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Abstract. By examining the vessel structure of the eye through reti-
nal imaging, a variety of abnormalities can be identified. Owing to this,
retinal images have an important role in the diagnosis of ocular diseases.
The possibility of performing computer aided artery-vein segmentation
has been the focus of several studies during the recent years and deep
neural networks have become the most popular tool used in artery-vein
segmentation. In this work, a Bayesian deep neural network is used for
artery-vein segmentation. Two algorithms, that is, stochastic weight av-
eraging and stochastic weight averaging Gaussian are studied to improve
the performance of the neural network. The experiments, conducted on
the RITE and DRIVE data sets, and results are provided along side
uncertainty quantification analysis. Based on the experiments, weight
averaging techniques improve the performance of the network.

Keywords: Uncertainty quantification - Bayesian deep learning - Artery-
vein segmentation - Blood vessel segmentation - Weight averaging

1 Introduction

Eye diseases have become a rapidly increasing health threat worldwide. Retinal
images are a great tool for detecting some of the many ocular disease and dis-
eases such as diabetic retinopathy and glaucoma can be detected from retinal
images [12]. Ocular diseases are typically detected from retinal images by an-
alyzing the vessel structure. The use of retinal images enables the diagnosis of
ocular diseases in their early stages. The task of analyzing the vessel structure
has been traditionally left to medical experts. The attention required by the
medical experts in this tasks is, however, great and the task is very consum-
ing and expensive. Studying the possibilities in making this process faster is for
that reason important, as it would enable wider screenings for ocular diseases
from retinal images. Automated image processing methods are a well-motivated
possibility in solving this problem [3].

The possibility to use computers in performing artery-vein segmentation has
been the focus of a number of studies during the recent years. However, artery-
vein segmentation still remains a challenging tasks for both humans and ma-
chines alike. Some of the difficulties in artery-vein segmentation are related to
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the imaging conditions in which the retinal images are taken. The images tend
to suffer from low contrast and changing lighting conditions, both of which make
the segmentation process harder.

The deep convolutional neural network (DCNN) has recently become the
most common tool used in artery-vein segmentation of retinal images, due to
the DCNNs ability to automatically learn meaningful features from images. In
a paper by Welikala et al., a convolutional neural network (CNN) was used in
artery-vein segmentation. The CNN managed to achieve a 82.26% classification
rate using UK Biobanks’ retinal image database [13]. Hemelings et al. proposed
the usage of U-Net architecture for artery-vein classification [5]. In the paper,
Hemeling et al. considered the task as a multi-class classification problem with
the goal of labeling pixels into four classes: background, vein, artery and un-
known. The problem was solved using the retinal images found in DRIVE data
set [6] and it achieved classification rates of 94,42% and 94.11% for arteries
and veins. Girard et al. [3] modified the U-Net for artery-vein segmentation and
found out that using likelihood score in the minimum spanning tree it was pos-
sible to improve the performance of the network in the case of smaller vessels.
The method was tested using DRIVE data set, achieving an accuracy of 94.93%.
Zhang et al. proposed cascade refined U-net to be used in artery-vein classifica-
tion [14]. The cascade refined U-net consisted of three sub-networks. The task
of the first sub-net (A-net in their paper) was to detect all the vessels from the
input image, B-net segmented veins from the predicted vessels from the A-net,
and finally the C-net segmented the arterioles from the outputs of the previous
nets. In the paper, a classification rate of 97.27% was achieved using the au-
tomatically detected vessels from the RITE data set. In a paper by Garifullin
et al., a dense fully convolutional neural network (Desne-FCN) was used in the
task of artery-vein classification [2]. Using the Dense-FCN architecture and the
RITE data the authors were able to achieve classification rates of 96%, 97% and
97% for vessels, arteries and veins respectively. In addition to that the authors
performed uncertainty quantification on the results obtained using Monte-Carlo
dropout [1] for variational approximation. In the aforementioned article, how-
ever, the authors did not illustrate the model calibration and the experiments
were conducted with one training setup for different labelling strategies. Thus,
the question of reliability of the shown uncertainty estimates arises.

