TIIVISTELMÄ

LUT-Yliopisto
LUT School of Energy Systems
LUT Kone
Joona Kauppila

Todennäköisyysteoriaan perustuvan väsymisanalyysimenetelmän käyttöönotto pallografiittivaluraudasta, nuorrutusteräksestä ja rakenneteräksestä valmistetuille koneenosille

Diplomityö
2020
160 sivua, 80 kuvaa, 13 taulukkoa ja 8 liitettä
Tarkastajat: Professori Timo Björk
DI Toni Kilpeläinen
Hakusanat: Haigh diagrammi, Moniaksiaalinen väsyminen, Nuorrutusteräs, Pallografiittivalurauta, Rakenneteräs, S-N käyrä, Todennäköisyysteoria, Väsymisanalyysi

Tämän työn tarkoituksena on esitellä käyttöönotettavaksi todennäköisyysteoriaan perustuva väsymisanalyysimenetelmä pallografiittivaluraudasta, nuorrutusteräksestä ja rakenneteräksestä valmistetuille koneenosille. Menetelmän tulee perustua elementtimenetelmällä laskettujen paikallisten jännitysten käyttöön, ilman tarvetta määrittää nimellisiä jännityksiä. Lisäksi menetelmän tulee kyetä ottaa huomioon moniaksiaalinen väsyminen suhteisissa ja epäsuhteisissa kuormitustapauksissa. Työn tuloksena tulisi olla määritetty yksiselitteiset ohjeet siten että menetelmä voidaan ohjelmoida automaattiseksi työkaluksi.

Menetelminä tässä työssä käytetään kirjallisuusselvitystä, olemassa olevan väsytyskoedatan hyödyntämistä ja elementtimenetelmää. Lisäksi analyysimenetelmän vaiheet esitellään melko yksinkertaisen komponentin ja kuormitustapauksen esimerkkianalyysillä.

Työn tuloksena esitellään vaatimukset käyttäjän syöttämistä arvoista ja menetelmän tulosteista, sekä menetelmän eri laskentavaiheet. Lisäksi esitellään esimerkkianalyysin tuloksia. Tuloksiin perustuen johtopäätöksinä voidaan todeta, että esitelty menetelmä ei vaadi nimellisjännitysten käyttöä ja että moniaksiaalinen väsyminen voidaan käsitellä kattavasti. Tämän lisäksi esitellyt vuokaaviot antavat hyvän pohjan ohjelmointityölle.

ABSTRACT
LUT University
LUT School of Energy Systems
LUT Mechanical Engineering

Joona Kauppila
Introduction of a probabilistic fatigue analysis method for components made of spheroidal graphite cast iron, quenched and tempered steel and structural steel

Master's thesis
2020

160 pages, 80 figures, 13 tables and 8 appendices
Examiners: Professor Timo Björk
M. Sc. (Tech.) Toni Kilpeläinen

Keywords: Fatigue analysis, Haigh diagram, Multiaxial fatigue, Probabilistic, Quenched and tempered steel, S-N curve, Spheroidal graphite cast iron, Structural steel

The aim of this thesis is to introduce a probabilistic fatigue analysis method for components made of spheroidal graphite cast iron, quenched and tempered steel and structural steel. The method should be based on using local stresses calculated with finite element analysis, without the need to consider nominal stresses. Also, it should be able to consider multiaxial fatigue in proportional and non-proportional loading cases. As a result of this work, clear guidelines and steps for the method should be established in such a way that it is possible to program an automated analysis tool for fatigue analysis according to this method.

The methods used in this work include literature study, use of existing fatigue test data and finite element analysis. Also, the finished workflow is demonstrated with an example analysis of a relatively simple component and load case to clarify the different steps of the analysis.

As a result, required inputs from the user, outputs and different stages of the analysis method are presented. In addition, the results of the example analysis are shown. Based on the results, it is concluded that the introduced method does not require the use of nominal stresses and that multiaxial fatigue can be handled in a comprehensive manner. Furthermore, the flowcharts depicting the workflow give a good basis for the programming work.

ACKNOWLEDGEMENTS

I would like to thank Professor Timo Björk at LUT for guidance and help during the thesis project. Also, thank you for contacting me about this thesis topic when it was offered by The Switch.

Thank you to Toni Kilpeläinen and Tomi Knuutila from The Switch for providing me with this interesting and challenging topic. I would also like to thank Toni for guidance and monitoring of the work.

Also, thank you to Roger Rabb for giving a lot of important suggestions and recommendtions regarding the topics covered in his book "Väsyminen ja Todennäköisyysteoria" which was an essential part of this work.

Iona Kauppila
Lappeenranta 9.9.2020

TABLE OF CONTENTS

TIIVISTELMÄ 1
ABSTRACT 2
ACKNOWLEDGEMENTS 3
TABLE OF CONTENTS 5
LIST OF SYMBOLS AND ABBREVIATIONS 8
1 INTRODUCTION 15
1.1 Background 15
1.1.1 DNVGL-ST-0361 15
1.2 Objectives 19
1.3 Scope 19
1.4 Methods 20
1.5 Fatigue 20
1.5.1 Crack initiation 22
1.5.2 Crack growth 27
1.5.3 Defect size 31
1.6 Probability and Statistics 33
1.6.1 Discrete random variable 33
1.6.2 Fatigue strength distributions 35
1.6.3 Confidence intervals of sample values 42
2 FATIGUE ANALYSIS METHODS 45
2.1 Haigh diagram 45
2.1.1 Quenched and tempered steel 42CrMo4 46
2.1.2 Structural steel S355 49
2.1.3 Spheroidal graphite cast iron 51
2.1.4 Verification of the Haigh diagrams using literature sources 54
2.2 Reduction factors 54
2.2.1 Surface roughness factor K_{R} 54
2.2.2 Anisotropy factor K_{A} and technological factor K_{T} 58
2.2.3 Statistical size factor $K_{\text {size }}$ 59
2.2.4 Life factor K_{N} 67
2.3 Reduction of the Haigh diagram to the allowed probability of failure 68
2.4 S-N curves 70
2.4.1 Formulation of S-N curves 71
2.4.2 Reduction of S-N curves to the allowed probability of failure 73
2.5 Variable amplitude loading 74
2.5.1 Rain-flow cycle counting 75
2.5.2 The Palmgren-Miner rule 76
2.6 Multiaxial fatigue 83
2.6.1 Dang Van 85
2.6.2 Findley 92
2.7 Linear elastic fracture mechanics (LEFM) 99
2.7.1 The Theory of critical distances (TCD) 103
2.8 Multiscale modelling of fatigue 106
2.8.1 Nanoscale 107
2.8.2 Mesoscale. 109
2.8.3 Macroscale 111
2.9 Finite element analysis 112
2.9.1 Determination of effective area 112
2.9.2 Determination of relative stress gradient 117
2.9.3 Determination of stress components for multiaxial fatigue analysis 121
3 RESULTS 125
3.1 New method 125
3.1.1 Haigh diagram 127
3.1.2 Loading 133
3.1.3 S-N curve and cumulative damage analysis 135
3.2 Analysis of a notched component 139
4 ANALYSIS AND DISCUSSION 150
4.1 Further research 152
5 CONCLUSION 154
LIST OF REFERENCES 155
APPENDIXAppendix I: Fatigue test data from literatureAppendix II: Rain-flow cycle counting

Appendix III: Determination of principal stresses from a stress matrix
Appendix IV: Gauss integration points and weight coefficients for a triangular element

Appendix V: Sorting the nodal coordinates data for effective area calculation in Excel

Appendix VI: Calculation of elemental face areas
Appendix VII: Determination of the smallest enclosing circle
Appendix VIII: Analysis of a notched component

LIST OF SYMBOLS AND ABBREVIATIONS

A	Area [mm^{2}]
A	Constant [-]
$A_{\text {eff }}$	Effective area [mm ${ }^{2}$]
$A_{\text {ref }}$	Reference area [mm^{2}]
a	Crack length [mm]
a	Constant in Dang Van criterion [-]
a	Major semi-axis of an elliptical hole [mm]
a_{0}	Initial crack size [mm]
a_{0}	Intrinsic crack length [$\mu \mathrm{m}$]
$a_{\text {ext }}$	Extrapolated defect size [$\mu \mathrm{m}$]
a_{f}	Final crack size [mm]
$a_{\text {med }}$	Median value of defect distribution [$\mu \mathrm{m}$]
a_{σ}	Material constant [-]
$\sqrt{\text { area }}$	The equivalent defect size for surface roughness [$\mu \mathrm{m}$]
B	Constant [-]
$2 b$	Pitch of the surface roughness [$\mu \mathrm{m}$]
b	Auxiliary variable [-]
b	Minor semi-axis of an elliptical hole [mm]
C	Constant [-]
C	Constant which considers the mean stress effect [-]
C	Material constant [(mm/cycle)/($\left.\mathrm{MPa} \cdot \mathrm{m}^{1 / 2}\right)^{\mathrm{m}}$]
C_{μ}	Confidence level [-]
c	Half-width of a crack [mm]
D	Damage sum [-]
D	Findley damage [MPa]
$D_{\text {HC }}$	High cycle damage sum [-]
$D_{L C}$	Low cycle damage sum [-]
$D_{\text {tot }}$	Total damage sum, $D_{H C}+D_{L C}[-]$
d	Slip band length [$\mu \mathrm{m}$]
$d A$	Surface element [-]

$d a / d N$	Cyclic crack growth rate [mm/cycle]
$\operatorname{dev} \rho_{i j}$	Deviatoric part of stabilized residual stress tensor [MPa]
$E(x)$	Expected value [-]
$E\left(\sigma_{a f}\right)$	Expected value [MPa]
F	Axial force [N]
F	Geometry factor [-]
$F(\sigma)$	Cumulative distribution function (CDF) [-]
F_{e}	Embedding energy [J]
F_{i}	Force acting on atom $i[\mathrm{~N}]$
F_{o}	Surface roughness factor [MPa]
f	Fatigue limit in shear [MPa]
$f\left(\sigma_{a f}\right)$	Probability density function (PDF) [-]
$f_{Z}(Z)$	Multivariate probability density function of Z
G	Shear modulus [MPa]
H_{V}	Vickers hardness [MPa]
K	Stress intensity factor [$\mathrm{MPa} \cdot \mathrm{m}^{1 / 2}$]
K_{A}	Anisotropy factor [-]
$K_{A T}$	Anisotropy and technological factor [-]
K_{c}	Fracture toughness [MPa $\cdot \mathrm{m}^{1 / 2}$]
K_{I}	Stress intensity factor for Mode I crack [$\mathrm{MPa} \cdot \mathrm{m}^{1 / 2}$]
$K_{\text {Ic }}$	Plane strain fracture toughness [$\mathrm{MPa} \cdot \mathrm{m}^{1 / 2}$]
K_{N}	Life factor [-]
K_{R}	Surface roughness factor [-]
$K_{\text {size }}$	Statistical size factor [-]
K_{T}	Technological factor [-]
K_{t}	Stress concentration factor [-]
ΔK	Stress intensity range [$\mathrm{MPa} \cdot \mathrm{m}^{1 / 2}$]
$\Delta K_{\text {th }}$	Threshold stress intensity range [$\mathrm{MPa} \cdot \mathrm{m}^{1 / 2}$]
k	Normal stress sensitivity [-]
k	Slope exponent of S-N curve [-]
k	Slope of Haigh diagram [-]
k_{0}	Slope exponent of an unnotched test specimen [-]
k_{∞}	Slope exponent of a very sharp notch [-]

L	Load effect [-]
L	Material length scale [$\mu \mathrm{m}$]
M	Additive inverse of the slope of Haigh diagram $k[-]$
m_{i}	Mass of the atom $i[\mathrm{u}]$
m	Number of links [-]
m	Slope of the crack growth log-log plot [-]
N	Fatigue life [cycles]
N	Total number of discrete values [-]
$N_{a f}$	Number of cycles at knee-point of S-N curve [cycles]
$N_{e q}$	Equivalent number of cycles [cycles]
N_{g}	Number of cycles required for crack nucleation [cycles]
N_{i}	Shape function for node $i[-]$
n	Frequency [-]
n	Notch sensitivity [-]
n	Number of links [-]
n	Number of test specimens [-]
$\vec{n}_{c r}$	Normalized direction vector of critical plane [-]
$n_{\text {ref }}$	Reference number of cycles [cycles]
P	Failure probability [-]
p	Exponent which considers the effect of relative stress gradient $\chi^{*}[-]$
p_{i}	Probability of $x_{i}[-]$
Q	Rotation matrix [-]
R	Resistance effect [-]
R	Stress ratio [-]
R	Survival probability [-]
R_{i}	Reliability of $i[-]$
R_{m}	Ultimate strength [MPa]
R_{m}^{*}	Fictive ultimate strength [MPa]
$R_{m c}$	Ultimate compressive strength [MPa]
$R_{m S m i n}$	Material constant [MPa]
$R_{p 0.2}$	Yield strength [MPa]
R_{z}	Height of the surface roughness profile [$\mu \mathrm{m}$]
r	Exponent which considers how C changes as a function of $\chi^{*}[-]$

r	Radius, polar coordinate [mm]
r_{c}	Critical distance [$\mu \mathrm{m}$]
$r_{i j}$	Separation between atoms [Å]
S	Remote stress [MPa]
S_{F}	Safety factor on stress [-]
$S_{F, H}$	Safety factor on stress of Haibach S-N curve extension [-]
S_{N}	Safety factor on fatigue life [-]
$S_{\text {F,rad }}$	Radial safety factor [-]
$S_{F, v e r}$	Vertical safety factor[-]
s	Standard deviation [-]
s^{2}	Variance [-]
$S_{\text {ln }}$	Logarithmic standard deviation [-]
$S_{l n, H}$	Logarithmic standard deviation of fatigue strength for Haibach S-N curve extension [-]
s_{N}	Logarithmic standard deviation of fatigue life [-]
$s_{N}{ }^{2}$	Variance of fatigue life [-]
S_{r}	Relative standard deviation [-]
SrClo	Standard deviation with a confidence level of 10% [-]
$S_{r} \mathrm{C} 90$	Standard deviation with a confidence level of 90% [-]
s_{σ}	Standard deviation [MPa]
$s_{\sigma}{ }^{2}$	Variance [-]
T	Return period [-]
T	Torque [Nmm]
t	Normalized variable [-]
t	Time [s]
t_{2}	Variable for Student's distribution [-]
U	Potential energy [J]
$V\left(\sigma_{a f}\right)$	Variance [-]
$V_{i j}$	Pair potential contribution to the potential energy of atom $i[\mathrm{~J}]$
W_{c}	Specific fracture energy per unit area $\left[\mathrm{kJ} / \mathrm{m}^{2}\right]$
W_{i}	Weight coefficient [-]
X	Discrete random variable [-]
\boldsymbol{X}	Global nodal coordinates [-]

\boldsymbol{x}_{i}	Position vector of atom $i[-]$
x_{i}	Values of discrete random variable [-]
\bar{x}	Sample mean value [-]
\boldsymbol{Y}	Global nodal coordinates [-]
Z	Global nodal coordinates [-]
α	Parameter [-]
α_{k}	Stress concentration factor [-]
β	Weibull distribution shape parameter [-]
β_{k}	Notch factor [-]
β_{R}	Reliability index [-]
$\Gamma(t)$	Gamma function [-]
$\Delta \sigma$	Normal stress range [MPa]
$\Delta \sigma_{a f}$	Fatigue limit range [MPa]
$\Delta \tau$	Shear stress range [MPa]
$\Delta \bar{\tau}$	Average shear stress range of a slip band [MPa]
ζ	Natural coordinate [-]
η	Natural coordinate [-]
θ	Angle, polar coordinate [$\left.{ }^{\circ}\right]$
λ	Parameter of standard normal distribution [-]
$\mu_{l n}$	Logarithmic mean value [-]
$\mu_{l n+S D}$	Logarithmic mean value + one standard deviation [-]
v	Poisson's ratio [-]
ξ	Natural coordinate [-]
ρ	Notch root radius [mm]
$\rho_{i j}$	Contribution of atom j to the total electron density at atom $i[-]$
$\rho_{i j}$	Stabilized residual stress tensor [MPa]
$\rho_{i j, h}$	Hydrostatic part of stabilized residual stress tensor [MPa]
$\Sigma_{i j}\left(t_{i}\right)$	Macroscopic stress tensor [MPa]
σ	Normal stress [MPa]
[σ]	Stress matrix [MPa]
$\sigma_{0.2}$	Yield strength [MPa]
σ_{a}	Normal stress amplitude [MPa]

$\sigma_{a c}$	Critical stress amplitude [MPa]
$\sigma_{a, e q}$	Equivalent stress amplitude [-]
$\sigma_{a f}$	Fatigue limit [MPa]
$\bar{\sigma}_{a f}$	Expected value of fatigue limit [MPa]
$\sigma_{a f, P}$	Fatigue limit reduced to failure probability P [MPa]
$\sigma_{a, \text { ref }}$	Reference stress amplitude [MPa]
$\sigma_{a R=0}$	Fatigue limit for pulsating load [MPa]
$\sigma_{a R=-1}$	Fatigue limit for completely reversed loading [MPa]
$\bar{\sigma}_{a f, C_{\mu}}$	Population value for the mean of fatigue limit [MPa]
σ_{b}	Ultimate strength [MPa]
$\sigma_{b, c o m p}$	Ultimate compressive strength [MPa]
$\sigma_{c h}$	Characteristic stress [MPa]
$\sigma_{h}\left(t_{i}\right)$	Hydrostatic stress when time is t_{i} [MPa]
$\sigma_{i j}\left(t_{i}\right)$	Microscopic stress tensor [MPa]
σ_{m}	Mean stress [MPa]
$\sigma_{m R}=0$	Means stress when $R=0$ [MPa]
$\sigma_{\text {med }}$	Median value of stress [MPa]
σ_{n}	Normal stress [MPa]
$\sigma_{\text {nom }}$	Nominal stress [MPa]
$\sigma_{\text {peak }}$	Peak stress [MPa]
$\sigma_{t r}$	Threshold value for fatigue limit [MPa]
$\sigma_{V M}$	Von Mises stress [MPa]
σ_{x}	X normal stress component [MPa]
σ_{y}	Y normal stress component [MPa]
σ_{z}	Z normal stress component [MPa]
τ_{a}	Shear stress amplitude [MPa]
$\tau_{a(}\left(t_{i}\right)$	Microscopic shear stress amplitude when time is t_{i} [MPa]
$\tau_{a f, \sigma h=0}$	Fatigue limit in shear when hydrostatic stress is zero [MPa]
$\tau_{\text {CRSS }}$	Critical resolved shear stress [MPa]
$\tau_{x y}$	XY shear stress component [MPa]
$\tau_{y z}$	YZ shear stress component [MPa]
$\tau_{z x}$	ZX shear stress component [MPa]
Φ	Cumulative distribution function of standard normal distribution [-]

χ^{*}	Relative stress gradient $\left[\mathrm{mm}^{-1}\right]$
CDF	Cumulative distribution function
CGF	Continuous grain flow
CRSS	Critical resolved shear stress
EAM	Embedded atom method
FEA	Finite Element analysis
FEM	Finite Element method
FFM	Finite fracture mechanics
HCF	High cycle fatigue
ICM	Imaginary crack method
K-T	Kitagawa-Takahashi
LCF	Low cycle fatigue
LEFM	Linear elastic fracture mechanics
LM	Line method
MD	Molecular dynamics
PDF	Probability density function
PM	Point method
SD	Standard deviation
SEM	Scanning electron microscope
SIF	Stress intensity factor
TCD	The Theory of critical distances
VHCF	Very high cycle fatigue

1 INTRODUCTION

The Switch specializes in electrical drive train technology, focusing on permanent magnet, solid rotor and variable speed drive technologies in areas of wind, marine and turbo/industry solutions (The Switch 2020). Design of components for these kinds of applications need to consider material fatigue and now, The Switch is looking to develop a new in-house fatigue analysis method.

1.1 Background

Currently The Switch performs fatigue analyses of castings and machined parts according to the method described in DNVGL-ST-0361. This has been found problematic because the method is based on nominal stresses which can be difficult or impossible to obtain from finite element analysis results, especially in the cases of more complex geometries.

Another problem is that although DNVGL-ST-0361 gives some guidance about multiaxial stresses, they are not treated properly in the current analysis process. This may yield unconservative results in some cases.

Evaluation of defects observed during manufacturing is difficult. It would be desirable to have allowable defect size for critical areas of the component, but the present analysis method is not capable of providing this information. In other words, the direct link between defect size and local fatigue strength is missing.

1.1.1 DNVGL-ST-0361

DNVGL-ST-0361 Machinery for wind turbines gives guidelines for the design of wind turbine machinery components and structures. It is based on safe life design method and for the fatigue limit state the typical design life time for wind turbines is 20 years. (DNVGL-ST0361 2016, p. 9, 36.)

Current fatigue analysis method from DNVGL-ST-0361 is based on calculation of synthetic S-N curves. This calculation is applicable for non-welded forged and rolled parts and for cast steel and spheroidal graphite cast iron. (DNVGL-ST-0361 2016, p. 50-52.) The process
flow charts for Non-welded forged and rolled parts and Cast steel and spheroidal graphite cast iron are presented in figures 1 and 2.

4.6.2 Non-welded forged and rolled parts

Figure 1. Calculation of synthetic S-N curve for non-welded forged and rolled parts (DNVGL-ST-0361 2016, p. 51).

4.6.3 Cast steel and spheroidal graphite cast iron

Figure 2. Calculation of synthetic S-N curve for cast steel and spheroidal graphite cast iron (DNVGL-ST-0361 2016, p. 52).

One of the problems of this method is the use of notch factor β_{k} :

$$
\begin{equation*}
\beta_{k}=\frac{\alpha_{k}}{n} \tag{1.1}
\end{equation*}
$$

In equation (1.1) α_{k} is stress concentration factor and n is notch sensitivity (DNVGL-ST0361 2016, p. 51-52). It may be difficult to define nominal stress and the corresponding stress concentration factor from the modern Finite Element analysis (FEA) results, especially if the geometry is complex. Nowadays FEA models can accurately and relatively quickly calculate the local stresses and thus the use of nominal stress based methods is not effective.

Haigh diagrams for different grades of spheroidal graphite cast iron, structural steel (S355) and quenched and tempered steel (42 CrMO 4) constructed on the basis of the flowcharts above are presented in figures 3 and 4. These are valid when nominal stresses are considered but again, this may not be useful if there are problems with defining the actual nominal stress in the component. Furthermore, these diagrams do not indicate how the material behaves when there is local plasticity.

Figure 3. Haigh diagram for spheroidal graphite cast iron according to DNVGL-ST-0361 (2016, p. 46, 52).

Figure 4. Haigh diagram for S355 and 42CrMo4 according to DNVGL-ST-0361 (2016, p. 46, 51).

1.2 Objectives

The objective of this thesis is to introduce a new method for fatigue analysis. The method should be based on using local stresses calculated with Finite Element Method (FEM) and it should consider multiaxial fatigue in proportional and non-proportional load cases. Also, the method should be based on probabilistic approach on fatigue and the determination of component's actual failure probability should be straightforward. Furthermore, a connection between defect size and local fatigue strength should be demonstrated so that it would be possible to give quality requirements for critical areas of components.

As a result of this work, clear guidelines and algorithms should be established so that it is possible to program a tool for the utilization of the new method. Also, an example analysis is performed with the new method.

1.3 Scope

Scope of this thesis is defined on the basis of materials used by The Switch in their components. There is no limitation on the type of component, so the new analysis method covers all components made of specified materials.

Materials within the scope of this thesis include spheroidal graphite cast iron, structural steel and quenched and tempered steel. The main focus is on various strength grades of spheroidal graphite cast iron, S355 structural steel and 42CrMo4 quenched and tempered steel.

This work covers non-welded forged and rolled components, castings and machined parts. In essence, the new analysis method should be applicable to at least the same extent as the method described in DNVGL-ST-0361.

1.4 Methods

The objective will be reached by introducing options for different aspects of fatigue analysis and utilizing the best suited one regarding the objective and scope of this thesis. The basis of the new method will be probabilistic approach on fatigue as per Roger Rabb's research and suggestions.

The methods used in development of the new analysis procedure include literature study, utilization of existing fatigue testing data and finite element analysis. No fatigue testing will be conducted as a part of this work.

1.5 Fatigue

Material, structures and components that are being subjected to repeated loads and the cyclic stresses caused by these loads are prone to suffer from microscopic damage. Even at stress levels where yielding does not dominate the behavior, this microscopic damage can accumulate and develop into a macroscopic crack. As the cycling continues, the crack grows and eventually failure of the component or structure will occur. This whole chain of events is called fatigue. (Dowling 2013, p. 416-417, 424.)

Cyclic loading can be described with a few factors and equations. The important definitions include stress range $\Delta \sigma$, maximum stress $\sigma_{m a x}$, minimum stress $\sigma_{\text {min }}$, stress amplitude σ_{a}, mean stress σ_{m} and stress ratio R. These are explained in the following equations and in figure 5 .

For amplitude and mean stress (Dowling 2013, p. 419):

$$
\begin{align*}
& \sigma_{a}=\frac{\Delta \sigma}{2}=\frac{\sigma_{\max }-\sigma_{\min }}{2} \tag{1.2}\\
& \sigma_{m}=\frac{\sigma_{\max }+\sigma_{\min }}{2} \tag{1.3}
\end{align*}
$$

For maximum and minimum stresses (Dowling 2013, p. 419):

$$
\begin{align*}
& \sigma_{\max }=\sigma_{m}+\sigma_{a} \tag{1.4}\\
& \sigma_{\text {min }}=\sigma_{m}-\sigma_{a} \tag{1.5}
\end{align*}
$$

And for R (Dowling 2013, p. 419):

$$
\begin{equation*}
R=\frac{\sigma_{\min }}{\sigma_{\max }} \tag{1.6}
\end{equation*}
$$

Cyclic loading

Figure 5. Constant amplitude cyclic loading.

The fatigue life consists of two periods: a crack initiation and a crack growth period, after which the final failure occurs. During the initiation period microcracks nucleate in slip bands in the material and start growing erratically due to effects caused by the microstructure of the material. After the microcrack growth has progressed away from the nucleation site, the growth becomes more regular and the crack growth period begins. These two periods are
separated since they are affected by different factors. (Schijve 2009, p. 14-15.) The phases of the fatigue life and the factors affecting them are presented in figure 6 .

Figure 6. Phases of the fatigue life (Schijve 2009, p. 15).

1.5.1 Crack initiation

The fatigue crack nucleation is caused by cyclic slip which means that cyclic plastic deformation happens in a small number of grains. This microplasticity often happens in the grains which are located on the free surface of the material because there the plastic deformation is less constrained by the neighboring grains. As the constraint on the slip is lower on the surface, it can occur at lower stress levels than in more constrained subsurface grains. (Schijve 2009, p. 16.)

Cyclic shear stresses are required to cause cyclic slip. Depending on the size, shape and orientation of the grains as well as elastic anisotropy of the material, the shear stress on slip planes is varying between grains. On the surface of the material aforementioned conditions may be more favorable in some grains than in others and slip can occur. When slip occurs in a grain, a slip step is created on the material surface and a portion of new material (i.e. material that has not been in contact with the surrounding environment) is exposed and covered by a tightly adhering oxide layer. Additionally, some strain hardening occurs in the slip band during loading. Because of the oxide layer and the strain hardening, a higher, reversed shear stress will form on the same slip band. Reversed slip will therefore occur in the same slip band but on an adjacent parallel slip plane. (Schijve 2009, p. 15-17.) The principle of cyclic slip is shown in figure 7.

Figure 7. Formation of slip bands (Schijve 2009, p. 16).

As is shown in figure 7, single cycle is enough for a microscopical intrusion to form. This intrusion is a start of a microcrack and as the mechanism that occurred during the first cycle is repeated in the consequent cycles, the crack starts to extend. An extrusion could be formed if the reversed slip occurred on the lower side of the slip band. However, an intrusion is more probable according to minimum potential strain energy principle. (Schijve 2009, p. 17-18.)

Inclusions, such as impurities, can be found in most materials. They affect the stress distribution of the material on microlevel and they can interact with cyclic slip thus providing a nucleation site for a microcrack. The nucleation of a microcrack at an inclusion often happens near the surface of the material because of the aforementioned lower restraint on slip. Sometimes nucleation can happen deeper in the material, for example due to a large inclusion and the presence of tensile residual stress. (Schijve 2009, p. 25-26.)

As was mentioned, crack initiation starts on the surface of the material because of the lower restraint on cyclic slip. In addition to this, geometric discontinuities like holes and notches promote the initiation from the surface by causing stress concentrations. The magnitude of the stress concentration is dependent on the shape of the notch. The stress concentration can be described with stress concentration factor K_{t} which is the ratio between the peak stress $\sigma_{\text {peak }}$ at the root of the notch and the nominal stress $\sigma_{\text {nom }}$ affecting in an area of the part where there are no stress concentrations (see figure 8). (Schijve 2009, p.59-61.)

Figure 8. Definition of stress concentration factor $K_{t}($ Mod. Schijve 2009, p. 60).

It should be noted that peak stress $\sigma_{\text {peak }}$ obtained by using the K_{t} factor is an elastic concept i.e. all deformations should be elastic (Schijve 2009, p. 61). When K_{t} is known, the peak stress at the notch can be calculated (Schijve 2009, p. 60):

$$
\begin{equation*}
\sigma_{\text {peak }}=K_{t} \sigma_{\text {nom }} \tag{1.7}
\end{equation*}
$$

As was mentioned above, the shape of the notch affects the magnitude of $K_{t .}$. Notch root radius ρ is an important factor and its effect on K_{t} for an elliptical hole in an infinite sheet loaded in tension can be seen below (Schijve 2009 p. 64):

$$
\begin{equation*}
K_{t}=1+2 \frac{a}{b}=1+2 \sqrt{\frac{a}{\rho}} \tag{1.8}
\end{equation*}
$$

, where a and b are the semi-axes of an elliptical hole. Figure 9 shows the effect of different dimensions on K_{t} for tension loaded circular bar with a notch.

Figure 9. Effect of different dimensions on K_{t} for tension loaded circular bar (Pilkey 1997, p. 99). Similar charts can be found for different geometries and loading cases.

Stress gradient of σ_{y} along the X -axis (figure 10) can be used to consider the size effect on the fatigue limit. The stress gradient at the root of a notch provides information about the size of the volume of highly stressed material. (Schijve 2009, p. 65-66.)

Figure 10. Stress gradients at the root of a notch (Schijve 2009, p. 66).

However, the gradient of tangential stress decreases relatively slowly compared to the stress along the X -axis (in figure 10). As was mentioned earlier, the crack nucleation starts at the material surface and because of this, the stress gradient along the edge of the notch may have a greater importance on crack nucleation than the gradient in X-direction (in figure 10). (Schijve 2009, p. 67-68.) Relatively slow decrease of stress in tangential direction compared to the perpendicular direction is illustrated in figure 11.

Figure 11. Stress along the edge of the notch. Lines represent constant principal stress under tension loading (Y-direction). (Schijve 2009, p. 68.)

1.5.2 Crack growth

During the crack growth period, growth is no longer affected by surface conditions. Instead, the crack growth becomes a bulk material phenomenon. After the crack grows away from the free surface and its effect, slip deformations happen on more than one slip plane and the microcrack deviates from the initial direction of the slip band as shown in figure 12. Usually, at this stage the crack starts to grow perpendicular to the main principal stress. (Schijve 2009, p. 19, p. 39-40.)

Figure 12. A crack growing further into the material from the surface (Schijve 2009, p. 19).

During loading the plastic deformation at the crack tip opens the crack and slip deformation causes some crack extension. There are two symmetric slip systems which are the zones of the maximum shear stress. (Shijve 2009, p. 40.) Principle of crack extension during a single load cycle is presented in figure 13.

Figure 13. Crack extension as a result of one loading and unloading cycle (Schijve 2009, p. 40).

A crack can have three different modes of displacement or a combination of them (Figure 14). Mode I is called opening mode and it is caused by perpendicular tensile loading. Mode II is called sliding mode and mode III is called tearing mode, and they are caused by shear loading in different directions. The most important one to consider with fatigue cracks is Mode I since the other modes, although possible, often transition to Mode I. (Dowling 2013, p. 344; Schijve 2009, p. 108.)

Figure 14. The crack opening modes (Dowling 2013, p. 344).

Because crack has a zero tip radius, K_{t} would be infinite (see for example equation (1.8)). Therefore, the severity and intensity of the crack tip stress distribution is described with another factor called stress intensity factor (SIF) K. (Schijve 2009, p. 105-107.)

$$
\begin{equation*}
K=F S \sqrt{\pi a} \tag{1.9}
\end{equation*}
$$

In equation (1.9), S is remote stress from loading, a is the crack length, and F is a dimensionless factor related to the geometry of the cracked component (Schijve 2009, p. 105-107). The stress intensity factor K is defined with an assumption that material behaves in linearelastic manner and hence the name of the approach is Linear Elastic Fracture Mechanics (LEFM) (Dowling 2013, p. 339).

The stress components around the crack tip for Mode I crack can be derived from the theory of linear elasticity (Dowling 2013, p. 347). If the region of the crack tip is presented in the coordinate system shown in figure 15, the stresses near the crack tip can be expressed as follows (Dowling 2013, p. 346):

$$
\left.\begin{array}{l}
\sigma_{x}=\frac{K_{I}}{\sqrt{2 \pi r}} \cos \frac{\theta}{2}\left(1-\sin \frac{\theta}{2} \sin \frac{3 \theta}{2}\right)+\cdots \\
\sigma_{y}=\frac{K_{I}}{\sqrt{2 \pi r}} \cos \frac{\theta}{2}\left(1+\sin \frac{\theta}{2} \sin \frac{3 \theta}{2}\right)+\cdots \\
\tau_{x y}=\frac{K_{I}}{\sqrt{2 \pi r}} \cos \frac{\theta}{2} \sin \frac{\theta}{2} \cos \frac{3 \theta}{2}+\cdots \\
\sigma_{z}=0 \\
\sigma_{z}=v\left(\sigma_{x}+\sigma_{y}\right) \quad \quad \text { (plane stress) } \\
\tau_{y z}=\tau_{z x}=0 \tag{1.15}
\end{array} \quad \text { (plane strain; } \epsilon_{z}=0\right) \text {) }
$$

, where K_{I} is the stress intensity factor for Mode I crack, v is Poisson's ratio, θ and r are polar coordinates and σ and τ with different subscripts are normal and shear stress components.

