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Finland

Assistant Professor Frits Veerman

Mathematical Institute

Leiden University

Netherlands

Opponent Assistant Professor Antti Hannukainen

Department of Mathematics and Systems Analysis

Aalto University

Finland

ISBN 978-952-335-602-3

ISBN 978-952-335-603-0 (PDF)

ISSN-L 1456-4491

ISSN 1456-4491

Lappeenranta-Lahti University of Technology LUT 
LUT University Press 2020



Abstract

Alexey Kazarnikov

Statistical parameter identification of reaction-diffusion systems by Turing patterns

Lappeenranta 2020

84 pages

Acta Universitatis Lappeenrantaensis 941

Diss. Lappeenranta-Lahti University of Technology LUT

ISBN 978-952-335-602-3, 978-952-335-603-0 (PDF), ISSN-L 1456-4491, ISSN

1456-4491

Mathematical models allow a connection to be made between a pattern observed on a

macroscopic scale and a hypothetical underlying mechanism. Different mechanisms,

however, can result in similar patterns. In developmental biology, for example, de novo

formation of periodic structures similar to purely chemical Turing patterns can also be ob-

tained using mechano-chemical models with only one diffusing morphogen. In addition,

patterns obtained with a fixed model and fixed parameter values but with small random

perturbations of initial data, will significantly differ in shape, while being nominally of

the same type. With randomised inital data, each model parameter value corresponds to

a family of patterns rather than a fixed solution. Consequently, standard residual-based

methods such as least squares cannot be used for parameter estimation. A computational

approach allowing model calibration to certain patterns will enable not only model identi-

fication based on experimental pattern data but also comparison of different mechanisms

by indicating how well a specific model can be fitted to the data produced by models

based on another mechanism.

The aim of the current thesis is to present a solution for such problems. The situation is

analogous to the identification of chaotic systems, as in both cases different initial values

lead to different solutions which, however, belong to the same family of solutions. In this

work, a recently developed statistical approach for parameter studies of chaotic dynamical

systems is modified for application with non-chaotic reaction-diffusion systems used as

test examples of pattern formation processes. A statistical algorithm for parameter iden-

tification of reaction-diffusion systems is suggested that needs steady-state pattern data

only, without knowledge of initial values or transient data. Bayesian sampling methods

are able to quantify “all” the model variants that are able to fit given pattern data well

enough. The developed approach provides a tool for robust discrimination of competing

mechanisms proposed to explain experimental data.

Three classical reaction-diffusion models of pattern formation are considered: the FitzHugh-

Nagumo model, Gierer-Meinhardt system and Brusselator reaction-diffusion system. The

accuracy of model identification achieved by different amounts of training data is quan-

tified by MCMC algorithms. The performance of the method is satisfactory in all cases,

as verified by Bayesian sampling methods: a large amount of data leads to an extremely

accurate detection of changes in model parameters, practically impossible to detect visu-



ally, while a modest amount of training patterns leads to the same level of detection as,

roughly speaking, might be observed with the naked eye. Finally, parameter identifica-

tion is demonstrated, i.e. convergence of the method when starting with initial parameter

values far away from the correct ones. The identification is done by minimizing of a

stochastic cost function, solved by an evolutionary optimization algorithm.

The construction of a posterior parameter distribution by Bayesian sampling methods and

running the stochastic optimization algorithm requires a large number of model simula-

tions. Therefore, the efficiency of the numerical code is crucial for successful application

of the approach. An optimized parallel algorithm is implemented for the numerical so-

lutions of the equations under study. The calculations are done in graphical processing

units (GPUs) using the Nvidia CUDA parallel computing platform. Significant improve-

ment in performance is achieved, making the proposed approach suitable for numerical

applications.

Keywords: reaction-diffusion equations, pattern formation, parameter identification,

MCMC, correlation integral likelihood
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1 Introduction

A general two-component reaction-diffusion system can be written in the form

vt = ν1∆v + f(v, w); wt = ν2∆w + g(v, w), (1.1)

with Neumann boundary conditions

∂v

∂n
|∂Ω = 0,

∂w

∂n
|∂Ω = 0, (1.2)

where variables v = v(x, t) and w = w(x, t) describe spatio-temporal dynamics of un-

known chemical concentrations, ∆ is the Laplace operator, and ν1, ν2 > 0 are fixed diffu-

sion coefficients. The non-linear functions f(v, w) and g(v, w) represent local chemical

reactions and t ≥ 0. Here x ∈ Ω, where Ω ⊂ Rm, m = 1, 2, 3 is a bounded domain with

smooth boundary ∂Ω.

