4</sub> (phlogopite) (Bigham et al., 2001; Farmer, 1974) 732 In-plane bending $v_4$ (dolomite, calcite) (Gunasekaran and Anbalagan, n.d.) 693 Perpendicular vibration (phlogopite) (Bigham et al., 2001; Farmer, 1974) 665 In-plane vibration of Al-O-Si (phlogopite) (Bigham et al., 2001; Farmer, 1974) 628 OH vibration (phlogopite) (Bigham et al., 2001; Farmer, 1974) 628 OH vibration (phlogopite) (Bigham et al., 2001; Farmer, 1974) 629 Asymmetric deformation $v_4$ (apatite) (Veiderma et al., | | | | | 2001; Farmer, 1974) 905 Out-of-plane bending $v_2$ (dolomite, calcite) (Farmer, 1974; Rehman and Bonfield, 1997) 823 Apical Al-O bond from AlO <sub>4</sub> (phlogopite) (Bigham et al., 2001; Farmer, 1974) 732 In-plane bending $v_4$ (dolomite, calcite) (Gunasekaran and Anbalagan, n.d.) 693 Perpendicular vibration (phlogopite) (Bigham et al., 2001; Farmer, 1974) 665 In-plane vibration of Al-O-Si (phlogopite) (Bigham et al., 2001; Farmer, 1974) 628 OH vibration (phlogopite) (Bigham et al., 2001; Farmer, 1974) 628 OH vibration (phlogopite) (Bigham et al., 2001; Farmer, 1974) 639 Asymmetric deformation $v_4$ (apatite) (Veiderma et al., 4) | | | | | 905 Out-of-plane bending $v_2$ (dolomite, calcite) 823 Apical Al-O bond from AlO <sub>4</sub> (phlogopite) 823 Apical Al-O bond from AlO <sub>4</sub> (phlogopite) 824 In-plane bending $v_4$ (dolomite, calcite) 825 Perpendicular vibration (phlogopite) 826 In-plane vibration of Al-O-Si (phlogopite) 827 (Bigham et al., 2001; Farmer, 1974) 828 OH vibration (phlogopite) 829 (Bigham et al., 2001; Farmer, 1974) 830 (Bigham et al., 2001; Farmer, 1974) 840 OH vibration (phlogopite) 851 (Bigham et al., 2001; Farmer, 1974) 852 (Bigham et al., 2001; Farmer, 1974) 853 (Bigham et al., 2001; Farmer, 1974) 854 (Bigham et al., 2001; Farmer, 1974) 855 (Veiderma et al., (Veiderma et al., 2001; Farmer, 1974) | 714 | Non-diagnostic 51-0 stretching (phiogophic) | | | 905 Out-of-plane bending $v_2$ (dolomite, calcite) Rehman and Bonfield, 1997) 823 Apical Al-O bond from AlO <sub>4</sub> (phlogopite) (Bigham et al., 2001; Farmer, 1974) 732 In-plane bending $v_4$ (dolomite, calcite) (Gunasekaran and Anbalagan, n.d.) 693 Perpendicular vibration (phlogopite) (Bigham et al., 2001; Farmer, 1974) 665 In-plane vibration of Al-O-Si (phlogopite) (Bigham et al., 2001; Farmer, 1974) 628 OH vibration (phlogopite) (Bigham et al., 2001; Farmer, 1974) 628 OH vibration (phlogopite) (Bigham et al., 2001; Farmer, 1974) (Cunasekaran and Anbalagan, n.d.) (Bigham et al., 2001; Farmer, 1974) (Cunasekaran and Anbalagan, n.d.) (Bigham et al., 2001; Farmer, 1974) (Cunasekaran and Anbalagan, n.d.) (Cunasekaran and Anbalagan, n.d.) (Bigham et al., 2001; Farmer, 1974) | | | | | Rehman and Bonfield, 1997) 823 Apical Al-O bond from AlO <sub>4</sub> (phlogopite) (Bigham et al., 2001; Farmer, 1974) 732 In-plane bending $\nu_4$ (dolomite, calcite) (Gunasekaran and Anbalagan, n.d.) 693 Perpendicular vibration (phlogopite) (Bigham et al., 2001; Farmer, 1974) 665 In-plane vibration of Al-O-Si (phlogopite) (Bigham et al., 2001; Farmer, 1974) 628 OH vibration (phlogopite) (Bigham et al., 2001; Farmer, 1974) 628 OH vibration (phlogopite) (Bigham