This is a version of a publication
in
Please cite the publication as follows:
DOI:
Copyright of the original publication:
This is a parallel published version of an original publication.
This version can differ from the original published article.
published by
A mixed methods probe into the direct disclosure of software vulnerabilities
Ruohonen Jukka, Hyrynsalmi Sami, Leppänen Ville
Ruohonen, J., Hyrynsalmi, S., Leppänen, V. (2020). A mixed methods probe into the direct
disclosure of software vulnerabilities. Computers in Human Behavior, vol. 103. pp. 161-173. DOI:
10.1016/j.chb.2019.09.028
Post-print
Elsevier
Computers in Human Behavior
10.1016/j.chb.2019.09.028
© 2019 Elsevier
A Mixed Methods Probe into the Direct Disclosure of Software Vulnerabilities
Jukka Ruohonena,∗, Sami Hyrynsalmia,b, Ville Leppa¨nena
aDepartment of Future Technologies, University of Turku, FI-20014 Turun yliopisto, Finland
bPori Department, Tampere University of Technology, P.O. Box 300, FI-28101 Pori, Finland
Abstract
Software vulnerabilities are security-related software bugs. Direct disclosure refers to a practice that is widely used
for communicating the confidential information about vulnerabilities between two parties, vulnerability discoverers and
software producers. Building on software vulnerability life cycle analysis, this empirical paper observes the qualitative
and quantitative characteristics of direct disclosure practices, focusing particularly on the historical problem related
to producers’ reluctance to participate in the practices. According to the results, the problem was still present in the
2000s and early 2010s—and likely is still present today. By presenting this empirical result about the underresearched
phenomenon of direct disclosure of software vulnerabilities, the paper contributes to the research domain of vulnerability
life cycle modeling in general and the subdomain of empirical vulnerability disclosure research in particular.
Keywords: full disclosure, public disclosure, responsible disclosure, coordinated disclosure, grace period,
proof-of-concept exploit, vendor, life cycle, mixed methods
1. Introduction
A software vulnerability is an abstraction for a software
bug that has consequences for security. Software vulnera-
bilities expose weaknesses in software systems. An exploit
utilizes these weaknesses to compromise or otherwise harm
the intended behavior of a software system. The concept
of software vulnerability disclosure, in turn, relates to the
behavioral processes via which confidential and sensitive
information about discovered vulnerabilities are commu-
nicated by the initial discoverer to other actors, includ-
ing particularly the associated vendor, the producer of the
software system affected. When a disclosure process occurs
privately between a discoverer and a vendor, the process
can be classified as a direct disclosure practice. This em-
pirical paper analyzes these direct disclosure processes by
quantitative and qualitative means, using a data source
that combines both vulnerabilities and exploits.
The paper contributes to the software vulnerability dis-
closure research tradition (Arora et al., 2010; Hahn and
Govindarasu, 2012; Kranenbarg et al., 2018; McQueen
et al., 2011; Mitra and Ransbotham, 2015; Ozment, 2007;
Ruohonen and Allodi, 2018), continuing particularly the
recent empirical work on exploit development and publi-
cation (Ablon and Bogart, 2017; Almukaynizi et al., 2018;
Bullough et al., 2017; Hafiz and Fang, 2016; Sabottke et al.,
2015; Sen and Heim, 2016). The contribution is straight-
forward: there is no existing empirical research on direct
disclosure. This gap in the literature is suboptimal and
∗Corresponding author.
Email address: juanruo@utu.fi (Jukka Ruohonen)
unfortunate because the process has historically been the
most common way to disclose vulnerabilities (Cavusoglu
et al., 2007; Schneier, 2007). This type of disclosure is
still important today—if not still the most prevalent way
to disclose software vulnerabilities. A better understand-
ing about direct disclosure is important because many dif-
ficult problems in software vulnerability disclosure have
specifically manifested themselves through direct disclo-
sure. With the empirical results presented, the paper also
provides a few insights about the historical and contempo-
rary reasons hindering the (direct) disclosure of software
vulnerabilities.
The classical alternative to direct disclosure has been
public disclosure, which refers to releasing of sufficient
information to the public Internet from which vendors
and other actors can then pick up the details. If in-
formation is released right after the discovery, a term
immediate disclosure is also sometimes used (Sen and
Heim, 2016). The same publication process is further
known as a full disclosure in case also sensitive tech-
nical information is released (Schneier, 2007), including
proof-of-concept (POC) code for exploitation. The ideo-
logical rationale behind full disclosure is usually simple:
the public has the right to know. The ideology of no
disclosure (Householder et al., 2017; Choi et al., 2010;
Hahn and Govindarasu, 2012) builds on the logical op-
posite: the public does not need to know because the re-
lease of vulnerability information and POCs supposedly
increases the likelihood of attacks and therefore reduces
the overall well-being in the Internet. The same ratio-
nale works underneath limited disclosure via which only
partial information is released to the public in order to
Preprint submitted to Elsevier March 31, 2020
limit the exposure (Householder et al., 2017). Although
many theoretical models have been proposed over the
years for comparing these and other vulnerability disclo-
sure types (Cavusoglu et al., 2007; Choi et al., 2010), the
fundamental questions involved are most of all norma-
tive. In other words, vulnerability disclosure is a so-called
wicked problem (Householder et al., 2017) that cannot be
addressed with a single optimal model.
Reflecting the wickedness, there are also different hy-
brid disclosure (Cavusoglu et al., 2007) practices via which
vulnerabilities are processed through vulnerability disclo-
sure institutions (Ozment, 2007) and commercial disclo-
sure companies acting as brokers (Algarni and Malaiya,
2014). In addition, many companies nowadays orchestrate
vulnerability finding campaigns and so-called bug bounties
either directly or via crowd-sourcing platforms (Bo¨hme,
2006; Finifter et al., 2013; Ruohonen and Allodi, 2018).
In contrast to direct, immediate, and full disclosure, these
hybrid models usually operate under formal policies for
processing the sensitive vulnerability information between
the actors involved in the disclosure processes.
A particularly important policy aspect is the provision of
a grace period, which refers to a safety period during which
vendors have time to provide patches and advisories before
the eventual public disclosure. If these grace periods are
used, it is often said that responsible disclosure is followed.
When the institutions and coordination practices embed-
ded to hybrid disclosure are combined with responsible
disclosure, the further concept of coordinated disclosure is
often used. While grace periods have thus been institution-
alized into the hybrid disclosure models (McQueen et al.,
2011; Mitra and Ransbotham, 2015; Ozment, 2005), these
are also a prevalent norm in direct disclosure. Norms are
norms, not policies; such informal codes of conduct are not
slavishly followed during direct disclosure, however.
A key factor in responsible disclosure is the time a ven-
dor takes to respond to queries about the vulnerabilities
discovered (Finifter et al., 2013). If a vendor takes a long
time to respond, discoverers are likely to prefer immedi-
ate public or full disclosure instead of responsible disclo-
sure. In fact, discoverers often use the timing of public dis-
closure as a coercive weapon against vendors who would
otherwise refuse to correct the discovered software bugs
that the disclosed vulnerabilities expose (Freeman, 2007).
The same applies to disclosure institutions and compa-
nies (Arora et al., 2010; McQueen et al., 2011). There are
well-known reasons for such coercive tactics. Historically
vendors have been slow to correct security-related bugs in
their software products (McQueen et al., 2011), often re-
fusing to communicate with ethical discoverers (Mitra and
Ransbotham, 2015), or even threatening them with legal
action (Householder et al., 2017; Schneier, 2007). Hence-
forth, this well-known issue bundle is referred to as the
problem of reluctant vendors. The main research question
of this paper is to investigate whether the problem was
still present in the 2000s and early 2010s. For studying the
problem, the paper relies on both quantitative and qualita-
tive inquiry. These research approaches and the empirical
dataset are described in the opening Section 2. Results
and discussion follow in Sections 3 and 4, respectively.
2. Materials and Methods
The paper relies on a single but comprehensive data
warehouse for POC exploits. Qualitative and quantitative
methods are mixed for analyzing a sample that contains in-
formation about direct disclosure of vulnerabilities. Both
the materials and the methods require a brief elaboration.
2.1. Sample
The empirical dataset is based on a sample from Ex-
ploit Database (EDB), which presently provides the most
comprehensive collection of publicly known exploits (EDB,
2016). There were 36, 191 exploits in the database dur-
ing the data collection in early October 2016. This large
amount was first reduced by transforming the raw textual
entries into lower-case letters, and then including the cases
that contained either the character string disclose or the
string contact. This regular expression search reduced the
amount to 4, 867 unique POC exploits. These were pro-
cessed manually in the second step of simultaneous quan-
titative pre-processing and qualitative analysis.
19
88
19
90
19
91
19
92
19
93
19
94
19
95
19
96
19
97
19
98
19
99
20
00
20
01
20
02
20
03
20
04
20
05
20
06
20
07
20
08
20
09
20
10
20
11
20
12
20
13
20
14
20
15
20
16
All cases
0
1000
2000
3000
4000
5000
Fr
eq
ue
nc
y N = 36191
(EDB's publication dates)
19
88
19
90
19
91
19
92
19
93
19
94
19
95
19
96
19
97
19
98
19
99
20
00
20
01
20
02
20
03
20
04
20
05
20
06
20
07
20
08
20
09
20
10
20
11
20
12
20
13
20
14
20
15
20
16
Sampled cases
0
200
400
600
800
1000
Fr
eq
ue
nc
y N = 4867
(EDB's publication dates)
Figure 1: Years of Publication
The sample does not contain obvious biases with respect
to all POC exploits that were archived in the database at
the time of data collection. In particular, the dates of
publication according to EDB’s evaluation (which approx-
imate the dates of public disclosure) are comparable (see
Fig. 1). Most of the cases observed were published in the
late 2000s and early 2010s. Therefore, the sample analyzed
seems reasonable also for deducing about contemporary
direct disclosure practices and processes, which, like most
socio-technical phenomena, are unlikely to change rapidly.
2
The context of exploits adds further weight to the ob-
served direct disclosure: the disclosed cases have not been
limited to mere reporting of vulnerabilities, but these have
also included the public release of POC solutions for ex-
ploitation. Although the POCs archived in EDB have not
been written with actual attacking in mind (Allodi and
Massacci, 2013), studying the proof-of-concepts may pro-
vide valuable and sufficient information for engineering ro-
bust exploits that can be used to reliably compromise or
otherwise disturb software systems. There exists also some
empirical evidence supporting this reasoning (Almukaynizi
et al., 2018). Against this backdrop, POCs can be seen as a
first step in a longer exploit development life cycle (Ablon
and Bogart, 2017; Sabottke et al., 2015). For these same
reasons, POCs used for disclosure purposes should act as
a sufficient deterrent to vendors’ reluctance.