This work illustrates how stochastic weight averaging affects the estimated
uncertainties. In addition, differences between two epistemic uncertainty esti-
mation techniques are illustrated. Both more traditional binary classification
metrics as well as uncertainty quantification metrics are used to evaluate the
algorithms.

2 Data

The retinal image data set chosen to be used in this work was the DRIVE data
set [6]. The DRIVE data set contains 20 RGB images for testing and 20 for
training. The images are of size 584 x 565.
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The AV references standard used in this work is the RITE data set [7]. The
RITE data set extends the DRIVE data set with references for arteries, veins,
overlapping vessels and uncertain vessels. Red labels in the DRIVE data set
stand for arteries, blue labels for veins, green for overlapping vessels and white
ones for uncertain vessels. An example of a retinal image from the DRIVE data
set as well as the corresponding data labels from the RITE data set can be seen
in Fig. 1. During the training the labels for crossings were replaced by labels for
both arteries and veins simultaneously and the uncertain labels were omitted for
arteries and veins and left for the vessels.

(a)

Fig. 1: (a) Retinal image from the DRIVE data set. (b) Retinal image labels
from RITE dataset.

3 Bayesian AV classification

3.1 Baseline

Garifullin et al. followed a standard approach for deep Bayesian classification.
First, a neural network f is used to estimate the distribution of logits parametrized
through the estimate of the mean ¥ and variance o of logits for arteries and veins:

[§,0] = f(x,0). (1)

The probability vector p = [partery Dvein] Of the labels can then be calculated as
follows:
p = sigmoid (y + o ©€), €~ N(0,I). (2)
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Given the probability vector for arteries and veins the probability for the vessels
can be inferred based on the addition law of probability:

Pvessel = Partery + Dvein — ParteryPvein- (3)

The resulting optimisation objective is a sum of binary cross-entropy functions
for all three labels over all produced aleatoric samples.

The formulae (1) — (3) take into account heteroscedastic aleatoric uncertainty
which is a type of uncertainty dependent on the data capturing imperfect imaging
conditions, labeling and image noise. The second kind of uncertainty is epistemic
uncertainty representing the model’s ignorance. By considering the parameters
of the model as a random variable with the posterior p (@ | D) the posterior
predictive distribution over logits can be calculated as follows:

p<y|x,D>=/p<y\x,o>p<o|z>>de. (4)

Typically, the integral (4) is intractable and stochastic approximations are
used in order to estimate the posterior predictive. One of the most common
techniques is to use stochastic variational approximation called MC-Dropout [1]
which employs dropout as a Monte Carlo sampling technique in order to obtain
samples from the model’s posterior. Another widely used method is stochastic
weight averaging Gaussian [11] where the model’s posterior is approximated by
a normal distribution the moments of which are estimated during the training
procedure.

3.2 Stochastic weight averaging

Izmailov et al. found out that the values traversed by SGD would be around
the flat regions of the loss surface, without actually reaching the center of this
area [9]. By equally averaging these points traversed by SGD, Izmailov et al.
found out that points that are inside this more desirable part of the loss surface
would be achieved. They named this method stochastic weight averaging (SWA)
and it was shown to improve the results and generalization of networks on a
variety of architectures and in multiple applications. Given initial pre-trained
weights SWA can be implemented as a running average of the weights calculated
while continuing training with an additional computation of batch normalization
statistics after (see [9] for more details).

3.3 Stochastic weight averaging Gaussian

SWAG was first introduced by Maddox et al. [11] for model averaging and uncer-
tainty estimation. The main idea behind is to use SWA to calculate the mean of
the model’s parameters and at the same time to estimate a diagonal approxima-
tion of the covariance matrix. Thus, the approximated posterior of the model’s
parameters is a normal distribution:

p(0]D) =N (Oswa, Zswac), (5)
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where fswa is a parameter vector estimated with SWA and Xgwag is a corre-
sponding diagonal covariance matrix.