Real chemical systems, modelled by equations (1.1) eventually evolve to a spatially ho-

mogeneous steady state called chemical equilibrium. The process of decay, however,

may exhibit a simple exponential decay or more complicated spatio-temporal transient

behaviour (see Glansdorff and Prigogine (1971a) for details). A detailed experimental

investigation of these transient processes can be carried out by employing open reactors,

whereby the fresh reagents are constantly pumped into the reactor and used products are

constantly removed (Cross and Greenside (2009)). As a result, the experimental obser-

vation of rich non-equilibrium phenomena, known as spatio-temporal patterns, becomes

possible. In important special case, when diffusion constants of the interacting species

have a sufficiently large ratio, the reaction between the chemicals may cause the destabil-

isation of chemical equilibrium, thus leading to the formation of inhomogeneous spatial

structures, called Turing patterns. This mechanism has a wide range of applications in

theoretical biology (see Murray (1993) for detailed information), for example explaining

the production of patterns in animal skin (Suzuki (2011)).

1.1 Pattern formation in reaction-diffusion systems

The formation of spatio-temporal patterns is observed in various natural phenomena,

such as chemical reactions, and environmental, physical and biological processes (see

the review by Cross and Hohenberg (1993)). Reaction-diffusion systems form an impor-

tant class of mathematical models that describe self-organisation processes (Perthame

(2015); Koch and Meinhardt (1994); Maini et al. (1997); Murray (1993); Kondo and

Miura (2010a)). For the first time, one-component reaction-diffusion equations were used

to model population processes by A.N. Kolmogorov, I.G. Petrovsky and N.S. Piskunov

(see the original paper, Kolmogorov et al. (1937) and English translation, Kolmogorov

et al. (1991)) and later by Fisher (1937). In 1952, A. Turing for the first time consid-

ered a two-component reaction-diffusion system as a qualitative model for describing the

process of biological morphogenesis. The model assumed that two different signalling

molecules exist, called morphogens, whose non-linear interaction combined with dif-
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ferent diffusion rates lead to destabilisation of a well-mixed equilibrium state and the

formation of spatially heterogeneous concentration patterns. Consequently, these chem-

ical pre-patterns determine the development of morphological patterns. By studying the

reaction-diffusion system (1.1) with linear reaction terms, Turing (1952) derived the con-

ditions of a diffusion-driven instability (called also Turing instability). According to some

authors (see the review by Bailleul et al. (2020)), this theory explains the formation of

spatially heterogeneous stationary structures in the early stages of morphogenesis. Tur-

ing instability was further investigated by Prigogine and Nicolis (1967) and Erneux et al.

(1978). The idea was applied in the chemical and biological contexts (Gmitro and Scriven

(1966); Segel and Jackson (1972)) and was extended to other problems of mathematical

modelling.

In 1951, B.P. Belousov experimentally discovered an oscillatory chemical reaction (Be-

lousov (1959)), demonstrating time-dependent patterns. Subsequently A.M. Zhabotinsky

et al. continued the experimental study of this reaction and proposed the first mathemat-

ical model of the phenomenon (Field and Burger (1985); Zhabotinsky (1974)). In partic-

ular, it was found by Zaikin and Zhabotinsky (1970) that when the mixture is placed in a

thin layer, spatio-temporal patterns, such as propagating fronts (Zaikin and Zhabotinsky

(1970)), spiral waves (Welsh et al. (1983); Müller et al. (1985, 1987); Welsh and Go-

matam (1990)) and toroidal scrolls (Winfree (1973)) can appear. These regimes are suc-

cessfully reproduced, for example, in the spatially distributed Brusselator model proposed

by Glansdorff and Prigogine (1971b), which is now one of the classical reaction-diffusion

systems. Numerical simulations of the Brusselator model predict the formation of Turing

patterns when diffusion coefficients differ by at least one order of magnitude (Rovinskii

(1987)). At the same time, experimentally obtained diffusion coefficients show much

less variation (Glansdorff and Prigogine (1971a)). Nevertheless, it was shown by Pearson

and Horsthemke (1989) that a diffusion-driven instability may occur in the Brusselator

reaction-diffusion system with nearly equal diffusion coefficients under very special con-

ditions. Chemical nonequilibrium regimes, however, are necessarily transient as thermo-

dynamically closed systems must eventually approach spatially homogeneous chemical

equilibrium.

In 1972, A. Gierer and H. Meinhardt applied a reaction-diffusion mechanism to describe

the formation of new tentacles on the head of freshwater polyp Hydra Linnaeus. In

their model pattern formation is explained by the interaction of activator and inhibitor

molecules (Gierer and Meinhardt (1972)). The slowly diffusing activator enhances its own

production, amplifying any small peaks in the initial distribution. This causes the produc-

tion of concentration peaks of the rapidly diffusing inhibitor, which limits the growth of

the activator and prevents the formation of new activator peaks near existing ones due to

a larger diffusion coefficient.