2.2. Qualitative Setup
A so-called mixed methods approach is used for the anal-
ysis. For the present purposes, the term method is simply
understood as a technique for empirical inquiry. The anal-
ysis mixes qualitative and quantitative methods for ana-
lyzing the same dataset; hence, the second term mixed.
Following an inductive logic (Sarker et al., 2013), a the-
matic approach (Cruzes et al., 2015; Guest et al., 2006) was
adopted for the qualitative inquiry: in parallel to quantifi-
cation, each sampled case was read carefully in order to
locate the key thematic constructs that underline the phe-
nomenon observed. The research process could be further
classified as a sequential exploratory design (Carayon et al.,
2015; Hesse-Biber, 2010). The key point behind the design
is that the manual quantification and the qualitative anal-
ysis were done in parallel, but the actual quantitative anal-
ysis was carried out only after the qualitative analysis was
already completed. Therefore, the quantitative analysis
provides a reality check for the qualitative results, which
are always partially reliant on subjective interpretation.
To further increase the robustness of the qualitative
analysis, the principle of transparency (Sarker et al., 2013)
is embraced by referencing the noteworthy thematic ob-
servations with cases that support the observations. The
unique EDB identifiers are used for this purpose. These
identifiers can be easily queried from the database’s online
interface for replication checks. As the numerical identi-
fiers form a monotonically increasing sequence, these can
be also used to assert that the qualitative observations
are longitudinally consistent. If the historical problem of
reluctant vendors was present during the whole period ob-
served, there should be references to identifiers carrying
small (old) and large (new) numerical values.
The direct disclosure cases analyzed exhibit traits of
naturally occurring data (cf. Silverman, 2006). In other
words, the quantitative and qualitative characteristics
have both emerged naturally when discoverers have doc-
umented their involvement in direct disclosure processes
either during the processes or in retrospect. This type of
data allows to connect the thematic approach further to
(digital) ethnography; the goal is to construct thick an-
alytical descriptions by focusing on the discoverers’ own
point of view of the ordinary detail of direct disclosure (cf.
Sharp et al., 2016). While many cases indeed provide
their own intriguing narratives, it can be remarked that
the raw textual data mostly contains vulnerability and se-
curity advisories, structural logs and other bookkeeping
material, severity assessments, technical summaries, and
POC programming code. Like in any good documents,
these often follow each other logically in separate sections.
These structural characteristics eased the finding of key
themes with repeated patterns of meaning. For additional
guarding against the misidentification of key themes, the
qualitative analysis was further framed against the exist-
ing disclosure literature, and by maintaining the necessary
bridges to the quantitative side of the methodological mix-
ture. This side should be also briefly elaborated.
2.3. Quantitative Setup
The quantitative analysis builds on vulnerability life cy-
cle modeling. While the contextual terminology is often
slightly different, which is unfortunately typical for the re-
search domain (Ozment, 2007), the manually coded life
cycle variables build upon a sizable amount of existing re-
search (Finifter et al., 2013; Garcia et al., 2014; Hahn and
Govindarasu, 2012; McQueen et al., 2011; Nappa et al.,
2015; Sen and Heim, 2016). Namely, manual coding was
used for quantifying the following five life cycle variables:
• Discovery refers to the dates on which vulnerabilities
were initially discovered by discoverers.
• Disclosure records the dates on which discoverers
first contacted the vendor(s) affected.
• Response stores the dates on which vendors first re-
sponded to the initial contacts made by discoverers.
• Publication points to the dates on which raw entries
were originally published in the wild.
• Patching keeps track of the dates on which vendors
potentially released patches for the vulnerabilities.
All variables (1) are allowed to contain missing values in
case no sufficient information was available in the raw tex-
tual data. The same assumption is made in many vulner-
ability and exploit databases (Bozorgi et al., 2010; Garcia
et al., 2014). Two small shortcuts were made to increase
the sample sizes: (2) in case the date of public disclosure
was missing, the publication date provided in EDB was
used as a proxy, and either (3) vendors’ advisory release
dates or commits to version control systems were used in
case patch release dates were not available. In contrast to
previous definitions (Ozment, 2007), (4) incorrect or par-
tial patches were not recorded. Because the interest is to
observe direct disclosure, (5) no quantitative records were
made for those cases in which discoverers contacted third-
parties who in turn contacted vendors. For cases reporting
3
multiple vulnerabilities that may affect multiple vendors,
(6) all five life cycle variables refer to the latest dates pro-
vided. Finally, (7) all dates were manually coded from the
self-reported values given by the particular discoverers.
The five variables capture the basic life cycle informa-
tion related to direct disclosure. The corresponding dates
are usually provided by discoverers in a forthright list-
ings. Such listings made the manual quantification rela-
tively easy. Although each unique discoverer uses a custom
semi-structured format, the following cut excerpt (from
EDB-18220) illustrates a typical albeit minimalist format
for real-world vulnerability life cycle bookkeeping:
Vendor logs:
10/10/2011 - Bug found
10/11/2011 - Vendor contacted
10/11/2011 - Vendor replied and requested POC
10/11/2011 - POC sent to vendor
10/31/2011 - Vendor said the POC will be researched
10/27/2011 - Submitted to CERT
11/09/2011 - CyberLink updated the product
11/09/2011 - POC still works on the latest version
12/09/2011 - No response from vendor, POC release.
Table 1: Interpretation of the Life Cycle Metrics
x Meanings Range (−∞, 0) Range [0,∞)
a The overall
length of di-
rect disclosure,
including po-
tential grace
periods.
Publication be-
fore contact-
ing a vendor;
immediate-style
disclosure.
Responsible
disclosure; the
larger the value,
the longer the
grace period.
b How long a dis-
coverer kept a
zero-day vul-
nerability as a
secret before
contacting a
vendor?
Negative val-
ues should be
logically impos-
sible; a contact
mandates a dis-
covery.
Large values in-
dicate question-
able practices; a
secret was kept
long with un-
known motives.
c An indicator for
communication
tardiness; how
long was the
communication
handshaking?
Negative values
are logically
implausible;
vendors cannot
respond without
being queried.
Large values in-
dicate communi-
cation problems;
reluctant ven-
dors take long
to respond.
d An indicator for
overall security
risks; how long
it took for ven-
dors to release
patches?
Public or full
disclosure before
patches; a viola-
tion of respon-
sible disclosure
ideals.
Small values
are desirable;
because POCs
are released,
vendors should
patch rapidly.
The operationalization of the observed life cycle vari-
ables follows a familiar arithmetic path (Ruohonen et al.,
2017; Sen and Heim, 2016). That is, the quantitative anal-
Table 2: Independent Metrics
Variable Description / operationalization
CATEGORYn The four meta-data categories provided
in EDB: DoS (denial-of-service), Web,
Local, and Remote.
PLATFORMn The six most frequent platforms in the
sample (Linux, Windows, Hardware,
Multiple, PHP, and ASP) together with
a re-coded catch-all group (Others) for
all other platforms provided in EDB.
APPLICATIONd Value one if the vulnerable application
is available for download from EDB and
a value zero otherwise.
VERIFIEDd Value one if the EDB community has
verified the POC exploit and a value
zero otherwise.
SCREENSHOTd Value one if a screenshot is available in
EDB for demonstrating the functional-
ity; zero otherwise.
TOPDEVd Given EDB’s author records, a value
one in case the author is among the top-
10 most productive POC authors in the
sample; a value zero otherwise.
SEVERITYi The mean of NVD’s CVSS base scores
for all CVEs referenced in EDB for a
given POC exploit; a value zero for ex-
ploits with no CVE references.
DECADEd Given EDB’s publication dates, a value
one for exploits published in the 2010s;
a value zero otherwise.
MONTHn Given EDB’s publication dates, the cal-
endar time month in which the POC
exploit was published.
OUTLIERd A value one for life cycle values exceed-
ing the 99.5:th percentile and zero for
all other values.
Scale: d for dichotomous, n for nominal, and i for interval.
ysis operates with the following four subtractions:
x ∈

a = Publication−Disclosure,
b = Disclosure−Discovery,
c = Response−Disclosure,
d = Publication− Patching.
Each resulting metric is restricted to be finite, although
this is not necessarily true in practice. For instance, the
operationalization for c is mathematically undefined in
case a reluctant vendor never responds to an initial con-
tact. Consequently, all metrics are used only in subsets
that have quantitative data for both variables in the sub-
tractions. For cases with no missing values, the optimum
is a = b = c = d = 0, meaning that the whole process from
discovery to patching was completed during the same day.
4
As summarized in Table 1, the four metrics each an-
swer to specific life cycle questions. Descriptive statistics
are used as the primary quantitative mean for seeking an-
swers to these questions. In addition, exploratory regres-
sion analysis is used for examining whether the life cycle
metrics vary systematically across a few structural fac-
tors. The adjective structural is used to emphasize that
none of the independent metrics considered have been ex-
plicitly designed to measure disclosure and related pro-
cesses (Ruohonen et al., 2017). Rather, the set of indepen-
dent metrics enumerated in Table 2 refers to the meta-data
categories provided in EDB and, in the case of severity
proxied through the Common Vulnerability Scoring Sys-
tem (CVSS), the National Vulnerability Database (NVD).
As usual, identifiers for the Common Vulnerabilities and
Exposures (CVEs) are used to link the information be-
tween the two databases.
3. Results
The following presentation of the empirical results fol-
lows the thematic qualitative approach. The dissemina-
tion proceeds from the most notable repeatedly occurring
themes to a few important detours worth discussing. To
improve readability, only those themes are explicitly ref-
erenced that are backed by three or more cases. The sym-
bol S is used for the referencing; the corresponding EDB
identifiers are listed in Appendix (from Table A.1 to Ta-
ble A.5). Likewise, direct quotations are referenced with
the symbol Q, and the EDB identifiers for these are listed
in Appendix Table A.6. The brief quantitative analysis
ends the presentation and ties some of the loose ends.
3.1. Ideal Cases
In many cases direct disclosure processes have followed a
linear life cycle pattern: a vendor was contacted, the ven-
dor delivered a response and subsequently made patches
available, after which information was publicly disclosed.
The overall turnaround cycle was sometimes rapid.
The clear majority of the direct disclosure cases ob-
served relied on electronic mail for communication. Only
a few outlying cases indicated more personal communica-
tion, such as phone calls, video conferences, and face-to-
face meetings. Even though there were also a few cases
involving Internet relay chat (IRC), vendor-specific web
applications, and social media (particularly Twitter but
in a few cases also Facebook) communication (S1), these
related mainly to discoverers’ attempts to find suitable ini-
tial contact persons (S2). Email communication was also
fluent in the ideal cases. Discoverers were sometimes even
surprised about how fast vendors responded (S3). When
communication was good, good things often followed.
The information exchanged was not necessarily limited
to the initial notifications and vendors’ short responses.
