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Tämän työn tarkoituksena on esitellä käyttöönotettavaksi todennäköisyysteoriaan perustuva 

väsymisanalyysimenetelmä pallografiittivaluraudasta, nuorrutusteräksestä ja rakenneteräk-

sestä valmistetuille koneenosille. Menetelmän tulee perustua elementtimenetelmällä lasket-

tujen paikallisten jännitysten käyttöön, ilman tarvetta määrittää nimellisiä jännityksiä. Li-

säksi menetelmän tulee kyetä ottaa huomioon moniaksiaalinen väsyminen suhteisissa ja epä-

suhteisissa kuormitustapauksissa. Työn tuloksena tulisi olla määritetty yksiselitteiset ohjeet 

siten että menetelmä voidaan ohjelmoida automaattiseksi työkaluksi.  

 

Menetelminä tässä työssä käytetään kirjallisuusselvitystä, olemassa olevan väsytyskoedatan 

hyödyntämistä ja elementtimenetelmää. Lisäksi analyysimenetelmän vaiheet esitellään 

melko yksinkertaisen komponentin ja kuormitustapauksen esimerkkianalyysillä. 

 

Työn tuloksena esitellään vaatimukset käyttäjän syöttämistä arvoista ja menetelmän tulos-

teista, sekä menetelmän eri laskentavaiheet. Lisäksi esitellään esimerkkianalyysin tuloksia. 

Tuloksiin perustuen johtopäätöksinä voidaan todeta, että esitelty menetelmä ei vaadi nimel-

lisjännitysten käyttöä ja että moniaksiaalinen väsyminen voidaan käsitellä kattavasti. Tämän 

lisäksi esitellyt vuokaaviot antavat hyvän pohjan ohjelmointityölle. 
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The aim of this thesis is to introduce a probabilistic fatigue analysis method for components 

made of spheroidal graphite cast iron, quenched and tempered steel and structural steel. The 

method should be based on using local stresses calculated with finite element analysis, with-

out the need to consider nominal stresses. Also, it should be able to consider multiaxial fa-

tigue in proportional and non-proportional loading cases. As a result of this work, clear 

guidelines and steps for the method should be established in such a way that it is possible to 

program an automated analysis tool for fatigue analysis according to this method. 

 

The methods used in this work include literature study, use of existing fatigue test data and 

finite element analysis. Also, the finished workflow is demonstrated with an example anal-

ysis of a relatively simple component and load case to clarify the different steps of the anal-

ysis. 

 

As a result, required inputs from the user, outputs and different stages of the analysis method 

are presented. In addition, the results of the example analysis are shown. Based on the results, 

it is concluded that the introduced method does not require the use of nominal stresses and 

that multiaxial fatigue can be handled in a comprehensive manner. Furthermore, the 

flowcharts depicting the workflow give a good basis for the programming work. 
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LIST OF SYMBOLS AND ABBREVIATIONS  

 

 

A Area [mm2] 

A Constant [-] 

Aeff Effective area [mm2] 

Aref Reference area [mm2] 

a Crack length [mm] 

a Constant in Dang Van criterion [-] 

a Major semi-axis of an elliptical hole [mm] 

a0 Initial crack size [mm] 

a0 Intrinsic crack length [μm]  

aext Extrapolated defect size [μm]  

af Final crack size [mm] 

amed Median value of defect distribution [μm]  

aσ  Material constant [-] 

√𝑎𝑟𝑒𝑎𝑅 The equivalent defect size for surface roughness [μm]  

B Constant [-] 

2b Pitch of the surface roughness [μm]  

b Auxiliary variable [-] 

b Minor semi-axis of an elliptical hole [mm] 

C Constant [-] 

C Constant which considers the mean stress effect [-] 

C Material constant [(mm/cycle)/(MPa⋅m1/2)m] 

Cμ  Confidence level [-] 

c Half-width of a crack [mm] 

D Damage sum [-] 

D Findley damage [MPa] 

DHC High cycle damage sum [-] 

DLC Low cycle damage sum [-] 

Dtot Total damage sum, DHC + DLC [-] 

d Slip band length [μm] 

dA Surface element [-]  
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da/dN Cyclic crack growth rate [mm/cycle] 

devρij Deviatoric part of stabilized residual stress tensor [MPa]  

E(x) Expected value [-] 

E(σaf) Expected value [MPa] 

F Axial force [N]  

F Geometry factor [-] 

F(σ) Cumulative distribution function (CDF) [-] 

Fe Embedding energy [J] 

Fi Force acting on atom i [N] 

Fo Surface roughness factor [MPa] 

f Fatigue limit in shear [MPa] 

f(σaf) Probability density function (PDF) [-]  

fZ(Z) Multivariate probability density function of Z 

G Shear modulus [MPa] 

HV Vickers hardness [MPa]  

K Stress intensity factor [MPa⋅m1/2] 

KA Anisotropy factor [-] 

KAT Anisotropy and technological factor [-] 

Kc Fracture toughness [MPa⋅m1/2]   

KI Stress intensity factor for Mode I crack [MPa⋅m1/2] 

KIc Plane strain fracture toughness [MPa⋅m1/2] 

KN Life factor [-] 

KR Surface roughness factor [-] 

Ksize Statistical size factor [-] 

KT Technological factor [-] 

Kt Stress concentration factor [-] 

ΔK Stress intensity range [MPa⋅m1/2] 

ΔKth Threshold stress intensity range [MPa⋅m1/2] 

k Normal stress sensitivity [-] 

k Slope exponent of S-N curve [-] 

k Slope of Haigh diagram [-] 

k0 Slope exponent of an unnotched test specimen [-] 

k∞  Slope exponent of a very sharp notch [-] 
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L Load effect [-] 

L Material length scale [μm]  

M Additive inverse of the slope of Haigh diagram k [-] 

mi Mass of the atom i [u] 

m Number of links [-] 

m Slope of the crack growth log-log plot [-] 

N Fatigue life [cycles] 

N Total number of discrete values [-] 

Naf Number of cycles at knee-point of S-N curve [cycles] 

Neq Equivalent number of cycles [cycles] 

Ng Number of cycles required for crack nucleation [cycles] 

Ni Shape function for node i [-] 

n Frequency [-] 

n Notch sensitivity [-] 

n Number of links [-] 

n Number of test specimens [-] 

�⃗� 𝑐𝑟 Normalized direction vector of critical plane [-] 

nref Reference number of cycles [cycles] 

P Failure probability [-] 

p Exponent which considers the effect of relative stress gradient χ* [-]  

pi Probability of xi [-] 

Q Rotation matrix [-] 

R Resistance effect [-] 

R Stress ratio [-] 

R Survival probability [-] 

Ri Reliability of i [-] 

Rm Ultimate strength [MPa] 

𝑅𝑚
∗  Fictive ultimate strength [MPa] 

Rmc Ultimate compressive strength [MPa] 

RmSmin Material constant [MPa] 

Rp0.2 Yield strength [MPa] 

Rz Height of the surface roughness profile [μm]  

r Exponent which considers how C changes as a function of χ* [-] 
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r Radius, polar coordinate [mm] 

rc Critical distance [μm]  

rij Separation between atoms [Å] 

S Remote stress [MPa] 

SF Safety factor on stress [-] 

SF,H Safety factor on stress of Haibach S-N curve extension [-] 

SN Safety factor on fatigue life [-] 

SF,rad Radial safety factor [-] 

SF,ver Vertical safety factor[-] 

s Standard deviation [-] 

s2 Variance [-] 

sln Logarithmic standard deviation [-] 

sln,H Logarithmic standard deviation of fatigue strength for Haibach S-N curve ex-

tension [-] 

sN Logarithmic standard deviation of fatigue life [-] 

sN
2 Variance of fatigue life [-] 

sr Relative standard deviation [-] 

srC10 Standard deviation with a confidence level of 10 % [-] 

srC90 Standard deviation with a confidence level of 90 % [-] 

sσ  Standard deviation [MPa] 

sσ
2 Variance [-] 

T Return period [-] 

T Torque [Nmm] 

t Normalized variable [-] 

t Time [s] 

t2 Variable for Student’s distribution [-] 

U Potential energy [J] 

V(σaf) Variance [-]  

Vij Pair potential contribution to the potential energy of atom i [J] 

Wc Specific fracture energy per unit area [kJ/m2] 

Wi Weight coefficient [-] 

X Discrete random variable [-] 

X Global nodal coordinates [-]  
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xi Position vector of atom i [-] 

xi Values of discrete random variable [-] 

𝑥 Sample mean value [-] 

Y Global nodal coordinates [-] 

Z Global nodal coordinates [-] 

 

α  Parameter [-] 

αk Stress concentration factor [-] 

β Weibull distribution shape parameter [-] 

βk Notch factor [-] 

βR Reliability index [-]  

Γ(t) Gamma function [-]  

Δσ  Normal stress range [MPa] 

Δσaf Fatigue limit range [MPa]   

Δτ  Shear stress range [MPa]  

Δ𝜏  Average shear stress range of a slip band [MPa] 

ζ  Natural coordinate [-] 

η  Natural coordinate [-] 

θ  Angle, polar coordinate [°]  

λ Parameter of standard normal distribution [-] 

μln Logarithmic mean value [-] 

μln+SD Logarithmic mean value + one standard deviation [-]   

ν  Poisson’s ratio [-] 

ξ  Natural coordinate [-] 

ρ  Notch root radius [mm] 

ρij Contribution of atom j to the total electron density at atom i [-] 

ρij Stabilized residual stress tensor [MPa] 

ρij,h Hydrostatic part of stabilized residual stress tensor [MPa] 

Σij(ti) Macroscopic stress tensor [MPa] 

σ  Normal stress [MPa] 

[σ] Stress matrix [MPa]  

σ0.2 Yield strength [MPa]  

σa Normal stress amplitude [MPa] 
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σac Critical stress amplitude [MPa]  

σa,eq Equivalent stress amplitude [-]  

σaf Fatigue limit [MPa] 

𝜎𝑎𝑓  Expected value of fatigue limit [MPa] 

σaf,P Fatigue limit reduced to failure probability P [MPa] 

σa,ref Reference stress amplitude [MPa]  

σaR=0 Fatigue limit for pulsating load [MPa] 

σaR=-1 Fatigue limit for completely reversed loading [MPa] 

𝜎𝑎𝑓,𝐶𝜇
 Population value for the mean of fatigue limit [MPa] 

σb Ultimate strength [MPa]   

σb,comp Ultimate compressive strength [MPa]  

σch Characteristic stress [MPa] 

σh(ti) Hydrostatic stress when time is ti [MPa] 

σij(ti) Microscopic stress tensor [MPa]   

σm Mean stress [MPa] 

σmR=0 Means stress when R = 0 [MPa] 

σmed Median value of stress [MPa]  

σn Normal stress [MPa]  

σnom Nominal stress [MPa] 

σpeak Peak stress [MPa] 

σtr Threshold value for fatigue limit [MPa]  

σVM Von Mises stress [MPa]  

σx  X normal stress component [MPa] 

σy Y normal stress component [MPa] 

σz Z normal stress component [MPa] 

τa Shear stress amplitude [MPa]  

τa(ti) Microscopic shear stress amplitude when time is ti [MPa] 

τaf,σh=0 Fatigue limit in shear when hydrostatic stress is zero [MPa]    

τCRSS Critical resolved shear stress [MPa]  

τxy XY shear stress component [MPa] 

τyz  YZ shear stress component [MPa] 

τzx  ZX shear stress component [MPa] 

Φ Cumulative distribution function of standard normal distribution [-]  
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χ* Relative stress gradient [mm-1]   

 

CDF Cumulative distribution function 

CGF Continuous grain flow 

CRSS Critical resolved shear stress 

EAM Embedded atom method 

FEA Finite Element analysis 

FEM Finite Element method 

FFM Finite fracture mechanics 

HCF High cycle fatigue 

ICM Imaginary crack method 

K-T Kitagawa-Takahashi 

LCF Low cycle fatigue 

LEFM Linear elastic fracture mechanics 

LM Line method 

MD Molecular dynamics 

PDF Probability density function 

PM Point method 

SD Standard deviation 

SEM Scanning electron microscope 

SIF Stress intensity factor 

TCD The Theory of critical distances 

VHCF Very high cycle fatigue 
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1 INTRODUCTION 

 

 

The Switch specializes in electrical drive train technology, focusing on permanent magnet, 

solid rotor and variable speed drive technologies in areas of wind, marine and turbo/industry 

solutions (The Switch 2020). Design of components for these kinds of applications need to 

consider material fatigue and now, The Switch is looking to develop a new in-house fatigue 

analysis method.  

 

1.1 Background 

Currently The Switch performs fatigue analyses of castings and machined parts according 

to the method described in DNVGL-ST-0361. This has been found problematic because the 

method is based on nominal stresses which can be difficult or impossible to obtain from 

finite element analysis results, especially in the cases of more complex geometries. 

 

Another problem is that although DNVGL-ST-0361 gives some guidance about multiaxial 

stresses, they are not treated properly in the current analysis process. This may yield uncon-

servative results in some cases. 

 

Evaluation of defects observed during manufacturing is difficult. It would be desirable to 

have allowable defect size for critical areas of the component, but the present analysis 

method is not capable of providing this information. In other words, the direct link between 

defect size and local fatigue strength is missing.  

 

1.1.1 DNVGL-ST-0361 

DNVGL-ST-0361 Machinery for wind turbines gives guidelines for the design of wind tur-

bine machinery components and structures. It is based on safe life design method and for the 

fatigue limit state the typical design life time for wind turbines is 20 years. (DNVGL-ST-

0361 2016, p. 9, 36.) 

 

Current fatigue analysis method from DNVGL-ST-0361 is based on calculation of synthetic 

S-N curves. This calculation is applicable for non-welded forged and rolled parts and for 

cast steel and spheroidal graphite cast iron. (DNVGL-ST-0361 2016, p. 50-52.) The process 
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flow charts for Non-welded forged and rolled parts and Cast steel and spheroidal graphite 

cast iron are presented in figures 1 and 2. 

 

 

Figure 1. Calculation of synthetic S-N curve for non-welded forged and rolled parts 

(DNVGL-ST-0361 2016, p. 51). 
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Figure 2. Calculation of synthetic S-N curve for cast steel and spheroidal graphite cast iron 

(DNVGL-ST-0361 2016, p. 52). 

 

One of the problems of this method is the use of notch factor βk: 

 

 𝛽𝑘 = 
𝛼𝑘

𝑛
 

 

(1.1) 
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In equation (1.1) αk is stress concentration factor and n is notch sensitivity (DNVGL-ST-

0361 2016, p. 51-52). It may be difficult to define nominal stress and the corresponding 

stress concentration factor from the modern Finite Element analysis (FEA) results, especially 

if the geometry is complex. Nowadays FEA models can accurately and relatively quickly 

calculate the local stresses and thus the use of nominal stress based methods is not effective. 

 

Haigh diagrams for different grades of spheroidal graphite cast iron, structural steel (S355) 

and quenched and tempered steel (42CrMO4) constructed on the basis of the flowcharts 

above are presented in figures 3 and 4. These are valid when nominal stresses are considered 

but again, this may not be useful if there are problems with defining the actual nominal stress 

in the component. Furthermore, these diagrams do not indicate how the material behaves 

when there is local plasticity. 

 

 

Figure 3. Haigh diagram for spheroidal graphite cast iron according to DNVGL-ST-0361 

(2016, p. 46, 52).  
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Figure 4. Haigh diagram for S355 and 42CrMo4 according to DNVGL-ST-0361 (2016, p. 

46, 51). 

 

1.2 Objectives 

The objective of this thesis is to introduce a new method for fatigue analysis. The method 

should be based on using local stresses calculated with Finite Element Method (FEM) and it 

should consider multiaxial fatigue in proportional and non-proportional load cases. Also, the 

method should be based on probabilistic approach on fatigue and the determination of com-

ponent’s actual failure probability should be straightforward. Furthermore, a connection be-

tween defect size and local fatigue strength should be demonstrated so that it would be pos-

sible to give quality requirements for critical areas of components. 

 

As a result of this work, clear guidelines and algorithms should be established so that it is 

possible to program a tool for the utilization of the new method. Also, an example analysis 

is performed with the new method. 

 

1.3 Scope 

Scope of this thesis is defined on the basis of materials used by The Switch in their compo-

nents. There is no limitation on the type of component, so the new analysis method covers 

all components made of specified materials. 
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Materials within the scope of this thesis include spheroidal graphite cast iron, structural steel 

and quenched and tempered steel. The main focus is on various strength grades of spheroidal 

graphite cast iron, S355 structural steel and 42CrMo4 quenched and tempered steel. 

 

This work covers non-welded forged and rolled components, castings and machined parts. 

In essence, the new analysis method should be applicable to at least the same extent as the 

method described in DNVGL-ST-0361. 

 

1.4 Methods 

The objective will be reached by introducing options for different aspects of fatigue analysis 

and utilizing the best suited one regarding the objective and scope of this thesis. The basis 

of the new method will be probabilistic approach on fatigue as per Roger Rabb’s research 

and suggestions. 

 

The methods used in development of the new analysis procedure include literature study, 

utilization of existing fatigue testing data and finite element analysis. No fatigue testing will 

be conducted as a part of this work. 

 

1.5 Fatigue 

Material, structures and components that are being subjected to repeated loads and the cyclic 

stresses caused by these loads are prone to suffer from microscopic damage. Even at stress 

levels where yielding does not dominate the behavior, this microscopic damage can accu-

mulate and develop into a macroscopic crack. As the cycling continues, the crack grows and 

eventually failure of the component or structure will occur. This whole chain of events is 

called fatigue. (Dowling 2013, p. 416–417, 424.) 

 

Cyclic loading can be described with a few factors and equations. The important definitions 

include stress range Δσ, maximum stress σmax, minimum stress σmin, stress amplitude σa, mean 

stress σm and stress ratio R. These are explained in the following equations and in figure 5. 

 

For amplitude and mean stress (Dowling 2013, p. 419): 
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𝜎𝑎 =

Δ𝜎

2
=

𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛

2
 (1.2) 

 

 
𝜎𝑚 =

𝜎𝑚𝑎𝑥 + 𝜎𝑚𝑖𝑛

2
 (1.3) 

 

For maximum and minimum stresses (Dowling 2013, p. 419): 

 

 𝜎𝑚𝑎𝑥 = 𝜎𝑚 + 𝜎𝑎 (1.4) 

 𝜎𝑚𝑖𝑛 = 𝜎𝑚 − 𝜎𝑎 (1.5) 

 

And for R (Dowling 2013, p. 419): 

 

 𝑅 =
𝜎𝑚𝑖𝑛

𝜎𝑚𝑎𝑥
  (1.6) 

 

 

Figure 5. Constant amplitude cyclic loading.  

 

The fatigue life consists of two periods: a crack initiation and a crack growth period, after 

which the final failure occurs. During the initiation period microcracks nucleate in slip bands 

in the material and start growing erratically due to effects caused by the microstructure of 

the material. After the microcrack growth has progressed away from the nucleation site, the 

growth becomes more regular and the crack growth period begins. These two periods are 
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separated since they are affected by different factors. (Schijve 2009, p. 14–15.) The phases 

of the fatigue life and the factors affecting them are presented in figure 6. 

 

 

Figure 6. Phases of the fatigue life (Schijve 2009, p. 15). 

 

1.5.1 Crack initiation 

The fatigue crack nucleation is caused by cyclic slip which means that cyclic plastic defor-

mation happens in a small number of grains. This microplasticity often happens in the grains 

which are located on the free surface of the material because there the plastic deformation is 

less constrained by the neighboring grains. As the constraint on the slip is lower on the sur-

face, it can occur at lower stress levels than in more constrained subsurface grains. (Schijve 

2009, p. 16.) 

 

Cyclic shear stresses are required to cause cyclic slip. Depending on the size, shape and 

orientation of the grains as well as elastic anisotropy of the material, the shear stress on slip 

planes is varying between grains. On the surface of the material aforementioned conditions 

may be more favorable in some grains than in others and slip can occur. When slip occurs 

in a grain, a slip step is created on the material surface and a portion of new material (i.e. 

material that has not been in contact with the surrounding environment) is exposed and cov-

ered by a tightly adhering oxide layer.  Additionally, some strain hardening occurs in the slip 

band during loading. Because of the oxide layer and the strain hardening, a higher, reversed 

shear stress will form on the same slip band. Reversed slip will therefore occur in the same 

slip band but on an adjacent parallel slip plane. (Schijve 2009, p. 15–17.) The principle of 

cyclic slip is shown in figure 7. 
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Figure 7. Formation of slip bands (Schijve 2009, p. 16). 

 

As is shown in figure 7, single cycle is enough for a microscopical intrusion to form. This 

intrusion is a start of a microcrack and as the mechanism that occurred during the first cycle 

is repeated in the consequent cycles, the crack starts to extend. An extrusion could be formed 

if the reversed slip occurred on the lower side of the slip band. However, an intrusion is more 

probable according to minimum potential strain energy principle. (Schijve 2009, p. 17–18.) 

 

Inclusions, such as impurities, can be found in most materials. They affect the stress distri-

bution of the material on microlevel and they can interact with cyclic slip thus providing a 

nucleation site for a microcrack. The nucleation of a microcrack at an inclusion often hap-

pens near the surface of the material because of the aforementioned lower restraint on slip. 

Sometimes nucleation can happen deeper in the material, for example due to a large inclusion 

and the presence of tensile residual stress. (Schijve 2009, p. 25–26.) 

 

As was mentioned, crack initiation starts on the surface of the material because of the lower 

restraint on cyclic slip. In addition to this, geometric discontinuities like holes and notches 

promote the initiation from the surface by causing stress concentrations. The magnitude of 

the stress concentration is dependent on the shape of the notch. The stress concentration can 

be described with stress concentration factor Kt which is the ratio between the peak stress 

σpeak at the root of the notch and the nominal stress σnom affecting in an area of the part where 

there are no stress concentrations (see figure 8). (Schijve 2009, p.59–61.) 
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Figure 8. Definition of stress concentration factor Kt (Mod. Schijve 2009, p. 60). 

 

It should be noted that peak stress σpeak obtained by using the Kt factor is an elastic concept 

i.e. all deformations should be elastic (Schijve 2009, p. 61). When Kt is known, the peak 

stress at the notch can be calculated (Schijve 2009, p. 60): 

 

 𝜎𝑝𝑒𝑎𝑘 = 𝐾𝑡𝜎𝑛𝑜𝑚 (1.7) 

 

As was mentioned above, the shape of the notch affects the magnitude of Kt.  Notch root 

radius ρ is an important factor and its effect on Kt for an elliptical hole in an infinite sheet 

loaded in tension can be seen below (Schijve 2009 p. 64): 

 

 

𝐾𝑡 = 1 + 2
𝑎

𝑏
= 1 + 2√

𝑎

𝜌
 (1.8) 

 

, where a and b are the semi-axes of an elliptical hole. Figure 9 shows the effect of different 

dimensions on Kt for tension loaded circular bar with a notch. 
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Figure 9. Effect of different dimensions on Kt for tension loaded circular bar (Pilkey 1997, 

p. 99). Similar charts can be found for different geometries and loading cases.  

 

Stress gradient of σy along the X-axis (figure 10) can be used to consider the size effect on 

the fatigue limit. The stress gradient at the root of a notch provides information about the 

size of the volume of highly stressed material. (Schijve 2009, p. 65–66.) 
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Figure 10. Stress gradients at the root of a notch (Schijve 2009, p. 66). 

 

However, the gradient of tangential stress decreases relatively slowly compared to the stress 

along the X-axis (in figure 10). As was mentioned earlier, the crack nucleation starts at the 

material surface and because of this, the stress gradient along the edge of the notch may have 

a greater importance on crack nucleation than the gradient in X-direction (in figure 10). 

(Schijve 2009, p. 67–68.) Relatively slow decrease of stress in tangential direction compared 

to the perpendicular direction is illustrated in figure 11.  

 

 

Figure 11. Stress along the edge of the notch. Lines represent constant principal stress under 

tension loading (Y-direction). (Schijve 2009, p. 68.)   
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1.5.2 Crack growth 

During the crack growth period, growth is no longer affected by surface conditions. Instead, 

the crack growth becomes a bulk material phenomenon. After the crack grows away from 

the free surface and its effect, slip deformations happen on more than one slip plane and the 

microcrack deviates from the initial direction of the slip band as shown in figure 12. Usually, 

at this stage the crack starts to grow perpendicular to the main principal stress. (Schijve 2009, 

p. 19, p. 39–40.) 

 

 

Figure 12. A crack growing further into the material from the surface (Schijve 2009, p. 19). 

 

During loading the plastic deformation at the crack tip opens the crack and slip deformation 

causes some crack extension. There are two symmetric slip systems which are the zones of 

the maximum shear stress. (Shijve 2009, p. 40.) Principle of crack extension during a single 

load cycle is presented in figure 13. 
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Figure 13. Crack extension as a result of one loading and unloading cycle (Schijve 2009, p. 

40). 

 

A crack can have three different modes of displacement or a combination of them (Figure 

14). Mode I is called opening mode and it is caused by perpendicular tensile loading. Mode 

II is called sliding mode and mode III is called tearing mode, and they are caused by shear 

loading in different directions. The most important one to consider with fatigue cracks is 

Mode I since the other modes, although possible, often transition to Mode I. (Dowling 2013, 

p. 344; Schijve 2009, p. 108.) 

 

 

Figure 14. The crack opening modes (Dowling 2013, p. 344). 

 

Because crack has a zero tip radius, Kt would be infinite (see for example equation (1.8)). 

Therefore, the severity and intensity of the crack tip stress distribution is described with 

another factor called stress intensity factor (SIF) K. (Schijve 2009, p. 105–107.)  
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 𝐾 = 𝐹𝑆√𝜋𝑎 (1.9) 

 

In equation (1.9), S is remote stress from loading, a is the crack length, and F is a dimen-

sionless factor related to the geometry of the cracked component (Schijve 2009, p. 105–107). 

The stress intensity factor K is defined with an assumption that material behaves in linear-

elastic manner and hence the name of the approach is Linear Elastic Fracture Mechanics 

(LEFM) (Dowling 2013, p. 339). 

 

The stress components around the crack tip for Mode I crack can be derived from the theory 

of linear elasticity (Dowling 2013, p. 347). If the region of the crack tip is presented in the 

coordinate system shown in figure 15, the stresses near the crack tip can be expressed as 

follows (Dowling 2013, p. 346):  

 

 
𝜎𝑥 = 

𝐾𝐼

√2𝜋𝑟
𝑐𝑜𝑠

𝜃

2
(1 − 𝑠𝑖𝑛

𝜃

2
𝑠𝑖𝑛

3𝜃

2
) + ⋯ (1.10) 

 
𝜎𝑦 = 

𝐾𝐼

√2𝜋𝑟
𝑐𝑜𝑠

𝜃

2
(1 + 𝑠𝑖𝑛

𝜃

2
𝑠𝑖𝑛

3𝜃

2
) + ⋯ (1.11) 

 
𝜏𝑥𝑦 = 

𝐾𝐼

√2𝜋𝑟
𝑐𝑜𝑠

𝜃

2
𝑠𝑖𝑛

𝜃

2
cos 

3𝜃

2
+ ⋯ (1.12) 

 𝜎𝑧 = 0                                 (plane stress) (1.13) 

 𝜎𝑧 = 𝜈(𝜎𝑥 + 𝜎𝑦)              (plane strain; ϵ𝑧  =  0)  (1.14) 

 𝜏𝑦𝑧 = 𝜏𝑧𝑥 = 0 (1.15) 

 

, where KI is the stress intensity factor for Mode I crack, ν is Poisson’s ratio, θ and r are polar 

coordinates and σ and τ with different subscripts are normal and shear stress components.  
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Figure 15. Coordinate system for crack tip area (Dowling 2013, p. 346). 

 

The equations above give a good approximation for the crack tip region and they are correct 

for small values of r (i.e. r ≪ a). However, it can be seen that if r approaches zero, the stress 

distribution approaches infinity. This is not possible, and it suggest that some crack tip plas-

ticity occurs. As long as the plastic zone is small enough, K gives reliable indication of the 

stress intensity. (Dowling 2013, p. 347; Schijve 2009, p. 109–110, p. 138.) 

 

The fatigue crack growth behaviour of a given material can be described with Paris’ equation 

which describes the cyclic crack growth rate da/dN with the help of stress intensity range 

ΔK.  

 

 𝑑𝑎

𝑑𝑁
= 𝐶(Δ𝐾)𝑚 (1.16) 

 

In equation (1.16), C is a material dependent constant and m is the slope of the log-log plot 

of a fitted curve for crack growth test data. Equation (1.16) is applicable in the region II of 

the log-log plot of da/dN – ΔK shown in figure 16. The threshold stress intensity range or 

fatigue crack growth threshold ΔKth is a limiting value for crack growth i.e. when ΔK < ΔKth 

large cracks will not grow. (Dowling 2013, p. 564–565.) 
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Figure 16. The three crack growth regions (Schijve 2009, p. 218). 

 

The other asymptote of the curve is fracture toughness Kc which defines the material’s ability 

to resist fracture in the presence of a crack. Value of Kc for a given material depends on 

temperature, loading rate and up to a point, thickness of the component. Thicker the compo-

nent, the lower the Kc until the worst-case value is reached which is called plane strain frac-

ture toughness KIc. (Dowling 2013, p. 339.) 

 

1.5.3 Defect size 

As was mentioned in chapter 1.5.1 fatigue cracks often nucleate at inclusions. Inclusions or 

other material defects such as pores can be linked to the fatigue limit of the material with the 

help of fracture mechanics (Rabb 2017, p. 529). However, these kinds of defects are often 

so small that the crack growth behaviour is affected by the microstructure and LEFM is not 

applicable anymore. For example, decrease in the threshold value ΔKth have been shown for 

very small cracks. (Murakami 2002, p. 35–36; Dowling 2013, p. 614.) Therefore, the analy-

sis must be based on something that considers effects associated with very small cracks. 
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One such method has been proposed by El Haddad, Smith and Topper (1979). In this method 

the LEFM solution is modified by introducing an intrinsic crack length value a0 into equation 

(1.9) to account for the difference in ΔKth values for small and large cracks.  

 

 Δ𝐾 = Δ𝜎√𝜋(𝑎 + 𝑎0) (1.17) 

 
𝑎0 =

1

𝜋
(
Δ𝐾𝑡ℎ

Δ𝜎𝑎𝑓
)

2

 (1.18) 

 

a0 is a constant for a given material and material condition and it can be calculated from 

equation (1.18), where ΔKth is threshold stress intensity range for large cracks and Δσaf is 

stress range corresponding the fatigue limit of the material (small, smooth specimen). (El 

Haddad et al. 1979, p. 42.) 

 

The fatigue limit can be plotted as a function of the defect size by modifying Kitagawa-

Takahashi (K-T) diagram with the method proposed by El Haddad et al. (Rabb 2017, p. 529). 

The relation between fatigue limit range Δσaf and ΔKth can be obtained by modifying equa-

tion (1.17) (Rabb 2017, p. 534):     

 

 
Δ𝜎𝑎𝑓 =

Δ𝐾𝑡ℎ

𝐹√𝜋(𝑎 + 𝑎0)
 (1.19) 

 

, where F is geometry factor. For internal crack F = 0.637 and for semi elliptic surface crack 

F = 0.713 when a/c = 1. a is crack length and c is half-width of the crack. (Rabb 2017, p. 

534.) An example of a modified K-T diagram showing fatigue limit as a function of defect 

size for GJS-500-7 is shown in figure 17.  
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Figure 17. An example of a modified K-T diagram (R = -1) based on testing for GJS-500-7 

showing the fatigue limit and corresponding defect size (Mod. Rabb 2017, p. 169). 

 

1.6 Probability and Statistics 

Fatigue limit of material is a random variable which can be represented with a certain distri-

bution (Rabb 2013, p. 49). Therefore, basic principles and terms of probability and statistics 

are presented in this chapter. 

 

1.6.1 Discrete random variable 

Fatigue limit is obtained by testing a number of test pieces. Each test piece gives one discrete 

value and because of this, it is useful to know the fundamentals of discrete random variable. 

(Rabb 2013, p. 49–50.) 