A necessary condition for the emergence of diffusion-driven instability was the require-

ment that one of the components of the reaction diffuses much faster than the other (Maini

et al. (1997)). This, in particular, can explain the difficulty of experimentally obtaining

Turing patterns (Vanag (2004)). The experimental observation of these stationary regimes

was reported first by Castets et al. (1990) and later Agladze et al. (1992). The experiment

examined the chlorite-iodine-malonic acid (CIMA) reaction in an open reactor system, by
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continuously supplying the reaction layer with new reagents. The reactor consisted of a

hydrogel block with two continuous-flow stirred tank reactors on opposite sides. This al-

lowed reactant concentrations to remain uniform and constant during the experiment and

achieve the necessary difference in the diffusion rates of the reagents. The experiment

allowed stable non-equilibrium chemical patterns to be produced, corresponding to the

predictions of Turing’s theory. A mathematical model of this reaction was proposed by

Lengyel and Epstein (1991).

Subsequently, the formation of spatially inhomogeneous stationary and spatio-temporal

patterns was discovered numerically and experimentally in other chemical and biological

systems. For example, in the work of Pearson (1993), the Gray-Scott reaction-diffusion

model (see Gray and Scott (1983, 1984, 1985)), which is a generalisation of Selkov’s gly-

colysis model (Selkov (1968)), was numerically studied. For some values of the model

parameters, stable spatial and spatio-temporal patterns were discovered. In Lee et al.

(1993a), results similar to Pearson (1993) were obtained experimentally. Other chemical

and biological systems whose spatially distributed analogues demonstrate structural for-

mation include the Gierer-Meinhardt system and the Schnakenberg system (see Schnaken-

berg (1979)), which is a modified model of the Brusselator.

Kondo and Asai (1995) proposed a mathematical model for the formation of pigment

structures on the skin of sea angel fish Pomacanthus, based on the reaction-diffusion

mechanism. In this work, the system was first considered in the spatial domain expand-

ing with time. Subsequently, these ideas were employed for other biological problems

(see the review in Kondo and Miura (2010b)), including development of skin pigment

patterns in zebrafish (Asai et al. (1999)), sea shells (Meinhardt (1995)) and other marine

organisms, feather follicle formation (Jung et al. (1998)) and tooth development (Salazar-

Ciudad and Jernvall (2002)). At present, the Turing mechanism has found a wide range

of applications in the modelling of chemical systems (Facchini et al. (2009); Szalai and

De Kepper (2008)), explaining the growth and development of biological populations (Xu

et al. (2015); Tang et al. (2016); Owen and Lewis (2001); Upadhyay et al. (2014)), study-

ing the behaviour of microorganism colonies (Lee et al. (1993b); Vilas et al. (2012)),

explaining animal skin pattern formation (Kondo and Asai (1995); Madzvamuse et al.

(2002)), designing neural networks (Zhao and Huang (2014); Dong et al. (2017)) and

image processing (Nomura et al. (2011); Ebihara et al. (2003)).

1.2 Motivation and objective of the research

In general, the right-hand side of the reaction-diffusion system (1.1) depends on some

control parameters (which could be either kinetic parameters in reaction terms or diffu-

sion coefficients). For some values of these control parameters (called critical values), the

trivial (homogeneous) solutions of the respective equations might lose their stability prop-

erties and in the neighbourhood of these points the system could evolve to a new regime

exhibiting a spatial or spatio-temporal order. The examples of such branching solutions

are shown in Fig. 1.1 and Fig. 1.2. Bifurcation theory allows us to describe the branch-

ing behaviour of solutions to reaction-diffusion equations as a function of dimensionless

parameters. It leads to determining mathematical principles governing the exchange of
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stability of intersecting solution branches and allows the construction of analytic and con-

vergent expressions for branched out (or secondary) solutions emerging at the bifurcation

points.