Figure 15. Coordinate system for crack tip area (Dowling 2013, p. 346).

The equations above give a good approximation for the crack tip region and they are correct for small values of r (i.e. $r \ll a$). However, it can be seen that if r approaches zero, the stress distribution approaches infinity. This is not possible, and it suggest that some crack tip plasticity occurs. As long as the plastic zone is small enough, K gives reliable indication of the stress intensity. (Dowling 2013, p. 347; Schijve 2009, p. 109-110, p. 138.)

The fatigue crack growth behaviour of a given material can be described with Paris' equation which describes the cyclic crack growth rate $d a / d N$ with the help of stress intensity range ΔK.

$$
\begin{equation*}
\frac{d a}{d N}=C(\Delta K)^{m} \tag{1.16}
\end{equation*}
$$

In equation (1.16), C is a material dependent constant and m is the slope of the log-log plot of a fitted curve for crack growth test data. Equation (1.16) is applicable in the region II of the log-log plot of $d a / d N-\Delta K$ shown in figure 16 . The threshold stress intensity range or fatigue crack growth threshold $\Delta K_{t h}$ is a limiting value for crack growth i.e. when $\Delta K<\Delta K_{t h}$ large cracks will not grow. (Dowling 2013, p. 564-565.)

Figure 16. The three crack growth regions (Schijve 2009, p. 218).

The other asymptote of the curve is fracture toughness K_{c} which defines the material's ability to resist fracture in the presence of a crack. Value of K_{c} for a given material depends on temperature, loading rate and up to a point, thickness of the component. Thicker the component, the lower the K_{c} until the worst-case value is reached which is called plane strain fracture toughness $K_{I c}$. (Dowling 2013, p. 339.)

1.5.3 Defect size

As was mentioned in chapter 1.5.1 fatigue cracks often nucleate at inclusions. Inclusions or other material defects such as pores can be linked to the fatigue limit of the material with the help of fracture mechanics (Rabb 2017, p. 529). However, these kinds of defects are often so small that the crack growth behaviour is affected by the microstructure and LEFM is not applicable anymore. For example, decrease in the threshold value $\Delta K_{t h}$ have been shown for very small cracks. (Murakami 2002, p. 35-36; Dowling 2013, p. 614.) Therefore, the analysis must be based on something that considers effects associated with very small cracks.

One such method has been proposed by El Haddad, Smith and Topper (1979). In this method the LEFM solution is modified by introducing an intrinsic crack length value a_{0} into equation (1.9) to account for the difference in $\Delta K_{t h}$ values for small and large cracks.

$$
\begin{align*}
& \Delta K=\Delta \sigma \sqrt{\pi\left(a+a_{0}\right)} \tag{1.17}\\
& a_{0}=\frac{1}{\pi}\left(\frac{\Delta K_{t h}}{\Delta \sigma_{a f}}\right)^{2} \tag{1.18}
\end{align*}
$$

a_{0} is a constant for a given material and material condition and it can be calculated from equation (1.18), where $\Delta K_{t h}$ is threshold stress intensity range for large cracks and $\Delta \sigma_{a f}$ is stress range corresponding the fatigue limit of the material (small, smooth specimen). (El Haddad et al. 1979, p. 42.)

The fatigue limit can be plotted as a function of the defect size by modifying KitagawaTakahashi (K-T) diagram with the method proposed by El Haddad et al. (Rabb 2017, p. 529). The relation between fatigue limit range $\Delta \sigma_{a f}$ and $\Delta K_{t h}$ can be obtained by modifying equation (1.17) (Rabb 2017, p. 534):

$$
\begin{equation*}
\Delta \sigma_{a f}=\frac{\Delta K_{t h}}{F \sqrt{\pi\left(a+a_{0}\right)}} \tag{1.19}
\end{equation*}
$$

, where F is geometry factor. For internal crack $F=0.637$ and for semi elliptic surface crack $F=0.713$ when $a / c=1 . a$ is crack length and c is half-width of the crack. (Rabb 2017, p. 534.) An example of a modified K-T diagram showing fatigue limit as a function of defect size for GJS-500-7 is shown in figure 17.

Figure 17. An example of a modified K-T diagram ($R=-1$) based on testing for GJS-500-7 showing the fatigue limit and corresponding defect size (Mod. Rabb 2017, p. 169).

1.6 Probability and Statistics

Fatigue limit of material is a random variable which can be represented with a certain distribution (Rabb 2013, p. 49). Therefore, basic principles and terms of probability and statistics are presented in this chapter.

1.6.1 Discrete random variable

Fatigue limit is obtained by testing a number of test pieces. Each test piece gives one discrete value and because of this, it is useful to know the fundamentals of discrete random variable. (Rabb 2013, p. 49-50.)

Discrete random variable X is a variable which has a finite or countably infinite set of possible values x_{i} with probabilities p_{i} (Bronshtein et al. 2015, p. 811-812). There are some base quantities associated with discrete random variable which are presented below.

The arithmetic mean value (sample mean) \bar{x} or expected value $E(x)$ (Henttonen, Peltomäki \& Uusitalo 2006, p. 292):

$$
\begin{equation*}
\bar{x}=E(x)=\frac{n_{1}}{N} x_{1}+\frac{n_{2}}{N} x_{2}+\cdots+\frac{n_{n}}{N} x_{n}=\sum_{i=1}^{n} \frac{n_{i} x_{i}}{N} \tag{1.20}
\end{equation*}
$$

, where n_{i} is the frequency of x_{i} and N is the total number of values $\left(N=n_{1}+n_{2}+\ldots+n_{i}\right)$. $E(x)$ can also be calculated with the help of probabilities (Henttonen, Peltomäki \& Uusitalo 2006, p. 292):

$$
\begin{equation*}
E(x)=p_{1} x_{1}+p_{2} x_{2}+\cdots+p_{n} x_{n}=\sum_{i=1}^{n} p_{i} x_{i} \tag{1.21}
\end{equation*}
$$

, where p_{i} is the probability of x_{i}.

Another important parameter is variance s^{2} which is the average of the squared differences from the mean value. In other words, it measures how varied the values of X are in relation to its mean value \bar{x}. The unbiased estimate of variance is often used, which means that instead of just N in the denominator, $N-1$ is used in the calculation. This is called Bessel's correction and it usually gives more accurate results because the calculation of sample variance contains a little bias which is corrected by the subtraction. (Henttonen et al. 2006, p. 314; Statics How To 2020a; Statics How to 2020b.)

$$
\begin{equation*}
s^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{N-1} \tag{1.22}
\end{equation*}
$$

Standard deviation (SD) s defines how far in average the values of X are from \bar{x}, and it can be calculated from the square root of variance (Henttonen et al. 2006, p. 314-315):

$$
\begin{equation*}
s=\sqrt{s^{2}} \tag{1.23}
\end{equation*}
$$

1.6.2 Fatigue strength distributions

The commonly used distributions for the scatter of fatigue limit include Normal distribution, Log-normal distribution and Weibull distribution (Rabb 2013, p. 49). Mainly log-normal distribution is utilized in this work since the use of normal distribution may sometimes be too conservative and Weibull distribution is more difficult to use due to it having more parameters (which are difficult to define) (Rabb 2017, p. 68). Nevertheless, short description of each distribution is presented in this chapter.

Continuous variables such as fatigue limit can have an infinite number of different values. Probability density function (PDF) represents the probabilities, and the area between PDF and abscissa equals 1. Probability for a given range of values $[a, b]$ for the continuous variable corresponds the area between PDF and abscissa between a and b (probability mass). The area is obtained by integrating PDF from a to b, and this integral is called cumulative distribution function (CDF). (Kontkanen, Lehtonen, Luosto 2012, p. 126-127.)

Normal distribution

If fatigue limit scatter is described with normal distribution the probability density function $f\left(\sigma_{a f}\right)$ and the cumulative distribution function $F(\sigma)$ are as follows (Rabb 2013, p. 51):

$$
\begin{align*}
& f\left(\sigma_{a f}\right)=\frac{1}{s_{\sigma} \sqrt{2 \pi}} \cdot e^{-\frac{\left(\sigma_{a f}-\bar{\sigma}_{a f}\right)^{2}}{2 s_{\sigma}^{2}}} \tag{1.24}\\
& F(\sigma)=P\left(\sigma_{a f} \leq \sigma\right)=\int_{-\infty}^{\sigma} f(\sigma) d \sigma=\frac{1}{s_{\sigma} \sqrt{2 \pi}} \int_{-\infty}^{\sigma} e^{-\frac{\left(\sigma-\bar{\sigma}_{a f}\right)^{2}}{2 s_{\sigma}^{2}} d \sigma} \tag{1.25}
\end{align*}
$$

, where $\sigma_{a f}$ is fatigue limit, $\bar{\sigma}_{a f}$ is expected value, $s_{\sigma}{ }^{2}$ is variance and s_{σ} is standard deviation. P is probability and when CDF is calculated at point σ, the probability for $\sigma_{a f}<\sigma$ is obtained. This is also called failure probability, and if the survival probability (reliability) R is required, it can be calculated by taking the complement of P (Rabb 2013, p. 51).

$$
\begin{equation*}
R=1-P \tag{1.26}
\end{equation*}
$$

In other words, R gives the probability for $\sigma_{a f}>\sigma$. The expected value (mean value) $E\left(\sigma_{a f}\right)$ can be obtained by calculating the center of mass for the area under the PDF curve along the abscissa (Rabb 2013, p. 52):

$$
\begin{equation*}
\bar{\sigma}_{a f}=E\left(\sigma_{a f}\right)=\int_{-\infty}^{\infty} \sigma_{a f} f\left(\sigma_{a f}\right) d \sigma_{a f} \tag{1.27}
\end{equation*}
$$

Variance corresponds to moment of inertia of the mass distribution about the center of mass $\bar{\sigma}_{a f}$ (Rabb 2013, p. 52):

$$
\begin{equation*}
s_{\sigma}^{2}=V\left(\sigma_{a f}\right)=E\left[\left(\sigma_{a f}-\bar{\sigma}_{a f}\right)^{2}\right]=\int_{-\infty}^{\infty}\left(\sigma_{a f}-\bar{\sigma}_{a f}\right)^{2} f\left(\sigma_{a f}\right) d \sigma_{a f} \tag{1.28}
\end{equation*}
$$

Usually, instead of equations (1.24) and (1.25), standard normal distribution is utilized. In that case, the mean value is 0 and standard deviation is 1 , which yields (Rabb 2013, p. 53):

$$
\begin{align*}
& f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} \tag{1.29}\\
& P(x \leq \lambda)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\lambda} e^{-\frac{x^{2}}{2}} d x \tag{1.30}
\end{align*}
$$

Now, λ acts as a multiplier which tells how many times the standard deviation has to be subtracted from the mean value to have failure probability that is smaller or equal to the required P. (Rabb 2013, p. 53.)

When calculating the probability of failure for a certain stress amplitude σ_{a}, equation (1.30) needs to be integrated (Rabb 2013, p 54). In this case λ can be calculated when the mean value, the standard deviation and stress amplitude σ_{a} are known (Rabb 2013, p 54):

$$
\begin{equation*}
\lambda=\frac{\sigma_{a}-\bar{\sigma}_{a f}}{s_{\sigma}} \tag{1.31}
\end{equation*}
$$

An example of normal distribution is presented in figure 18. The distribution is drawn according to an example provided by Rabb (2013, p. 58) in his book.

Figure 18. Normal distribution for fatigue limit with $\bar{\sigma}_{a f}=533.9 \mathrm{MPa}$ and $s_{\sigma}=35.2 \mathrm{MPa}$ (Mod. Rabb 2013, p. 58).

Log-normal distribution

The use of log-normal distribution is advisable when normal distribution gives too conservative results and use of Weibull distribution is not possible (requires three parameters which may be difficult to define accurately). With log-normal distribution the logarithm of fatigue limit follows normal distribution and values of the random variable start from zero. PDF of log-normal distribution is symmetric on a logarithmic scale (abscissa $=\ln \sigma$) but when it is presented on a normal scale (abscissa $=\sigma$) it becomes asymmetric. This means that the mean value $\bar{\sigma}_{a f}$ and median value $\sigma_{m e d}$ are not equal anymore, mean value being a little higher than median value. Median value is the value where CDF yields $0.5 ; F\left(\sigma_{\text {med }}\right)=0.5$. (Rabb 2013, p. 55-56.)

PDF and CDF for log-normal distribution are expressed as follows (Rabb 2013, p. 56):

$$
\begin{equation*}
f\left(\sigma_{a f}\right)=\frac{1}{s_{l n} \sigma_{a f} \sqrt{2 \pi}} e^{-\frac{\left(l n \sigma_{a f}-\mu_{l n}\right)^{2}}{2 s_{l n}^{2}}} \quad, 0 \leq \sigma_{a f} \leq \infty \tag{1.32}
\end{equation*}
$$

$$
\begin{equation*}
F(\sigma)=P\left(\sigma_{a f} \leq \sigma\right)=\frac{1}{s_{l n} \sqrt{2 \pi}} \int_{0}^{\sigma} \frac{1}{\sigma} e^{-\frac{\left(\ln \sigma-\mu_{l n}\right)^{2}}{2 s_{l n}^{2}}} d \sigma \tag{1.33}
\end{equation*}
$$

, where $s_{l n}$ is logarithmic standard deviation and $\mu_{l n}$ is logarithmic mean value.

Calculation of CDF is done by integrating standard normal distribution from $-\infty$ to λ (Rabb 2013, p. 56). λ is obtained by reducing logarithmic mean value to correspond the calculated stress amplitude σ_{a} (Rabb 2013, p. 56):

$$
\begin{equation*}
\lambda=\frac{\ln \sigma_{a}-\mu_{l n}}{s_{l n}} \tag{1.34}
\end{equation*}
$$

The expected value (mean value) $\bar{\sigma}_{a f}$, median value $\sigma_{\text {med, }}$, variance $s_{\sigma}{ }^{2}$ and standard deviation s_{σ} for log-normal distributed fatigue limit are obtained as follows (Rabb 2013, p. 56; Rabb 2017, p. 69):

$$
\begin{align*}
& \bar{\sigma}_{a f}=E\left(\sigma_{a f}\right)=e^{\left(\mu_{l n}+\frac{s_{l n}^{2}}{2}\right)} \tag{1.35}\\
& \sigma_{m e d}=e^{\mu_{l n}} \tag{1.36}\\
& s_{\sigma}^{2}=V\left(\sigma_{a f}\right)=\left(e^{s_{l n}^{2}}-1\right) e^{\left(2 \mu_{l n}+s_{l n}^{2}\right)} \tag{1.37}\\
& s_{\sigma}=\sqrt{s_{\sigma}^{2}} \tag{1.38}
\end{align*}
$$

Often in practice, mean value for fatigue limit obtained using normal distribution is almost equal to that obtained with log-normal distribution. Also, logarithmic standard deviation $s_{l n}$ is so close to the relative standard deviation $s_{r}\left(s_{r}=s_{\sigma} / \bar{\sigma}_{a f}\right)$ that when $s_{r}<0.25$, in calculations it can be assumed that $s_{l n}=s_{r}$. (Rabb 2017, p. 72.)

For log-normal distribution the link between safety factor S_{F} and failure probability P is (Rabb 2017, p. 70):

$$
\begin{align*}
& \ln \sigma_{a f, P}=\mu_{l n}+\lambda s_{l n}=\ln \left(\sigma_{m e d}\right)+\lambda s_{l n} \tag{1.39}\\
& S_{F}=\frac{\sigma_{m e d}}{\sigma_{a f, P}}=e^{-\lambda s_{l n}} \tag{1.40}
\end{align*}
$$

$$
\begin{equation*}
\lambda=-\frac{\ln S_{F}}{S_{\ln }} \tag{1.41}
\end{equation*}
$$

, where $\sigma_{a f, P}$ is fatigue limit reduced to failure probability P.

If the mean value $\bar{\sigma}_{a f}$ and the standard deviation s_{σ} are obtained with normal distribution, the corresponding logarithmic values for log-normal distribution can be calculated with reasonable accuracy using equations (1.35) and (1.37) (Rabb 2013, p. 57). For this purpose, they have to be modified (Rabb 2013, p. 57):

$$
\begin{align*}
& s_{l n}=\sqrt{\ln \left(1+\frac{s_{\sigma}^{2}}{e^{2 l n} \bar{\sigma}_{a f}}\right)} \tag{1.42}\\
& \mu_{l n}=\ln \bar{\sigma}_{a f}-\frac{s_{l n}^{2}}{2} \tag{1.43}
\end{align*}
$$

An example of log-normal distribution is presented in figure 19. The distribution is drawn according to an example provided by Rabb (2013, p. 58) in his book. The abscissa has values of $\ln (\sigma)$ on it, so the distribution is symmetric. The same distribution drawn with σ on the abscissa can be seen in figure 21.

Figure 19. Log-normal distribution for fatigue limit with $\mu_{\text {ln }}=6.2794$ and $s_{\ln }=0.06724$ (Mod. Rabb 2013, p. 58).

Weibull distribution

PDF for Weibull distribution is expressed as (Rabb 2013, p. 61):

$$
\begin{equation*}
f\left(\sigma_{a f}\right)=\frac{\beta\left(\sigma_{a f}-\sigma_{t r}\right)^{\beta-1}}{\left(\sigma_{c h}-\sigma_{t r}\right)^{\beta}} e^{-\left(\frac{\sigma_{a f}-\sigma_{t r}}{\sigma_{c h}-\sigma_{t r}}\right)^{\beta}} \tag{1.44}
\end{equation*}
$$

, where $\sigma_{a f}$ is fatigue limit, $\sigma_{t r}$ is threshold value for fatigue limit, $\sigma_{c h}$ is characteristic stress and β is shape parameter which defines the magnitude of scatter.

There are three parameters in Weibull distribution that are obtained from fatigue test results: $\sigma_{t r}, \sigma_{c h}$ and β. It is not easy to determine these parameters from the test results and that is why the use of this distribution is somewhat difficult. However, this problem can be solved by assuming that the threshold value $\sigma_{t r}$ is very small or zero. Then, the distribution resembles log-normal distribution. (Rabb 2013, p. 61.)

CDF for Weibull distribution is obtained in a closed form because it is possible to directly integrate PDF (Rabb 2013, p. 61):

$$
\begin{equation*}
F(\sigma)=P\left(\sigma_{a f} \leq \sigma\right)=1-e^{-\left(\frac{\sigma-\sigma_{t r}}{\sigma_{c h}-\sigma_{t r}}\right)^{\beta}} \tag{1.45}
\end{equation*}
$$

The fatigue limit for a certain failure probability can be obtained from equation (1.45) by modifying it into the following form (Rabb 2013, p. 61):

$$
\begin{equation*}
\sigma_{a f, P}=\sigma_{t r}+\left(\sigma_{c h}-\sigma_{t r}\right) \cdot \sqrt[\beta]{-\ln (1-P)} \tag{1.46}
\end{equation*}
$$

As Weibull distribution is asymmetric, its median value is not equal to its mean value (expected value). The median value $\sigma_{\text {med }}$ which is used in reduction to the required failure probability is obtained by setting $P=0.5$ in equation (1.46) (Rabb 2013, p. 62):

$$
\begin{equation*}
\sigma_{\text {med }}=\sigma_{t r}+\left(\sigma_{c h}-\sigma_{t r}\right) \cdot \sqrt[\beta]{-\ln 0.5} \tag{1.47}
\end{equation*}
$$

The mean value $\bar{\sigma}_{a f}$ and variance s_{σ}^{2} can be calculated from (Rabb 2013, p. 62):

$$
\begin{align*}
& \bar{\sigma}_{a f}=\sigma_{t r}+\left(\sigma_{c h}-\sigma_{t r}\right) \cdot \Gamma\left(1+\frac{1}{\beta}\right) \tag{1.48}\\
& s_{\sigma}^{2}=\left(\sigma_{c h}-\sigma_{t r}\right)^{2}\left[\Gamma\left(1+\frac{2}{\beta}\right)-\Gamma^{2}\left(1+\frac{1}{\beta}\right)\right] \tag{1.49}
\end{align*}
$$

, where Γ is gamma function. If the argument $1+2 / \beta$ is denoted as t, the following integral can be obtained (Rabb 2013, p. 62):

$$
\begin{equation*}
\Gamma(t)=\int_{0}^{\infty} x^{t-1} e^{-x} d x \tag{1.50}
\end{equation*}
$$

This does not have a closed form solution and it has to be solved numerically. Fitting test data to Weibull distribution is challenging if only information available is the values for normal or log-normal distribution. (Rabb 2013, p. 62.)

An example of Weibull distribution is presented in figure 20. The distribution is drawn according to an example provided by Rabb (2013, p. 62) in his book.

Figure 20. Weibull distribution for fatigue limit with $\sigma_{t r}=267 \mathrm{MPa}, \sigma_{c h}=546 \mathrm{MPa}, \beta=$ $9.752, \bar{\sigma}_{a f}=532.2 \mathrm{MPa}, \sigma_{\text {med }}=535.8 \mathrm{MPa}$ and $s_{\sigma}=32.7 \mathrm{MPa}$ (Mod. Rabb 2013, p. 62).

A comparison of different distributions is presented in figure 21. All the distributions from figures 18-20 are representing the same set of fatigue test results and they are plotted in same graph to show the difference between different distributions. The fatigue test results are by Rabb (2013, p. 58-59, 62).

Figure 21. Comparison of different fatigue limit distributions (Mod. Rabb 2013, p. 58, 62).

1.6.3 Confidence intervals of sample values

The fatigue tests give only sample values for mean and standard deviation. These need to be modified so that with a certain probability they are within given bounds i.e. the obtained sample values are conservative in respect to the actual population values. (Rabb 2017, p. 115.)

Basically, aforementioned means that the sample values themselves are random variables. The sample mean value follows Student's distribution and the sample standard deviation follows χ^{2}-distribution (chi-squared distribution). With these distributions, the population
values for mean and standard deviation can be obtained. (Rabb 2017, p. 115-116.) The theory of the distributions can be found for example in Rabb's book (2017) and it is not explained thoroughly here but instead, only the main equations are given.

The population value for the mean of fatigue limit according to Student's distribution is obtained as follows (Rabb 2017, p. 116-117):

$$
\begin{equation*}
\sigma_{a f}=\bar{\sigma}_{a f, C_{\mu}}=\bar{\sigma}_{a f}-\frac{t_{2} s}{\sqrt{n}} \tag{1.51}
\end{equation*}
$$

, where C_{μ} denotes the confidence level, t_{2} is the variable of the Student's distribution corresponding a specific confidence, s is sample standard deviation (from the fatigue test) and n is the number of test specimens.

For example, $C_{\mu}=90 \%$ would mean that if the fatigue test was repeated, 90% of the obtained sample means from the new tests would be equal to or higher than $\bar{\sigma}_{a f, C 90}$ (Rabb 2017, p. 116). t_{2} is determined according to number of degrees of freedom: D.O.F $=n-1$. Some t_{2} values can be found tabulated in Rabb's book (2017, p. 119) or in mathematics handbooks by Råde \& Westergren (2014, p. 472) or Bronshtein et al. (2015, p. 1138).

The population value for standard deviation can be obtained according to χ^{2}-distribution as follows (Rabb 2017, p. 120-121):

$$
\begin{equation*}
s_{\sigma}=s_{\sigma C}=\sqrt{\frac{n-1}{h_{1}}} \cdot s \tag{1.52}
\end{equation*}
$$

, where s is sample standard deviation, n is number of test specimens and h_{l} is the variable of χ^{2}-distribution corresponding a specific confidence. h_{1} values can be found tabulated by Rabb (2017, p. 123) or Råde \& Westergren (2014, p. 469-470) and like in the case of t_{2}, they are determined according to number of degrees of freedom: D.O.F $=n-1$.

Often, staircase test used for fatigue limit testing underestimates the size of standard deviation. Consequently, the real distribution of sample standard deviation may differ considerably from χ^{2}-distribution and this should be considered when defining the population value. (Rabb 2017, p. 125.) Rabb (2017) has given detailed explanation of this in his book. The explanation is not presented here since no tests are conducted within this thesis. The relative standard deviation of sample values and population values for spheroidal graphite cast iron and steels are presented in tables 1 and 2 respectively.

Table 1. Relative standard deviation, sample $(n=25)$ and population values for spheroidal graphite cast irons ($s_{r}=s_{l n}$) (Mod. Rabb 2017, p. 259).

Machined surface			Shot peened			Casting surface		
$s_{r}($ sample $)$	$s_{r C 90}$	$s_{r C l 0}$	$s_{r}($ sample $)$	$s_{r C 90}$	$s_{r C l 0}$	$s_{r}($ sample $)$	$s_{r C 90}$	$s_{r C l 0}$
0.1	$0.12 \ldots$ (0.13)	0.085	0.145	0.18	0.12	0.15	0.21	0.13

Table 2. Relative standard deviation, sample $(n=25)$ and population values for steels ($s_{r}=$ $\left.s_{l n}\right)($ Mod. Rabb 2017, p. 258).

		achin	surfa				Shot peened	
On surface			Below surface					
Parallel grain flow	Perpendicular grain flow		Parallel grain flow		Perpendicular grain flow			
$s_{r} \quad S_{r C 90}$	s_{r}	$S_{r} \mathrm{C} 90$	s_{r}	$S_{r} \mathrm{C} 90$	s_{r}	$S_{r} \mathrm{C} 90$	S_{r}	$S_{r} \mathrm{C9O}$
0.0650 .08	0.065	0.08	0.10	0.12	0.08	0.10	0.10	0.12

2 FATIGUE ANALYSIS METHODS

This chapter presents the methods for analysing fatigue of materials and components. Most of the methods below are incorporated in the final analysis procedure and they are explained more thoroughly. However, a few additional methods are explained more briefly just to show that there are variety of possibilities to analyse fatigue damage.

2.1 Haigh diagram

There are multiple equations which can be drawn in $\sigma_{a f}-\sigma_{m}$ diagram to describe the effect of mean stress on fatigue limit. These include for example Goodman line, Gerber parabola and Soderberg line but often these consider only tensile mean stresses. In order to demonstrate the effect of compressive mean stresses, a more sophisticated diagram is needed. (Milella 2013, p. 282-285.)

Two common diagrams which show the effect of both tensile and compressive mean stresses are called Haigh diagram and Smith diagram. (Milella 2013, p. 294-296.) In this work Haigh diagram will be utilized since this is preferred by Rabb (2017, p. 40) and also, it seems to be more demonstrative and easier to read.

Haigh diagrams present the fatigue limit $\sigma_{a f}$ as a function of mean stress σ_{m}. Often they are constructed in such a way that only the elastic behaviour is plotted, as is the case with the diagrams drawn according to DNVGL-ST-0361 in chapter 1.1.1. However, this does not provide enough information if the maximum stress exceeds the yield strength of the material. Yield strength may be exceeded locally near (sharp) notches and this local plasticity can be modelled with FEM. In that case, it is useful to know the shape of the plastic portions of the Haigh diagram as well. (Rabb 2017, p. 40.)

For the purposes of this work, new diagrams are made according to recommendations made by Rabb (2017, p. 40-45, 128-138) because it has been found that the diagrams provided in DNVGL-ST-0361 may be unconservative when spheroidal graphite cast irons are consid-
ered. According to The Switch, this is especially so when relatively large castings are considered. When quenched and tempered steels and structural steels are considered, the diagrams by DNVGL are closer to those suggested by Rabb (2017, p. 40-45).

2.1.1 Quenched and tempered steel 42 CrMo 4

Haigh diagram for $42 \mathrm{CrMo4}$ is based on the static strength values provided in SFS-EN ISO 683-2. Haigh diagram based on Rabb's suggestions and DNVGL-ST-0361 for comparison are shown in figure 22.

Figure 22. Haigh diagrams for 42 CrMo 4 .

Ultimate strength and yield strength can be used to obtain the fatigue limit for completely reversed loading as follows (Mourier 2002, p. 83):

$$
\begin{equation*}
\sigma_{a R=-1}=1.04\left(0.144 R_{m}+0.309 R_{p 0.2}\right)+56 \mathrm{MPa} \tag{2.1}
\end{equation*}
$$

This is conservative and includes the required confidence level in respect to sample value. The equation (2.1) is valid for most steel types (R_{m} up to 1400 MPa) when the effective area of the reference specimen is $225 \mathrm{~mm}^{2}$. (Rabb 2017, p. 42, 258.)

When normative static strength values are used, they can be increased by 6%. This comes from the fact that the tensile strength of material must not be less than the minimum value stated in standards. Naturally, this leads to the median value of tensile strength being higher (c. 7.4% higher) than the normative value given in standards as material manufacturers must ensure that the minimum requirement is met. (Rabb 2017, p. 79.)

The slope k of the linear part (Rabb 2017, p. 43):

$$
\begin{equation*}
k=0.1-0.00035 R_{m} \tag{2.2}
\end{equation*}
$$

It can be noted that this is the same equation provided in DNVGL-ST-0361. The linear part is then as follows (Rabb 2017, p. 43):

$$
\begin{equation*}
\sigma_{a f}=\sigma_{a R=-1}+k \sigma_{m} \quad\left(\sigma_{m, P 2} \leq \sigma_{m} \leq \sigma_{m R=0}\right) \tag{2.3}
\end{equation*}
$$

The end point P_{2} for the linear part on the compression side can be calculated with the following equations (Rabb 2017, p. 44):

$$
\begin{array}{ll}
\sigma_{m, P 2}=\frac{\sigma_{a R=-1}-R_{p 0.2}}{2(1-k)} & \left(P_{2},\right. \text { fig. 22) } \\
\sigma_{a, P 2}=\sigma_{a R=-1}+k \sigma_{m, P 2} & \left(P_{2},\right. \text { fig. 22) } \tag{2.5}
\end{array}
$$

The curve between P_{0} and P_{2} is constructed as a quadratic B -spline with the following equations for points P_{0} and P_{l} (Rabb 2017, p. 40, 44.):

The starting point P_{0} :

$$
\begin{align*}
& \sigma_{m, P 0}=-R_{m}^{*} \tag{2.6}\\
& \sigma_{a, P 0}=0 \tag{2.7}\\
& R_{m}^{*}=\frac{(1+2 M) \sigma_{a R=-1}}{M(2+M)} \tag{2.8}
\end{align*}
$$

, where M is $-k$ and R_{m}^{*} is fictive ultimate strength which takes into account that the true ultimate strength is about $30-60 \%$ higher than the nominal value due to necking.

The intermediate point P_{l} (Rabb 2017, p. 44):

$$
\begin{align*}
& \sigma_{m, P 1}=\frac{R_{m}^{*}-\sigma_{a R=-1}}{k-1} \tag{2.9}\\
& \sigma_{a, P 1}=R_{m}^{*}+\sigma_{m, P 1}=\sigma_{a R=-1}+k \sigma_{m, P 1} \tag{2.10}
\end{align*}
$$

The end point P_{2} is calculated with equations (2.4) and (2.5) and the spline is then constructed with the following equations (Rabb 2017, p. 44):

$$
\begin{align*}
& \sigma_{a f}=(1-t)^{2} \sigma_{a, P 0}+2 t(1-t) \sigma_{a, P 1}+t^{2} \sigma_{a, P 2} \tag{2.11}\\
& \sigma_{m}=(1-t)^{2} \sigma_{m, P 0}+2 t(1-t) \sigma_{m, P 1}+t^{2} \sigma_{m, P 2} \tag{2.12}
\end{align*}
$$

, where t is a normalized variable. Corresponding t for mean stress σ_{m} can be calculated between $\sigma_{m, P O} \leq \sigma_{m} \leq \sigma_{m, P 2}$ as follows (Rabb 2017, p. 44-45):

$$
\begin{align*}
t & =\frac{\sigma_{m, P 0}-\sigma_{m, P 1}}{\sigma_{m, P 0}-2 \sigma_{m, P 1}+\sigma_{m, P 2}} \\
& \pm \sqrt{\left(\frac{\sigma_{m, P 0}-\sigma_{m, P 1}}{\sigma_{m, P 0}-2 \sigma_{m, P 1}+\sigma_{m, P 2}}\right)^{2}-\frac{\sigma_{m, P 0}-\sigma_{m}}{\sigma_{m, P 0}-2 \sigma_{m, P 1}+\sigma_{m, P 2}}} \tag{2.13}
\end{align*}
$$

If the first term is positive minus is used in front of the square root and if it is negative, then plus. In other words, the normalized variable has values from 0 to 1. (Rabb 2017, p. 45.)

The tensile side of the diagram is constructed as a sideways parabola between $\sigma_{m R=0} \leq \sigma_{m} \leq$ R_{m}^{*} as follows (Rabb 2017, p. 43-44):

$$
\begin{equation*}
\sigma_{a f}=\sigma_{a R=-1}\left(\frac{1-b}{2-b}+\sqrt{\frac{1}{(2-b)^{2}}-\frac{b \sigma_{m}}{(2-b) R_{m}^{*}}}\right) \tag{2.14}
\end{equation*}
$$

$$
\begin{align*}
& b=\frac{2(1+2 M)}{2+2 M-M^{2}} \tag{2.15}\\
& \sigma_{a R=0}=\frac{\sigma_{a R=-1}}{1-k} \tag{2.16}\\
& \sigma_{m R=0}=\sigma_{a R=0} \tag{2.17}
\end{align*}
$$

, where M is $-k$ and R_{m}^{*} is the same as earlier.

2.1.2 Structural steel S355

Haigh diagram for S355 is based on the static strength values which are provided in SFSEN ISO 10025-2. Haigh diagram based on Rabb's suggestions and DNVGL-ST-0361 for comparison are shown in figure 23.