 

Discrete random variable X is a variable which has a finite or countably infinite set of pos-

sible values xi with probabilities pi (Bronshtein et al. 2015, p. 811–812). There are some base 

quantities associated with discrete random variable which are presented below. 
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The arithmetic mean value (sample mean) 𝑥 or expected value E(x) (Henttonen, Peltomäki 

& Uusitalo 2006, p. 292): 

 

 
𝑥 = 𝐸(𝑥) =  

𝑛1

𝑁
𝑥1 +

𝑛2

𝑁
𝑥2 + ⋯+

𝑛𝑛

𝑁
𝑥𝑛 = ∑

𝑛𝑖𝑥𝑖

𝑁

𝑛

𝑖=1

 (1.20) 

 

, where ni is the frequency of xi and N is the total number of values (N = n1 + n2 +…+ ni). 

E(x) can also be calculated with the help of probabilities (Henttonen, Peltomäki & Uusitalo 

2006, p. 292):  

 

 
𝐸(𝑥) =  𝑝1𝑥1 + 𝑝2𝑥2 + ⋯+ 𝑝𝑛𝑥𝑛 = ∑𝑝𝑖𝑥𝑖

𝑛

𝑖=1

 (1.21) 

 

, where pi is the probability of xi.  

 

Another important parameter is variance s2 which is the average of the squared differences 

from the mean value. In other words, it measures how varied the values of X are in relation 

to its mean value 𝑥. The unbiased estimate of variance is often used, which means that in-

stead of just N in the denominator, N-1 is used in the calculation. This is called Bessel’s 

correction and it usually gives more accurate results because the calculation of sample vari-

ance contains a little bias which is corrected by the subtraction. (Henttonen et al. 2006, p. 

314; Statics How To 2020a; Statics How to 2020b.) 

 

 
𝑠2 =

∑ (𝑥𝑖 − 𝑥)2𝑛
𝑖=1

𝑁 − 1
 (1.22) 

 

Standard deviation (SD) s defines how far in average the values of X are from 𝑥, and it can 

be calculated from the square root of variance (Henttonen et al. 2006, p. 314–315): 

 

 𝑠 = √𝑠2 (1.23) 
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1.6.2 Fatigue strength distributions 

The commonly used distributions for the scatter of fatigue limit include Normal distribution, 

Log-normal distribution and Weibull distribution (Rabb 2013, p. 49). Mainly log-normal 

distribution is utilized in this work since the use of normal distribution may sometimes be 

too conservative and Weibull distribution is more difficult to use due to it having more pa-

rameters (which are difficult to define) (Rabb 2017, p. 68). Nevertheless, short description 

of each distribution is presented in this chapter. 

 

Continuous variables such as fatigue limit can have an infinite number of different values. 

Probability density function (PDF) represents the probabilities, and the area between PDF 

and abscissa equals 1. Probability for a given range of values [a, b] for the continuous vari-

able corresponds the area between PDF and abscissa between a and b (probability mass). 

The area is obtained by integrating PDF from a to b, and this integral is called cumulative 

distribution function (CDF). (Kontkanen, Lehtonen, Luosto 2012, p. 126–127.)   

 

Normal distribution 

If fatigue limit scatter is described with normal distribution the probability density function 

f(σaf) and the cumulative distribution function F(σ) are as follows (Rabb 2013, p. 51): 

 

 

𝑓(𝜎𝑎𝑓) =
1

𝑠𝜎√2𝜋
∙ 𝑒

−
(𝜎𝑎𝑓−𝜎𝑎𝑓)

2

2𝑠𝜎
2

  (1.24) 

 

𝐹(𝜎) = 𝑃(𝜎𝑎𝑓 ≤ 𝜎) = ∫ 𝑓(𝜎)𝑑𝜎 =
𝜎

−∞

1

𝑠𝜎√2𝜋
∫ 𝑒

−
(𝜎−𝜎𝑎𝑓)

2

2𝑠𝜎
2 𝑑𝜎

𝜎

−∞

 (1.25) 

 

, where σaf is fatigue limit,  𝜎𝑎𝑓is expected value, sσ
2 is variance and sσ is standard deviation. 

P is probability and when CDF is calculated at point σ, the probability for σaf < σ is obtained. 

This is also called failure probability, and if the survival probability (reliability) R is re-

quired, it can be calculated by taking the complement of P (Rabb 2013, p. 51). 

 

 𝑅 = 1 − 𝑃 (1.26) 
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In other words, R gives the probability for σaf > σ. The expected value (mean value) E(σaf) 

can be obtained by calculating the center of mass for the area under the PDF curve along the 

abscissa (Rabb 2013, p. 52): 

 

 
𝜎𝑎𝑓 = 𝐸(𝜎𝑎𝑓) = ∫ 𝜎𝑎𝑓𝑓(𝜎𝑎𝑓)𝑑𝜎𝑎𝑓

∞

−∞

 (1.27) 

 

Variance corresponds to moment of inertia of the mass distribution about the center of mass 

𝜎𝑎𝑓 (Rabb 2013, p. 52): 

 

 
𝑠𝜎

2 = 𝑉(𝜎𝑎𝑓) = 𝐸 [(𝜎𝑎𝑓 − 𝜎𝑎𝑓)
2
] = ∫ (𝜎𝑎𝑓 − 𝜎𝑎𝑓)

2
𝑓(𝜎𝑎𝑓)𝑑𝜎𝑎𝑓

∞

−∞

 (1.28) 

 

Usually, instead of equations (1.24) and (1.25), standard normal distribution is utilized. In 

that case, the mean value is 0 and standard deviation is 1, which yields (Rabb 2013, p. 53): 

 

 
𝑓(𝑥) =

1

√2𝜋
𝑒−

𝑥2

2  (1.29) 

 
𝑃(𝑥 ≤ 𝜆) =

1

√2𝜋
∫ 𝑒−

𝑥2

2

𝜆

−∞

𝑑𝑥  (1.30) 

 

Now, λ acts as a multiplier which tells how many times the standard deviation has to be 

subtracted from the mean value to have failure probability that is smaller or equal to the 

required P. (Rabb 2013, p. 53.) 

 

When calculating the probability of failure for a certain stress amplitude σa, equation (1.30) 

needs to be integrated (Rabb 2013, p 54). In this case λ can be calculated when the mean 

value, the standard deviation and stress amplitude σa are known (Rabb 2013, p 54): 

 

 
𝜆 =

𝜎𝑎 − 𝜎𝑎𝑓

𝑠𝜎
 (1.31) 

 

An example of normal distribution is presented in figure 18. The distribution is drawn ac-

cording to an example provided by Rabb (2013, p. 58) in his book. 
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Figure 18. Normal distribution for fatigue limit with 𝜎𝑎𝑓  = 533.9 MPa and sσ = 35.2 MPa 

(Mod. Rabb 2013, p. 58). 

 

Log-normal distribution  

The use of log-normal distribution is advisable when normal distribution gives too conserva-

tive results and use of Weibull distribution is not possible (requires three parameters which 

may be difficult to define accurately). With log-normal distribution the logarithm of fatigue 

limit follows normal distribution and values of the random variable start from zero. PDF of 

log-normal distribution is symmetric on a logarithmic scale (abscissa = lnσ) but when it is 

presented on a normal scale (abscissa = σ) it becomes asymmetric. This means that the mean 

value 𝜎𝑎𝑓 and median value σmed are not equal anymore, mean value being a little higher 

than median value. Median value is the value where CDF yields 0.5; F(σmed) = 0.5. (Rabb 

2013, p. 55-56.) 

 

PDF and CDF for log-normal distribution are expressed as follows (Rabb 2013, p. 56): 

 

 

𝑓(𝜎𝑎𝑓) =
1
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         , 0 ≤ 𝜎𝑎𝑓 ≤ ∞ (1.32) 
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𝐹(𝜎) = 𝑃(𝜎𝑎𝑓 ≤ 𝜎) =

1

𝑠𝑙𝑛√2𝜋
∫

1

𝜎

𝜎

0

𝑒
−

(ln𝜎−𝜇𝑙𝑛)2

2𝑠𝑙𝑛
2

𝑑𝜎 (1.33) 

 

, where sln is logarithmic standard deviation and μln is logarithmic mean value.   

 

Calculation of CDF is done by integrating standard normal distribution from -∞ to λ (Rabb 

2013, p. 56). λ is obtained by reducing logarithmic mean value to correspond the calculated 

stress amplitude σa (Rabb 2013, p. 56): 

 

 
 𝜆 =

ln 𝜎𝑎 − 𝜇𝑙𝑛

𝑠𝑙𝑛
 (1.34) 

 

The expected value (mean value) 𝜎𝑎𝑓, median value σmed, variance sσ
2

 and standard deviation 

sσ for log-normal distributed fatigue limit are obtained as follows (Rabb 2013, p. 56; Rabb 

2017, p. 69): 

 

 
𝜎𝑎𝑓 = 𝐸(𝜎𝑎𝑓) = 𝑒(𝜇𝑙𝑛+

𝑠𝑙𝑛
2

2
)
 (1.35) 

 𝜎𝑚𝑒𝑑 = 𝑒𝜇𝑙𝑛 (1.36) 

 𝑠𝜎
2 = 𝑉(𝜎𝑎𝑓) = (𝑒𝑠𝑙𝑛

2
− 1)𝑒(2𝜇𝑙𝑛+𝑠𝑙𝑛

2 ) (1.37) 

 𝑠𝜎 = √𝑠𝜎
2 (1.38) 

 

Often in practice, mean value for fatigue limit obtained using normal distribution is almost 

equal to that obtained with log-normal distribution. Also, logarithmic standard deviation sln 

is so close to the relative standard deviation sr (sr = sσ / 𝜎𝑎𝑓) that when sr < 0.25, in calcula-

tions it can be assumed that sln = sr. (Rabb 2017, p. 72.) 

 

For log-normal distribution the link between safety factor SF and failure probability P is 

(Rabb 2017, p. 70):  

 

 ln 𝜎𝑎𝑓,𝑃 = 𝜇𝑙𝑛 + 𝜆𝑠𝑙𝑛 = ln(𝜎𝑚𝑒𝑑) + 𝜆𝑠𝑙𝑛 (1.39) 

 𝑆𝐹 =
𝜎𝑚𝑒𝑑

𝜎𝑎𝑓,𝑃
= 𝑒−𝜆𝑠𝑙𝑛  (1.40) 
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𝜆 = −

ln 𝑆𝐹

𝑠𝑙𝑛
 (1.41) 

 

, where σaf,P is fatigue limit reduced to failure probability P.  

 

If the mean value 𝜎𝑎𝑓 and the standard deviation sσ are obtained with normal distribution, 

the corresponding logarithmic values for log-normal distribution can be calculated with rea-

sonable accuracy using equations (1.35) and (1.37) (Rabb 2013, p. 57). For this purpose, 

they have to be modified (Rabb 2013, p. 57): 

 

 

𝑠𝑙𝑛 = √ln (1 +
𝑠𝜎

2

𝑒2𝑙𝑛𝜎𝑎𝑓
) (1.42) 

 
𝜇𝑙𝑛 = ln 𝜎𝑎𝑓 −

𝑠𝑙𝑛
2

2
 (1.43) 

 

An example of log-normal distribution is presented in figure 19. The distribution is drawn 

according to an example provided by Rabb (2013, p. 58) in his book. The abscissa has values 

of ln(σ) on it, so the distribution is symmetric. The same distribution drawn with σ on the 

abscissa can be seen in figure 21.  

 

 

Figure 19. Log-normal distribution for fatigue limit with 𝜇𝑙𝑛 = 6.2794 and sln = 0.06724 

(Mod. Rabb 2013, p. 58). 
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Weibull distribution 

PDF for Weibull distribution is expressed as (Rabb 2013, p. 61): 

 

 

𝑓(𝜎𝑎𝑓) =
𝛽(𝜎𝑎𝑓 − 𝜎𝑡𝑟)

𝛽−1

(𝜎𝑐ℎ − 𝜎𝑡𝑟)𝛽
𝑒

−(
𝜎𝑎𝑓−𝜎𝑡𝑟

𝜎𝑐ℎ−𝜎𝑡𝑟
)
𝛽

 (1.44) 

 

, where σaf is fatigue limit, σtr is threshold value for fatigue limit, σch is characteristic stress 

and β is shape parameter which defines the magnitude of scatter.  

 

There are three parameters in Weibull distribution that are obtained from fatigue test results: 

σtr, σch and β. It is not easy to determine these parameters from the test results and that is 

why the use of this distribution is somewhat difficult. However, this problem can be solved 

by assuming that the threshold value σtr is very small or zero. Then, the distribution resem-

bles log-normal distribution. (Rabb 2013, p. 61.) 

 

CDF for Weibull distribution is obtained in a closed form because it is possible to directly 

integrate PDF (Rabb 2013, p. 61): 

 

 
𝐹(𝜎) = 𝑃(𝜎𝑎𝑓 ≤ 𝜎) = 1 − 𝑒

−(
𝜎−𝜎𝑡𝑟

𝜎𝑐ℎ−𝜎𝑡𝑟
)
𝛽

 (1.45) 

 

The fatigue limit for a certain failure probability can be obtained from equation (1.45) by 

modifying it into the following form (Rabb 2013, p. 61): 

 

 𝜎𝑎𝑓,𝑃 = 𝜎𝑡𝑟 + (𝜎𝑐ℎ − 𝜎𝑡𝑟) ∙ √−ln (1 − 𝑃)
𝛽

 (1.46) 

   

As Weibull distribution is asymmetric, its median value is not equal to its mean value (ex-

pected value). The median value σmed which is used in reduction to the required failure prob-

ability is obtained by setting P = 0.5 in equation (1.46) (Rabb 2013, p. 62):  

 

 𝜎𝑚𝑒𝑑 = 𝜎𝑡𝑟 + (𝜎𝑐ℎ − 𝜎𝑡𝑟) ∙ √− ln 0.5
𝛽

  (1.47) 
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The mean value 𝜎𝑎𝑓 and variance 𝑠𝜎
2 can be calculated from (Rabb 2013, p. 62): 

 

 
 𝜎𝑎𝑓 = 𝜎𝑡𝑟 + (𝜎𝑐ℎ − 𝜎𝑡𝑟) ∙ Γ (1 +

1

𝛽
) 

 
(1.48) 

 
𝑠𝜎

2 = (𝜎𝑐ℎ − 𝜎𝑡𝑟)
2 [Γ (1 +

2

𝛽
) − Γ2 (1 +

1

𝛽
)] (1.49) 

 

, where Γ is gamma function. If the argument 1 + 2 / β is denoted as t, the following integral 

can be obtained (Rabb 2013, p. 62): 

 

 
Γ(𝑡) = ∫ 𝑥𝑡−1𝑒−𝑥𝑑𝑥

∞

0

 (1.50) 

 

This does not have a closed form solution and it has to be solved numerically. Fitting test 

data to Weibull distribution is challenging if only information available is the values for 

normal or log-normal distribution. (Rabb 2013, p. 62.) 

 

An example of Weibull distribution is presented in figure 20. The distribution is drawn ac-

cording to an example provided by Rabb (2013, p. 62) in his book. 

 

 

Figure 20. Weibull distribution for fatigue limit with σtr = 267 MPa, σch = 546 MPa, β = 

9.752, 𝜎𝑎𝑓 = 532.2 MPa, σmed = 535.8 MPa and sσ = 32.7 MPa (Mod. Rabb 2013, p. 62).   
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A comparison of different distributions is presented in figure 21. All the distributions from 

figures 18-20 are representing the same set of fatigue test results and they are plotted in same 

graph to show the difference between different distributions. The fatigue test results are by 

Rabb (2013, p. 58–59, 62).  

 

 
Figure 21. Comparison of different fatigue limit distributions (Mod. Rabb 2013, p. 58, 62). 

 

1.6.3 Confidence intervals of sample values 

The fatigue tests give only sample values for mean and standard deviation. These need to be 

modified so that with a certain probability they are within given bounds i.e. the obtained 

sample values are conservative in respect to the actual population values. (Rabb 2017, p. 

115.) 

 

Basically, aforementioned means that the sample values themselves are random variables. 

The sample mean value follows Student’s distribution and the sample standard deviation 

follows χ2 -distribution (chi-squared distribution). With these distributions, the population 
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values for mean and standard deviation can be obtained. (Rabb 2017, p. 115–116.) The the-

ory of the distributions can be found for example in Rabb’s book (2017) and it is not ex-

plained thoroughly here but instead, only the main equations are given. 

 

The population value for the mean of fatigue limit according to Student’s distribution is 

obtained as follows (Rabb 2017, p. 116–117): 

 

 
𝜎𝑎𝑓 = 𝜎𝑎𝑓,𝐶𝜇

= 𝜎𝑎𝑓 −
𝑡2𝑠

√𝑛
 (1.51) 

 

, where Cμ denotes the confidence level, t2 is the variable of the Student’s distribution corre-

sponding a specific confidence, s is sample standard deviation (from the fatigue test) and n 

is the number of test specimens.  

 

For example, Cμ = 90 % would mean that if the fatigue test was repeated, 90 % of the ob-

tained sample means from the new tests would be equal to or higher than 𝜎𝑎𝑓,𝐶90 (Rabb 

2017, p. 116). t2 is determined according to number of degrees of freedom: D.O.F = n - 1. 

Some t2 values can be found tabulated in Rabb’s book (2017, p. 119) or in mathematics 

handbooks by Råde & Westergren (2014, p. 472) or Bronshtein et al. (2015, p. 1138).  

 

The population value for standard deviation can be obtained according to χ2 -distribution as 

follows (Rabb 2017, p. 120–121): 

 

 

𝑠𝜎 = 𝑠𝜎𝐶 = √
𝑛 − 1

ℎ1
⋅ 𝑠  (1.52) 

 

, where s is sample standard deviation, n is number of test specimens and h1 is the variable 

of χ2 -distribution corresponding a specific confidence. h1 values can be found tabulated by 

Rabb (2017, p. 123) or Råde & Westergren (2014, p. 469–470) and like in the case of t2, 

they are determined according to number of degrees of freedom: D.O.F = n - 1. 
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Often, staircase test used for fatigue limit testing underestimates the size of standard devia-

tion. Consequently, the real distribution of sample standard deviation may differ considera-

bly from χ2 -distribution and this should be considered when defining the population value. 

(Rabb 2017, p. 125.) Rabb (2017) has given detailed explanation of this in his book. The 

explanation is not presented here since no tests are conducted within this thesis. The relative 

standard deviation of sample values and population values for spheroidal graphite cast iron 

and steels are presented in tables 1 and 2 respectively. 

 

Table 1. Relative standard deviation, sample (n = 25) and population values for spheroidal 

graphite cast irons (sr = sln) (Mod. Rabb 2017, p. 259). 

Machined surface Shot peened Casting surface 

sr (sample) srC90 srC10 sr (sample) srC90 srC10 sr (sample) srC90 srC10 

0.1 
0.12… 

(0.13) 
0.085 0.145 0.18 0.12 0.15 0.21 0.13 

 

Table 2. Relative standard deviation, sample (n = 25) and population values for steels (sr = 

sln) (Mod. Rabb 2017, p. 258). 

Machined surface 

Shot peened 
On surface Below surface 

Parallel grain 

flow 

Perpendicular 

grain flow 

Parallel grain 

flow 

Perpendicular 

grain flow 

sr srC90 sr srC90 sr srC90 sr srC90 sr srC90 

0.065 0.08 0.065 0.08 0.10 0.12 0.08 0.10 0.10 0.12 
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2 FATIGUE ANALYSIS METHODS 

 

 

This chapter presents the methods for analysing fatigue of materials and components. Most 

of the methods below are incorporated in the final analysis procedure and they are explained 

more thoroughly. However, a few additional methods are explained more briefly just to show 

that there are variety of possibilities to analyse fatigue damage. 

 

2.1 Haigh diagram 

There are multiple equations which can be drawn in σaf – σm diagram to describe the effect 

of mean stress on fatigue limit. These include for example Goodman line, Gerber parabola 

and Soderberg line but often these consider only tensile mean stresses. In order to demon-

strate the effect of compressive mean stresses, a more sophisticated diagram is needed. 

(Milella 2013, p. 282–285.) 

 

Two common diagrams which show the effect of both tensile and compressive mean stresses 

are called Haigh diagram and Smith diagram. (Milella 2013, p. 294–296.) In this work Haigh 

diagram will be utilized since this is preferred by Rabb (2017, p. 40) and also, it seems to be 

more demonstrative and easier to read. 

 

Haigh diagrams present the fatigue limit σaf as a function of mean stress σm. Often they are 

constructed in such a way that only the elastic behaviour is plotted, as is the case with the 

diagrams drawn according to DNVGL-ST-0361 in chapter 1.1.1. However, this does not 

provide enough information if the maximum stress exceeds the yield strength of the material. 

Yield strength may be exceeded locally near (sharp) notches and this local plasticity can be 

modelled with FEM. In that case, it is useful to know the shape of the plastic portions of the 

Haigh diagram as well. (Rabb 2017, p. 40.)   

 

For the purposes of this work, new diagrams are made according to recommendations made 

by Rabb (2017, p. 40–45, 128–138) because it has been found that the diagrams provided in 

DNVGL-ST-0361 may be unconservative when spheroidal graphite cast irons are consid-
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ered. According to The Switch, this is especially so when relatively large castings are con-

sidered. When quenched and tempered steels and structural steels are considered, the dia-

grams by DNVGL are closer to those suggested by Rabb (2017, p. 40–45). 

 

2.1.1 Quenched and tempered steel 42CrMo4 

Haigh diagram for 42CrMo4 is based on the static strength values provided in SFS-EN ISO 

683-2. Haigh diagram based on Rabb’s suggestions and DNVGL-ST-0361 for comparison 

are shown in figure 22. 

 

 

Figure 22. Haigh diagrams for 42CrMo4. 

 

Ultimate strength and yield strength can be used to obtain the fatigue limit for completely 

reversed loading as follows (Mourier 2002, p. 83): 

 

 𝜎𝑎𝑅=−1 = 1.04(0.144𝑅𝑚 + 0.309𝑅𝑝0.2) + 56 MPa (2.1) 

 

This is conservative and includes the required confidence level in respect to sample value. 

The equation (2.1) is valid for most steel types (Rm up to 1400 MPa) when the effective area 

of the reference specimen is 225 mm2. (Rabb 2017, p. 42, 258.) 
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When normative static strength values are used, they can be increased by 6 %. This comes 

from the fact that the tensile strength of material must not be less than the minimum value 

stated in standards. Naturally, this leads to the median value of tensile strength being higher 

(c. 7.4 % higher) than the normative value given in standards as material manufacturers must 

ensure that the minimum requirement is met. (Rabb 2017, p. 79.)   

 

The slope k of the linear part (Rabb 2017, p. 43): 

 

 𝑘 = 0.1 − 0.00035𝑅𝑚 (2.2) 

   

It can be noted that this is the same equation provided in DNVGL-ST-0361. The linear part 

is then as follows (Rabb 2017, p. 43): 

 

 𝜎𝑎𝑓 = 𝜎𝑎𝑅=−1 + 𝑘𝜎𝑚               (𝜎𝑚,𝑃2  ≤  𝜎𝑚  ≤  𝜎𝑚𝑅=0) (2.3) 

 

The end point P2 for the linear part on the compression side can be calculated with the fol-

lowing equations (Rabb 2017, p. 44):  

 

 
𝜎𝑚,𝑃2 =

𝜎𝑎𝑅=−1 − 𝑅𝑝0.2

2(1 − 𝑘)
          (𝑃2, fig. 22) (2.4) 

 𝜎𝑎,𝑃2 = 𝜎𝑎𝑅=−1 + 𝑘𝜎𝑚,𝑃2        (𝑃2, fig. 22) (2.5) 

 

The curve between P0 and P2 is constructed as a quadratic B-spline with the following equa-

tions for points P0 and P1 (Rabb 2017, p. 40, 44.): 

 

The starting point P0: 

 

 𝜎𝑚,𝑃0 = −𝑅𝑚
∗  (2.6) 

 𝜎𝑎,𝑃0 = 0 (2.7) 

  
𝑅𝑚

∗ =
(1 + 2𝑀)𝜎𝑎𝑅=−1

𝑀(2 + 𝑀)
 (2.8) 
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, where M is -k and 𝑅𝑚
∗  is fictive ultimate strength which takes into account that the true 

ultimate strength is about 30-60 % higher than the nominal value due to necking.  

 

The intermediate point P1 (Rabb 2017, p. 44): 

 

 
𝜎𝑚,𝑃1 =

𝑅𝑚
∗ − 𝜎𝑎𝑅=−1

𝑘 − 1
 (2.9) 

 𝜎𝑎,𝑃1 = 𝑅𝑚
∗ + 𝜎𝑚,𝑃1 = 𝜎𝑎𝑅=−1 + 𝑘𝜎𝑚,𝑃1 (2.10) 

 

The end point P2 is calculated with equations (2.4) and (2.5) and the spline is then con-

structed with the following equations (Rabb 2017, p. 44): 

 

 𝜎𝑎𝑓 = (1 − 𝑡)2𝜎𝑎,𝑃0 + 2𝑡(1 − 𝑡)𝜎𝑎,𝑃1 + 𝑡2𝜎𝑎,𝑃2 (2.11) 

 𝜎𝑚 = (1 − 𝑡)2𝜎𝑚,𝑃0 + 2𝑡(1 − 𝑡)𝜎𝑚,𝑃1 + 𝑡2𝜎𝑚,𝑃2 (2.12) 

 

, where t is a normalized variable. Corresponding t for mean stress σm can be calculated 

between σm,P0 ≤ σm ≤ σm,P2 as follows (Rabb 2017, p. 44-45):  

 

 𝑡 =
𝜎𝑚,𝑃0 − 𝜎𝑚,𝑃1

𝜎𝑚,𝑃0 − 2𝜎𝑚,𝑃1 + 𝜎𝑚,𝑃2

   ±√(
𝜎𝑚,𝑃0 − 𝜎𝑚,𝑃1

𝜎𝑚,𝑃0 − 2𝜎𝑚,𝑃1 + 𝜎𝑚,𝑃2
)

2

−
𝜎𝑚,𝑃0 − 𝜎𝑚

𝜎𝑚,𝑃0 − 2𝜎𝑚,𝑃1 + 𝜎𝑚,𝑃2

 (2.13) 

 

If the first term is positive minus is used in front of the square root and if it is negative, then 

plus. In other words, the normalized variable has values from 0 to 1. (Rabb 2017, p. 45.) 

 

The tensile side of the diagram is constructed as a sideways parabola between σmR=0 ≤ σm ≤ 

𝑅𝑚
∗  as follows (Rabb 2017, p. 43–44): 

 

 

𝜎𝑎𝑓 = 𝜎𝑎𝑅=−1 (
1 − 𝑏

2 − 𝑏
+ √

1

(2 − 𝑏)2
−

𝑏𝜎𝑚

(2 − 𝑏)𝑅𝑚
∗
) (2.14) 
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𝑏 =

2(1 + 2𝑀)

2 + 2𝑀 − 𝑀2
 (2.15) 

 𝜎𝑎𝑅=0 =
𝜎𝑎𝑅=−1

1 − 𝑘
 (2.16) 

 𝜎𝑚𝑅=0 = 𝜎𝑎𝑅=0 (2.17) 

 

, where M is -k and 𝑅𝑚
∗  is the same as earlier.  

 

2.1.2 Structural steel S355 

Haigh diagram for S355 is based on the static strength values which are provided in SFS-

EN ISO 10025-2. Haigh diagram based on Rabb’s suggestions and DNVGL-ST-0361 for 

comparison are shown in figure 23. 

 

 

Figure 23. Haigh diagrams for S355. 

 

The Haigh diagrams for structural steels are constructed much the same way as for the 

quenched and tempered steels (eqs. (2.1)–(2.13)). However, the fictive ultimate strength 𝑅𝑚
∗  

is now calculated as follows (Rabb 2013, p. 41): 
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 𝑅𝑚
∗ ≈ 1.3𝑅𝑚 (2.18) 

 

This is because the slope of the diagram for structural steels is relatively small and calculat-

ing 𝑅𝑚
∗  as it is calculated in case of quenched and tempered steels would result in way too 

high a value for 𝑅𝑚
∗ . (Rabb 2013, p. 41.) 

 

Another difference is that the parabola on the tensile side is now constructed as a second 

order parabola as follows (Rabb 2013, p. 41): 

 

 
𝜎𝑚1 =

𝑅𝑝0.2 − 𝜎𝑎𝑅=−1

1 + 𝑘
 (2.19) 

 𝜎𝑎1 = 𝜎𝑎𝑅=−1 + 𝑘𝜎𝑚1 (2.20) 

 

, where σaR=-1 is calculated from equation (2.1).  

 

The parabola between σm1 ≤ σm ≤ 𝑅𝑚
∗   follows the equation (Rabb 2013, p. 41): 

 

 𝜎𝑎𝑓 = 𝐴𝜎𝑚
2 + 𝐵𝜎𝑚 + 𝐶  (2.21) 

 

The constants A, B and C are calculated from (Rabb 2013, p. 42): 

 

 
𝐴 =

𝑘𝜎𝑚1 − 𝜎𝑎1 − 𝑘𝑅𝑚
∗

(𝑅𝑚
∗ − 𝜎𝑚1)2

 (2.22) 

 𝐵 = 𝑘 − 2𝐴𝜎𝑚1 (2.23) 

 𝐶 = 𝐴𝜎𝑚1
2 + 𝜎𝑎1 − 𝑘𝜎𝑚1 (2.24) 
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2.1.3 Spheroidal graphite cast iron 

Haigh diagram for spheroidal graphite cast irons is constructed based on static strength val-

ues provided in SFS-EN 1563. Haigh diagrams based on Rabb’s suggestions and DNVGL-

ST-0361 for comparison are shown in figure 24. 

 

 

Figure 24. Haigh diagrams for GJS400, GJS450, GJS500, GJS600 and GJS700. 

 

Fatigue limit for completely reversed loading σaR=-1 and the slope k of the linear part are 

obtained by fitting a function to data points provided by Rabb (2017, p. 259). The effective 

area of the test specimens is Aref = 1039 mm2 (Rabb 2017, p. 259). 

 

For σaR=-1 based on the static and fatigue tests conducted by Rabb the following is obtained: 

 

 𝜎𝑎𝑅=−1 = 0.1798 ∙ 𝑅𝑚 + 0.11845 ∙ 𝑅𝑝0.2 + 60.6699   MPa (2.25) 

 

And for k: 

 

 𝑘 = 0.000261 ∙ 𝑅𝑚 − 0.65493 (2.26) 
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The linear part between σm2 and σm1 is (Rabb 2017, p. 259): 

 

 𝜎𝑎𝑓 = 𝜎𝑎𝑅=−1 + 𝑘𝜎𝑚 (2.27) 

 
𝜎𝑚2 =

𝜎𝑎𝑅=−1 − 𝑅𝑝0.2

1 − 𝑘
 (2.28) 

 
𝜎𝑚1 =

𝑅𝑝0.2 − 𝜎𝑎𝑅=−1

1 + 𝑘
 (2.29) 

 

The compression side of the diagram is constructed as a B-spline like in the cases of different 

steels but the points along the spline are calculated a bit differently (Rabb 2017, p. 259). 

 

For P0 (Rabb 2017, p. 259): 

 

 𝜎𝑚,𝑃0 = 𝑅𝑚𝑐 (2.30) 

 𝜎𝑎,𝑃0 = 0 (2.31) 

 

, where Rmc is ultimate compressive strength. It should be noted that for cast irons the com-

pressive strength is considerably higher than the tensile strength. Also, as the slope of the 

linear part of the diagram is so steep, the fictive ultimate strength 𝑅𝑚
∗  is not used for cast iron 

but rather, the diagram is constructed between Rmc and Rm. (Rabb 2017, p. 129, 259.) 