For instance, a discoverer prepared a security advisory,
which was further delivered to the corresponding vendor
for evaluation, while the vendor in turn delivered further
technical information to the discoverer for research pur-
poses. Some actively participating vendors sent status up-
dates to keep discoverers updated (S4). One responsive
vendor even notified a discoverer that they had acciden-
tally disclosed unnecessary information to the public dur-
ing patch development, and consequently requested a more
coordinated approach. Another vendor went further by
granting access to an internal software development system
in order for the discoverer to participate in patch devel-
opment. Some vendors proactively delivered the patched
versions for the discovers to test (S5). Thus, in the ideal
cases it was typical that discoverers and vendors worked
together for developing patches. In some cases direct dis-
closure did work almost as described in a guideline book.
In particularly illuminating, almost stylized examples,
communication started in good spirit with an exchange of
pretty-good-privacy (PGP) keys, proceeded to discussion
about reproducibility, included a few test rounds with con-
firmations, and finally ended to vendors’ requests about
proper acknowledgements for the discoverer in the ven-
dors’ own security advisories (S6). Some vendors also re-
viewed discoverers’ prepared advisories for technical ac-
curacy. When communication worked well, the discover-
ers were often explicit about future public disclosure and
the exact dates on which sensitive information was to be
made public (S7). This explicit but slightly coercive strat-
egy may have improved communication, which, however,
was generally a visible bottleneck in the historical direct
disclosure cases observed. Ideal cases were ideal cases.
3.2. General Communication Problems
Different communication problems were prevalent
throughout the period examined. While many vendors
preferred encrypted (PGP) communication (S8), some
vendors seemed to have difficulties in understanding why
PGP was—and still is—preferable for confidential infor-
mation exchanges. More generally, it was typical that a
good initial start for a communication did not last long.
Often vendors’ initial replies did not imply subsequent
replies (S9). In a couple of illuminating cases discover-
ers and vendors exchanged various messages via electronic
mail, but at some point the vendors no longer responded,
which forced the discoverers to make phone calls in order
to salvage the situations. Another good example would
be the few cases that involved forwarding of the emails
to the associated development teams—who never replied.
Likewise, many vendors requested further clarifications,
which were delivered, but which tended to end the com-
munication from the vendors’ side (S10). As these cases
exemplify, communication often ended either abruptly or
gradually during the direct disclosure processes.
There were also many other manifestations of commu-
nication problems. For instance, communication was sup-
posedly difficult with a vendor when one individual an-
swered to initial queries, but another individual stepped
5
in to provide updates. Another individual hid the confi-
dential information in a development system for security
reasons, which made an unaware individual to complain
about improper procedures to a discoverer. After a lengthy
email exchange, another discoverer nailed down an impor-
tant issue by recommending “that developers actually in
charge of these issues are copied in the e-mail loop, or
that access to internal issue-tracking tools be given to them
to actively participate in the discussions and the patching
process” (Q1). In other words, it was difficult to disclose
information to apparently already somewhat dysfunctional
organizations. This point likely applies also today.
3.3. Reluctant Vendors
Many vendors did not bother answering to queries.
Many vendors refused to release patches, either explicitly
or implicitly. Patches never arrived even after information
had already been published. In general, it was thus com-
mon that there were neither responses nor patches (S11).
Nor did reminders help, regardless whether these were
done via emails or phone calls (S12). In many cases re-
sponses were missing even after multiple different attempts
that involved video demonstrations, grace periods mea-
sured in months, numerous emails, contact attempts via
online forms, and public or private Twitter messages.
Also the initial communication handshaking often re-
quired multiple contact attempts, but even established
communication channels seemed to require constant re-
minders. An email after an email was required for knowing
whether a reluctant vendor was even receiving the mes-
sages (S13). When no responses were received for mostly
unknown reasons, there was often no option but to pro-
ceed with public disclosure. “Advisory released, unable to
contact the vendor” (Q2), as one discoverer summarized
the issue. The rationales for public disclosure included
increasing the incentives for patching, sharing information
with other discoverers, and informing the public. Not once
did the discoverers agree to comply with vendors’ requests
for removing POCs and other details. In one case, for in-
stance, a vendor first requested a contact via phone, which
was declined, and then wanted that the exploit code should
not be released with the discoverer’s advisory, which was
again declined because “it gives the users a tool to assess
the risks they are running and the effectiveness of possible
countermeasures and workarounds” (Q3). These general
ideals of public information and open data can be gener-
alized to all discoverers present in the sample. After all,
the information would not have otherwise ended in EDB.
Often, vendors patched vulnerabilities disclosed to them
silently with no additional communication or coordina-
tion (S14). Often, moreover, vendors released patches that
did not actually correct or otherwise properly address the
vulnerabilities reported (S15). Unfortunately, the sample
does not contain sufficient information about the reasons
for such silent and inadequate patching. Perhaps vendors
may have had difficulties to fathom the information com-
municated, but this explanation does not seem that likely.
Because POCs were often delivered to vendors—if some-
times only upon request (S16), concrete software testing
should have been possible, which generally signals that
technical characteristics unlikely explain the reluctance.
Although not always having had time, many discoverers
were generally willing and even keen for explaining techni-
cal details, including remediation instructions for vendors
and users alike. Some discovers even offered to help in
software testing and patch development (S17). However,
it was common that vendors neither responded nor utilized
such instructions and other forms of voluntary help. Thus,
to rephrase, vendors’ plain incompetency offers a possible
but not a plausible explanation for their reluctance.
When vendors were contacted and communication
worked, the sample reveals a few noteworthy explanations
for vendors’ refusal to provide patches. First, in many
cases vendors responded that no patches were provided
because the products affected had already reached their
end-of-life (EOL) software life cycle states (S18). A prod-
uct’s looming EOL state was sometimes also used as a
rationale for public disclosure, and exploits were some-
times also written for old software that is no longer sup-
ported (S19). These observations indicate that software
life cycles were an important element characterizing direct
disclosure and the reluctance of vendors.
Second, some issues were supposedly too trivial for
vendors and their users; an advice such as “do a dirty
patch” (Q4) seemed appropriate for some vulnerabilities.
Vendors were also sometimes rather carefree with low-
impact vulnerabilities, giving an early “go ahead to publicly
disclose” (Q5). In some other cases the software was so
poorly engineered that direct disclosure itself was unlikely
to make much of a difference. Some software products
“contain all sorts of obfuscated junk all the time” (Q6), as
one discoverer bluntly but veraciously stated.
Third, some vendors disagreed about whether some is-
sues reported to them were in fact vulnerabilities (S20).
Even though vulnerability disclosure institutions may have
acted as arbiters in some of these disagreements, it was
more common that vendors flat out refused to acknowl-
edge the security implications. To give one example: upon
reporting multiple security issues, a vendor’s spokesperson
noted that one of the issues was a “feature”, while “I do
not consider this a vulnerability” was a response to an-
other issue (Q7). Another vendor said similarly that the
vulnerabilities reported “were deliberate design decisions”
wanted by customers (Q8). Regardless whether these ex-
amples are credible responses to security issues, it can be
concluded that also disagreements shed some light on the
problem of reluctant vendors.
Last but not least, scarce resources and tight sched-
ules explained the reluctance in some cases; a “ven-
dor confirmed the vulnerabilities, but has no time to fix
them” (Q9). Some vendors were too “tightly scheduled on
other priorities” to properly fix vulnerabilities disclosed
to them (Q10). Other vendors were “not going to rush
out a release to fix” less significant vulnerabilities (Q11).
6
These four partial explanations notwithstanding, it re-
mains largely a mystery why some truly reluctant vendors
neither replied to inquiries nor patched their products.
3.4. Responsible Disclosure
Many discoverers had their own norms for grace periods.
The range varied from short 7 day periods through 15,
30, and 40–45 days to longer 90 day grace periods (S22).
When asked, however, discoverers usually accepted delay
requests (S23). For instance, one vendor requested a “90
day restraint on vulnerability release to give clients time
to patch” (Q12). Another vendor requested more time so
that a patch could be delivered alongside a major update.
These examples are not outliers; the grace periods used
during direct disclosure were often flexible and negotiable.
Many of the ideal cases show no visible life cycle prob-
lems regarding the time lines that both parties deemed
as appropriate. When communication worked, the two
parties were usually able to also negotiate each other’s
schedules (S24). More generally, coordinated disclosure
and remediation was often possible (S25). These negoti-
ations also dealt with vendors’ specific policies, such as
the release of patches on specific days. When these ideal
cases are excluded, however, the sample reveals also many
cases indicating that reluctant vendors seldom answered to
proposals for responsible disclosure. Therefore, these qual-
itative observations do not mean that different life cycle
issues would not have been present.
For instance, a minority of discoverers preferred rather
narrow waiting times for responses to initial queries.
“Public disclosure and simultaneously initial vendor con-
tact” (Q13) was a process preferred by some discoverers.
These cases exemplify the rationale behind the concept
of immediate (public) disclosure. In less extreme cases,
less than a week was provided for a vendor, which was
considered as sufficient for releasing the POC code devel-
oped (S21). Given the slowness of email communication—
and the general slowness of communication in large orga-
nizations, such grace periods seem rather harsh. These
short periods are not necessarily unreasonable when com-
munication works smoothly, which may explain the pref-
erence of short grace periods. If things have worked pre-
viously well with other vendors, even a small delay may
seem too long when dealing with a more tardy vendor.
In fact, bad experiences with responsible disclosure had
turned some discoverers to prefer immediate public disclo-
sure with some reluctant vendors and their problematic
products. To conclude: also vulnerability life cycle char-
acteristics have caused some problems in direct disclosure.
3.5. Third Parties
Different third-parties were often involved also in direct
disclosure processes. Sometimes vendors delivered their re-
sponses via third-party security companies. For instance,
in one case a vendor had contacted a global security com-
pany, which subsequently stated that the issue reported
was not in fact a vulnerability. These outsourcing pat-
terns caused also some problems. In another case, a ven-
dor noted that the disclosed vulnerability belonged to an
Internet service provider, which, unsurprisingly, did not
respond to further queries. According to the qualitative
material, it was relatively common that multiple vendors
were affected, or that one or more third-party vendors were
responsible for vulnerabilities that affected another ven-
dor’s products. The web application domain stands out in
this regard. Open source software development is another
visible case. Like today, coordination was often required
between the so-called upstream (developers) and down-
stream (distributors) open source communities (S26). Also
discoverers themselves contacted different third-parties.
Many vulnerabilities are nowadays coordinated through
bug bounties and their online platforms. However, the
sample reveals that bug bounties and related arrangements
were commonly used long before these gained mainstream
traction (S27). There are also a few interesting cases in the
sample about different incentives and problems related to
bug bounties. For instance, some discoverers pursued di-
rect disclosure only after third-party disclosure companies
had refused to handle (or pay for) the vulnerabilities.