et al., 2001; Farmer, 1974) 639 Asymmetric deformation $\nu_4$ (apatite) (Veiderma et al., 2001; Farmer, 1974) | 905 | Out-of-plane bending $v_2$ (dolomite, calcite) | · · · · · · · · · · · · · · · · · · · | | 823 Apical Al-O bond from AlO <sub>4</sub> (phlogopite) 824 Apical Al-O bond from AlO <sub>4</sub> (phlogopite) 825 (Bigham et al., 2001; Farmer, 1974) 826 In-plane bending $v_4$ (dolomite, calcite) 827 (Gunasekaran and Anbalagan, n.d.) 828 Perpendicular vibration (phlogopite) 829 (Bigham et al., 2001; Farmer, 1974) 820 (Bigham et al., 2001; Farmer, 1974) 821 (Bigham et al., 2001; Farmer, 1974) 822 (Bigham et al., 2001; Farmer, 1974) 823 (Bigham et al., 2001; Farmer, 1974) 825 (Bigham et al., 2001; Farmer, 1974) 826 (Bigham et al., 2001; Farmer, 1974) 827 (Bigham et al., 2001; Farmer, 1974) | 705 | out of plane conding $\gamma_2$ (dolomite, carefie) | | | Apical Al-O bond from AlO <sub>4</sub> (phlogopite) (Bigham et al., 2001; Farmer, 1974) The plane bending $v_4$ (dolomite, calcite) (Gunasekaran and Anbalagan, n.d.) Perpendicular vibration (phlogopite) (Bigham et al., 2001; Farmer, 1974) In-plane vibration of Al-O-Si (phlogopite) (Bigham et al., 2001; Farmer, 1974) (Bigham et al., 2001; Farmer, 1974) Asymmetric deformation $v_4$ (apatite) (Veiderma et al., 2001; Farmer, 1974) | | | | | 2001; Farmer, 1974) 732 In-plane bending $v_4$ (dolomite, calcite) (Gunasekaran and Anbalagan, n.d.) 693 Perpendicular vibration (phlogopite) (Bigham et al., 2001; Farmer, 1974) 665 In-plane vibration of Al-O-Si (phlogopite) (Bigham et al., 2001; Farmer, 1974) 628 OH vibration (phlogopite) (Bigham et al., 2001; Farmer, 1974) 629 Asymmetric deformation $v_4$ (apatite) (Veiderma et al., | 823 | Apical Al-O bond from AlO <sub>4</sub> (phlogopite) | | | In-plane bending $v_4$ (dolomite, calcite) In-plane bending $v_4$ (dolomite, calcite) Perpendicular vibration (phlogopite) In-plane vibration of Al-O-Si (phlogopite) In-plane vibration of Al-O-Si (phlogopite) In-plane vibration of Al-O-Si (phlogopite) In-plane vibration In-pl | | | . • | | In-plane bending $v_4$ (dolomite, calcite) (Gunasekaran and Anbalagan, n.d.) Perpendicular vibration (phlogopite) (Bigham et al., 2001; Farmer, 1974) In-plane vibration of Al-O-Si (phlogopite) (Bigham et al., 2001; Farmer, 1974) OH vibration (phlogopite) (Bigham et al., 2001; Farmer, 1974) Asymmetric deformation $v_4$ (apatite) (Veiderma et al., 2001; Farmer, 1974) | | | | | Perpendicular vibration (phlogopite) (Bigham et al., 2001; Farmer, 1974) 665 In-plane vibration of Al-O-Si (phlogopite) (Bigham et al., 2001; Farmer, 1974) 628 OH vibration (phlogopite) (Bigham et al., 2001; Farmer, 1974) (Bigham et al., 2001; Farmer, 1974) Asymmetric deformation $v_4$ (apatite) (Veiderma et al., | 732 | In-plane bending $v_4$ (dolomite, calcite) | (Gunasekaran and | | 2001; Farmer, 1974) 665 In-plane vibration of Al-O-Si (phlogopite) (Bigham et al., 2001; Farmer, 1974) 628 OH vibration (phlogopite) (Bigham et al., 2001; Farmer, 1974) 579 Asymmetric deformation $v_4$ (apatite) (Veiderma et al., | | | Anbalagan, n.d.) | | In-plane vibration of Al-O-Si (phlogopite) | 693 | Perpendicular