 

For P1 (Rabb 2017, p. 259): 

 

 
𝜎𝑚,𝑃1 =

𝜎𝑎𝑅=−1 + 𝑅𝑚𝑐

1 − 𝑘
 (2.32) 

 𝜎𝑎,𝑃1 = 𝜎𝑎𝑅=−1 + 𝑘𝜎𝑚,𝑃1 (2.33) 

 

And for P2 (Rabb 2017, p. 259): 

 

 
𝜎𝑚,𝑃2 = 𝜎𝑚2 =

𝜎𝑎𝑅=−1 − 𝑅𝑝0.2

1 − 𝑘
 (2.34) 

 𝜎𝑎,𝑃2 = 𝜎𝑎𝑅=−1 + 𝑘𝜎𝑚,𝑃2 (2.35) 
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Using points P0, P1 and P2 the compression B-spline can be drawn with the following equa-

tions (Rabb 2017, p. 259): 

 

 𝜎𝑎𝑓 = 2𝑡 ⋅ (1 − 𝑡) ⋅ 𝜎𝑎,𝑃1 + 𝑡2 ⋅ 𝜎𝑎,𝑃2 (2.36) 

 𝜎𝑚 = (1 − 𝑡)2 ⋅ 𝜎𝑚,𝑃0 + 2𝑡 ⋅ (1 − 𝑡) ⋅ 𝜎𝑚,𝑃1 + 𝑡2 ⋅ 𝜎𝑚,𝑃2 (2.37) 

 

, where t is calculated from equation (2.13). 

 

The right side of the diagram is also drawn as a B-spline. The starting point P0 is (Rabb 

2017, p. 259): 

 

 
𝜎𝑚,𝑃0 = 𝜎𝑚1 =

𝑅𝑝0.2 − 𝜎𝑎𝑅=−1

1 + 𝑘
 (2.38) 

 𝜎𝑎,𝑃0 = 𝜎𝑎𝑅=−1 + 𝑘𝜎𝑚,𝑃0 (2.39) 

 

For P1 on the tensile side (Rabb 2017, p. 259): 

 

 𝜎𝑚,𝑃1 =
−𝜎𝑎𝑅−1

𝑘
 (2.40) 

 𝜎𝑎,𝑃1 = 0 (2.41) 

 

For P2 on the tensile side (Rabb 2017, p. 259): 

 

 𝜎𝑚,𝑃2 = 𝑅𝑚 (2.42) 

 𝜎𝑎,𝑃2 = 0 (2.43) 

 

The B-spline is then as follows (Rabb 2017, p. 259): 

 

 𝜎𝑎𝑓 = (1 − 𝑡)2 ⋅ 𝜎𝑎,𝑃0 (2.44) 

 𝜎𝑚 = (1 − 𝑡)2 ⋅ 𝜎𝑚,𝑃0 + 2𝑡 ⋅ (1 − 𝑡) ⋅ 𝜎𝑚,𝑃1 + 𝑡2𝜎𝑚,𝑃2 (2.45) 

 

, where t is according to equation (2.13). 
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2.1.4 Verification of the Haigh diagrams using literature sources 

As the Haigh diagrams suggested by Rabb provide more capacity in some cases than what 

is given in diagrams by DNVGL-ST-0361, an attempt to verify their accuracy using fatigue 

test data from literature is made. The size factor Ksize (see chapter 2.2.3) is taken into account 

using the effective areas of the test specimens when comparing the test data and the Haigh 

diagrams. 

 

Test data for spheroidal graphite cast iron by Meyer (2014) and Tanaka et al. (1995) seem 

to agree with the curves drawn according to previous chapters. The plotted data can be seen 

in Appendix I,1.  

 

Pallarés-Santasmartas et al. (2018) have tested the fatigue properties of 34CrNiMo6 and also 

this seems to follow the suggested curve quite well (see Appendix I,2). Some other material 

data points from previous studies were provided in the same source. The original sources for 

them were unavailable so no size factor could be defined but trendlines drawn in Excel give 

somewhat similar shape for the Haigh diagrams as the suggestion in chapter 2.1.1.  

 

Very little data was found for structural steels. Data points provided by Ukrainetz (1960) 

shows similar trend to the curve as suggested by Rabb but the data seems to fall slightly 

below the suggested curve (see Appendix I,3).  

 

2.2 Reduction factors 

The fatigue limit for smooth test specimen from Haigh diagram must be reduced with dif-

ferent reduction factors in order to obtain the fatigue limit of the actual machine element. 

Different reduction factors take into account the size effect, surface roughness, anisotropy 

and effects associated with Very High Cycle Fatigue (VHCF). 

 

2.2.1 Surface roughness factor KR 

Surface roughness can have a large effect on fatigue limit. Therefore, the fatigue limit from 

Haigh diagram is reduced with a surface roughness factor KR which describes the effect of 

different surface conditions, such as casting surface or ground surface, to the fatigue limit. 

Fatigue limit is usually tested with polished specimens and in that case, KR is 1. (Rabb 2017, 

p. 195–196.) 
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DNVGL-ST-0361 gives the following equation for surface roughness factor: 

 

 𝐹𝑜 = 1 − 0.22 ⋅ (log(𝑅𝑧))
0.64 ⋅ log(𝜎𝑏) + 0.45 ⋅ (log(𝑅𝑧))

0.53 (2.46) 

 

, where Rz is the height of the surface roughness profile [μm] and σb is ultimate strength 

[MPa]. The same equation is given for both non-welded forged and rolled parts and cast 

steel and spheroidal graphite cast iron. (DNVGL-ST-0361 2016, p. 51–52.) 

 

However, it can be seen in figure 25, that some sources give different values for KR depend-

ing whether steel or cast iron is concerned. For example, TGL 19341/01 (1988, p. 5) gives 

noticeably larger value for KR in case of spheroidal graphite cast iron than what is obtained 

with equation (2.46). Based on bending staircase test by Rabb (2017, p. 197–198) with pol-

ished and casting surface specimens it seems that TGL 19341/01 gives better estimation for 

KR (TGL 19341/01 1988, p. 5): 

 

 
𝐾𝑅 = 1 − 𝑎𝜎 ⋅ lg (𝑅𝑧) ⋅ lg (2 ⋅

𝑅𝑚

𝑅𝑚𝑆𝑚𝑖𝑛
)  (2.47) 

 

In equation (2.47) aσ is 0.16 and RmSmin is 400 MPa for spheroidal graphite cast iron (TGL 

19341/01 1988, p. 5). 

 

There are also approaches which are based on fracture mechanics to define the surface rough-

ness factor. According to Sperle (2013, p. 86) KR can be expressed by the following equation 

(see figure 26): 

 

 

𝐾𝑅 = √1 + 𝑎 (
2𝑆𝑟0

Δ𝐾𝑡ℎ
)
2

 (2.48) 

 
𝑆𝑟 =

𝑆𝑟0

𝐾𝑅
 (2.49) 

 

, where Sr0 is the fatigue limit of smooth specimen, a is crack depth (conservatively a = Rz) 

and R is stress ratio. Using this, it is possible to present the fatigue limit and the surface 

roughness in K-T diagram as is shown in figure 26 for 42CrMo4. 
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Figure 25. Comparison of KR for spheroidal graphite cast iron casting surface (Rz = 200 μm) 

between TGL 19341/01, DNVGL-ST-0361 and Sperle (2013). 

 

The plot in figure 26 can be divided into two regimes: crack initiation and crack growth. The 

transition point depends on degree of crack opening and the state of residual stress which 

affects the local R. The crack growth regime is described with the following equation. (Sperle 

2013, p. 87.) 

 

 
𝑆𝑟𝑝 =

1

2
⋅
Δ𝐾𝑡ℎ

√𝑎
 (2.50) 

 

In equation (2.50), Srp is the stress level required to propagate a crack of size a (Sperle 2013, 

p. 87). 
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Figure 26. Fatigue limit as a function of Rz according to equation (2.49) for 42CrMo4. 

 

Murakami (2002) has also suggested method based on fracture mechanics and √𝑎𝑟𝑒𝑎 pa-

rameter model. The quantitative evaluation of surface roughness effect is based on two sur-

face roughness parameters: depth a and pitch 2b (pitch considers the interference between 

the surface roughness notches). To simplify the analysis, these two parameters have been 

combined in one representative parameter, the equivalent defect size for roughness √𝑎𝑟𝑒𝑎𝑅. 

(Murakami 2002, p. 313.) 

 

The equivalent defect size for roughness can be obtained from the following (Murakami 

2002, p. 316): 

 

 
√𝑎𝑟𝑒𝑎𝑅 = (

𝐹

0.65
)
2

⋅ 𝑎 (2.51) 

 

, where a is depth of the surface roughness and F is geometric correction factor. When KI = 

KImax for arbitrarily shaped surface crack, F = 0.65 and consequently, the fatigue limit can 

be calculated as follows (Murakami 2002, p. 102–104): 
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𝜎𝑎𝑓 =

1.43(𝐻𝑉 + 120)

(√𝑎𝑟𝑒𝑎𝑅)
1

6⁄
⋅ (

1 − 𝑅

2
)
𝛼

 (2.52) 

 𝛼 = 0.226 + 𝐻𝑉 ⋅ 10−4 (2.53) 

 

, where HV is Vickers hardness. A comparison of √𝑎𝑟𝑒𝑎𝑅 model, Sperle (2013) and 

DNVGL-ST-0361 is presented in figure 27. 

 

 

Figure 27. Comparison of KR for S355 (Rz = 100 μm) between DNVGL-ST-0361 (2016), 

Sperle (2013) and Murakami (2002).  

 

2.2.2 Anisotropy factor KA and technological factor KT 

Anisotropy means that fatigue limit is lower in perpendicular direction to the grain flow 

(orientation) of the material than in parallel direction with grain flow. This results from the 

effect of forming processes which flatten and elongate grains and defects. In rolling pro-

cesses, the grain flow direction is parallel to the rolling direction but in forging it can vary 

in different parts of the machine element. (Rabb 2017, p. 201.) 

 

The effects of anisotropy and technological effect of forming degree can be taken into ac-

count with the combined anisotropy and technological factor KAT. If conservative estimates 

are required, the following can be used (Rabb 2017, p. 205, 219): 
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𝐾𝐴𝑇 =

2069 − 𝑅𝑚

1790
            (Open die forging) (2.54) 

 
𝐾𝐴𝑇 =

2313 − 𝑅𝑚

1790
            (Continuous Grain Flow, CGF) (2.55) 

 
𝐾𝐴𝑇 =

2195 − 𝑅𝑚

1790
            (Average) (2.56) 

 

Equations (2.54)–(2.56) are applicable for forged steel components and rolled steel rods and 

sheets when stress flow is perpendicular to grain flow (Rabb 2017, p. 204). However, based 

on testing, Rabb (2017, p. 219) recommends the values in table 3 for rolled and forged steel 

components. 

 

Table 3. Technological factor and anisotropy factor for steel for CGF forgings (Mod. Rabb 

2017, p. 219). 

 
On surface Below surface 

Parallel Perpendicular Parallel Perpendicular 

Technological factor 

KT 
1.0 1.0 1.0 1.0 

Anisotropy factor KA 1.0 0.8 1.0 0.8 

Relative sample SD sr 0.065 0.065 0.10 0.08 

Population value srC90 0.080 0.080 0.12 0.10 

sln = -ln(1- srC90) 0.0834 0.0834 0.1278 0.1054 

 

 

2.2.3 Statistical size factor Ksize 

Statistical size factor takes into account the effect of size of the component to the fatigue 

limit. It has been found that larger machine elements have lower fatigue limits than what 

smooth test specimens give and that sharp notches have actually higher fatigue limits than 

what would be expected based on the fatigue tests of smooth specimens. This happens be-

cause it is more probable to find a critical material defect in a larger surface than finding the 

same size defect in a smaller surface. (Rabb 2017, p. 139.) 

 

Statistical size factor can be calculated using the weakest link theory. The machine element 

is considered to be divided into “links” and according to the theory it will break if fatigue 
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crack nucleates and grows in any one of these links. Therefore, reliability for the whole 

machine element is as follows. (Rabb 2017, p. 139.)  

 

 
𝑅𝑠 = ∏ 𝑅𝑖

𝑛

𝑖=1
 (2.57) 

 

, where n is number of links and Ri is reliability of a single link.  

 

If mean value is used (P = 0.5), the reliability of a single link must be defined so that the 

reliability of the whole system is the required 0.5 (Rabb 2017, p. 140). If reliability for each 

link is taken as equal the following is obtained for the reliability of a single link (Rabb 2017, 

p. 140):  

 

 𝑅1 = 𝑅2 = ⋯ = 𝑅𝑛 = 𝑅 (2.58) 

 𝑅𝑠 = 𝑅1 ⋅ 𝑅2 ⋅ … ⋅ 𝑅𝑛 = 𝑅𝑛 = 0.5 (2.59) 

 →    𝑅 = √0.5
𝑛

 (2.60) 

 

Let us assume that one link represents one test specimen and that the stressed area in the 

machine element is n times larger than that of the test specimen’s. Now, the fatigue limit 

obtained with the test specimens must be reduced to the reliability obtained from equation 

(2.60) in order to have the same reliability R = 0.5 for the machine element when the equal 

loading is affecting its stressed surface. (Rabb 2017, p. 140.) The failure probability for this 

reduced fatigue limit and the corresponding λ value are obtained iteratively from the follow-

ing (Rabb 2017, p. 140):  

 

 𝑃 = 1 − 𝑅 (2.61) 

 
𝑃 =

1

√2𝜋
∫ 𝑒−

𝑥2

2

𝜆

−∞

𝑑𝑥 (2.62) 
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The statistical size factor Ksize which corrects the fatigue limit from Haigh diagram can now 

be calculated from (Rabb 2017, p. 140–141): 

 

 
𝐾𝑠𝑖𝑧𝑒 =

1

1 + 𝜆𝑠𝑟
        (normal dist. ) (2.63) 

 𝐾𝑠𝑖𝑧𝑒 = 𝑒−𝜆𝑠𝑙𝑛            (log − normal dist. ) (2.64) 

 

, where sr is relative standard deviation of fatigue limit and sln is logarithmic standard devia-

tion of fatigue limit (sr ≈ sln).  

 

When the weakest link theory is used to calculate Ksize for real machine elements their stress 

distribution must be taken into account when calculating the number of links. The number 

of links can be obtained by calculating the ratio between the effective stress areas of the 

studied machine element and the test specimen. (Rabb 2017, p. 141.) 

 

Let us say that stress amplitude σa1 is acting on area A1 and that σa1 = σaf. Thus, it can be 

stated that the reliability corresponding σa1 is R1 = 0.5. Then, there is another stress amplitude 

σa2 affecting area A2 and σa2 < σa1. Now, the failure probability of A2 in relation to A1 is 

required and the question is to what size A2,eff the area A2 needs to be reduced so that the 

combination A2,eff and σa1 have the same failure probability as the combination A2 and σa2 (see 

figure 28). The reliability for combination A1 and σa2 can be obtained from the following. 

(Rabb 2017, p. 142.)  

 

  𝜎𝑎2 = 𝜎𝑎1(1 + 𝜆𝑠𝑟) (2.65) 

 
→   𝜆2 =

1

𝑠𝑟
(
𝜎𝑎2

𝜎𝑎1
− 1)          (normal dist. ) (2.66) 

 

 ln 𝜎𝑎2 = ln 𝜎𝑎1 + 𝜆 ⋅ 𝑠𝑙𝑛 (2.67) 

 
→   𝜆2 = −

1

𝑠𝑙𝑛
ln (

𝜎𝑎1

𝜎𝑎2
)       (log − normal dist. ) (2.68) 

 

 
𝑅2 =

1

√2𝜋
∫ 𝑒−

𝑥2

2 𝑑𝑥
∞

𝜆2

= 1 − 𝑃2 (2.69) 
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m number of links with reliability of R2 are needed to obtain the reliability of R1. Therefore, 

the number of links corresponds the ratio between A2 and A2,eff (Rabb 2017, p. 142–143): 

 

 
𝑚 =

𝐴2

𝐴2,𝑒𝑓𝑓
 (2.70) 

 
→   𝑅2

𝑚 = 𝑅2

𝐴2
𝐴2,𝑒𝑓𝑓 = 𝑅1 

(2.71) 

 
𝐴2,𝑒𝑓𝑓 = 𝐴2

ln 𝑅2

ln 𝑅1
= 𝐴2

ln 𝑅2

ln 0.5
 (2.72) 

 

 

Figure 28. Effective stress area (Mod. Rabb 2017, p. 142). 

 

This means that the statistical size factor Ksize between A1 (reference) and A2 is obtained 

using the number of links between A2,eff and A1 as follows (Rabb 2017, p. 143): 

 

 
𝑛 =

𝐴2,𝑒𝑓𝑓

𝐴1
         (when 𝐴2,𝑒𝑓𝑓  >  𝐴1) (2.73) 

 
𝑛 =

𝐴1

𝐴2,𝑒𝑓𝑓
         (when 𝐴2,𝑒𝑓𝑓 < 𝐴1) (2.74) 

 

Ksize is then calculated with equations (2.58)–(2.64). Statistical size factor is used either as a 

multiplier or a divisor for the fatigue limit of the reference specimen when calculating the 

fatigue limit of the actual machine element (Rabb 2017, p. 143, 145–146): 

(Reference) 

A1  

σa1 = σaf 

R1 = 0.5   

A2 

σa2 < σa1 

→ σa2 = eq. 80a 

→ λ2 = eq. 80b  

R2 > R1 

How many links m with R2 are 

needed to obtain R1  

A2,eff 

σa1 

The combination A2,eff and σa1 

has the same failure probability as the 

combination A2 and σa2.   
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 𝜎𝑎𝑓,𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 =
𝜎𝑎𝑓,𝐻𝑎𝑖𝑔ℎ 𝑑𝑖𝑎𝑔𝑟𝑎𝑚

𝐾𝑠𝑖𝑧𝑒
                (𝐴𝑒𝑓𝑓 > 𝐴𝑟𝑒𝑓) (2.75) 

 𝜎𝑎𝑓,𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 = 𝜎𝑎𝑓,𝐻𝑎𝑖𝑔ℎ 𝑑𝑖𝑎𝑔𝑟𝑎𝑚 ⋅ 𝐾𝑠𝑖𝑧𝑒     (𝐴𝑒𝑓𝑓 < 𝐴𝑟𝑒𝑓) (2.76) 

 

Determination of statistical size factor Ksize from FE-analysis results is presented in chapter 

2.9.1.  

 

It should be noted that when calculating Ksize for an actual machine element, confidence in-

tervals of sample values need to be considered (see chapter 1.6.3). For example, according 

to lognormal distribution, Ksize is as follows when confidence is taken into account: 

 

 𝐾𝑠𝑖𝑧𝑒 = 𝑒−𝜆𝑠𝑙𝑛,𝐶90          (𝐴𝑒𝑓𝑓 > 𝐴𝑟𝑒𝑓) (2.77) 

 𝐾𝑠𝑖𝑧𝑒 = 𝑒−𝜆𝑠𝑙𝑛,𝐶10          (𝐴𝑒𝑓𝑓 < 𝐴𝑟𝑒𝑓) (2.78) 

 

, where C90 and C10 denote the confidence levels for 90 % and 10 % respectively. (Rabb 

2017, p. 261.) 

 

Another way of determining Ksize is to use the defect distribution of material. A modified K-

T diagram mentioned in chapter 1.5.3 can be fitted to the defect distribution of material by 

defining the intrinsic crack length a0 in such a way that σaf = σaR=-1 when a is the median 

value amed  of the defect distribution. (Rabb 2017, p. 152, 534–535.)  

 

Also, the standard deviations of defect size and fatigue limit need to match so that their 

intersections are on the El Haddad curve (see figure 29). This means that standard deviation 

of fatigue limit is calculated on the basis of standard deviation of the defect distribution. It 

can be done as follows if the defect distribution is known. (Rabb 2017, p. 153.) 

 

 
𝜎𝑎𝑓(𝑎𝑚𝑒𝑑) =

Δ𝐾𝑡ℎ

2𝐹√𝜋(𝑎𝑚𝑒𝑑 + 𝑎0)
= 𝜎𝑎𝑅=−1 (2.79) 
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 𝜇𝑙𝑛 + 𝑠𝑙𝑛(𝑎) = 𝜇𝑙𝑛+𝑆𝐷 (2.80) 

 →      𝑎2 = 𝑒𝜇𝑙𝑛+𝑆𝐷 (2.81) 

 →      𝜎𝑎𝑓(𝑎2) = 𝜎𝑎𝑓2 (2.82) 

 

 𝐾𝑠𝑖𝑧𝑒 = 𝑒−𝜆𝑠𝑙𝑛 =
𝜎𝑎𝑅=−1

𝜎𝑎𝑓2
        (−𝜆 = 1) (2.83) 

 
→      𝑠𝑙𝑛 = ln (

𝜎𝑎𝑅=−1

𝜎𝑎𝑓2
) (2.84) 

 

In equations (2.79)–(2.84) μln is logarithmic mean value of defect size, sln(a) is logarithmic 

standard deviation of defect size and sln is logarithmic standard deviation of fatigue limit. 

(Rabb 2017, p. 153.)  

 

 

Figure 29. A modified K-T diagram (R = -1) for GJS-500-7 (Mod. Rabb 2017, p. 169). 
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Ksize as a function of defect size is shown in figure 30.  In this case, size factor is calculated 

as follows (Rabb 2017, p. 161): 

 

 𝐾𝑠𝑖𝑧𝑒 =
𝜎𝑎𝑅=−1

𝜎𝑎𝑅=−1(𝑎𝑚𝑒𝑑)
 (2.85) 

 

 

Figure 30. A modified K-T diagram for GJS-500-7 (R = -1) showing size factor Ksize. In this 

figure, Ksize is presented in such a way that it is always a multiplier for reference fatigue limit. 

(Mod. Rabb 2017, p. 169.) 

 

Defect distribution of material can be used to calculate the size of expected material defect 

on a certain size material surface in a machine element. The expected material defect in some 

surface can be extrapolated from the defect distribution of material by using return period T. 

Since fatigue failure starts from the largest material defect, the defect distribution is an ex-

treme value distribution. Extreme values of defects from the test specimens are fitted to dis-

tribution F(a) and a is not exceeded with the probability of Pref(a). (Rabb 2017, p. 491, 496.) 

 

 𝑃𝑟𝑒𝑓(𝑎) = 𝐹(𝑎) (2.86) 
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The return period T for defect distribution is expressed as follows (Rabb 2017, p. 496): 

 

 
𝑇 =

𝐴𝑒𝑓𝑓 + 𝐴𝑟𝑒𝑓

𝐴𝑟𝑒𝑓
 (2.87) 

 

The median value for defect size corresponding return period is obtained from the CDF of 

the defect distribution at point P (Rabb 2017, p. 496–497): 

 

 
𝑃 = 1 −

1

𝑇
 (2.88) 

or      

 
𝑛 =

𝐴𝑒𝑓𝑓

𝐴𝑟𝑒𝑓
 (2.89) 

 𝑃 =
𝑛

𝑛 + 1
 (2.90) 

 

Note that number of links n can now be < 1 whereas in the case of the weakest link theory n 

is always > 1. The defect size (median) is obtained from the inverse function of CDF (Rabb 

2017, p. 497): 

 

 𝐹(𝑎𝑟𝑒𝑓,50%) = 0.5                          (reference) (2.91) 

 𝐹(𝑎𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡,50%) = 𝑃       (machine element) (2.92) 

→      

 𝑎𝑟𝑒𝑓,50% = 𝐹−1(0.5) (2.93) 

 𝑎𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡,50% = 𝐹−1(𝑃)     (extrapolated defect size) (2.94) 

 

, where function F(a) is CDF of defect distribution. From this, the following is obtained for  

Ksize (Rabb 2017, p. 497): 

 

 
𝐾𝑠𝑖𝑧𝑒 =

𝜎𝑎𝑅=−1(𝑎𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡,50%)

𝜎𝑎𝑅=−1(𝑎𝑟𝑒𝑓,50%)
        (𝐴𝑒𝑓𝑓 < 𝐴𝑟𝑒𝑓) (2.95) 

 
𝐾𝑠𝑖𝑧𝑒 =

𝜎𝑎𝑅=−1(𝑎𝑟𝑒𝑓,50%)

𝜎𝑎𝑅=−1(𝑎𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡,50%)
        (𝐴𝑒𝑓𝑓 > 𝐴𝑟𝑒𝑓) (2.96) 
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It is advisable to use log-normal distribution for defect size. Even though it is not actually 

an extreme value distribution it seems to fit test data quite well. (Rabb 2017, p. 495.)  

 

Using the defect distribution and K-T diagram to calculate Ksize is more accurate than using 

the weakest link theory (shown earlier). However, there are some difficulties in utilization 

of the modified K-T diagram. First, reliable values for threshold ΔKth are difficult to find 

from literature and therefore they might have to be obtained by testing (Rabb 2017, p.164, 

171, 529.) Secondly, the defect distribution is needed, which also requires testing and re-

cording the defects found in test pieces. These tests may be time consuming so determination 

of Ksize using the first method may have to be used. However, in many cases the defect dis-

tributions for GJS-500 and 34CrNiMo6 provided by Rabb (2017, p. 163, 168) can be utilized 

because they are based on extensive testing. Also, as Ksize is a relative value, error in ΔKth 

does not cause significant problems. 

 

2.2.4 Life factor KN 

It has been found that fatigue failure may happen at high cycle numbers even with stress 

levels lower than the fatigue limit (often defined at 107 cycles). This “gigacycle fatigue” or 

Very High Cycle Fatigue (VHCF) is happening when cycle numbers reach beyond 107 cy-

cles all the way up to 108 and 109 cycles. These kinds of cycle numbers may be experienced 

for example by turbine blades which are subjected to vibration. (Murakami 2002, p. 273.) 

 

In the case of VHCF, the nucleation of fatigue cracks always happens below the material 

surface. Consequently, if there is a relatively sharp notch on the machine element, the phe-

nomenon caused by VHCF can be ignored because the notch forces the nucleation to occur 

on the surface. (Rabb 2017, p. 221.) 

 

The reason why nucleation happens below the surface in VHCF is hydrogen trapped by 

nonmetallic inclusions. The mechanism is not entirely clear but apparently hydrogen en-

hances the mobility of screw and edge dislocations and reduces internal friction. This kind 

of fatigue failure can be recognized by the distinctive “fish-eye” pattern on the fracture sur-

face. (Murakami 2002, p. 274–284.)  
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The life factor KN which considers the effect of VHCF for steels and cast irons is expressed 

as follows (Rabb 2017, p. 222): 

 

 𝐾𝑁 = 1 − (log10(𝑁) − 6) ⋅ 0.05       106 < 𝑁 < 1010 (2.97) 

 

, where N is fatigue life in cycles. In case of steels and cast irons, the nucleation will happen 

on surface if stress at the critical point on surface is 20 % higher than at the critical point 

underneath the surface (provided the defect size is the same). When surface nucleation is 

considered KN = 1 and by contrast, in the case of internal nucleation, the surface roughness 

factor KR = 1. (Rabb 2017, p. 222.) 

 

2.3 Reduction of the Haigh diagram to the allowed probability of failure 

Haigh diagrams are initially constructed using mean values (P = 0.5) which is not safe 

enough to be used in actual design or analysis. Therefore, they are reduced to a safer failure 

probability like for example P = 0,1 % or P = 0,01 % depending on the consequences of 

failure. 

 

Before reduction to a certain failure probability, the reduction factors presented in previous 

chapters should be considered. Fatigue limit for completely reversed loading is as follows 

(Rabb 2017, p.261): 

 

 
𝜎𝑎𝑅=−1,𝑟𝑒𝑑 =

𝐾𝑅 ⋅ 𝐾𝐴𝑇 ⋅ 𝐾𝑁

𝐾𝑠𝑖𝑧𝑒
⋅ 𝜎𝑎𝑅=−1                (𝐴𝑒𝑓𝑓 > 𝐴𝑟𝑒𝑓) (2.98) 

 𝜎𝑎𝑅=−1,𝑟𝑒𝑑 = 𝐾𝑠𝑖𝑧𝑒 ⋅ 𝐾𝑅 ⋅ 𝐾𝐴𝑇 ⋅ 𝐾𝑁 ⋅ 𝜎𝑎𝑅=−1   (𝐴𝑒𝑓𝑓 < 𝐴𝑟𝑒𝑓) (2.99) 

 

It should be noted that if the nucleation happens below the surface then KR = 1, and if it 

happens on the surface KN = 1. Also, confidence level should be taken into account in calcu-

lation of Ksize. (Rabb 2017, p. 261.) 
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The same reduction factors are applied to the slope of the linear part of the diagram (Rabb 

2017, p. 261): 

 

 
𝑘𝑟𝑒𝑑 =

𝐾𝑅 ⋅ 𝐾𝐴𝑇 ⋅ 𝐾𝑁

𝐾𝑠𝑖𝑧𝑒
⋅ 𝑘                   (𝐴𝑒𝑓𝑓 > 𝐴𝑟𝑒𝑓) (2.100) 

 𝑘𝑟𝑒𝑑 = 𝐾𝑠𝑖𝑧𝑒 ⋅ 𝐾𝑅 ⋅ 𝐾𝐴𝑇 ⋅ 𝐾𝑁 ⋅ 𝑘       (𝐴𝑒𝑓𝑓 < 𝐴𝑟𝑒𝑓) (2.101) 

 

KR = 1 or KN = 1 chosen based on the nucleation location as with the fatigue limit. 

 

σaR=-1,red and kred can then be reduced to the required failure probability P by subtracting λ 

number of standard deviations from the median value of fatigue limit (λ corresponds a spe-

cific failure probability) (Rabb 2017, p. 48). Using lognormal distribution (eq. (1.40)), the 

following is obtained for safety factor SF (Rabb 2017, p. 261): 

 

 𝑆𝐹 = −
𝜎𝑎𝑅=−1,𝑟𝑒𝑑

𝜎𝑎𝑓,𝑃
= 𝑒−𝜆𝑠𝑙𝑛,𝐶90    (2.102) 

 

, where sln,C90 is population value of logarithmic standard deviation. Then, σaR=-1,red,P and 

kred,P for the required P are as follows (Rabb 2017, p. 50): 

 

 𝜎𝑎𝑅=−1,𝑟𝑒𝑑,𝑃 =
𝜎𝑎𝑅=−1,𝑟𝑒𝑑

𝑆𝐹
 (2.103) 

 
𝑘𝑟𝑒𝑑,𝑃 =

𝑘𝑟𝑒𝑑

𝑆𝐹
 (2.104) 

 

And thus, the linear part of the Haigh diagram reduced to the failure probability P is as 

follows (Rabb 2017, p. 50): 

 

 𝜎𝑎𝑓,𝑃 = 𝜎𝑎𝑅=−1,𝑟𝑒𝑑,𝑃 + 𝑘𝑟𝑒𝑑,𝑃 ⋅ 𝜎𝑚 (2.105) 

 

The plastic parts of the diagram are reduced as well. If failure probability is calculated for a 

stress point (σm ; σa) that is on either of the plastic parts, it has to be searched for iteratively 

so that the reduced curve intersects the stress point. (Rabb 2017, p. 50.) As an example, 
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Haigh diagram for 42CrMo4 reduced to failure probability of P = 0.1 % is shown in figure 

31. 

 

 

Figure 31. Mean curve P = 50 % and P = 0.1 % curve for 42CrMo4 (without any reduction 

factors). 

 

2.4 S-N curves 

A stress-life curve (S-N curve) or Wöhler curve is a plot of stress amplitude σa versus number 

of cycles to failure N. In essence, as the stress amplitude increases the number of cycles to 

failure decreases. An S-N curve is tested by conducting fatigue tests at different stress am-

plitudes to obtain the fatigue lives at these amplitudes. The testing can be done with constant 

R or with constant σm at every stress amplitude level.  (Dowling 2013, p. 422–423; Schijve 

2009, p. 144–145.)   

 

In some materials, there is a distinct stress level below which the failure does not ordinarily 

occur. This horizontal asymptote in the S-N plot is the fatigue limit σaf (see figure 33). The 

term fatigue strength on the other hand refers to a particular stress amplitude σai at the cor-

responding fatigue life Ni. (Dowling 2013, p. 423.) 
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2.4.1 Formulation of S-N curves 

Usually, S-N curves are plotted in log-log plot because this way they form straight lines 

(Rabb 2017, p. 107): 

 

 
𝑁 = 𝑁𝑎𝑓 (

𝜎𝑎𝑓

𝜎𝑎
)

𝑘

 (2.106) 

 

, where N is the number of cycles to failure at σa, Naf is the fatigue life at σaf and k is the slope 

exponent of the S-N curve (often 1/k is referred to as the slope exponent but here this notation 

is used). 