The rigorous analysis of the bifurcation behaviour of solutions to reaction-diffusion sys-

tems is important for understanding the processes of self-organisation and pattern forma-

tion. Analytical approaches are able to provide a deeper understanding of the qualitative

features of the behaviour of non-linear systems, and new exact and approximate solu-

tions can be used for testing the correctness and reliability of computational schemes and

algorithms. Away from the critical values, however, reaction-diffusion systems can sup-

port spatio-temporal patterns of remarkable diversity and complexity. These regimes can

be successfully studied analytically by the methods of geometric singular perturbation

theory, when the problem has a clear separation of time scales (see Hek (2009); Kaper

(1999) and Kuehn (2015) for general information). For example, Wei (1999, 2001); Wei

and Winter (2003) studied the existence and stability of spot patterns in the Brusselator

model by geometrical methods, Doelman et al. (2009) examined the existence of sta-

tionary and travelling pulse solutions in three-component reaction-diffusion system and

Doelman and Veerman (2015) developed an explicit theory for existence, stability and bi-

furcation of pulses in the general class of two-component reaction-diffusion equations in

one-dimensional domain. At the same time, modern numerical methods allow us to effec-

tively study the processes of pattern formation in reaction-diffusion systems, regardless

of the complexity of the region geometry and the values of the control parameters.

Mathematical models allow a connection between a pattern observed on a macroscopic

scale and a hypothetical underlying mechanism to be established. But different mecha-

nisms may result in a similar pattern. For example, in developmental biology de novo for-

mation of periodic structures similar to purely chemical Turing patterns can be obtained

in a mechano-chemical model with only one diffusing morphogen (Mercker et al. (2015);

Brinkmann et al. (2018); Mercker et al. (2013)). Another example concerns comparison

of the classical Turing patterns (close-to-equilibrium patterns) with far-from-equilibrium

patterns obtained due to hysteresis in the structure of model non-linearities (Härting et al.

(2017)). These mechanisms are often not amenable to direct experimental verification.

A computational approach allowing model calibration to a certain pattern will enable not

only model identification based on experimental data but also comparison of divergent

models (and mechanisms) by checking how well a specific model can be fitted to the data

produced by models based on another mechanism.

However, identification of model parameters based on stationary patterns is a challenging

task. Patterns obtained with fixed model parameter values but small random perturbations

of the initial values can significantly differ in location and shape (Zhang and Tian (2014);

Murray (1993)), while being of the “same” type. In this sense, for unknown or randomised

initial values, each model parameter corresponds to a family of patterns rather than a

fixed solution. On the other hand, changes to model parameters affect pattern formation

as well. But it is difficult to quantify exactly how much the parameters should vary in

order to cause a statistically significant deviation from the change in dynamics caused by

perturbation of initial values. Also, it is difficult to create a cost function that would allow

reliable quantification of the model parameters that correspond to given pattern data. Most
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(a) intermediate component X(x, t) (b) intermediate component Y (x, t)

(c) intermediate component X(x, t) (d) intermediate component Y (x, t)

Figure 1.1: The branching out of a spatially homogeneous limit cycle in the Brusselator

reaction-diffusion system. Parameter values: A = 1, L = 1, ν1 = 1, ν2 = 1, B =
Bcr + ε, Bcr = 1 + A2. Initial conditions are taken as small random perturbations of

the homogeneous steady state. When the parameter B is less than the critical value Bcr

the solution of the system decays to the stable homogeneous steady state (see (a) and

(b)). The branching out of the new secondary solution occurs for B = Bcr and a stable

homogeneous oscillatory regime is observed in the system for B > Bcr (see (c) and (d)).

This oscillatory behaviour of the model corresponds to volume concentration oscillations

in the Belousov-Zhabotinsky chemical reaction (Glansdorff and Prigogine (1971a)).
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(a) activator concentration a(x, t) (b) inhibitor concentration h(x, t)

(c) activator concentration a(x, t) (d) inhibitor concentration h(x, t)

Figure 1.2: The branching out of a spike patterns in the Gierer-Meinhardt activator-

inhibitor model. Parameter values: L = 50, ρ0 = 0, ρ = 1, c = 1, µ = 1, c′ = 1,

ρ′ = 1, ν = 1.5, Da = 1, Dh = dcr + ε, dcr ≈ 8.7564. Initial conditions are taken as

small random perturbations of the homogeneous steady state. When the diffusion coeffi-

cient Dh is less than the critical value dcr, the perturbations of the homogeneous steady

state decay (see (a) and (b)). The loss of stability occurs for Dh = dcr and the formation

of stable spatially inhomogeneous steady states (Turing patterns) is observed in the sys-

tem for Dh > dcr (see (c) and (d)). This behaviour corresponds to the formation of new

tentacles on the head of Hydra freshwater polyp, where peaks of activator concentration

correspond to the regions where the formation of new tentacles takes place (Gierer and

Meinhardt (1972)).
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typically, one has to resort to tedious and subjective hand-tuning.