vibration (phlogopite) | (Bigham et al., | | In-plane vibration of Al-O-Si (phlogopite) (Bigham et al., 2001; Farmer, 1974) 628 OH vibration (phlogopite) (Bigham et al., 2001; Farmer, 1974) (Bigham et al., 2001; Farmer, 1974) Asymmetric deformation $v_4$ (apatite) (Veiderma et al., | | | 2001; Farmer, | | 628 OH vibration (phlogopite) OH vibration (phlogopite) (Bigham et al., 2001; Farmer, 1974) 579 Asymmetric deformation $v_4$ (apatite) (Veiderma et al., | | | 1974) | | 628 OH vibration (phlogopite) $ \begin{array}{c} 1974) \\ \text{(Bigham et al.,} \\ 2001; \text{ Farmer,} \\ 1974) \end{array} $ 579 Asymmetric deformation $v_4$ (apatite) (Veiderma et al., | 665 | In-plane vibration of Al-O-Si (phlogopite) | (Bigham et al., | | 628 OH vibration (phlogopite) (Bigham et al., 2001; Farmer, 1974) 579 Asymmetric deformation $v_4$ (apatite) (Veiderma et al., | | | 2001; Farmer, | | 2001; Farmer, 1974) Solution 1974 (Apartite) (Veiderma et al., | | | 1974) | | 579 Asymmetric deformation $v_4$ (apatite) (Veiderma et al., | 628 | OH vibration (phlogopite) | _ | | Asymmetric deformation $v_4$ (apatite) (Veiderma et al., | | | | | · · · · · · · · · · · · · · · · · · · | | | , | | 1998) | 579 | Asymmetric deformation $v_4$ (apatite) | - | | | | | 1998) | Appendix B. Data sources for Life cycle inventory 498499 496 497 Table B.1. Data sources | Type of data | Source | |--------------|--------| | | | | Sodium hydroxide | GaBi database 2019 (EU-28, sodium hydroxide, 100% caustic soda) | |--------------------------|-----------------------------------------------------------------------| | Sodium silicate solution | (Fawer et al., 1999) (sodium silicate 3.3, furnace liquor, 37% solid) | | Cement | (CEMBUREAU, 2015) (OPC CEM I) | | Metakaolin | Heath et al., 2014; NLK, 2002 | | Water | GaBi database, 2019 (EU- 28, tap water) | | Electricity | GaBi database, 2019 (Finland, electricity grid mix) | 501 505 506 507 518 519520 521522 523 524 525 526 527 #### References - Abdulkareem, M., Havukainen, J., Horttanainen, M., 2019. How environmentally sustainable are fibre reinforced alkali-activated concretes? J. Clean. Prod. 236. https://doi.org/10.1016/J.JCLEPRO.2019.07.076 - Ahmari, S., Zhang, L., 2013. Utilization of cement kiln dust (CKD) to enhance mine tailings-based geopolymer bricks. Constr. Build. Mater. 40, 1002–1011. https://doi.org/10.1016/j.conbuildmat.2012.11.069 - Alonso, Santiago, Palomo, A., 2001. Calorimetric study of alkaline activation of calcium hydroxide—metakaolin solid mixtures. Cem. Concr. Res. 31, 25–30. https://doi.org/10.1016/S0008-8846(00)00435-X - Alonso, S, Palomo, A., 2001. Alkaline activation of metakaolin and calcium hydroxide mixtures: influence of temperature, activator concentration and solids ratio. Mater. Lett. 47, 55–62. https://doi.org/10.1016/S0167-577X(00)00212-3 - R.M. Andrew, Global CO<sub>2</sub> emissions from cement production, Earth Syst Sci Data. 105194 (2018) 195–21710. - Bakharev, T., 2005. Resistance of geopolymer materials to acid attack. Cem. Concr. Res. 35, 658–670. - Balczár, I., Korim, T., Kovács, A., Makó, É., 2016. Mechanochemical and thermal activation of kaolin for