4 Experiments and results

4.1 Description of experiments

The parameters and methodologies presented here were selected so that the
baseline model used in this work would be as similar as possible to [2]. The
utilized architecture is Dense-FCN-103 [10]. The baseline model was, however,
re-implemented and the experiments reproduced to some degree in this work.

In all the experiments, the network was first pre-trained on RITE dataset
with random patches of the input images of size 224 x 224. The batch size used
in the pre-training was 5 and the network was pre-trained with 100 epochs and
1000 steps per epoch.

After the pre-training, the networks were fine-tuned with full-size images that
were padded to size of 608 x 608 so that they could be properly compressed by
the downsampling part of the network. The main optimizer used in all of the
experiments was Adadelta with learning rate of 1 and decay rate of 0.95. The use
of either SWA or SWAG would start on a later epochs of full resolution training.

To increase the diversity of the data set data augmentation techniques were
used. The augmentation was performed by applying rotation, flipping, and scal-
ing to the input data. The rotation angles used were 90, 180 and 270 degrees
and the scaling rates were 0.8, 0.9, 1.0, 1.1 and 1.2.

The aleatoric and epistemic uncertainties were estimated using formulae from
[8]. The uncertainties are estimated as an average sum standard deviations per
image S, =, Zj 0;/Niest, where 7 is an index of the image, j is an index of
the pixel, and Niest is the total number of test images (Table 4).

Baseline The fine-tuning of the network used as baseline was done using 50
epochs with 500 steps per epoch to match the hyperparameters used in [2]. The
batch size used in the fine-tuning of the baseline was selected to be 1. MC-
Dropout was used to quantify epistemic uncertainty.

SWA The SWA implementation also had 50 epochs with 500 steps in each
epoch in the full resolution training. Like in the baseline the batch size used was
1. The starting epoch for SWA was selected to be 10 and it was only used in the
fine-tuning of the network. The starting epoch was selected through empirical
experimentation. MC-Dropout was used to quantify epistemic uncertainty.

SWAG The hyperparameters used in the SWAG implementation were 500
epochs with 50 steps per epoch. This was done so that the Gaussian posteri-
ori approximation formed by SWAG would be generated from a higher number
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of epochs. Like in the baseline the batch size used was 1. The SWAG start-
ing epoch was selected to be 100. The epistemic uncertainty was quantified by
sampling the model’s parameters from Gaussian distribution (5). Whereas the
sampling is performed from the posterior estimated with SWAG, dropout is still
used during the training phase.

4.2 Performance of the networks

Due to the fact that artery-vein classification was considered a multilabel prob-
lem, the performance metrics used in were calculated for arteries, veins and
vessels separately. The selected classification metrics were accuracy, sensitiv-
ity, specificity, Area Under the Receiver Operating Characteristic Curve (ROC-
AUC) and Estimated Calibration Error (ECE) [4].

Table 1: Network performance in artery classification (the best accuracy and

calibration are in bold)

Method |Accuracy|Sensitivity |Specificity| ECE |ROC-AUC

Baseline| 0.970 0.642 0.990 | 0.00988 0.974
SWA 0.975 0.690 0.992 0.00943 0.981
SWAG | 0.973 0.706 0.989 10.00871| 0.966

Table 2: Network performance in vein classification (the best accuracy and cali-

bration are in bold)

Method |Accuracy|Sensitivity |Specificity| ECE |ROC-AUC

Baseline| 0.971 0.655 0.994 |0.0169 0.980
SWA | 0.974 0.742 0.991 |0.0120 0.991
SWAG | 0.971 0.804 0.983 |0.0107| 0.980

Table 3: Network performance in vessel classification (the best accuracy and

calibration are in bold)

Method |Accuracy|Sensitivity |Specificity| ECE |ROC-AUC

Baseline| 0.957 0.723 0.989 10.0221 0.980
SWA 0.961 0.782 0.986 [0.0208| 0.983
SWAG | 0.961 0.836 0.978 ]0.0338 0.984

By examining the performance metrics presented in Tables 1-3, it can be seen
that SWA improved the network performance overall compared to the baseline
and SWAG models including the model calibration.