The aim of the current thesis is to present a solution for such problems. The situation is

analogous to the identification of chaotic systems, as in both cases different initial values

lead to different solutions which, however, belong to the same family of solutions. So

we modify the recently developed statistical approach for parameter studies of chaotic

ODE systems (Haario et al. (2015)) to the non-chaotic reaction-diffusion systems studied

here. The method is tested with the FitzHugh-Nagumo, Gierer-Meinhardt and Brusselator

models, that exhibit the formation of Turing patterns. We introduce a cost function that

enables a statistically sound identification of the model parameters by steady-state pattern

data only. A remarkable feature of the presented approach is a strong sensitivity with

respect to even small but systematic changes in model behaviour, practically impossible

to detect by the naked eye.

Quantitative issues, related to comparing theoretical and experimental data for the case of

reaction-diffusion systems and reconstructing system dynamics from observational data,

are intensively studied in literature at the present time. One may recall, for example,

the detection of structural changes in Turing patterns by recurrence plots (Facchini et al.

(2009); Mocenni et al. (2010)), analysis of correlation between pattern formation and

theoretical models (Miura et al. (2000)), numerical and experimental approaches to the

design and control of pattern formation (Vilas et al. (2012); Escala et al. (2015); Gho-

rai and Poria (2016); Vanag and Epstein (2008); Horváth et al. (1999); Chakravarti et al.

(1995)), quantitative analysis of noise impact on patterns (Barrass et al. (2006); Li (2011))

and parameter estimation for reaction-diffusion systems (Kramer and Bollt (2013); Garvie

et al. (2010); Campillo-Funollet et al. (2019)). However, these approaches assume either

known initial values or transient data. To the best of our knowledge, the approach dis-

cussed here is unique in that model parameters are identified by steady-state pattern data

only, with unknown initial values. This is the situation often faced in experimental work.

Generalised recurrence plots are also successfully employed for identifying the dynamics

of reaction-diffusion systems. For example, in Facchini et al. (2009) generalised recur-

rence plot concept is used to detect different regimes in the formation of spot patterns in

the Belousov-Zhabotinsky reaction. In Mocenni et al. (2010) the same approach is used

to detect structural changes of Turing patterns in the Schnakenberg model and study sta-

bility properties of spiral waves in the complex Ginzburg-Landau equation. However, it

should be pointed out that our focus is different: while the mentioned works aim at the

detection of domains with characteristically different behaviour, our aim is to distinguish

local changes within a given domain of behaviour. More exactly, we identify the distri-

bution of parameters that produce solutions undistinguishable from those of a given data

set.

1.3 Research questions

Based on the research problem and the objective, this thesis will address the following

research questions:

1. How can a statistical approach to the identification of parameters with steady state

data be introduced without using information on transient or initial data?
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2. How can a likelihood allowing the model parameters to be distinguished that corre-

spond to given patterns be constructed?

3. How can an efficient numerical algorithm for running the approach be implemented?

The method of statistical parameter identification being discussed in the present work can

be applied to the general case of pattern formation process (1.1). In the current thesis,

however, we limit our discussion to three well-known reaction-diffusion systems. The

general information about these models is given below.

1.4 Equations under study

In the current work we consider three classical reaction-diffusion systems: the FitzHugh-

Nagumo model, the Gierer-Meinhardt activator-inhibitor system and the Brusselator reaction-

diffusion system.

1.4.1 FitzHugh-Nagumo model

The FitzHugh-Nagumo model is a spatially distributed analogue of the generalised Rayleigh-

Van der Pol equation. The model was first proposed by FitzHugh (1961) as a model for

propagation of a nerve impulse.

In 1883 Strutt (Lord Rayleigh) proposed the equation for describing the dynamics of

sound vibrations in a clarinet reed:

ẏ1 = y2; ẏ2 = −y1 + µy2 − y32, (1.3)

where y1 is the dimensionless clarinet reed displacement, y2 is the velocity of the reed,

and µ is the dimensionless damping coefficient. Model (1.3) has found many applications

in the description of physical processes of various nature (see the review by Cveticanin

(2015)): oscillatory processes in various musical instruments (Strutt (Lord Rayleigh,L)),

electrical oscillations (Inaba and Mori (1992)), dynamics of artificial biological systems

(Filho et al. (2005)), etc.

Van der Pol (1920) proposed a model for describing electrical oscillations in a positive

feedback generator. The equation has the form:

ü− ǫ(1 − u2)u̇+ u = 0, (1.4)

or can be written as an ODE system:

u̇1 = u2; u̇2 = −u1 + ǫ(u2 − u12u2), (1.5)

where u is the voltage in a dimensionless form and ǫ is a dimensionless feedback coeffi-

cient. The Van der Pol equation is an idealised model of a tube generator that allows peri-

odic electrical oscillations to be modelled. The generator consists of an oscillating circuit

(such as a capacitor-inductive coil circuit) and an amplifier. It is assumed that the current-

voltage characteristic of the amplifier i(u) is a cubic polynomial, i.e. i(u) = g0u − g2u3,
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where g0, g2 > 0. The Van der Pol equation can be derived by applying the second

Kirchhoff law to the oscillating circuit (see Van der Pol (1920) for details). The transi-

tion to the dimensionless form of the equation is carried out by performing time change:

t = ωt̃, ω =
1√
LC

and introducing the notation ǫ =
Mg0 −RC√

LC
.