manufacturing geopolymer mortars—Comparative study. Ceram. Int. 42, 15367—15375. - Bigham, J.M., Bhatti, T.M., Vuorinen, A., Tuovinen, O.H., 2001. Dissolution and structural alteration of phlogopite mediated by proton attack and bacterial oxidation of ferrous iron. Hydrometallurgy 59, 301–309. https://doi.org/10.1016/S0304-386X(00)00186-9 - Boldyreva, E., 2013. Mechanochemistry of inorganic and organic systems: what is similar, what is different? Chem. Soc. Rev. 42, 7719. https://doi.org/10.1039/c3cs60052a - Bouaissi, A., 2019. Mechanical properties and microstructure analysis of FA-GGBS-HMNS based geopolymer concrete. Constr. Build. Mater. 12. - Boutterin, C., Davidovits, J., 2003. Réticulation géopolymérique (LTGS) et matériaux de construction. Géopolymère 1, 79–88. - 530 CEMBUREAU, 2015. Environmental Product Declaration (EPD) Portland Cement (CEM I) produced in Europe. - Chen, C., Habert, G., Bouzidi, Y., Jullien, A., 2010. Environmental impact of cement production: detail of the different processes and cement plant variability evaluation. J. Clean. Prod. 18, 478–485. https://doi.org/10.1016/j.jclepro.2009.12.014 - Chen, S., Wu, M., Zhang, S., 2010. Mineral phases and properties of alkali-activated metakaolinslag hydroceramics for a disposal of simulated highly-alkaline wastes. J. Nucl. Mater. 402, 173–178. https://doi.org/10.1016/j.jnucmat.2010.05.015 - Chindaprasirt, P., Jaturapitakkul, C., Chalee, W., Rattanasak, U., 2009. Comparative study on the characteristics of fly ash and bottom ash geopolymers. Waste Manag. 29, 539–543. https://doi.org/10.1016/j.wasman.2008.06.023 - Clark, R.N., n.d. Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy 64. - Criado, M., Fernández-Jiménez, A., de la Torre, A.G., Aranda, M.A.G., Palomo, A., 2007. An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Cem. Concr. Res. 37, 671–679. https://doi.org/10.1016/j.cemconres.2007.01.013 - P. Duxson, J.L. Provis, G.C. Lukey, J.S.J. van Deventer, The role of inorganic polymer technology in the development of 'green concrete', Cem. Concr. Res. 37 (2007) 1590–1597. doi:10.1016/j.cemconres.2007.08.018. - El Hafid, K., Hajjaji, M., 2015. Effects of the experimental factors on the microstructure and the properties of cured alkali-activated heated clay. Appl. Clay Sci. 116–117, 202–210. https://doi.org/10.1016/j.clay.2015.03.015 - EN ISO 14040, 2006. SFS-EN ISO 14040 ENVIRONMENTAL MANAGEMENT. LIFE CYCLE ASSESSMENT . PRINCIPLES AND FRAME- WORK (ISO 14040 : 2006). - EN, T., 2007. Natural stone test methods-Determination of real density and apparent density, and of total and open porosity. Turk. Stand. Inst. Ank. 13. - Farmer, V.C., 1974. Infrared spectra of minerals. Mineralogical society. 554 555556 557 558 559 560 561562 563 564565 566 567 568 569 570 - Faust, B.C., Ribeiro, A., n.d. Speciation of aqueous mononuclear AI(III)-hydroxo and other AI (III) complexes at concentrations of geochemical relevance by aluminum-27 nuclear magnetic resonance spectroscopy 11. - Fawer, M., Concannon, M., Rieber, W., 1999. Life cycle inventories for the production of sodium silicates. Int. J. Life Cycle Assess. 