 

The S-N curve is obtained by fitting equation (2.106) into the test data using the method of 

linear least squares regression (Rabb 2017, p. 107): 

 

 ln 𝑁 = 𝐴 − 𝑘 ⋅ ln 𝜎𝑎    (2.107) 

 𝐴 = ln(𝑁𝑎𝑓𝜎𝑎𝑓
𝑘 ) (2.108) 

 

As the test results are composed of pairs of Ni and σai the following is obtained (Rabb 2017, 

p. 108): 

 

 
𝐹(𝑁) = ∑[ln𝑁𝑖 − (𝐴 − 𝑘 ⋅ ln 𝜎𝑎𝑖)]

2

𝑛

𝑖=1

 (2.109) 

 

, where n is number of tests. 

 

A and k are then defined so that equation (2.109) is minimized. This is done by differentiating 

equation (2.109) in respect to A and k respectively and marking the derivatives equal to zero. 

The following equations are then obtained for A and k. (Rabb 2017, p. 108.) 

 

 

𝑘 =
∑ (ln𝑁𝑖 ln 𝜎𝑎𝑖)

𝑛
𝑖=1 −

∑ (ln 𝜎𝑎𝑖
𝑛
𝑖=1 ) ⋅ ∑ (ln𝑁𝑖)

𝑛
𝑖=1

𝑛
(∑ 𝜎𝑎𝑖

𝑛
𝑖=1 )2

𝑛 − ∑ (ln 𝜎𝑎𝑖)2𝑛
𝑖=1

 (2.110) 
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𝐴 =

𝑘 ∑ ln𝜎𝑎𝑖
𝑛
𝑖=1 + ∑ 𝑁𝑖

𝑛
𝑖=1

𝑛
 (2.111) 

 

When A and k are known, the knee-point Naf is obtained as follows (Rabb 2017, p. 108): 

 

 
𝑁𝑎𝑓 =

𝑒𝐴

𝜎𝑎𝑓
𝑘  (2.112) 

 

There is scatter in the fatigue test results and when finite fatigue life is considered, it is often 

presumed that fatigue life N follows log-normal distribution. It should be noted that at lower 

fatigue lives the scatter is smaller and when the fatigue limit is approached, the scatter in-

creases. Usually, this is not taken into account and the defined standard deviation is an av-

erage value. Variance and standard deviation for mean value of fatigue life are obtained from 

the following equations. (Rabb 2017, p. 108.) 

 

 
𝑠𝑁

2 =
1

𝑛 − 1
∑ [ln𝑁𝑖 − (𝐴 − 𝑘

𝑛

𝑖=1
ln 𝜎𝑎𝑖)]

2  (2.113) 

 
𝑠𝑁 = √𝑠𝑁

2  (2.114) 

 

An example of a set of test data and a fitted curve are shown in figure 32 for 42CrMo4. Test 

data is by Rabb (2017, p. 111). 

 

 

Figure 32. An example of a fitted curve. Data by Rabb (2017, p. 111). 
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2.4.2 Reduction of S-N curves to the allowed probability of failure 

Safety factor SN in respect to the median value of fatigue life N can be calculated when the 

logarithmic standard deviation of life sN and λ corresponding the required failure probability 

P are known (cf. reduction of Haigh diagram) (Rabb 2017, p. 109):  

 

 
𝑆𝑁 =

𝑁𝑎𝑓

𝑁𝑃
= 𝑒−𝜆𝑠𝑁 (2.115) 

 

However, the reduction is usually performed with fatigue strength rather than fatigue life. 

The logarithmic standard deviation for fatigue strength sln can be obtained from sN as follows 

(Rabb 2017, p. 109): 

 

 𝑠𝑙𝑛 =
𝑠𝑁

𝑘
 (2.116) 

 →      𝑆𝑁 = 𝑒−𝜆𝑠𝑁 = 𝑒−𝜆𝑠𝑙𝑛𝑘 = 𝑆𝐹
𝑘 (2.117) 

 

Thus, the required safety factor in respect to fatigue strength is (Rabb 2017, p. 109): 

 

 
𝑆𝐹 =

𝜎𝑎𝑓

𝜎𝑎𝑃
= 𝑒−

𝜆𝑠𝑁
𝑘  (2.118) 

 

Generally, it is presumed that the knee-point does not change. The S-N curve reduced to a 

specified failure probability is then calculated with the equations below. (Rabb 2017, p. 109–

110.) 

 

 𝜎𝑎𝑓,𝑃 =
𝜎𝑎𝑓

𝑆𝐹
  (2.119) 

 
𝑁𝑃 = 𝑁𝑎𝑓 (

𝜎𝑎𝑓,𝑃

𝜎𝑎
)
𝑘

 (2.120) 

 

An example of an S-N curve for 42CrMo4 is presented in figure 33. The figure shows the 

mean curve (P = 50 %) and a reduced curve (P = 0.1 %). 
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Figure 33. S-N curves for P = 50 % and P = 0.1 % for 42CrMo4 at R = 0.1 (Mod. Rabb 

2017, p. 111–112). 

 

2.5 Variable amplitude loading 

Stress amplitude σa and mean stress σm may not be constant in actual machine elements but 

the loading may be variable with smaller and larger cycles in succession. Also, the loading 

can be highly irregular, or it can have some pattern to it. Examples of different kinds of 

loading histories are shown in figure 34.  

 

 

Figure 34. Variable amplitude loading. a) shows more regular stress history with mean stress 

shift and b) shows highly irregular history. 

350

400

450

500

550

300

1000 10000 100000 1000000

σ
a

[M
P

a]

N [cycles]

Mean curve, P = 50 %

Red. P = 0.1 %

Fat_limit

0

σa1

σa2

σa3

σm3

0

b)

σ  

a) 

σaf,P=50% = 372.9 MPa  

σaf,P=0.1% = 340.3 MPa  

Naf  



75 

 

Larger stress amplitudes that exceed the fatigue limit reduced with safety factor and usually 

appear more rarely during the loading history are often referred to as low-cycle stresses. 

High-cycle stresses on the other hand are appearing more frequently and they are below the 

fatigue limit. Often, when amplitudes exceed the fatigue limit reduced with safety factor, 

Low cycle fatigue (LCF) is said to be affecting, and when amplitudes are below the reduced 

fatigue limit High cycle fatigue (HCF) is acting. Also, when number of cycles is in hundreds 

of millions or in billions, Very High Cycle Fatigue (VHCF) effects should be considered 

(see chapter 2.2.4). (Rabb 2017, p. 315.)  

 

As was explained in chapter 2.2.4, in the case of VHCF the fatigue limit is not constant but 

decreases as the number of cycles increases. Similar effect is observed in the case of variable 

amplitude loading when the loading history includes low-cycle stresses. S-N curve does not 

end at Naf but continues to descend with a larger slope exponent i.e. the curve becomes more 

gradual. (Rabb 2017, p. 317.) This is explained in chapter 2.5.2.  

 

2.5.1 Rain-flow cycle counting 

For Rain-flow cycle counting loading history is illustrated so that stress is on abscissa and 

time is on ordinate. This makes the loading history plot resemble an Asian pagoda and now 

the load cycles are formed by rain flows along the “roofs” (hence the name Rain-flow cycle 

counting). By following the rules below, individual cycles can be formed from the loading 

history. (Rabb 2017, p. 409.) 

 

1. The loading history has to be modified so that it begins and ends at its maxi-

mum value.  

2. Each point where the loading history changes direction is a starting point for 

a new rain-flow. These flows continue to the end of the loading history unless 

some of the following occurs: 

a. Flow starts from a maximum point (peak) and stops opposite another 

maximum point which is higher than the starting point of the flow 

b. Flow starts from a minimum point (valley) and stops opposite another 

minimum point which is deeper than the starting point of the flow 

c. Flow stops when it encounters another flow (Rabb 2017, p. 410.) 
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An example of Rain-flow cycle counting is presented in Appendix II. The rules mentioned 

above are applied to find individual half cycles from the loading history. 

 

Downing and Socie (1982) have suggested easily programmable algorithm for Rainflow cy-

cle counting. First, the loading history is arranged so that it starts from the maximum or 

minimum value. X is used for range that is being evaluated, and Y is used for the previous 

range next to X. (Downing & Socie 1982, p. 32; Rabb 2017, p. 413.) Then, the algorithm 

follows the steps below (Downing & Socie 1982, p. 32): 

 

1. Read the next peak or valley (if out of data, stop) 

2. If there are less than three points left, go to step one. Otherwise, X and Y 

ranges are formed using the last three maximum and minimum values. 

3. Comparison of X and Y ranges: 

a. If X < Y, go to step 1 

b. If Y ≥ Y, go to step 4 

4. Form a cycle from Y, discard the minimum and maximum forming this 

range from the loading history and go to step 2. 

 

2.5.2 The Palmgren-Miner rule 

The Palmgren-Miner rule states that fatigue failure will happen when the fatigue life has 

been consumed by small fractions formed by number of different stress amplitudes. That is 

to say, stress amplitude σa1 is applied for n1 times, σa2 is applied for n2 times and so forth 

resulting in the fact that the fraction of the life consumed by a certain stress amplitude σai is 

ni / Ni. Thus, the following equation for damage sum D can be obtained. (Dowling 2013, p. 

468.) 

 

 
𝐷 = ∑

𝑛𝑖

𝑁𝑖

𝑛

1
≤ 1 (2.121) 

 

In equation (2.121) ni is the number of cycles of σai and Ni is the number of cycles to failure 

at σai from the S-N curve (Dowling 2013, p. 468).   
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As was mentioned earlier, in case of variable amplitude loading fatigue damage will progress 

even with stress amplitudes below the fatigue limit (HCF) if there are some cycles that are 

higher than the fatigue limit (LCF). The basis for analysing cumulative damage from LCF 

and HCF is an S-N curve that has been extended beyond the knee-point Naf. (Rabb 2017, p. 

319–320.) Commonly used extension for cycles beyond the knee-point of an S-N curve has 

been proposed by Haibach (2006, p. 285–290): 

 

 
𝑁𝑖 = 𝑁𝑎𝑓 (

𝜎𝑎𝑓,𝑃

𝜎𝑎𝑖
)
2𝑘−𝑙

                  𝜎𝑎𝑖 ≤ 𝜎𝑎𝑓,𝑃   (2.122) 

 

In equation (2.122) k is the slope exponent of the S-N curve, l = 1 for rolled and forged steel 

components and l = 2 for cast and welded components (Rabb 2017, p. 321). When using the 

Haibach extension the allowed damage sum D should be chosen according to table 4. 

 

Table 4. The allowed damage sum D for steel and aluminium when using the Haibach ex-

tension (Mod. Rabb 2017, p. 322). 

 
Allowed damage sum D 

Constant σm  Variable σm  

Non welded components 

(rolled, forged) 
0.3 0.1 

Welded and cast compo-

nents 
0.5 0.2 

Machined components 1.0 1.0 

 

When reducing the extended S-N curve to the allowed failure probability, the logarithmic 

standard deviation of life sN is considered to be approximately equal in low cycle and high 

cycle areas. Also, the standard deviation of life is defined using the standard deviation of 

fatigue strength and the slope exponent of the base S-N curve. (Rabb 2017, p. 325.) The 

reduction is demonstrated in figure 35.  
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The following equations and relations describe the reduced S-N curve with the Haibach ex-

tension (Rabb 2017, p. 325–326): 

 

 
𝑁 = 𝑁𝑎𝑓 (

𝜎𝑎𝑓

𝜎𝑎
)

𝑘

           Base S–N curve (median) (2.123) 

 
𝑁𝐻 = 𝑁𝑎𝑓 (

𝜎𝑎𝑓

𝜎𝑎
)
2𝑘−𝑙

   Haibach extension in high cycle area (2.124) 

 

 𝑠𝑙𝑛 = 𝑠𝑟                          Logarithmic SD of fatigue limit (2.125) 

 𝑆𝐹 = 𝑒−𝜆𝑠𝑙𝑛                    Safety factor, fatigue strength (2.126) 

 𝜎𝑎𝑓,𝑃 =
𝜎𝑎𝑓

𝑆𝐹
                  Fatigue limit for failure probability 𝑃 (2.127) 

 𝑠𝑁 = 𝑘𝑠𝑙𝑛                      Logarithmic SD of life (both curves) (2.128) 

 𝑆𝑁 = 𝑒−𝜆𝑠𝑁                    Safety factor, fatigue life (2.129) 

 𝑠𝑙𝑛,𝐻 =
𝑠𝑁

2𝑘 − 𝑙
             SD of fatigue strength of the extension (2.130) 

 𝑆𝐹,𝐻 = 𝑒−𝜆𝑠𝑙𝑛,𝐻              Safety factor for the extension (2.131) 

 𝜎𝑎𝑓,𝑃𝐻 =
𝜎𝑎𝑓

𝑆𝐹,𝐻
               Fatigue strength of the extension at 𝑁𝑎𝑓  

                                         when failure probability is 𝑃      

(2.132) 

 

From the equations above, the following is obtained for reduced S-N curve and Haibach 

extension (Rabb 2017, p. 326): 

 

 
𝑁𝑃 = 𝑁𝑎𝑓 (

𝜎𝑎𝑓,𝑃

𝜎𝑎
)
𝑘

                                                    in low cycle area (2.133) 

 
𝑁𝑃𝐻 = 𝑁𝑎𝑓 (

𝜎𝑎𝑓,𝑃𝐻

𝜎𝑎
)
2𝑘−𝑙

= 𝑁𝑎𝑓,𝑃 (
𝜎𝑎𝑓

𝜎𝑎
)
2𝑘−𝑙

      in high cycle area (2.134) 

 

Because none of the high cycle amplitudes may exceed the allowed amplitude σaf,P, there is 

a horizontal part between Naf and Naf,2 in the reduced curve (Rabb 2017, p. 326): 

 

 
𝑁𝑎𝑓,2 = 𝑁𝑎𝑓 (

𝜎𝑎𝑓,𝑃𝐻

𝜎𝑎𝑓,𝑃
)

2𝑘−𝑙

 (2.135) 

 



79 

 

 

Figure 35. The reduction of Haibach extension (Mod. Rabb 2017, p. 325–326). 

 

When the damage sum is calculated, low cycle and high cycle stresses should be considered 

with appropriate equation, meaning low cycle stresses are considered with base S-N curve 

and high cycle stresses with the Haibach extension. Consequently, the damage sum D is 

composed of high cycle damage sum DHC and low cycle damage sum DLC (Rabb 2017, p. 

330): 

 

 
𝐷 = 𝐷𝐿𝐶 + 𝐷𝐻𝐶 =

1

𝑁𝑎𝑓
∑𝑛𝑖 (

𝜎𝑎𝑖

𝜎𝑎𝑓,𝑃
)

𝑘

+
1

𝑁𝑎𝑓
∑𝑛𝑗 (

𝜎𝑎𝑖

𝜎𝑎𝑓,𝑃𝐻
)

2𝑘−𝑙

 (2.136) 

 

The damage sum can be transformed into an equivalent stress amplitude corresponding a 

specified number of cycles nref, or an equivalent number of allowed cycles can be calculated 

according to some constant amplitude σa,ref. When the equivalent stress amplitude σa,eq cor-

responding a certain reference number of cycles nref is calculated, the equivalent fatigue life 

Neq corresponding the damage sum calculated from equation (2.136) is needed. (Rabb 2017, 

p. 330.) 
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𝑁𝑒𝑞 = 𝑁𝑎𝑓 (

𝜎𝑎𝑓,𝑃

𝜎𝑎,𝑒𝑞
)

𝑘

 (2.137) 

 

 Neq is then substituted into the following (Rabb 2017 p. 330): 

 

 𝐷 =
𝑛𝑟𝑒𝑓

𝑁𝑒𝑞
  (2.138) 

 

Consequently, the equivalent stress amplitude can be calculated from (Rabb 2017, p. 330): 

 

 𝜎𝑎,𝑒𝑞 =
𝜎𝑎𝑓,𝑃

√
𝑛𝑟𝑒𝑓

𝑁𝑎𝑓 ⋅ 𝐷
𝑘

 
(2.139) 

 

The slope exponent k can be calculated with the help of relative stress gradient χ* which can 

be obtained from FEA (see chapter 2.9.2). For steel, the slope exponent is calculated with 

the following equation which is based on S-N curve tests conducted with smooth and 

notched specimens. (Rabb 2017, p. 338.) 

 

 
𝑘 =

𝑘0 − 𝑘∞

(1 + 𝜒∗)𝑝1 +
1

𝐾𝑅
𝑝2

− 1
+ 𝑘∞ 

(2.140) 

 

 
𝜒∗ =

1

𝜎𝑚𝑎𝑥
⋅
𝑑𝜎

𝑑𝑟
 (2.141) 

 

, where (Rabb 2017, p. 338; Rabb 2020b; Rabb 2020d): 

 

χ* relative stress gradient (at the distance of L = 2rc from the sur-

face, see chapter 2.7.1) 

 k0 slope exponent for unnotched test specimen (R = -1) 

  k0 = 11.6 (surface nucleation) 

  k0 = 16.8 (internal nucleation) 

 k∞  exponent for very sharp notch ≈ 3 
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 KR Surface roughness factor 

 p1 0.87 

 p2 = p1 0.87  

 

Reference curve for slope exponent k as a function of relative stress gradient χ* for steel is 

shown in figure 36.   

 

 

Figure 36. Reference curve (steel) for slope exponent k as a function of relative stress gra-

dient χ* (Mod. Rabb 2017, p. 338). χ* value is obtained at the critical distance 2rc = L from 

the surface. 

 

Similar equation can also be obtained for cast iron. The difference is that for cast irons, k is 

dependent on mean stress. (Rabb 2017, p. 345.) 

 

 

𝑘 =
𝑘0 − 𝑘∞

(1 + 𝜒∗)𝑝1 +
1

𝐾𝑅
𝑝2

− 1
⋅ [1 −

𝐶 ⋅
𝜎𝑚

𝑅𝑚

(1 + 𝜒∗)𝑟
] + 𝑘∞ (2.142) 

 

, where (Rabb 2017, p. 345; Rabb 2020b; Rabb 2020d): 

 

k0 12, (R = -1) 

 k∞  3 
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 p1 1.031 

 p2 0.80 

 C constant which considers the mean stress effect = 1.65 

r 0.01, exponent which considers how C changes as a function of 

relative stress gradient χ*  

 

Reference curves for slope exponent k as a function of relative stress gradient χ* for GJS for 

different σm / Rm ratios are shown in figure 37.   

 

 

Figure 37. Reference curves (GJS) for slope exponent k as a function of relative stress gra-

dient χ* (Mod. Rabb 2017, p. 347). χ* value is obtained at the critical distance 2rc = L from 

the surface.  

 

Values of p1 and p2 for both materials are modified from the values provided in Rabb’s book 

(2017, p. 345). This is done to describe the situation when χ* is obtained at the distance 

dictated by the theory of critical distances from the surface of the material (see chapter 2.7.1). 

Values in the book are determined on the basis that χ* obtained on the surface.  

 

The number of cycles at the knee-point of an S-N curve for steels when surface nucleation 

is considered is based on tests conducted by Rabb (Rabb 2020c): 
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 𝑁𝑎𝑓 = 6.2 ⋅  105 (2.143) 

 

The equation for Naf from DNVGL-ST-0361 can be used if nucleation is happening below 

surface (when effective volume Veff ≥ 400 mm3). In this case k should be determined at the 

nucleation location. (Rabb 2020c; DNVGL-ST-0361 2016, p. 51.)   

 

 
𝑁𝑎𝑓 = 106.4−

2.5
𝑘  (2.144) 

 

Naf for spheroidal graphite cast iron can be calculated using the equation from DNVGL-ST-

0361 (Rabb 2020c; DNVGL-ST-0361 2016, p. 52): 

 

 
𝑁𝑎𝑓 = 106.8−

3.6
𝑘    (2.145) 

 

2.6 Multiaxial fatigue 

Multiaxial loading cases are the most general loading cases in real components. There are 

often more than one loading acting on the component and the stresses may be acting in dif-

ferent directions. Stress components in different directions may be proportional or non-pro-

portional meaning that they may be changing simultaneously and in the same quantity so 

that the principal axes remain fixed, or the stress components are not in phase and the prin-

cipal axes rotate with time (see figure 38). A quite common loading case is combined bend-

ing and torsion, which can be found for example in many shafts or helical springs. (Milella 

2013, p. 477.) 

 

  

Figure 38. Examples of a) proportional loading and b) non-proportional loading. 
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General multiaxial stress state includes the three normal stresses σx, σy and σz as well as the 

six shear stress components τij. However, it is common to have biaxial stress state with only 

three stress components, σx, σy and τxy, affecting the machine element because often, free 

surface where fatigue failure usually starts is not affected by any external forces (except in 

pressure vessels). (Milella 2013, p. 477.) 

 

Critical plane theories are based on finding the most severely loaded plane within the mate-

rial. As the fatigue damage is initiated by cyclic shear stresses causing slip in grains, the 

critical plane is the plane where the combination of shear stress and some stress that has an 

opening effect on the crack (see figure 39) induces the maximum damage. It has been found 

that normal stress acting on planes has an opening effect on the crack which reduces friction 

between the crack surfaces and thus promotes the microcrack growth. (Milella 2013, p. 496–

499.)  

 

 

Figure 39. Normal stress on the critical plane opens the crack and reduces friction interlock-

ing effect (Mod. Milella 2013, p. 497). 

 

There are other options besides the critical plane theories for analysis of multiaxial fatigue. 

For example, methods such as signed von Mises, maximum shear stress theory or Sines cri-

terion are stress based multiaxial fatigue criteria. The problem with these however is that 

they can only really be used in proportional loading cases and sometimes even in propor-

tional cases, the results may be too inaccurate. (Altair Engineering 2020; Rabb 2017, p. 429–

431; Milella 2013, p. 482–483.) Because of this, these criteria are not presented here in de-

tail, but more accurate critical plane theories are explained instead.  

 

Presented below are two critical plane theories: Dang Van and Findley. In practice, both of 

these require use of computer programs in the analysis even in relatively simple cases, but 

τmax 

τ
max

 

σn 
Critical plane 

Microcrack ope-
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the advantage is that they are markedly more accurate than many of the simpler criteria. 

Findley criteria is chosen over Dang Van criteria as the one to be used in the proposed fatigue 

analysis method because it works for both steels and spheroidal graphite cast iron (Rabb 

2017, p. 450).   

 

2.6.1 Dang Van 

As was explained in chapter 1.5.1, fatigue crack nucleation and growth start with micro-

scopic cyclic shear stresses causing cyclic slip in grains, which forms slip bands. Dang Van 

criterion is based on using these microscopic shear stresses and microscopic hydrostatic 

stress, which has an opening effect on the cracks formed by the slip bands, to analyse whether 

fatigue failure will occur. (Altair Engineering 2020.) 

 

The critical plane in Dang Van criterion is the plane where the sum of the microscopic shear 

stress amplitude (according to Tresca) and the hydrostatic stress multiplied by a constant has 

its maximum value. The Dang Van criterion is expressed with the equation below. (Rabb 

2017, p. 457.) 

 

 𝐷(𝑡𝑖) = 𝜏𝑎(𝑡𝑖) + 𝑎 ⋅ 𝜎ℎ(𝑡𝑖) ≤ 𝜏𝑎𝑓,𝜎ℎ=0     , 𝑖 = 1,2, … (2.146) 

 

 𝜏𝑎𝑓,𝜎ℎ=0 =
𝜎𝑎𝑅=−1 ⋅ 𝜎𝑎𝑅=0

2(2𝜎𝑎𝑅=0 − 𝜎𝑎𝑅=−1)
 (2.147) 

 
𝑎 =

3(𝜎𝑎𝑅=−1 − 𝜎𝑎𝑅=0)

2(2𝜎𝑎𝑅=0 − 𝜎𝑎𝑅=−1)
 (2.148) 

 

, where (Rabb 2017, p.458):   

 D(ti) Fatigue damage when time is ti 

 τa(ti) Microscopic shear stress amplitude when time is ti  

 a Constant of Dang Van criterion 

 σh(ti) Hydrostatic stress when time is ti 

 𝜏𝑎𝑓,𝜎ℎ=0 Fatigue limit in shear (when σh = 0) according to Dang Van

  criterion   
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Hydrostatic stress can be calculated from the macroscopic stress tensor (for example stress 

matrix from FEA) corresponding a specific time. The macroscopic stress tensors are ex-

pressed as follows. (Rabb 2017, p. 458–459.)  

 

 
∑ (𝑡1) =

𝑖𝑗
[

𝜎𝑥1 𝜏𝑥𝑦1 𝜏𝑥𝑧1

𝜏𝑥𝑦1 𝜎𝑦1 𝜏𝑦𝑧1

𝜏𝑥𝑧1 𝜏𝑦𝑧1 𝜎𝑧1

]  (2.149) 

 
∑ (𝑡2) =

𝑖𝑗
[

𝜎𝑥2 𝜏𝑥𝑦2 𝜏𝑥𝑧2

𝜏𝑥𝑦2 𝜎𝑦2 𝜏𝑦𝑧2

𝜏𝑥𝑧2 𝜏𝑦𝑧2 𝜎𝑧2

] (2.150) 

 
∑ (𝑡𝑖) =

𝑖𝑗
[

𝜎𝑥𝑖 𝜏𝑥𝑦𝑖 𝜏𝑥𝑧𝑖

𝜏𝑥𝑦𝑖 𝜎𝑦𝑖 𝜏𝑦𝑧𝑖

𝜏𝑥𝑧𝑖 𝜏𝑦𝑧𝑖 𝜎𝑧𝑖

]      , 𝑖 = 1,2, … (2.151) 

 

The hydrostatic stress at a specific time is obtained from the trace of the matrix (Rabb 2017, 

p. 459): 

 

 
𝜎ℎ(𝑡𝑖) =

 tr[∑ (𝑡𝑖)𝑖𝑗 ]

3
=

𝜎𝑥𝑖 + 𝜎𝑦𝑖 + 𝜎𝑧𝑖

3
 (2.152) 

 

The shear stress amplitudes oscillate around stabilized residual stress tensor. When loading 

is proportional, the stabilized residual stress tensor is calculated as follows from the two 

extreme macroscopic stress tensors. (Rabb 2017, p. 459; Tampere University of Technology 

2015, p. 77.) 

 

 
𝜌𝑖𝑗 = −

1

2
[∑ (𝑡1) + ∑ (𝑡2)

𝑖𝑗𝑖𝑗
]

       =

[
 
 
 
 
 −

𝜎𝑥1 + 𝜎𝑥2

2
−

𝜏𝑥𝑦1 + 𝜏𝑥𝑦2

2
−

𝜏𝑥𝑧1 + 𝜏𝑥𝑧2

2

−
𝜏𝑥𝑦1 + 𝜏𝑥𝑦2

2
−

𝜎𝑦1 + 𝜎𝑦2

2
−

𝜏𝑦𝑧1 + 𝜏𝑦𝑧2

2

−
𝜏𝑥𝑧1 + 𝜏𝑥𝑧2

2
−

𝜏𝑦𝑧1 + 𝜏𝑦𝑧2

2
−

𝜎𝑧1 + 𝜎𝑧2

2 ]
 
 
 
 
  (2.153) 

 

, where t1 and t2 are the times of the extreme values of the macroscopic stress (Tampere 

University of Technology 2015, p. 77). 
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The stabilized residual stress tensor is then split into hydrostatic and deviatoric (pure shear) 

parts (Rabb 2017, p. 459): 

 

 
𝜌ℎ =

tr𝜌𝑖𝑗

3
=

𝜌11 + 𝜌22 + 𝜌33

3
      (hydrostatic part) (2.154) 

 𝜌𝑖𝑗 = 𝜌𝑖𝑗,ℎ + dev𝜌𝑖𝑗

       = [

𝜌ℎ 0 0
0 𝜌ℎ 0
0 0 𝜌ℎ

] + [

𝜌11 − 𝜌ℎ 𝜌12 𝜌13

𝜌21 𝜌22 − 𝜌ℎ 𝜌23

𝜌31 𝜌32 𝜌33 − 𝜌ℎ

]
 (2.155) 

 

, where ρij is the stabilized residual stress tensor. In other words, deviatoric part is obtained 

by subtracting the hydrostatic part from the stabilized residual stress tensor. 

 

The deviatoric part is symmetric (ρij = ρji) and it can be used in calculation of microscopic 

stress tensors as follows (Rabb 2017, p. 459): 

 

 𝜎𝑖𝑗(𝑡1) = ∑ (𝑡1) + dev
𝑖𝑗

𝜌𝑖𝑗 (2.156) 

 𝜎𝑖𝑗(𝑡2) = ∑ (𝑡2) + dev
𝑖𝑗

𝜌𝑖𝑗 (2.157) 

 𝜎𝑖𝑗(𝑡𝑖) = ∑ (𝑡𝑖) + dev
𝑖𝑗

𝜌𝑖𝑗 (2.158) 

 

The hydrostatic stress at a specific time can also be calculated from the microscopic stress 

tensor (Rabb 2017, p. 460): 

 

 
𝜎ℎ(𝑡𝑖) =

 tr[𝜎𝑖𝑗(𝑡𝑖)]

3
 (2.159) 

 

Each microscopic stress tensor is associated with a shear stress amplitude which is obtained 

with the help of the principal stresses of the microscopic stress tensors. The principal stresses 

and their directions are the eigenvalues and eigenvectors of the equation shown below. (Rabb 

2017, p. 460.) 

 



88 

 

 
[

𝜎11 − 𝜎 𝜎12 𝜎13

𝜎12 𝜎22 − 𝜎 𝜎23

𝜎13 𝜎23 𝜎33 − 𝜎
] ⋅ [

𝑙
𝑚
𝑛

] = [
0
0
0
] (2.160) 

 

, where l, m and n are the direction cosines of the principal stresses in relation to x-, y- and 

z-axes (Rabb 2017, p. 460). An example showing the determination of the principal stresses 

is presented in Appendix III. 

 

The microscopic shear stress amplitude at a specific time is calculated according to the 

Tresca maximum shear stress theory as follows (Rabb 2017, p. 460): 

 

 
𝜏𝑎(𝑡𝑖) =

𝜎𝐼(𝑡𝑖) − 𝜎𝐼𝐼𝐼(𝑡𝑖)

2
   (2.161) 

 

In equation (2.161) σI is the maximum principal stress of the microscopic stress tensor and 

σIII is the minimum principal stress of the microscopic stress tensor (Rabb 2017, p. 460). 

 

The critical amplitude is the one that maximizes equation (2.146), and the corresponding 

critical plane is obtained from the following (Rabb 2017, p. 460): 

 

 

{

𝑛𝐼⃗⃗  ⃗ = 𝑙𝐼𝑖 + 𝑚𝐼𝑗 + 𝑛𝐼�⃗� 

𝑛𝐼𝐼⃗⃗⃗⃗  ⃗ = 𝑙𝐼𝐼𝑖 + 𝑚𝐼𝐼𝑗 + 𝑛𝐼𝐼�⃗� 

𝑛𝐼𝐼𝐼⃗⃗ ⃗⃗ ⃗⃗  = 𝑙𝐼𝐼𝐼𝑖 + 𝑚𝐼𝐼𝐼𝑗 + 𝑛𝐼𝐼𝐼�⃗� 

 (2.162) 

 

, where 𝑖 , 𝑗  and �⃗�  are unit vectors of coordinate axes. Normalized direction vector of the 

critical plane is then as follows. (Rabb 2017, p. 460.) Critical plane is shown in figure 40. 

 

 
�⃗� 𝑐𝑟 =

𝑛𝐼⃗⃗  ⃗ + 𝑛𝐼𝐼𝐼⃗⃗ ⃗⃗ ⃗⃗  

√|𝑛𝐼⃗⃗  ⃗|2 + |𝑛𝐼𝐼𝐼⃗⃗ ⃗⃗ ⃗⃗  |2
 (2.163) 
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Figure 40. Critical plane according to Dang Van criterion (Mod. Rabb 2017, p. 460). 