Somewhat analogous observations apply with respect
to vulnerability institutions and governmental agencies:
many discoverers contacted such bodies even though they
still relied on direct disclosure for the communication with
vendors. In particular, many discoverers contacted com-
puter emergency response teams (CERTs), which subse-
quently coordinated the initial communication with the
associated vendors, helping to complete the communica-
tion handshaking, among other things (S28). However,
many of these cases did not imply that a CERT would have
been the actual coordinator. Nevertheless, response teams
indeed were one way for addressing the problem of reluc-
tance, although even these teams did not always receive
adequate replies from reluctant vendors (S29). Ironically,
also common vulnerability institutions sometimes exhib-
ited typical forms of reluctance; in some cases they never
bothered answering to queries, failed at keeping promises,
and so forth (S30). Multiple vendors, bug bounties, and
disclosure institutions were not the only third-parties in-
volved in the direct disclosure processes, however.
For gaining publicity, mailing lists, security media out-
lets, blogs, and data warehouses, including EDB itself
(Hafiz and Fang, 2016), were used for publication, adver-
tisement, and vulnerability tracking. These cases included
also requests for CVE identifiers during the direct disclo-
sure processes (S31). Another aspect relates to vulnerabil-
ity discoveries made in conferences and different hacking
gatherings (S32). A further important point is that some
discoverers operated under contracts. In some cases these
contracts required that a plan for disclosure was first co-
ordinated with the customer contracted, after which the
actual, vulnerable, vendor was contacted (S33). All in all,
these observations suggest that the hybrid disclosure mod-
els are not as clear-cut as often presented in the literature.
7
3.6. Maliciousness
The qualitative sample contains a few cases of full dis-
closure with no grace periods, meaning that a previously
unknown zero-day vulnerability was disclosed to the public
Internet before the associated vendor, or anyone else, had
time to react. Although opinions vary and borderline cases
have been common, it can be argued that maliciousness,
as such, does not manifest itself by disclosing a few lines of
code required for a cross-site scripting vulnerability. Like-
wise, when a discoverer rallied for a particular disclosure
ideology, there was arguably nothing malicious in stating
that “full disclosure rocks!” (Q14). In contrast, some out-
lying cases have exhibited rather deliberate maliciousness,
which seems to have been targeted either toward security
companies, other discoverers, some particular vendors and
software projects, or different underground groups. These
few outlying cases are also accompanied with profane lan-
guage, which is absent from most of the cases sampled.
But it is often difficult to say who is malicious and who
is not. There are also many reckless software vendors who
explicitly include questionable techniques into their soft-
ware products, but refuse to take any real responsibility
from their actions. An illuminating case starts with a few
acknowledgements about the original disclosure in a se-
curity conference, proceeding to remind the Internet that
a company for network switches had included a backdoor
for one of its products, and the issue had already been
unresolved for a year. Sadly, this case is not a sole repre-
sentative in the sample about vendors’ backdoors (S34). It
is often difficult to say what is ethical and what is uneth-
ical, but most would place these cases of public disclosure
toward the ethical end of the continuum.
3.7. Quantitative Observations
Quantitative analysis is a good way for ending the em-
pirical exposition. Before continuing to the results, it is
important to emphasize that the quantitative data cannot
be used for answering to questions regarding the truly re-
luctant vendors who never responded to any queries. In
other words, all four life cycle metrics (see Section 2.3) re-
flect more the ideal cases than the particularly problematic
ones trapped by the qualitative analysis. While keeping
this important point in mind, the manually quantified life
cycle metrics are illustrated in Fig. 2. By using Table 1 as
an interpretation guide, the results can be summarized as
follows, moving from a to d consecutively.
• The clear majority of the direct disclosure cases ob-
served have used grace periods with varying lengths.
Full disclosure before notifying vendors was relatively
rare, as can be concluded by the small amount of neg-
ative values in the upper-left plot. When the negative
values are removed, it can be concluded that the av-
erage grace period lengths varied from about 34 (me-
dian) days to 70 days (mean). This range supports
the qualitative observations.
a = Publication − Disclosure
-1500
-1000
-500
0
500
Da
ys
POC exploit (index)
(N = 987, mean = 65, median = 33)
b = Disclosure − Discovery
0
200
400
600
800
Da
ys
POC exploit (index)
(N = 380, mean = 23, median = 2)
c = Response − Disclosure
0
100
200
300
400
Da
ys
POC exploit (index)
(N = 540, mean = 8, median = 1)
d = Publication − Patching
-1000
-500
0
500
Da
ys
POC exploit (index)
(N = 489, mean = 21, median = 4)
Figure 2: Life Cycle Metrics
• Most discoverers were quick to contact vendors after
discovering vulnerabilities; on average, the time lag
was about two (median) to 23 days (mean). That
said, there were also some alarming lags between the
initial discoveries and the subsequent disclosures to
vendors. Although a couple of extreme outliers are
present in the sample (which may have also resulted
from discoverers’ typing errors), there were also a
few cases of discoverers holding to their secrets even
up to six months. Proof-of-concept exploit develop-
ment takes time like any other type of development,
of course, yet these delays still seem a little odd when
considering the motto of public disclosure.
• Provided that vendors responded to inquiries, they
were relatively fast. On average, about a week was re-
quired for receiving the first replies. Even through the
truly reluctant vendors are not present in the quanti-
tative sample, tardiness still manifests itself through
the few vendors whose initial replies have taken a
month or more. In one extreme case a vendor took
even over a year to respond to a query.
• The sample contains only a few cases whereby dis-
coverers published POCs before vendors had their
patches, advisories, or commits ready. This observa-
tion is again reflected in the small amount of negative
values in the lower-right plot in Fig. 2. Furthermore,
in the subset with sufficient data (N = 489), about
15% of the cases saw a publication during the same
day as vendors released their patches or other remedi-
ation solutions. This detail again supports the earlier
qualitative observations; schedules were often coordi-
nated or even synchronized.
A few further observations can be drawn by regress-
8
ing the four life cycle metrics against the structural fac-
tors in Table 2. Because the amount of negative values
is small for a and d (and, as expected, absent for b and
c), it seems reasonable to focus on the subsets of non-
negative values. This choice leads to a further decision
on the regression methodology to use. Initial modeling
indicates decent enough OLS estimates when the non-
negative values are further passed through a ln(x + 1)
transformation, as in previous vulnerability disclosure re-
search (Arora et al., 2010; Ruohonen et al., 2018). While
this transformation makes the residuals from the regres-
sion models roughly normal (see Fig. 3), the residuals still
show patterns of non-constant variances. For this rea-
son, the results reported in Table 3 were computed with a
heteroskedasticity-consistent covariance matrix estimator.
-3 -2 -1 0 1 2 3
-4
-2
0
2
4
a = Publication −Disclosure
Theoretical Quantiles
Sa
m
ple
 Q
ua
nt
ile
s
Normal Q-Q
-3 -2 -1 0 1 2 3
-2
-1
0
1
2
3
4
b = Disclosure −Discovery
Theoretical Quantiles
Sa
m
ple
 Q
ua
nt
ile
s
Normal Q-Q
-3 -2 -1 0 1 2 3
-2
-1
0
1
2
3
4
c = Response −Disclosure
Theoretical Quantiles
Sa
m
ple
 Q
ua
nt
ile
s
Normal Q-Q
-3 -2 -1 0 1 2 3
-2
0
2
4
d = Publication − Patching
Theoretical Quantiles
Sa
m
ple
 Q
ua
nt
ile
s
Normal Q-Q
Figure 3: Residual Normality
The estimates indicate that there exists some systematic
variation in the four timelines with respect to the EDB’s
meta-data category and platform. When compared to web
vulnerabilities and POC exploits thereto, denial-of-service
and remote vulnerabilities seem to have decreased vendors’
reply times. Remote vulnerabilities tended to also increase
the time vendors took to patch. These observations seem
logical in the sense that web vulnerabilities are often less
severe and less complex. For these reasons, discoverers
may have preferred short grace periods for web vulnera-
bilities and vendors may have fixed these more quickly.
However, the regression results do not allow to explicitly
infer about the relationship between the timelines and the
severity of the vulnerabilities reported. Neither the aver-
age CVSS base scores nor the squared scores attain sta-
tistically significant coefficients, but this is related to the
operationalization of the SEVERITY metric (see Table 2).
Most of the long timelines specifically refer to vulnerabil-
ities with an average base CVSS score of zero, meaning
that these interesting cases do not have CVE references
required for NVD-based CVSS information. Due to this
data limitation, it would be equally unwarranted to use
the individual CVSS metrics in the present context.
The three metrics related to EDB’s quality assurance
(APPLICATION, VERIFIED, and SCREENSHOT) are
not easy to interpret, but it can be noted that verified cases
seem to have decreased the values of all four metrics. Also
the metric TOPDEV attains a negative coefficient for d.
Taken together, these observations hint that vendors may
have patched more quickly when they dealt with seasoned
discoverers and robust POCs.
The estimates for DECADE indicate that slightly longer
grace periods were used in the 2010s compared to the 2000s
and 1990s. Although the details are omitted from Table 3
for the sake of brevity, also some of the monthly effects are
statistically significant with relatively high coefficient mag-
nitudes. Finally, the adjusted coefficients of determina-
tion indicate only modest overall statistical performance.
These are familiar observations from earlier studies (Arora
et al., 2010; Ruohonen et al., 2018). It is probable that
direct disclosure timelines have contained systematic sta-
tistical variations, but the meta-data information available
from existing databases seems to capture only a small por-
tion of such variations. The quantitative results are also
exposed to some validity concerns soon discussed.
4. Discussion
The following last rites summarize the key results, dis-
cuss limitations, and point out further research potential.
4.1. Key Results
The foremost key result can be summarized as follows:
• The problem of reluctant vendors was still present in
the 2000s and early 2010s. Many many vendors were
reluctant, slow, and generally unwilling to participate
in direct disclosure of software vulnerabilities.
This answer supports industry surveys according to
which some vendors are still hesitant to participate or
even hostile toward discoverers (Ring, 2015; Uchil, 2016).
Though, every cloud has a silver lining. When reporting
vulnerabilities to a unfamiliar vendor, there are five basic
possibilities: the vendor “could (1) respond gratefully and
patch the vulnerability as soon as possible, (2) ignore it,
(3) deny it, or (4) report to the police” (Kranenbarg et al.,
2018, p. 3), or (5) threaten with legal action. The close
to five thousand cases observed do not fortunately indi-
cate any hints about the fourth and fifth response types.
Despite of the many problems reported, also direct disclo-
sure processes have improved in this regard from the 1990s.