4, 207–212. https://doi.org/10.1007/BF02979498 - Fernández-Jiménez, A., Palomo, A., 2005. Mid-infrared spectroscopic studies of alkali-activated fly ash structure. Microporous Mesoporous Mater. 86, 207–214. https://doi.org/10.1016/j.micromeso.2005.05.057 - J.A. Gadsden, Infrared spectra of minerals and related inorganic compounds, 1975. - García-Lodeiro, I., Fernández-Jiménez, A., Blanco, M.T., Palomo, A., 2008. FTIR study of the solgel synthesis of cementitious gels: C–S–H and N–A–S–H. J. Sol-Gel Sci. Technol. 45, 63–72. https://doi.org/10.1007/s10971-007-1643-6 - García-Lodeiro, I., Fernández-Jiménez, A., Palomo, A., Macphee, D.E., 2010. Effect of Calcium Additions on N-A-S-H Cementitious Gels. J. Am. Ceram. Soc. https://doi.org/10.1111/j.1551-2916.2010.03668.x - Garcia-Lodeiro, I., Palomo, A., Fernández-Jiménez, A., Macphee, D.E., 2011. Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na<sub>2</sub>O-CaO-Al<sub>2</sub>O<sub>3</sub> SiO<sub>2</sub>-H<sub>2</sub>O. Cem. Concr. Res. 41, 923–931. https://doi.org/10.1016/j.cemconres.2011.05.006 - Gunasekaran, S., Anbalagan, G., n.d. Thermal decomposition of natural dolomite 6. - K. Hackbarth, T.M. Gesing, M. Fechtelkord, F. Stief, Synthesis and crystal structure of carbonate cancrinite Na<sub>8</sub>[AlSiO<sub>4</sub>]<sub>6</sub>CO<sub>3</sub>(H<sub>2</sub>O)<sub>3.4</sub>, grown under low-temperature hydrothermal conditions, Microporous Mesoporous Mater. (1999) 12. - A. Hasanbeigi, C. Menke, L. Price, The CO<sub>2</sub> abatement cost curve for the Thailand cement industry, J. Clean. Prod. 18 (2010) 1509–1518. doi:10.1016/j.jclepro.2010.06.005. - Heath, A., Paine, K., McManus, M., 2014. Minimising the global warming potential of clay based geopolymers. J. Clean. Prod. 78, 75–83. https://doi.org/10.1016/j.jclepro.2014.04.046 - Houston, J.R., Maxwell, R.S., Carroll, S.A., 2009. Transformation of meta-stable calcium silicate hydrates to tobermorite: reaction kinetics and molecular structure from XRD and NMR spectroscopy. Geochem. Trans. 10, 1. https://doi.org/10.1186/1467-4866-10-1 - Huang, X., Huang, T., Li, S., Muhammad, F., Xu, G., Zhao, Z., Yu, L., Yan, Y., Li, D., Jiao, B., 2016. Immobilization of chromite ore processing residue with alkali-activated blast furnace slag-based geopolymer. Ceram. Int. 42, 9538–9549. https://doi.org/10.1016/j.ceramint.2016.03.033 - Ismail, I., Bernal, S.A., Provis, J.L., San Nicolas, R., Hamdan, S., van Deventer, J.S.J., 2014. Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of - 591 fly ash. Cem. Concr. Compos. 45, 125–135. 592 https://doi.org/10.1016/j.cemconcomp.2013.09.006 - Kauppila, P., Räsänen, M.L., Myllyoja, S., 2013. Best Environmental Practices in Metal Ore Mining (Metallimalmikaivostoiminnan parhaat ympäristökäytännöt). - Kinnunen, P., Ismailov, A., Solismaa, S., Sreenivasan, H., Räisänen, M.-L., Levänen, E., Illikainen, M., 2018. Recycling mine tailings in chemically bonded ceramics A review. J. Clean. Prod. 174, 634–649. https://doi.org/10.1016/j.jclepro.2017.10.280 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 620 621 622 630 - M. Król, P. Rożek, W. Mozgawa, Preparation and Structure of Geopolymer-Based Alkali-Activated Circulating Fuildized Bed Ash Composite for Removing Ni<sup>2+</sup> from Wastewater, in: D. Singh, M. Fukushima, Y.