Figure 23. Haigh diagrams for S355.

The Haigh diagrams for structural steels are constructed much the same way as for the quenched and tempered steels (eqs. (2.1)-(2.13)). However, the fictive ultimate strength R_{m}^{*} is now calculated as follows (Rabb 2013, p. 41):

$$
\begin{equation*}
R_{m}^{*} \approx 1.3 R_{m} \tag{2.18}
\end{equation*}
$$

This is because the slope of the diagram for structural steels is relatively small and calculating R_{m}^{*} as it is calculated in case of quenched and tempered steels would result in way too high a value for R_{m}^{*}. (Rabb 2013, p. 41.)

Another difference is that the parabola on the tensile side is now constructed as a second order parabola as follows (Rabb 2013, p. 41):

$$
\begin{align*}
& \sigma_{m 1}=\frac{R_{p 0.2}-\sigma_{a R=-1}}{1+k} \tag{2.19}\\
& \sigma_{a 1}=\sigma_{a R=-1}+k \sigma_{m 1} \tag{2.20}
\end{align*}
$$

, where $\sigma_{a R=-l}$ is calculated from equation (2.1).

The parabola between $\sigma_{m l} \leq \sigma_{m} \leq R_{m}^{*}$ follows the equation (Rabb 2013, p. 41):

$$
\begin{equation*}
\sigma_{a f}=A \sigma_{m}^{2}+B \sigma_{m}+C \tag{2.21}
\end{equation*}
$$

The constants A, B and C are calculated from (Rabb 2013, p. 42):

$$
\begin{align*}
& A=\frac{k \sigma_{m 1}-\sigma_{a 1}-k R_{m}^{*}}{\left(R_{m}^{*}-\sigma_{m 1}\right)^{2}} \tag{2.22}\\
& B=k-2 A \sigma_{m 1} \tag{2.23}\\
& C=A \sigma_{m 1}^{2}+\sigma_{a 1}-k \sigma_{m 1} \tag{2.24}
\end{align*}
$$

2.1.3 Spheroidal graphite cast iron

Haigh diagram for spheroidal graphite cast irons is constructed based on static strength values provided in SFS-EN 1563. Haigh diagrams based on Rabb's suggestions and DNVGL-ST-0361 for comparison are shown in figure 24.

Figure 24. Haigh diagrams for GJS400, GJS450, GJS500, GJS600 and GJS700.

Fatigue limit for completely reversed loading $\sigma_{a R=-1}$ and the slope k of the linear part are obtained by fitting a function to data points provided by Rabb (2017, p. 259). The effective area of the test specimens is $A_{\text {ref }}=1039 \mathrm{~mm}^{2}$ (Rabb 2017, p. 259).

For $\sigma_{a R=-1}$ based on the static and fatigue tests conducted by Rabb the following is obtained:

$$
\begin{equation*}
\sigma_{a R=-1}=0.1798 \cdot R_{m}+0.11845 \cdot R_{p 0.2}+60.6699 \mathrm{MPa} \tag{2.25}
\end{equation*}
$$

And for k :

$$
\begin{equation*}
k=0.000261 \cdot R_{m}-0.65493 \tag{2.26}
\end{equation*}
$$

The linear part between $\sigma_{m 2}$ and $\sigma_{m l}$ is (Rabb 2017, p. 259):

$$
\begin{align*}
& \sigma_{a f}=\sigma_{a R=-1}+k \sigma_{m} \tag{2.27}\\
& \sigma_{m 2}=\frac{\sigma_{a R=-1}-R_{p 0.2}}{1-k} \tag{2.28}\\
& \sigma_{m 1}=\frac{R_{p 0.2}-\sigma_{a R=-1}}{1+k} \tag{2.29}
\end{align*}
$$

The compression side of the diagram is constructed as a B-spline like in the cases of different steels but the points along the spline are calculated a bit differently (Rabb 2017, p. 259).

For P_{0} (Rabb 2017, p. 259):

$$
\begin{align*}
\sigma_{m, P 0} & =R_{m c} \tag{2.30}\\
\sigma_{a, P 0} & =0 \tag{2.31}
\end{align*}
$$

, where $R_{m c}$ is ultimate compressive strength. It should be noted that for cast irons the compressive strength is considerably higher than the tensile strength. Also, as the slope of the linear part of the diagram is so steep, the fictive ultimate strength R_{m}^{*} is not used for cast iron but rather, the diagram is constructed between $R_{m c}$ and R_{m}. (Rabb 2017, p. 129, 259.)

For P_{1} (Rabb 2017, p. 259):

$$
\begin{align*}
& \sigma_{m, P 1}=\frac{\sigma_{a R=-1}+R_{m c}}{1-k} \tag{2.32}\\
& \sigma_{a, P 1}=\sigma_{a R=-1}+k \sigma_{m, P 1} \tag{2.33}
\end{align*}
$$

And for P_{2} (Rabb 2017, p. 259):

$$
\begin{align*}
& \sigma_{m, P 2}=\sigma_{m 2}=\frac{\sigma_{a R=-1}-R_{p 0.2}}{1-k} \tag{2.34}\\
& \sigma_{a, P 2}=\sigma_{a R=-1}+k \sigma_{m, P 2} \tag{2.35}
\end{align*}
$$

Using points $P_{0,} P_{1}$ and P_{2} the compression B-spline can be drawn with the following equations (Rabb 2017, p. 259):

$$
\begin{align*}
& \sigma_{a f}=2 t \cdot(1-t) \cdot \sigma_{a, P 1}+t^{2} \cdot \sigma_{a, P 2} \tag{2.36}\\
& \sigma_{m}=(1-t)^{2} \cdot \sigma_{m, P 0}+2 t \cdot(1-t) \cdot \sigma_{m, P 1}+t^{2} \cdot \sigma_{m, P 2} \tag{2.37}
\end{align*}
$$

, where t is calculated from equation (2.13).

The right side of the diagram is also drawn as a B-spline. The starting point P_{0} is (Rabb 2017, p. 259):

$$
\begin{align*}
& \sigma_{m, P 0}=\sigma_{m 1}=\frac{R_{p 0.2}-\sigma_{a R=-1}}{1+k} \tag{2.38}\\
& \sigma_{a, P 0}=\sigma_{a R=-1}+k \sigma_{m, P 0} \tag{2.39}
\end{align*}
$$

For P_{l} on the tensile side (Rabb 2017, p. 259):

$$
\begin{align*}
& \sigma_{m, P 1}=\frac{-\sigma_{a R-1}}{k} \tag{2.40}\\
& \sigma_{a, P 1}=0 \tag{2.41}
\end{align*}
$$

For P_{2} on the tensile side (Rabb 2017, p. 259):

$$
\begin{align*}
\sigma_{m, P 2} & =R_{m} \tag{2.42}\\
\sigma_{a, P 2} & =0 \tag{2.43}
\end{align*}
$$

The B-spline is then as follows (Rabb 2017, p. 259):

$$
\begin{align*}
& \sigma_{a f}=(1-t)^{2} \cdot \sigma_{a, P 0} \tag{2.44}\\
& \sigma_{m}=(1-t)^{2} \cdot \sigma_{m, P 0}+2 t \cdot(1-t) \cdot \sigma_{m, P 1}+t^{2} \sigma_{m, P 2} \tag{2.45}
\end{align*}
$$

, where t is according to equation (2.13).
2.1.4 Verification of the Haigh diagrams using literature sources

As the Haigh diagrams suggested by Rabb provide more capacity in some cases than what is given in diagrams by DNVGL-ST-0361, an attempt to verify their accuracy using fatigue test data from literature is made. The size factor $K_{\text {size }}$ (see chapter 2.2.3) is taken into account using the effective areas of the test specimens when comparing the test data and the Haigh diagrams.

Test data for spheroidal graphite cast iron by Meyer (2014) and Tanaka et al. (1995) seem to agree with the curves drawn according to previous chapters. The plotted data can be seen in Appendix I,1.

Pallarés-Santasmartas et al. (2018) have tested the fatigue properties of 34 CrNiMo 6 and also this seems to follow the suggested curve quite well (see Appendix I,2). Some other material data points from previous studies were provided in the same source. The original sources for them were unavailable so no size factor could be defined but trendlines drawn in Excel give somewhat similar shape for the Haigh diagrams as the suggestion in chapter 2.1.1.

Very little data was found for structural steels. Data points provided by Ukrainetz (1960) shows similar trend to the curve as suggested by Rabb but the data seems to fall slightly below the suggested curve (see Appendix I,3).

2.2 Reduction factors

The fatigue limit for smooth test specimen from Haigh diagram must be reduced with different reduction factors in order to obtain the fatigue limit of the actual machine element. Different reduction factors take into account the size effect, surface roughness, anisotropy and effects associated with Very High Cycle Fatigue (VHCF).

2.2.1 Surface roughness factor K_{R}

Surface roughness can have a large effect on fatigue limit. Therefore, the fatigue limit from Haigh diagram is reduced with a surface roughness factor K_{R} which describes the effect of different surface conditions, such as casting surface or ground surface, to the fatigue limit. Fatigue limit is usually tested with polished specimens and in that case, K_{R} is 1 . (Rabb 2017, p. 195-196.)

DNVGL-ST-0361 gives the following equation for surface roughness factor:

$$
\begin{equation*}
F_{o}=1-0.22 \cdot\left(\log \left(R_{z}\right)\right)^{0.64} \cdot \log \left(\sigma_{b}\right)+0.45 \cdot\left(\log \left(R_{z}\right)\right)^{0.53} \tag{2.46}
\end{equation*}
$$

, where R_{z} is the height of the surface roughness profile $[\mu \mathrm{m}]$ and σ_{b} is ultimate strength [MPa]. The same equation is given for both non-welded forged and rolled parts and cast steel and spheroidal graphite cast iron. (DNVGL-ST-0361 2016, p. 51-52.)

However, it can be seen in figure 25, that some sources give different values for K_{R} depending whether steel or cast iron is concerned. For example, TGL 19341/01 (1988, p. 5) gives noticeably larger value for K_{R} in case of spheroidal graphite cast iron than what is obtained with equation (2.46). Based on bending staircase test by Rabb (2017, p. 197-198) with polished and casting surface specimens it seems that TGL 19341/01 gives better estimation for K_{R} (TGL 19341/01 1988, p. 5):

$$
\begin{equation*}
K_{R}=1-a_{\sigma} \cdot \lg \left(R_{z}\right) \cdot \lg \left(2 \cdot \frac{R_{m}}{R_{m \text { Smin }}}\right) \tag{2.47}
\end{equation*}
$$

In equation (2.47) a_{σ} is 0.16 and $R_{m S m i n}$ is 400 MPa for spheroidal graphite cast iron (TGL 19341/01 1988, p. 5).

There are also approaches which are based on fracture mechanics to define the surface roughness factor. According to Sperle (2013, p. 86) K_{R} can be expressed by the following equation (see figure 26):

$$
\begin{align*}
& K_{R}=\sqrt{1+a\left(\frac{2 S_{r 0}}{\Delta K_{t h}}\right)^{2}} \tag{2.48}\\
& S_{r}=\frac{S_{r 0}}{K_{R}} \tag{2.49}
\end{align*}
$$

, where $S_{r 0}$ is the fatigue limit of smooth specimen, a is crack depth (conservatively $a=R_{z}$) and R is stress ratio. Using this, it is possible to present the fatigue limit and the surface roughness in K-T diagram as is shown in figure 26 for 42 CrMo 4 .

Figure 25. Comparison of K_{R} for spheroidal graphite cast iron casting surface ($R_{z}=200 \mu \mathrm{~m}$) between TGL 19341/01, DNVGL-ST-0361 and Sperle (2013).

The plot in figure 26 can be divided into two regimes: crack initiation and crack growth. The transition point depends on degree of crack opening and the state of residual stress which affects the local R. The crack growth regime is described with the following equation. (Sperle 2013, p. 87.)

$$
\begin{equation*}
S_{r p}=\frac{1}{2} \cdot \frac{\Delta K_{t h}}{\sqrt{a}} \tag{2.50}
\end{equation*}
$$

In equation (2.50), $S_{r p}$ is the stress level required to propagate a crack of size a (Sperle 2013, p. 87).

Figure 26. Fatigue limit as a function of R_{z} according to equation (2.49) for 42 CrMo 4 .

Murakami (2002) has also suggested method based on fracture mechanics and $\sqrt{\text { area }}$ parameter model. The quantitative evaluation of surface roughness effect is based on two surface roughness parameters: depth a and pitch $2 b$ (pitch considers the interference between the surface roughness notches). To simplify the analysis, these two parameters have been combined in one representative parameter, the equivalent defect size for roughness $\sqrt{\text { area }}$. (Murakami 2002, p. 313.)

The equivalent defect size for roughness can be obtained from the following (Murakami 2002, p. 316):

$$
\begin{equation*}
\sqrt{\text { area }_{R}}=\left(\frac{F}{0.65}\right)^{2} \cdot a \tag{2.51}
\end{equation*}
$$

, where a is depth of the surface roughness and F is geometric correction factor. When $K_{I}=$ $K_{\text {Imax }}$ for arbitrarily shaped surface crack, $F=0.65$ and consequently, the fatigue limit can be calculated as follows (Murakami 2002, p. 102-104):

$$
\begin{align*}
& \sigma_{a f}=\frac{1.43\left(H_{V}+120\right)}{(\sqrt{\text { area }})^{1 / 6}} \cdot\left(\frac{1-R}{2}\right)^{\alpha} \tag{2.52}\\
& \alpha=0.226+H_{V} \cdot 10^{-4} \tag{2.53}
\end{align*}
$$

, where H_{V} is Vickers hardness. A comparison of $\sqrt{\text { area }}{ }_{R}$ model, Sperle (2013) and DNVGL-ST-0361 is presented in figure 27.

Figure 27. Comparison of K_{R} for S355 $\left(R_{z}=100 \mu \mathrm{~m}\right)$ between DNVGL-ST-0361 (2016), Sperle (2013) and Murakami (2002).

2.2.2 Anisotropy factor K_{A} and technological factor K_{T}

Anisotropy means that fatigue limit is lower in perpendicular direction to the grain flow (orientation) of the material than in parallel direction with grain flow. This results from the effect of forming processes which flatten and elongate grains and defects. In rolling processes, the grain flow direction is parallel to the rolling direction but in forging it can vary in different parts of the machine element. (Rabb 2017, p. 201.)

The effects of anisotropy and technological effect of forming degree can be taken into account with the combined anisotropy and technological factor $K_{A T}$. If conservative estimates are required, the following can be used (Rabb 2017, p. 205, 219):

$$
\begin{array}{ll}
K_{A T}=\frac{2069-R_{m}}{1790} & \text { (Open die forging) } \\
K_{A T}=\frac{2313-R_{m}}{1790} & \text { (Continuous Grain Flow, CGF) } \\
K_{A T}=\frac{2195-R_{m}}{1790} & (\text { Average }) \tag{2.56}
\end{array}
$$

Equations (2.54)-(2.56) are applicable for forged steel components and rolled steel rods and sheets when stress flow is perpendicular to grain flow (Rabb 2017, p. 204). However, based on testing, Rabb (2017, p. 219) recommends the values in table 3 for rolled and forged steel components.

Table 3. Technological factor and anisotropy factor for steel for CGF forgings (Mod. Rabb 2017, p. 219).

	On surface		Below surface	
	Parallel	Perpendicular	Parallel	Perpendicular
Technological factor \boldsymbol{K}_{T}	1.0	1.0	1.0	1.0
Anisotropy factor $\boldsymbol{K}_{\boldsymbol{A}}$	1.0	0.8	1.0	0.8
Relative sample SD s_{r}	0.065	0.065	0.10	0.08
Population value $s_{r c 90}$	0.080	0.080	0.12	0.10
$S_{l n}=-\ln \left(1-S_{r} C 90\right)$	0.0834	0.0834	0.1278	0.1054

2.2.3 Statistical size factor $K_{\text {size }}$

Statistical size factor takes into account the effect of size of the component to the fatigue limit. It has been found that larger machine elements have lower fatigue limits than what smooth test specimens give and that sharp notches have actually higher fatigue limits than what would be expected based on the fatigue tests of smooth specimens. This happens because it is more probable to find a critical material defect in a larger surface than finding the same size defect in a smaller surface. (Rabb 2017, p. 139.)

Statistical size factor can be calculated using the weakest link theory. The machine element is considered to be divided into "links" and according to the theory it will break if fatigue
crack nucleates and grows in any one of these links. Therefore, reliability for the whole machine element is as follows. (Rabb 2017, p. 139.)

$$
\begin{equation*}
R_{S}=\prod_{i=1}^{n} R_{i} \tag{2.57}
\end{equation*}
$$

, where n is number of links and R_{i} is reliability of a single link.

If mean value is used $(P=0.5)$, the reliability of a single link must be defined so that the reliability of the whole system is the required 0.5 (Rabb 2017, p. 140). If reliability for each link is taken as equal the following is obtained for the reliability of a single link (Rabb 2017, p. 140):

$$
\begin{align*}
& R_{1}=R_{2}=\cdots=R_{n}=R \tag{2.58}\\
& R_{s}=R_{1} \cdot R_{2} \cdot \ldots \cdot R_{n}=R^{n}=0.5 \tag{2.59}\\
& \rightarrow \quad R=\sqrt[n]{0.5} \tag{2.60}
\end{align*}
$$

Let us assume that one link represents one test specimen and that the stressed area in the machine element is n times larger than that of the test specimen's. Now, the fatigue limit obtained with the test specimens must be reduced to the reliability obtained from equation (2.60) in order to have the same reliability $R=0.5$ for the machine element when the equal loading is affecting its stressed surface. (Rabb 2017, p. 140.) The failure probability for this reduced fatigue limit and the corresponding λ value are obtained iteratively from the following (Rabb 2017, p. 140):

$$
\begin{align*}
& P=1-R \tag{2.61}\\
& P=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\lambda} e^{-\frac{x^{2}}{2}} d x \tag{2.62}
\end{align*}
$$

The statistical size factor $K_{\text {size }}$ which corrects the fatigue limit from Haigh diagram can now be calculated from (Rabb 2017, p. 140-141):

$$
\begin{array}{ll}
K_{\text {size }}=\frac{1}{1+\lambda s_{r}} & (\text { normal dist. }) \\
K_{\text {size }}=e^{-\lambda s_{l n}} & (\log -\text { normal dist. }) \tag{2.64}
\end{array}
$$

, where s_{r} is relative standard deviation of fatigue limit and $s_{l n}$ is logarithmic standard deviation of fatigue limit $\left(s_{r} \approx s_{l n}\right)$.

When the weakest link theory is used to calculate $K_{\text {size }}$ for real machine elements their stress distribution must be taken into account when calculating the number of links. The number of links can be obtained by calculating the ratio between the effective stress areas of the studied machine element and the test specimen. (Rabb 2017, p. 141.)

Let us say that stress amplitude $\sigma_{a l}$ is acting on area A_{l} and that $\sigma_{a l}=\sigma_{a f f}$. Thus, it can be stated that the reliability corresponding $\sigma_{a l}$ is $R_{l}=0.5$. Then, there is another stress amplitude $\sigma_{a 2}$ affecting area A_{2} and $\sigma_{a 2}<\sigma_{a 1}$. Now, the failure probability of A_{2} in relation to A_{1} is required and the question is to what size $A_{2, \text { eff }}$ the area A_{2} needs to be reduced so that the combination $A_{2 \text {,eff }}$ and $\sigma_{a l}$ have the same failure probability as the combination A_{2} and $\sigma_{a 2}$ (see figure 28). The reliability for combination A_{1} and $\sigma_{a 2}$ can be obtained from the following. (Rabb 2017, p. 142.)

$$
\begin{align*}
& \sigma_{a 2}=\sigma_{a 1}\left(1+\lambda s_{r}\right) \tag{2.65}\\
& \rightarrow \quad \lambda_{2}=\frac{1}{s_{r}}\left(\frac{\sigma_{a 2}}{\sigma_{a 1}}-1\right) \quad \text { (normal dist.) } \tag{2.66}\\
& \ln \sigma_{a 2}=\ln \sigma_{a 1}+\lambda \cdot s_{l n} \tag{2.67}\\
& \rightarrow \quad \lambda_{2}=-\frac{1}{s_{l n}} \ln \left(\frac{\sigma_{a 1}}{\sigma_{a 2}}\right) \quad \text { (log - normal dist.) } \tag{2.68}\\
& R_{2}=\frac{1}{\sqrt{2 \pi}} \int_{\lambda_{2}}^{\infty} e^{-\frac{x^{2}}{2}} d x=1-P_{2} \tag{2.69}
\end{align*}
$$

m number of links with reliability of R_{2} are needed to obtain the reliability of R_{1}. Therefore, the number of links corresponds the ratio between A_{2} and $A_{2, \text { eff }}$ (Rabb 2017, p. 142-143):

$$
\begin{align*}
& m=\frac{A_{2}}{A_{2, \text { eff }}} \tag{2.70}\\
& \rightarrow \quad R_{2}^{m}=R_{2}^{\frac{A_{2}}{A_{2, e f f}}}=R_{1} \tag{2.71}\\
& A_{2, \text { eff }}=A_{2} \frac{\ln R_{2}}{\ln R_{1}}=A_{2} \frac{\ln R_{2}}{\ln 0.5} \tag{2.72}
\end{align*}
$$

Figure 28. Effective stress area (Mod. Rabb 2017, p. 142).

This means that the statistical size factor $K_{s i z e}$ between A_{1} (reference) and A_{2} is obtained using the number of links between $A_{2, \text { eff }}$ and A_{l} as follows (Rabb 2017, p. 143):

$$
\begin{align*}
& n=\frac{A_{2, \text { eff }}}{A_{1}} \quad\left(\text { when } A_{2, \text { eff }}>A_{1}\right) \tag{2.73}\\
& n=\frac{A_{1}}{A_{2, \text { eff }}} \quad\left(\text { when } A_{2, \text { eff }}<A_{1}\right) \tag{2.74}
\end{align*}
$$

$K_{\text {size }}$ is then calculated with equations (2.58)-(2.64). Statistical size factor is used either as a multiplier or a divisor for the fatigue limit of the reference specimen when calculating the fatigue limit of the actual machine element (Rabb 2017, p. 143, 145-146):

$$
\begin{array}{ll}
\sigma_{a f, \text { machine element }}=\frac{\sigma_{a f, \text { Haigh diagram }}}{K_{\text {size }}} & \left(A_{\text {eff }}>A_{\text {ref }}\right) \\
\sigma_{\text {af,machine element }}=\sigma_{a f, \text { Haigh diagram }} \cdot K_{\text {size }} & \left(A_{\text {eff }}<A_{\text {ref }}\right) \tag{2.76}
\end{array}
$$

Determination of statistical size factor $K_{\text {size }}$ from FE-analysis results is presented in chapter 2.9.1.

It should be noted that when calculating $K_{\text {size }}$ for an actual machine element, confidence intervals of sample values need to be considered (see chapter 1.6.3). For example, according to lognormal distribution, $K_{\text {size }}$ is as follows when confidence is taken into account:

$$
\begin{array}{ll}
K_{\text {size }}=e^{-\lambda s_{l n, C 90}} & \left(A_{e f f}>A_{\text {ref }}\right) \\
K_{\text {size }}=e^{-\lambda s_{l n, C 10}} & \left(A_{e f f}<A_{r e f}\right) \tag{2.78}
\end{array}
$$

, where C90 and C10 denote the confidence levels for 90% and 10% respectively. (Rabb 2017, p. 261.)

Another way of determining $K_{\text {size }}$ is to use the defect distribution of material. A modified KT diagram mentioned in chapter 1.5 .3 can be fitted to the defect distribution of material by defining the intrinsic crack length a_{0} in such a way that $\sigma_{a f}=\sigma_{a R=-1}$ when a is the median value $a_{\text {med }}$ of the defect distribution. (Rabb 2017, p. 152, 534-535.)

Also, the standard deviations of defect size and fatigue limit need to match so that their intersections are on the El Haddad curve (see figure 29). This means that standard deviation of fatigue limit is calculated on the basis of standard deviation of the defect distribution. It can be done as follows if the defect distribution is known. (Rabb 2017, p. 153.)

$$
\begin{equation*}
\sigma_{a f}\left(a_{\text {med }}\right)=\frac{\Delta K_{\text {th }}}{2 F \sqrt{\pi\left(a_{\text {med }}+a_{0}\right)}}=\sigma_{a R=-1} \tag{2.79}
\end{equation*}
$$

$$
\begin{align*}
& \mu_{l n}+s_{l n}(a)=\mu_{l n+S D} \tag{2.80}\\
& \rightarrow \quad a_{2}=e^{\mu_{l n}+S D} \tag{2.81}\\
& \rightarrow \quad \sigma_{a f}\left(a_{2}\right)=\sigma_{a f 2} \tag{2.82}\\
& K_{\text {size }}=e^{-\lambda s_{l n}}=\frac{\sigma_{a R=-1}}{\sigma_{a f 2}} \quad(-\lambda=1) \tag{2.83}\\
& \rightarrow \quad s_{l n}=\ln \left(\frac{\sigma_{a R=-1}}{\sigma_{a f 2}}\right) \tag{2.84}
\end{align*}
$$

In equations (2.79)-(2.84) $\mu_{l n}$ is logarithmic mean value of defect $\operatorname{size}, s_{l n}(a)$ is logarithmic standard deviation of defect size and $s_{l n}$ is logarithmic standard deviation of fatigue limit. (Rabb 2017, p. 153.)

Figure 29. A modified K-T diagram $(R=-1)$ for GJS-500-7 (Mod. Rabb 2017, p. 169).
$K_{\text {size }}$ as a function of defect size is shown in figure 30 . In this case, size factor is calculated as follows (Rabb 2017, p. 161):

$$
\begin{equation*}
K_{\text {size }}=\frac{\sigma_{a R=-1}}{\sigma_{a R=-1}\left(a_{m e d}\right)} \tag{2.85}
\end{equation*}
$$

Figure 30. A modified K-T diagram for GJS-500-7 $(R=-1)$ showing size factor $K_{\text {size }}$. In this figure, $K_{\text {size }}$ is presented in such a way that it is always a multiplier for reference fatigue limit. (Mod. Rabb 2017, p. 169.)

Defect distribution of material can be used to calculate the size of expected material defect on a certain size material surface in a machine element. The expected material defect in some surface can be extrapolated from the defect distribution of material by using return period T. Since fatigue failure starts from the largest material defect, the defect distribution is an extreme value distribution. Extreme values of defects from the test specimens are fitted to distribution $F(a)$ and a is not exceeded with the probability of $P_{\text {ref }}(a)$. (Rabb 2017, p. 491, 496.)

$$
\begin{equation*}
P_{r e f}(a)=F(a) \tag{2.86}
\end{equation*}
$$

The return period T for defect distribution is expressed as follows (Rabb 2017, p. 496):

$$
\begin{equation*}
T=\frac{A_{e f f}+A_{r e f}}{A_{r e f}} \tag{2.87}
\end{equation*}
$$

The median value for defect size corresponding return period is obtained from the CDF of the defect distribution at point P (Rabb 2017, p. 496-497):

$$
\begin{equation*}
P=1-\frac{1}{T} \tag{2.88}
\end{equation*}
$$

or

$$
\begin{align*}
& n=\frac{A_{\text {eff }}}{A_{\text {ref }}} \tag{2.89}\\
& P=\frac{n}{n+1} \tag{2.90}
\end{align*}
$$

Note that number of links n can now be <1 whereas in the case of the weakest link theory n is always > 1 . The defect size (median) is obtained from the inverse function of CDF (Rabb 2017, p. 497):

$$
\begin{array}{ll}
F\left(a_{\text {ref }, 50 \%}\right)=0.5 & \text { (reference) } \\
F\left(a_{\text {machine element }, 50 \%}\right)=P & \text { (machine element) } \\
\rightarrow & \\
a_{\text {ref }, 50 \%}=F^{-1}(0.5) & \\
a_{\text {machine element }, 50 \%}=F^{-1}(P) & \text { (extrapolated defect size) } \tag{2.94}
\end{array}
$$

, where function $F(a)$ is CDF of defect distribution. From this, the following is obtained for $K_{\text {size }}(\operatorname{Rabb} 2017$, p. 497):

$$
\begin{array}{ll}
K_{\text {size }}=\frac{\sigma_{a R=-1}\left(a_{\text {machine element }, 50 \%}\right)}{\sigma_{a R=-1}\left(a_{\text {ref }, 50 \%}\right)} & \left(A_{\text {eff }}<A_{\text {ref }}\right) \\
K_{\text {size }}=\frac{\sigma_{a R=-1}\left(a_{\text {ref }, 50 \%}\right)}{\sigma_{a R=-1}\left(a_{\text {machine element }, 50 \%}\right)} & \left(A_{\text {eff }}>A_{\text {ref }}\right) \tag{2.96}
\end{array}
$$

It is advisable to use log-normal distribution for defect size. Even though it is not actually an extreme value distribution it seems to fit test data quite well. (Rabb 2017, p. 495.)

Using the defect distribution and K-T diagram to calculate $K_{\text {size }}$ is more accurate than using the weakest link theory (shown earlier). However, there are some difficulties in utilization of the modified K-T diagram. First, reliable values for threshold $\Delta K_{t h}$ are difficult to find from literature and therefore they might have to be obtained by testing (Rabb 2017, p.164, 171, 529.) Secondly, the defect distribution is needed, which also requires testing and recording the defects found in test pieces. These tests may be time consuming so determination of $K_{\text {size }}$ using the first method may have to be used. However, in many cases the defect distributions for GJS-500 and 34CrNiMo6 provided by Rabb (2017, p. 163, 168) can be utilized because they are based on extensive testing. Also, as $K_{\text {size }}$ is a relative value, error in $\Delta K_{t h}$ does not cause significant problems.

2.2.4 Life factor K_{N}

It has been found that fatigue failure may happen at high cycle numbers even with stress levels lower than the fatigue limit (often defined at 10^{7} cycles). This "gigacycle fatigue" or Very High Cycle Fatigue (VHCF) is happening when cycle numbers reach beyond 10^{7} cycles all the way up to 10^{8} and 10^{9} cycles. These kinds of cycle numbers may be experienced for example by turbine blades which are subjected to vibration. (Murakami 2002, p. 273.)

In the case of VHCF, the nucleation of fatigue cracks always happens below the material surface. Consequently, if there is a relatively sharp notch on the machine element, the phenomenon caused by VHCF can be ignored because the notch forces the nucleation to occur on the surface. (Rabb 2017, p. 221.)

The reason why nucleation happens below the surface in VHCF is hydrogen trapped by nonmetallic inclusions. The mechanism is not entirely clear but apparently hydrogen enhances the mobility of screw and edge dislocations and reduces internal friction. This kind of fatigue failure can be recognized by the distinctive "fish-eye" pattern on the fracture surface. (Murakami 2002, p. 274-284.)

The life factor K_{N} which considers the effect of VHCF for steels and cast irons is expressed as follows (Rabb 2017, p. 222):

$$
\begin{equation*}
K_{N}=1-\left(\log _{10}(N)-6\right) \cdot 0.05 \quad 10^{6}<N<10^{10} \tag{2.97}
\end{equation*}
$$

, where N is fatigue life in cycles. In case of steels and cast irons, the nucleation will happen on surface if stress at the critical point on surface is 20% higher than at the critical point underneath the surface (provided the defect size is the same). When surface nucleation is considered $K_{N}=1$ and by contrast, in the case of internal nucleation, the surface roughness factor $K_{R}=1$. (Rabb 2017, p. 222.)

2.3 Reduction of the Haigh diagram to the allowed probability of failure

Haigh diagrams are initially constructed using mean values ($P=0.5$) which is not safe enough to be used in actual design or analysis. Therefore, they are reduced to a safer failure probability like for example $P=0,1 \%$ or $P=0,01 \%$ depending on the consequences of failure.

Before reduction to a certain failure probability, the reduction factors presented in previous chapters should be considered. Fatigue limit for completely reversed loading is as follows (Rabb 2017, p.261):

$$
\begin{array}{ll}
\sigma_{a R=-1, \text { red }}=\frac{K_{R} \cdot K_{A T} \cdot K_{N}}{K_{\text {size }}} \cdot \sigma_{a R=-1} & \left(A_{\text {eff }}>A_{\text {ref }}\right) \\
\sigma_{a R=-1, \text { red }}=K_{\text {size }} \cdot K_{R} \cdot K_{A T} \cdot K_{N} \cdot \sigma_{a R=-1} & \left(A_{\text {eff }}<A_{\text {ref }}\right) \tag{2.99}
\end{array}
$$

It should be noted that if the nucleation happens below the surface then $K_{R}=1$, and if it happens on the surface $K_{N}=1$. Also, confidence level should be taken into account in calculation of $K_{\text {size. }}$. (Rabb 2017, p. 261.)