One of the subsequent works by Van der Pol (1926) was devoted to the study of relaxation

oscillations in this equation. Further, Van der Pol and Van der Mark (1927) studied the

dynamics of the oscillator under the action of a periodic driving force F (t) = bkλ sin(λt),
k > 0. During experiments with the generator, it was noted that an unusual noise was ob-

served in the system at some frequency ranges λ, which was one of the first experimental

observations of deterministic chaos (see the memorial paper by Cartwright (1960)). This

problem was considered in more detail by Cartwright and Littlewood (1945), where, in

particular, the presence of an infinite number of unstable periodic orbits in the system

with a sufficiently large external force F was discovered.

The Rayleigh and Van der Pol equations are classical models for the analysis of periodic

self-oscillations. It is known that there is no fundamental difference between the equations

and a change of variables can lead to one another (Hasegawa (2011)). There are many

works in the literature devoted to the numerical study of the dynamics of coupled Rayleigh

oscillators (1.3), Van der Pol (1.4) and Duffing (see Han et al. (2017); Zhang and Li

(2017); Chunbiao et al. (1999); Kuznetsov et al. (2007)).

Hodgkin and Huxley (1952) proposed a model for the propagation of a nerve impulse in

the giant axon of the squid. In this model, the cell membrane is presented as an electrical

circuit, each of the components of which has its own biological analogue (Gerstner and

Kistler (2002)). A semi-permeable cell membrane that separates the inside of the cell

from extracellular fluid plays the role of capacity (capacitor) C. It is assumed that the ex-

ternal current I(t) can either increase the charge of the capacitor or penetrate into the cell

through ion channels in the cell membrane. Three types of channels are considered in the

model: the calcium channel K, the sodium channel Na and the membrane pore channel

L, which is responsible for passive conductivity. It is assumed that the conductivity of

each channel is a function of membrane potential. Membrane potential acts as a battery.

Thus, the Hodgkin-Huxley model has the form:

Cv̇ = I(t)− gNam
3h(v − ENa)− gKn4(v −EK)− gL(v − EL);

ṁ = αm(v)(1−m)− βm(v)m;
ṅ = αn(v)(1− n)− βn(v)n;
ḣ = αh(v)(1− h)− βh(v)h,

(1.6)

where v(t) is the membrane potential, I(t) is the external current, m(t), n(t), h(t) are the

dimensionless quantities responsible for activation ion channels, αm(v), αn(v), αh(v),
βm(v), βn(v), βh(v) are non-linear functions characterising the conductivity of ion chan-

nels, gNa, gK , gL ∈ R are maximum channel conductivities, and ENa, EK , EL are the

equilibrium Nerst potentials.

At present, two-dimensional reductions of the system (1.6) have been obtained by apply-

ing simplifying assumptions based on the experimental data (Gerstner and Kistler (2002);
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FitzHugh (1955)). It is assumed that m(t) changes much faster than v(t), n(t) and h(t),
then v ≡ const, m(t) = m0(v), m0(v) = limt→+∞m(t). By introducing the approxima-

tion n(t) ≈ 1− h(t), and the new variable w(t) = b− h(t) = an(t), where a, b > 0, the

system (1.6) reduces to a system of two equations:

v̇ = F (v, w) + I(t); ẇ =
1

τ
G(v, w). (1.7)

where I(t) is the external current, the variable w(t) is called the recovery variable, and it

is assumed that w(t) is a slow variable compared to v(t), which is achieved by selecting

the parameter τ > 0. Specific reductions of the Hodgkin-Huxley model are obtained

from (1.7) by various approximations of the functions F (v, w) and G(v, w) (see Gerstner

and Kistler (2002); Jaeger and Jung (2015)). One of the most common reductions of this

model was proposed by FitzHugh (1961):

v̇ = −w + µv − v3 + I(t); ẇ = ǫ(v − αw − β), (1.8)

where the parameters α and β are assumed to be non-negative. The system of ordinary

differential equations (1.8) is a generalisation of the Rayleigh (1.3) and Van der Pol (1.4)

equations. Currently, there are several varieties of equations (1.8) in the literature, which

can be explained by the adaptation of the model to specific physiological objects (Gerstner

and Kistler (2002)).