-W. Kim, K. Shimamura, N. Imanaka, T. Ohji, J. Amoroso, M. Lanagan (Eds.), Ceram. Trans. Ser., John Wiley & Sons, Inc., Hoboken, NJ, USA, 2018: pp. 147–154. doi:10.1002/9781119494096.ch15. - Liu, Q., Navrotsky, A., Jove-Colon, C.F., Bonhomme, F., 2007. Energetics of cancrinite: Effect of salt inclusion. Microporous Mesoporous Mater. 98, 227–233. https://doi.org/10.1016/j.micromeso.2006.09.008 - MacKenzie, K.J.D., Brew, D.R.M., Fletcher, R.A., Vagana, R., 2007. Formation of aluminosilicate geopolymers from 1:1 layer-lattice minerals pre-treated by various methods: a comparative study. J. Mater. Sci. 42, 4667–4674. https://doi.org/10.1007/s10853-006-0173-x - Maragkos, I., Giannopoulou, I.P., Panias, D., 2009. Synthesis of ferronickel slag-based geopolymers. Miner. Eng. 22, 196–203. https://doi.org/10.1016/j.mineng.2008.07.003 - Merrild, H., Larsen, A.W., Christensen, T.H., 2012. Assessing recycling versus incineration of key materials in municipal waste: The importance of efficient energy recovery and transport distances. Waste Manag. 32, 1009–1018. https://doi.org/10.1016/J.WASMAN.2011.12.025 - Messerschmidt, R.G., 1985. Complete Elimination of Specular Reflectance in Infrared Diffuse Reflectance Measurements. Appl. Spectrosc. 39, 737–739. https://doi.org/10.1366/0003702854250167 - Mladenovič, A., Šuput, J.S., Ducman, V., Škapin, A.S., 2004. Alkali–silica reactivity of some frequently used lightweight aggregates. Cem. Concr. Res. 34, 1809–1816. https://doi.org/10.1016/j.cemconres.2004.01.017 - Mo, B., Zhu, H., Cui, X., He, Y., Gong, S., 2014. Effect of curing temperature on geopolymerization of metakaolin-based geopolymers. Appl. Clay Sci. 99, 144–148. https://doi.org/10.1016/j.clay.2014.06.024 - Moukannaa, S., Loutou, M., Benzaazoua, M., Vitola, L., Alami, J., Hakkou, R., 2018. Recycling of phosphate mine tailings for the production of geopolymers. J. Clean. Prod. 185, 891–903. https://doi.org/10.1016/j.jclepro.2018.03.094 - Moukannaa, S., Nazari, A., Bagheri, A., Loutou, M., Sanjayan, J.G., Hakkou, R., 2019. Alkaline fused phosphate mine tailings for geopolymer mortar synthesis: Thermal stability, mechanical and microstructural properties. J. Non-Cryst. Solids 511, 76–85. https://doi.org/10.1016/j.jnoncrysol.2018.12.031 - Mozgawa, W., 2001. The relation between structure and vibrational spectra of natural zeolites. J. Mol. Struct. 596, 129–137. https://doi.org/10.1016/S0022-2860(01)00741-4 - Mucsi, G., Kumar, S., Csőke, B., Kumar, R., Molnár, Z., Rácz, Á., Mádai, F., Debreczeni, Á., 2015. Control of geopolymer properties by grinding of land filled fly ash. Int. J. Miner. Process. 143, 50–58. https://doi.org/10.1016/j.minpro.2015.08.010 - Myers, R.J., Bernal, S.A., Gehman, J.D., van Deventer, J.S.J., Provis, J.L., 2015. The Role of Al in Cross-Linking of Alkali-Activated Slag Cements. J. Am. Ceram. Soc. 98, 996–1004. https://doi.org/10.1111/jace.13360 - Najorka, J., Gottschalk, M., 2003. Crystal chemistry of tremolite-tschermakite solid solutions. Phys. Chem. Miner. 