Nevertheless, the prevalence of the second type has seri-
ous consequences for both research and practice. In terms
of the latter, the overall price to pay from the reluctance
9
Table 3: Regression Results
Dependent Metric
Metric Reference Variable a b c d
– Constant 3.918∗∗∗ 1.386∗ 0.944∗∗∗ 2.522∗∗∗
CATEGORY Web DoS 0.140 -0.240 -0.518∗∗ -0.394
Local -0.166 -0.341 -0.154 0.379
Remote 0.164 -0.105 -0.424∗ 0.596∗
PLATFORM Others ASP -0.684 0.607 -0.128 -0.847
Hardware 0.042 0.200 0.537∗∗ 0.184
Linux -0.252 0.510 -0.347 -0.044
Multiple -0.204 1.045∗ 0.102 0.072
PHP -0.933∗∗∗ 0.185 0.018 -0.618∗
Windows -0.327 0.938∗ 0.193 -0.436
APPLICATION Unavailable Available -0.559∗∗∗ -0.446∗ -0.108 -0.134
VERIFIED Unverified Verified -0.358∗∗∗ -0.125 -0.205 -0.805∗∗∗
SCREENSHOT Unavailable Available -0.471 -0.900∗∗ 0.067 -0.211
TOPDEV Other authors Top-10 authors -0.096 -0.494 0.216 -0.859∗∗∗
SEVERITY – Mean CVSS -0.028 0.118 -0.092 0.066
– (Mean CVSS)2 0.002 -0.018 0.014 -0.012
DECADE 1990s and 2000s 2010s 0.573∗∗∗ 0.517∗ 0.149 0.070
OUTLIER No Yes 3.316∗∗∗ 5.663∗∗∗ 4.049∗∗∗ 3.503∗∗∗
MONTH Eleven dummy-variables included for monthly effects but not shown for brevity.
N 976 380 540 474
Adjusted R2 0.205 0.147 0.117 0.246
Breusch-Pagan (p-value) 0.013 0.572 0.044 0.022
Notes: non-negative values with a ln(x + 1) transformation for all x ∈ {a, b, c, d}; OLS regression with standard errors based
on White’s (1980) covariance matrix estimator; the last row probes the homoskedasticity of the residuals (H0) according to the
test of Breusch and Pagan (1979); ∗∗∗ for p < 0.001, ∗∗ for p < 0.01, and ∗ for p < 0.05.
largely falls into the hands of consumers and users who
continue to use software products known to be vulnerable.
In terms of research, the literature on vulnerability dis-
closure has traditionally placed a great deal of emphasis on
the dates on which patches and exploits were released to
the public. These dates have frequently been used to de-
fine different exposure periods (Arbaugh et al., 2000; Bilge
and Dumitras, 2012; Nappa et al., 2015). The quantity d
in Table 1 is a typical example in this regard. However,
observations made in recent research allow to question how
reliable and valid such exposure periods are in reality.
While reliability is threatened by data quality issues,
some of the validity problems are accompanied with more
interesting contextual observations. For instance, recent
research has revealed time lags in CVE allocation, non-
synchronized release of patches by regional subsidiaries,
as well as supplementary patches for patching unintended
omissions in earlier patches (Li and Paxson, 2017; Naka-
jima et al., 2019; Park et al., 2017; Ruohonen et al., 2018).
The qualitative results presented augment these observa-
tions: vendors have frequently released also invalid patches
that do not actually fix the vulnerabilities disclosed to
them. More strikingly, the problem of reluctant vendors
continued to further imply that patches never arrived for
many products that were known to have been vulnerable.
If there are no patches for many vulnerabilities and incor-
rect patches for some, how valid can the different exposure
periods be? As was noted in Subsection 2.3, time differ-
ences cannot even be used in this non-patching context
because the other quantity in a subtraction is undefined.
The reluctance of vendors should not be exaggerated,
however. Sometimes direct disclosure worked well or even
smoothly. The quantitative results indicate that direct dis-
closure was relatively fast when the initial communication
obstacles had been solved: the mean turnaround times
were 23 and 8 days for discoverers to contact vendors after
their discoveries and vendors to respond to the discover-
ers’ initial queries, respectively. The median values were
even lower. These quantitative observations can be ac-
companied with the qualitative observations about secure
communication of confidential vulnerability information.
While keeping in mind that the quantitative results do
not apply to vendors who neither respond to queries nor
patch their products, the few but noteworthy ideal cases
signify another key result. It can be stated as follows:
• When direct disclosure worked particularly well, it was
relatively fast and tended to exhibit distinct forms of
coordinated software engineering, including collabo-
10
rative patch development, sharing of technical infor-
mation, multi-party software testing, synchronized re-
lease of security advisories, and related activities.
In other words, the problem of reluctant vendors was
present, but the problem cannot be generalized to all ven-
dors. Partially due to the nature of the sample and the
ethnographic focus adopted (see Subsection 2.2), only a
few answers were present in the data for the more funda-
mental question of why the problem was still present. The
notable explanations culminate in four facets: (a) release
engineering, software life cycles, and EOL states; (b) poor
software quality and low-impact vulnerabilities; (c) dis-
agreements between discoverers and vendors; (d) and ven-
dors’ limited time and scarce resources for patching. The
first facet has also been a familiar theme in media (Cor-
field, 2019), and the last facet has been visible in indus-
try surveys (Cimpanu, 2018). The importance of software
life cycles is also noteworthy because the amount of vul-
nerabilities discovered has been observed to slow down as
software products age (Ruohonen et al., 2015). Although
not visible in the sample, it should be emphasized that
the reluctance was presumably also explained by business
and related factors. This presumption is backed by ob-
servations that security issues can have a negative impact
upon quality perceptions (Licorish et al., 2015), and even
affect firms’ stock prices (Spanos and Angelis, 2016). The
following key result points out more practical problems:
• Direct disclosure was highly vulnerable to differ-
ent communication delays, handshaking difficulties,
breakages, and related communication problems, likely
partially due to the reliance on electronic mail.
Thus, communication is still a visible bottleneck. It is
almost like emails are caught by spam filters or just other-
wise end up in void. The medium used for communication
likely contributes to the problems. For instance, feedback
delays typically increase the ambiguity in email communi-
cation (Byron, 2008), and postponing replies to emails is a
typical way to intentionally delay decision-making (McK-
eown and Zhang, 2015; Shirren and Phillips, 2011). Fur-
thermore, the results provide only weak support for the
existing observations about increasing use of social media
for disseminating vulnerability and other security informa-
tion (Bullough et al., 2017; Le et al., 2019; Sabottke et al.,
2015; Syed et al., 2018). According to the qualitative ob-
servations, social media is mainly used for finding contact
persons. The observation is sensible in the sense that the
disclosure of complex technical information can hardly be
done in a tweet. Therefore, it is also probable that the fun-
damental characteristics of email communication continue
to hinder also the contemporary direct disclosure practices.
Responsible disclosure has been a common norm also in
direct disclosure. When communication worked, the par-
ties involved also managed to often coordinate each other’s
responses. This said, the quantitative results show some
signs of vendors’ tardiness on one hand, and discovers’
short grace periods on the other. The average grace pe-
riod used was about 30–70 days. Although some current
practitioners disagree (Ring, 2015), this range may be too
short particularly for more complex vulnerabilities (Mc-
Queen et al., 2011). Furthermore, it is again important
to stress that this average length reflects the ideal cases
rather than the problematic ones. By relying on both the
quantitative results and the qualitative results, the follow-
ing key result provides a more balanced viewpoint on the
vulnerability life cycle characteristics:
• When communication worked, direct disclosure was
relatively fast, but when communication was problem-
atic, discoverers often preferred public disclosure over
delayed responsible disclosure with reluctant vendors,
suggesting that direct disclosure practices tended to
operate with relatively short grace periods.
This key result can be balanced with a corollary:
• Although the ideology of public disclosure—and, to a
lesser extent, the ideology of full disclosure—is uni-
versally shared in the empirical sample analyzed, the
direct disclosure processes observed only very seldom
exhibited malicious motives.
While disclosure ideologies still played a strong role in
the direct disclosure practices, many of the discoverers ob-
served were employed security professionals specialized in
vulnerability discovery. There was still, of course, a blend
of professionals and hobbyists, but particularly the newer
cases point toward a professionalized field. Given that also
criminology research has recently shown interest in vul-
nerability disclosure (Kranenbarg et al., 2018), a couple of
reservations can be nevertheless mentioned. First, nothing
can be concluded about potential use of the information
possessed prior to the dates of disclosure. The quantitative
results indicate that some discoverers have held some vul-
nerabilities suspiciously long as private secrets. Malicious
motivates may be present in some cases, but human mis-
takes and lack of commonly agreed disclosure procedures
may explain other cases. “Sorry, I was not sure how to
handle this and forgot about it for a long time” (Q15), as
one discoverer noted. Second, it is impossible to evaluate
whether and how the criminal undergrounds are connected
to direct disclosure and the publication of POCs. As was
elaborated, these and other difficult questions do not apply
only to discoverers. There are also suspicious vendors.
To some extent, the observed reluctance issues also sig-
nify the business model that the specialized disclosure
companies launched in the early 2000s. There is still a
market demand for a commercial hybrid disclosure model,
which may well be a better and more efficient practice also
in terms of actual security attacks and exploitation. The
same point applies to bug bounties and public sector in-
volvement via CERTs and related institutions. Reflecting
the wickedness of the problem, however, the qualitative re-
sults also indicate that even prominent national CERTs do
not always have practical means to counter the reluctance.
11
The role of an intermediate actor can be further re-
flected against the communication patterns during direct
disclosure processes. For businesses, business-to-business
or business-to-public-sector relationships are presumably
easier and more familiar than communication with sup-
posedly often unknown actors who possess confidential se-
curity information. Trust is necessary for any business.
Consequently, even the ideas of business-to-hacker com-
munication may be scary for many vendors. Although the
analysis did not try to explicitly identify the discoverers,
there are both qualitative and quantitative signs that sea-
soned discoverers with commercial affiliations were able to
handle disclosure better than individual hackers. Liabil-
ity and juridical reasons may play their roles, but some of
these cases provide good targets for communication prac-
tices. A cavalier but frank style may work also for hackers.
The hybrid disclosure models are relevant also from a
research perspective, as summarized in the final key result:
• Different third-parties, including, but not limited to,
vulnerability disclosure institutions, other vendors,
CERTs, and disclosure companies, were often present
also in direct disclosure processes, suggesting that the
theoretical hybrid and direct disclosure types may in-
tervene in practice.
In other words, direct disclosure often contained differ-
ent hybrid behavioral patterns, which imply that the the-
oretical demarcations are not as sharp as often presumed
in the disclosure literature (cf. Ransbotham et al., 2012,
Fig. 1). These observations also open a window of oppor-
tunity for further research. Before considering future re-
search directions, some limitations must be acknowledged.
4.2. Threats to Validity
A few potential threats to validity should be discussed.