Later, Nagumo et al. (1962) analysed the dynamics of the electric circuit corresponding

to the given model and investigated the spatially distributed analogue of a system (1.8)

vt = ν1∆v + µv − v3 + I(t); wt = ǫ(v − αw − β).

In the initial physiological formulation considered by Nagumo et al. (1962), the model

was considered under the assumption of one spatial variable x ∈ (0, ℓ) and restriction on

diffusion coefficients ν1 << ν2, assuming the case ν1 = 0. The case ν1 ≥ ν2 is also of

interest in studying the formation of Turing patterns (Cross and Greenside (2009)).

The existence and stability of the spatio-temporal patterns in the FitzHugh-Nagumo model

(1.8) has been intensively studied in literature from analytical point of view. For exam-

ple, Carpenter (1977) used a geometric approach to singular perturbation problems to

find travelling wave solutions of (1.8); Hastings (1974, 1976) showed the existence of

“single pulse” waves by analysing homoclinic and periodic orbits of the model; Jones

(1984) analysed the stability of travelling wave solutions with respect to the full system

of partial differential equations; Krupa et al. (1997) studied the dynamics of fast and slow

waves in (1.8); Sandstede (1998) examined the behaviour of the N-front solutions, bi-

furcating from a twisted heteroclinic loop in the underlying ordinary differential equation

describing travelling-wave solutions and Li et al. (2019) constructed semi-stable spatially

heterogeneous steady states of the equation (1.8) and various types of stable steady states

with jump discontinuities.
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1.4.2 Gierer-Meinhardt activator-inhibitor system

In 1972 A. Gierer and H. Meinhardt proposed a simple model explaining de novo forma-

tion of spatial tissue patterns. The model assumes that there are two diffusing chemicals

on the tissue surface (called morphogens): a short-range activator and a long-range in-

hibitor. Their interaction and diffusion result in the formation of a chemical pre-pattern

(primary pattern), which determines the consecutive formation of a morphological pat-

tern. Morphogens are released by certain cell types, called morphogen sources, whose

densities are assumed to be independent of the concentrations of morphogens. This as-

sumption arises from the empirical evidence that the establishment of a chemical pre-

pattern occurs much faster than the change of the source densities (for example, due to

cell differentiation).

In the theory developed by A. Gierer and H. Meinhardt, a tissue is represented as a one-

dimensional interval x ∈ (0, L), supplied with suitable boundary conditions. The con-

centrations of activator and inhibitor are denoted by a(x, t) and h(x, t) respectively, and

ρ(x) and ρ′(x) describe the respective source densities. It is assumed that the synthesis or

release of inhibitor depends on local activator concentration and that the inhibitor diffuses

and equilibrates much faster than the activator. As a result, the inhibitor concentration is

considered as a function of mean activator concentration ā(t) =
L∫
0

a(x, t)dx, measured

over the surface area. Next, it is postulated that the change of activator concentration

is determined as a difference between production and destruction rates, which are pro-

portional to the powers of morphogen concentrations and the following approximative

equation is proposed:

∂a

∂t
≈ γρ

ak

āl
(1− β

ρ

ān

am
), (1.9)

where k, l,m, n ∈ N are reaction rate parameters, and γ > 0 and β > 0 describe the

influence of inhibitor source density. In addition, it is assumed that k > m to avoid the

negative values of a(x, t) and as well m > n > 0.

By considering the spatially homogeneous (well-mixed) case, when:

ρ(x) ≡ ρ̄ ≡ const, a(x, t) ≡ a(t) ≡ ā(t),

it is possible to write equation (1.9) as follows:

∂ā

∂t
≈ γρ̄āk−l(1− β

ρ̄
ān−m). (1.10)

The solution of equation (1.10) tends to the equilibrium given by formula:

ā = a0 =
n−m

√
ρ̄

β
, (1.11)

for any non-zero initial concentration of activator. Let us next consider the spatially dis-

tributed equation (1.9) and linearise it around the steady state (1.11) by considering small
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perturbations of the activator concentration a(x, t) and the source density ρ(x):

ρ = ρ̄+∆ρ, a = ā+∆a.

This leads to the following equation:

∂a

∂t
≈ γρ̄āk−l

(
∆ρ

ρ̄
+m

∆a

ā

)
(1.12)

From equation (1.12) Gierer and Meinhardt (1972) derive an assumption that even initial

source distribution∆ρ = 0 results in the formation of activator peaks in the regions, where

initial concentration of activator a(x, 0) is higher than the average value
L∫
0

a(x, 0)dx. In

the regions where a(x, t) is below average, however, the activator concentration will de-

cay. The same behaviour can occur in a situation when the initial concentration of activa-

tor is evenly distributed (a(x, 0) ≡ ā), but the distribution of sources is inhomogeneous.