Weight averaging impact on the uncertainty 7

The example of the segmentation results for SWAG is given in Fig. 2. The
segmentation examples for the baseline and SWA look similar. The uncertainties
of the results were visualized and example figures can be seen in Fig. 3. In the
figure, the intensities of the colors describe the uncertainty in that region as
standard deviations of the predicted probabilities: the higher intensity the higher
the uncertainty.

()

Fig.2: (a) The input image; (b) ground truth; (c¢) mean predicted AV proba-
bilities; (d) mean predicted vessels probabilities. The results are obtained using
SWAG.

From the tables and figures, it can be concluded that the aleatoric uncer-
tainty of the baseline is much higher than those of SWA and SWAG. It can
also be concluded that sampling the network weights from the Gaussian poste-
rior generated by SWAG to create the variational approximation, rather than
using Monte-Carlo dropout, has a reducing effect on the levels of epistemic un-
certainty present in the predictions. This could probably be explained by the
fact that the variance is estimated only around a local optimum during the late
stages of the training, whereas MC-Dropout is enabled during the whole train-
ing process. From the estimated performance metrics, however, it is difficult to
conclude whether it is a positive or negative effect. One noticeable pattern is
the high epistemic uncertainty near the optic disc when estimated with MC-
Dropout. On the other hand, sampling from Gaussian distribution leads to the
high uncertainties mostly near the end points of the blood vessels and the areas
after the crossings which is also present in the case of MC-Dropout.

At the same time one can see that aleatoric uncertainties change when SWA
or SWAG are utilized. Kendall et al. [1] describe the aleatoric uncertainty as a
loss attenuation mechanism allowing the model to adapt the loss dependent on
the data and labelling. While the aleatoric uncertainty is meant to be data de-
pendent, the changes to the training procedure affecting the model’s convergence
and the parameters of the layers predicting variances also affect the predicted
aleatoric uncertainties. For the baseline and SWAG, we can see a similar pattern
of the higher aleatoric uncertainty levels near the optic disc and borders of the
vasculature, whereas the aleatoric uncertainties almost vanish when estimated
using MC-Dropout trained with SWA.
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Table 4: Mean sums of estimated aleatoric and epistemic uncertainties per image.
Aleatoric Epistemic
Arteries| Veins |Vessels|Arteries| Veins |Vessels
Baseline| 1276.2 {1159.5/1807.5| 4853.6 |4066.4|5069.7
SWA 3.3 3.5 5.3 | 4038.6 (3882.3]4659.7
SWAG | 31.1 | 389 | 57.3 | 997.8 |1104.3|1396.1

(a) (b) (c)
(d) (e) (f)
Fig.3: Aleatoric uncertainties calculated using (a) the baseline, (b) SWA, and

(¢c) SWAG. Epistemic uncertainties calculated using (d) the baseline, (¢) SWA,
and (f) SWAG.

Method

4.3 Conclusions

In this work, the focus was on blood vessel segmentation from retinal images and
on artery-vein classification by using a deep neural network. More specifically,
two algorithms were studied to improve the classification performance and help
in the model calibration. SWA and SWAG algorithms were implemented on top
of the baseline and experimented with the DRIVE and RITE data sets.

The use of SWA improved the performance of the deep neural network on
most of the binary classifications as well as the calibration metrics. SWAG
showed slight improvements in the vessels and artery classification tasks. The
weight averaging as a process significantly affecting the model’s convergence
seems to lead to diminishing aleatoric uncertainties and sampling from the nor-
mal distribution captures less epistemic uncertainty.
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