Although the validity of qualitative results cannot be eval-
uated in quantitative terms (Williams and Morrow, 2009),
the concepts of external, construct, and internal validity
can be still used by loosening the definitions for these. In
what follows, the results are thus evaluated in terms of
the soundness of the measures, concepts, and abstractions
(construct validity), the generalizability or transferability
of the empirical results (external validity), and the consis-
tency of the general empirical reasoning (internal validity).
4.2.1. Construct Validity
A notable construct validity threat relates to the times-
tamp quantities used to compute the four life cycle metrics.
In addition to the subjective element involved in enforc-
ing the coding criteria (see Section 2.3), the use of self-
reported values is problematic. However, it should be em-
phasized that also other studies have relied on self-reported
bookkeeping material (Ablon and Bogart, 2017), and par-
ticularly that similar manual coding is typically done by
vulnerability and exploit database maintainers.
There are also more theoretical concerns. For instance,
the date of discovery does not rule out the possibility that
someone else would not have found (and perhaps even
disclosed) the same vulnerability earlier (McQueen et al.,
2011), which would entail the question about vulnerability
rediscovery (Ozment, 2005). Another point worth noting is
that the dates characterizing exploit development were not
quantified; therefore, the relationship between POCs and
direct disclosure remains implicit in the quantitative anal-
ysis because it is impossible to deduce whether a discov-
erer had a POC ready upon contacting a vendor. Despite
of these issues, the fine-grained definitions (Garcia et al.,
2014; Hahn and Govindarasu, 2012; Li and Paxson, 2017)
used in the present work are useful in the sense that many
studies tend to strictly equate the date of disclosure to the
date on which information was published in a vulnerability
database (Massacci and Nguyen, 2014; Nappa et al., 2015;
Syed et al., 2018). Given that CVE identifiers are often re-
quested while the disclosure processes are still active (S31),
it is clear that the events of disclosure have occurred al-
ready much earlier. Furthermore, vulnerability severity is
one important element that is being assessed and negoti-
ated during direct disclosure (Householder et al., 2017).
By implication, also CVSS metrics are theoretically prob-
lematic for the quantitative analysis: if the information
has not yet been available, it cannot have influenced the
disclosure processes. Analogous points apply to most vari-
ables listed in Table 2. When a discoverer first contacts a
vendor, there is seldom information that has already been
stored into databases. These potential construct validity
issues apply only on the quantitative side, however.
4.2.2. External Validity
There are four ways to consider generalizability threats.
The first is to consider whether the sample from EDB gen-
eralizes to all cases archived in the database. However, it
is not easy to evaluate such generalizability because sam-
pling from the database cannot be done randomly; only a
minority of the cases archived contain information about
the direct disclosure phenomenon. That said, it is worth
to remark that the sample size (about 13% of all archived
cases at the time of the data collection) is still larger than
what has been used (3.5%) in comparable settings (Holm
and Afridi, 2015). The second way is to contemplate about
EDB’s generalizability toward all vulnerabilities publicly
disclosed and archived. The database contains only a small
subset of cases archived in NVD (Allodi and Massacci,
2013), and NVD contains only a subset of archival mate-
rial in other databases (Ablon and Bogart, 2017). Nor does
EDB cover all POC exploits (Sabottke et al., 2015). Thus,
it seems reasonable to assume generalizability toward the
cases archived in EDB but not toward other databases.
The third way is to consider whether the historical sam-
ple observed generalizes to the present day. It seems fair to
assume this kind of longitudinal generalizability. As was
remarked in Subsection 2.1, a socio-technical phenomenon
is unlikely to change rapidly. By implication, particularly
12
the sample’s many observations between 2010 and 2016
should reasonably generalize to 2019. Threats to longitu-
dinal generalizability are also abated because the paper’s
scope was explicitly framed to direct disclosure without
attempting to compare it to other types of vulnerability
disclosure. While it is true that bug bounties have changed
vulnerability disclosure practices and processes (Ruohonen
and Allodi, 2018), direct disclosure is still widely practiced,
and there is no particular reason to assume that the prob-
lems described would no longer exist.
The fourth and final way relates to generalizability on
the qualitative side. In this regard, one important point is
that EDB attracts quite a specific community (Hafiz and
Fang, 2016). Although this point might be used for argu-
ing that the qualitative results are too context-specific, it
should be emphasized that EDB has also sought to sys-
tematically gather historical archival material from mail-
ing lists and other sources. Because a thematic approach
was used, generalizability of the qualitative results can
be also understood to relate to a saturation point after
which no important themes emerge in the qualitative anal-
ysis (Cruzes et al., 2015; Guest et al., 2006). Given these
four ways, it is fair to conclude that external validity may
be problematic, but the problem is more pressing on the
quantitative side. The qualitative results are robust and
saturated enough for supporting the primary conclusion:
the problem of reluctant vendors was still present in the
2000s and early 2010s—and likely is still present today.
4.2.3. Internal Validity
A few points can be remarked about the internal va-
lidity problems affecting the whole domain of empirical
vulnerability disclosure research. When disclosure oc-
curs privately between two actors, it is possible that no
traces are left for scholars to examine. Some vulnerabil-
ities never attain their own distinct digital object iden-
tifiers; some vulnerabilities never live through the publi-
cation life cycle state. Unfortunately, it is impossible to
evaluate how many vulnerabilities are disclosed to ven-
dors without informing the public. Another question re-
lates to the amount of vulnerabilities that are never dis-
closed. This question is an important part of the problem
of reluctant vendors. For instance, many discoverers still
fear legal repercussions from reporting software vulnerabil-
ities (Ring, 2015; Uchil, 2016; Whittaker, 2018). Regard-
less whether there are rational and justified reasons for
such fears, these lead to suspect that a sizable amount of
known vulnerabilities may remain undisclosed. An analo-
gous point relates to vulnerabilities discovered and silently
patched by vendors themselves. These fundamental issues
must be acknowledged as limitations also in this paper.
Finally, it is necessary to briefly return to the nature of
the dataset and the ethnographic tenet associated with it.
As was noted in Subsection 2.2, the paper’s focus was ex-
plicitly framed to the discoverers’ point of view. Although
this framing is sufficient for examining whether the prob-
lem of reluctant vendors was still present during the period
observed, it may cause biases in further research regarding
the why-question. Although the four simple explanations
presented are unlikely threatened, it should be emphasized
that discoverers are likely to exaggerate the problems and
vendors to downplay these. It takes two to tango.
4.3. Further Research
Direct disclosure of software vulnerabilities still con-
tained plenty of problems throughout the 2000s and early
2010s. Reflecting the philosophical balance between great
harm and great good (Freeman, 2007), there are seldom
bad things without glimpses of good things; sometimes
direct disclosure worked even surprisingly well as a coor-
dinated engineering activity. This activity was often out-
sourced to third-parties, including vulnerability disclosure
institutions, disclosure companies, and crowd-sourced bug
bounty programs. Although many scholars have rallied for
the associated hybrid disclosure models (Arora et al., 2010;
Cavusoglu et al., 2007; Mitra and Ransbotham, 2015), in-
cluding bug bounties (Choi et al., 2010), none of the dis-
closure practices are likely to disappear in the near future.
This presumption is an important point for further re-
search. For vulnerability disclosure research, (1) it is im-
portant to consider means for improvement by studying
particular types rather than comparing rival disclosure
types. The results presented also suggest that different dis-
closure patterns are not as clear as previously presented;
there are many borderline cases that exhibit both direct
and hybrid behavioral patterns. Therefore, also (2) fur-
ther theoretical work is required. Bug bounties are a good
topic in this regard. To give an intriguing anecdotal exam-
ple, a discoverer associated with the Google’s bug bounty
program experienced considerable difficulties when pursu-
ing direct disclosure of a high-profile vulnerability to a
multinational company—which had outsourced its disclo-
sure practices to another bug bounty (Silvanovich, 2018).
This example is illuminating in the sense that essentially
similar hybrid disclosure practices may cause problems due
to multiple different disclosure institutions, and due to the
fact that direct disclosure is sometimes preferable despite
of the availability of these supporting institutions.
By increasing the existing knowledge about the under-
researched direct disclosure practice, (3) the paper also
taps for further research regarding trust and communi-
cation of confidential security information, including the
importance of studying leaks from coordinated disclosure
practices (cf. Sabottke et al., 2015). Given the persistence
of the problem of reluctant vendors, (4) further research
should also examine whether vulnerability disclosure prac-
tices are poorly understood in the industry. Even though
there is an international standard for software vulnerabil-
ity disclosure (ISO/IEC, 2014), it seems that many ven-
dors are either unaware of the standard or repel complying
with it. A related important theme that warrants fur-
ther research is (5) the already enacted or the still emerg-
ing regulations and legislations for vulnerability disclosure.
13
These have been actively pursued in recent years particu-
larly in the European Union (K¸inis, 2017; Pupillo et al.,
2018; Silfversten et al., 2018). As was briefly noted in
Subsection 3.5, vulnerability disclosure often involves also
job contracts and other legal arrangements that make a
comparative juridical analysis challenging. By implica-
tion, however, the already interdisciplinary nature of vul-
nerability disclosure research can be further strengthened;
political scientists, criminologists, and legal scholars may
bring important new insights to the research domain.
Finally, (6) further software engineering research is re-
quired for better understanding the aspects of multi-party
coordination and synchronization of security engineering
activities. Better understanding requires also further em-
pirical vulnerability life cycle modeling with more nuanced
and combined datasets. Because software life cycles are an
important element also in direct disclosure, an interesting
research direction would open by merging software and
vulnerability life cycles into a unified framework.
References
Ablon, L. and Bogart, A. (2017). Zero Days, Thousands of Nights:
The Life and Times of Zero-Day Vulnerabilities and Their Ex-
ploits. RAND Corporation, Santa Monica. Available online
in September 2017: https://www.rand.org/content/dam/rand/
pubs/research_reports/RR1700/RR1751/RAND_RR1751.pdf.
Algarni, A. M. and Malaiya, Y. K. (2014). Software Vulnerabil-
ity Markets: Discoverers and Buyers. International Journal of
Computer, Electrical, Automation, Control and Information En-
gineering, 8(3):480–490.
Allodi, L. and Massacci, F. (2013). Poster: Analysis of Exploits in
the Wild – Or: Do Cybersecurity Standards Make Sense? In Pro-
ceedings of the IEEE Symposium on Security and Privacy (S&P
2013), pages 1–2, San Francisco. IEEE.
Almukaynizi, M., Nunes, E., Dharaiya, K., Senguttuvan, M., Shakar-
ian, J., and Shakarian, P. (2018). Patch Before Exploited: An
Approach to Identify Targeted Software Vulnerabilities. In Sikos,
L. F., editor, AI in Cybersecurity, pages 81–113. Springer, Cham.
Arbaugh, W. A., Fithen, W. L., and McHugh, J. (2000). Window of
Vulnerability: A Case Study Analysis. Computer, 32(12):52–59.