The same reduction factors are applied to the slope of the linear part of the diagram (Rabb 2017, p. 261):

$$
\begin{array}{ll}
k_{\text {red }}=\frac{K_{R} \cdot K_{\text {AT }} \cdot K_{N}}{K_{\text {size }}} \cdot k & \left(A_{\text {eff }}>A_{\text {ref }}\right) \\
k_{\text {red }}=K_{\text {size }} \cdot K_{R} \cdot K_{A T} \cdot K_{N} \cdot k & \left(A_{e f f}<A_{\text {ref }}\right) \tag{2.101}
\end{array}
$$

$K_{R}=1$ or $K_{N}=1$ chosen based on the nucleation location as with the fatigue limit.
$\sigma_{a R=-1, \text { red }}$ and $k_{\text {red }}$ can then be reduced to the required failure probability P by subtracting λ number of standard deviations from the median value of fatigue limit (λ corresponds a specific failure probability) (Rabb 2017, p. 48). Using lognormal distribution (eq. (1.40)), the following is obtained for safety factor S_{F} (Rabb 2017, p. 261):

$$
\begin{equation*}
S_{F}=-\frac{\sigma_{a R=-1, r e d}}{\sigma_{a f, P}}=e^{-\lambda s_{l n, C 90}} \tag{2.102}
\end{equation*}
$$

, where $s_{l n}, C 90$ is population value of logarithmic standard deviation. Then, $\sigma_{a R=-1, \text { red, } P}$ and $k_{\text {red }, P}$ for the required P are as follows (Rabb 2017, p. 50):

$$
\begin{align*}
& \sigma_{a R=-1, \text { red }, P}=\frac{\sigma_{a R=-1, \text { red }}}{S_{F}} \tag{2.103}\\
& k_{r e d, P}=\frac{k_{r e d}}{S_{F}} \tag{2.104}
\end{align*}
$$

And thus, the linear part of the Haigh diagram reduced to the failure probability P is as follows (Rabb 2017, p. 50):

$$
\begin{equation*}
\sigma_{a f, P}=\sigma_{a R=-1, r e d, P}+k_{r e d, P} \cdot \sigma_{m} \tag{2.105}
\end{equation*}
$$

The plastic parts of the diagram are reduced as well. If failure probability is calculated for a stress point ($\sigma_{m} ; \sigma_{a}$) that is on either of the plastic parts, it has to be searched for iteratively so that the reduced curve intersects the stress point. (Rabb 2017, p. 50.) As an example,

Haigh diagram for 42 CrMo 4 reduced to failure probability of $P=0.1 \%$ is shown in figure 31.

Figure 31. Mean curve $P=50 \%$ and $P=0.1 \%$ curve for $42 \mathrm{CrMo4}$ (without any reduction factors).

$2.4 \quad$ S-N curves

A stress-life curve (S-N curve) or Wöhler curve is a plot of stress amplitude σ_{a} versus number of cycles to failure N. In essence, as the stress amplitude increases the number of cycles to failure decreases. An S-N curve is tested by conducting fatigue tests at different stress amplitudes to obtain the fatigue lives at these amplitudes. The testing can be done with constant R or with constant σ_{m} at every stress amplitude level. (Dowling 2013, p. 422-423; Schijve 2009, p. 144-145.)

In some materials, there is a distinct stress level below which the failure does not ordinarily occur. This horizontal asymptote in the S-N plot is the fatigue limit $\sigma_{a f}$ (see figure 33). The term fatigue strength on the other hand refers to a particular stress amplitude $\sigma_{a i}$ at the corresponding fatigue life N_{i}. (Dowling 2013, p. 423.)

2.4.1 Formulation of S-N curves

Usually, S-N curves are plotted in log-log plot because this way they form straight lines (Rabb 2017, p. 107):

$$
\begin{equation*}
N=N_{a f}\left(\frac{\sigma_{a f}}{\sigma_{a}}\right)^{k} \tag{2.106}
\end{equation*}
$$

, where N is the number of cycles to failure at $\sigma_{a}, N_{a f}$ is the fatigue life at $\sigma_{a f}$ and k is the slope exponent of the S-N curve (often $1 / k$ is referred to as the slope exponent but here this notation is used).

The S-N curve is obtained by fitting equation (2.106) into the test data using the method of linear least squares regression (Rabb 2017, p. 107):

$$
\begin{align*}
& \ln N=A-k \cdot \ln \sigma_{a} \tag{2.107}\\
& A=\ln \left(N_{a f} \sigma_{a f}^{k}\right) \tag{2.108}
\end{align*}
$$

As the test results are composed of pairs of N_{i} and $\sigma_{a i}$ the following is obtained (Rabb 2017, p. 108):

$$
\begin{equation*}
F(N)=\sum_{i=1}^{n}\left[\ln N_{i}-\left(A-k \cdot \ln \sigma_{a i}\right)\right]^{2} \tag{2.109}
\end{equation*}
$$

, where n is number of tests.
A and k are then defined so that equation (2.109) is minimized. This is done by differentiating equation (2.109) in respect to A and k respectively and marking the derivatives equal to zero. The following equations are then obtained for A and k. (Rabb 2017, p. 108.)

$$
\begin{equation*}
k=\frac{\sum_{i=1}^{n}\left(\ln N_{i} \ln \sigma_{a i}\right)-\frac{\sum_{i=1}^{n}\left(\ln \sigma_{a i}\right) \cdot \sum_{i=1}^{n}\left(\ln N_{i}\right)}{n}}{\frac{\left(\sum_{i=1}^{n} \sigma_{a i}\right)^{2}}{n}-\sum_{i=1}^{n}\left(\ln \sigma_{a i}\right)^{2}} \tag{2.110}
\end{equation*}
$$

$$
\begin{equation*}
A=\frac{k \sum_{i=1}^{n} \ln \sigma_{a i}+\sum_{i=1}^{n} N_{i}}{n} \tag{2.111}
\end{equation*}
$$

When A and k are known, the knee-point $N_{a f}$ is obtained as follows (Rabb 2017, p. 108):

$$
\begin{equation*}
N_{a f}=\frac{e^{A}}{\sigma_{a f}^{k}} \tag{2.112}
\end{equation*}
$$

There is scatter in the fatigue test results and when finite fatigue life is considered, it is often presumed that fatigue life N follows log-normal distribution. It should be noted that at lower fatigue lives the scatter is smaller and when the fatigue limit is approached, the scatter increases. Usually, this is not taken into account and the defined standard deviation is an average value. Variance and standard deviation for mean value of fatigue life are obtained from the following equations. (Rabb 2017, p. 108.)

$$
\begin{align*}
& s_{N}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left[\ln N_{i}-\left(A-k \ln \sigma_{a i}\right)\right]^{2} \tag{2.113}\\
& s_{N}=\sqrt{s_{N}^{2}} \tag{2.114}
\end{align*}
$$

An example of a set of test data and a fitted curve are shown in figure 32 for 42 CrMo 4 . Test data is by Rabb (2017, p. 111).

Figure 32. An example of a fitted curve. Data by Rabb (2017, p. 111).

2.4.2 Reduction of S-N curves to the allowed probability of failure

Safety factor S_{N} in respect to the median value of fatigue life N can be calculated when the logarithmic standard deviation of life s_{N} and λ corresponding the required failure probability P are known (cf. reduction of Haigh diagram) (Rabb 2017, p. 109):

$$
\begin{equation*}
S_{N}=\frac{N_{a f}}{N_{P}}=e^{-\lambda s_{N}} \tag{2.115}
\end{equation*}
$$

However, the reduction is usually performed with fatigue strength rather than fatigue life. The logarithmic standard deviation for fatigue strength $s_{l n}$ can be obtained from s_{N} as follows (Rabb 2017, p. 109):

$$
\begin{align*}
& s_{l n}=\frac{s_{N}}{k} \tag{2.116}\\
& \rightarrow \quad S_{N}=e^{-\lambda s_{N}}=e^{-\lambda s_{l n} k}=S_{F}^{k} \tag{2.117}
\end{align*}
$$

Thus, the required safety factor in respect to fatigue strength is (Rabb 2017, p. 109):

$$
\begin{equation*}
S_{F}=\frac{\sigma_{a f}}{\sigma_{a P}}=e^{-\frac{\lambda s_{N}}{k}} \tag{2.118}
\end{equation*}
$$

Generally, it is presumed that the knee-point does not change. The S-N curve reduced to a specified failure probability is then calculated with the equations below. (Rabb 2017, p. 109110.)

$$
\begin{align*}
& \sigma_{a f, P}=\frac{\sigma_{a f}}{S_{F}} \tag{2.119}\\
& N_{P}=N_{a f}\left(\frac{\sigma_{a f, P}}{\sigma_{a}}\right)^{k} \tag{2.120}
\end{align*}
$$

An example of an S-N curve for $42 \mathrm{CrMo4}$ is presented in figure 33. The figure shows the mean curve $(P=50 \%)$ and a reduced curve ($P=0.1 \%$).

Figure 33. S-N curves for $P=50 \%$ and $P=0.1 \%$ for 42 CrMo 4 at $R=0.1$ (Mod. Rabb 2017, p. 111-112).

2.5 Variable amplitude loading

Stress amplitude σ_{a} and mean stress σ_{m} may not be constant in actual machine elements but the loading may be variable with smaller and larger cycles in succession. Also, the loading can be highly irregular, or it can have some pattern to it. Examples of different kinds of loading histories are shown in figure 34.

Figure 34. Variable amplitude loading. a) shows more regular stress history with mean stress shift and b) shows highly irregular history.

Larger stress amplitudes that exceed the fatigue limit reduced with safety factor and usually appear more rarely during the loading history are often referred to as low-cycle stresses. High-cycle stresses on the other hand are appearing more frequently and they are below the fatigue limit. Often, when amplitudes exceed the fatigue limit reduced with safety factor, Low cycle fatigue (LCF) is said to be affecting, and when amplitudes are below the reduced fatigue limit High cycle fatigue (HCF) is acting. Also, when number of cycles is in hundreds of millions or in billions, Very High Cycle Fatigue (VHCF) effects should be considered (see chapter 2.2.4). (Rabb 2017, p. 315.)

As was explained in chapter 2.2.4, in the case of VHCF the fatigue limit is not constant but decreases as the number of cycles increases. Similar effect is observed in the case of variable amplitude loading when the loading history includes low-cycle stresses. S-N curve does not end at $N_{a f}$ but continues to descend with a larger slope exponent i.e. the curve becomes more gradual. (Rabb 2017, p. 317.) This is explained in chapter 2.5.2.

2.5.1 Rain-flow cycle counting

For Rain-flow cycle counting loading history is illustrated so that stress is on abscissa and time is on ordinate. This makes the loading history plot resemble an Asian pagoda and now the load cycles are formed by rain flows along the "roofs" (hence the name Rain-flow cycle counting). By following the rules below, individual cycles can be formed from the loading history. (Rabb 2017, p. 409.)

1. The loading history has to be modified so that it begins and ends at its maximum value.
2. Each point where the loading history changes direction is a starting point for a new rain-flow. These flows continue to the end of the loading history unless some of the following occurs:
a. Flow starts from a maximum point (peak) and stops opposite another maximum point which is higher than the starting point of the flow
b. Flow starts from a minimum point (valley) and stops opposite another minimum point which is deeper than the starting point of the flow
c. Flow stops when it encounters another flow (Rabb 2017, p. 410.)

An example of Rain-flow cycle counting is presented in Appendix II. The rules mentioned above are applied to find individual half cycles from the loading history.

Downing and Socie (1982) have suggested easily programmable algorithm for Rainflow cycle counting. First, the loading history is arranged so that it starts from the maximum or minimum value. X is used for range that is being evaluated, and Y is used for the previous range next to X. (Downing \& Socie 1982, p. 32; Rabb 2017, p. 413.) Then, the algorithm follows the steps below (Downing \& Socie 1982, p. 32):

1. Read the next peak or valley (if out of data, stop)
2. If there are less than three points left, go to step one. Otherwise, X and Y ranges are formed using the last three maximum and minimum values.
3. Comparison of X and Y ranges:
a. If $\mathrm{X}<\mathrm{Y}$, go to step 1
b. If $\mathrm{Y} \geq \mathrm{Y}$, go to step 4
4. Form a cycle from Y , discard the minimum and maximum forming this range from the loading history and go to step 2 .

2.5.2 The Palmgren-Miner rule

The Palmgren-Miner rule states that fatigue failure will happen when the fatigue life has been consumed by small fractions formed by number of different stress amplitudes. That is to say, stress amplitude $\sigma_{a l}$ is applied for n_{1} times, $\sigma_{a 2}$ is applied for n_{2} times and so forth resulting in the fact that the fraction of the life consumed by a certain stress amplitude $\sigma_{a i}$ is n_{i} / N_{i}. Thus, the following equation for damage sum D can be obtained. (Dowling 2013, p. 468.)

$$
\begin{equation*}
D=\sum_{1}^{n} \frac{n_{i}}{N_{i}} \leq 1 \tag{2.121}
\end{equation*}
$$

In equation (2.121) n_{i} is the number of cycles of $\sigma_{a i}$ and N_{i} is the number of cycles to failure at $\sigma_{a i}$ from the S-N curve (Dowling 2013, p. 468).

As was mentioned earlier, in case of variable amplitude loading fatigue damage will progress even with stress amplitudes below the fatigue limit (HCF) if there are some cycles that are higher than the fatigue limit (LCF). The basis for analysing cumulative damage from LCF and HCF is an S-N curve that has been extended beyond the knee-point $N_{a f .}$. Rabb 2017, p. 319-320.) Commonly used extension for cycles beyond the knee-point of an S-N curve has been proposed by Haibach (2006, p. 285-290):

$$
\begin{equation*}
N_{i}=N_{a f}\left(\frac{\sigma_{a f, P}}{\sigma_{a i}}\right)^{2 k-l} \quad \sigma_{a i} \leq \sigma_{a f, P} \tag{2.122}
\end{equation*}
$$

In equation (2.122) k is the slope exponent of the $\mathrm{S}-\mathrm{N}$ curve, $l=1$ for rolled and forged steel components and $l=2$ for cast and welded components (Rabb 2017, p. 321). When using the Haibach extension the allowed damage sum D should be chosen according to table 4.

Table 4. The allowed damage sum D for steel and aluminium when using the Haibach extension (Mod. Rabb 2017, p. 322).

	Allowed damage sum \boldsymbol{D}	
	Constant σ_{m}	Variable σ_{m}
Non welded components (rolled, forged)	0.3	0.1
Welded and cast compo- nents	0.5	0.2
Machined components	1.0	1.0

When reducing the extended S-N curve to the allowed failure probability, the logarithmic standard deviation of life s_{N} is considered to be approximately equal in low cycle and high cycle areas. Also, the standard deviation of life is defined using the standard deviation of fatigue strength and the slope exponent of the base S-N curve. (Rabb 2017, p. 325.) The reduction is demonstrated in figure 35.

The following equations and relations describe the reduced S-N curve with the Haibach extension (Rabb 2017, p. 325-326):

$$
\begin{align*}
& N=N_{a f}\left(\frac{\sigma_{a f}}{\sigma_{a}}\right)^{k} \quad \text { Base S- } \mathrm{N} \text { curve (median) } \tag{2.123}\\
& N_{H}=N_{a f}\left(\frac{\sigma_{a f}}{\sigma_{a}}\right)^{2 k-l} \quad \text { Haibach extension in high cycle area } \tag{2.124}
\end{align*}
$$

$\begin{array}{ll}s_{l n}=s_{r} & \text { Logarithmic SD of fatigue limit } \\ S_{F}=e^{-\lambda s_{l n}} & \text { Safety factor, fatigue strength } \\ \sigma_{a f, P}=\frac{\sigma_{a f}}{S_{F}} & \text { Fatigue limit for failure probability } P\end{array}$
$s_{N}=k s_{l n} \quad$ Logarithmic SD of life (both curves)
$S_{N}=e^{-\lambda s_{N}} \quad$ Safety factor, fatigue life
$s_{l n, H}=\frac{s_{N}}{2 k-l} \quad$ SD of fatigue strength of the extension
$S_{F, H}=e^{-\lambda s_{l n, H}} \quad$ Safety factor for the extension
$\sigma_{a f, P H}=\frac{\sigma_{a f}}{S_{F, H}} \quad$ Fatigue strength of the extension at $N_{a f}$
when failure probability is P

From the equations above, the following is obtained for reduced S-N curve and Haibach extension (Rabb 2017, p. 326):

$$
\begin{array}{ll}
N_{P}=N_{a f}\left(\frac{\sigma_{a f, P}}{\sigma_{a}}\right)^{k} & \text { in low cycle area } \\
N_{P H}=N_{a f}\left(\frac{\sigma_{a f, P H}}{\sigma_{a}}\right)^{2 k-l}=N_{a f, P}\left(\frac{\sigma_{a f}}{\sigma_{a}}\right)^{2 k-l} & \text { in high cycle area } \tag{2.134}
\end{array}
$$

Because none of the high cycle amplitudes may exceed the allowed amplitude $\sigma_{a f, P}$, there is a horizontal part between $N_{a f}$ and $N_{a f, 2}$ in the reduced curve (Rabb 2017, p. 326):

$$
\begin{equation*}
N_{a f, 2}=N_{a f}\left(\frac{\sigma_{a f, P H}}{\sigma_{a f, P}}\right)^{2 k-l} \tag{2.135}
\end{equation*}
$$

Figure 35. The reduction of Haibach extension (Mod. Rabb 2017, p. 325-326).

When the damage sum is calculated, low cycle and high cycle stresses should be considered with appropriate equation, meaning low cycle stresses are considered with base $\mathrm{S}-\mathrm{N}$ curve and high cycle stresses with the Haibach extension. Consequently, the damage sum D is composed of high cycle damage sum $D_{H C}$ and low cycle damage sum $D_{L C}$ (Rabb 2017, p. 330):

$$
\begin{equation*}
D=D_{L C}+D_{H C}=\frac{1}{N_{a f}} \sum n_{i}\left(\frac{\sigma_{a i}}{\sigma_{a f, P}}\right)^{k}+\frac{1}{N_{a f}} \sum n_{j}\left(\frac{\sigma_{a i}}{\sigma_{a f, P H}}\right)^{2 k-l} \tag{2.136}
\end{equation*}
$$

The damage sum can be transformed into an equivalent stress amplitude corresponding a specified number of cycles $n_{\text {ref }}$, or an equivalent number of allowed cycles can be calculated according to some constant amplitude $\sigma_{a, \text { ref }}$. When the equivalent stress amplitude $\sigma_{a, e q}$ corresponding a certain reference number of cycles $n_{\text {ref }}$ is calculated, the equivalent fatigue life $N_{e q}$ corresponding the damage sum calculated from equation (2.136) is needed. (Rabb 2017, p. 330.)

$$
\begin{equation*}
N_{e q}=N_{a f}\left(\frac{\sigma_{a f, P}}{\sigma_{a, e q}}\right)^{k} \tag{2.137}
\end{equation*}
$$

$N_{e q}$ is then substituted into the following (Rabb 2017 p. 330):

$$
\begin{equation*}
D=\frac{n_{r e f}}{N_{e q}} \tag{2.138}
\end{equation*}
$$

Consequently, the equivalent stress amplitude can be calculated from (Rabb 2017, p. 330):

$$
\begin{equation*}
\sigma_{a, e q}=\frac{\sigma_{a f, P}}{\sqrt[k]{\frac{n_{r e f}}{N_{a f} \cdot D}}} \tag{2.139}
\end{equation*}
$$

The slope exponent k can be calculated with the help of relative stress gradient χ^{*} which can be obtained from FEA (see chapter 2.9.2). For steel, the slope exponent is calculated with the following equation which is based on S-N curve tests conducted with smooth and notched specimens. (Rabb 2017, p. 338.)

$$
\begin{align*}
& k=\frac{k_{0}-k_{\infty}}{\left(1+\chi^{*}\right)^{p_{1}}+\frac{1}{K_{R}^{p_{2}}}-1}+k_{\infty} \tag{2.140}\\
& \chi^{*}=\frac{1}{\sigma_{\max }} \cdot \frac{d \sigma}{d r} \tag{2.141}
\end{align*}
$$

, where (Rabb 2017, p. 338; Rabb 2020b; Rabb 2020d):

χ^{*}	relative stress gradient (at the distance of $L=2 r_{c}$ from the sur- face, see chapter 2.7.1)
$k_{0} \quad$	slope exponent for unnotched test specimen $(R=-1)$ $k_{0}=11.6$ (surface nucleation) $k_{0}=16.8$ (internal nucleation)
$k_{\infty} \quad$	exponent for very sharp notch ≈ 3

K_{R}	Surface roughness factor
p_{1}	0.87
$p_{2}=p_{1}$	0.87

Reference curve for slope exponent k as a function of relative stress gradient χ^{*} for steel is shown in figure 36.

Figure 36. Reference curve (steel) for slope exponent k as a function of relative stress gradient χ^{*} (Mod. Rabb 2017, p. 338). χ^{*} value is obtained at the critical distance $2 r_{c}=L$ from the surface.

Similar equation can also be obtained for cast iron. The difference is that for cast irons, k is dependent on mean stress. (Rabb 2017, p. 345.)

$$
\begin{equation*}
k=\frac{k_{0}-k_{\infty}}{\left(1+\chi^{*}\right)^{p_{1}}+\frac{1}{K_{R}^{p_{2}}}-1} \cdot\left[1-\frac{C \cdot \frac{\sigma_{m}}{R_{m}}}{\left(1+\chi^{*}\right)^{r}}\right]+k_{\infty} \tag{2.142}
\end{equation*}
$$

, where (Rabb 2017, p. 345; Rabb 2020b; Rabb 2020d):

$$
\begin{array}{ll}
k_{0} & 12,(R=-1) \\
k_{\infty} & 3
\end{array}
$$

p_{1}	1.031
p_{2}	0.80
C	constant which considers the mean stress effect $=1.65$
r	0.01, exponent which considers how C changes as a function of relative stress gradient χ^{*}

Reference curves for slope exponent k as a function of relative stress gradient χ^{*} for GJS for different σ_{m} / R_{m} ratios are shown in figure 37.

Figure 37. Reference curves (GJS) for slope exponent k as a function of relative stress gradient χ^{*} (Mod. Rabb 2017, p. 347). χ^{*} value is obtained at the critical distance $2 r_{c}=L$ from the surface.

Values of p_{1} and p_{2} for both materials are modified from the values provided in Rabb's book (2017, p. 345). This is done to describe the situation when χ^{*} is obtained at the distance dictated by the theory of critical distances from the surface of the material (see chapter 2.7.1). Values in the book are determined on the basis that χ^{*} obtained on the surface.

The number of cycles at the knee-point of an S-N curve for steels when surface nucleation is considered is based on tests conducted by Rabb (Rabb 2020c):

$$
\begin{equation*}
N_{a f}=6.2 \cdot 10^{5} \tag{2.143}
\end{equation*}
$$

The equation for $N_{a f}$ from DNVGL-ST-0361 can be used if nucleation is happening below surface (when effective volume $V_{e f f} \geq 400 \mathrm{~mm}^{3}$). In this case k should be determined at the nucleation location. (Rabb 2020c; DNVGL-ST-0361 2016, p. 51.)

$$
\begin{equation*}
N_{a f}=10^{6.4-\frac{2.5}{k}} \tag{2.144}
\end{equation*}
$$

$N_{a f}$ for spheroidal graphite cast iron can be calculated using the equation from DNVGL-ST0361 (Rabb 2020c; DNVGL-ST-0361 2016, p. 52):

$$
\begin{equation*}
N_{a f}=10^{6.8-\frac{3.6}{k}} \tag{2.145}
\end{equation*}
$$

2.6 Multiaxial fatigue

Multiaxial loading cases are the most general loading cases in real components. There are often more than one loading acting on the component and the stresses may be acting in different directions. Stress components in different directions may be proportional or non-proportional meaning that they may be changing simultaneously and in the same quantity so that the principal axes remain fixed, or the stress components are not in phase and the principal axes rotate with time (see figure 38). A quite common loading case is combined bending and torsion, which can be found for example in many shafts or helical springs. (Milella 2013, p. 477.)

Figure 38. Examples of a) proportional loading and b) non-proportional loading.

General multiaxial stress state includes the three normal stresses σ_{x}, σ_{y} and σ_{z} as well as the six shear stress components $\tau_{i j}$. However, it is common to have biaxial stress state with only three stress components, σ_{x}, σ_{y} and $\tau_{x y}$, affecting the machine element because often, free surface where fatigue failure usually starts is not affected by any external forces (except in pressure vessels). (Milella 2013, p. 477.)

Critical plane theories are based on finding the most severely loaded plane within the material. As the fatigue damage is initiated by cyclic shear stresses causing slip in grains, the critical plane is the plane where the combination of shear stress and some stress that has an opening effect on the crack (see figure 39) induces the maximum damage. It has been found that normal stress acting on planes has an opening effect on the crack which reduces friction between the crack surfaces and thus promotes the microcrack growth. (Milella 2013, p. 496499.)

Figure 39. Normal stress on the critical plane opens the crack and reduces friction interlocking effect (Mod. Milella 2013, p. 497).

There are other options besides the critical plane theories for analysis of multiaxial fatigue. For example, methods such as signed von Mises, maximum shear stress theory or Sines criterion are stress based multiaxial fatigue criteria. The problem with these however is that they can only really be used in proportional loading cases and sometimes even in proportional cases, the results may be too inaccurate. (Altair Engineering 2020; Rabb 2017, p. 429431; Milella 2013, p. 482-483.) Because of this, these criteria are not presented here in detail, but more accurate critical plane theories are explained instead.

Presented below are two critical plane theories: Dang Van and Findley. In practice, both of these require use of computer programs in the analysis even in relatively simple cases, but
the advantage is that they are markedly more accurate than many of the simpler criteria. Findley criteria is chosen over Dang Van criteria as the one to be used in the proposed fatigue analysis method because it works for both steels and spheroidal graphite cast iron (Rabb 2017, p. 450).

2.6.1 Dang Van

As was explained in chapter 1.5.1, fatigue crack nucleation and growth start with microscopic cyclic shear stresses causing cyclic slip in grains, which forms slip bands. Dang Van criterion is based on using these microscopic shear stresses and microscopic hydrostatic stress, which has an opening effect on the cracks formed by the slip bands, to analyse whether fatigue failure will occur. (Altair Engineering 2020.)

The critical plane in Dang Van criterion is the plane where the sum of the microscopic shear stress amplitude (according to Tresca) and the hydrostatic stress multiplied by a constant has its maximum value. The Dang Van criterion is expressed with the equation below. (Rabb 2017, p. 457.)

$$
\begin{align*}
& D\left(t_{i}\right)=\tau_{a}\left(t_{i}\right)+a \cdot \sigma_{h}\left(t_{i}\right) \leq \tau_{a f, \sigma_{h}=0} \quad, i=1,2, \ldots \tag{2.146}\\
& \tau_{a f, \sigma_{h}=0}=\frac{\sigma_{a R=-1} \cdot \sigma_{a R=0}}{2\left(2 \sigma_{a R=0}-\sigma_{a R=-1}\right)} \tag{2.147}\\
& a=\frac{3\left(\sigma_{a R=-1}-\sigma_{a R=0}\right)}{2\left(2 \sigma_{a R=0}-\sigma_{a R=-1}\right)} \tag{2.148}
\end{align*}
$$

, where (Rabb 2017, p.458):
$D\left(t_{i}\right) \quad$ Fatigue damage when time is t_{i}
$\tau_{a}\left(t_{i}\right) \quad$ Microscopic shear stress amplitude when time is t_{i}
$a \quad$ Constant of Dang Van criterion
$\sigma_{h}\left(t_{i}\right) \quad$ Hydrostatic stress when time is t_{i}
$\tau_{a f, \sigma_{h}=0} \quad$ Fatigue limit in shear (when $\sigma_{h}=0$) according to Dang Van criterion

Hydrostatic stress can be calculated from the macroscopic stress tensor (for example stress matrix from FEA) corresponding a specific time. The macroscopic stress tensors are expressed as follows. (Rabb 2017, p. 458-459.)

$$
\begin{align*}
& \sum_{i j}\left(t_{1}\right)=\left[\begin{array}{ccc}
\sigma_{x 1} & \tau_{x y 1} & \tau_{x z 1} \\
\tau_{x y 1} & \sigma_{y 1} & \tau_{y z 1} \\
\tau_{x z 1} & \tau_{y z 1} & \sigma_{z 1}
\end{array}\right] \tag{2.149}\\
& \sum_{i j}\left(t_{2}\right)=\left[\begin{array}{ccc}
\sigma_{x 2} & \tau_{x y 2} & \tau_{x z 2} \\
\tau_{x y 2} & \sigma_{y 2} & \tau_{y z 2} \\
\tau_{x z 2} & \tau_{y z 2} & \sigma_{z 2}
\end{array}\right] \tag{2.150}\\
& \sum_{i j}\left(t_{i}\right)=\left[\begin{array}{ccc}
\sigma_{x i} & \tau_{x y i} & \tau_{x z i} \\
\tau_{x y i} & \sigma_{y i} & \tau_{y z i} \\
\tau_{x z i} & \tau_{y z i} & \sigma_{z i}
\end{array}\right], i=1,2, \ldots \tag{2.151}
\end{align*}
$$

The hydrostatic stress at a specific time is obtained from the trace of the matrix (Rabb 2017, p. 459):

$$
\begin{equation*}
\sigma_{h}\left(t_{i}\right)=\frac{\operatorname{tr}\left[\sum_{i j}\left(t_{i}\right)\right]}{3}=\frac{\sigma_{x i}+\sigma_{y i}+\sigma_{z i}}{3} \tag{2.152}
\end{equation*}
$$

The shear stress amplitudes oscillate around stabilized residual stress tensor. When loading is proportional, the stabilized residual stress tensor is calculated as follows from the two extreme macroscopic stress tensors. (Rabb 2017, p. 459; Tampere University of Technology 2015, p. 77.)

$$
\begin{align*}
\rho_{i j} & =-\frac{1}{2}\left[\sum_{i j}\left(t_{1}\right)+\sum_{i j}\left(t_{2}\right)\right] \\
& =\left[\begin{array}{rrr}
-\frac{\sigma_{x 1}+\sigma_{x 2}}{2} & -\frac{\tau_{x y 1}+\tau_{x y 2}}{2} & -\frac{\tau_{x z 1}+\tau_{x z 2}}{2} \\
-\frac{\tau_{x y 1}+\tau_{x y 2}}{2} & -\frac{\sigma_{y 1}+\sigma_{y 2}}{2} & -\frac{\tau_{y z 1}+\tau_{y z 2}}{2} \\
-\frac{\tau_{x z 1}+\tau_{x z 2}}{2} & -\frac{\tau_{y z 1}+\tau_{y z 2}}{2} & -\frac{\sigma_{z 1}+\sigma_{z 2}}{2}
\end{array}\right] \tag{2.153}
\end{align*}
$$

, where t_{1} and t_{2} are the times of the extreme values of the macroscopic stress (Tampere University of Technology 2015, p. 77).

The stabilized residual stress tensor is then split into hydrostatic and deviatoric (pure shear) parts (Rabb 2017, p. 459):

$$
\begin{align*}
\rho_{h} & =\frac{\operatorname{tr} \rho_{i j}}{3}=\frac{\rho_{11}+\rho_{22}+\rho_{33}}{3} \quad \text { (hydrostatic part) } \tag{2.154}\\
\rho_{i j} & =\rho_{i j, h}+\operatorname{dev} \rho_{i j} \\
& =\left[\begin{array}{ccc}
\rho_{h} & 0 & 0 \\
0 & \rho_{h} & 0 \\
0 & 0 & \rho_{h}
\end{array}\right]+\left[\begin{array}{ccc}
\rho_{11}-\rho_{h} & \rho_{12} & \rho_{13} \\
\rho_{21} & \rho_{22}-\rho_{h} & \rho_{23} \\
\rho_{31} & \rho_{32} & \rho_{33}-\rho_{h}
\end{array}\right] \tag{2.155}
\end{align*}
$$

, where $\rho_{i j}$ is the stabilized residual stress tensor. In other words, deviatoric part is obtained by subtracting the hydrostatic part from the stabilized residual stress tensor.

The deviatoric part is symmetric $\left(\rho_{i j}=\rho_{j i}\right)$ and it can be used in calculation of microscopic stress tensors as follows (Rabb 2017, p. 459):

$$
\begin{align*}
& \sigma_{i j}\left(t_{1}\right)=\sum_{i j}\left(t_{1}\right)+\operatorname{dev} \rho_{i j} \tag{2.156}\\
& \sigma_{i j}\left(t_{2}\right)=\sum_{i j}\left(t_{2}\right)+\operatorname{dev} \rho_{i j} \tag{2.157}\\
& \sigma_{i j}\left(t_{i}\right)=\sum_{i j}\left(t_{i}\right)+\operatorname{dev} \rho_{i j} \tag{2.158}
\end{align*}
$$

The hydrostatic stress at a specific time can also be calculated from the microscopic stress tensor (Rabb 2017, p. 460):

$$
\begin{equation*}
\sigma_{h}\left(t_{i}\right)=\frac{\operatorname{tr}\left[\sigma_{i j}\left(t_{i}\right)\right]}{3} \tag{2.159}
\end{equation*}
$$

Each microscopic stress tensor is associated with a shear stress amplitude which is obtained with the help of the principal stresses of the microscopic stress tensors. The principal stresses and their directions are the eigenvalues and eigenvectors of the equation shown below. (Rabb 2017, p. 460.)

$$
\left[\begin{array}{ccc}
\sigma_{11}-\sigma & \sigma_{12} & \sigma_{13} \tag{2.160}\\
\sigma_{12} & \sigma_{22}-\sigma & \sigma_{23} \\
\sigma_{13} & \sigma_{23} & \sigma_{33}-\sigma
\end{array}\right] \cdot\left[\begin{array}{c}
l \\
m \\
n
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

, where l, m and n are the direction cosines of the principal stresses in relation to x-, y - and z-axes (Rabb 2017, p. 460). An example showing the determination of the principal stresses is presented in Appendix III.

The microscopic shear stress amplitude at a specific time is calculated according to the Tresca maximum shear stress theory as follows (Rabb 2017, p. 460):

$$
\begin{equation*}
\tau_{a}\left(t_{i}\right)=\frac{\sigma_{I}\left(t_{i}\right)-\sigma_{I I I}\left(t_{i}\right)}{2} \tag{2.161}
\end{equation*}
$$

In equation (2.161) σ_{I} is the maximum principal stress of the microscopic stress tensor and $\sigma_{I I I}$ is the minimum principal stress of the microscopic stress tensor (Rabb 2017, p. 460).