 

If the loading is non-proportional the stabilized residual stress tensor is calculated in a nine- 

or six-dimensional hypersphere. In that case, the center of the hypersphere defines the stabi-

lized residual stress tensor and the sphere is composed of all six stress components (or nine 

if symmetry components τij = τji are considered). (Rabb 2017, p. 459.) Calculation of the 

smallest hypersphere is somewhat demanding but computer programs such as Miniball by 

Gärtner (2013) can be found. If also yielding is occurring, the elastic shakedown effect needs 

to be considered (see figure 41) (Rabb 2017, p. 459; Altair Engineering 2020).   
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Figure 41. If yielding occurs, the initial elastic domain of the material (C0) expands and 

shifts due to kinematic and isotropic hardening. After some repetitions of the load path 

(blue), the domain stabilizes (CL) and the stabilized residual stress tensor corresponds to OL 

– O0. (Mod. Altair engineering 2020.)    

 

In order to obtain safety factor, equation (2.146) can be modified into the following form 

and it can be plotted in Dang Van diagram (see figure 42) (Rabb 2017, p. 461). 

 

 𝜏𝑎𝑓 = 𝜏𝑎𝑓,𝜎ℎ=0 − 𝑎𝜎ℎ (2.164) 

 

It is possible to define two safety factors for Dang Van criterion; radial safety factor SF,rad 

and vertical safety factor SF,ver. Safety factors are obtained from the following. (Rabb 2017, 

p. 462.) 

 

 𝑆𝐹,𝑟𝑎𝑑 =
𝜏𝑎𝑓,𝜎ℎ=0

𝐷
 (2.165) 

 𝑆𝐹,𝑣𝑒𝑟 =
𝜏𝑎𝑓,𝜎ℎ=0 − 𝑎𝜎ℎ

𝜏𝑎
 (2.166) 

 

Determination of safety factors is shown in figure 42. More accurate way of determining the 

safety factor would be to reduce the Dang Van criterion line to intersect the studied stress 

point (σh ; τa) because then radial and vertical safety factors converge towards the same value. 

(Rabb 2017, p. 462.)     
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Figure 42. Vertical and radial safety factors in Dang Van diagram (Mod. Rabb 2017, p. 

462). 

 

It is possible to determine equivalent uniaxial stress state which inflicts equal damage as the 

original multiaxial loading. In that case according to Tresca criterion, the critical plane is in 

45° angle in respect to the principal stress. For uniaxial stress state (now in x direction) the 

following is obtained. (Rabb 2017, p. 461.) 

 

 Δ𝜎𝑥 = 𝜎𝑥,𝑚𝑎𝑥 − 𝜎𝑥,𝑚𝑖𝑛 (2.167) 

 
Δ𝜏 = 2𝜏𝑎 = Δ𝜎𝑥

sin 2𝛼

2
=

Δ𝜎𝑥

2
 (2.168) 

 𝜎ℎ =
𝜎𝑥,𝑚𝑎𝑥

3
 (2.169) 

 

When shear stress amplitude and hydrostatic stress are known, the following gives the max-

imum and minimum stress for the equivalent stress state (Rabb 2017, p. 462): 

 

 𝜎𝑥,𝑚𝑎𝑥 = 3𝜎ℎ (2.170) 

 𝜎𝑥,𝑚𝑖𝑛 = 𝜎𝑥,𝑚𝑎𝑥 − 4𝜏𝑎 (2.171) 
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2.6.2 Findley 

According to Findley criterion, the critical plane is the plane on which the linear combination 

of shear stress amplitude and the normal stress of the plane has its maximum value. Conse-

quently, Findley criterion is expressed with the following equations. (Rabb 2017, p. 433; 

Altair Engineering 2020.) 

 

 
𝐷 = (

Δ𝜏

2
+ 𝑘𝜎𝑛)

𝑚𝑎𝑥
≤ 𝑓 (2.172) 

 

 𝑘 + √1 + 𝑘2 

2𝑘 + √1 + 4𝑘2
=

𝜎𝑎𝑅=0,𝑟𝑒𝑑

𝜎𝑎𝑅=−1,𝑟𝑒𝑑
     (solve 𝑘 iteratively) (2.173) 

→    𝑘 = 0.2…0.3  (typically for ductile materials)   

 
𝑓 =

𝑘 + √1 + 𝑘2 

2
⋅ 𝜎𝑎𝑅=−1,𝑟𝑒𝑑 (2.174) 

 

, where Δτ is shear stress range, σn is normal stress of the critical plane, k is normal stress 

sensitivity which describes normal stress portion of the fatigue damage, f is fatigue limit in 

shear, and σaR=0,red and σaR=-1,red are reduced fatigue limits for R = 0 and R = -1 with reduction 

factors taken into account. In non-proportional loading case, the maximum normal stress 

may be occurring on an independent time point from the time points defining the maximum 

shear stress amplitude. In that case, it is recommended to use the independent maximum of 

normal stress and the maximum shear stress amplitude (that is to say maximize the linear 

combination regardless whether the maximum normal stress occurs simultaneously with any 

of the shear stress states defining Δτ). (Rabb 2017, p. 433–434.) 

 

The critical plane can be found by rotating the coordinate system and determining shear 

stress and normal stress of the first face of stress element in every load case and direction. 

The rotation matrix is expressed as follows. (Rabb 2017, p. 435–436.) 

 

 

𝑄 = [

sin𝜑 cos 𝜃 − sin 𝜃 − cos𝜑 cos 𝜃
sin 𝜑 sin 𝜃 cos 𝜃 − cos𝜑 sin 𝜃

cos𝜑 0 sin𝜑
] = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] (2.175) 
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Using the rotation matrix Q and stress tensor [σ] in the base coordinate system (for example 

from FEA), the stress element and stress matrix in a rotated coordinate system can be ob-

tained (see figure 43a) (Rabb 2017, p. 436): 

 

 
[𝜎′] = 𝑄𝑇[𝜎]𝑄 = [

𝜎𝑥′ 𝜏𝑥′𝑦′ 𝜏𝑥′𝑧′

𝜏𝑥′𝑦′ 𝜎𝑦′ 𝜏𝑦′𝑧′

𝜏𝑥′𝑧′ 𝜏𝑦′𝑧′ 𝜎𝑧′

] (2.176) 

 

In order to analyse all possible planes, the angles φ and θ of the rotation matrix have to be 

checked incrementally from 0 to 180 degrees (see figure 43b) (Rabb 2017, p. 436). The 

chosen increment should be small enough, for example dφ = dθ = 0.1…0.5, so that the max-

imum values are found with sufficient accuracy. Using an increment of dφ = dθ = 0.1 would 

mean that 3 240 000 possible planes are examined and therefore the analysis requires a com-

puter program for the calculation.  

 

 

Figure 43. a) rotation of the stress element when searching for the critical plane and b) angle 

increments (Mod. Rabb 2017, p. 435; Mod. Lönnqvist 2008, p. 133).  

 

Only σx’, τx’,y’ and τx’z’ need to be considered. Consequently, the stress components of the first 

face of the rotated stress element are obtained from the following. (Rabb 2017, p. 436.) 
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 𝜎𝑥′ = 𝜎𝑥𝑎11
2 + 𝜎𝑦𝑎21

2 + 𝜎𝑧𝑎31
2

       +2(𝜏𝑥𝑦𝑎11𝑎21 + 𝜏𝑥𝑧𝑎11𝑎31 + 𝜏𝑦𝑧𝑎21𝑎31)
 (2.177) 

 

 𝜏𝑥′𝑦′ = 𝜎𝑥𝑎11𝑎12 + 𝜎𝑦𝑎21𝑎22 + 𝜎𝑧𝑎31𝑎32

         +𝜏𝑥𝑦(𝑎11𝑎22 + 𝑎12𝑎21) + 𝜏𝑥𝑧(𝑎11𝑎32 + 𝑎12𝑎31)

         +𝜏𝑦𝑧(𝑎21𝑎32 + 𝑎22𝑎31)
 (2.178) 

 

 𝜏𝑥′𝑧′ = 𝜎𝑥𝑎11𝑎13 + 𝜎𝑦𝑎21𝑎23 + 𝜎𝑧𝑎31𝑎33

         +𝜏𝑥𝑦(𝑎11𝑎23 + 𝑎13𝑎21) + 𝜏𝑥𝑧(𝑎11𝑎33 + 𝑎13𝑎31)

         +𝜏𝑦𝑧(𝑎21𝑎33 + 𝑎23𝑎31)
 (2.179) 

 

Each analysed plane will have the same number of shear stress states as there are load incre-

ments. The shear stress ranges between different load increments can be calculated by using 

the longest chord or a radius of the smallest circle enclosing the shear stress states (see figure 

44). In non-proportional loading case both methods could be used but it is advisable to utilise 

the radius method since in some cases it is more conservative. (Rabb 2017, p. 437.)   

 

 

Figure 44. a) proportional loading and b) non-proportional loading (Mod. Rabb 2017, p. 

437).  

 

The chord from figure 44 a) can be calculated as follows (Rabb 2017, p. 437): 

 

 
Δ𝜏 = Δ𝜏𝑐ℎ𝑜𝑟𝑑 = √Δ𝜏𝑥′𝑦′

2 + Δ𝜏𝑥′𝑧′
2  (2.180) 
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The radius of the smallest circle which is defined by three points and which encloses the 

shear stress states (figure 44 b)) is obtained from the following determinant (Rabb 2017, p. 

437): 

 

 

|
|

𝜏𝑥′𝑦′
2 + 𝜏𝑥′𝑧′

2 𝜏𝑥′𝑦′ 𝜏𝑥′𝑧′ 1

𝜏𝑥′𝑦′1
2 + 𝜏𝑥′𝑧′1

2 𝜏𝑥′𝑦′1 𝜏𝑥′𝑧′1 1

𝜏𝑥′𝑦′2
2 + 𝜏𝑥′𝑧′2

2 𝜏𝑥′𝑦′2 𝜏𝑥′𝑧′2 1

𝜏𝑥′𝑦′3
2 + 𝜏𝑥′𝑧′3

2 𝜏𝑥′𝑦′3 𝜏𝑥′𝑧′3 1

|
| = 0 (2.181) 

 

This yields the following form for circle equation (x - x0)
2 + (y - y0)

2 = r2 (Rabb 2017, p. 

438): 

 

 

𝛼 (𝜏𝑥′𝑦′ +
𝑏𝜏

𝑥′𝑦′

2𝛼
)

2

+ 𝛼 (𝜏𝑥′𝑧′ +
𝑏𝜏

𝑥′𝑧′

2𝛼
)

2

−
𝑏𝜏

𝑥′𝑦′
2

4𝛼
−

𝑏𝜏
𝑥′𝑧′

2

4𝛼
+ 𝑐 = 0 (2.182) 

 

, where (Rabb 2017, p. 438): 

 

 

𝛼 = |

𝜏𝑥′𝑦′1 𝜏𝑥′𝑧′1 1

𝜏𝑥′𝑦′2 𝜏𝑥′𝑧′2 1

𝜏𝑥′𝑦′3 𝜏𝑥′𝑧′3 1
| (2.183) 

 

𝑏𝜏
𝑥′𝑦′ = −|

𝜏𝑥′𝑦′1
2 + 𝜏𝑥′𝑧′1

2 𝜏𝑥′𝑧′1 1

𝜏𝑥′𝑦′2
2 + 𝜏𝑥′𝑧′2

2 𝜏𝑥′𝑧′2 1

𝜏𝑥′𝑦′3
2 + 𝜏𝑥′𝑧′3

2 𝜏𝑥′𝑧′3 1

| (2.184) 

 

𝑏𝜏
𝑥′𝑧′ = |

𝜏𝑥′𝑦′1
2 + 𝜏𝑥′𝑧′1

2 𝜏𝑥′𝑦′1 1

𝜏𝑥′𝑦′2
2 + 𝜏𝑥′𝑧′2

2 𝜏𝑥′𝑦′2 1

𝜏𝑥′𝑦′3
2 + 𝜏𝑥′𝑧′3

2 𝜏𝑥′𝑦′3 1

| (2.185) 

 

𝑐 = − |

𝜏𝑥′𝑦′1
2 + 𝜏𝑥′𝑧′1

2 𝜏𝑥′𝑦′1 𝜏𝑥′𝑧′1

𝜏𝑥′𝑦′2
2 + 𝜏𝑥′𝑧′2

2 𝜏𝑥′𝑦′2 𝜏𝑥′𝑧′2

𝜏𝑥′𝑦′3
2 + 𝜏𝑥′𝑧′3

2 𝜏𝑥′𝑦′3 𝜏𝑥′𝑧′3

| (2.186) 
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The centre of the circle is thus (Rabb 2017, p. 438): 

 

 
𝜏𝑥′𝑦′0 = −

𝑏𝜏
𝑥′𝑦′

2𝛼
 (2.187) 

 
𝜏𝑥′𝑧′0 = −

𝑏𝜏
𝑥′𝑧′

2𝛼
 (2.188) 

 

and the diameter of the circle which describes the shear stress range is obtained from (Rabb 

2017, p. 438): 

 

 

Δ𝜏 =
√𝑏𝜏𝑥′𝑦′

2 + 𝑏𝜏𝑥′𝑧′
2 − 4𝛼𝑐

|𝛼|
 

(2.189) 

 

If there are more than three shear stress points on the plane (see figure 45), some kind of 

algorithm for calculation is needed. For example, Weber et al. (1999) introduce an algorithm 

for finding the smallest enclosing circle of the shear stress points. Flowchart of the algorithm 

is presented in Appendix VII. 

 

 

Figure 45. Shear stress range of the plane is defined by the smallest circle that encloses the 

load path on the plane.  
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As with Dang Van criterion, there are two safety factors for Findley criterion, vertical and 

radial (see figure 46). By modifying equation (2.172) into the following form, the safety 

factors can be obtained. (Rabb 2017, p. 440.) 

 

 
𝜏𝑎 =

Δ𝜏

2
= 𝑓 − 𝑘𝜎𝑛 (2.190) 

 

 
𝑆𝑣𝑒𝑟 =

𝑓 − 𝑘𝜎𝑛

𝜏𝑎
 (2.191) 

 
𝑆𝑟𝑎𝑑 =

𝑓

𝐷
=

𝑓

Δ𝜏
2 + 𝑘𝜎𝑛

 (2.192) 

 

Again, more accurate way of defining the safety factor would be to reduce the Findley line 

to intersect the studied stress state (Rabb 2017, p. 440). 

 

 

Figure 46. Vertical and radial safety factors in Findley diagram (Mod. Rabb 2017, p. 440). 

 

The equivalent uniaxial stress state of Findley criterion is obtained from the following (Rabb 

2017, p. 440): 
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Δ𝜏 = (𝜎𝑥,𝑚𝑎𝑥 − 𝜎𝑥,𝑚𝑖𝑛) ⋅

|sin 2𝜃|

2
 (2.193) 

 𝜎𝑛 = 𝜎𝑥,𝑚𝑎𝑥 ⋅ cos2 𝜃 (2.194) 

→     

 𝜎𝑥,𝑚𝑎𝑥 =
𝜎𝑛

cos2 𝜃
 (2.195) 

 
𝜎𝑥,𝑚𝑖𝑛 = 𝜎𝑥,𝑚𝑎𝑥 −

2Δ𝜏

sin 2𝜃
 (2.196) 

   

The direction of the critical plane for the equivalent loading is obtained by maximizing Find-

ley fatigue damage D in respect to θ (Rabb 2017, p. 441). 

 

 
𝐷 =

Δ𝜏

2
+ 𝑘𝜎𝑛 =

𝜎𝑥,𝑚𝑎𝑥 − 𝜎𝑥,𝑚𝑖𝑛

4
⋅ sin 2𝜃 + 𝑘 ⋅ 𝜎𝑥,𝑚𝑎𝑥 ⋅ cos2 𝜃  (2.197) 

 

By differentiating in respect to θ and multiplying by sin(2θ)cos(θ) the following is obtained 

(Rabb 2017, p. 441): 

  

 𝜎𝑥,𝑚𝑎𝑥 − 𝜎𝑥,𝑚𝑖𝑛

4
⋅ sin 2𝜃 ⋅ 2 cos 𝜃 cos 2𝜃

−𝑘𝜎𝑥,𝑚𝑎𝑥 cos2 𝜃 ⋅ 2 sin 𝜃 sin 2𝜃 = 0
 (2.198) 

  

With equations (2.193) and (2.194), this yields (Rabb 2017, p. 441): 

 

 Δ𝜏

2
− 𝑘𝜎𝑛 tan 𝜃 tan 2𝜃 = 0 (2.199) 

 

Using the following equation from trigonometry the angle of the critical plane θeq for equiv-

alent loading can be calculated (Rabb 2017, p. 442): 

 

 
tan 2𝜃 =

2 tan𝜃

1 − tan2 𝜃
 (2.200) 

→  

 

𝜃𝑒𝑞 = tan−1 (±√
Δ𝜏

Δ𝜏 + 4𝑘𝜎𝑛
) + 𝑖 ⋅ 180°    𝑖 = 0,1, … (2.201) 
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Figure 47 illustrates the transformation of multiaxial loading into equivalent uniaxial load-

ing. 

 

 

Figure 47. Transformation of multiaxial stress state into equivalent uniaxial stress state. 

Both load cases inflict the equal Findley damage. 

 

Mean stress and amplitude for the equivalent uniaxial loading are obtained from the follow-

ing (Rabb 2017, p. 442): 

 

 
𝜎𝑚,𝑒𝑞 =

𝜎𝑥,𝑚𝑎𝑥 + 𝜎𝑥,𝑚𝑖𝑛

2
 (2.202) 

  𝜎𝑎,𝑒𝑞 =
𝜎𝑥,𝑚𝑎𝑥 − 𝜎𝑥,𝑚𝑖𝑛

2
 (2.203) 

 

2.7 Linear elastic fracture mechanics (LEFM) 

The basis of LEFM was already explained in chapter 1.5.2. Equation (1.16) which defines 

the Paris crack growth law can be utilized in estimation of fatigue life by integrating it from 

an initial crack length a0 to a final, critical crack length af (Anderson 2005, p. 452). 

 

 
𝑁 = ∫

𝑑𝑎

𝐶(Δ𝐾)𝑚

𝑎𝑓

𝑎0

 (2.204) 

 

There are some limitations for the use LEFM. One, that was already mentioned earlier, is 

the limitation for small cracks. This means that when crack is small enough it will interact 
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with microstructural features and consequently its behaviour differs from what would be 

expected based on the assumptions of isotropic and homogenous solid. In metals this usually 

means that small cracks grow faster than what Paris law estimates. (Dowling 2013, p. 613–

614.) 

 

Small cracks, whose all dimensions are smaller than the largest microstructural dimension, 

grow faster within a grain than what is expected based on Paris law, and when they encounter 

a grain boundary the growth is temporarily retarded. Short cracks on the other hand have 

one dimension that is larger than the microstructural dimensions, and because of this the 

effect is not so drastic. (Dowling 2013, p. 613–614.) Figure 48 illustrates the behaviour of 

small cracks and short cracks. 

 

 

Figure 48. Behaviour of a) small cracks and b) short cracks. Unlike small cracks, the be-

haviour of short cracks at low ΔK can be approximated by extrapolating the Paris law curve. 

(Dowling 2013, p. 614.) 

 

Another limitation for LEFM is the size of the plastic zone around the crack tip. If it is too 

large, crack growth rate increases too much and cannot be predicted by Paris law anymore. 

The limitation below can be applied to peak stress to account for the plasticity (Dowling 

2013, p. 612–613.) 

 

 
𝑎, (𝑏 − 𝑎), ℎ ≥

4

𝜋
(
𝐾𝑚𝑎𝑥

𝜎𝑝𝑒𝑎𝑘
)

2

 (2.205) 
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, where dimensions a, b and h are shown in figure 49. 

 

Figure 49. Dimensions for equation (2.205) (Mod. Dowling 2013, p. 387). 

 

For example, BS 7910 (2013) gives guidelines for assessing flaws of metallic structures with 

LEFM approach. Two possible crack growth laws are provided in BS 7910 (2013, p. 75); 

Paris law with constant slope m and more precise two-stage relationship with two slopes (see 

figure 50).  

 

  

Figure 50. a) Paris law with constant m and b) two-stage crack growth relationship. Data 

from BS 7910 (2013, p. 77, 81) and Dowling (2013, p. 340). 
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(2013, p. 905) typical Coefficient of Variation (=relative standard deviation) for crack 

growth rate in fatigue is 50 %. Some recommended values for parameters C and m and un-

certainty of C (standard deviation) are shown in table 5 for the two-stage model (BS 7910 

2013, p. 220). 
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Table 5. Uncertainties in Paris parameter C for the two-stage model in air and freely cor-

roding marine environment (Mod. BS 7910 2013, p. 220). 

Environment R m 
Mean curve 

C [N, mm] SD of log(C) 

In air 

Stage A 
<0.5 8.16 1.2 x 10-26 0.279 

>0.5 5.10 4.8 x 10-18 0.320 

Stage B 
<0.5 2.88 3.9 x 10-13 0.115 

>0.5 2.88 5.8 x 10-13 0.171 

Freely corroding marine environment 

Stage A 
<0.5 3.42 3.0 x 10-14 0.227 

>0.5 3.42 5.3 x 10-14 0.253 

Stage B 
<0.5 1.30 1.2 x 10-7 0.091 

>0.5 1.11 5.6 x 10-7 0.060 

 

The standard also gives guidance about probabilistic methods for LEFM analysis which may 

be of interest because deterministic procedures can sometimes give over-conservative re-

sults. Two levels of reliability analyses are given; Level I method which is semi-probabilistic 

approach based on partial safety factors and Level II method based on first order second 

moment methods assuming the load (L) and resistance (R) effects are following normal dis-

tribution. For fatigue crack growth assessment, Level II method is utilized. The limit state 

function for any number of random variables according to Level II method is defined with 

the following equation. (BS 7910 2013, p. 215–218.) 

 

 𝑅 − 𝐿 = 𝑔(𝑍)      (failure when 𝑔(𝑍) < 0) (2.206) 

 

The failure probability PF is defined as follows and it is related to the reliability index βR 

(BS 7910 2013, p. 217): 

 

 
𝑃𝐹 = 𝑃[𝑔(𝑍) < 0]∫ 𝑓𝑧(𝑍)𝑑𝑧

𝑔(𝑍)≤0

 (2.207) 

 𝑃𝐹 = 1 − Φ(𝛽𝑅) = Φ(−𝛽𝑅) (2.208) 
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, where Φ is the cumulative distribution function of standard normal distribution and fZ(Z) is 

multivariate probability density function of Z. If reliability index corresponding a specified 

failure probability is required it can be calculated as follows (BS 7910 2013, p. 217): 

 

 𝛽𝑇 = Φ−1(1 − 𝑃𝐹) (2.209) 

 

2.7.1 The Theory of critical distances (TCD) 

The theory of critical distances (TCD) is an LEFM based method developed by Taylor 

(2007), which can be used in predicting the effect of notches and for example material de-

fects on the fatigue behaviour of material. TCD uses a material length scale L to assess the 

possibility of fatigue failure (Taylor 2007, p. 1696; Rabb 2017, p. 294). The length scale L 

is defined as follows (Taylor 2007, p. 1696): 

 

 
𝐿 =

1

𝜋
(
Δ𝐾𝑡ℎ

Δ𝜎𝑎𝑓
)

2

 (2.210) 

 

, where Δσaf is fatigue limit range. There are four different TCD methods to predict the fa-

tigue failure. Two of these methods are stress-based and they are called point method (PM) 

and line method (LM). In PM, the critical amplitude σac is at a distance of rc from the surface, 

where rc = L / 2, and in LM σac is defined as an average stress within 2L from the surface. 

(Taylor 2007, p. 1699.) Principle of PM and LM are shown in figure 51. 
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Figure 51. Principles of a) Line Method and b) Point Method (Mod. Susmel 2006, p. 1708). 

 

The other two methods are based on stress intensity. The imaginary crack method (ICM) 

which is similar to El Haddad’s (1979) method, assumes that there is an imaginary crack at 

the root of the notch and that the length of this crack is L. In case of fatigue, the failure will 

occur when the stress intensity of this crack reaches ΔKth. The other stress intensity-based 

method is finite fracture mechanics (FFM) in which the condition for failure is derived from 

energy balance assuming a finite amount of crack extension (which would be 2L). (Taylor 

2007, p. 1699.) The failure criterion for FFM is expressed as follows (Taylor 2007, p 1699): 

 

 

∫ 𝐾2𝑑𝑎 = 𝐾𝑐
2 ⋅ 2𝐿

2𝐿

0

 (2.211) 

 

Rabb (2017, p. 294–295) recommends using point method in which, as mentioned earlier, 

the critical stress amplitude σac is obtained at the distance rc = L / 2 from the surface. With 

PM, the theory of critical distances is expressed with the following equations when also size 

factor is considered (Rabb 2017, p. 295; Rabb 2020a): 

 

L/2 

2L 

a) 

b) 
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𝐿 =

1

𝜋
(

Δ𝐾𝑡ℎ

𝐾𝑠𝑖𝑧𝑒 ⋅ Δ𝜎𝑎𝑓
)

2

 (2.212) 

 
𝑟𝑐 =

𝐿

2
  (2.213) 

 
𝜎𝑎𝑐 ≤

𝐾𝑠𝑖𝑧𝑒 ⋅ 𝜎𝑎𝑅,𝑠𝑚𝑜𝑜𝑡ℎ

𝑆𝐹
=

𝐾𝑠𝑖𝑧𝑒 ⋅ Δ𝜎𝑎𝑓

2𝑆𝐹
 (2.214) 

 
𝜒∗ =

1

𝜎𝑚𝑎𝑥
⋅
𝑑𝜎

𝑑𝑟
 (2.215) 

 

, where σaR,smooth is fatigue limit for smooth reference specimen and  χ* is relative stress 

gradient (see chapter 2.9.2).  

 

TCD can be utilized in a case of a sharp notch where relative stress gradient is very steep 

and consequently, there is a large difference in stress between the lowest and the deepest 

points of a (large) material defect. Therefore, stress intensity may drop considerably between 

these points and the critical point is not located on the surface but slightly below it. In cases 

like this, statistical theory may give too conservative estimates because it assumes that the 

stress amplitude is approximately equal over the material defect. (Rabb 2017, p. 293.)  

 

Rabb (2017, p. 297) states that statistical theory works well when kt ≤ 2 for spheroidal graph-

ite cast iron and with notches sharper than this, phenomenon explained above may have to 

be considered. With steel, TCD needs to be considered when stress state is singular like 

sometimes in the case of fretting fatigue (Rabb 2017, p. 297). 

  

TCD is also utilised in calculation of slope exponent k for S-N curves. In that case, the critical 

distance is L rather than L / 2. Using L as critical distance increases the value of slope expo-

nent in the same amount as it is increased in nominal stress method when notch sensitivity 

factor is considered. (Rabb 2020d.) 
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2.8 Multiscale modelling of fatigue 

As was explained in chapter 1.5, fatigue process consists of crack initiation and crack growth 

phases. It can be seen that fatigue process involves different length scales and thus the anal-

ysis of fatigue life from the start of the cyclic slip to “large” crack growth requires consid-

eration of multiple length scales (Božic et al. 2014, p. 1044).  

 

Crack nucleation happens as a result of dislocation movement which develops slip bands 

within grains. Dislocation development is within nanoscale and can be analysed with atom-

istic scale simulation methods. The consequent crack nucleation and microcrack growth are 

still affected by the microstructure and they are happening within mesoscale. As such, they 

need analysis methods which can consider the relevant effects. After the microcrack has 

grown sufficiently large, its propagation in macroscale can be analysed for example with 

fracture mechanics. (Božic et al. 2014, p. 1044–1045.) Different length scales are shown in 

figure 52. 

 

The modelling methods fall into two categories based on how they describe materials. Dis-

crete methods or atomistic methods combined with stochastic methods can be used in mod-

elling time-controlled phenomena such as diffusion, aging or deformation mechanisms in 

nanoscale. Continuous methods on the other hand are based on solid or fracture mechanics 

and they are used in modelling macroscale continuous behaviour. (Laukkanen, Holmberg & 

Wallin 2013, p. 11–12.) Examples of modelling methods for different spatial and temporal 

scales are presented in figure 52. 
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Figure 52. Modelling methods for different spatial and temporal scales (Mod. Laukkanen, 

Holmberg & Wallin 2013, p. 13). 

 

2.8.1 Nanoscale 

Dislocation nucleation and movement can be modelled using molecular dynamics (MD). 

Often the models in MD are based on assumptions (the Born-Oppenheimer approximation) 

that allow the use of Newton’s second law in expressing the equations of motion for atomic 

nuclei. Use of this classical approach instead of quantum mechanics is needed because so-

lution based on quantum mechanics would quickly become too complicated to compute. 

(Božic et al. 2014, p. 1045; Leimkuhler & Matthews 2015, p. 5–7.)  

 

The Newtonian equation of motion for atoms is expressed as follows and it is solved in every 

time step of the MD analysis (Eidel, Hartmaier & Gumbsch 2010, p. 11; Božic et al. 2014, 

p. 1045): 

 

 
𝐹𝑖 = 𝑚𝑖

𝑑2𝒙𝒊

𝑑𝑡2
 (2.216) 

 

Nanoscale Mesoscale 
Macroscale 
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, where xi is the position vector of atom i, t is time and mi is the mass of the atom. The force 

Fi acting on atom i is obtained by taking the derivative of the potential energy U which de-

pends on the position of all atoms (Eidel, Hartmaier & Gumbsch 2010, p. 11): 

 

 
𝐹𝑖 = −

𝑑𝑈(𝑥)

𝑑𝒙𝒊
 (2.217) 

 

The potential energy U is often obtained by using Embedded atom method (EAM) (Eidel, 

Hartmaier & Gumbsch 2010, p. 8): 

 

 
𝑈𝑡𝑜𝑡 =

1

2
∑ 𝑉𝑖𝑗(𝑟𝑖𝑗) + ∑𝐹𝑒(𝜌𝑖)

𝑖𝑖,𝑗≠𝑖

 (2.218) 

 𝜌𝑖 = ∑𝜌𝑖𝑗(𝑟𝑖𝑗)

𝑗≠𝑖

 (2.219) 

 

, where ρij is the contribution of atom j to the total electron density at atom i, Fe is the em-

bedding energy associated with placing atom i in this environment, rij is the separation be-

tween atoms i and j, and Vij is the pair potential contribution to the potential energy of atom 

i.   

 

Molecular dynamics modelling yields material parameters that can be utilised in microme-

chanics modelling (in mesoscale). An important parameter that can be defined with MD is 

critical resolved shear stress (CRSS) which is the stress required to initiate slip in a crystal. 

(Božic et al. 2014, p. 1047; Milella 2013, p. 36.) Figure 53 shows an MD model of iron with 

a notch. 
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Figure 53. Body centred crystal iron cuboid with a notch (486 000 atoms). Von Mises stress 

is indicated with red (high) and blue (low). (Božic et al. 2014, p. 1046.) 

 

2.8.2 Mesoscale 

Crack nucleation can be predicted for example with Tanaka-Mura model. According to the 

model, fatigue crack nucleation is induced by accumulation of dislocation dipoles in a single 

grain during strain cycling. The number of stress cycles needed for crack nucleation is ob-

tained when a critical value of the self-strain energy of the accumulated dislocation dipoles 

is reached. Number of cycles required for the crack nucleation in a single grain is expressed 

as follows. (Božic et al. 2014, p. 1047.) 

 

 
𝑁𝑔 =

8𝐺𝑊𝑐

𝜋(1 − 𝜈) ⋅ 𝑑 ⋅ (Δ𝜏 − 2 ⋅ 𝜏𝐶𝑅𝑆𝑆)2
 (2.220) 

 

According to equation (2.220), crack nucleation on a slip band depends on slip band length 

d which is the distance along the slip band between grain boundaries of a single grain, and 

the average shear stress range of the slip band Δ𝜏. In addition, G is shear modulus, Wc is 

specific fracture energy per unit area, ν is Poisson’s ratio and τCRSS is critical resolved shear 

stress. (Božic et al. 2014, p. 1047.) 

 

The grain structure of the material can be modelled in 2D or 3D in FEM. One approach is to 

use the Voronoi tessellation (figure 54) which creates a random grain structure by dividing 

the space into regions using randomly distributed seed points. (Nygårds 2003, p. 14–15.)  

 



110 

 

 

Figure 54. a) 2D Voronoi tessellation with seed points and b) FE mesh of the tessellation 

(Weyer et al. 2002, p. 949). 