Arora, A., Forman, C., Nandkumar, A., and Telang, R. (2010). Com-
petition and Patching of Security Vulnerabilities: An Empirical
Analysis. Information Economics and Policy, 22(2):164–177.
Bilge, L. and Dumitras, T. (2012). Before We Knew It: An Empirical
Study of Zero-Day Attacks in the Real World. In Proceedings of
the 2012 ACM Conference on Computer and Communications
Security (CCS 2012), pages 833–844, Raleigh. ACM.
Bo¨hme, R. (2006). A Comparison of Market Approaches to Software
Vulnerability Disclosure. In Mu¨ller, G., editor, Proceedings of the
International Conference on Emerging Trends in Information and
Communication Security (ETRICS 2006), Lecture Notes in Com-
puter Science (Volume 3995), pages 298–311, Freiburg. Springer.
Bozorgi, M., Saul, L. K., Savage, S., and Voelker, G. M. (2010).
Beyond Heuristics: Learning to Classify Vulnerabilities and Pre-
dict Exploits. In Proceedings of the 16th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining
(KDD 2010), pages 105–114, London. ACM.
Breusch, T. S. and Pagan, A. R. (1979). A Simple Test for Het-
eroskedasticity and Random Coefficient Variation. Econometrica,
47(5):1287–1294.
Bullough, B. L., Yanchenko, A. K., Smith, C. L., and Zipkin, J. R.
(2017). Predicting Exploitation of Disclosed Software Vulnerabil-
ities Using Open-Source Data. In Proceedings of the 3rd ACM
on International Workshop on Security And Privacy Analytics
(IWSPA 2017), pages 45–53, Scottsdale. ACM.
Byron, K. (2008). Carrying Too Heavy a Load? The Communica-
tion and Miscommunication of Emotion by Email. Academy of
Management Review, 33(2):309–327.
Carayon, P., Kianfar, S., Li, Y., Xie, A., and Bashar (2015). A
Systematic Review of Mixed Methods Research on Human Factors
and Ergonomics in Health Care. Applied Ergonomics, 51:291–321.
Cavusoglu, H., Cavusoglu, H., and Raghunathan, R. (2007). Ef-
ficiency of Vulnerability Disclosure Mechanisms to Disseminate
Vulnerability Knowledge. IEEE Transactions on Software Engi-
neering, 33(3):171–185.
Choi, J. P., Fershtman, C., and Gandal, N. (2010). Network Security:
Vulnerabilities and Disclosure Policy. The Journal of Industrial
Economics, 58(4):868–894.
Cimpanu, C. (2018). 26% of Companies Ignore Security
Bugs Because They Don’t Have the Time to Fix Them.
Bleeping Computer LLC. Available online in May 2018:
https://www.bleepingcomputer.com/news/security/26-
percent-of-companies-ignore-security-bugs-because-they-
don-t-have-the-time-to-fix-them/.
K¸inis, U. (2017). From Responsible Disclosure Policy (RDP) towards
State Regulated Responsible Vulnerability Disclosure Procedure
(hereinafter – RVDP): The Latvian Approach. Computer Law &
Security Review, 34(3):508–522.
Corfield, G. (2019). Security Gone in 600 Seconds: Make-
Me-Admin Hole Found in Lenovo Windows Laptop Crap-
ware. Delete It Now: Solution Centre WONTFIX Amid EOL
Date Shenanigans. The Register, available online in Septem-
ber 2019: https://www.theregister.co.uk/2019/08/23/lenovo_
solution_centre_cve_2019_6177/.
Cruzes, D. S., Dyb˚a, T., Runeson, P., and Ho¨st, M. (2015).
Case Studies Synthesis: A Thematic, Cross-Case, and Narra-
tive Synthesis Worked Example. Empirical Software Engineering,
20(6):1634–1665.
EDB (2016). Offensive Security Exploit Database. Available online
in November 2016: https://www.exploit-db.com/.
Finifter, M., Akhawe, D., and Wagner, D. (2013). An Empirical
Study of Vulnerability Reward Programs. In Proceedings of the
22nd USENIX Security Symposium, pages 273–288, Washington.
USENIX.
Freeman, E. H. (2007). Vulnerability Disclosure: The Strange Case
of Bret McDanel. Information Systems Security, 16(2):127–131.
Garcia, M., Bessani, A., Gashi, I., Neves, N., and Obelheiro, R.
(2014). Analysis of Operating System Diversity for Intrusion Tol-
erance. Software: Practice and Experience, 44(6):735–770.
Guest, G., Bunce, A., and Johnson, L. (2006). How Many Inter-
views Are Enough? An Experiment with Data Saturation and
Variability. Field Methods, 18(1):59–82.
Hafiz, M. and Fang, M. (2016). Game of Detections: How Are Secu-
rity Vulnerabilities Discovered in the Wild? Empirical Software
Engineering, 21(5):1920–1959.
Hahn, A. and Govindarasu, M. (2012). Cyber Vulnerability Dis-
closure Policies for the Smart Grid. In Proceedings of the IEEE
Power and Energy Society General Meeting, pages 1–5, San Diego.
IEEE.
Hesse-Biber, S. (2010). Qualitative Approaches to Mixed Methods
Practice. Qualitative Inquiry, 16(6):455–468.
Holm, H. and Afridi, K. K. (2015). An Expert-Based Investigation
of the Common Vulnerability Scoring System. Computers & Se-
curity, 53:18–30.
Householder, A. D., Wassermann, G., Manion, A., and King,
C. (2017). The CERT R© Guide to Coordinated Vulner-
ability Disclosure. Special Report, CMU/SEI-2017-SR-022,
CERT Division, Carnegie Mellon University. Available online
in August 2017: https://resources.sei.cmu.edu/asset_files/
SpecialReport/2017_003_001_503340.pdf.
ISO/IEC (2014). Information Technology – Security Techniques
– Vulnerability Disclosure, ISO/IEC 29147:2014(E). The In-
ternational Organization for Standardization (ISO) and the
International Electrotechnical Commission (IEC). Available
online in August 2017: http://standards.iso.org/ittf/
PubliclyAvailableStandards/c045170_ISO_IEC_29147_2014.
zip.
14
Kranenbarg, M. W., Holt, T. J., and van der Ham, J. (2018). Don’t
Shoot the Messenger! A Criminological and Computer Science
Perspective on Coordinated Vulnerability Disclosure. Crime Sci-
ence, 7(16):1–9.
Le, B. D., Wang, G., Nasim, M., and Babar, A. (2019). Gathering
Cyber Threat Intelligence from Twitter Using Novelty Classifica-
tion. In Proceedings of the International Conference on Cyber-
worlds (CW 2019), Kyoto. IEEE. Available online in September
2019: https://arxiv.org/abs/1907.01755.
Li, F. and Paxson, V. (2017). A Large-Scale Empirical Study of
Security Patches. In Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security (CCS 2017),
pages 2201–2215, Dallas. ACM.
Licorish, S. A., MacDonell, S. G., and Clear, T. (2015). Analyz-
ing Confidentiality and Privacy Concerns: Insights from Android
Issue Logs. In Proceedings of the 19th International Conference
on Evaluation and Assessment in Software Engineering (EASE
2015), pages 18:1–18:10, Nanjing. ACM.
Massacci, F. and Nguyen, V. H. (2014). An Empirical Methodology
to Evaluate Vulnerability Discovery Models. IEEE Transactions
on Software Engineering, 40(12):1147–1162.
McKeown, J. and Zhang, Q. (2015). Socio-Pragmatic Influence on
Opening Salutation and Closing Valediction of British Workplace
Email. Journal of Pragmatics, 85:92–107.
McQueen, M., Wright, J. L., and Wellman, L. (2011). Are Vulnera-
bility Disclosure Deadlines Justified? In Proceedings of the Third
International Workshop on Security Measurements and Metrics
(Metrisec 2011), pages 96–101, Banff. IEEE.
Mitra, S. and Ransbotham, S. (2015). Information Disclosure and the
Diffusion of Information Security Attacks. Information Systems
Research, 26(3):565–584.
Nakajima, A., Watanabe, T., Shioji, E., Akiyama, M., and Woo,
M. (2019). A Pilot Study on Consumer IoT Device Vulnerabil-
ity Disclosure and Patch Release in Japan and the United States.
In Proceedings of the 2019 ACM Asia Conference on Computer
and Communications (Asia CCS 2019), pages 485–492, Auck-
land. ACM.
Nappa, A., Johnson, R., Bilge, L., Caballero, J., and Dumitras, T.
(2015). The Attack of the Clones: A Study of the Impact of
Shared Code on Vulnerability Patching. In Proceedings of the
IEEE Symposium on Security and Privacy (IEEE S&P 2015),
pages 692–708, San Jose. IEEE.
Ozment, A. (2005). The Likelihood of Vulnerability Redis-
covery and the Social Utility of Vulnerability Hunting. In
Proceedings of the Workshop on Economics and Informa-
tion Security (WEIS 2005), Cambridge. Available online
in September 2019: https://pdfs.semanticscholar.org/1e83/
3bab15a975dd71af5fcbbaed4a8df3a5be8a.pdf.
Ozment, A. (2007). Improving Vulnerability Discovery Models:
Problems with Definitions and Assumptions. In Proceedings of
the 2007 ACM Workshop on Quality of Protection (QoP 2007),
pages 6–11, Alexandria. ACM.
Park, J., Kim, M., and Bae, D.-H. (2017). An Empirical Study
of Supplementary Patches in Open Source Projects. Empirical
Software Engineering, 22(1):436–473.
Pupillo, L., Ferreira, A., and Varisco, G. (2018). Software Vul-
nerability Disclosure in Europe: Technology, Policies and Le-
gal Challenges. Report of a CEPS Task Force, Centre for
European Policy Studies (CEPS), available online in Septem-
ber 2019: https://www.ceps.eu/wp-content/uploads/2018/06/
CEPS%20TFRonSVD%20with%20cover_0.pdf.
Ransbotham, S., Mitra, S., and Ramsey, J. (2012). Are Markets for
Vulnerabilities Effective? MIS Quarterly, 36(1):43–64.
Ring, T. (2015). White Hats Versus Vendors: The Fight Goes On.
Computer Fraud & Security, (10):12–17.
Ruohonen, J. and Allodi, L. (2018). A Bug Bounty Perspective
on the Disclosure of Web Vulnerabilities. In Proceedings of the
17th Annual Workshop on the Economics of Information Se-
curity (WEIS 2018), pages 1–14, Innsbruck. Available online
in June 2019: https://weis2018.econinfosec.org/wp-content/
uploads/sites/5/2018/05/WEIS_2018_paper_33.pdf.