30, 108–124. https://doi.org/10.1007/s00269-002-0291-1 - Nguyen, T., Janik, L., Raupach, M., 1991. Diffuse reflectance infrared fourier transform (DRIFT) spectroscopy in soil studies. Soil Res. 29, 49. https://doi.org/10.1071/SR9910049 - Niu, H., Kinnunen, P., Sreenivasan, H., Adesanya, E., Illikainen, M., 2020. Structural collapse in phlogopite mica-rich mine tailings induced by mechanochemical treatment and implications to alkali activation potential. Miner. Eng. 151, 106331. https://doi.org/10.1016/j.mineng.2020.106331 - NLK, 2002. Ecosmart concrete project: Metakaolin Pre-feasibility study, Report EA2860. Vancouver, British Columbia. - Novais, R.M., Ascensão, G., Tobaldi, D.M., Seabra, M.P., Labrincha, J.A., 2018. Biomass fly ash geopolymer monoliths for effective methylene blue removal from wastewaters. J. Clean. Prod. 171, 783–794. - O'Brien, H., Heilimo, E., Heino, P., 2015. Chapter 4.3 The Archean Siilinjärvi Carbonatite Complex, in: Maier, W.D., Lahtinen, R., O'Brien, Hugh (Eds.), Mineral Deposits of Finland. Elsevier, pp. 327–343. https://doi.org/10.1016/B978-0-12-410438-9.00013-3 - Oelkers, E.H., Gislason, S.R., 2001. The mechanism, rates and consequences of basaltic glass dissolution: I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si and oxalic acid concentration at 25°C and pH = 3 and 11. Geochim. Cosmochim. Acta 65, 3671–3681. https://doi.org/10.1016/S0016-7037(01)00664-0 - Palomo, A., Glasser, F., 1992. Chemically-bonded cementitious materials based on metakaolin. Br. Ceram. Trans. J. 91, 107–112. 662 663 664 665 - Panias, D., Giannopoulou, I.P., Perraki, T., 2007. Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers. Colloids Surf. Physicochem. Eng. Asp. 301, 246–254. https://doi.org/10.1016/j.colsurfa.2006.12.064 - Passuello, A., Rodríguez, E.D., Hirt, E., Longhi, M., Bernal, S.A., Provis, J.L., Kirchheim, A.P., 2017. Evaluation of the potential improvement in the environmental footprint of geopolymers using waste-derived activators. J. Clean. Prod. 166, 680–689. https://doi.org/10.1016/j.jclepro.2017.08.007 - Petrillo, A., Cioffi, R., De Felice, F., Colangelo, F., Borrelli, C., 2016. An environmental evaluation: A comparison between geopolymer and OPC concrete paving blocks manufacturing process in italy. Environ. Prog. Sustain. Energy 35, 1699–1708. https://doi.org/10.1002/ep.12421 - Provis, J., 2013. Alkali activated materials: state-of-the-art report, RILEM TC 224-AAM. Springer, New York. - Rattanasak, U., Chindaprasirt, P., 2009. Influence of NaOH solution on the synthesis of fly ash geopolymer. Miner. Eng. 22, 1073–1078. https://doi.org/10.1016/j.mineng.2009.03.022 - Rees, C.A., Provis, J.L., Lukey, G.C., van Deventer, J.S.J., 2007. In Situ ATR-FTIR Study of the Early Stages of Fly Ash Geopolymer Gel Formation. Langmuir 23, 9076–9082. https://doi.org/10.1021/la701185g - Rehman, I., Bonfield, W., 1997. Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy. J. Mater. Sci. Mater. Med. 8, 1–4. https://doi.org/10.1023/A:1018570213546 - Sagoe-Crentsil, K., Weng, L., 2006. Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part II. High Si/Al ratio systems. J. Mater. Sci. 42, 3007–3014. https://doi.org/10.1007/s10853-006-0818-9 - Schingaro, E., Lacalamita, M., Scordari, F., Mesto, E., 2013. 