 

Another option to model the grain structure is to use a scanning electron microscope (SEM) 

image of the actual microstructure of material. The microstructural phases can be segmented 

from the SEM image and FE mesh can be generated on the resulting material distribution. 

(Laukkanen, Holmberg & Wallin 2013, p. 15–16.) Modelling of microstructure based on 

SEM image is shown in figure 55. 

 

 

Figure 55. Modelling of the microstructure of a metal matrix composite coating. (Lauk-

kanen, Holmberg & Wallin 2013, p. 16). 

 

 

a) b) 
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After the FE-mesh is generated, the Tanaka-Mura model can be incorporated in it, and grains 

where the crack nucleation condition |Δ𝜏| > 2⋅τCRSS is met, can be found (Mlikota, 

Schmauder & Božic 2018, p. 292). An example of two-scale FE-model is shown in figure 

56. 

 

 

Figure 56. a) shear stresses in 3D deformable shell sub-model. The Tanaka-Mura nucleation 

condition is satisfied in black and grey grains. b) 3D global model. (Mlikota, Schmauder & 

Božic 2018, p. 292.) 

 

2.8.3 Macroscale 

Crack growth of “large” cracks in macroscale can be analysed with LEFM. By combining 

the LEFM results with the results from the initiation analysis done with Tanaka-Mura model 

the total fatigue life (initiation + propagation) can be obtained. In essence, two macroscale 

models are needed. One is used with the grain structure sub-model to analyse the initiation, 

and the other is used for LEFM analysis and determination of stress intensity factor range 

ΔK. (Mlikota, Schmauder & Božic 2018; Mlikota, Staib, Schmauder & Božic 2017.) 

 

Multiscale models could be used, instead of testing, to obtain different material parameters. 

For example, Mlikota, Schmauder & Božic (2018) used a two-scale model to define S-N 

curve and fatigue limit for AISI 1141 steel, and in another study a two-scale model was used 

by Mlikota, Staib, Schmauder & Božic (2017) to determine Paris law constants for carbon 

steel.  

 

 

a) 
b) 
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2.9 Finite element analysis 

In addition to calculation of stresses, finite element analysis (FEA) is utilized in calculation 

of effective stress area which is needed for size factor Ksize. Also, as the use of notch factor 

from DNVGL-ST-0361 has been found to be problematic with complex geometries, FEA 

can be utilized in calculation of relative stress gradient χ*. When stress gradient is used for 

calculation of the slope of synthetic S-N curves, there is no need for the notch factor. 

 

2.9.1 Determination of effective area 

Statistical size factor is determined based on the effective area of the studied machine ele-

ment and this means that the elemental face areas are needed (see figure 57). The area of the 

element face located on the surface of the component can be obtained with the help of the 

element shape functions and global nodal coordinates (Lönnqvist 2008, p. 221).  

 

 

Figure 57. Effective area is calculated for each elemental face that is on the surface of the 

component, and the effective area of the whole component is the total of elemental effective 

areas.  

 

The elements used in an example analysis in chapter 3.2 are ten-node tetrahedron solid ele-

ments and thus, the calculation procedure for triangular face area is presented below. Since 

the tetrahedrons are quadratic, the shape of the elemental face is that of a quadratic triangular 

2D element. The shape functions Ni for quadratic triangular element (T6) which is shown in 

figure 58, are expressed as follows (Cook, Malkus & Plesha 1989, p. 154, 182): 

 

 𝑁1 = 𝜉(2𝜉 − 1) (2.221) 

 𝑁2 = 𝜂(2𝜂 − 1) (2.222) 

Aelement 

A
eff,element
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 𝑁3 = 𝜁(2𝜁 − 1) (2.223) 

 𝑁4 = 4𝜉𝜂 (2.224) 

 𝑁5 = 4𝜂𝜁 (2.225) 

 𝑁6 = 4𝜁𝜉 (2.226) 

 

, where ξ and η are natural coordinates of the element’s coordinate system and ζ = 1 – ξ – η.  

 

 

Figure 58. Quadratic triangular element (T6) with node numbering (black) and natural co-

ordinates (red). 

 

The area element dA of the elemental face in elemental coordinate system is expressed as 

the norm of cross product dξ × dη (see figure 59). When area element is mapped onto the 

element surface in global coordinate system, it becomes a parallelogram. (Khan Academy 

2020.) 

 

 

Figure 59. Area element defined in elemental coordinate system mapped into global coor-

dinate system. 

𝑑𝐴 = 𝑑𝜉 × 𝑑𝜂

𝑑𝐴 = 𝑑𝜉 × 𝑑𝜂

η

ξ
𝑑𝜉

𝑑𝜂

x

y

z

𝑑𝐴(𝜉, 𝜂)

𝑑𝜉

𝑑𝜂

N3 

N5 

N4 

N1 

N2 

N6 

ξ = 0 

ξ = ½  

ξ = 1 

η = 0 

η = ½ 

η = 1 

Mapping of the area element from natural 

coordinates to global coordinates with the 

help of partial derivatives (Jacobian) 
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The vectors 𝑑𝜂⃗⃗⃗⃗  and 𝑑𝜉⃗⃗⃗⃗  and their cross product is obtained as follows (Khan Academy 2020; 

Henttonen, Oinonen & Uusitalo 2007, p. 236; Lönnqvist 2008, p. 225): 

 

 
𝑑𝜉⃗⃗⃗⃗ =

𝜕𝑋

𝜕𝜉
𝑑𝜉𝑖̅ +

𝜕𝑌

𝜕𝜉
𝑑𝜉𝑗̅ +

𝜕𝑍

𝜕𝜉
𝑑𝜉�̅� (2.227) 

 
𝑑𝜂⃗⃗⃗⃗ =

𝜕𝑋

𝜕𝜂
𝑑𝜂𝑖̅ +

𝜕𝑌

𝜕𝜂
𝑑𝜂𝑗̅ +

𝜕𝑍

𝜕𝜂
𝑑𝜂�̅� (2.228) 

 

 

𝑑𝐴⃗⃗⃗⃗  ⃗ = 𝑑𝜉⃗⃗⃗⃗ × 𝑑𝜂⃗⃗⃗⃗ =
|

|

𝑖̅ 𝑗 ̅ �̅�
𝜕𝑋

𝜕𝜉

𝜕𝑌

𝜕𝜉

𝜕𝑍

𝜕𝜉
𝜕𝑋

𝜕𝜂

𝜕𝑌

𝜕𝜂

𝜕𝑍

𝜕𝜂

|

|
𝑑𝜉𝑑𝜂 = (

𝜕𝑌

𝜕𝜉
⋅
𝜕𝑍

𝜕𝜂
−

𝜕𝑍

𝜕𝜉
⋅
𝜕𝑌

𝜕𝜂
) 𝑖̅…

  …− (
𝜕𝑋

𝜕𝜉
⋅
𝜕𝑍

𝜕𝜂
−

𝜕𝑍

𝜕𝜉
⋅
𝜕𝑋

𝜕𝜂
) 𝑗̅ + (

𝜕𝑋

𝜕𝜉
⋅
𝜕𝑌

𝜕𝜂
−

𝜕𝑌

𝜕𝜉
⋅
𝜕𝑋

𝜕𝜂
) �̅�      𝑑𝜉𝑑𝜂

       = 𝑑𝐴𝑥𝑖̅ + 𝑑𝐴𝑦𝑗̅ + 𝑑𝐴𝑧�̅�

 (2.229) 

 

, where X, Y and Z are the global coordinates within the element face. Global coordinates 

within the element face are obtained using the shape functions and global nodal coordinates 

of the element (Cook, Malkus & Plesha 1989, p. 182):  

 

 

𝑋(𝜉, 𝜂) = ∑𝑁𝑖𝒙𝑖

6

𝑖=1

 (2.230) 

 

𝑌(𝜉, 𝜂) = ∑𝑁𝑖𝒚𝑖

6

𝑖=1

 (2.231) 

 

𝑍(𝜉, 𝜂) = ∑𝑁𝑖𝒛𝑖

6

𝑖=1

 (2.232) 

i = 1…6 for T6 element     

 

, where x, y and z are the element’s nodal coordinates in global coordinate system. 

 

The parallelogram area element of the elemental face in global coordinate system is the norm 

of dAx, dAy and dAz (Khan Academy 2020): 
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𝑑𝐴(𝜉, 𝜂) = √𝑑𝐴𝑥

2 + 𝑑𝐴𝑦
2 + 𝑑𝐴𝑧

2 𝑑𝜉𝑑𝜂 (2.233) 

 

The area of the element face can then be calculated with a surface integral of the differential 

equation (2.233) (Khan Academy 2020). It needs to be integrated numerically and this can 

be done with Gaussian quadrature. Since Gaussian quadrature in its commonly known form 

gives integral for square element in range [-1≤ ξ, η ≤ 1], it needs to be modified so that the 

integration can be done for triangular element which is defined in the range of [0 ≤ ξ, η ≤ 1] 

(see figure 58). Thus, the following is obtained for Gaussian quadrature for triangular ele-

ment. (Cook, Malkus & Plesha 1989, p. 183.) 

 

 
𝐴 = ∫ ∫ 𝑑𝐴(𝜉, 𝜂) 𝑑𝜉𝑑𝜂

1−𝜂

0

1

0

    =
1

2
⋅ ∑𝑊𝑖 ⋅ 𝑑𝐴(𝜉𝑖 , 𝜂𝑖)

𝑛

𝑖=1

 (2.234) 

 

, where ξi and ηi are Gaussian integration points and Wi is weight coefficient. Values of inte-

gration points and weight coefficients can be found in Appendix IV. When there are multiple 

sampling points with the same weight factor (see Appendix IV, multiplicity column), inte-

gration point values are given for one of them and the rest are obtained by cyclic permutation 

(Cook, Malkus & Plesha 1989, p. 183). For example, for three sampling points with the same 

weight factor, the area element function is calculated at three locations (Cook, Malkus & 

Plesha 1989, p. 183): 

 

 

1:      {
𝜉1 =

2

3

𝜉2 = 𝜉3 =
1

6

 (2.235) 

 

2:      {
𝜉2 =

2

3

𝜉3 = 𝜉1 =
1

6

 (2.236) 

 

3:      {
𝜉3 =

2

3

𝜉1 = 𝜉2 =
1

6

 (2.237) 
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, where area coordinates correspond natural coordinates: ξ1 = ξ, ξ2 = η and ξ3 = 1 - ξ – η. 

 

Method explained above can be used with other types of elements as well (also with axisym-

metric elements) if correct shape functions and Gauss integration function are chosen. For 

example, face area of 20-node hexahedral element could be calculated with the shape func-

tions of quadratic quadrilateral element (Q8). In that case, the Gauss integration would have 

to be modified so that the domain of the surface area integral is square [-1 ≤ ξ, η ≤ 1].  

 

After the surface face area is calculated for each element, the effective area can be calculated 

with equations (2.67)–(2.72). As the examined area is divided into small portions, that is to 

say FE-elements, the element with maximum stress amplitude or multiaxial failure criteria 

value is presumed to have failure probability of 50 %. Consequently, rest of the elements 

will have lower failure probabilities according to their stress amplitude or multiaxial failure 

criteria value. Variable λ of standard normal distribution that corresponds a certain reliability 

can be calculated from the following for each element (according to log-normal distribution). 

(Rabb 2017, p. 144.)   

 

 
𝜆𝑖 =

1

𝑠𝑙𝑛
ln (

𝜎𝑎𝑖

𝜎𝑎,𝑚𝑎𝑥
) (2.238) 

or 

 
𝜆𝑖 =

1

𝑠𝑙𝑛
ln (

𝐷𝑖

𝐷𝑚𝑎𝑥
) (2.239) 

NOTE! use sample value for sln 

 

, where σai is the average stress amplitude of element i, σa,max is the maximum average stress 

amplitude, Di is the multiaxial failure criteria value for element i and Dmax is the maximum 

multiaxial failure criteria value. The effective areas for reference test pieces have been cal-

culated with sln = 0.065 (steel) and sln = 0.1 (GJS) and consequently, these should be used 

when calculating effective area for the studied component. 
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Reliability for each element can then be calculated as follows (Rabb 2017, p. 145): 

 

 
𝑅𝑖 = 1 − 𝑃𝑖 =

1

√2𝜋
∫ 𝑒−

𝑥2

2

∞

𝜆𝑖

𝑑𝑥  (2.240) 

 

Finally, the effective area of the component is calculated as the sum of individual effective 

areas (Rabb 2017, p. 145): 

 

 
𝐴𝑒𝑓𝑓 = ∑

ln𝑅𝑖

ln 0.5

𝑛

𝑖=1

⋅ 𝐴𝑖 (2.241) 

 

, where Ai is the face area of element i. Rabb (2017, p. 149) provides a rule of thumb which 

states that the effective area for cast irons (sample sr = 0.1) is the area where the stress am-

plitude is 94 % of the maximum amplitude. Corresponding value for steels is 96 % (sample 

sr = 0.065). 

 

2.9.2 Determination of relative stress gradient 

Relative stress gradient which is needed for calculation of S-N curve slope exponent is cal-

culated with equation (2.141) which is also shown below: 

 

 
𝜒∗ =

1

𝜎𝑚𝑎𝑥
⋅
𝑑𝜎

𝑑𝑟
 (2.141) 

 

, where σmax is the maximum normal stress on the surface and dσ is change in stress at the 

depth of dr from the surface (along the surface normal). When multiaxial stress state needs 

to be considered, χ* can be calculated using Von Mises criterion. Von Mises stress is defined 

as follows. (Rabb 2020a.) 

 

 

𝜎𝑉𝑀 = √
𝜎𝑥

2 + 𝜎𝑦
2 + 𝜎𝑧

2 − 𝜎𝑥𝜎𝑦 …

…− 𝜎𝑥𝜎𝑧 − 𝜎𝑦𝜎𝑧 + 3(𝜏𝑥𝑦
2 + 𝜏𝑥𝑧

2 + 𝜏𝑦𝑧
2 )

 (2.242) 
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Relative stress gradient could be defined using Findley damage criterion as well and pre-

sumably, this would be a little more accurate. However, using Von Mises is simpler and 

faster and thus advisable. (Rabb 2020a.)  

 

The depth at which χ* should be calculated is defined by the theory of critical distances. The 

material length scale L and the critical distance rc are as follows. (Rabb 2020a; Rabb 2020d.)  

 

 
𝐿 =

1

𝜋
(

Δ𝐾𝑡ℎ,𝑅

2 ⋅ 𝐾𝑠𝑖𝑧𝑒 ⋅ 𝜎𝑎𝑅
)
2

 (2.243) 

 2𝑟𝑐 = 𝐿 (2.244) 

 

, where ΔKth,R is threshold stress intensity when stress ratio is R, Ksize is statistical size factor 

of the critical area and σaR is reference specimen fatigue limit from Haigh diagram for stress 

ratio R. Note that distance L is used in S-N curve slope exponent calculation. However, if 

TCD is used in estimation of fatigue limit, the distance is L / 2.   

 

The FE-model for determination of relative stress gradient needs to have a reasonably fine 

mesh so that the stress values can be accurately obtained at the required distance. Especially 

if the critical distance is very small like for example for some steels (L  ≈ 0.024 mm), the 

mesh should be refined enough near the surface. In figure 60, in the case of the coarsest 

mesh, it can be seen that the value of χ* at dr = 0.024 mm cannot be obtained reliably. 

However, deeper in the material, at the distance of dr = 0.215 mm (= L for GJS-500), relative 

stress gradient obtained with the coarsest mesh differs only about 0.6 % from the finer 

meshes.  
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Figure 60. Relative stress gradient with different node spacings. 

 

Based on the results in figure 60 it can be concluded that there should be at least 20 nodes 

along the distance L if χ* is required near the surface. With node spacing of 0.0243 mm there 

is not remarkable difference in χ* value at the depth of L = 0.215 mm when compared to 

finer meshes and thus even ~10 nodes along L should give adequately accurate results for 

slope exponent calculation.  

 

In practice, making such fine meshes for actual machine elements requires submodeling. In 

Ansys, a global model of the studied component can be solved first and then, the area of 

interest (submodel) can be cut out from the global model. The solution of the global model 

can be imported into the submodel and used as a boundary condition. The required data, in 

this case displacements, is then interpolated from the global solution onto the cut boundaries. 

(Ansys Help 2020.) As an example, an FE-model of a fatigue test specimen for GJS-500 is 

shown in figures 61 and 62. The calculated relative stress gradient from the model is shown 

in figure 63. 
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Figure 61. Global (a) and local (b) FE-models for determination of relative stress gradient. 

 

 

Figure 62. Von Mises stress [MPa]. a) global model and b) local model. The global model 

is loaded axially with 1 MPa load to obtain the stress distribution at the notch root. Node 

spacing at the notch root along the surface normal is 0.003 mm. 

 

a) 

b) 

A section of the global 

model is cut out and 

used as a submodel 

The solution of the global model 

is used as boundary condition on 

the cut boundaries 

a) 

b) 
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Figure 63. Calculated relative stress gradient χ* for the GJS-500 test specimen. χ* = 0.9778 

mm-1 at the distance of L = 2rc = 0.215 mm.   

 

2.9.3 Determination of stress components for multiaxial fatigue analysis 

Stress matrix of the critical point for multiaxial fatigue analysis at every load step/increment 

can be obtained from FE-analysis results. Nodal stress matrices can be exported from FE-

solution and used in Findley or Dang Van multiaxial analysis methods. Stress matrix is ex-

pressed as follows:  

 

 
[𝜎] = [

𝜎𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑥𝑦 𝜎𝑦 𝜏𝑦𝑧

𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧

] (2.245) 

 

Examples of proportional and non-proportional load cases are shown in Figures 64 and 65. 

When non-proportional loading is considered, the time points at which the matrix is obtained 

should be chosen with appropriate increment so that the response is recorded accurately.  
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Figure 64. Proportional load case with two time increments and the corresponding stress 

matrices of the critical point. 

 

The load cycle in Figure 64 yields the following according to Findley criterion when σaR=-1 

= 537 MPa and σaR=0 = 411 MPa: 

 

Δτ = 192.8 MPa  

 σn = 132.3 MPa 

  θ = 163.50°  

 φ = 90°  

D = 129.5 MPa 

 SF,ver = 3.3730 

 SF,rad = 2.7661 
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Figure 65. Non-proportional load case. The load cycle has been divided in 13 time incre-

ments in an effort to capture the maximum shear stress range and normal stress. For com-

parison, the same load cycle is divided in 37 time increments to show the possible difference 

in the maximum Findley damage. 

 

The load cycle in Figure 65 yields the following according to Findley criterion when 13 load 

increments or ~7 increments along the period of the highest frequency are used, and σaR=-1 = 

537 MPa and σaR=0 = 411 MPa: 

 

 Δτ = 337.7 MPa  

 σn = 235.1 MPa 

  θ = 137.75°  

 φ = 90°  

 D = 237.6 MPa 

 SF,ver = 1.7148 

 SF,rad = 1.5080 

 

However, when the load cycle is divided in 37 load increments or ~19 increments along the 

period of the highest frequency, the following is obtained: 

 

Δτ = 347.9 MPa  

 σn = 234.7 MPa 

  θ = 137.75°  

 φ = 90°  
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 D = 242.6 MPa 

SF,ver = 1.6647 

 SF,rad = 1.4766 

 

The angle of the critical plane is the same, and there is only ~2 % difference in maximum 

Findley damage between 13 and 37 load increments. Therefore, using about 10 load incre-

ments along the period of the highest frequency should give adequately accurate results (in 

other words the load cycle in figure 65 divided into 20 increments). Figure 66 shows the 

critical plane and stress element. 

 

 

Figure 66. According to Findley criterion the critical plane is perpendicular to XY-plane 

with the loading presented in Figure 64. 
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3 RESULTS 

 

 

The results of this work are composed of flowcharts of the introduced fatigue analysis 

method and an example analysis of a relatively simple component and load case. An effort 

is made with the flowcharts and the example calculation to clarify how the new analysis 

method should be conducted, and what kind of inputs and outputs are required from the 

programmed analysis tool. 

 

3.1 New method 

The new analysis method is presented in the following flowcharts. The flowcharts define the 

main steps of the analysis process while the background is explained in previous chapters. 

 

The new method requires at least the following values from the user: 

Yield strength: Rp0.2 (normative or tested) 

Ultimate strength: Rm (normative or tested) 

Ultimate compressive strength: Rmc (normative or tested) 

Allowed failure probability: λ (some values are shown in table 6) 

 

Table 6. Some λ values for different failure probabilities. 

P [%] λ*  

2.3 -2 

0.1 -3.09 

0.01 -3.719 

0.001 -4.265 

* 𝑃 = 1 − 𝑅 =
1

√2𝜋
∫ 𝑒−

𝑥2

2 𝑑𝑥
𝜆

−∞
   →  λ = … 
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Default values should be available for some variables if no other information is given by the 

user. However, there should be possibility for the users to input these themselves. Default 

values are shown in table 7. 

 

Table 7. Default values for some variables if no other information is available. 

 Steel  GJS 

𝝈𝟎.𝟐 [MPa]* Rp0.2 (tested) or 1.06⋅Rp0.2 (normative)  

𝝈𝒃 [MPa]* Rm (tested) or 1.06⋅Rm (normative)  

𝝈𝒃,𝒄𝒐𝒎𝒑 [MPa]* - Rmc (tested) or 1.06⋅Rmc (normative) 

𝝈𝒂𝑹=−𝟏 [MPa] 1.04(0.144𝜎𝑏 + 0.309𝜎0.2) + 56 0.1798𝜎𝑏 + 0.11845𝜎0.2 + 60.6699 

Aeff [mm2] 225 1039 

k [-] 0.1 − 0.00035𝜎𝑏  0.000261 ⋅ 𝜎𝑏 − 0.65493 

𝝈𝒂𝑹=𝟎 [MPa] 
𝜎𝑎𝑅=−1

1 − 𝑘
 

𝚫𝑲𝒕𝒉,𝑹=−𝟏 

[N/mm3/2] 
31.62 ⋅ (−0.0038𝜎𝑏 + 15.5)** 

* Requires user input 

** reference: Chapetti 2010, p. 261. 
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3.1.1 Haigh diagram 

Analysis begins with the construction of Haigh diagram.  

 

 

Material 

Spheroidal graphite cast iron Steel 

(QT or structural) 

Static strength values (normative): 

Yield strength: σ0.2 = 1.06⋅ Rp0.2 

Ultimate strength: σb = 1.06⋅Rm 

Ultimate compressive strength: σb,comp = 1.06⋅Rmc 

Static strength values (tested): 

Yield strength: σ0.2 = Rp0.2 

Ultimate strength: σb = Rm 

Ultimate compressive strength: σb,comp = Rmc 

 

Static strength values (normative): 

Yield strength: σ0.2 = 1.06⋅ Rp0.2 

Ultimate strength: σb = 1.06⋅Rm 

Static strength values (tested): 

Yield strength: σ0.2 = Rp0.2 

Ultimate strength: σb = Rm 

 

Fatigue limit for completely reversed loading 

(default): 

σaR=-1 = 0.1798⋅σb + 0.11845⋅σ0.2 +60.6699 

(Aref = 1039 mm2) 

Slope of the Haigh diagram (default): 

k = 0.000261⋅σb – 0.65493      

Fatigue limit for R = 0 (default): 

𝜎𝑎𝑅=0 =
𝜎𝑎𝑅=−1

1 − 𝑘
 

 

Or user input. Note that this requires also Aref 

as an input 

 

Fatigue limit for completely reversed loading 

(default): 

σ
aR=-1 

= 1.04(0.144⋅σb + 0.309⋅σ0.2) + 56 

(Aref = 225 mm2) 

Slope of the Haigh diagram (default): 

k = 0.1 - 0.00035⋅σb 

Fatigue limit for R = 0 (default): 

𝜎𝑎𝑅=0 =
𝜎𝑎𝑅=−1

1 − 𝑘
 

 

Or user input. Note that this requires also Aref 

as an input 
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Haigh diagrams 

GJS Structural steel QT-steel 

Linear part: 

(σm2 < σm < σm1) 

𝜎𝑚2 =
𝜎𝑎𝑅=−1 − 𝜎0.2

1 − 𝑘
 

𝜎𝑚1 =
𝜎0.2 − 𝜎𝑎𝑅=−1

1 + 𝑘
 

𝜎𝑎𝑓 = 𝜎𝑎𝑅=−1 + 𝑘𝜎𝑚 

Compression side: 

𝜎𝑚,𝑃0 = 𝜎𝑏,𝑐𝑜𝑚𝑝 

𝜎𝑎,𝑃0 = 0 

𝜎𝑚,𝑃1 =
𝜎𝑎𝑅=−1 + 𝜎𝑏.𝑐𝑜𝑚𝑝

1 − 𝑘
 

𝜎𝑎,𝑃1 = 𝜎𝑎𝑅=−1 + 𝑘𝜎𝑚,𝑃1 

𝜎𝑚,𝑃2 =
𝜎𝑎𝑅=−1 + 𝜎0.2

1 − 𝑘
 

𝜎𝑎,𝑃2 = 𝜎𝑎𝑅=−1 + 𝑘𝜎𝑚,𝑃2 

B-spline: 

𝜎𝑎𝑓 = 2𝑡 ⋅ (1 − 𝑡) ⋅ 𝜎𝑎,𝑃1

+𝑡2 ⋅ 𝜎𝑎,𝑃2
 

𝜎𝑚 = (1 − 𝑡)2 ⋅ 𝜎𝑚,𝑃0

+2𝑡 ⋅ (1 − 𝑡) ⋅ 𝜎𝑚,𝑃1

+𝑡2 ⋅ 𝜎𝑚,𝑃2

 

, where t is calculated with eq. 

(2.13) 

Tensile side 

𝜎𝑚,𝑃0 =
𝜎0.2 − 𝜎𝑎𝑅=−1

1 + 𝑘
 

𝜎𝑎,𝑃0 = 𝜎𝑎𝑅=−1 + 𝑘𝜎𝑚,𝑃0 

𝜎𝑚,𝑃1 =
−𝜎𝑎𝑅=−1

𝑘
 

𝜎𝑎,𝑃1 = 0 

𝜎𝑚,𝑃2 = 𝜎𝑏 

𝜎𝑎,𝑃2 = 0 

B-spline: 

𝜎𝑎𝑓 = (1 − 𝑡)2 ⋅ 𝜎𝑎,𝑃0 

𝜎𝑚 = (1 − 𝑡)2 ⋅ 𝜎𝑚,𝑃0

+2𝑡 ⋅ (1 − 𝑡) ⋅ 𝜎𝑚,𝑃1

+𝑡2 ⋅ 𝜎𝑚,𝑃2

 

, where t is calculated with eq. 

(2.13) 

 

Linear part: (σm,P2 < σm < σmR=0) 

𝜎𝑚,𝑃2 =
𝜎𝑎𝑅=−1 − 𝜎0.2

2(1 − 𝑘)
 

𝜎𝑚𝑅=0 =
𝜎𝑎𝑅=−1

1 − 𝑘
 

𝜎𝑎𝑓 = 𝜎𝑎𝑅=−1 + 𝑘𝜎𝑚 

 

Structural steel: 

𝑅𝑚
∗ ≈ 1.3𝜎𝑏 

QT-steel: 

𝑅𝑚
∗ =

(1 + 2𝑀) ⋅ 𝜎𝑎𝑅=−1

𝑀 ⋅ (2 + 𝑀)
 

, where M = -k 

Compression side:  

𝜎𝑚,𝑃0 = −𝑅𝑚
∗  

𝜎𝑎,𝑃0 = 0 

𝜎𝑚,𝑃1 =
𝑅𝑚

∗ − 𝜎𝑎𝑅=−1

𝑘 − 1
 

𝜎𝑎,𝑃1 = 𝜎𝑎𝑅=−1 + 𝑘𝜎𝑚,𝑃1 

𝜎𝑚,𝑃2 =
𝜎𝑎𝑅=−1 − 𝜎0.2

2(1 − 𝑘)
 

𝜎𝑎,𝑃2 = 𝜎𝑎𝑅=−1 + 𝑘𝜎𝑚,𝑃2 

B-spline: 

𝜎𝑎𝑓 = (1 − 𝑡)2𝜎𝑎,𝑃0 + 2𝑡(1 − 𝑡)𝜎𝑎,𝑃1 + 𝑡2𝜎𝑎,𝑃2 

𝜎𝑚 = (1 − 𝑡)2𝜎𝑚,𝑃0 + 2𝑡(1 − 𝑡)𝜎𝑚,𝑃1 + 𝑡2𝜎𝑚,𝑃2 

, where t is calculated with eq. (2.13). 

 

Structural steel tensile 

side: 

𝜎𝑎𝑓 = 𝐴𝜎𝑚
2 + 𝐵𝜎𝑚 + 𝐶 

𝜎𝑚1 =
𝜎0.2 − 𝜎𝑎𝑅=−1

1 + 𝑘
 

𝜎𝑎1 = 𝜎𝑎𝑅=−1 + 𝑘𝜎𝑚1 

𝐴 =
𝑘𝜎𝑚1 − 𝜎𝑎1 − 𝑘𝑅𝑚

∗

(𝑅𝑚
∗ − 𝜎𝑚1)

2  

𝐵 = 𝑘 − 2𝐴𝜎𝑚1 

𝐶 = 𝐴𝜎𝑚1
2 + 𝜎𝑎1 − 𝑘𝜎𝑚1 

QT-steel tensile side: 

𝜎𝑎𝑓 = 𝜎𝑎𝑅=−1 (
1 − 𝑏

2 − 𝑏

+√
1

(2 − 𝑏)2 −
𝑏𝜎𝑚

(2 − 𝑏)𝑅𝑚
∗ )

 

𝑏 =
2(1 + 2𝑀)

2 + 2𝑀 − 𝑀2
 

, where M = -k 
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Effective area Aeff 

Nodal coordinates x, y and z from 

FE-model 
Element shape functions Ni 

Partial derivatives and area element dA: 

𝑑𝐴(𝜉, 𝜂) = √𝑑𝐴𝑥
2 + 𝑑𝐴𝑦

2 + 𝑑𝐴𝑧
2 𝑑𝜉𝑑𝜂 

𝑑𝐴𝑥 =
𝜕𝑌

𝜕𝜉
⋅
𝜕𝑍

𝜕𝜂
−

𝜕𝑍

𝜕𝜉
⋅
𝜕𝑌

𝜕𝜂
 

𝑑𝐴𝑦 = −(
𝜕𝑋

𝜕𝜉
⋅
𝜕𝑍

𝜕𝜂
−

𝜕𝑍

𝜕𝜉
⋅
𝜕𝑋

𝜕𝜂
) 

𝑑𝐴𝑧 =
𝜕𝑋

𝜕𝜉
⋅
𝜕𝑌

𝜕𝜂
−

𝜕𝑌

𝜕𝜉
⋅
𝜕𝑋

𝜕𝜂
 

Global coordinates within the element: 

𝑋(𝜉, 𝜂) = ∑ 𝑁𝑖𝒙𝑖

𝑛

𝑖=1
 

𝑌(𝜉, 𝜂) = ∑ 𝑁𝑖𝒚𝑖

𝑛

𝑖=1
 

𝑍(𝜉, 𝜂) = ∑ 𝑁𝑖𝒛𝑖

𝑛

𝑖=1
 

 

Area of the element face (for triangular element): 

𝐴𝑗 = ∫ ∫ 𝑑𝐴𝑗(𝜉, 𝜂) 𝑑𝜉𝑑𝜂
1−𝜂

0

1

0

=
1

2
⋅ ∑𝑊𝑖 ⋅ 𝑑𝐴𝑗(𝜉𝑖 , 𝜂𝑖)

𝑛

𝑖=1

 

, where Wi, ξi and ηi can be found in Appendix IV and n is 

number of Gauss integration points  

Reliability and effective area: 

𝜆𝑗 =
1

𝑠𝑙𝑛
ln (

𝜎𝑎𝑗

𝜎𝑎,𝑚𝑎𝑥
) 

, where 𝜎𝑎 is the average stress amplitude of the ele-

mental face 

𝑅𝑗 = 1 − 𝑃𝑗 =
1

√2𝜋
∫ 𝑒−

𝑥2

2

∞

𝜆𝑗

𝑑𝑥 

𝐴𝑒𝑓𝑓 = ∑
ln 𝑅𝑗

ln 0.5

𝑛

𝑗=1

⋅ 𝐴𝑗  

, where n is number of elements 
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K-T diagram (optional) 

Defect distribution of material: 

Logarithmic median of defect size: 

μln = user input 

Logarithmic SD of defect size: 

sln = user input 

Median defect size: 

𝑎𝑚𝑒𝑑 = 𝑒𝜇𝑙𝑛  

Defect distribution function (log-normal): 

𝑓(𝑎) =
1

𝑠𝑙𝑛𝑎√2𝜋
𝑒

−
(ln𝑎−𝜇𝑙𝑛)

2

2𝑠𝑙𝑛
2

   (PDF) 

𝐹(𝑎) =
1

𝑠𝑙𝑛√2𝜋
∫

1

𝑎

𝑎

0
𝑒

−
(ln𝑎−𝜇𝑙𝑛)

2

2𝑠𝑙𝑛
2

𝑑𝑎    (CDF) 

KT-diagram: 

Intrinsic crack length: 

𝜎𝑎𝑓(𝑎𝑚𝑒𝑑) =
Δ𝐾𝑡ℎ

2𝐹√𝜋(𝑎𝑚𝑒𝑑+𝑎0)
= 𝜎𝑎𝑅=−1   →  a0 = … 

El Haddad curve (fatigue limit as a function of defect size): 

 𝜎𝑎𝑅=−1(𝑎) =
Δ𝐾𝑡ℎ

2𝐹√𝜋(𝑎+𝑎0)
 

F = 0.713   (surf. crack) 

F = 0.637   (int. crack) 

Defect distribution (log-normal) of GJS-500-7 refer-

ence test specimen. Logarithmic SD of fatigue limit 

is sln = sr = 0.1. (Mod. Rabb 2017, p. 168.) 