The critical amplitude is the one that maximizes equation (2.146), and the corresponding critical plane is obtained from the following (Rabb 2017, p. 460):

$$
\left\{\begin{array}{l}
\overrightarrow{n_{I}}=l_{I} \vec{\imath}+m_{I} \vec{\jmath}+n_{I} \vec{k} \tag{2.162}\\
\overrightarrow{n_{I I}}=l_{I I} \vec{\imath}+m_{I I} \vec{\jmath}+n_{I I} \vec{k} \\
\overrightarrow{n_{I I I}}=l_{I I I} \vec{\imath}+m_{I I I} \vec{\jmath}+n_{I I I} \vec{k}
\end{array}\right.
$$

, where $\vec{\imath}, \vec{\jmath}$ and \vec{k} are unit vectors of coordinate axes. Normalized direction vector of the critical plane is then as follows. (Rabb 2017, p. 460.) Critical plane is shown in figure 40.

$$
\begin{equation*}
\vec{n}_{c r}=\frac{\overrightarrow{n_{I}}+\overrightarrow{n_{I I I}}}{\sqrt{\left|\overrightarrow{n_{I}}\right|^{2}+\left|\overrightarrow{n_{I I I}}\right|^{2}}} \tag{2.163}
\end{equation*}
$$

Figure 40. Critical plane according to Dang Van criterion (Mod. Rabb 2017, p. 460).

If the loading is non-proportional the stabilized residual stress tensor is calculated in a nineor six-dimensional hypersphere. In that case, the center of the hypersphere defines the stabilized residual stress tensor and the sphere is composed of all six stress components (or nine if symmetry components $\tau_{i j}=\tau_{j i}$ are considered). (Rabb 2017, p. 459.) Calculation of the smallest hypersphere is somewhat demanding but computer programs such as Miniball by Gärtner (2013) can be found. If also yielding is occurring, the elastic shakedown effect needs to be considered (see figure 41) (Rabb 2017, p. 459; Altair Engineering 2020).

Figure 41. If yielding occurs, the initial elastic domain of the material $\left(\mathrm{C}_{0}\right)$ expands and shifts due to kinematic and isotropic hardening. After some repetitions of the load path (blue), the domain stabilizes $\left(\mathrm{C}_{\mathrm{L}}\right)$ and the stabilized residual stress tensor corresponds to O_{L} $-\mathrm{O}_{0}$. (Mod. Altair engineering 2020.)

In order to obtain safety factor, equation (2.146) can be modified into the following form and it can be plotted in Dang Van diagram (see figure 42) (Rabb 2017, p. 461).

$$
\begin{equation*}
\tau_{a f}=\tau_{a f, \sigma_{h}=0}-a \sigma_{h} \tag{2.164}
\end{equation*}
$$

It is possible to define two safety factors for Dang Van criterion; radial safety factor $S_{F, \text { rad }}$ and vertical safety factor $S_{F, v e r}$. Safety factors are obtained from the following. (Rabb 2017, p. 462 .)

$$
\begin{align*}
& S_{F, r a d}=\frac{\tau_{a f, \sigma_{h}=0}}{D} \tag{2.165}\\
& S_{F, v e r}=\frac{\tau_{a f, \sigma_{h}=0}-a \sigma_{h}}{\tau_{a}} \tag{2.166}
\end{align*}
$$

Determination of safety factors is shown in figure 42 . More accurate way of determining the safety factor would be to reduce the Dang Van criterion line to intersect the studied stress point $\left(\sigma_{h} ; \tau_{a}\right)$ because then radial and vertical safety factors converge towards the same value. (Rabb 2017, p. 462.)

Figure 42. Vertical and radial safety factors in Dang Van diagram (Mod. Rabb 2017, p. 462).

It is possible to determine equivalent uniaxial stress state which inflicts equal damage as the original multiaxial loading. In that case according to Tresca criterion, the critical plane is in 45° angle in respect to the principal stress. For uniaxial stress state (now in x direction) the following is obtained. (Rabb 2017, p. 461.)

$$
\begin{align*}
& \Delta \sigma_{x}=\sigma_{x, \max }-\sigma_{x, \min } \tag{2.167}\\
& \Delta \tau=2 \tau_{a}=\Delta \sigma_{x} \frac{\sin 2 \alpha}{2}=\frac{\Delta \sigma_{x}}{2} \tag{2.168}\\
& \sigma_{h}=\frac{\sigma_{x, \max }}{3} \tag{2.169}
\end{align*}
$$

When shear stress amplitude and hydrostatic stress are known, the following gives the maximum and minimum stress for the equivalent stress state (Rabb 2017, p. 462):

$$
\begin{align*}
& \sigma_{x, \max }=3 \sigma_{h} \tag{2.170}\\
& \sigma_{x, \min }=\sigma_{x, \max }-4 \tau_{a} \tag{2.171}
\end{align*}
$$

2.6.2 Findley

According to Findley criterion, the critical plane is the plane on which the linear combination of shear stress amplitude and the normal stress of the plane has its maximum value. Consequently, Findley criterion is expressed with the following equations. (Rabb 2017, p. 433; Altair Engineering 2020.)

$$
\begin{equation*}
D=\left(\frac{\Delta \tau}{2}+k \sigma_{n}\right)_{\max } \leq f \tag{2.172}
\end{equation*}
$$

$\frac{k+\sqrt{1+k^{2}}}{2 k+\sqrt{1+4 k^{2}}}=\frac{\sigma_{a R=0, \text { red }}}{\sigma_{a R=-1, \text { red }}} \quad$ (solve k iteratively)
$\rightarrow \quad k=0.2 \ldots 0.3$ (typically for ductile materials)
$f=\frac{k+\sqrt{1+k^{2}}}{2} \cdot \sigma_{a R=-1, \text { red }}$
, where $\Delta \tau$ is shear stress range, σ_{n} is normal stress of the critical plane, k is normal stress sensitivity which describes normal stress portion of the fatigue damage, f is fatigue limit in shear, and $\sigma_{a R=0, \text { red }}$ and $\sigma_{a R=-1, \text { red }}$ are reduced fatigue limits for $R=0$ and $R=-1$ with reduction factors taken into account. In non-proportional loading case, the maximum normal stress may be occurring on an independent time point from the time points defining the maximum shear stress amplitude. In that case, it is recommended to use the independent maximum of normal stress and the maximum shear stress amplitude (that is to say maximize the linear combination regardless whether the maximum normal stress occurs simultaneously with any of the shear stress states defining $\Delta \tau$). (Rabb 2017, p. 433-434.)

The critical plane can be found by rotating the coordinate system and determining shear stress and normal stress of the first face of stress element in every load case and direction. The rotation matrix is expressed as follows. (Rabb 2017, p. 435-436.)

$$
Q=\left[\begin{array}{ccc}
\sin \varphi \cos \theta & -\sin \theta & -\cos \varphi \cos \theta \tag{2.175}\\
\sin \varphi \sin \theta & \cos \theta & -\cos \varphi \sin \theta \\
\cos \varphi & 0 & \sin \varphi
\end{array}\right]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

Using the rotation matrix \boldsymbol{Q} and stress tensor $[\sigma]$ in the base coordinate system (for example from FEA), the stress element and stress matrix in a rotated coordinate system can be obtained (see figure 43a) (Rabb 2017, p. 436):

$$
\left[\sigma^{\prime}\right]=Q^{T}[\sigma] Q=\left[\begin{array}{ccc}
\sigma_{x \prime} & \tau_{x \prime y} & \tau_{x^{\prime} z^{\prime}} \tag{2.176}\\
\tau_{x \prime y^{\prime}} & \sigma_{y \prime} & \tau_{y^{\prime} z^{\prime}} \\
\tau_{x \prime z^{\prime}} & \tau_{y \prime z^{\prime}} & \sigma_{z \prime}
\end{array}\right]
$$

In order to analyse all possible planes, the angles φ and θ of the rotation matrix have to be checked incrementally from 0 to 180 degrees (see figure 43b) (Rabb 2017, p. 436). The chosen increment should be small enough, for example $d \varphi=d \theta=0.1 \ldots 0.5$, so that the maximum values are found with sufficient accuracy. Using an increment of $d \varphi=d \theta=0.1$ would mean that 3240000 possible planes are examined and therefore the analysis requires a computer program for the calculation.

Figure 43. a) rotation of the stress element when searching for the critical plane and b) angle increments (Mod. Rabb 2017, p. 435; Mod. Lönnqvist 2008, p. 133).

Only $\sigma_{x^{\prime}}, \tau_{x^{\prime}, y^{\prime}}$ and $\tau_{x^{\prime} z^{\prime}}$ need to be considered. Consequently, the stress components of the first face of the rotated stress element are obtained from the following. (Rabb 2017, p. 436.)

$$
\begin{align*}
\sigma_{x^{\prime}} & =\sigma_{x} a_{11}^{2}+\sigma_{y} a_{21}^{2}+\sigma_{z} a_{31}^{2} \tag{2.177}\\
& +2\left(\tau_{x y} a_{11} a_{21}+\tau_{x z} a_{11} a_{31}+\tau_{y z} a_{21} a_{31}\right) \\
& \\
& \begin{aligned}
\tau_{x \prime y \prime} & =\sigma_{x} a_{11} a_{12}+\sigma_{y} a_{21} a_{22}+\sigma_{z} a_{31} a_{32} \\
& +\tau_{x y}\left(a_{11} a_{22}+a_{12} a_{21}\right)+\tau_{x z}\left(a_{11} a_{32}+a_{12} a_{31}\right) \\
& +\tau_{y z}\left(a_{21} a_{32}+a_{22} a_{31}\right) \\
& \\
\tau_{x \prime z \prime} & =\sigma_{x} a_{11} a_{13}+\sigma_{y} a_{21} a_{23}+\sigma_{z} a_{31} a_{33} \\
& +\tau_{x y}\left(a_{11} a_{23}+a_{13} a_{21}\right)+\tau_{x z}\left(a_{11} a_{33}+a_{13} a_{31}\right) \\
& +\tau_{y z}\left(a_{21} a_{33}+a_{23} a_{31}\right)
\end{aligned} \tag{2.178}
\end{align*}
$$

Each analysed plane will have the same number of shear stress states as there are load increments. The shear stress ranges between different load increments can be calculated by using the longest chord or a radius of the smallest circle enclosing the shear stress states (see figure 44). In non-proportional loading case both methods could be used but it is advisable to utilise the radius method since in some cases it is more conservative. (Rabb 2017, p. 437.)

Figure 44. a) proportional loading and b) non-proportional loading (Mod. Rabb 2017, p. 437).

The chord from figure 44 a) can be calculated as follows (Rabb 2017, p. 437):

$$
\begin{equation*}
\Delta \tau=\Delta \tau_{\text {chord }}=\sqrt{\Delta \tau_{x^{\prime} y^{\prime}}^{2}+\Delta \tau_{x^{\prime} z^{\prime}}^{2}} \tag{2.180}
\end{equation*}
$$

The radius of the smallest circle which is defined by three points and which encloses the shear stress states (figure 44 b)) is obtained from the following determinant (Rabb 2017, p. 437):

$$
\left|\begin{array}{cccc}
\tau_{x \prime y \prime}^{2}+\tau_{x \prime Z \prime}^{2} & \tau_{x \prime y \prime} & \tau_{x \prime z^{\prime}} & 1 \tag{2.181}\\
\tau_{x \prime y \prime 1}^{2}+\tau_{x z^{\prime} 1}^{2} & \tau_{x \prime y \prime 1} & \tau_{x \prime z^{\prime} 1} & 1 \\
\tau_{x \prime y \prime 2}^{2}+\tau_{x \prime z^{\prime} 2}^{2} & \tau_{x \prime y^{\prime} 2} & \tau_{x \prime z^{\prime} 2} & 1 \\
\tau_{x \prime y^{\prime} 3}^{2}+\tau_{x \prime z^{\prime} 3}^{2} & \tau_{x \prime y^{\prime} 3} & \tau_{x \prime z^{\prime} 3} & 1
\end{array}\right|=0
$$

This yields the following form for circle equation $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2}($ Rabb 2017, p . 438):

$$
\begin{equation*}
\alpha\left(\tau_{x^{\prime} y^{\prime}}+\frac{b_{\tau_{x^{\prime} y^{\prime}}}}{2 \alpha}\right)^{2}+\alpha\left(\tau_{x^{\prime} z^{\prime}}+\frac{b_{\tau_{x^{\prime} z^{\prime}}}}{2 \alpha}\right)^{2}-\frac{b_{\tau_{x^{\prime} y^{\prime}}}^{2}}{4 \alpha}-\frac{b_{\tau_{x^{\prime} z^{\prime}}}^{2}}{4 \alpha}+c=0 \tag{2.182}
\end{equation*}
$$

, where (Rabb 2017, p. 438):

$$
\begin{align*}
& \alpha=\left|\begin{array}{lll}
\tau_{x \prime y \prime 1} & \tau_{x \prime z^{\prime} 1} & 1 \\
\tau_{x \prime y^{\prime} 2} & \tau_{x z^{\prime} 2} & 1 \\
\tau_{x \prime y^{\prime} 3} & \tau_{x \prime z^{\prime} 3} & 1
\end{array}\right| \tag{2.183}\\
& b_{\tau_{x^{\prime} y^{\prime}}}=-\left|\begin{array}{lll}
\tau_{x \prime y \prime 1} & +\tau_{x^{\prime} z^{\prime} 1}^{2} & \tau_{x^{\prime} z^{\prime} 1} \\
\tau_{x \prime y^{\prime} 2}^{2}+\tau_{x^{\prime Z} 2}^{2} & \tau_{x^{\prime} z^{\prime} 2} & 1 \\
\tau_{x \prime y^{\prime} 3}^{2}+\tau_{x^{\prime} z^{\prime} 3}^{2} & \tau_{x^{\prime} z^{\prime} 3} & 1
\end{array}\right| \tag{2.184}\\
& b_{\tau_{x^{\prime} z^{\prime}}}=\left|\begin{array}{lll}
\tau_{x \prime y \prime 1} & \tau_{x^{\prime} z^{\prime} 1}^{2} & \tau_{x \prime y \prime 1} \\
\tau_{x \prime y^{\prime} 2}^{2}+\tau_{x \prime z / 2}^{2} & \tau_{x^{\prime} y^{\prime} 2} & 1 \\
\tau_{x^{\prime} y^{\prime} 3}^{2}+\tau_{x^{\prime} z^{\prime} 3}^{2} & \tau_{x^{\prime} y^{\prime} 3} & 1
\end{array}\right| \tag{2.185}\\
& c=-\left|\begin{array}{lll}
\tau_{x \prime y \prime 1}^{2}+\tau_{x \prime Z, 1}^{2} & \tau_{x \prime y \prime 1} & \tau_{x \prime z \prime 1} \\
\tau_{x \prime y^{\prime} 2}^{2}+\tau_{x \prime z / 2}^{2} & \tau_{x \prime y \prime 2} & \tau_{x \prime z \prime 2} \\
\tau_{x \prime y^{\prime} 3}^{2}+\tau_{x \prime \prime \prime 3}^{2} & \tau_{x \prime y \prime 3} & \tau_{x \prime \prime \prime 3}
\end{array}\right| \tag{2.186}
\end{align*}
$$

The centre of the circle is thus (Rabb 2017, p. 438):

$$
\begin{align*}
& \tau_{x \prime y \prime 0}=-\frac{b_{\tau_{x^{\prime} y^{\prime}}}}{2 \alpha} \tag{2.187}\\
& \tau_{x^{\prime} z^{\prime} 0}=-\frac{b_{\tau_{x^{\prime} z^{\prime}}}}{2 \alpha} \tag{2.188}
\end{align*}
$$

and the diameter of the circle which describes the shear stress range is obtained from (Rabb 2017, p. 438):

$$
\begin{equation*}
\Delta \tau=\frac{\sqrt{b_{\tau_{x \prime \prime} \prime}^{2}}{ }^{2}+b_{\tau_{x^{\prime} z^{\prime}}}^{2}-4 \alpha c}{|\alpha|} \tag{2.189}
\end{equation*}
$$

If there are more than three shear stress points on the plane (see figure 45), some kind of algorithm for calculation is needed. For example, Weber et al. (1999) introduce an algorithm for finding the smallest enclosing circle of the shear stress points. Flowchart of the algorithm is presented in Appendix VII.

Figure 45. Shear stress range of the plane is defined by the smallest circle that encloses the load path on the plane.

As with Dang Van criterion, there are two safety factors for Findley criterion, vertical and radial (see figure 46). By modifying equation (2.172) into the following form, the safety factors can be obtained. (Rabb 2017, p. 440.)

$$
\begin{align*}
& \tau_{a}=\frac{\Delta \tau}{2}=f-k \sigma_{n} \tag{2.190}\\
& S_{v e r}=\frac{f-k \sigma_{n}}{\tau_{a}} \tag{2.191}\\
& S_{\text {rad }}=\frac{f}{D}=\frac{f}{\frac{\Delta \tau}{2}+k \sigma_{n}} \tag{2.192}
\end{align*}
$$

Again, more accurate way of defining the safety factor would be to reduce the Findley line to intersect the studied stress state (Rabb 2017, p. 440).

Figure 46. Vertical and radial safety factors in Findley diagram (Mod. Rabb 2017, p. 440).

The equivalent uniaxial stress state of Findley criterion is obtained from the following (Rabb 2017, p. 440):

$$
\begin{align*}
& \Delta \tau=\left(\sigma_{x, \max }-\sigma_{x, \min }\right) \cdot \frac{|\sin 2 \theta|}{2} \tag{2.193}\\
& \sigma_{n}=\sigma_{x, \max } \cdot \cos ^{2} \theta \tag{2.194}\\
& \rightarrow \tag{2.195}\\
& \sigma_{x, \max }=\frac{\sigma_{n}}{\cos ^{2} \theta} \tag{2.196}\\
& \sigma_{x, \min }=\sigma_{x, \max }-\frac{2 \Delta \tau}{\sin 2 \theta}
\end{align*}
$$

The direction of the critical plane for the equivalent loading is obtained by maximizing Findley fatigue damage D in respect to θ (Rabb 2017, p. 441).

$$
\begin{equation*}
D=\frac{\Delta \tau}{2}+k \sigma_{n}=\frac{\sigma_{x, \max }-\sigma_{x, \min }}{4} \cdot \sin 2 \theta+k \cdot \sigma_{x, \max } \cdot \cos ^{2} \theta \tag{2.197}
\end{equation*}
$$

By differentiating in respect to θ and multiplying by $\sin (2 \theta) \cos (\theta)$ the following is obtained (Rabb 2017, p. 441):

$$
\begin{align*}
& \frac{\sigma_{x, \max }-\sigma_{x, \min }}{4} \cdot \sin 2 \theta \cdot 2 \cos \theta \cos 2 \theta \tag{2.198}\\
& -k \sigma_{x, \max } \cos ^{2} \theta \cdot 2 \sin \theta \sin 2 \theta=0
\end{align*}
$$

With equations (2.193) and (2.194), this yields (Rabb 2017, p. 441):

$$
\begin{equation*}
\frac{\Delta \tau}{2}-k \sigma_{n} \tan \theta \tan 2 \theta=0 \tag{2.199}
\end{equation*}
$$

Using the following equation from trigonometry the angle of the critical plane $\theta_{e q}$ for equivalent loading can be calculated (Rabb 2017, p. 442):

$$
\begin{align*}
& \tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta} \tag{2.200}\\
& \rightarrow \tag{2.201}\\
& \theta_{e q}=\tan ^{-1}\left(\pm \sqrt{\frac{\Delta \tau}{\Delta \tau+4 k \sigma_{n}}}\right)+i \cdot 180^{\circ} \quad i=0,1, \ldots
\end{align*}
$$

Figure 47 illustrates the transformation of multiaxial loading into equivalent uniaxial loading.

Figure 47. Transformation of multiaxial stress state into equivalent uniaxial stress state. Both load cases inflict the equal Findley damage.

Mean stress and amplitude for the equivalent uniaxial loading are obtained from the following (Rabb 2017, p. 442):

$$
\begin{align*}
& \sigma_{m, e q}=\frac{\sigma_{x, \max }+\sigma_{x, \min }}{2} \tag{2.202}\\
& \sigma_{a, e q}=\frac{\sigma_{x, \max }-\sigma_{x, \min }}{2} \tag{2.203}
\end{align*}
$$

2.7 Linear elastic fracture mechanics (LEFM)

The basis of LEFM was already explained in chapter 1.5.2. Equation (1.16) which defines the Paris crack growth law can be utilized in estimation of fatigue life by integrating it from an initial crack length a_{0} to a final, critical crack length a_{f} (Anderson 2005, p. 452).

$$
\begin{equation*}
N=\int_{a_{0}}^{a_{f}} \frac{d a}{C(\Delta K)^{m}} \tag{2.204}
\end{equation*}
$$

There are some limitations for the use LEFM. One, that was already mentioned earlier, is the limitation for small cracks. This means that when crack is small enough it will interact
with microstructural features and consequently its behaviour differs from what would be expected based on the assumptions of isotropic and homogenous solid. In metals this usually means that small cracks grow faster than what Paris law estimates. (Dowling 2013, p. 613614.)

Small cracks, whose all dimensions are smaller than the largest microstructural dimension, grow faster within a grain than what is expected based on Paris law, and when they encounter a grain boundary the growth is temporarily retarded. Short cracks on the other hand have one dimension that is larger than the microstructural dimensions, and because of this the effect is not so drastic. (Dowling 2013, p. 613-614.) Figure 48 illustrates the behaviour of small cracks and short cracks.

Figure 48. Behaviour of a) small cracks and b) short cracks. Unlike small cracks, the behaviour of short cracks at low ΔK can be approximated by extrapolating the Paris law curve. (Dowling 2013, p. 614.)

Another limitation for LEFM is the size of the plastic zone around the crack tip. If it is too large, crack growth rate increases too much and cannot be predicted by Paris law anymore. The limitation below can be applied to peak stress to account for the plasticity (Dowling 2013, p. 612-613.)

$$
\begin{equation*}
a,(b-a), h \geq \frac{4}{\pi}\left(\frac{K_{\max }}{\sigma_{\text {peak }}}\right)^{2} \tag{2.205}
\end{equation*}
$$

, where dimensions a, b and h are shown in figure 49 .

Figure 49. Dimensions for equation (2.205) (Mod. Dowling 2013, p. 387).

For example, BS 7910 (2013) gives guidelines for assessing flaws of metallic structures with LEFM approach. Two possible crack growth laws are provided in BS 7910 (2013, p. 75); Paris law with constant slope m and more precise two-stage relationship with two slopes (see figure 50).

Figure 50. a) Paris law with constant m and b) two-stage crack growth relationship. Data from BS 7910 (2013, p. 77, 81) and Dowling (2013, p. 340).

There is relatively large variation in crack growth rate and for example according to Dowling (2013, p. 905) typical Coefficient of Variation (=relative standard deviation) for crack growth rate in fatigue is 50%. Some recommended values for parameters C and m and uncertainty of C (standard deviation) are shown in table 5 for the two-stage model (BS 7910 2013, p. 220).

Table 5. Uncertainties in Paris parameter C for the two-stage model in air and freely corroding marine environment (Mod. BS 7910 2013, p. 220).

Environment	\boldsymbol{R}	\boldsymbol{m}	Mean curve	
			$\boldsymbol{C}[\mathbf{N}, \mathbf{m m}]$	SD of $\log (\boldsymbol{C})$
In air				
	<0.5	8.16	1.2×10^{-26}	0.279
	>0.5	5.10	4.8×10^{-18}	0.320
Stage B	<0.5	2.88	3.9×10^{-13}	0.115
	>0.5	2.88	5.8×10^{-13}	0.171
Freely corroding marine environment				
Stage A	<0.5	3.42	3.0×10^{-14}	0.227
	>0.5	3.42	5.3×10^{-14}	0.253
Stage B	<0.5	1.30	1.2×10^{-7}	0.091
	>0.5	1.11	5.6×10^{-7}	0.060

The standard also gives guidance about probabilistic methods for LEFM analysis which may be of interest because deterministic procedures can sometimes give over-conservative results. Two levels of reliability analyses are given; Level I method which is semi-probabilistic approach based on partial safety factors and Level II method based on first order second moment methods assuming the load (L) and resistance (R) effects are following normal distribution. For fatigue crack growth assessment, Level II method is utilized. The limit state function for any number of random variables according to Level II method is defined with the following equation. (BS 7910 2013, p. 215-218.)

$$
\begin{equation*}
R-L=g(Z) \quad(\text { failure when } g(Z)<0) \tag{2.206}
\end{equation*}
$$

The failure probability P_{F} is defined as follows and it is related to the reliability index β_{R} (BS 7910 2013, p. 217):

$$
\begin{align*}
& P_{F}=P[g(Z)<0] \int_{g(Z) \leq 0} f_{Z}(Z) d z \tag{2.207}\\
& P_{F}=1-\Phi\left(\beta_{R}\right)=\Phi\left(-\beta_{R}\right) \tag{2.208}
\end{align*}
$$

, where Φ is the cumulative distribution function of standard normal distribution and $f_{Z}(\mathbf{Z})$ is multivariate probability density function of Z. If reliability index corresponding a specified failure probability is required it can be calculated as follows (BS 7910 2013, p. 217):

$$
\begin{equation*}
\beta_{T}=\Phi^{-1}\left(1-P_{F}\right) \tag{2.209}
\end{equation*}
$$

2.7.1 The Theory of critical distances (TCD)

The theory of critical distances (TCD) is an LEFM based method developed by Taylor (2007), which can be used in predicting the effect of notches and for example material defects on the fatigue behaviour of material. TCD uses a material length scale L to assess the possibility of fatigue failure (Taylor 2007, p. 1696; Rabb 2017, p. 294). The length scale L is defined as follows (Taylor 2007, p. 1696):

$$
\begin{equation*}
L=\frac{1}{\pi}\left(\frac{\Delta K_{t h}}{\Delta \sigma_{a f}}\right)^{2} \tag{2.210}
\end{equation*}
$$

, where $\Delta \sigma_{a f}$ is fatigue limit range. There are four different TCD methods to predict the fatigue failure. Two of these methods are stress-based and they are called point method (PM) and line method (LM). In PM, the critical amplitude $\sigma_{a c}$ is at a distance of r_{c} from the surface, where $r_{c}=L / 2$, and in $\mathrm{LM} \sigma_{a c}$ is defined as an average stress within $2 L$ from the surface. (Taylor 2007, p. 1699.) Principle of PM and LM are shown in figure 51.

Figure 51. Principles of a) Line Method and b) Point Method (Mod. Susmel 2006, p. 1708).

The other two methods are based on stress intensity. The imaginary crack method (ICM) which is similar to El Haddad's (1979) method, assumes that there is an imaginary crack at the root of the notch and that the length of this crack is L. In case of fatigue, the failure will occur when the stress intensity of this crack reaches $\Delta K_{t h}$. The other stress intensity-based method is finite fracture mechanics (FFM) in which the condition for failure is derived from energy balance assuming a finite amount of crack extension (which would be 2L). (Taylor 2007, p. 1699.) The failure criterion for FFM is expressed as follows (Taylor 2007, p 1699):

$$
\begin{equation*}
\int_{0}^{2 L} K^{2} d a=K_{c}^{2} \cdot 2 L \tag{2.211}
\end{equation*}
$$

Rabb (2017, p. 294-295) recommends using point method in which, as mentioned earlier, the critical stress amplitude $\sigma_{a c}$ is obtained at the distance $r_{c}=L / 2$ from the surface. With PM, the theory of critical distances is expressed with the following equations when also size factor is considered (Rabb 2017, p. 295; Rabb 2020a):

$$
\begin{align*}
& L=\frac{1}{\pi}\left(\frac{\Delta K_{\text {th }}}{K_{\text {size }} \cdot \Delta \sigma_{a f}}\right)^{2} \tag{2.212}\\
& r_{c}=\frac{L}{2} \tag{2.213}\\
& \sigma_{a c} \leq \frac{K_{\text {size }} \cdot \sigma_{a R, \text { smooth }}}{S_{F}}=\frac{K_{\text {size }} \cdot \Delta \sigma_{a f}}{2 S_{F}} \tag{2.214}\\
& \chi^{*}=\frac{1}{\sigma_{\max }} \cdot \frac{d \sigma}{d r} \tag{2.215}
\end{align*}
$$

, where $\sigma_{a R, s m o o t h}$ is fatigue limit for smooth reference specimen and χ^{*} is relative stress gradient (see chapter 2.9.2).

TCD can be utilized in a case of a sharp notch where relative stress gradient is very steep and consequently, there is a large difference in stress between the lowest and the deepest points of a (large) material defect. Therefore, stress intensity may drop considerably between these points and the critical point is not located on the surface but slightly below it. In cases like this, statistical theory may give too conservative estimates because it assumes that the stress amplitude is approximately equal over the material defect. (Rabb 2017, p. 293.)

Rabb (2017, p. 297) states that statistical theory works well when $k_{t} \leq 2$ for spheroidal graphite cast iron and with notches sharper than this, phenomenon explained above may have to be considered. With steel, TCD needs to be considered when stress state is singular like sometimes in the case of fretting fatigue (Rabb 2017, p. 297).

TCD is also utilised in calculation of slope exponent k for $\mathrm{S}-\mathrm{N}$ curves. In that case, the critical distance is L rather than $L / 2$. Using L as critical distance increases the value of slope exponent in the same amount as it is increased in nominal stress method when notch sensitivity factor is considered. (Rabb 2020d.)

2.8 Multiscale modelling of fatigue

As was explained in chapter 1.5, fatigue process consists of crack initiation and crack growth phases. It can be seen that fatigue process involves different length scales and thus the analysis of fatigue life from the start of the cyclic slip to "large" crack growth requires consideration of multiple length scales (Božic et al. 2014, p. 1044).

Crack nucleation happens as a result of dislocation movement which develops slip bands within grains. Dislocation development is within nanoscale and can be analysed with atomistic scale simulation methods. The consequent crack nucleation and microcrack growth are still affected by the microstructure and they are happening within mesoscale. As such, they need analysis methods which can consider the relevant effects. After the microcrack has grown sufficiently large, its propagation in macroscale can be analysed for example with fracture mechanics. (Božic et al. 2014, p. 1044-1045.) Different length scales are shown in figure 52.

The modelling methods fall into two categories based on how they describe materials. Discrete methods or atomistic methods combined with stochastic methods can be used in modelling time-controlled phenomena such as diffusion, aging or deformation mechanisms in nanoscale. Continuous methods on the other hand are based on solid or fracture mechanics and they are used in modelling macroscale continuous behaviour. (Laukkanen, Holmberg \& Wallin 2013, p. 11-12.) Examples of modelling methods for different spatial and temporal scales are presented in figure 52.

Figure 52. Modelling methods for different spatial and temporal scales (Mod. Laukkanen, Holmberg \& Wallin 2013, p. 13).

2.8.1 Nanoscale

Dislocation nucleation and movement can be modelled using molecular dynamics (MD). Often the models in MD are based on assumptions (the Born-Oppenheimer approximation) that allow the use of Newton's second law in expressing the equations of motion for atomic nuclei. Use of this classical approach instead of quantum mechanics is needed because solution based on quantum mechanics would quickly become too complicated to compute. (Božic et al. 2014, p. 1045; Leimkuhler \& Matthews 2015, p. 5-7.)

The Newtonian equation of motion for atoms is expressed as follows and it is solved in every time step of the MD analysis (Eidel, Hartmaier \& Gumbsch 2010, p. 11; Božic et al. 2014, p. 1045):

$$
\begin{equation*}
F_{i}=m_{i} \frac{d^{2} \boldsymbol{x}_{\boldsymbol{i}}}{d t^{2}} \tag{2.216}
\end{equation*}
$$

, where \boldsymbol{x}_{i} is the position vector of atom i, t is time and m_{i} is the mass of the atom. The force F_{i} acting on atom i is obtained by taking the derivative of the potential energy U which depends on the position of all atoms (Eidel, Hartmaier \& Gumbsch 2010, p. 11):

$$
\begin{equation*}
F_{i}=-\frac{d U(x)}{d \boldsymbol{x}_{\boldsymbol{i}}} \tag{2.217}
\end{equation*}
$$

The potential energy U is often obtained by using Embedded atom method (EAM) (Eidel, Hartmaier \& Gumbsch 2010, p. 8):

$$
\begin{align*}
& U_{t o t}=\frac{1}{2} \sum_{i, j \neq i} V_{i j}\left(r_{i j}\right)+\sum_{i} F_{e}\left(\rho_{i}\right) \tag{2.218}\\
& \rho_{i}=\sum_{j \neq i} \rho_{i j}\left(r_{i j}\right) \tag{2.219}
\end{align*}
$$

, where $\rho_{i j}$ is the contribution of atom j to the total electron density at atom i, F_{e} is the embedding energy associated with placing atom i in this environment, $r_{i j}$ is the separation between atoms i and j, and $V_{i j}$ is the pair potential contribution to the potential energy of atom i.

Molecular dynamics modelling yields material parameters that can be utilised in micromechanics modelling (in mesoscale). An important parameter that can be defined with MD is critical resolved shear stress (CRSS) which is the stress required to initiate slip in a crystal. (Božic et al. 2014, p. 1047; Milella 2013, p. 36.) Figure 53 shows an MD model of iron with a notch.

Figure 53. Body centred crystal iron cuboid with a notch (486 000 atoms). Von Mises stress is indicated with red (high) and blue (low). (Božic et al. 2014, p. 1046.)

2.8.2 Mesoscale

Crack nucleation can be predicted for example with Tanaka-Mura model. According to the model, fatigue crack nucleation is induced by accumulation of dislocation dipoles in a single grain during strain cycling. The number of stress cycles needed for crack nucleation is obtained when a critical value of the self-strain energy of the accumulated dislocation dipoles is reached. Number of cycles required for the crack nucleation in a single grain is expressed as follows. (Božic et al. 2014, p. 1047.)

$$
\begin{equation*}
N_{g}=\frac{8 G W_{c}}{\pi(1-v) \cdot d \cdot\left(\Delta \bar{\tau}-2 \cdot \tau_{C R S S}\right)^{2}} \tag{2.220}
\end{equation*}
$$

According to equation (2.220), crack nucleation on a slip band depends on slip band length d which is the distance along the slip band between grain boundaries of a single grain, and the average shear stress range of the slip band $\Delta \bar{\tau}$. In addition, G is shear modulus, W_{c} is specific fracture energy per unit area, v is Poisson's ratio and $\tau_{C R S S}$ is critical resolved shear stress. (Božic et al. 2014, p. 1047.)