3T-phlogopite from Kasenyi kamafugite (SW Uganda): EPMA, XPS, FTIR, and SCXRD study. Am. Mineral. 98, 709–717. https://doi.org/10.2138/am.2013.4283 - Slaty, F., Khoury, H., Rahier, H., Wastiels, J., 2015. Durability of alkali activated cement produced from kaolinitic clay. Appl. Clay Sci. 104, 229–237. https://doi.org/10.1016/j.clay.2014.11.037 - Smith Aitken, W.W., 1965. An occurrence of phlogopite and its transformation to vermiculite by weathering. Mineral. Mag. J. Mineral. Soc. 35, 151–164. https://doi.org/10.1180/minmag.1965.035.269.18 - Thinkstep, 2019. Description of the CML 2001 method [WWW Document]. URL http://www.gabi-software.com/support/gabi/gabi-lcia-documentation/cml-2001/ (accessed 6.30.19). - Van Den Heede, P., De Belie, N., 2012. Environmental impact and life cycle assessment (LCA) of traditional and "green" concretes: Literature review and theoretical calculations. Cem. Concr. Compos. 34, 431–442. https://doi.org/10.1016/j.cemconcomp.2012.01.004 699 700 701 705 706 707 708 709 710 711 712 713 - van Deventer, J.S.J., San Nicolas, R., Ismail, I., Bernal, S.A., Brice, D.G., Provis, J.L., 2015. Microstructure and durability of alkali-activated materials as key parameters for standardization. J. Sustain. Cem.-Based Mater. 4, 116–128. https://doi.org/10.1080/21650373.2014.979265 - Veiderma, M., Knubovets, R., Tõnsuaadu, K., 1998. Structural properties of apatites from Finland studied by FTIR spectroscopy. Bull. Geol. Soc. Finl. 70, 69–75. https://doi.org/10.17741/bgsf/70.1-2.005 - Vickers, L., van Riessen, A., Rickard, W.D.A., 2015. Fire-Resistant Geopolymers, SpringerBriefs in Materials. Springer Singapore, Singapore. https://doi.org/10.1007/978-981-287-311-8 - Walkley, B., San Nicolas, R., Sani, M.-A., Rees, G.J., Hanna, J.V., van Deventer, J.S.J., Provis, J.L., 2016. Phase evolution of C-(N)-A-S-H/N-A-S-H gel blends investigated via alkaliactivation of synthetic calcium aluminosilicate precursors. Cem. Concr. Res. 89, 120–135. https://doi.org/10.1016/j.cemconres.2016.08.010 - Wei, B., Zhang, Y., Bao, S., 2017. Preparation of geopolymers from vanadium tailings by mechanical activation. Constr. Build. Mater. 145, 236–242. https://doi.org/10.1016/j.conbuildmat.2017.03.234 - Ye, J., Zhang, W., Shi, D., 2014. Effect of elevated temperature on the properties of geopolymer synthesized from calcined ore-dressing tailing of bauxite and ground-granulated blast furnace slag. Constr. Build. Mater. 69, 41–48. https://doi.org/10.1016/j.conbuildmat.2014.07.002 - N. Ye, J. Yang, X. Ke, J. Zhu, Y. Li, C. Xiang, H. Wang, L. Li, B. Xiao, Synthesis and Characterization of Geopolymer from Bayer Red Mud with Thermal Pre-treatment, J. Am. Ceram. Soc. 97 (2014) 1652–1660. doi:10.1111/jace.12840. - Yip, C.K., Lukey, G.C., van Deventer, J.S.J., 2005. The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem. Concr. Res. 35, 1688–1697. https://doi.org/10.1016/j.cemconres.2004.10.042 - Zhang, L., 2013. Production of bricks from waste materials A review. Constr. Build. Mater. 47, 643–655. https://doi.org/10.1016/j.conbuildmat.2013.05.043