Δ𝐾𝑡ℎ=310.82 N/mm3/2, 𝜎𝑎𝑓(𝑎𝑚𝑒𝑑) = 195.5 MPa 

a0 = 0.202 mm 

Logarithmic median μln  5.27 

Logarithmic SD sln(a) 0.38 

Median defect amed [μm]  194.4 

Mean defect amean [μm]  209.0 

Standard deviation s [μm]  82.4 

Relative SD sr  0.394 

 

Defect distribution (log-normal) of 34CrNiMo6+QT 

reference test specimen. Logarithmic SD of fatigue 

limit is s
ln

 = s
r
 = 0.065. (Mod. Rabb 2017, p. 163.) 

Δ𝐾𝑡ℎ=350.13 N/mm
3/2

, 𝜎𝑎𝑓(𝑎𝑚𝑒𝑑) = 607.5 MPa 

a0 = 0.0404 mm 

Logarithmic median μln  2.45 

Logarithmic SD sln(a) 0.484 

Median defect amed [μm]  11.60 

Mean defect amean [μm]  13.04 

Standard deviation s [μm]  6.70 

Relative SD sr  0.514 
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Reduction factors 

KR K
T 

and KA K
size

 K
N
 

Steel (default): 

KR = 1 - 0.22⋅(log(Rz))0.64 

⋅log(σb) + 0.45⋅(log(Rz))0.53  

GJS (default): 

𝐾𝑅  =  1 − 0.16 ⋅ log(𝑅𝑧)

⋅ log (2 ⋅
𝜎𝑏

400
)

 

 

Rz = user input 

 

Or KR as a user input      

Default: 

See equations 

(2.54)–(2.56) 

and table 3 

 

Or user input 

Default: 

KN = 1 – (log(N)-6)⋅0.05 

When 106 < N < 1010 

 

Or user input 

 

NOTE! KN = 1 for surface 

nucleation 

The weakest link theory: 

Number of links: 

𝑛 =
𝐴𝑒𝑓𝑓

𝐴𝑟𝑒𝑓
 when Aeff > Aref 

𝑛 =
𝐴𝑟𝑒𝑓

𝐴𝑒𝑓𝑓
 when Aeff < Aref  

Reliability and failure probability: 

𝑅 = √0.5
𝑛

 

𝑃 = 1 − 𝑅 =
1

√2𝜋
∫ 𝑒−

𝑥2

2 𝑑𝑥
𝜆

−∞
   →  λ = … 

Size factor: 

𝐾𝑠𝑖𝑧𝑒 = 𝑒−𝜆𝑠𝑙𝑛,𝐶90         when Aeff > Aref 

𝐾𝑠𝑖𝑧𝑒 = 𝑒−𝜆𝑠𝑙𝑛,𝐶10         when Aeff < Aref 

, where sln is according to table 1 or 2 

 

K-T diagram if defect distribution is known: 

Return period: 

𝑛 =
𝐴𝑒𝑓𝑓

𝐴𝑟𝑒𝑓
  

𝑃 =
𝑛

𝑛+1
  

Extrapolated defect size: 

𝐹(𝑎𝑒𝑥𝑡) = 𝑃      →    𝑎𝑒𝑥𝑡 = … 

, where F(a) is CDF of material defect distribu-

tion. 

Fatigue limit of the machine element: 

𝜎𝑎𝑅=−1,𝑚𝑒 =
Δ𝐾𝑡ℎ

2𝐹√𝜋(𝑎𝑒𝑥𝑡 + 𝑎0)
 

Size factor: 

𝐾𝑠𝑖𝑧𝑒 =
𝜎𝑎𝑅=−1,𝑚𝑒

𝜎𝑎𝑅=−1,𝑟𝑒𝑓
        when Aeff < Aref 

𝐾𝑠𝑖𝑧𝑒 =
𝜎𝑎𝑅=−1,𝑟𝑒𝑓

𝜎𝑎𝑅=−1,𝑚𝑒
        when Aeff > Aref 

, where 𝜎𝑎𝑅=−1,𝑟𝑒𝑓 is as follows (Rabb 2017, p 

161, 168): 

𝜎𝑎𝑅=−1,𝑟𝑒𝑓,𝑠𝑡𝑒𝑒𝑙 = 607.5 𝑀𝑃𝑎 

𝜎𝑎𝑅=−1,𝑟𝑒𝑓,𝐺𝐽𝑆 = 195.5 𝑀𝑃𝑎 

and Δ𝐾𝑡ℎ,𝐺𝐽𝑆=310.82 N/mm
3/2 

Δ𝐾𝑡ℎ,𝑠𝑡𝑒𝑒𝑙  = 350.13 N/mm3/2 
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Reduction of the Haigh diagram 

Application of reduction factors: 

𝜎𝑎𝑅=−1,𝑟𝑒𝑑 =
𝐾𝑅𝐾𝐴𝑇𝐾𝑁

𝐾𝑠𝑖𝑧𝑒
⋅ 𝜎𝑎𝑅=−1 

𝑘𝑟𝑒𝑑 =
𝐾𝑅𝐾𝐴𝑇𝐾𝑁

𝐾𝑠𝑖𝑧𝑒
⋅ 𝑘 

 

Aeff > Aref A
eff 

< A
ref

 

Application of reduction factors: 

𝜎𝑎𝑅=−1,𝑟𝑒𝑑 = 𝐾𝑅𝐾𝐴𝑇𝐾𝑁𝐾𝑠𝑖𝑧𝑒 ⋅ 𝜎𝑎𝑅=−1 

𝑘𝑟𝑒𝑑 = 𝐾𝑅𝐾𝐴𝑇𝐾𝑁𝐾𝑠𝑖𝑧𝑒 ⋅ 𝑘 

  

Allowed failure probability and safety factor: 

𝑆𝐹 = 𝑒−𝜆𝑠𝑙𝑛,𝐶90 

, where λ is defined according to the failure probability. 

𝜎𝑎𝑅=−1,𝑟𝑒𝑑,𝑃 =
𝜎𝑎𝑅=−1,𝑟𝑒𝑑

𝑆𝐹
 

𝑘𝑟𝑒𝑑,𝑃 =
𝑘𝑟𝑒𝑑

𝑆𝐹
 

𝜎𝑎𝑅=0,𝑟𝑒𝑑,𝑃 =
𝜎𝑎𝑅=−1,𝑟𝑒𝑑,𝑃

1 − 𝑘𝑟𝑒𝑑
 

Reduced diagram is then compiled with the same equations as 

the mean diagram but using the reduced values. 

 

Note! If cumulative damage analysis is needed, the reduction 

with SF is performed after Findley multiaxial analysis, see 

flowchart on page 137. 
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3.1.2 Loading 

If load history causes multiaxial stresses, Findley damage criterion is utilized in calculation 

of equivalent mean stress and amplitude. The equivalent values can then be used in cumula-

tive damage analysis.  

 

The angle θeq of critical plane for equivalent loading may be different for different levels of 

stress spectrum. In that case it is conservative to choose the plane with maximum Findley 

damage as the critical plane and make the cumulative damage summation as if all the stress 

levels were affecting the same plane (at least if the difference in angles is not significant).  

Analysis according to Findley criterion is shown in the next flowchart and cumulative dam-

age analysis is shown in the next chapter.  



134 

 

 
 

Findley 

Starting values: 

Range and increment for rotation angles: 

θmin = user input    φmin = user input 

θmax = user input    φmax = user input 

dθ = user input   dφ = user input 

Reduced fatigue strength values (P = 50 %): 

σaR=-1,red = Haigh diagram   σaR=0,red =  Haigh diagram 

Stress matrices of load steps from FEA: 

[𝜎𝑖(𝑡)] 

Findley parameters: 

𝑘+√1+𝑘2 

2𝑘+√1+4𝑘2
=

𝜎𝑎𝑅=0,𝑟𝑒𝑑

𝜎𝑎𝑅=−1,𝑟𝑒𝑑
     →   k.=… 

𝑓 =
𝑘 + √1 + 𝑘2 

2
⋅ 𝜎𝑎𝑅=−1,𝑟𝑒𝑑 

Rotation of the stress element: 

[𝜎𝑖′(𝑡)] = 𝑸𝑇[𝜎𝑖(𝑡)]𝑸 

Calculation of Δτ and σn on all studied planes: 

Δτ = longest chord between two shear stress states.   

After the chord has been calculated, check the radius 

of the smallest enclosing circle, and choose the most 

conservative of the two. 

σn = σx’       

Maximum Findley damage and safety factors: 

𝐷 = (
𝛥𝜏

2
+ 𝑘𝜎𝑛)

𝑚𝑎𝑥
 

𝑆𝐹,𝑣𝑒𝑟 =
𝑓 − 𝑘𝜎𝑛

𝜏𝑎
 

𝑆𝐹,𝑟𝑎𝑑 =
𝑓

𝐷
=

𝑓

𝛥𝜏
2

+ 𝑘𝜎𝑛

 

 

Determination of equivalent mean stress and am-

plitude: 

see eqs. (2.193)–(2.203) 
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3.1.3 S-N curve and cumulative damage analysis 

S-N curves are constructed using relative stress gradient χ*. Damage sum is composed of 

low cycle (base S-N curve) and high cycle (Haibach extension) parts.  

 

 

  

Submodel in FEA: 

χ* determined at 2rc from the surface along the surface normal (using Von Mises stress distribution) 

𝐿 =
1

𝜋
(

Δ𝐾𝑡ℎ,𝑅

2 ⋅ 𝐾𝑠𝑖𝑧𝑒 ⋅ 𝜎𝑎𝑅
)
2

 

2𝑟𝑐 = 𝐿 

, where σaR = fatigue limit of reference specimen (without any reduction factors) 

Spheroidal graphite cast iron Steel 

(QT or structural) 

Slope exponent (default): 

𝑘 =
𝑘0 − 𝑘∞

(1 + 𝜒∗)𝑝1 +
1

𝐾𝑅
𝑝2

− 1
⋅ [1 −

𝐶 ⋅
𝜎𝑚
𝑅𝑚

(1 + 𝜒∗)𝑟] + 𝑘∞ 

k0 = 12 

k∞ = 3 

p1 = 1.031 

p2 = 0.80 

C = 1.65 

r = 0.01 

σm / Rm = user input  

Number of cycles at the knee point (default): 

𝑁𝑎𝑓 = 106.8−
3.6
𝑘  

 

Or k and/or Naf as a user input 

Slope exponent (default): 

𝑘 =
𝑘0 − 𝑘∞

(1 + 𝜒∗)𝑝1 +
1

𝐾𝑅
𝑝2

− 1
+ 𝑘∞ 

k
0 

= 11.6 

k
∞
 = 3 

p
1 

= 0.87 

p
2
 = p1 = 0.87 

Number of cycles at the knee point (default): 

Naf = 6.2⋅105    (surf. nucleation) 

𝑁𝑎𝑓 = 106.4−
2.5

𝑘     (int. nucleation) 

 

Or k and/or Naf as a user input 
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Base S-N curve (median): 

𝑁 = 𝑁𝑎𝑓 (
𝜎𝑎𝑓

𝜎𝑎
)
𝑘

 

Base S-N curve (reduced): 

Safety factor: 

𝑆𝐹 = 𝑒−𝜆𝑠𝑙𝑛  , where λ according to allowed failure 

probability. 

Reduced curve: 

𝜎𝑎𝑓,𝑃 =
𝜎𝑎𝑓

𝑆𝐹
 

𝑁𝑃 = 𝑁𝑎𝑓 (
𝜎𝑎𝑓,𝑃

𝜎𝑎
)
𝑘

 

 

 Haibach extension into high cycle area (me-

dian): 

𝑁𝐻 = 𝑁𝑎𝑓 (
𝜎𝑎𝑓

𝜎𝑎
)
2𝑘−𝑙

 

, where: 

l = 1 for rolled and forged 

steel components 

l = 2 for cast 

and welded components 

Haibach extension into high cycle area (re-

duced): 

Logarithmic standard deviation of life: 

𝑠𝑁 = 𝑘𝑠𝑙𝑛 

Standard deviation of fatigue strength for exten-

sion: 

𝑠𝑙𝑛,𝐻 =
𝑠𝑁

2𝑘 − 𝑙
 

Safety factor for extension: 

𝑆𝐹,𝐻 = 𝑒−𝜆𝑠𝑙𝑛,𝐻 

Reduced curve: 

𝜎𝑎𝑓,𝑃𝐻 =
𝜎𝑎𝑓

𝑆𝐹,𝐻
 

𝑁𝑃𝐻 = 𝑁𝑎𝑓 (
𝜎𝑎𝑓,𝑃𝐻

𝜎𝑎
)
2𝑘−𝑙

 

  

Damage sum:    

Low cycle (base S-N curve):  

𝐷𝐿𝐶 =
1

𝑁𝑎𝑓
∑𝑛𝑖 (

𝜎𝑎𝑖

𝜎𝑎𝑓,𝑃
)

𝑘

 

High cycle (Haibach): 

𝐷𝐻𝐶 =
1

𝑁𝑎𝑓
∑𝑛𝑗 (

𝜎𝑎𝑖

𝜎𝑎𝑓,𝑃𝐻
)

2𝑘−𝑙

 

Total: 

D = DLC + DHC 

 
Allowed damage sum D 

Constant σm  Variable σm  

Non welded 

components 

(rolled, forged) 

0.3 0.1 

Welded and 

cast compo-

nents 

0.5 0.2 

Machined 

components 
1.0 1.0 
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Cumulative damage analysis 

Infinite life: 

All amplitudes are below 𝜎𝑎𝑓,𝑃 

→ no cumulative damage 

Finite life: 

Some amplitudes exceed 𝜎𝑎𝑓,𝑃 

HCF and LCF cycles 

Stress amplitudes and mean stresses for each 

loading bin 

Uniaxial: 

σa, σm  

Multiaxial: 

Findley analysis using median fatigue limits for R 

= -1 and R = 0: 

→ Findley equivalent values 

σa,eq, σm,eq   

 

Median S-N curve for each load bin: 

σaf according to σm or σm,eq from Haigh diagram   

 

Low cycle fatigue 

σa or σa,eq  > σaf,P  

Reduction of S-N curve to the allowed P 

𝑆𝐹 = 𝑒−𝜆𝑠𝑙𝑛,𝐶90 

, where λ is defined according to the failure proba-

bility. 

𝜎𝑎𝑓,𝑃 =
𝜎𝑎𝑓

𝑆𝐹
 

 

High cycle fatigue 

σ
a 

or σ
a,eq

  < σ
af,P

  

Base S-N curve: 

𝑁𝑃 = 𝑁𝑎𝑓 (
𝜎𝑎𝑓,𝑃

𝜎𝑎
)
𝑘

 

 

Haibach: 

𝑁𝑃𝐻 = 𝑁𝑎𝑓 (
𝜎𝑎𝑓,𝑃𝐻

𝜎𝑎
)
2𝑘−𝑙

 

  

Damage sum 

(see prev. chart) 

Safety factor: 

Uniaxial: 

Reduction of Haigh diagram to inter-

sect the most severe σa ; σm combination 

→ Safety factor and failure probability: 

 𝑆𝐹 = iterative reduction of Haigh dia-

gram 

 

Multiaxial: 

Findley analysis using 𝜎𝑎𝑅=−1,𝑟𝑒𝑑,𝑃 and 

𝜎𝑎𝑅=0,𝑟𝑒𝑑,𝑃 

→ Radial, vertical and equivalent 

safety factors 

𝑆𝐹,𝑣𝑒𝑟 =
𝑓 − 𝑘𝜎𝑛

𝜏𝑎
 

𝑆𝐹,𝑟𝑎𝑑 =
𝑓

𝐷
=

𝑓

𝛥𝜏
2

+ 𝑘𝜎𝑛

 

𝑆𝐹,𝑒𝑞 =
𝜎𝑎𝑓,𝑃

𝜎𝑎,𝑒𝑞
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Required output: 

Haigh diagrams: 

- Fatigue limit for P = 50 % and for reduced P for R = -1 

- Fatigue limit for P = 50 % and for reduced P for R = 0 

- Slope for P = 50 % and for reduced P 

- Fatigue limit for a user specified mean stress 

 

Findley: 

- Findley parameters f and k 

- Shear stress range and normal stress of the critical plane 

- Angles of the critical plane 

- Findley damage of each level of load spectrum D  

- Radial and vertical safety factors 

- Equivalent stress values 

- Equivalent angle of the critical plane 

- Equivalent safety factor 

 

S-N curves and cumulative damage analysis: 

- k and Naf  

o Steel: one k for all levels of stress spectrum 

o GJS: k depends on the mean stress → different k for each level of stress spec-

trum and thus also different Naf for each level 

- 𝜎𝑎𝑓,𝑃=50% and 𝜎𝑎𝑓,𝑃=𝑟𝑒𝑑. 

- Fatigue life NLC or NHC for each level of stress spectrum 

- Damage DLC or DHC for each level of stress spectrum 

- Total damage sums for DLC,tot  and DHC,tot, and total damage sum Dtot = DLC,tot + DHC,tot 

 

 

 

 

 

 



139 

 

3.2 Analysis of a notched component 

As an example, a simple component made of GJS-500 shown in figure 67 is analysed using 

the method described in the previous chapter. The component is loaded with constant tension 

and variable torsion. The loading is presented in table 8.  

 

 

Figure 67. The component used in the example analysis. 

 

Table 8. Loading. 

Bin 
F [N] T [Nmm] 

n 
Constant Min Max 

1. 19 000 0 200 000 4 500 

2. 19 000 0 50 000 250 000 

3. 19 000 0 62 840 150 000 

4. 19 000 0 180 000 6 000 

5. 19 000 0 78 550 200 000 

 

Only the main steps of the analysis are listed below. More detailed calculation is presented 

in Appendix VIII. 

 

 

 

 

 

 

 

F 

T 
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1. Haigh diagrams 

The following static strength values from EN-1563:2018 (2018, p. 8, 28) are used as starting 

values: 

 

σ0.2 = 1.06 ⋅ 320 = 339.2 MPa 

σb = 1.06 ⋅ 500 = 530 MPa 

σb,comp = 1.06 ⋅ 800 = 848 MPa 

 

Fatigue limit for R = -1, fatigue limit for R = 0 and slope k of the reference Haigh diagram: 

 

𝜎𝑎𝑅=−1 = 196.1 MPa 

𝜎𝑎𝑅=0 = 129.1 MPa 

𝑘 = −0.5166 

 

Effective area calculation is done using all the element faces on the notch surface. Due to 

loading conditions, the whole circumference of the notch needs to be considered in the ef-

fective area calculation. Figure 68 shows von Mises stress distribution at the notch root with 

the maximum loading (bin 1). According to calculation, effective area for the component is 

Aeff = 113.9 mm2. 

 

 

Figure 68. Von Mises stress distribution with the maximum loading (bin 1). 
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The following reduction factors are applied to reference specimen values: 

 

Ksize = 1.131  (Aref = 1039 mm2, Aeff = 113.9 mm2) 

KR = 0.79  (Rz = 200 μm, casting surface)  

KAT = 1 

KN = 1 

 

The reduced values (component values) for fatigue limits and slope: 

 

𝜎𝑎𝑅=−1,𝑟𝑒𝑑 = 175.3 MPa 

𝜎𝑎𝑅=0,𝑟𝑒𝑑 = 119.9 MPa 

𝑘𝑟𝑒𝑑 = −0.4616 

 

Haigh diagrams (P = 50 %) for reference specimen and component are shown in figure 69.  

 

 

Figure 69. Haigh diagrams for P = 50 % for reference specimen and component. 
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2. Relative stress gradient χ*  

First, the critical distance for S-N curve slope exponent determination is calculated: 

 

2𝑟𝑐 = 𝐿 =
1

𝜋
(

Δ𝐾𝑡ℎ,𝑅=−1

2 ⋅ 𝐾𝑠𝑖𝑧𝑒 ⋅ 𝜎𝑎𝑅=−1
)
2

=
1

𝜋
(

429.0 N/mm3/2

2 ⋅ 1.131 ⋅ 196.1 𝑀𝑃𝑎
)

2

= 0.298 𝑚𝑚 

 

Then, relative stress gradient χ* is obtained at the distance of 2rc from the surface along the 

surface normal using von Mises stress distribution. The submodel used in determination of 

χ* is shown in figure 70 and von Mises stress distribution and χ* are shown in figure 71.  

 

 

Figure 70. The submodel used in determination of relative stress gradient χ*.  

 

L 
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Figure 71. Von Mises stress distribution and relative stress gradient at the notch root. χ* = 

0.30 mm-1 at the distance of 2rc = 0.298 mm.  

 

3. Loading 

The loading presented in table 8 causes the stress history shown in table 9 and figure 72 at 

the critical point.  

 

Table 9. Maximum and minimum stresses of each loading bin [MPa]. 

Bin σx  σy  σz  τxy  τyz  τxz  

1. 
Max 24.2 0 107.7 0 0 161.5 

Min 24.2 0 107.7 0 0 0 

2. 
Max 24.2 0 107.7 0 0 40.4 

Min 24.2 0 107.7 0 0 0 

3. 
Max 24.2 0 107.7 0 0 50.7 

Min 24.2 0 107.7 0 0 0 

4. 
Max 24.2 0 107.7 0 0 145.3 

Min 24.2 0 107.7 0 0 0 

5. 
Max 24.2 0 107.7 0 0 63.4 

Min 24.2 0 107.7 0 0 0 
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Figure 72. Stress history. 

 

4. Findley 

Findley analysis results and equivalent values are presented in table 10. It can be seen that 

the angle of the critical plane for equivalent loading differs between bins. Conservatively, it 

is assumed here that the angle θeq is the same for all bins and damages of individual bins are 

summed. Figure 73 shows different load bins in a Findley diagram.  

 

Table 10. Findley analysis results. f = 137.1 MPa and k = 0.4624 

Bin Δτ σn D θ  φ SF,rad SF,ver σm,eq σa,eq θeq SF,eq* 

1. 129.8 195.6 155.3 0 18.3 0.883 0.719 87.6 159.7 27.2 0.845 

2. 36.5 121.0 74.2 0 12.8 1.848 4.450 82.4 55.5 20.5 2.471 

3. 45.0 126.4 80.9 180 166.3 1.694 3.498 81.8 65.0 21.9 2.115 

4. 117.6 185.1 144.4 0 18.0 0.950 0.876 86.5 146.0 26.8 0.927 

5. 54.9 133.8 89.3 0 15.0 1.535 2.740 82.0 76.1 23.1 1.805 

* SF,eq = fatigue limit at σm,eq divided by σa,eq    
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Figure 73. Findley diagram. f = 137.1 MPa and k = 0.4624. 

 

5. S-N curves 

Let us use failure probability of P = 0.1 %. Slope exponents calculated using χ* and fatigue 

lives at the knee point according to equation (2.145) are shown in table 11. 

 

Table 11. Equivalent stresses, slope exponents and fatigue lives at knee-point. 

Bin σa,eq σm,eq k Naf 

1 159.7 87.6 7.316 2031948 

2 55.5 82.4 7.411 2061901 

3 65 81.8 7.423 2065335 

4 146 86.5 7.336 2038312 

5 76.1 82 7.419 2064191 

 

Fatigue limits for median S-N curves, safety factors (P = 0.1 %), reduced fatigue limits, 

fatigue lives and damage sums are shown in table 12. The total damage (LCF + HCF) is Dtot 

= 0.1991 which is below the allowed damage Dallow = 0.2 (see table 4) for casting surface.  
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Table 12. Fatigue limits, fatigue lives and damage sums (P = 0.1 %). 

Bin σaf (med) SF sN sln,H SF,H  

1 (LCF) 134.9 1.449 0.878 0.070 1.240  

2 (HCF) 137.3 1.449 0.889 0.069 1.239  

3 (HCF) 137.5 1.449 0.891 0.069 1.239  

4 (LCF) 135.4 1.449 0.880 0.069 1.239  

5 (HCF) 137.5 1.449 0.890 0.069 1.239  

Bin σaf,P=0.1% σaf,PH N n DLC DHC 

1 (LCF) 93.1 108.801 39156 4500 0.1149  

2 (HCF) 94.7 110.787 14576797703 250000  0.0001276 

3 (HCF) 94.9 111.016 2000357218 150000  0.00056 

4 (LCF) 93.4 109.221 77115 6000 0.0778  

5 (HCF) 94.9 110.940 260797621 200000  0.0057195 
    Σ 0.19273099 0.0064071 
    Dtot 0.1991  

 

Calculation of Ksize using K-T diagram (optional) 

In the example above, statistical size factor Ksize is calculated using the weakest link theory 

(see calculation in Appendix VIII). Another possibility would be to use the defect distribu-

tion of the material and K-T diagram.  

 

Defect distribution for GJS-500-7 provided by Rabb (2017, p. 168) is shown in table 13 and 

the corresponding K-T diagram is shown in figure 74. Using the method explained in chapter 

2.2.3 median defect size and tested fatigue limit are fitted together. Fitting is done using σaR=-

1 = 195.3 MPa (tested) and ΔKth = 310.82 N/mm3/2.   

 

Table 13. Defect distribution (log-normal) of GJS-500-7 reference test specimen. Logarith-

mic SD of fatigue limit is sln = sr = 0.1. (Mod. Rabb 2017, p. 168.) 

Logarithmic median μln  5.27 

Logarithmic SD sln(a) 0.38 

Median defect amed [μm]  194.4 

Mean defect amean [μm]  209.0 

Standard deviation s [μm]  82.4 

Relative SD sr  0.394 
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Figure 74. K-T diagram for GJS-500-7 (Mod. Rabb 2017, p. 169). 

 

Using return period, the following is obtained:   

 

𝑛 =
𝐴𝑒𝑓𝑓

𝐴𝑟𝑒𝑓
=

113.92 𝑚𝑚2

1039 𝑚𝑚2
= 0.10964 

𝑃 =
𝑛

𝑛 + 1
= 0.09881 

 

This is used to extrapolate the expected defect size in the component: 

 

𝐹(𝑎𝑒𝑥𝑡) = 𝑃 →  𝑠𝑜𝑙𝑣𝑒 𝑎𝑒𝑥𝑡  →  𝑎𝑒𝑥𝑡 = 119.15 𝜇𝑚 

, where 𝐹(𝑎𝑒𝑥𝑡) =
1

𝑠𝑙𝑛√2𝜋
∫

1

𝑎

𝑎𝑒𝑥𝑡

0
𝑒

−
(ln𝑎−𝜇𝑙𝑛)

2

2𝑠𝑙𝑛
2

𝑑𝑎 

 

or 

 

𝑃 = 0.09881   →    𝜆 = −1.28836 

𝐾𝑠𝑖𝑧𝑒,𝑑𝑒𝑓𝑒𝑐𝑡 = 𝑒−𝜆𝑠𝑙𝑛 = 𝑒1.28836⋅0.38 = 1.6316 

𝑎𝑒𝑥𝑡 =
𝑎𝑚𝑒𝑑

𝐾𝑠𝑖𝑧𝑒,𝑑𝑒𝑓𝑒𝑐𝑡
=

194.4 𝜇𝑚

1.6316
= 119.14 𝜇𝑚 
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According to K-T diagram, fatigue limit of the component is then: 

 

𝜎𝑎𝑅=−1,𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 =
𝛥𝐾𝑡ℎ

2 ⋅ 𝐹√𝜋(𝑎𝑒𝑥𝑡 + 𝑎0)
=

310.82 𝑁/𝑚𝑚3/2

2 ⋅ 0.713 ⋅ √𝜋(0.11915 𝑚𝑚 + 0.202 𝑚𝑚
= 217.0 𝑀𝑃𝑎 

 

Fatigue limit for reference specimen according to K-T diagram and defect distribution is as 

follows: 

 

𝜎𝑎𝑅=−1,𝐾𝑇𝑟𝑒𝑓 =
𝛥𝐾𝑡ℎ

2 ⋅ 𝐹√𝜋(𝑎𝑚𝑒𝑑 + 𝑎0)
=

310.82 𝑁/𝑚𝑚3/2

2 ⋅ 0.713 ⋅ √𝜋(0.1944 𝑚𝑚 + 0.202 𝑚𝑚
= 195.3 𝑀𝑃𝑎 

 

And Ksize is thus: 

 

𝐾𝑠𝑖𝑧𝑒 =
𝜎𝑎𝑅=−1,𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

𝜎𝑎𝑅=−1,𝐾𝑇𝑟𝑒𝑓
=

217.0 𝑀𝑃𝑎

195.3 𝑀𝑃𝑎
= 1.111 

 

cf. Ksize = 1.131 calculated using the weakest link theory.  

 

Note that K-T diagram uses ΔKth = 310.82 N/mm3/2 which differs considerably from the 

default value calculated with equation provided in table 7. This value is used here because it 

was also used in fitting the El Haddad curve and defect size (Rabb 2017, p. 167). Since Ksize 

is relative value, possible error in ΔKth does not cause major problems. As the K-T diagram 

itself is based on tested fatigue limit and defect distribution by Rabb (2017, p. 168–169), it 

should give accurate results for Ksize calculation. 

 

Also, as is mentioned by Rabb (2017, p. 164, 171) it is advisable to use K-T diagram to 

calculate Ksize when n < 0.1 (using return period) for a notch to avoid under-dimensioning 

with steel. However, in case of GJS when n < 0.1 (using return period) for a notch TCD 

should be taken into account because otherwise K-T diagram underestimates Ksize (which is 

conservative but, in some cases too much so). Therefore, conclusion is that the weakest link 

theory may be used for GJS and steel when 0.1 < n < 1. 
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Local fatigue limit of the notch according to TCD 

According to TCD, the critical amplitude is at the distance of rc = L / 2 from the surface of 

the notch. This means that using Ksize (from K-T diagram) and fatigue limit of reference spec-

imen, “nominal” fatigue limit at the distance of rc for the notch is obtained. In order to obtain 

fatigue limit on the surface of the notch, stress gradient has to be considered. (Rabb 2020d.) 

 

𝐿 =
1

𝜋
(

Δ𝐾𝑡ℎ,𝑅=−1

2 ⋅ 𝐾𝑠𝑖𝑧𝑒 ⋅ 𝜎𝑎𝑅=−1
)
2

=
1

𝜋
(

429.0 N/mm3/2

2 ⋅ 1.111 ⋅ 196.1 𝑀𝑃𝑎
)

2

= 0.309 𝑚𝑚 

𝑟𝑐 =
𝐿

2
= 0.154 𝑚𝑚 

 

, where 𝐾𝑠𝑖𝑧𝑒 ⋅ 𝜎𝑎𝑅=−1 = 𝜎𝑎𝑅=−1,𝑛𝑜𝑡𝑐ℎ,𝑛𝑜𝑚 (nominal fatigue limit of the notch). 