The grain structure of the material can be modelled in 2D or 3D in FEM. One approach is to use the Voronoi tessellation (figure 54) which creates a random grain structure by dividing the space into regions using randomly distributed seed points. (Nygårds 2003, p. 14-15.)

Figure 54. a) 2D Voronoi tessellation with seed points and b) FE mesh of the tessellation (Weyer et al. 2002, p. 949).

Another option to model the grain structure is to use a scanning electron microscope (SEM) image of the actual microstructure of material. The microstructural phases can be segmented from the SEM image and FE mesh can be generated on the resulting material distribution. (Laukkanen, Holmberg \& Wallin 2013, p. 15-16.) Modelling of microstructure based on SEM image is shown in figure 55.

Figure 55. Modelling of the microstructure of a metal matrix composite coating. (Laukkanen, Holmberg \& Wallin 2013, p. 16).

After the FE-mesh is generated, the Tanaka-Mura model can be incorporated in it, and grains where the crack nucleation condition $|\Delta \bar{\tau}|>2 \cdot \tau_{\text {CRSS }}$ is met, can be found (Mlikota, Schmauder \& Božic 2018, p. 292). An example of two-scale FE-model is shown in figure 56.

Figure 56. a) shear stresses in 3D deformable shell sub-model. The Tanaka-Mura nucleation condition is satisfied in black and grey grains. b) 3D global model. (Mlikota, Schmauder \& Božic 2018, p. 292.)

2.8.3 Macroscale

Crack growth of "large" cracks in macroscale can be analysed with LEFM. By combining the LEFM results with the results from the initiation analysis done with Tanaka-Mura model the total fatigue life (initiation + propagation) can be obtained. In essence, two macroscale models are needed. One is used with the grain structure sub-model to analyse the initiation, and the other is used for LEFM analysis and determination of stress intensity factor range ΔK. (Mlikota, Schmauder \& Božic 2018; Mlikota, Staib, Schmauder \& Božic 2017.)

Multiscale models could be used, instead of testing, to obtain different material parameters. For example, Mlikota, Schmauder \& Božic (2018) used a two-scale model to define S-N curve and fatigue limit for AISI 1141 steel, and in another study a two-scale model was used by Mlikota, Staib, Schmauder \& Božic (2017) to determine Paris law constants for carbon steel.

2.9 Finite element analysis

In addition to calculation of stresses, finite element analysis (FEA) is utilized in calculation of effective stress area which is needed for size factor $K_{\text {size }}$. Also, as the use of notch factor from DNVGL-ST-0361 has been found to be problematic with complex geometries, FEA can be utilized in calculation of relative stress gradient χ^{*}. When stress gradient is used for calculation of the slope of synthetic S-N curves, there is no need for the notch factor.

2.9.1 Determination of effective area

Statistical size factor is determined based on the effective area of the studied machine element and this means that the elemental face areas are needed (see figure 57). The area of the element face located on the surface of the component can be obtained with the help of the element shape functions and global nodal coordinates (Lönnqvist 2008, p. 221).

Figure 57. Effective area is calculated for each elemental face that is on the surface of the component, and the effective area of the whole component is the total of elemental effective areas.

The elements used in an example analysis in chapter 3.2 are ten-node tetrahedron solid elements and thus, the calculation procedure for triangular face area is presented below. Since the tetrahedrons are quadratic, the shape of the elemental face is that of a quadratic triangular 2D element. The shape functions N_{i} for quadratic triangular element (T6) which is shown in figure 58, are expressed as follows (Cook, Malkus \& Plesha 1989, p. 154, 182):

$$
\begin{align*}
& N_{1}=\xi(2 \xi-1) \tag{2.221}\\
& N_{2}=\eta(2 \eta-1) \tag{2.222}
\end{align*}
$$

$$
\begin{align*}
& N_{3}=\zeta(2 \zeta-1) \tag{2.223}\\
& N_{4}=4 \xi \eta \tag{2.224}\\
& N_{5}=4 \eta \zeta \tag{2.225}\\
& N_{6}=4 \zeta \xi \tag{2.226}
\end{align*}
$$

, where ξ and η are natural coordinates of the element's coordinate system and $\zeta=1-\xi-\eta$.

Figure 58. Quadratic triangular element (T6) with node numbering (black) and natural coordinates (red).

The area element $d A$ of the elemental face in elemental coordinate system is expressed as the norm of cross product $d \xi \times d \eta$ (see figure 59). When area element is mapped onto the element surface in global coordinate system, it becomes a parallelogram. (Khan Academy 2020.)

Figure 59. Area element defined in elemental coordinate system mapped into global coordinate system.

The vectors $\overrightarrow{d \eta}$ and $\overrightarrow{d \xi}$ and their cross product is obtained as follows (Khan Academy 2020; Henttonen, Oinonen \& Uusitalo 2007, p. 236; Lönnqvist 2008, p. 225):

$$
\begin{align*}
\overrightarrow{d \xi} & =\frac{\partial X}{\partial \xi} d \xi \bar{\imath}+\frac{\partial Y}{\partial \xi} d \xi \bar{\jmath}+\frac{\partial Z}{\partial \xi} d \xi \bar{k} \tag{2.227}\\
\overrightarrow{d \eta} & =\frac{\partial X}{\partial \eta} d \eta \bar{\imath}+\frac{\partial Y}{\partial \eta} d \eta \bar{\jmath}+\frac{\partial Z}{\partial \eta} d \eta \bar{k} \tag{2.228}\\
\overrightarrow{d A} & =\overrightarrow{d \xi} \times \overrightarrow{d \eta}=\left|\begin{array}{ccc}
\bar{\imath} & \bar{J} & \bar{k} \\
\frac{\partial X}{\partial \xi} & \frac{\partial Y}{\partial \xi} & \frac{\partial Z}{\partial \xi} \\
\frac{\partial X}{\partial \eta} & \frac{\partial Y}{\partial \eta} & \frac{\partial Z}{\partial \eta}
\end{array}\right| d \xi d \eta=\left(\frac{\partial Y}{\partial \xi} \cdot \frac{\partial Z}{\partial \eta}-\frac{\partial Z}{\partial \xi} \cdot \frac{\partial Y}{\partial \eta}\right) \bar{\imath} \ldots \tag{2.229}\\
\ldots & -\left(\frac{\partial X}{\partial \xi} \cdot \frac{\partial Z}{\partial \eta}-\frac{\partial Z}{\partial \xi} \cdot \frac{\partial X}{\partial \eta}\right) \bar{\jmath}+\left(\frac{\partial X}{\partial \xi} \cdot \frac{\partial Y}{\partial \eta}-\frac{\partial Y}{\partial \xi} \cdot \frac{\partial X}{\partial \eta}\right) \bar{k} \\
& d \xi d \eta \\
& =d A_{x} \bar{\imath}+d A_{y} \bar{\jmath}+d A_{z} \bar{k}
\end{align*}
$$

, where X, Y and Z are the global coordinates within the element face. Global coordinates within the element face are obtained using the shape functions and global nodal coordinates of the element (Cook, Malkus \& Plesha 1989, p. 182):

$$
\begin{align*}
& X(\xi, \eta)=\sum_{i=1}^{6} N_{i} \boldsymbol{x}_{i} \tag{2.230}\\
& Y(\xi, \eta)=\sum_{i=1}^{6} N_{i} \boldsymbol{y}_{i} \tag{2.231}\\
& Z(\xi, \eta)=\sum_{i=1}^{6} N_{i} \boldsymbol{z}_{i} \tag{2.232}\\
& i=1 \ldots 6 \text { for } \mathrm{T} 6 \text { element }
\end{align*}
$$

, where $\boldsymbol{x}, \boldsymbol{y}$ and z are the element's nodal coordinates in global coordinate system.

The parallelogram area element of the elemental face in global coordinate system is the norm of $d A_{x}, d A_{y}$ and $d A_{z}$ (Khan Academy 2020):

$$
\begin{equation*}
d A(\xi, \eta)=\sqrt{d A_{x}^{2}+d A_{y}^{2}+d A_{z}^{2}} d \xi d \eta \tag{2.233}
\end{equation*}
$$

The area of the element face can then be calculated with a surface integral of the differential equation (2.233) (Khan Academy 2020). It needs to be integrated numerically and this can be done with Gaussian quadrature. Since Gaussian quadrature in its commonly known form gives integral for square element in range $[-1 \leq \xi, \eta \leq 1]$, it needs to be modified so that the integration can be done for triangular element which is defined in the range of $[0 \leq \xi, \eta \leq 1]$ (see figure 58). Thus, the following is obtained for Gaussian quadrature for triangular element. (Cook, Malkus \& Plesha 1989, p. 183.)

$$
\begin{align*}
A & =\int_{0}^{1} \int_{0}^{1-\eta} d A(\xi, \eta) d \xi d \eta \\
& =\frac{1}{2} \cdot \sum_{i=1}^{n} W_{i} \cdot d A\left(\xi_{i}, \eta_{i}\right) \tag{2.234}
\end{align*}
$$

, where ξ_{i} and η_{i} are Gaussian integration points and W_{i} is weight coefficient. Values of integration points and weight coefficients can be found in Appendix IV. When there are multiple sampling points with the same weight factor (see Appendix IV, multiplicity column), integration point values are given for one of them and the rest are obtained by cyclic permutation (Cook, Malkus \& Plesha 1989, p. 183). For example, for three sampling points with the same weight factor, the area element function is calculated at three locations (Cook, Malkus \& Plesha 1989, p. 183):

1: $\left\{\begin{array}{l}\xi_{1}=\frac{2}{3} \\ \xi_{2}=\xi_{3}=\frac{1}{6}\end{array}\right.$
2: $\left\{\begin{array}{l}\xi_{2}=\frac{2}{3} \\ \xi_{3}=\xi_{1}=\frac{1}{6}\end{array}\right.$
3: $\left\{\begin{array}{l}\xi_{3}=\frac{2}{3} \\ \xi_{1}=\xi_{2}=\frac{1}{6}\end{array}\right.$
, where area coordinates correspond natural coordinates: $\xi_{1}=\xi, \xi_{2}=\eta$ and $\xi_{3}=1-\xi-\eta$.

Method explained above can be used with other types of elements as well (also with axisymmetric elements) if correct shape functions and Gauss integration function are chosen. For example, face area of 20 -node hexahedral element could be calculated with the shape functions of quadratic quadrilateral element (Q8). In that case, the Gauss integration would have to be modified so that the domain of the surface area integral is square $[-1 \leq \xi, \eta \leq 1]$.

After the surface face area is calculated for each element, the effective area can be calculated with equations (2.67)-(2.72). As the examined area is divided into small portions, that is to say FE-elements, the element with maximum stress amplitude or multiaxial failure criteria value is presumed to have failure probability of 50%. Consequently, rest of the elements will have lower failure probabilities according to their stress amplitude or multiaxial failure criteria value. Variable λ of standard normal distribution that corresponds a certain reliability can be calculated from the following for each element (according to log-normal distribution). (Rabb 2017, p. 144.)

$$
\begin{equation*}
\lambda_{i}=\frac{1}{s_{\ln }} \ln \left(\frac{\sigma_{a i}}{\sigma_{a, \max }}\right) \tag{2.238}
\end{equation*}
$$

or

$$
\begin{equation*}
\lambda_{i}=\frac{1}{s_{\ln }} \ln \left(\frac{D_{i}}{D_{\max }}\right) \tag{2.239}
\end{equation*}
$$

NOTE! use sample value for $s_{l n}$
, where $\sigma_{a i}$ is the average stress amplitude of element $i, \sigma_{a, \max }$ is the maximum average stress amplitude, D_{i} is the multiaxial failure criteria value for element i and $D_{\max }$ is the maximum multiaxial failure criteria value. The effective areas for reference test pieces have been calculated with $s_{l n}=0.065$ (steel) and $s_{l n}=0.1$ (GJS) and consequently, these should be used when calculating effective area for the studied component.

Reliability for each element can then be calculated as follows (Rabb 2017, p. 145):

$$
\begin{equation*}
R_{i}=1-P_{i}=\frac{1}{\sqrt{2 \pi}} \int_{\lambda_{i}}^{\infty} e^{-\frac{x^{2}}{2}} d x \tag{2.240}
\end{equation*}
$$

Finally, the effective area of the component is calculated as the sum of individual effective areas (Rabb 2017, p. 145):

$$
\begin{equation*}
A_{e f f}=\sum_{i=1}^{n} \frac{\ln R_{i}}{\ln 0.5} \cdot A_{i} \tag{2.241}
\end{equation*}
$$

, where A_{i} is the face area of element i. Rabb (2017, p. 149) provides a rule of thumb which states that the effective area for cast irons (sample $s_{r}=0.1$) is the area where the stress amplitude is 94% of the maximum amplitude. Corresponding value for steels is 96% (sample $\left.s_{r}=0.065\right)$.

2.9.2 Determination of relative stress gradient

Relative stress gradient which is needed for calculation of S-N curve slope exponent is calculated with equation (2.141) which is also shown below:

$$
\begin{equation*}
\chi^{*}=\frac{1}{\sigma_{\max }} \cdot \frac{d \sigma}{d r} \tag{2.141}
\end{equation*}
$$

, where $\sigma_{\max }$ is the maximum normal stress on the surface and $d \sigma$ is change in stress at the depth of $d r$ from the surface (along the surface normal). When multiaxial stress state needs to be considered, χ^{*} can be calculated using Von Mises criterion. Von Mises stress is defined as follows. (Rabb 2020a.)

$$
\begin{equation*}
\left.\sigma_{V M}=\sqrt{\sigma_{x}^{2}+\sigma_{y}^{2}+\sigma_{z}^{2}-\sigma_{x} \sigma_{y} \ldots}+\sigma_{x} \sigma_{z}-\sigma_{y} \sigma_{z}+3\left(\tau_{x y}^{2}+\tau_{x z}^{2}+\tau_{y z}^{2}\right)\right) . \tag{2.242}
\end{equation*}
$$

Relative stress gradient could be defined using Findley damage criterion as well and presumably, this would be a little more accurate. However, using Von Mises is simpler and faster and thus advisable. (Rabb 2020a.)

The depth at which χ^{*} should be calculated is defined by the theory of critical distances. The material length scale L and the critical distance r_{c} are as follows. (Rabb 2020a; Rabb 2020d.)

$$
\begin{align*}
& L=\frac{1}{\pi}\left(\frac{\Delta K_{t h, R}}{2 \cdot K_{\text {size }} \cdot \sigma_{a R}}\right)^{2} \tag{2.243}\\
& 2 r_{c}=L \tag{2.244}
\end{align*}
$$

, where $\Delta K_{t h, R}$ is threshold stress intensity when stress ratio is $R, K_{s i z e}$ is statistical size factor of the critical area and $\sigma_{a R}$ is reference specimen fatigue limit from Haigh diagram for stress ratio R. Note that distance L is used in S-N curve slope exponent calculation. However, if TCD is used in estimation of fatigue limit, the distance is $L / 2$.

The FE-model for determination of relative stress gradient needs to have a reasonably fine mesh so that the stress values can be accurately obtained at the required distance. Especially if the critical distance is very small like for example for some steels ($L \approx 0.024 \mathrm{~mm}$), the mesh should be refined enough near the surface. In figure 60, in the case of the coarsest mesh, it can be seen that the value of χ^{*} at $d r=0.024 \mathrm{~mm}$ cannot be obtained reliably. However, deeper in the material, at the distance of $d r=0.215 \mathrm{~mm}$ ($=L$ for GJS-500), relative stress gradient obtained with the coarsest mesh differs only about 0.6% from the finer meshes.

Figure 60. Relative stress gradient with different node spacings.

Based on the results in figure 60 it can be concluded that there should be at least 20 nodes along the distance L if χ^{*} is required near the surface. With node spacing of 0.0243 mm there is not remarkable difference in χ^{*} value at the depth of $L=0.215 \mathrm{~mm}$ when compared to finer meshes and thus even ~ 10 nodes along L should give adequately accurate results for slope exponent calculation.

In practice, making such fine meshes for actual machine elements requires submodeling. In Ansys, a global model of the studied component can be solved first and then, the area of interest (submodel) can be cut out from the global model. The solution of the global model can be imported into the submodel and used as a boundary condition. The required data, in this case displacements, is then interpolated from the global solution onto the cut boundaries. (Ansys Help 2020.) As an example, an FE-model of a fatigue test specimen for GJS-500 is shown in figures 61 and 62. The calculated relative stress gradient from the model is shown in figure 63.

Figure 61. Global (a) and local (b) FE-models for determination of relative stress gradient.

Figure 62. Von Mises stress [MPa]. a) global model and b) local model. The global model is loaded axially with 1 MPa load to obtain the stress distribution at the notch root. Node spacing at the notch root along the surface normal is 0.003 mm .

Figure 63. Calculated relative stress gradient χ^{*} for the GJS-500 test specimen. $\chi^{*}=0.9778$ mm^{-1} at the distance of $L=2 r_{c}=0.215 \mathrm{~mm}$.

2.9.3 Determination of stress components for multiaxial fatigue analysis

Stress matrix of the critical point for multiaxial fatigue analysis at every load step/increment can be obtained from FE-analysis results. Nodal stress matrices can be exported from FEsolution and used in Findley or Dang Van multiaxial analysis methods. Stress matrix is expressed as follows:

$$
[\sigma]=\left[\begin{array}{ccc}
\sigma_{x} & \tau_{x y} & \tau_{x z} \tag{2.245}\\
\tau_{x y} & \sigma_{y} & \tau_{y z} \\
\tau_{x z} & \tau_{y z} & \sigma_{z}
\end{array}\right]
$$

Examples of proportional and non-proportional load cases are shown in Figures 64 and 65. When non-proportional loading is considered, the time points at which the matrix is obtained should be chosen with appropriate increment so that the response is recorded accurately.

Figure 64. Proportional load case with two time increments and the corresponding stress matrices of the critical point.

The load cycle in Figure 64 yields the following according to Findley criterion when $\sigma_{a R=-1}$ $=537 \mathrm{MPa}$ and $\sigma_{a R=0}=411 \mathrm{MPa}:$

$$
\begin{aligned}
& \Delta \tau=192.8 \mathrm{MPa} \\
& \sigma_{n}=132.3 \mathrm{MPa} \\
& \theta=163.50^{\circ} \\
& \varphi=90^{\circ} \\
& D=129.5 \mathrm{MPa} \\
& S_{F, \text { ver }}=3.3730 \\
& S_{F, \text { rad }}=2.7661
\end{aligned}
$$

	σ_{x}	$\sigma_{\mathbf{y}}$	τ_{xy}
1.	173.2	199.2	-50.0
2.	68.4	17.4	-94.0
3.	0.0	-114.7	-100.0
4.	-100.0	-199.2	-86.6
5.	-187.9	-17.4	-34.2
6.	-200.0	114.7	0.0
7.	-173.2	199.2	50.0
8.	-68.4	17.4	94.0
9.	0.0	-114.7	100.0
10.	100.0	-199.2	86.6
11.	187.9	-17.4	34.2
12.	200.0	114.7	0.0
13.	173.2	199.2	-50.0

Figure 65. Non-proportional load case. The load cycle has been divided in 13 time increments in an effort to capture the maximum shear stress range and normal stress. For comparison, the same load cycle is divided in 37 time increments to show the possible difference in the maximum Findley damage.

The load cycle in Figure 65 yields the following according to Findley criterion when 13 load increments or ~ 7 increments along the period of the highest frequency are used, and $\sigma_{a R=-1}=$ 537 MPa and $\sigma_{a R=0}=411 \mathrm{MPa}:$

$$
\begin{aligned}
& \Delta \tau=337.7 \mathrm{MPa} \\
& \sigma_{n}=235.1 \mathrm{MPa} \\
& \theta=137.75^{\circ} \\
& \varphi=90^{\circ} \\
& D=237.6 \mathrm{MPa} \\
& S_{F, \text { ver }}=1.7148 \\
& S_{F, \text { rad }}=1.5080
\end{aligned}
$$

However, when the load cycle is divided in 37 load increments or ~ 19 increments along the period of the highest frequency, the following is obtained:

$$
\begin{aligned}
& \Delta \tau=347.9 \mathrm{MPa} \\
& \sigma_{n}=234.7 \mathrm{MPa} \\
& \theta=137.75^{\circ} \\
& \varphi=90^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& D=242.6 \mathrm{MPa} \\
& S_{F, \text { ver }}=1.6647 \\
& S_{F, \text { rad }}=1.4766
\end{aligned}
$$

The angle of the critical plane is the same, and there is only $\sim 2 \%$ difference in maximum Findley damage between 13 and 37 load increments. Therefore, using about 10 load increments along the period of the highest frequency should give adequately accurate results (in other words the load cycle in figure 65 divided into 20 increments). Figure 66 shows the critical plane and stress element.

Figure 66. According to Findley criterion the critical plane is perpendicular to XY-plane with the loading presented in Figure 64.

3 RESULTS

The results of this work are composed of flowcharts of the introduced fatigue analysis method and an example analysis of a relatively simple component and load case. An effort is made with the flowcharts and the example calculation to clarify how the new analysis method should be conducted, and what kind of inputs and outputs are required from the programmed analysis tool.

3.1 New method

The new analysis method is presented in the following flowcharts. The flowcharts define the main steps of the analysis process while the background is explained in previous chapters.

The new method requires at least the following values from the user:
Yield strength: $R_{p 0.2} \quad$ (normative or tested)
Ultimate strength: $R_{m} \quad$ (normative or tested)
Ultimate compressive strength: $R_{m c} \quad$ (normative or tested)
Allowed failure probability: λ
(some values are shown in table 6)

Table 6. Some λ values for different failure probabilities.

$\boldsymbol{P}[\%]$	$\boldsymbol{\lambda}^{*}$
2.3	-2
0.1	-3.09
0.01	-3.719
0.001	-4.265
$P=1-R=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\lambda} e^{-\frac{x^{2}}{2}} d x \rightarrow \lambda=\ldots$	

Default values should be available for some variables if no other information is given by the user. However, there should be possibility for the users to input these themselves. Default values are shown in table 7.

Table 7. Default values for some variables if no other information is available.

	Steel GJS
$\sigma_{0.2}$ [MPa]*	$R_{p 0.2}$ (tested) or $1.06 \cdot R_{p 0.2}$ (normative)
σ_{b} [MPa]*	R_{m} (tested) or $1.06 \cdot R_{m}$ (normative)
$\sigma_{\text {b,comp }}$ [MPa]*	$R_{m c}$ (tested) or $1.06 \cdot R_{m c}$ (normative)
$\sigma_{a R=-1}[\mathrm{MPa}]$	$1.04\left(0.144 \sigma_{b}+0.309 \sigma_{0.2}\right)+56 \quad 0.1798 \sigma_{b}+0.11845 \sigma_{0.2}+60.6699$
$A_{\text {eff }}\left[\mathrm{mm}^{2}\right]$	2251039
$k[-]$	$0.1-0.00035 \sigma_{b} \quad 0.000261 \cdot \sigma_{b}-0.65493$
$\sigma_{a R=0}[\mathrm{MPa}]$	$\frac{\sigma_{a R=-1}}{1-k}$
$\begin{aligned} & \Delta K_{t h, R=-1} \\ & {\left[\mathrm{~N} / \mathrm{mm}^{3 / 2}\right]} \end{aligned}$	$31.62 \cdot\left(-0.0038 \sigma_{b}+15.5\right)^{* *}$
Requires user inp reference: Chap	$10, \text { p. } 261 .$

3.1.1 Haigh diagram

Analysis begins with the construction of Haigh diagram.

Haigh diagrams

Compression side:

$\sigma_{m, P 0}=\sigma_{b, c o m p}$
$\sigma_{a, P 0}=0$
$\sigma_{m, P 1}=\frac{\sigma_{a R=-1}+\sigma_{b . c o m p}}{1-k}$
$\sigma_{a, P 1}=\sigma_{a R=-1}+k \sigma_{m, P 1}$
$\sigma_{m, P 2}=\frac{\sigma_{a R=-1}+\sigma_{0.2}}{1-k}$
$\sigma_{a, P 2}=\sigma_{a R=-1}+k \sigma_{m, P 2}$
B-spline
$\sigma_{a f}=2 t \cdot(1-t) \cdot \sigma_{a, P 1}$
$+t^{2} \cdot \sigma_{a, P 2}$
$\sigma_{m}=(1-t)^{2} \cdot \sigma_{m, P 0}$
$+2 t \cdot(1-t) \cdot \sigma_{m, P 1}$
$+t^{2} \cdot \sigma_{m, P 2}$
, where t is calculated with eq
(2.13)

Tensile side

$\sigma_{m, P 0}=\frac{\sigma_{0.2}-\sigma_{a R=-1}}{1+k}$
$\sigma_{a, P 0}=\sigma_{a R=-1}+k \sigma_{m, P 0}$
$\sigma_{m, P 1}=\frac{-\sigma_{a R=-1}}{k}$
$\sigma_{a, P 1}=0$
$\sigma_{m, P 2}=\sigma_{b}$
$\sigma_{a, P 2}=0$
B-spline:
$\sigma_{a f}=(1-t)^{2} \cdot \sigma_{a, P 0}$
$\sigma_{m}=(1-t)^{2} \cdot \sigma_{m, P 0}$
$+2 t \cdot(1-t) \cdot \sigma_{m, P 1}$
$+t^{2} \cdot \sigma_{m, P 2}$
, where t is calculated with eq (2.13)

Effective area $\boldsymbol{A}_{\text {eff }}$

Defect distribution (log-normal) of GJS-500-7 reference test specimen. Logarithmic SD of fatigue limit is $\mathrm{Sln}=\mathrm{Sr}=0.1$. (Mod. Rabb 2017, p. 168.)
$\Delta K_{t h}=310.82 \mathrm{~N} / \mathrm{mm}^{3 / 2}, \sigma_{a f}\left(a_{\text {med }}\right)=195.5 \mathrm{MPa}$ $a_{0}=0.202 \mathrm{~mm}$

Logarithmic median $\mu_{l n}$	5.27
Logarithmic SD $s_{l n}(a)$	0.38
Median defect $a_{\text {med }}[\mu \mathrm{m}]$	194.4
Mean defect $a_{\text {mean }}[\mu \mathrm{m}]$	209.0
Standard deviation $s[\mu \mathrm{~m}]$	82.4
Relative SD s_{r}	0.394

Defect distribution (log-normal) of 34CrNiMo6+QT reference test specimen. Logarithmic SD of fatigue limit is $\mathrm{s}_{\mathrm{ln}}=\mathrm{s}_{\mathrm{r}}=0.065$. (Mod. Rabb 2017, p. 163.)
$\Delta K_{t h}=350.13 \mathrm{~N} / \mathrm{mm}^{3 / 2}, \sigma_{a f}\left(a_{\text {med }}\right)=607.5 \mathrm{MPa}$ $a_{0}=0.0404 \mathrm{~mm}$

Logarithmic median $\mu_{l n}$	2.45
Logarithmic SD $s_{l n}(a)$	0.484
Median defect $a_{\text {med }}[\mu \mathrm{m}]$	11.60
Mean defect $a_{\text {mean }}[\mu \mathrm{m}]$	13.04
Standard deviation $s[\mu \mathrm{~m}]$	6.70
Relative SD s_{r}	0.514

The weakest link theory:
Number of links:
$n=\frac{A_{e f f}}{A_{\text {ref }}} \quad$ when $A_{\text {eff }}>A_{\text {ref }}$
$n=\frac{A_{\text {ref }}}{A_{\text {eff }}} \quad$ when $A_{\text {eff }}<A_{\text {ref }}$
Reliability and failure probability:
$R=\sqrt[n]{0.5}$
$P=1-R=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\lambda} e^{-\frac{x^{2}}{2}} d x \rightarrow \lambda=\ldots$
Size factor:
$K_{\text {size }}=e^{-\lambda s_{l n, C 90}} \quad$ when $A_{\text {eff }}>A_{\text {ref }}$
$K_{\text {size }}=e^{-\lambda s_{l n, C 10}} \quad$ when $A_{e f f}<A_{\text {ref }}$
, where \sin is according to table 1 or 2

K-T diagram if defect distribution is known:

Return period:
$n=\frac{A_{\text {eff }}}{A_{\text {ref }}}$
$P=\frac{n}{n+1}$
Extrapolated defect size:
$F\left(a_{\text {ext }}\right)=P \quad \rightarrow \quad a_{\text {ext }}=\ldots$
, where $F(a)$ is CDF of material defect distribution.

Fatigue limit of the machine element:
$\sigma_{a R=-1, m e}=\frac{\Delta K_{t h}}{2 F \sqrt{\pi\left(a_{e x t}+a_{0}\right)}}$
Size factor:
$K_{\text {size }}=\frac{\sigma_{a R=-1, m e}}{\sigma_{a R=-1, \text { ref }}} \quad$ when $A_{\text {eff }}<A_{\text {ref }}$
$K_{\text {size }}=\frac{\sigma_{a R=-1, \text { ref }}}{\sigma_{a R=-1, m e}} \quad$ when $A_{\text {eff }}>A_{\text {ref }}$
, where $\sigma_{a R=-1, \text { ref }}$ is as follows (Rabb 2017, p 161, 168):

$$
\begin{aligned}
& \sigma_{a R=-1, \text { ref }, \text { steel }}=607.5 \mathrm{MPa} \\
& \sigma_{a R=-1, r e f, G J S}=195.5 \mathrm{MPa} \\
& \text { and } \Delta K_{\text {th,GJS }}=310.82 \mathrm{~N} / \mathrm{mm}^{3 / 2} \\
& \Delta K_{\text {th,steel }}=350.13 \mathrm{~N} / \mathrm{mm}^{3 / 2}
\end{aligned}
$$

3.1.2 Loading

If load history causes multiaxial stresses, Findley damage criterion is utilized in calculation of equivalent mean stress and amplitude. The equivalent values can then be used in cumulative damage analysis.

The angle $\theta_{e q}$ of critical plane for equivalent loading may be different for different levels of stress spectrum. In that case it is conservative to choose the plane with maximum Findley damage as the critical plane and make the cumulative damage summation as if all the stress levels were affecting the same plane (at least if the difference in angles is not significant). Analysis according to Findley criterion is shown in the next flowchart and cumulative damage analysis is shown in the next chapter.

Calculation of $\Delta \tau$ and $\sigma_{\boldsymbol{n}}$ on all studied planes:

$\Delta \tau=$ longest chord between two shear stress states.
After the chord has been calculated, check the radius of the smallest enclosing circle, and choose the most conservative of the two.
$\sigma_{n}=\sigma_{x}$,

Maximum Findley damage and safety factors:

$D=\left(\frac{\Delta \tau}{2}+k \sigma_{n}\right)_{\max }$
$S_{F, v e r}=\frac{f-k \sigma_{n}}{\tau_{a}}$
$S_{F, r a d}=\frac{f}{D}=\frac{f}{\frac{\Delta \tau}{2}+k \sigma_{n}}$

Determination of equivalent mean stress and amplitude:
see eqs. (2.193)-(2.203)

3.1.3 S-N curve and cumulative damage analysis

S-N curves are constructed using relative stress gradient χ^{*}. Damage sum is composed of low cycle (base S-N curve) and high cycle (Haibach extension) parts.

Submodel in FEA:

χ^{*} determined at $2 r_{c}$ from the surface along the surface normal (using Von Mises stress distribution)

$$
\begin{gathered}
L=\frac{1}{\pi}\left(\frac{\Delta K_{t h, R}}{2 \cdot K_{\text {size }} \cdot \sigma_{a R}}\right)^{2} \\
2 r_{c}=L
\end{gathered}
$$

, where $\sigma_{a R}=$ fatigue limit of reference specimen (without any reduction factors)

Or k and/or $N_{a f}$ as a user input

Base S-N curve (median):

$N=N_{a f}\left(\frac{\sigma_{a f}}{\sigma_{a}}\right)^{k}$

Base $\mathrm{S}-\mathrm{N}$ curve (reduced):

Safety factor:
$S_{F}=e^{-\lambda s_{l n}} \quad$, where λ according to allowed failure probability.

Reduced curve:
$\sigma_{a f, P}=\frac{\sigma_{a f}}{S_{F}}$
$N_{P}=N_{a f}\left(\frac{\sigma_{a f, P}}{\sigma_{a}}\right)^{k}$

Haibach extension into high cycle area (median):
$N_{H}=N_{a f}\left(\frac{\sigma_{a f}}{\sigma_{a}}\right)^{2 k-l}$
, where:
$l=1$ for rolled and forged
steel components
$l=2$ for cast
and welded components
Haibach extension into high cycle area (reduced):

Logarithmic standard deviation of life:
$s_{N}=k s_{l n}$
Standard deviation of fatigue strength for extension:
$s_{l n, H}=\frac{s_{N}}{2 k-l}$
Safety factor for extension:
$S_{F, H}=e^{-\lambda s_{l n, H}}$
Reduced curve:
$\sigma_{a f, P H}=\frac{\sigma_{a f}}{S_{F, H}}$
$N_{P H}=N_{a f}\left(\frac{\sigma_{a f, P H}}{\sigma_{a}}\right)^{2 k-l}$

Damage sum:

Low cycle (base S-N curve):
$D_{L C}=\frac{1}{N_{a f}} \sum n_{i}\left(\frac{\sigma_{a i}}{\sigma_{a f, P}}\right)^{k}$
High cycle (Haibach):
$D_{H C}=\frac{1}{N_{a f}} \sum n_{j}\left(\frac{\sigma_{a i}}{\sigma_{a f, P H}}\right)^{2 k-l}$
Total:
$D=D_{L C}+D_{H C}$

	Allowed damage sum \boldsymbol{D}	
	Constant σ_{m}	Variable σ_{m}
Non welded components	0.3	0.1

(rolled, forged)		
Welded and cast compo- nents	0.5	0.2
Machined components	1.0	1.0

Required output:

Haigh diagrams:

- Fatigue limit for $P=50 \%$ and for reduced P for $R=-1$
- Fatigue limit for $P=50 \%$ and for reduced P for $R=0$
- \quad Slope for $P=50 \%$ and for reduced P
- Fatigue limit for a user specified mean stress

Findley:

- Findley parameters f and k
- Shear stress range and normal stress of the critical plane
- Angles of the critical plane
- Findley damage of each level of load spectrum D
- Radial and vertical safety factors
- Equivalent stress values
- Equivalent angle of the critical plane
- Equivalent safety factor

S-N curves and cumulative damage analysis:

- $\quad k$ and $N_{a f}$
- Steel: one k for all levels of stress spectrum
- GJS: k depends on the mean stress \rightarrow different k for each level of stress spectrum and thus also different $N_{a f}$ for each level
- $\sigma_{a f, P=50 \%}$ and $\sigma_{a f, P=r e d}$.
- Fatigue life N_{LC} or $N_{H C}$ for each level of stress spectrum
- Damage $D_{L C}$ or $D_{H C}$ for each level of stress spectrum
- Total damage sums for $D_{L C, \text { tot }}$ and $D_{H C, \text { tot }}$, and total damage sum $D_{\text {tot }}=D_{L C, \text { tot }}+D_{H C, \text { tot }}$

3.2 Analysis of a notched component

As an example, a simple component made of GJS-500 shown in figure 67 is analysed using the method described in the previous chapter. The component is loaded with constant tension and variable torsion. The loading is presented in table 8 .