Ruohonen, J., Hyrynsalmi, S., and Leppa¨nen, V. (2015). The Sig-
moidal Growth of Operating System Security Vulnerabilities: An
Empirical Revisit. Computers & Security, 55:1–20.
Ruohonen, J., Hyrynsalmi, S., and Leppa¨nen, V. (2017). Modeling
the Delivery of Security Advisories and CVEs. Computer Science
and Information Systems, 14(2):537–555.
Ruohonen, J., Rauti, S., Hyrynsalmi, S., and Leppa¨nen, V. (2018). A
Case Study on Software Vulnerability Coordination. Information
and Software Technology, 103:239–257.
Sabottke, C., Suciu, O., and Dumitras¸, T. (2015). Vulnerability Dis-
closure in the Age of Social Media: Exploiting Twitter for Pre-
dicting Real-World Exploits. In Proceedings of the 24th USENIX
Security Symposium, pages 1041–1056, Washington. USENIX.
Sarker, S., Xiao, X., and Beaulieu, T. (2013). Qualitative Studies
in Information Systems: A Critical Review and Some Guiding
Principles. MIS Quarterly, 37(4):iii–xviii.
Schneier, B. (2007). Schneier: Full Disclosure of Security Vulnera-
bilities a ’Damned Good Idea’. Orginally published in CSO On-
line. Available online in August 2017: https://www.schneier.
com/essays/archives/2007/01/schneier_full_disclo.html.
Sen, R. and Heim, G. R. (2016). Managing Enterprise Risks of Tech-
nological Systems: An Exploratory Empirical Analysis of Vulner-
ability Characteristics as Drivers of Exploit Publication. Decision
Sciences, 47(6):1073–1102.
Sharp, H., Dittrich, Y., and de Souza, C. R. B. (2016). The Role of
Ethnographic Studies in Empirical Software Engineering. IEEE
Transactions on Software Engineering, 42(8):786–804.
Shirren, S. and Phillips, J. G. (2011). Decisional Style, Mood and
Work Communication: Email Diaries. Ergonomics, 54(10):891–
903.
Silfversten, E., Phillips, W., Paoli, G. P., and Ciobanu, C. (2018).
Economics of Vulnerability Disclosure. European Union Agency
for Network and Information Security (ENISA) & RAND Europe,
available online in September 2019: https://www.enisa.europa.
eu/publications/economics-of-vulnerability-disclosure.
Silvanovich, N. (2018). Adventures in Vulnerability Re-
porting. Project Zero: News and Updates from the
Project Zero team at Google, available online in Septem-
ber 2019: https://googleprojectzero.blogspot.com/2018/08/
adventures-in-vulnerability-reporting.html.
Silverman, D. (2006). Interpreting Qualitative Data. Sage, London,
third edition.
Spanos, G. and Angelis, L. (2016). The Impact of Information Secu-
rity Events to the Stock Market: A Systematic Literature Review.
Computers & Security, 58:216–229.
Syed, R., Rahafrooz, M., and Keisler, J. M. (2018). What It Takes to
Get Retweeted: An Analysis of Software Vulnerability Messages.
Computers in Human Behavior, 80:207–215.
Uchil, J. (2016). Commerce Survey: Cyber Researchers Fear
Legal Repercussions. The Hill. Available online in May 2018:
http://thehill.com/policy/cybersecurity/310524-commerce-
survey-cyber-researchers-fear-legal-repercussions.
White, H. (1980). A Heteroskedasticity-Consistent Covariance Ma-
trix Estimator and a Direct Test for Heteroskedasticity. Econo-
metrica, 80(4):817–838.
Whittaker, Z. (2018). Lawsuits Threaten Infosec Research – Just
When We Need It Most. ZDNet, CBS Interactive. Available online
in February 2018: http://www.zdnet.com/article/chilling-
effect-lawsuits-threaten-security-research-need-it-
most/.
Williams, E. N. and Morrow, S. L. (2009). Achieving Trustworthi-
ness in Qualitative Research: A Pan-Paradigmatic Perspective.
Psychotherapy Research, 19(4–5):576–582.
A. Appendix
15
Table A.1: Identifier Sets for Main Qualitative Observations in Subsection 3.1
Set Description Identifiers for qualitative evidence
S1 Social media communication EDB-9562, EDB-14360, EDB-24975, EDB-30914, EDB-36930, EDB-36942,
EDB-37708, EDB-40298
S2 Finding contacts via social media EDB-19793, EDB-37527, EDB-37532, EDB-39696, EDB-40160
S3 Surprisingly fast replies EDB-9562, EDB-15298, EDB-20677
S4 Status updates for discoverers EDB-14369, EDB-24158, EDB-33942
S5 Forwarding patches for evaluation EDB-24202, EDB-24475, EDB-25138, EDB-39571, EDB-39664
S6 Smooth disclosure process EDB-10176, EDB-14360, EDB-34086, EDB-37449, EDB-38912
S7 Deadlines for public disclosure EDB-6278, EDB-8269, EDB-8922, EDB-22399, EDB-35936, EDB-39664,
EDB-40414
Table A.2: Identifier Sets for Main Qualitative Observations in Subsection 3.2
Set Description Identifiers for qualitative evidence
S8 Encrypted (PGP) communication EDB-14360, EDB-15293, EDB-16016, EDB-35594, EDB-36619, EDB-
37114, EDB-38197, EDB-40020, EDB-40335, EDB-40414
S9 No communication after first reply EDB-8880, EDB-8974, EDB-17117, EDB-21992, EDB-24453, EDB-
38577, EDB-39798, EDB-40160
S10 No communication after clarifications EDB-10084, EDB-17113, EDB-17114, EDB-18186, EDB-20268, EDB-
33455, EDB-39235, EDB-39385, EDB-39386, EDB-39784
Table A.3: Identifier Sets for Main Qualitative Observations in Subsection 3.3
Set Description Identifiers for qualitative evidence
S11 No patches, no responses EDB-1565, EDB-6301, EDB-8391, EDB-17116, EDB-17766, EDB-18085,
EDB-22006, EDB-37708, EDB-38055, EDB-38225, EDB-39487, EDB-
39516, EDB-39542, EDB-39659, EDB-39883, EDB-40229
S12 No responses after reminders EDB-12512, EDB-17011, EDB-24743, EDB-27285, EDB-38054
S13 Messages not reaching target EDB-9680, EDB-12330, EDB-23565, EDB-27402, EDB-37527, EDB-
37527, EDB-37532, EDB-38321, EDB-38323, EDB-39246, EDB-39441
S14 Silent patching EDB-8406, EDB-8581, EDB-20877, EDB-29467, EDB-37346, EDB-37623
S15 Incorrect patching EDB-8257, EDB-8957, EDB-10665, EDB-17276, EDB-18090, EDB-
22216, EDB-23565, EDB-34245, EDB-34308, EDB-34519, EDB-34918,
EDB-37626, EDB-39119
S16 Delivery of POCs upon request EDB-14505, EDB-32919, EDB-35182, EDB-35936, EDB-40156
S17 Help offers for testing and patching EDB-5657, EDB-8269, EDB-9110, EDB-40063
S18 Lack of patches due to EOL states EDB-8963, EDB-10484, EDB-27805, EDB-31617, EDB-33792, EDB-
34112, EDB-38245, EDB-39572, EDB-40207, EDB-40208, EDB-40298
S19 Disclosure due to EOL states EDB-21012, EDB-31337, EDB-36860, EDB-37266, EDB-40690
S20 Disagreements EDB-8957, EDB-34245, EDB-34254, EDB-34408, EDB-35182, EDB-
35594, EDB-38197, EDB-40171, EDB-40414
S21 Short grace periods (≤ 7 days) EDB-3600, EDB-8384, EDB-14344, EDB-18200, EDB-18201, EDB-
19266, EDB-27805, EDB-28183, EDB-34399, EDB-40474
16
Table A.4: Identifier Sets for Main Qualitative Observations in Subsection 3.4
Set Description Identifiers for qualitative evidence
S22 Varying grace periods (8–90 days) EDB-34131, EDB-37708, EDB-38055, EDB-38225, EDB-39441, EDB-
39536, EDB-39555, EDB-39556, EDB-40360, EDB-40669
S23 Delay requests from vendors EDB-9110, EDB-31985, EDB-36950, EDB-36951, EDB-36953, EDB-
36949, EDB-38323, EDB-39415, EDB-40161, EDB-40396, EDB-40669
S24 Negotiated schedules EDB-15145, EDB-15146, EDB-28183, EDB-36953
S25 General coordination EDB-8241, EDB-9151, EDB-10513, EDB-14687, EDB-17529, EDB-17929,
EDB-18582, EDB-18985, EDB-21267, EDB-24932, EDB-26527, EDB-
27011, EDB-31173, EDB-34086, EDB-35915, EDB-40161, EDB-40230
Table A.5: Identifier Sets for Main Qualitative Observations in Subsections 3.5 and 3.6
Set Description Identifiers for qualitative evidence
S26 Open source coordination EDB-8581, EDB-17174, EDB-22406, EDB-35595
S27 Bug bounties EDB-15463, EDB-35472, EDB-36903, EDB-37058, EDB-37172, EDB-38351,
EDB-40045
S28 Involvement of CERTs EDB-9514, EDB-10185, EDB-10211, EDB-10213, EDB-19408, EDB-20011,
EDB-20357, EDB-20360, EDB-21546, EDB-21866, EDB-23362, EDB-24463,
EDB-33520, EDB-35357, EDB-36949, EDB-36950, EDB-36951, EDB-36953,
EDB-40171
S29 Reluctance despite of CERTs EDB-18779, EDB-20063, EDB-20364, EDB-30914, EDB-40030, EDB-40200
S30 Coordination problems EDB-8777, EDB-10184, EDB-10187, EDB-37531
S31 CVE allocation EDB-6218, EDB-30062, EDB-34112, EDB-35382, EDB-37531, EDB-39402
S32 Hackathons EDB-40137, EDB-40220, EDB-40410
S33 Disclosure under contracts EDB-5232, EDB-5233, EDB-18822, EDB-19290, EDB-33894, EDB-34062,
EDB-35442, EDB-39850
S34 Backdoors EDB-14875, EDB-29673, EDB-37625, EDB-37626, EDB-40106
Table A.6: Identifiers for Direct Quotations
Quote Identifier Quote Identifier
Q1 EDB-10364 Q2 EDB-10364
Q3 EDB-25987; cf. also EDB-40669 Q4 EDB-2151
Q5 EDB-14606; see also EDB-18788 Q6 EDB-8801
Q7 EDB-40414 Q8 EDB-27286
Q9 EDB-27129, EDB-27130 Q10 EDB-34263
Q11 EDB-9887 Q12 EDB-38118
Q13 EDB-35077; cf. also EDB-10390 Q14 EDB-8818; cf. also EDB-29875
Q15 EDB-37198; cf. also EDB-20677
17