 

Taking stress gradient into account, fatigue limit on the surface of the notch can be obtained 

(Rabb 2020d): 

 

𝜎𝑎𝑅=−1,𝑛𝑜𝑡𝑐ℎ =
𝜎𝑉𝑀,𝑚𝑎𝑥,𝑛𝑜𝑡𝑐ℎ

𝜎(𝑟𝑐)𝑉𝑀,𝑛𝑜𝑡𝑐ℎ

⋅ 𝜎𝑎𝑅=−1,𝑛𝑜𝑡𝑐ℎ,𝑛𝑜𝑚 =
296.13 𝑀𝑃𝑎

281.90 𝑀𝑃𝑎
⋅ 217.9 𝑀𝑃𝑎 = 228.9 𝑀𝑃𝑎 

 

𝐾𝑠𝑖𝑧𝑒,𝑇𝐶𝐷 =
𝜎𝑎𝑅=−1,𝑛𝑜𝑡𝑐ℎ

𝜎𝑎𝑅=−1
=

228.9 𝑀𝑃𝑎

196.1 𝑀𝑃𝑎
= 1.167 

 

cf. Kzise = 1.111 according to K-T diagram (5 % difference). This shows what was mentioned 

earlier; K-T diagram underestimates Ksize with GJS when n < 0.1 (now n ≈ 0.11 but effect 

can already be seen).  
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4 ANALYSIS AND DISCUSSION 

 

 

It seems that most of the problems encountered with the analysis method from DNVGL-ST-

0361 can be solved with the proposed probabilistic method. Firstly, the use of nominal 

stresses is no longer necessary, and local stresses from finite element analysis can be fully 

utilized. Secondly, multiaxial stresses can now be handled more accurately and thirdly, de-

termination of failure probability is now easier.  

 

Proposed Haigh diagrams seem to agree reasonably well with test data found in literature. 

New diagrams and diagrams from DNVGL-ST-0361 are shown together in figures 22–24 

but since there is no information about the size of test specimens used in defining the equa-

tions in DNVGL-ST-0361, comparison is somewhat difficult. For GJS however, it seems 

that the new diagrams should be more conservative because slope of the linear part is steeper. 

 

Using relative stress gradient to calculate S-N curve slope exponent allows to abandon the 

use of notch factor and nominal stresses. When relative stress gradient is obtained at the 

depth of L from the surface of the component, the effect is similar to what is observed when 

notch sensitivity is considered in nominal stress method (Rabb 2020d). This supports the 

applicability of the new method. 

 

Effective area calculation with the method shown here is quite laborious. Exportation of 

nodal coordinates from Ansys have to be automated in some way in order to effectively use 

the computation procedure shown in chapter 2.9.1. It was also found that computation time 

for elemental surface areas was rather long when there was a large number of elements and 

therefore, symmetry should be exploited whenever possible. In the example analysis, about 

1300 elemental face areas were calculated and this took over six minutes. Especially the 

computation of partial derivatives and the cross product dξ × dη is very time consuming, so 

if better algorithms and tools for this can be found, they should be utilized.   

 

Multiaxial stresses are handled with Findley criterion. This seems to be the best suited option 

because it can be used for both steel and cast iron in proportional and non-proportional load-

ing cases. The requirements for computation capacity at least in complex cases are relatively 
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high but there are possibilities to optimize the calculation procedure. For example, Down-

Hill simplex algorithm greatly decreases the computation time compared to program that 

does not incorporate any optimization (Rabb 2020e, Lönnqvist 2008, p. 171–172).  

 

According to Rabb (2017, p. 164, 171) K-T diagram should be used to calculate statistical 

size factor for notched steel components when Aeff / Aref < 0.1 to avoid under-dimensioning. 

Because of this, the use of K-T diagram in calculation of Ksize was presented in the flowcharts 

and in the example analysis in chapter 3.2. It is advisable that K-T diagram is included as an 

option in the new analysis method so that if a very sharp notch is encountered, Ksize calculated 

with the weakest link theory can be compared to Ksize calculated with K-T diagram. Even 

though there may be some error in ΔKth value, it does not cause problems when K-T diagram 

is used to calculate Ksize because Ksize is a relative value.  

 

As was shown in the example analysis, K-T diagram may underestimate Ksize in a case of a 

sharp notch when material is GJS. This is true also for steel with very sharp notches and it 

happens because stress intensity drops considerably over a large material defect on the sur-

face and the critical point is thus located below the surface. Because of this TCD may have 

to be considered to avoid over-dimensioning. Therefore, it is advisable to include the possi-

bility to calculate Ksize according to TCD so that when very sharp notches are encountered, 

the effect explained above can be taken into account.  

 

The flowcharts in chapter 3.1 give the most important steps and equations of the analysis 

process.  If analyses are desired to be made before a fully functional tool is ready, a few of 

the steps should still be automated because of the amount of computation required. These 

include the calculation of Findley equivalent values for all levels of load spectrum in case of 

finite life, and perhaps the effective area calculation. Rest of the steps can be calculated 

manually with reasonable effort for example in Excel. 

 

Some of the problems that still remain concern the use of fracture mechanics, multiaxial 

fatigue analysis and cumulative damage analysis. Currently, defining fatigue strength di-

rectly from K-T diagram is not possible, or at least not accurate enough, due to lack of ac-

curate ΔKth values. This in turn makes it difficult to define allowable defect sizes for critical 

areas, which is something that was initially required to be part of the analysis method. Also, 
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even though some defect distributions can be found, it would be beneficial to have more 

research on them with different materials. 

 

The problems in multiaxial fatigue analysis are associated with the differences in the direc-

tion of the critical plane between different levels of load spectrum. In the example analysis 

it was conservatively assumed that all the levels affect the same plane since the differences 

in angles were not very large. Supposing though, that there was a large difference in angles, 

there could be some problems with this at least in terms of physical interpretation. Another 

thing to note is that plasticity in case of Findley criterion was not covered here. 

 

There may be some problems with the use of Palmgren-Miner cumulative damage analysis. 

One, that is also pointed out by Rabb (2017, p. 319), is the sequence effect of loading. This 

means that the Palmgren-Miner theory does not consider the order in which the different 

load levels affect the component, which would be of importance if there was for example an 

occasional overload causing yielding at the notch root. Notch root plasticity would affect the 

local residual stresses which may even be favorable in terms of fatigue because compressive 

residual stress would diminish the effect of consequent high cycle loading. Thus, there would 

be difference in anticipated fatigue lives depending on at which point during the load history 

these overloads occur. (Schijve 2009, p. 300–302.) 

 

4.1 Further research 

The first thing to do in terms of further development would be the programming work. Even 

though the steps of the analysis process are presented here, surely there is a lot of work to 

program everything into a fully functional tool. After the basics presented in this work have 

been assembled into a working tool there are possibilities to develop different parts of the 

analysis method further.  

 

The method proposed here could be developed further by having reliable test data for ΔKth. 

This would also include the question about the crack closure which apparently does not occur 

with small cracks such as material defects (Rabb 2017, p. 529–530). Research on ΔKth would 

perhaps allow the use of K-T diagram more extensively and then for example the definition 

of quality requirements for critical areas in terms of allowable defect size would be possible.  
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Also, surface roughness could be taken into account with the methods such as the one by 

Murakami presented in chapter 2.2.1 which are based on fracture mechanics. With these 

kinds of methods, it could be possible to combine effect of surface roughness and defect 

size, but this would probably require some verification by testing.  

 

Another development area would be the use of the Palmgren-Miner cumulative damage 

analysis. Since this has been found to have some shortcomings, a more accurate method 

could be based on fracture mechanics. There is also a need to research how to define num-

ber of cycles in non-proportional load cases when cumulative damage analysis is per-

formed.  

 

One more aspect to clarify would be residual stresses and their effect. Residual stresses as 

such were not addressed here very extensively but they may have a significant effect on fa-

tigue life. Lastly, it would be beneficial to perform a test with a real component and real 

loading conditions and see how accurately the proposed method is capable of predicting 

the outcome. 
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5 CONCLUSION 

 

 

The most important goal of this thesis was to define the steps of a probabilistic fatigue anal-

ysis process for spheroidal graphite cast iron, quenched and tempered steel and structural 

steel in such a way that an automated analysis tool could be programmed. The motivation 

for this were the problems encountered in the use of the method presented in DNVGL-ST-

0361, especially with the use of nominal stresses.  

 

The results of this work give a starting point for programming a modern fatigue analysis 

tool. Already based on the results, it is possible to analyze at least simple components with-

out any programming work, but more complex loading cases or larger geometries may re-

quire that at least parts of the analysis method are automated. The method presented in this 

thesis is a good starting point for developing more sophisticated and automated method to 

be used in complex loading cases and with complex geometries. 

 

With the proposed method, it is possible to abandon the use of nominal stresses and utilize 

local stresses which are more easily available when finite element analysis is used. This is 

especially important with complex geometries for which the definition of nominal stress may 

be impossible. 

 

A way to handle proportional and non-proportional multiaxial loading cases was presented. 

Findley criterion seems to be suitable because it can be used for both cast iron and steel. 

 

A definitive answer for definition of allowable defect size for critical areas was not found. 

However, the method for this was presented, and with more reliable and extensive test data 

this could be utilized in the future. 
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APPENDIX I, 1 

Test data from Meyer (2014) and Tanaka et al. (1995). 
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APPENDIX I, 2 

Test data from Pallarés-Santasmartas et al. (2018). 
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APPENDIX I, 3 

Test data from Ukrainetz (1960). 
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APPENDIX II, 1 

Rain-flow cycle counting (Mod. Rabb 2017, p. 410) 
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APPENDIX II, 2 

Half cycles from “Rain-flows”, amplitudes and mean stresses.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 End points   Half cycles  

 Stress Time  σa σm 

A -155 180  152,5 -2,5 

C -75 53  25 -50 

E -100 180  105 5 

G 0 91  15 15 

I 24 130  12,5 37,5 

K -80 180  82,5 2,5 

M -30 164  27,5 -2,5 

      

      

      

 End points   Half cycles  

 Stress Time  σa σm 

B -25 56  25 -50 

D 150 179  152,5 -2,5 

F 31 100  15 15 

H 110 177  105 5 

J 50 123  12,5 37,5 

L 25 166  27,5 -2,5 

N 85 176  82,5 2,5 

O      

      

    Full cycles  

    σa σm 

   A-D 152,5 -2,5 

   C-B 25 -50 

   E-H 105 5 

   G-F 15 15 

   I-J 12,5 37,5 

   K-N 82,5 2,5 

   M-L 27,5 -2,5 



 

 

APPENDIX III, 1 

Determination of the principal stresses from a stress matrix (Rabb 2017, p. 463). 

 

[

𝜎𝑥 − 𝜎 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑥𝑦 𝜎𝑦 − 𝜎 𝜏𝑦𝑧

𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧 − 𝜎
] ⋅ [

𝑙
𝑚
𝑛

] = [
0
0
0
]    (IV.1) 

 

Eigenvalues are obtained from the determinant of the matrix: 

|

𝜎𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑥𝑦 𝜎𝑦 𝜏𝑦𝑧

𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧

| = 0     (IV.2) 

 

Invariants of the stress matrix [σ]: 

𝐼1 = tr[𝜎] = 𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧     (IV.3a) 

𝐼2 = |
𝜎𝑥 𝜏𝑥𝑦

𝜏𝑥𝑦 𝜎𝑦
| + |

𝜎𝑥 𝜏𝑥𝑧

𝜏𝑥𝑧 𝜎𝑧
| + |

𝜎𝑦 𝜏𝑦𝑧

𝜏𝑦𝑧 𝜎𝑧
| = 𝜎𝑥𝜎𝑦 + 𝜎𝑥𝜎𝑧 + 𝜎𝑧𝜎𝑧 − 𝜏𝑥𝑦

2 − 𝜏𝑦𝑧
2 − 𝜏𝑥𝑧

2   (IV.3b) 

𝐼3 = |[𝜎]| = |

𝜎𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧

𝜏𝑥𝑦 𝜎𝑦 𝜏𝑦𝑧

𝜏𝑥𝑧 𝜏𝑦𝑧 𝜎𝑧

| = 𝜎𝑥𝜎𝑦𝜎𝑧 + 2𝜏𝑥𝑦𝜏𝑦𝑧𝜏𝑥𝑧 − 𝜎𝑥𝜏𝑦𝑧
2 − 𝜎𝑦𝜏𝑥𝑧

2 − 𝜎𝑧𝜏𝑥𝑦
2  (IV.3c) 

 

The principal stresses are then solved from the following cubic equation: 

𝜎3 − 𝐼1𝜎
2 + 𝐼2𝜎 − 𝐼3 = 0     (IV.4) 

 

Let us use the following substitution: 

𝜎 = 𝑧 +
𝐼1

3
 →   𝑧3 + 𝑝𝑧 + 𝑞 = 0     

, where: 

𝑝 = 𝐼2 −
𝐼1
2

3
,      𝑞 =

𝐼1𝐼2

3
− 𝐼3 −

2𝐼1
3

27
  

 

Let us use the following notation: 

𝑟 = √−
𝑝

3
  

𝜑 =
1

3
cos−1(−

𝑞

2𝑟3)  
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This yields the following solutions which are the three principal stresses: 

𝜎1 = 2𝑟 ⋅ cos(φ) + 
𝐼1

3
     (IV.5a) 

𝜎2 = 2𝑟 ⋅ cos(φ + 120°) + 
𝐼1

3
    (IV.5b) 

𝜎3 = 2𝑟 ⋅ cos(φ + 240°) + 
𝐼1

3
    (IV.5c) 

 

The principal stresses are organized in descending order: 

𝜎𝐼 ≥ 𝜎𝐼𝐼 ≥ 𝜎𝐼𝐼𝐼  

 

The direction cosines l, m and n in respect to the coordinate axes are solved from the follow-

ing: 

{

𝜏𝑥𝑦𝑙 + (𝜎𝑦 − 𝜎)𝑚 + 𝜏𝑦𝑧𝑛 = 0

𝜏𝑥𝑧𝑙 + 𝜏𝑦𝑧𝑚 + (𝜎𝑧 − 𝜎)𝑛 = 0

𝑙2 + 𝑚2 + 𝑛2 = 1

    (IV.6) 

 

𝐴 = |
𝜎𝑦 − 𝜎 𝜏𝑦𝑧

𝜏𝑦𝑧 𝜎𝑧 − 𝜎| = (𝜎𝑦 − 𝜎)(𝜎𝑧 − 𝜎) − 𝜏𝑦𝑧
2    (IV.7a) 

𝐵 = − |
𝜏𝑥𝑦 𝜏𝑦𝑧

𝜏𝑥𝑧 𝜎𝑧 − 𝜎| = −𝜏𝑥𝑦(𝜎𝑧 − 𝜎) + 𝜏𝑦𝑧𝜏𝑥𝑧   (IV.7b) 

𝐶 = |
𝜏𝑥𝑦 𝜎𝑦 − 𝜎
𝜏𝑥𝑧 𝜏𝑦𝑧

| = 𝜏𝑥𝑦𝜏𝑦𝑧−𝜏𝑥𝑧(𝜎𝑦 − 𝜎)   (IV.7c) 

 

𝑙

𝑚
=

𝐴

𝐵
      (IV.8a) 

𝑚

𝑛
=

𝐵

𝐶
      (IV.8b) 

𝑙

𝑛
=

𝐴

𝐶
      (IV.8c) 

 

𝑅 = √𝐴2 + 𝐵2 + 𝐶2     (IV.9) 

 

𝑙 = ±
𝐴

𝑅
      (IV.10a) 

𝑚 = ±
𝐵

𝑅
      (IV.10b) 

𝑛 = ±
𝐶

𝑅
      (IV.10c)



 

 

APPENDIX IV 

Gauss integration points and weight coefficients for triangular element (Mod. Cook, Malkus & Plesha 1989, p. 182, 184).  

  

NOTE! Area coordinates correspond natural coordinates: ξ1 = ξ, ξ2 = η and ξ3 = 1 - ξ - η    



 

 

APPENDIX V,1 

Sorting the nodal coordinates data for effective area calculation in Excel. 

 

The tet10 elements located on the surface on the area of interest can have four different 

orientations, which determines the nodes that are located on the surface of the component 

(see fig 75). Thus, the calculation procedure presented in Appendix VI has four different 

possibilities for calculation of the global coordinates within the element face.  

 

This is of importance because the area is calculated with shape functions of T6 element 

which has only six nodes; nodes N1, N2 and N3 are the corner nodes and nodes N4, N5 and 

N6 are the midside nodes. This entails that some of the nodes of Tet10 element, which has 

10 nodes, have to be renumbered to match the correct shape functions. 

 

Presented below is one way to do this. Assuredly, the same could be achieved more easily 

for example by programming a macro for Ansys but there was no possibility to do this within 

this thesis due to lack of programming skills and time. Therefore, mainly MS-Excel was 

utilized. 

 

 

 

 



 

 

APPENDIX V, 2 

 

 

Figure 75. Different orientations of tet10 element in respect to the component surface. Red 

nodes are the new node numbers for the original tet10 node numbers. 
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APPENDIX V, 3 

 

First, the surface nodes of each element located on the area of interest have to be found. No 

direct way to export these was found, so they are searched using Excel (see figures 76 and 

77). 

 

 

Figure 76. Surface elements and surface nodes have to be exported separately from Ansys 

because importing just the nodes will not give the corresponding element and importing 

just the elements gives all the nodes (also the four nodes below the surface). 

  

Export surface elements 

Export surface nodes 



 

 

APPENDIX V, 4 

 

Figure 77. Searching the nodes that are on the surface of the component. 

 

Next, the elements and the corresponding surface nodes (in light blue in figures 77 and 78) 

are separated into four groups based on their orientation. 

 

 

Figure 78. Sorting the elements with different orientations into respective groups. There are 

four different groups (four different orientations). Only the first possibility is shown in fig-

ure. 

Compare the node numbers of each element to the surface node 

list node numbers and if the node number is found in the list, the 

node in question is on the surface of the component. → Place this 

node in a new cell (leave cell empty if node is not on the surface) 

Excel:  

=IF(Node_i<MIN(“Node_numb_col-

umn”);"";IF(LOOKUP(Node_i; “Node_numb_column”)= 

Node_i; Node_i;"")) 

 

Ansys lists the nodes of tet10 element in such a way that the first four nodes are the corner nodes and the 

next six nodes are the midside nodes. Thus, the following equations can be used in Excel to find the lines 

(elements) that do not have a particular corner node on the surface. → Put these in new cells 

Excel: 

=IF(OFFSET(Node_i;0;1;1;1)="";Node_i;"")   (First possibility, fig. 75) 

=IF(OFFSET(Node_i;0;2;1;1)="";Node_i;"")   (Second possibility, fig. 75) 

=IF(OFFSET(Node_i;0;3;1;1)="";Node_i;"")   (Third possibility, fig. 75) 

=IF(OFFSET(Node_i;0;4;1;1)="";Node_i;"")   (Fourth possibility, fig. 75) 



 

 

APPENDIX V, 5 

Next, X, Y and Z coordinates for each node need be searched from the surface node list 

(inside green boundary in figures 77 and 79). 

 

 

Figure 79. Searching X, Y and Z coordinates for surface nodes. 

X coordinates for the nodes of the first possible orientation. The coordinates can be found from the 

surface node list with the following equations. 

X coordinate: 

=IF(ISNUMBER(INDEX(“Surf_nodes_x_loc_column”;MATCH(Node_i;”Node_numb_col-

umn”;0)))=TRUE;INDEX(“Surf_nodes_x_loc_column”;MATCH(Node_i;”Node_numb_col-

umn”;0));"") 

=IF(ISNUMBER(INDEX(“Surf_nodes_y_loc_column”;MATCH(Node_i;”Node_numb_col-

umn”;0)))=TRUE;INDEX(“Surf_nodes_y_loc_column”;MATCH(Node_i;”Node_numb_col-

umn”;0));"") 

=IF(ISNUMBER(INDEX(“Surf_nodes_z_loc_column”;MATCH(Node_i;”Node_numb_col-

umn”;0)))=TRUE;INDEX(“Surf_nodes_z_loc_column”;MATCH(Node_i;”Node_numb_col-

umn”;0));"") 

Y coordinate: 

Z coordinate: 
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After the coordinates for X, Y and Z are found for all orientations, they are saved in separate 

text files (empty cells need be removed). These text files are then used as input for calcula-

tion procedure shown in Appendix VI. Searching the coordinates like shown above will re-

sult in 12 text files i.e. four files for each coordinate axis (one for each orientation).  

 

In addition, von Mises stress is needed for effective area calculation. Here, von Mises stress 

was exported from Ansys for each surface node and the average of nodal values was used 

for the element. The von Mises stress values for the nodes of a certain element can be 

searched with the same equation as is used to search the coordinate values but, in this case, 

“Surf_nodes_x_loc” column has to be replaced by column containing surface node stresses. 

Note that the nodal values, be it the coordinates or stresses, have to be sorted in ascending 

order according to node number for the equations to work properly. 

 

Part of a calculation sheet for effective area is shown in figure 80. 

 

 

Figure 80. Calculation sheet of effective area and Ksize according to the weakest link the-

ory. 

 

sln = sr 0.1 Sample!

σmax 292.7417 Aeff 56.95909 Aeff,tot 113.918

Aref 1039

sln 0.085

n 9.121

R 0.92682

P 0.07318

λ -1.452

Ksize 1.131

Stress_1 Ai λi Pi Ri Aeff,i Stress_2 Ai λi Pi Ri Aeff,i Stress_3 Ai λi Pi Ri Aeff,i

289.705 0.525904 -0.10427 0.458476064 0.54152394 0.465374008 287.8667 0.416991 -0.16793 0.433318677 0.566681323 0.341678745 90.56283 0.587398 -11.7325 4.34447E-32 1 0

286.8967 0.533081 -0.20168 0.420081761 0.57991824 0.419043267 291.0617 0.448972 -0.05755 0.477052031 0.522947969 0.419906021 112.0952 0.652231 -9.59942 4.01965E-22 1 0

259.6083 0.563484 -1.20116 0.114843696 0.8851563 0.099170775 14.29383 0.457053 -30.1946 1.3933E-200 1 0 286.9583 0.480208 -0.19954 0.42092209 0.57907791 0.378486063

290.7967 0.480746 -0.06666 0.473425181 0.52657482 0.444829307 12.42575 0.388928 -31.5952 2.149E-219 1 0 290.8133 0.464057 -0.06609 0.47365332 0.52634668 0.429677246

14.41217 0.467681 -30.1122 1.6784E-199 1 0 156.235 0.498754 -6.27929 1.70059E-10 1 1.22366E-10 268.9367 0.429798 -0.84815 0.198178265 0.801821735 0.136953538

267.665 0.506099 -0.89554 0.185248344 0.81475166 0.149586385 54.83967 0.538892 -16.7488 2.89058E-63 1 0 230.5467 0.429897 -2.38837 0.008461593 0.991538407 0.005270293

14.31523 0.457367 -30.1797 2.1898E-200 1 0 286.9317 0.34731 -0.20046 0.420558682 0.579441318 0.273425203 230.7483 0.429763 -2.37963 0.008665041 0.991334959 0.005395888

184.48 0.4312 -4.61749 1.942E-06 0.99999806 1.2081E-06 204.38 0.47705 -3.5931 0.000163387 0.999836613 0.000112458 159.3633 0.432143 -6.08104 5.97034E-10 0.999999999 3.72222E-10

135.8133 0.431401 -7.68009 7.94875E-15 1 4.97507E-15 207.68 0.432288 -3.43292 0.000298558 0.999701442 0.000186227 57.6705 0.442528 -16.2454 1.2029E-59 1 0

40.1675 0.605185 -19.8623 4.3114E-88 1 0 291.6067 0.481926 -0.03885 0.484506289 0.515493711 0.460708288 46.533 0.436569 -18.3913 7.71356E-76 1 0

22.20857 0.611258 -25.7881 6.0254E-147 1 0 290.2567 0.533121 -0.08525 0.46603153 0.53396847 0.482566576 45.00083 0.413283 -18.7261 1.51684E-78 1 0

291.8617 0.43634 -0.03011 0.487991295 0.5120087 0.421399133 24.008 0.457242 -25.009 2.4378E-138 1 0 15.02242 0.486637 -29.6975 4.1392E-194 1 0

107.833 0.527666 -9.98707 8.68209E-24 1 0 118.3373 0.464413 -9.05751 6.67297E-20 1 0 247.2083 0.453405 -1.69059 0.045457472 0.954542528 0.030431904

288.1 0.71991 -0.15983 0.436507912 0.56349209 0.595748937 44.15 0.371612 -18.917 4.13316E-80 1 0 249.81 0.440599 -1.5859 0.056381103 0.943618897 0.036888593

187.8867 0.313365 -4.43452 4.61397E-06 0.99999539 2.08593E-06 15.78912 0.529704 -29.1997 9.7825E-188 1 0 76.43083 0.54122 -13.429 2.04328E-41 1 0

24.23323 0.433521 -24.9157 2.5173E-137 1 0 89.89983 0.491926 -11.8059 1.81842E-32 1 0 15.13705 0.478172 -29.6215 3.9557E-193 1 0

137.9967 0.455793 -7.52061 2.72606E-14 1 1.79592E-14 110.5093 0.511103 -9.74191 9.98863E-23 1 0 149.2683 0.346009 -6.73545 8.17119E-12 1 4.07897E-12

25.48187 0.51917 -24.4132 6.1872E-132 1 0 270.1 0.42018 -0.80498 0.210414815 0.789585185 0.143211335 166.6983 0.360389 -5.63105 8.95592E-09 0.999999991 4.65646E-09

These are effective areas for differ-

ent orientations. Effective area of the 

component is the total of the ele-

mental effective areas.  

Aeff,tot = 2⋅Aeff because half sym-

metry was exploited 
Area of each element is calculated 

with the method shown in Appendix 

VI and then imported back to Excel 



 

 

APPENDIX VI, 1 

Calculation of the element face area in SMath Studio Desktop. 

 

 

  

Total area of the element faces. 

According to 3D model, the corre-

sponding area should be 581.22 

mm2. Calculation procedure works 

well. 



 

 

APPENDIX VI, 2 

 

 

 

 

A Snippet of the text file containing nodal X-coordinates (x1.txt) 

 

NODE→ N1 N2 N3 N4 N5 N6 

ELEMENT 

↓  

E1 4.714 5.5557 5.3858 5.141 5.0386 5.4557 

E2 4.714 5.3858 4.4205 5.0386 4.559 4.9094 

E3 5.3858 5.9175 4.92 5.6372 5.1503 5.4242 

E4 0 0.98017 0 0.49068 0 0.4895 

E5 4.8216 4.8836 5.7403 4.8587 5.2838 5.3037 

E6 7.139 7.3402 6.4749 7.2233 6.813 6.911 

… … … … … … … 

… … … … … … …  



 

 

APPENDIX VI, 3 

 

 

 

 

  



 

 

APPENDIX VI, 4 

 

 

  



 

 

APPENDIX VI, 5 

 



 

 

APPENDIX VII 

Determination of the smallest enclosing circle (Mod. Weber et al. 1999, p. 393). 

 

 

Data: loading path L composed of NP points 

Determine the two most distant points P1 and P2. 

Construct a circle CD whose diameter is the distance between P1 and P2 

All the points of L remain inside 

CD  

CD is the 

smallest cir-

cle 

Yes 

Determine the furthest point P3 from CD and construct circle Ct that is defined 

by P1, P2 and P3. 

No 

All the points of L remain inside 

C
t
  

C
t
 is the 

smallest cir-

cle 

Yes 

Determine the furthest external point Pe from Ct and construct three circles 

that are defined by {P1 P2 Pe}, {P1 P3 Pe} and {P2 P3 Pe} respectively. The 

smallest circle that encloses the points P1, P2, P3 and Pe becomes Ct. Its three 

construction points are denoted P1, P2 and P3. 

  

No 



 

 

APPENDIX VIII,1 

Analysis of a notched component from chapter 3.2. 

 

Haigh diagrams: 

 

 

Rp0.2 320 339.2 Ksize 1.131

Rm 500 530 KR 0.79

Rmc -800 -848 KAT 1

KN 1

k -0.5166 kred -0.4617

σaR=-1 196.1 σaR=-1,red 175.3

σaR=0 129.3 σaR=0 119.9

Linear part Linear part, red.

σm1 295.9 σm1 304.5

σaf1 43.3 σaf1 34.7

σm2 -94.3 σm2 -112.1

σaf2 244.9 σaf2 227.1

Plastic tensile 

side

Plastic tensile 

side, red.

Start P0: Start P0:

σm,P0 295.9 σm,P0 304.5

σa,P0 43.3 σa,P0 34.7

Intermediate P1: Intermediate P1:

σm,P1 379.7 σm,P1 379.7

σa,P1 0.0 σa,P1 0.0

End P2: End P2:

σm,P2 530.0 σm,P2 530.0

σa,P2 0.0 σa,P2 0.0

Plastic 

compression 

side

Plastic 

compression 

side, red.

Start P0: Start P0:

σm,P0 -848 σm,P0 -848

σa,P0 0 σa,P0 0

Intermediate P1: Intermediate P1:

σm,P1 -429.815 σm,P1 -460.19434

σa,P1 418.1847 σa,P1 387.80566

End P2: End P2:

σm,P2 -94.328 σm,P2 -112.11675

σa,P2 244.872 σa,P2 227.08325



 

 

APPEDIX VIII,2 

 

Statistical size factor using the weakest link theory: 

 

Calculation of Aeff is shown in Appendices V and VI. 

 

 

  

The weakest link theory: 

Number of links: 

𝑛 =
𝐴𝑒𝑓𝑓

𝐴𝑟𝑒𝑓
 when A

eff 
> A

ref
 

𝑛 =
𝐴𝑟𝑒𝑓

𝐴𝑒𝑓𝑓
 when A

eff 
< A

ref
  

Reliability and failure probability: 

𝑅 = √0.5
𝑛  

𝑃 = 1 − 𝑅 =
1

√2𝜋
∫ 𝑒−

𝑥2

2 𝑑𝑥
𝜆

−∞
   →  λ = … 

Size factor: 

𝐾𝑠𝑖𝑧𝑒 = 𝑒−𝜆𝑠𝑙𝑛,𝐶90         when A
eff 

> A
ref

 

𝐾𝑠𝑖𝑧𝑒 = 𝑒−𝜆𝑠𝑙𝑛,𝐶10         when A
eff 

< A
ref

 

, where s
ln

 is according to table 1 or 2 

 

Excel: 

λ = NORM.S.INV(P) 



 

 

APPENDIX VIII,3 

 

S-N curves and cumulative damage analysis: 

 

k 0 12 R m 530

k ∞ 3 χ* (r c ) 0.3

p 1 1.031 KR 0.79

p 2 0.8

C 1.65

r 0.01

k and Naf:

σ a,eq σ m,eq k N af

159.7 87.6 7.316 2031948

55.5 82.4 7.411 2061901

65 81.8 7.423 2065335

146 86.5 7.336 2038312

76.1 82 7.419 2064191

Failure probability:

λ -3.09

P 0.001

s ln,C90 0.12

S F 1.449

kred -0.4617431

σaR=-1,red 175.314115

Bin σ af  (med) S F s N s ln,H S F,H

1 (LCF) 134.9 1.449 0.878 0.070 1.240

2 (HCF) 137.3 1.449 0.889 0.069 1.239

3 (HCF) 137.5 1.449 0.891 0.069 1.239

4 (LCF) 135.4 1.449 0.880 0.069 1.239

5 (HCF) 137.5 1.449 0.890 0.069 1.239

Bin σ af,P σ af,PH N n D LC D HC

1 (LCF) 93.1 108.801 39156 4500 0.1149

2 (HCF) 94.7 110.787 14576797703 250000 0.0001276

3 (HCF) 94.9 111.016 2000357218 150000 0.00056

4 (LCF) 93.4 109.221 77115 6000 0.0778

5 (HCF) 94.9 110.940 260797621 200000 0.0057195

Σ 0.19273099 0.0064071

D tot 0.1991