Figure 67. The component used in the example analysis.

Table 8. Loading.

Bin	F [N]	T [Nmm]		\boldsymbol{n}
	Constant	Min	Max	
$\mathbf{1 .}$	19000	0	200000	4500
$\mathbf{2 .}$	19000	0	50000	250000
$\mathbf{3 .}$	19000	0	62840	150000
$\mathbf{4 .}$	19000	0	180000	6000
$\mathbf{5 .}$	19000	0	78550	200000

Only the main steps of the analysis are listed below. More detailed calculation is presented in Appendix VIII.

1. Haigh diagrams

The following static strength values from EN-1563:2018 (2018, p. 8, 28) are used as starting values:

$$
\begin{aligned}
& \sigma_{0.2}=1.06 \cdot 320=339.2 \mathrm{MPa} \\
& \sigma_{b}=1.06 \cdot 500=530 \mathrm{MPa} \\
& \sigma_{b, \text { comp }}=1.06 \cdot 800=848 \mathrm{MPa}
\end{aligned}
$$

Fatigue limit for $R=-1$, fatigue limit for $R=0$ and slope k of the reference Haigh diagram:

$$
\begin{aligned}
& \sigma_{a R=-1}=196.1 \mathrm{MPa} \\
& \sigma_{a R=0}=129.1 \mathrm{MPa} \\
& k=-0.5166
\end{aligned}
$$

Effective area calculation is done using all the element faces on the notch surface. Due to loading conditions, the whole circumference of the notch needs to be considered in the effective area calculation. Figure 68 shows von Mises stress distribution at the notch root with the maximum loading (bin 1). According to calculation, effective area for the component is $A_{e f f}=113.9 \mathrm{~mm}^{2}$.

Figure 68. Von Mises stress distribution with the maximum loading (bin 1).

The following reduction factors are applied to reference specimen values:

$$
\begin{array}{ll}
K_{\text {size }}=1.131 & \left(A_{\text {ref }}=1039 \mathrm{~mm}^{2}, A_{e f f}=113.9 \mathrm{~mm}^{2}\right) \\
K_{R}=0.79 & \left(R_{z}=200 \mu \mathrm{~m}, \text { casting surface }\right) \\
K_{A T}=1 & \\
K_{N}=1 &
\end{array}
$$

The reduced values (component values) for fatigue limits and slope:
$\sigma_{a R=-1, \text { red }}=175.3 \mathrm{MPa}$
$\sigma_{a R=0, \text { red }}=119.9 \mathrm{MPa}$
$k_{\text {red }}=-0.4616$

Haigh diagrams ($P=50 \%$) for reference specimen and component are shown in figure 69.

Figure 69. Haigh diagrams for $P=50 \%$ for reference specimen and component.

2. Relative stress gradient χ^{*}

First, the critical distance for S-N curve slope exponent determination is calculated:
$2 r_{c}=L=\frac{1}{\pi}\left(\frac{\Delta K_{t h, R=-1}}{2 \cdot K_{\text {size }} \cdot \sigma_{a R=-1}}\right)^{2}=\frac{1}{\pi}\left(\frac{429.0 \mathrm{~N} / \mathrm{mm}^{3 / 2}}{2 \cdot 1.131 \cdot 196.1 \mathrm{MPa}}\right)^{2}=\underline{0.298 \mathrm{~mm}}$

Then, relative stress gradient χ^{*} is obtained at the distance of $2 r_{c}$ from the surface along the surface normal using von Mises stress distribution. The submodel used in determination of χ^{*} is shown in figure 70 and von Mises stress distribution and χ^{*} are shown in figure 71.

Figure 70. The submodel used in determination of relative stress gradient χ^{*}.

Figure 71. Von Mises stress distribution and relative stress gradient at the notch root. $\chi^{*}=$ $0.30 \mathrm{~mm}^{-1}$ at the distance of $2 r_{c}=0.298 \mathrm{~mm}$.

3. Loading

The loading presented in table 8 causes the stress history shown in table 9 and figure 72 at the critical point.

Table 9. Maximum and minimum stresses of each loading bin [MPa].

Bin		$\boldsymbol{\sigma}_{x}$	$\boldsymbol{\sigma}_{y}$	$\boldsymbol{\sigma}_{z}$	$\boldsymbol{\tau}_{x y}$	$\boldsymbol{\tau}_{y z}$	$\boldsymbol{\tau}_{x z}$
$\mathbf{1 .}$	Max	24.2	0	107.7	0	0	161.5
	Min	24.2	0	107.7	0	0	0
$\mathbf{2 .}$	Max	24.2	0	107.7	0	0	40.4
	Min	24.2	0	107.7	0	0	0
3.	Max	24.2	0	107.7	0	0	50.7
	Min	24.2	0	107.7	0	0	0
4.	Max	24.2	0	107.7	0	0	145.3
	Min	24.2	0	107.7	0	0	0
$\mathbf{5 .}$	Max	24.2	0	107.7	0	0	63.4
	Min	24.2	0	107.7	0	0	0

Figure 72. Stress history.

4. Findley

Findley analysis results and equivalent values are presented in table 10. It can be seen that the angle of the critical plane for equivalent loading differs between bins. Conservatively, it is assumed here that the angle $\theta_{e q}$ is the same for all bins and damages of individual bins are summed. Figure 73 shows different load bins in a Findley diagram.

Table 10. Findley analysis results. $f=137.1 \mathrm{MPa}$ and $k=0.4624$

Bin	$\boldsymbol{\Delta} \boldsymbol{\tau}$	$\boldsymbol{\sigma}_{\boldsymbol{n}}$	\boldsymbol{D}	$\boldsymbol{\theta}$	$\boldsymbol{\varphi}$	$\boldsymbol{S}_{\boldsymbol{F}, \mathrm{rad}}$	$\boldsymbol{S}_{\boldsymbol{F}, \mathbf{v e r}}$	$\boldsymbol{\sigma}_{m, e q}$	$\boldsymbol{\sigma}_{a, e q}$	$\boldsymbol{\theta}_{\boldsymbol{e q}}$	$\boldsymbol{S}_{\boldsymbol{F}, e{ }^{*}}$
$\mathbf{1 .}$	129.8	195.6	155.3	0	18.3	0.883	0.719	87.6	159.7	27.2	0.845
$\mathbf{2 .}$	36.5	121.0	74.2	0	12.8	1.848	4.450	82.4	55.5	20.5	2.471
3.	45.0	126.4	80.9	180	166.3	1.694	3.498	81.8	65.0	21.9	2.115
4.	117.6	185.1	144.4	0	18.0	0.950	0.876	86.5	146.0	26.8	0.927
$\mathbf{5 .}$	54.9	133.8	89.3	0	15.0	1.535	2.740	82.0	76.1	23.1	1.805

[^0]

Figure 73. Findley diagram. $f=137.1 \mathrm{MPa}$ and $k=0.4624$.

5. S-N curves

Let us use failure probability of $P=0.1 \%$. Slope exponents calculated using χ^{*} and fatigue lives at the knee point according to equation (2.145) are shown in table 11.

Table 11. Equivalent stresses, slope exponents and fatigue lives at knee-point.

$\boldsymbol{B i n}$	$\boldsymbol{\sigma}_{a, e q}$	$\boldsymbol{\sigma}_{\boldsymbol{m}, \boldsymbol{q}}$	\boldsymbol{k}	$\boldsymbol{N}_{a f}$
$\mathbf{1}$	159.7	87.6	7.316	2031948
$\mathbf{2}$	55.5	82.4	7.411	2061901
$\mathbf{3}$	65	81.8	7.423	2065335
$\mathbf{4}$	146	86.5	7.336	2038312
$\mathbf{5}$	76.1	82	7.419	2064191

Fatigue limits for median S-N curves, safety factors ($P=0.1 \%$), reduced fatigue limits, fatigue lives and damage sums are shown in table 12. The total damage (LCF +HCF) is $D_{\text {tot }}$ $=0.1991$ which is below the allowed damage $D_{\text {allow }}=0.2$ (see table 4) for casting surface.

Table 12. Fatigue limits, fatigue lives and damage sums ($P=0.1 \%$).

Calculation of $\boldsymbol{K}_{\text {size }}$ using K-T diagram (optional)

In the example above, statistical size factor $K_{\text {size }}$ is calculated using the weakest link theory (see calculation in Appendix VIII). Another possibility would be to use the defect distribution of the material and K-T diagram.

Defect distribution for GJS-500-7 provided by Rabb (2017, p. 168) is shown in table 13 and the corresponding K-T diagram is shown in figure 74. Using the method explained in chapter 2.2.3 median defect size and tested fatigue limit are fitted together. Fitting is done using $\sigma_{a R=-}$ ${ }_{l}=195.3 \mathrm{MPa}$ (tested) and $\Delta K_{t h}=310.82 \mathrm{~N} / \mathrm{mm}^{3 / 2}$.

Table 13. Defect distribution (log-normal) of GJS-500-7 reference test specimen. Logarithmic $S D$ of fatigue limit is $s_{l n}=s_{r}=$ 0.1. (Mod. Rabb 2017, p. 168.)

Logarithmic median $\mu_{l n}$	5.27
Logarithmic SD $\operatorname{sln}(a)$	0.38
Median defect $a_{\text {med }}[\mu \mathrm{m}]$	194.4
Mean defect $a_{\text {mean }}[\mu \mathrm{m}]$	209.0
Standard deviation $s[\mu \mathrm{~m}]$	82.4
Relative SD s_{r}	0.394

Figure 74. K-T diagram for GJS-500-7 (Mod. Rabb 2017, p. 169).

Using return period, the following is obtained:
$n=\frac{A_{\text {eff }}}{A_{\text {ref }}}=\frac{113.92 \mathrm{~mm}^{2}}{1039 \mathrm{~mm}^{2}}=0.10964$
$P=\frac{n}{n+1}=0.09881$

This is used to extrapolate the expected defect size in the component:
$F\left(a_{\text {ext }}\right)=P \rightarrow$ solve $a_{\text {ext }} \rightarrow a_{\text {ext }}=119.15 \mu \mathrm{~m}$
, where $F\left(a_{\text {ext }}\right)=\frac{1}{s_{\ln \sqrt{2 \pi}}} \int_{0}^{a_{e x t}} \frac{1}{a} e^{-\frac{\left(\ln a-\mu_{l n}\right)^{2}}{2 s_{l n}^{2}}} d a$
or
$P=0.09881 \quad \rightarrow \quad \lambda=-1.28836$
$K_{\text {size,defect }}=e^{-\lambda s_{l n}}=e^{1.28836 \cdot 0.38}=1.6316$
$a_{\text {ext }}=\frac{a_{\text {med }}}{K_{\text {size,defect }}}=\frac{194.4 \mu \mathrm{~m}}{1.6316}=\underline{119.14 \mu \mathrm{~m}}$

According to K-T diagram, fatigue limit of the component is then:
$\sigma_{a R=-1, \text { component }}=\frac{\Delta K_{\text {th }}}{2 \cdot F \sqrt{\pi\left(a_{\text {ext }}+a_{0}\right)}}=\frac{310.82 \mathrm{~N} / \mathrm{mm}^{3 / 2}}{2 \cdot 0.713 \cdot \sqrt{\pi(0.11915 \mathrm{~mm}+0.202 \mathrm{~mm}}}=217.0 \mathrm{MPa}$

Fatigue limit for reference specimen according to K-T diagram and defect distribution is as follows:
$\sigma_{\text {aR }=-1, K T r e f}=\frac{\Delta K_{\text {th }}}{2 \cdot F \sqrt{\pi\left(a_{\text {med }}+a_{0}\right)}}=\frac{310.82 \mathrm{~N} / \mathrm{mm}^{3 / 2}}{2 \cdot 0.713 \cdot \sqrt{\pi(0.1944 \mathrm{~mm}+0.202 \mathrm{~mm}}}=195.3 \mathrm{MPa}$

And $K_{\text {size }}$ is thus:
$K_{\text {size }}=\frac{\sigma_{a R=-1, \text { component }}}{\sigma_{a R=-1, \text { KTref }}}=\frac{217.0 \mathrm{MPa}}{195.3 \mathrm{MPa}}=\underline{1.111}$
cf. $K_{\text {size }}=1.131$ calculated using the weakest link theory.

Note that K-T diagram uses $\Delta K_{t h}=310.82 \mathrm{~N} / \mathrm{mm}^{3 / 2}$ which differs considerably from the default value calculated with equation provided in table 7 . This value is used here because it was also used in fitting the El Haddad curve and defect size (Rabb 2017, p. 167). Since $K_{\text {size }}$ is relative value, possible error in $\Delta K_{t h}$ does not cause major problems. As the K-T diagram itself is based on tested fatigue limit and defect distribution by Rabb (2017, p. 168-169), it should give accurate results for $K_{\text {size }}$ calculation.

Also, as is mentioned by Rabb (2017, p. 164, 171) it is advisable to use K-T diagram to calculate $K_{\text {size }}$ when $n<0.1$ (using return period) for a notch to avoid under-dimensioning with steel. However, in case of GJS when $n<0.1$ (using return period) for a notch TCD should be taken into account because otherwise K-T diagram underestimates $K_{\text {size }}$ (which is conservative but, in some cases too much so). Therefore, conclusion is that the weakest link theory may be used for GJS and steel when $0.1<n<1$.

Local fatigue limit of the notch according to TCD

According to TCD, the critical amplitude is at the distance of $r_{c}=L / 2$ from the surface of the notch. This means that using $K_{\text {size }}($ from K-T diagram) and fatigue limit of reference specimen, "nominal" fatigue limit at the distance of r_{c} for the notch is obtained. In order to obtain fatigue limit on the surface of the notch, stress gradient has to be considered. (Rabb 2020d.)
$L=\frac{1}{\pi}\left(\frac{\Delta K_{t h, R=-1}}{2 \cdot K_{\text {size }} \cdot \sigma_{a R=-1}}\right)^{2}=\frac{1}{\pi}\left(\frac{429.0 \mathrm{~N} / \mathrm{mm}^{3 / 2}}{2 \cdot 1.111 \cdot 196.1 M P a}\right)^{2}=0.309 \mathrm{~mm}$ $r_{c}=\frac{L}{2}=\underline{0.154 \mathrm{~mm}}$
, where $K_{\text {size }} \cdot \sigma_{a R=-1}=\sigma_{a R=-1, \text { notch,nom }}$ (nominal fatigue limit of the notch).

Taking stress gradient into account, fatigue limit on the surface of the notch can be obtained (Rabb 2020d):
$\sigma_{a R=-1, \text { notch }}=\frac{\sigma_{V M, \text { max }, \text { notch }}}{\sigma\left(r_{c}\right)_{V M, \text { notch }}} \cdot \sigma_{a R=-1, \text { notch,nom }}=\frac{296.13 \mathrm{MPa}}{281.90 \mathrm{MPa}} \cdot 217.9 \mathrm{MPa}=\underline{228.9 \mathrm{MPa}}$
$K_{\text {size }, T C D}=\frac{\sigma_{a R=-1, \text { notch }}}{\sigma_{a R=-1}}=\frac{228.9 \mathrm{MPa}}{196.1 \mathrm{MPa}}=1.167$
cf. $K_{\text {zise }}=1.111$ according to K-T diagram (5% difference). This shows what was mentioned earlier; K-T diagram underestimates $K_{\text {size }}$ with GJS when $n<0.1$ (now $n \approx 0.11$ but effect can already be seen).

4 ANALYSIS AND DISCUSSION

It seems that most of the problems encountered with the analysis method from DNVGL-ST0361 can be solved with the proposed probabilistic method. Firstly, the use of nominal stresses is no longer necessary, and local stresses from finite element analysis can be fully utilized. Secondly, multiaxial stresses can now be handled more accurately and thirdly, determination of failure probability is now easier.

Proposed Haigh diagrams seem to agree reasonably well with test data found in literature. New diagrams and diagrams from DNVGL-ST-0361 are shown together in figures 22-24 but since there is no information about the size of test specimens used in defining the equations in DNVGL-ST-0361, comparison is somewhat difficult. For GJS however, it seems that the new diagrams should be more conservative because slope of the linear part is steeper.

Using relative stress gradient to calculate $\mathrm{S}-\mathrm{N}$ curve slope exponent allows to abandon the use of notch factor and nominal stresses. When relative stress gradient is obtained at the depth of L from the surface of the component, the effect is similar to what is observed when notch sensitivity is considered in nominal stress method (Rabb 2020d). This supports the applicability of the new method.

Effective area calculation with the method shown here is quite laborious. Exportation of nodal coordinates from Ansys have to be automated in some way in order to effectively use the computation procedure shown in chapter 2.9.1. It was also found that computation time for elemental surface areas was rather long when there was a large number of elements and therefore, symmetry should be exploited whenever possible. In the example analysis, about 1300 elemental face areas were calculated and this took over six minutes. Especially the computation of partial derivatives and the cross product $d \xi \times d \eta$ is very time consuming, so if better algorithms and tools for this can be found, they should be utilized.

Multiaxial stresses are handled with Findley criterion. This seems to be the best suited option because it can be used for both steel and cast iron in proportional and non-proportional loading cases. The requirements for computation capacity at least in complex cases are relatively
high but there are possibilities to optimize the calculation procedure. For example, DownHill simplex algorithm greatly decreases the computation time compared to program that does not incorporate any optimization (Rabb 2020e, Lönnqvist 2008, p. 171-172).

According to Rabb (2017, p. 164, 171) K-T diagram should be used to calculate statistical size factor for notched steel components when $A_{\text {eff }} / A_{\text {ref }}<0.1$ to avoid under-dimensioning. Because of this, the use of K-T diagram in calculation of $K_{\text {size }}$ was presented in the flowcharts and in the example analysis in chapter 3.2. It is advisable that K-T diagram is included as an option in the new analysis method so that if a very sharp notch is encountered, $K_{\text {size }}$ calculated with the weakest link theory can be compared to $K_{\text {size }}$ calculated with K-T diagram. Even though there may be some error in $\Delta K_{t h}$ value, it does not cause problems when K-T diagram is used to calculate $K_{\text {size }}$ because $K_{\text {size }}$ is a relative value.

As was shown in the example analysis, K-T diagram may underestimate $K_{\text {size }}$ in a case of a sharp notch when material is GJS. This is true also for steel with very sharp notches and it happens because stress intensity drops considerably over a large material defect on the surface and the critical point is thus located below the surface. Because of this TCD may have to be considered to avoid over-dimensioning. Therefore, it is advisable to include the possibility to calculate $K_{\text {size }}$ according to TCD so that when very sharp notches are encountered, the effect explained above can be taken into account.

The flowcharts in chapter 3.1 give the most important steps and equations of the analysis process. If analyses are desired to be made before a fully functional tool is ready, a few of the steps should still be automated because of the amount of computation required. These include the calculation of Findley equivalent values for all levels of load spectrum in case of finite life, and perhaps the effective area calculation. Rest of the steps can be calculated manually with reasonable effort for example in Excel.

Some of the problems that still remain concern the use of fracture mechanics, multiaxial fatigue analysis and cumulative damage analysis. Currently, defining fatigue strength directly from K-T diagram is not possible, or at least not accurate enough, due to lack of accurate $\Delta K_{t h}$ values. This in turn makes it difficult to define allowable defect sizes for critical areas, which is something that was initially required to be part of the analysis method. Also,
even though some defect distributions can be found, it would be beneficial to have more research on them with different materials.

The problems in multiaxial fatigue analysis are associated with the differences in the direction of the critical plane between different levels of load spectrum. In the example analysis it was conservatively assumed that all the levels affect the same plane since the differences in angles were not very large. Supposing though, that there was a large difference in angles, there could be some problems with this at least in terms of physical interpretation. Another thing to note is that plasticity in case of Findley criterion was not covered here.

There may be some problems with the use of Palmgren-Miner cumulative damage analysis. One, that is also pointed out by Rabb (2017, p. 319), is the sequence effect of loading. This means that the Palmgren-Miner theory does not consider the order in which the different load levels affect the component, which would be of importance if there was for example an occasional overload causing yielding at the notch root. Notch root plasticity would affect the local residual stresses which may even be favorable in terms of fatigue because compressive residual stress would diminish the effect of consequent high cycle loading. Thus, there would be difference in anticipated fatigue lives depending on at which point during the load history these overloads occur. (Schijve 2009, p. 300-302.)

4.1 Further research

The first thing to do in terms of further development would be the programming work. Even though the steps of the analysis process are presented here, surely there is a lot of work to program everything into a fully functional tool. After the basics presented in this work have been assembled into a working tool there are possibilities to develop different parts of the analysis method further.

The method proposed here could be developed further by having reliable test data for $\Delta K_{t h}$. This would also include the question about the crack closure which apparently does not occur with small cracks such as material defects (Rabb 2017, p. 529-530). Research on $\Delta K_{t h}$ would perhaps allow the use of K-T diagram more extensively and then for example the definition of quality requirements for critical areas in terms of allowable defect size would be possible.

Also, surface roughness could be taken into account with the methods such as the one by Murakami presented in chapter 2.2.1 which are based on fracture mechanics. With these kinds of methods, it could be possible to combine effect of surface roughness and defect size, but this would probably require some verification by testing.

Another development area would be the use of the Palmgren-Miner cumulative damage analysis. Since this has been found to have some shortcomings, a more accurate method could be based on fracture mechanics. There is also a need to research how to define number of cycles in non-proportional load cases when cumulative damage analysis is performed.

One more aspect to clarify would be residual stresses and their effect. Residual stresses as such were not addressed here very extensively but they may have a significant effect on fatigue life. Lastly, it would be beneficial to perform a test with a real component and real loading conditions and see how accurately the proposed method is capable of predicting the outcome.

5 CONCLUSION

The most important goal of this thesis was to define the steps of a probabilistic fatigue analysis process for spheroidal graphite cast iron, quenched and tempered steel and structural steel in such a way that an automated analysis tool could be programmed. The motivation for this were the problems encountered in the use of the method presented in DNVGL-ST0361, especially with the use of nominal stresses.

The results of this work give a starting point for programming a modern fatigue analysis tool. Already based on the results, it is possible to analyze at least simple components without any programming work, but more complex loading cases or larger geometries may require that at least parts of the analysis method are automated. The method presented in this thesis is a good starting point for developing more sophisticated and automated method to be used in complex loading cases and with complex geometries.

With the proposed method, it is possible to abandon the use of nominal stresses and utilize local stresses which are more easily available when finite element analysis is used. This is especially important with complex geometries for which the definition of nominal stress may be impossible.

A way to handle proportional and non-proportional multiaxial loading cases was presented. Findley criterion seems to be suitable because it can be used for both cast iron and steel.

A definitive answer for definition of allowable defect size for critical areas was not found. However, the method for this was presented, and with more reliable and extensive test data this could be utilized in the future.

LIST OF REFERENCES

Altair Engineering. 2020. Multiaxial Stress-Life Technical Background. [Altair Engineering eFatigue webpage]. [Referred 12.5.2020]. Available: https://www.efatigue.com/multiaxial/background/stresslife.html

Anderson, T. L. 2005. Fracture mechanics: Fundamentals and Applications. Third edition. Taylor \& Francis Group, LLC. 610 p.

Ansys Help. 2020. Submodeling. [Ansys Help webpage]. [Referred 28.7.2020]. Available: https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v195/wb_sim/ds_submodeling.html?q=submodeling. Service requires a user license.

Božic, Ž. Schmauder, S. Mlikota, M. Hummel, M. 2014. Multiscale fatigue crack growth modelling for welded stiffened panels. Fatigue \& Fracture of Engineering Materials \& Structures 2014, Vol.37(9), p. 1043-1054.

BS 7910. 2013. Guide to methods for assessing the acceptability of flaws in metallic structures. Third edition. BSI Standards Limited. 478 p.

Bronshtein, I. Semendyayev, K. Musiol, G. Mühlig, H. 2015. Handbook of Mathematics. Sixth edition. Springer-Verlag Berlin Heidelberg. 1255 p.

Chapetti, M. 2010. Prediction of threshold for very high cycle fatigue ($\mathrm{N}>10^{7}$ cycles). Procedia Engineering 2010, Vol. 2 (1), p. 257-264.

Cook, R. Malkus, D. Plesha, M. 1989. Concepts and applications of finite element analysis. $3^{\text {rd }}$ edition. John Wiley \& Sons, Inc. 630 p.

DNVGL-ST-0361. 2016. Machinery for wind turbines. DNV GL AS. 106 p.

Dowling, N. 2013. Mechanical Behavior of Materials. Fourth edition. Pearson Education Limited. 975 p.

Downing, S. \& Socie, D. 1982. Simple rainflow counting algorithms. International Journal of Fatigue, Vol. 4(1), p. 31-40.

Eidel, B. Hartmaier, A. Gumbsch, P. 2010. Atomistic Simulation Methods and their Application on Fracture. In: Reinhard, P. Gumbsch, P. (Editors). Multiscale Modelling of Plasticity and Fracture by Means of Dislocation Mechanics. CISM Courses and Lectures, vol. 522. SpringerWienNewYork. p. 1-58.

El Haddad, M. Smith, K. Topper, T. 1979. Fatigue crack propagation of short cracks. Journal of Engineering Materials and Technology, Vol. 101, Issue 1. p. 42-46.

Gärtner, B. 2013. Smallest Enclosing Balls of Points - Fast and Robust in C++. ETH Zürich, Department of Computer Science, Institute of Theoretical Computer Science. [ETH Zürich webpage]. [Referred 29.7.2020.] Available: https://people.inf.ethz.ch/gaertner/subdir/software/miniball.html

Haibach, E. 2006. Betriebsfestigkeit: Verfahren und Daten zur Bauteilberechnung. Third edition. Springer-Verlag Berlin Heidelberg. 759 p.

Henttonen, J. Oinonen, J. Uusitalo, S. 2007. Tekniikan Matematiikka 1. 2.-3. painos. Helsinki: Edita Prima Oy. 385 p.

Henttonen, J. Peltomäki, J. Uusitalo, S. 2006. Tekniikan Matematiikka 2. 2. painos. Helsinki: Edita Prima Oy. 368 p.

Khan Academy. 2020. Surface area integrals. [Khan Academy webpage]. [Referred 9.7.2020]. Available: https://www.khanacademy.org/math/multivariable-calculus/integrat-ing-multivariable-functions/surface-integrals-articles/a/surface-area-integrals

Kontkanen, P. Lehtonen, J. Luosto, K. 2012. Pyramidi 6: Todennäköisyys ja tilastot. 1. painos. Sanoma Pro Oy. 171 p.

Laukkanen, A., Holmberg, K., \& Wallin, K. 2013. Multiscale modelling of engineering materials. In: T. Laitinen, \& K. Wallin (Editors). Multiscale modelling and design for engineering application. VTT Technology, No. 77. VTT Technical Research Centre of Finland. p. 9-17.

Leimkuhler, B. Matthews, C. 2015. Molecular Dynamics With Deterministic and Stochastic Numerical Methods. Springer International Publishing Switzerland. 443 p.

Lönnqvist, C. 2008. Consistent Multiaxial Fatigue Analysis. Vaasa: 2008. Master's thesis. Helsinki University of Technology, Faculty of Engineering and Architecture, Department of Applied Mechanics. 266 p.

Meyer, N. 2014. Effects of Mean Stress and Stress Concentration on Fatigue Behavior of Ductile Iron. Master's thesis. The University of Toledo. 184 p.

Milella, P. 2013. Fatigue and Corrosion in Metals. Springer-Verlag Italia. 844 p.

Mlikota, M. Schmauder, S. Božic, Ž. 2018. Calculation of the Wöhler (S-N) curve using a two-scale model. International Journal of Fatigue 2018, Vol. 114. p. 289-297.

Mlikota, M. Staib, S. Schmauder, S. Božic, Ž. 2017. Numerical determination of Paris law constants for carbon steel using a two-scale model. Journal of Physics: Conference Series, Vol. 843(1). 10 p.

Mourier, C. 2002. Nennspannungsunabhängige Lebensdauervorhersage auf der Grundlage linear elastischer Finite-Elemente-Methode Berechnungen. Berlin: 2002. Doctoral dissertation. Technischen Universität Berlin, Fakultät für Verkehrs- und Maschinensysteme. 189 p.

Murakami, Y. 2002. Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions. Elsevier Science Ltd. 369 p.

Nygårds, M. 2003. Microstructural Finite Element Modeling of Metals. Stockholm: 2003. Doctoral Thesis. Royal Institute of Technology, Department of Solid Mechanics. 34 p.

Pallarés-Santasmartas, L. Albizuri, J. Avilés, A. Avilés, R. 2018. Mean Stress Effect on the Axial Fatigue Strength of DIN 34CrNiMo6 Quenched and Tempered Steel. Metals; Basel Vol. 8, Issue 4. 2018. p. 213-231.

Pilkey, W. 1997. Peterson's stress concentration factors. $2^{\text {nd }}$ edition. John Wiley \& Sons, Inc. 524 p.

Rabb, R. 2013. Todennäköisyysteoriaan pohjautuva väsymisanalyysi. Helsinki: BoD Books on Demand. 459 p.

Rabb, R. 2017. Väsyminen ja todennäköisyysteoria. Oulu: Oulun yliopisto. 619 p.

Rabb, R. 2020a. S-N-Käyrän kaltevuuseksponentti. [private e-mail]. Receivers: Joona Kauppila, Toni Kilpeläinen, Timo Björk. Sent 14.7.2020, 15.16 o'clock (GMT +0200). Attachment: "Kaltevuuseksponentti.docx".

Rabb, R. 2020b. Jännitysgradientti ja kaltevuuseksponentti. [private e-mail]. Receivers: Joona Kauppila, Toni Kilpeläinen, Timo Björk. Sent 17.7.2020, 16.08 o'clock (GMT +0200). Attachment: "k-GJS, korjaus.docx", "k-teräs, korjaus.docx".

Rabb, R. 2020c. Rajasykliluku. [private e-mail]. Receivers: Joona Kauppila, Toni Kilpeläinen, Timo Björk. Sent 16.8.2020, 16.50 o'clock (GMT +0200). Attachment: 'Rajasykliluku.docx".

Rabb, R. 2020d. Teräksen ja pallografiittivaluraudan S-N-käyrien kaltevuuseksponentit. [private e-mail]. Receivers: Joona Kauppila, Toni Kilpeläinen, Timo Björk. Sent 23.8.2020, 17.41 o'clock (GMT +0200). Attachment: ' k-GJS, Update.docx", ' k-teräs, Update.docx".

Rabb, R. 2020e. Ohjelma simplex.f. [private e-mail]. Receivers: Toni Kilpeläinen. Sent 1.4.2020, 12.16 o'clock (GMT +0200). Attachment: "Simplex.big.docx".

Råde, L. Westergren, B. 2014. Mathematics Handbook for Science and Engineering. Lund: Studentlitteratur AB. 562 p.

Schijve, J. 2009. Fatigue of Structures and Materials. Springer Science+Business Media B.V. 622 p .

SFS-EN 1563. 2018. Valut. Pallografiittivaluraudat. 5. painos. Helsinki: Suomen Standardisoimisliitto SFS ry. 85 p.

SFS-EN ISO 683-2. 2018. Lämpökäsiteltävät teräkset, seosteräkset ja automaattiteräkset. Osa 2: Seostetut nuorrutusteräkset. Helsinki: Suomen Standardisoimisliitto SFS ry. 81 p.

SFS-EN 10025-2. 2019. Kuumavalssatut rakenneteräkset. Osa 2: Seostamattomat rakenneteräkset. Tekniset toimitusehdot. 2. painos. Helsinki: Suomen Standardisoimisliitto SFS ry. 76 p.

Sperle, J. 2013. Influence of Parent Metal Strength on the Fatigue Strength of Parent Material with Machined and Thermally Cut Edges. Welding in the World 52, p. 79-92

Statics How To. 2020a. Bessel's Correction: Why Use N-1 For Variance/Standard Deviation? [Statics How To webpage]. [Referred 18.3.2020]. Available: https://www.statis-ticshowto.datasciencecentral.com/bessels-correction/

Statics How To. 2020b. Sample Variance: Simple Definition, How to Find it in Easy Steps. [Statics How To webpage]. [Referred 18.3.2020]. Available: https://www.statis-ticshowto.datasciencecentral.com/probability-and-statistics/descriptive-statistics/samplevariance/

Susmel, L. 2006. The theory of critical distances: a review of its applications in fatigue. Engineering Fracture Mechanics 2008, Vol.75(7), p. 1706-1724.

The Switch. 2020. Welcome to the world of The Switch. [The switch webpage]. [Referred 7.9.2020]. Available: https://theswitch.com/

Tampere University of Technology. 2015. Chapter 6: Fatigue. [web document]. [Referred 13.5.2020]. Available: http://www.tut.fi/rakmek/rak_33060/harj/fatigue_models.pdf

Tanaka, S. Nisitani, H. Teranishi, T. Fujisaki, W. 1995. Effect of Mean Stress on Fatigue Strength of Ferritic Spheroidal Graphite Cast Iron. Transactions of the Japan Society of Mechanical Engineers Series A, Volume 61, Issue 586, 1995. p. 1160-1164.

Taylor, D. 2007. The theory of critical distances. Engineering Fracture Mechanics 2008, Vol.75(7), p. 1696-1705.

TGL 19341/01. 1988. Festigkeitsnachweis für Bauteile aus Eisengußwerkstoffen; Berechnung. Leipzig: Verlag für Standardisierung. 14 p.

Ukrainetz, P. 1960. The effect of the mean stress on the endurance limit. Vancouver: 1960. Master's thesis. The University of British Columbia, Department of Mechanical Engineering. 42 p .

Weber, B. Kenmeugne, B. Clement, J.C. Robert, J.L. 1999. Improvements of multiaxial fatigue criteria computation for a strong reduction of calculation duration. Computational Materials Science 1999, Vol.15(4), p. 381-399.

Weyer, S. Fröhlich, A. Riesch-Opperman, H. Cizelj, L. Kovac, M. 2002. Automatic finite element meshing of planar Voronoi tessellations. Engineering Fracture Mechanics 2002, Vol.69(8), p. 945-958.

Test data from Meyer (2014) and Tanaka et al. (1995).
Spheroidal graphite cast iron

Test data from Pallarés-Santasmartas et al. (2018).
34CrNiMo6

Test data from Ukrainetz (1960).
Mild steel

APPENDIX II, 1
Rain-flow cycle counting (Mod. Rabb 2017, p. 410)

Time

Half cycles from "Rain-flows", amplitudes and mean stresses.

	End points			Half cycles
	Stress	Time	$\boldsymbol{\sigma}_{\mathbf{a}}$	$\boldsymbol{\sigma}_{\mathbf{m}}$
	-155	180	152,5	$-2,5$
A	-75	53	25	-50
C	-100	180	105	5
E	0	91	15	15
G	24	130	12,5	37,5
I	-80	180	82,5	2,5
K	-30	164	27,5	$-2,5$

	End points	
	Stress	Time
B	-25	56
D	150	179
F	31	100
H	110	177
J	50	123
L	25	166
N	85	176
O		

Half cycles

$\boldsymbol{\sigma}_{\mathbf{a}}$	$\boldsymbol{\sigma}_{\mathbf{m}}$
25	-50
152,5	$-2,5$
15	15
105	5
12,5	37,5
27,5	$-2,5$
82,5	2,5

Full cycles

	$\boldsymbol{\sigma} \mathbf{a}$	$\boldsymbol{\sigma} \mathbf{m}$
A-D	152,5	$-2,5$
C-B	25	-50
E-H	105	5
G-F	15	15
I-J	12,5	37,5
K-N	82,5	2,5
M-L	27,5	$-2,5$

Determination of the principal stresses from a stress matrix (Rabb 2017, p. 463).
$\left[\begin{array}{ccc}\sigma_{x}-\sigma & \tau_{x y} & \tau_{x z} \\ \tau_{x y} & \sigma_{y}-\sigma & \tau_{y z} \\ \tau_{x z} & \tau_{y z} & \sigma_{z}-\sigma\end{array}\right] \cdot\left[\begin{array}{c}l \\ m \\ n\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$

Eigenvalues are obtained from the determinant of the matrix:
$\left|\begin{array}{ccc}\sigma_{x} & \tau_{x y} & \tau_{x z} \\ \tau_{x y} & \sigma_{y} & \tau_{y z} \\ \tau_{x z} & \tau_{y z} & \sigma_{z}\end{array}\right|=0$

Invariants of the stress matrix $[\sigma]$:
$I_{1}=\operatorname{tr}[\sigma]=\sigma_{x}+\sigma_{y}+\sigma_{z}$
$I_{2}=\left|\begin{array}{cc}\sigma_{x} & \tau_{x y} \\ \tau_{x y} & \sigma_{y}\end{array}\right|+\left|\begin{array}{cc}\sigma_{x} & \tau_{x z} \\ \tau_{x z} & \sigma_{z}\end{array}\right|+\left|\begin{array}{cc}\sigma_{y} & \tau_{y z} \\ \tau_{y z} & \sigma_{z}\end{array}\right|=\sigma_{x} \sigma_{y}+\sigma_{x} \sigma_{z}+\sigma_{z} \sigma_{z}-\tau_{x y}^{2}-\tau_{y z}^{2}-\tau_{x z}^{2}$
$I_{3}=|[\sigma]|=\left|\begin{array}{ccc}\sigma_{x} & \tau_{x y} & \tau_{x z} \\ \tau_{x y} & \sigma_{y} & \tau_{y z} \\ \tau_{x z} & \tau_{y z} & \sigma_{z}\end{array}\right|=\sigma_{x} \sigma_{y} \sigma_{z}+2 \tau_{x y} \tau_{y z} \tau_{x z}-\sigma_{x} \tau_{y z}^{2}-\sigma_{y} \tau_{x z}^{2}-\sigma_{z} \tau_{x y}^{2}$

The principal stresses are then solved from the following cubic equation:

$$
\begin{equation*}
\sigma^{3}-I_{1} \sigma^{2}+I_{2} \sigma-I_{3}=0 \tag{IV.4}
\end{equation*}
$$

Let us use the following substitution:
$\sigma=z+\frac{I_{1}}{3} \quad \rightarrow \quad z^{3}+p z+q=0$
, where:
$p=I_{2}-\frac{I_{1}^{2}}{3}, \quad q=\frac{I_{1} I_{2}}{3}-I_{3}-\frac{2 I_{1}^{3}}{27}$

Let us use the following notation:
$r=\sqrt{-\frac{p}{3}}$
$\varphi=\frac{1}{3} \cos ^{-1}\left(-\frac{q}{2 r^{3}}\right)$

This yields the following solutions which are the three principal stresses:
$\sigma_{1}=2 r \cdot \cos (\varphi)+\frac{I_{1}}{3}$
$\sigma_{2}=2 r \cdot \cos \left(\varphi+120^{\circ}\right)+\frac{I_{1}}{3}$
$\sigma_{3}=2 r \cdot \cos \left(\varphi+240^{\circ}\right)+\frac{I_{1}}{3}$

The principal stresses are organized in descending order:
$\sigma_{I} \geq \sigma_{I I} \geq \sigma_{I I I}$

The direction cosines l, m and n in respect to the coordinate axes are solved from the following:
$\left\{\begin{array}{l}\tau_{x y} l+\left(\sigma_{y}-\sigma\right) m+\tau_{y z} n=0 \\ \tau_{x z} l+\tau_{y z} m+\left(\sigma_{z}-\sigma\right) n=0 \\ l^{2}+m^{2}+n^{2}=1\end{array}\right.$
$A=\left|\begin{array}{cc}\sigma_{y}-\sigma & \tau_{y z} \\ \tau_{y z} & \sigma_{z}-\sigma\end{array}\right|=\left(\sigma_{y}-\sigma\right)\left(\sigma_{z}-\sigma\right)-\tau_{y z}^{2}$
$B=-\left|\begin{array}{cc}\tau_{x y} & \tau_{y z} \\ \tau_{x z} & \sigma_{z}-\sigma\end{array}\right|=-\tau_{x y}\left(\sigma_{z}-\sigma\right)+\tau_{y z} \tau_{x z}$
$C=\left|\begin{array}{cc}\tau_{x y} & \sigma_{y}-\sigma \\ \tau_{x z} & \tau_{y z}\end{array}\right|=\tau_{x y} \tau_{y z}-\tau_{x z}\left(\sigma_{y}-\sigma\right)$
$\frac{l}{m}=\frac{A}{B}$
$\frac{m}{n}=\frac{B}{C}$
$\frac{l}{n}=\frac{A}{C}$
$R=\sqrt{A^{2}+B^{2}+C^{2}}$
$l= \pm \frac{A}{R}$
$m= \pm \frac{B}{R}$
$n= \pm \frac{C}{R}$

Gauss integration points and weight coefficients for triangular element (Mod. Cook, Malkus \& Plesha 1989, p. 182, 184).

Points	Multiplicity	Area Coordinates $\xi_{1}, \xi_{2}, \xi_{3}$				Weights W_{l}
1-point formula degree of precision 1						
A	1	0.333333333333333	0.33333	3333333333	0.333333333333333	1.000000000000000
3 -point formula degree of precision 2						
B	3	0.666666666666667	0.16666	6666666667	0.166666666666667	0.333333333333333
3-point formula deg						
M	3	0.500000000000000	0.50000	0000000000	0.000000000000000	0.333333333333333
4-point formula degree of precision 3						
A	1	0.333333333333333	0.33333	3333333333	0.333333333333333	-0.5625000000 00000
B	3	0.600000000000000	0.20000	0000000000	0.200000000000000	0.520833333333333
6 -point formula degree of precision 4						
B	3	0.816847572980459	0.09157	6213509771	0.091576213509771	0.109951743655322
C	3	0.108103018168070	0.44594	8490915965	0.445948490915965	0.223381589678011
7 -point formula degree of precision 5						
A	1	0.333333333333333	0.33333	3333333333	0.333333333333333	0.225000000000000
B	3	0.797426985353087	0.10128	6507323456	0.101286507323456	0.125939180544827
C	3	0.470142064105115	0.47014	2064105115	0.059715871789770	0.132394152788506
D	3	0.501426509658179	0.24928	6745170910	0.249286745170910	0.116786275726379
$n s$	6	0.636502499121399	0.31035	2451033784	0.053145049844817	0.082851075618374
13-point formula degree of precision 7						
A	1	0.333333333333333	0.33333	3333333333	0.333333333333333	-0.149570044467682
D	3	0.479308067841920	0.26034	5966079040	0.260345966079040	0.175615257433208
B	3	0.869739794195568	0.06513	0102902216	0.065130102902216	0.053347235608838
ns	6	0.638444188569810	0.31286	5496004874	0.048690315425316	0.077113760890257

NOTE! Area coordinates correspond natural coordinates: $\xi_{1}=\xi, \xi_{2}=\eta$ and $\xi_{3}=1-\xi-\eta$

Sorting the nodal coordinates data for effective area calculation in Excel.

The tet 10 elements located on the surface on the area of interest can have four different orientations, which determines the nodes that are located on the surface of the component (see fig 75). Thus, the calculation procedure presented in Appendix VI has four different possibilities for calculation of the global coordinates within the element face.

This is of importance because the area is calculated with shape functions of T6 element which has only six nodes; nodes N1, N2 and N3 are the corner nodes and nodes N4, N5 and N6 are the midside nodes. This entails that some of the nodes of Tet 10 element, which has 10 nodes, have to be renumbered to match the correct shape functions.

Presented below is one way to do this. Assuredly, the same could be achieved more easily for example by programming a macro for Ansys but there was no possibility to do this within this thesis due to lack of programming skills and time. Therefore, mainly MS-Excel was utilized.

Figure 75. Different orientations of tet 10 element in respect to the component surface. Red nodes are the new node numbers for the original tet 10 node numbers.

First, the surface nodes of each element located on the area of interest have to be found. No direct way to export these was found, so they are searched using Excel (see figures 76 and 77).

Figure 76. Surface elements and surface nodes have to be exported separately from Ansys because importing just the nodes will not give the corresponding element and importing just the elements gives all the nodes (also the four nodes below the surface).

APPENDIX V, 4

Node Number	X Location (mm)	Y Location (mm)	Z Location (mm)
1	0	10	-55
2	7.0711	7.0711	-55
3	0.98017	9.9518	-55
4	1.9509	9.8079	-55
5	2.9028	9.5694	-55
6	3.8268	9.2388	-55
7	4.714	8.8192	-55
8	5.5557	8.3147	-55
9	6.3439	7.7301	-55
29	10.607	10.607	-50
80	0	15	-50
81	0.98105	14.968	-50
82	1.9579	14.872	-50
83	2.9264	14.712	-50
84	3.8823	14.489	-50
85	4.8216	14.204	-50
86	5.7403	13.858	-50
87	6.6343	13.453	-50
88	7.5	12.99	-50
89	8.3336	12.472	-50
90	9.1314	11.9	-50
91	9.8902	11.278	-50

Compare the node numbers of each element to the surface node list node numbers and if the node number is found in the list, the node in question is on the surface of the component. \rightarrow Place this node in a new cell (leave cell empty if node is not on the surface) Excel:
=IF(Node_i<MIN("Node_numb_col-
umn");"";IF(LOOKUP(Node_i; "Node_numb_column")=
Node_i; Node_i;""))

Figure 77. Searching the nodes that are on the surface of the component.

Next, the elements and the corresponding surface nodes (in light blue in figures 77 and 78) are separated into four groups based on their orientation.

Ansys lists the nodes of tet 10 element in such a way that the first four nodes are the corner nodes and the next six nodes are the midside nodes. Thus, the following equations can be used in Excel to find the lines (elements) that do not have a particular corner node on the surface. \rightarrow Put these in new cells

Excel:
$=$ IF(OFFSET(Node_i; $0 ; 1 ; 1 ; 1)="$ ";Node_i;"") (First possibility, fig. 75)
$=$ IF(OFFSET(Node_i;0;2;1;1)="";Node_i;"") (Second possibility, fig. 75)
$=I F($ OFFSET(Node_i; $0 ; 3 ; 1 ; 1)="$ ";Node_i;"") (Third possibility, fig. 75)
=IF(OFFSET(Node_i; $0 ; 4 ; 1 ; 1)="$ ";Node_i;"") (Fourth possibility, fig. 75)
Figure 78. Sorting the elements with different orientations into respective groups. There are four different groups (four different orientations). Only the first possibility is shown in figure.

APPENDIX V, 5

Next, X, Y and Z coordinates for each node need be searched from the surface node list (inside green boundary in figures 77 and 79).

X coordinates for the nodes of the first possible orientation. The coordinates can be found from the surface node list with the following equations.
X coordinate:
=IF(ISNUMBER(INDEX("Surf_nodes_x_loc_column";MATCH(Node_i;"Node_numb_col-umn";0)))=TRUE;INDEX("Surf_nodes_x_loc_column";MATCH(Node_i;"Node_numb_column";0));"")

Y coordinate:
=IF(ISNUMBER(INDEX("Surf_nodes_y_loc_column";MATCH(Node_i;"Node_numb_col-umn";0)))=TRUE;INDEX("Surf_nodes_y_loc_column";MATCH(Node_i;"Node_numb_col-
umn";0));"")
Z coordinate:
=IF(ISNUMBER(INDEX("Surf_nodes_z_loc_column";MATCH(Node_i;"Node_numb_col-umn";0)))=TRUE;INDEX("Surf_nodes_z_loc_column";MATCH(Node_i;"Node_numb_column";0));"")

Figure 79. Searching X, Y and Z coordinates for surface nodes.

After the coordinates for X, Y and Z are found for all orientations, they are saved in separate text files (empty cells need be removed). These text files are then used as input for calculation procedure shown in Appendix VI. Searching the coordinates like shown above will result in 12 text files i.e. four files for each coordinate axis (one for each orientation).

In addition, von Mises stress is needed for effective area calculation. Here, von Mises stress was exported from Ansys for each surface node and the average of nodal values was used for the element. The von Mises stress values for the nodes of a certain element can be searched with the same equation as is used to search the coordinate values but, in this case, "Surf_nodes_x_loc" column has to be replaced by column containing surface node stresses. Note that the nodal values, be it the coordinates or stresses, have to be sorted in ascending order according to node number for the equations to work properly.

Part of a calculation sheet for effective area is shown in figure 80 .

These are effective areas for differ-
ent orientations. Effective area of the
component is the total of the ele-
mental effective areas.

Figure 80. Calculation sheet of effective area and $K_{\text {size }}$ according to the weakest link theory.

Calculation of the element face area in SMath Studio Desktop．

```
Area of a surface composed of
quadtratic triangular (T6) elements
```


Global nodal coordinates from FEA（Ansys）
田－
Shape functions（in reference coordinates ξ and η ）
⿴囗

Global \mathbf{x}, y and z coordinates within the element
田

Surface element

田

Areas of the element faces
\qquad

Total surface area：

$\operatorname{exportData}_{\operatorname{CSV}}\left(A_{2} ;\right.$＂pinta－alat＿2＂$)=1$
exportData $\operatorname{CSV}\left(A_{3} ;\right.$＂pinta－alat＿3＂$)=1$
$\operatorname{exportData}_{\operatorname{CSV}}\left(A_{4} ;\right.$＂pinta－alat＿4＂）$=1$
Total area of the element faces．
According to 3D model，the corre－ sponding area should be 581.22 mm^{2} ．Calculation procedure works well．

Global nodal coordinates from FEA (Ansys)

Shape functions (in reference coordinates ξ and η)
$\square:=1-\xi-\eta$
$N_{1}:=\xi \cdot(2 \cdot \xi-1) \quad N_{4}:=4 \cdot \xi \cdot n$
$N_{2}:=\eta \cdot(2 \cdot \eta-1) \quad N_{5}:=4 \cdot \eta \cdot \zeta$
$N_{3}:=\zeta \cdot(2 \cdot \zeta-1) \quad N_{6}:=4 \cdot \zeta \cdot \xi$

A Snippet of the text file containing nodal X-coordinates (x1.txt)

NODE \rightarrow	N 1	N 2	N 3	N 4	N 5	N 6
ELEMENT						
\downarrow						
E1	4.714	5.5557	5.3858	5.141	5.0386	5.4557
E2	4.714	5.3858	4.4205	5.0386	4.559	4.9094
E3	5.3858	5.9175	4.92	5.6372	5.1503	5.4242
E4	0	0.98017	0	0.49068	0	0.4895
E5	4.8216	4.8836	5.7403	4.8587	5.2838	5.3037
E6	7.139	7.3402	6.4749	7.2233	6.813	6.911
\ldots	\cdots	\cdots	\cdots	\cdots	\cdots	\cdots
\cdots						

1. Possibility

```
\(n:=\operatorname{rows}\left(x_{1}\right)=462\)
Red refers to original Ansys node numbering
```

$$
\text { for } i:=1 ; i \leq n ; i:=i+1
$$

$$
\mathrm{x}_{\mathrm{i}}:=\mathrm{N}_{1} \cdot \mathrm{x}_{1}{ }_{\text {i } 1}+\mathrm{N}_{2} \cdot \mathrm{x}_{1}{ }_{\text {i } 3}+\mathrm{N}_{3} \cdot \mathrm{x}_{1}{ }_{\text {i } 2}+\mathrm{N}_{4} \cdot \mathrm{x}_{1}{ }_{\text {i }}+\mathrm{N}_{5} \cdot \mathrm{x}_{1}{ }_{\text {i } 6}+\mathrm{N}_{6} \cdot \mathrm{x}_{1}{ }_{\text {i } 4}
$$

for $i:=1 ; i \leq n ; i:=i+1$
$\mathrm{Y}_{1}:=\mathrm{N}_{1} \cdot \mathrm{Y}_{1}$ i $+\mathrm{N}_{2} \cdot \mathrm{Y}_{1}{ }_{\text {i } 3}+\mathrm{N}_{3} \cdot \mathrm{Y}_{1}$ i $2+\mathrm{N}_{4} \cdot \mathrm{y}_{1}{ }_{\text {i } 5}+\mathrm{N}_{5} \cdot \mathrm{y}_{1}{ }_{\text {i } 6}+\mathrm{N}_{6} \cdot \mathrm{y}_{1}{ }_{\text {i } 4}$
for $i:=1 ; i \leq n ; i:=i+1$
$\mathrm{Z}_{1}:=\mathrm{N}_{1} \cdot \mathrm{z}_{1}$ i $1+\mathrm{N}_{2} \cdot \mathrm{z}_{1_{\text {i } 3}}+\mathrm{N}_{3} \cdot \mathrm{z}_{1}$ i $2+\mathrm{N}_{4} \cdot \mathrm{z}_{1}{ }_{\text {i } 5}+\mathrm{N}_{5} \cdot \mathrm{z}_{1}{ }_{\text {i } 6}+\mathrm{N}_{6} \cdot \mathrm{z}_{1}{ }_{\text {i } 4}$

2. Possibility

3. Possibility

$$
\begin{aligned}
& \mathrm{n}:=\operatorname{rows}\left(\mathrm{x}_{3}\right)=398 \\
& \text { for } i:=1 ; i \leq n ; i:=i+1 \\
& \quad x_{3}:=N_{1} \cdot x_{3} \quad+N_{2} \cdot x_{3}+N_{3} \cdot x_{3}+N_{4} \cdot x_{3}{ }_{\text {i } 4}+N_{5} \cdot x_{3}{ }_{i 5}+N_{6} \cdot x_{3} \text { i } 6
\end{aligned}
$$

$$
\begin{aligned}
& \text { for i:=1;i} \leq n ; i:=i+1 \\
& \quad Y_{3}:=N_{1} \cdot y_{3}+N_{2} \cdot y_{3}+N_{3} \cdot y_{3}+N_{4} \cdot y_{3}+N_{5} \cdot y_{3}+N_{6} \cdot y_{3}{ }_{\text {i } 6}
\end{aligned}
$$

$$
\text { for } i:=1 ; i \leq n ; i:=i+1
$$

4. Possibility

$$
\begin{aligned}
& n:=\operatorname{rows}\left(x_{4}\right)=1 \\
& \text { for } i:=1 ; i \leq n ; i:=i+1 \\
& \mathrm{X}_{4}:=\mathrm{N}_{1} \cdot \mathrm{x}_{4} \text { i } 3^{+\mathrm{N}_{2} \cdot \mathrm{x}_{4}} \text { i } 1^{+N_{3} \cdot \mathrm{x}_{4}}{ }_{\text {i } 2}+\mathrm{N}_{4} \cdot \mathrm{x}_{4}{ }_{\text {i } 5}+\mathrm{N}_{5} \cdot \mathrm{x}_{4}{ }_{\text {i } 4}+\mathrm{N}_{6} \cdot \mathrm{x}_{4}{ }_{\text {i } 6} \\
& \text { for } i:=1 ; i \leq n ; i:=i+1 \\
& \mathrm{Y}_{4}:=\mathrm{N}_{1} \cdot \mathrm{Y}_{4}{ }_{\text {i } 3}+\mathrm{N}_{2} \cdot \mathrm{Y}_{4}{ }_{\text {i } 1}+\mathrm{N}_{3} \cdot \mathrm{y}_{4}{ }_{\text {i } 2}+\mathrm{N}_{4} \cdot \mathrm{y}_{4}{ }_{\text {i } 5}+\mathrm{N}_{5} \cdot \mathrm{Y}_{4}{ }_{\text {i } 4}+\mathrm{N}_{6} \cdot \mathrm{Y}_{4}{ }_{i 6} \\
& \text { for } i:=1 ; i \leq n ; i:=i+1 \\
& \mathrm{Z}_{4}:=\mathrm{N}_{1} \cdot \mathrm{Z}_{4}{ }_{\text {i 3 }}+\mathrm{N}_{2} \cdot \mathrm{Z}_{4}{ }_{\text {i 1 }}+\mathrm{N}_{3} \cdot \mathrm{Z}_{4}{ }_{\text {i } 2}+\mathrm{N}_{4} \cdot \mathrm{Z}_{4}{ }_{\text {i } 5}+\mathrm{N}_{5} \cdot \mathrm{Z}_{4}{ }_{\text {i } 4}+\mathrm{N}_{6} \cdot \mathrm{Z}_{4}{ }_{\text {i } 6}
\end{aligned}
$$

$$
\begin{aligned}
& n:=\operatorname{rows}\left(x_{2}\right)=430 \\
& \text { for } i:=1 \text {;ín;i:=i+1 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } i:=1 ; i \leq n ; i:=i+1
\end{aligned}
$$

$$
\begin{aligned}
& \text { for } i:=1 ; i \leq n ; i:=i+1 \\
& \mathrm{Z}_{2}:=\mathrm{N}_{1} \cdot \mathrm{Z}_{2} \text { i 1 }+\mathrm{N}_{2} \cdot \mathrm{Z}_{2}{ }_{\text {i 2 }}+\mathrm{N}_{3} \cdot \mathrm{Z}_{2} \text { i } 3+\mathrm{N}_{4} \cdot \mathrm{Z}_{2}{ }_{\text {i } 4}+\mathrm{N}_{5} \cdot \mathrm{Z}_{2}{ }_{\text {i } 6}+\mathrm{N}_{6} \cdot \mathrm{z}_{2}{ }_{\text {i } 5}
\end{aligned}
$$

Surface element

$$
\begin{aligned}
& \eta_{\text {Gauss }}:=\left[\begin{array}{c}
0,333333333333333 \\
0,600000000000000 \\
0,200000000000000 \\
0,200000000000000
\end{array}\right] \xi_{\text {Gauss }}:=\left[\begin{array}{c}
0,333333333333333 \\
0,200000000000000 \\
0,600000000000000 \\
0,200000000000000
\end{array}\right] \quad w:=\left[\begin{array}{c}
-0,562500000000000 \\
0,520833333333333
\end{array}\right] \\
& A_{1}:=\frac{1}{2} \cdot \sum_{i=1}^{1}{ }_{W}{ }_{1} \cdot d A_{1}\left(\xi_{\text {Gauss }} ; \eta_{\text {Gauss }}\right)+\frac{1}{2} \cdot \sum_{i=2}^{4}{ }_{i}{ }_{2} \cdot d A_{1}\left(\xi_{\text {Gauss }} ; \eta_{\text {Gauss }}\right) \\
& A_{2}:=\frac{1}{2} \cdot \sum_{i=1}^{1}{ }_{W}{ }_{1} \cdot d A_{2}\left(\xi_{\text {Gauss }} ; \eta_{\text {Gauss }}\right)+\frac{1}{2} \cdot \sum_{i=2}^{4}{ }_{i}{ }_{2} \cdot d A_{2}\left(\xi_{\text {Gauss }} ; \eta_{\text {Gauss }}\right) \\
& A_{3}:=\frac{1}{2} \cdot \sum_{i=1}^{1}{ }_{W} \cdot d A_{3}\left(\xi_{\text {Gauss }} ; \eta_{\text {Gauss }}\right)+\frac{1}{2} \cdot \sum_{i=2}^{4}{ }_{i}{ }_{2} \cdot d A_{3}\left(\xi_{\text {Gauss }} ; \eta_{\text {Gauss }}\right) \\
& A_{4}:=\frac{1}{2} \cdot \sum_{i=1}^{1}{ }_{W}{ }_{1} \cdot d A_{4}\left(\xi_{\text {Gauss }} ; \eta_{\text {Gauss }}\right)+\frac{1}{2} \cdot \sum_{i=2}^{4}{ }_{i}{ }_{2} \cdot d A_{4}\left(\xi_{\text {Gauss }} ; \eta_{\text {Gauss }}\right)
\end{aligned}
$$

Determination of the smallest enclosing circle (Mod. Weber et al. 1999, p. 393).

Analysis of a notched component from chapter 3.2.

Haigh diagrams:

$\mathbf{R}_{\mathrm{p} 0.2}$	320	339.2	$\mathrm{K}_{\text {size }}$	1.131
\mathbf{R}_{m}	500	530	K_{R}	0.79
\mathbf{R}_{mc}	-800	-848	$\mathrm{K}_{\text {AT }}$	1
			K_{N}	1
k	-0.5166		$\mathbf{k}_{\text {red }}$	-0.4617
$\sigma_{\mathrm{aR}=-1}$	196.1		$\sigma_{a R=-1, \text { red }}$	175.3
$\sigma_{a R=0}$	129.3		$\sigma_{a R}=0$	119.9
Linear part			Linear part, red.	
$\sigma_{m 1}$	295.9		$\sigma_{\mathrm{m} 1}$	304.5
$\sigma_{\text {af1 }}$	43.3		$\sigma_{\text {af1 }}$	34.7
$\sigma_{\text {m2 }}$	-94.3		$\sigma_{\text {m2 }}$	-112.1
$\sigma_{\mathrm{af} 2}$	244.9		$\sigma_{\text {af2 }}$	227.1
Plastic tensile side			Plastic tensile side, red.	
Start PO:			Start P0:	
$\sigma_{\mathrm{m}, \mathrm{Po}}$	295.9		$\sigma_{m, P 0}$	304.5
$\sigma_{\mathrm{a}, \mathrm{PO}}$	43.3		$\sigma_{\mathrm{a}, \mathrm{PO}}$	34.7
Intermediate P1:			Intermediate P1:	
$\sigma_{\mathrm{m}, \mathrm{P} 1}$	379.7		$\sigma_{\mathrm{m}, \mathrm{P} 1}$	379.7
$\sigma_{\mathrm{a}, \mathrm{P} 1}$	0.0		$\sigma_{\mathrm{a}, \mathrm{P} 1}$	0.0
End P2:			End P2:	
$\sigma_{\mathrm{m}, \mathrm{P} 2}$	530.0		$\sigma_{\mathrm{m}, \mathrm{P} 2}$	530.0
$\sigma_{\mathrm{a}, \mathrm{P} 2}$	0.0		$\sigma_{\mathrm{a}, \mathrm{P} 2}$	0.0
Plastic compression side			Plastic compression side, red.	
Start PO:			Start PO:	
$\sigma_{\mathrm{m}, \mathrm{Po}}$	-848		$\sigma_{\mathrm{m}, \mathrm{po}}$	-848
$\sigma_{\text {a, PO }}$	0		$\sigma_{\mathrm{a}, \mathrm{PO}}$	0
Intermediate P1:			Intermediate P1:	
$\sigma_{\mathrm{m}, \mathrm{P} 1}$	-429.815		$\sigma_{\mathrm{m}, \mathrm{P} 1}$	-460.19434
$\sigma_{\mathrm{a}, \mathrm{P} 1}$	418.1847		$\sigma_{\mathrm{a}, \mathrm{P} 1}$	387.80566
End P2:			End P2:	
$\sigma_{\mathrm{m}, \mathrm{P} 2}$	-94.328		$\sigma_{m, P 2}$	-112.11675
$\sigma_{\mathrm{a}, \mathrm{P} 2}$	244.872		$\sigma_{\mathrm{a}, \mathrm{P} 2}$	227.08325

Statistical size factor using the weakest link theory:

$\mathbf{A}_{\text {eff,tot }}$	113.918
$\mathbf{A}_{\text {ref }}$	1039
$\mathbf{S}_{\text {In }}$	0.085
\mathbf{n}	9.121
\mathbf{R}	0.92682
\mathbf{P}	0.07318
$\boldsymbol{\lambda}$	-1.452
$\mathbf{K}_{\text {size }}$	1.131

Excel:
$\lambda=\operatorname{NORM} . S . I N V(\boldsymbol{P})$

The weakest link theory:
Number of links:
$n=\frac{A_{\text {eff }}}{A_{\text {ref }}} \quad$ when $A_{\text {eff }}>A_{\text {ref }}$
$n=\frac{A_{\text {ref }}}{A_{\text {eff }}} \quad$ when $A_{\text {eff }}<A_{\text {ref }}$
Reliability and failure probability:
$R=\sqrt[n]{0.5}$
$P=1-R=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\lambda} e^{-\frac{x^{2}}{2}} d x \rightarrow \lambda=\ldots$
Size factor:
$K_{\text {size }}=e^{-\lambda s_{l n, C 90}} \quad$ when $A_{e f f}>A_{\text {ref }}$
$K_{\text {size }}=e^{-\lambda s_{l n, C 10}} \quad$ when $A_{\text {eff }}<A_{\text {ref }}$
where $s_{l n}$ is according to table 1 or 2

Calculation of $\mathrm{A}_{\text {eff }}$ is shown in Appendices V and VI.

S-N curves and cumulative damage analysis:

Failure probability:

λ	-3.09					
P	0.001	Safety factor:				
$S_{\text {In, } 990}$	0.12	, where λ according to allowed failure				
S_{F}	1.449					
$\mathrm{k}_{\text {red }}$	-0.4617431					
$\sigma_{\text {aR }=-1, \text { red }}$	175.314115		$s_{N}=k s_{l n}-s_{l n, H}=\frac{s_{N}}{2 k-l}$		$S_{F, H}=e^{-\lambda s_{\ln , H}}$	
Bin	$\sigma_{a f}(\mathrm{med})$	S_{F}	S_{N}	$S_{\text {In,H}}$	$S_{\text {F,H }}$	
1 (LCF)	134.9	1.449	0.878	0.070	1.240	
2 (HCF)	137.3	1.449	0.889	0.069	1.239	
3 (HCF)	137.5	1.449	0.891	0.069	1.239	
4 (LCF)	135.4	1.449	0.880	0.069	1.239	
5 (HCF)	137.5	1.449	0.890	0.069	1.239	
Bin	$\sigma_{a f, P}$	$\sigma_{\text {af, PH }}$	N	n	$D_{L C}$	$D_{\text {HC }}$
1 (LCF)	93.1	108.801	39156	4500	0.1149	
2 (HCF)	94.7	110.787	14576797703	250000		0.0001276
3 (HCF)	94.9	111.016	2000357218	150000		0.00056
4 (LCF)	93.4	109.221	77115	6000	0.0778	
5 (HCF)	94.9	110.940	260797621	200000		0.0057195
		$\sigma_{a f}$		Σ	0.19273099	0.0064071
$\sigma_{a f, P}=$		$\sigma_{a f, P H}=\frac{S_{\text {a }}}{S_{F, H}}$		$\boldsymbol{D}_{\text {tot }}$	0.1991	

$N_{P}=N_{a f}\left(\frac{\sigma_{a f, P}}{\sigma_{a}}\right)^{k} \quad N_{P H}=N_{a f}\left(\frac{\sigma_{a f, P H}}{\sigma_{a}}\right)^{2 k-l}$

[^0]: * $S_{F, e q}=$ fatigue limit at $\sigma_{m, e q}$ divided by $\sigma_{a, e q}$