In this case, the regions with high source concentrations will determine the polarity of

activator peaks.

It should be pointed out that the concentration of activator will grow infinitely, unless

some limiting factor is introduced. Gierer and Meinhardt (1972) suggested two possible

mechanisms to limit the growth: activator-substrate (depletion) and activator-inhibitor

models. The activator-substrate model is constructed by assuming that activator sources

are activated by a(x, t) and as well by some substance of concentration s(x, t), which is

consumed by activator. This leads to the following model:

∂a

∂t
= ρ0ρ+ cρakf(s)− µa+Da

∂2a

∂x2
;

∂s

∂t
= c0 − c′ρakf(s)− νs +Ds

∂2s

∂x2
,

where ρ0 > 0 and c0 > 0 denote the rates of activator and substrate production, c > 0
and c′ > 0 are reaction rates, f(s) is a monotonically growing function, µ and ν are

activator and substrate decay rates and Da, Ds are diffusion coefficients. In addition, it is

assumed that ρ0, Da and ν are small and Ds >> Da. If the source density distribution

forms a shallow gradient (ρ(x) ≈ ρ̄), then taking into account the fast propagation speed

of substrate the following approximation is obtained:

f(s) ≈ c0
c′ρ̄āk

,

which leads to the following approximative equation:

∂a

∂t
≈ ρcc0a

k

ρ̄c′āk

(
1− c′µρ̄āk

cc0ρak−1

)
,

which behaves similarly to (1.9) if k ≥ 2. The simplest version of activator-substrate
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model is given by the following system:

∂a

∂t
= ρ0ρ+ cρa2s− µa+Da

∂2a

∂x2
;

∂s

∂t
= c0 − c′ρa2s− νs +Ds

∂2s

∂x2
.

The activator-inhibitor model is obtained under the assumption that there are two sub-

stances: activator a(x, t) and inhibitor h(x, t) acting on morphogen sources. It is assumed

that reaction rates are proportional to some powers of a(x, t) and h(x, t). In addition it is

assumed that reagents are removed by first-order kinetics and that there is a basal produc-

tion of activator, proportional to ρ(x). These assumptions lead to the following system of

equations:

∂a

∂t
= ρ0ρ+ cρ

ar

hs
− µa+Da

∂2a

∂x2
;

∂h

∂t
= c′ρ′

at

hu
− νh +Dh

∂2h

∂x2
, (1.13)

where ρ0 << 1 is activator basal production rate, c > 0 and c′ > 0 are reaction rates

and µ, ν > 0 are morphogen decay rates. Diffusion coefficients are assumed to satisfy the

condition Da << Dh. From the model (1.13), Gierer and Meinhardt (1972) derive the

following approximative equation:

∂a

∂t
≈ ρ

ar

ā
st

u+1

(
1− β

ρ

ā
st

u+1

ar−1

)
,

which demonstrates the pattern formation if the condition:

st

u+ 1
> r − 1 > 0,

is satisfied. A commonly used special case of the general Gierer-Meinhardt activator-

inhibitor system (1.13), which is used in the current work, is named the activator-inhibitor

model with different sources and is obtained from (1.13) by setting r = t = 2, s = 1,

which leads to the following system of equations:

∂a

∂t
= ρ0ρ+ cρ

a2

h
− µa+Da

∂2a

∂x2
;

∂h

∂t
= c′ρ′a2 − νh+Dh

∂2h

∂x2
. (1.14)

Doelman et al. (2001a) studied the existence and stability of asymptotically large N-

pulse patterns in one-dimensional Gierer-Meinhardt system by applying techniques of

geometric singular perturbation theory and non-local eigenvalue problem method. Ward

and Wei (2003) examined the Hopf bifurcation of spike solutions and Doelman et al.

(2001b) studied the existence problem for stationary multi-pulse solutions. Doelman et al.

(2007) analytically studied the asymptotic stability of two strongly interacting pulses in a

regularised model. Veerman and Doelman (2013) considered a problem of the existence

and stability of localised pulses in the Gierer-Meinhardt system with additional “slow”

nonlinear term.

For the two-dimensional Gierer-Meinhardt system Wei and Winter (1999) constructed

solutions with a single interior condensation points in the case of strong coupling, when
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the diffusion rate of the activator is very small and the diffusion rate of inhibitor is fi-

nite. Wei and Winter (2001) rigorously proved the existence and stability of multi-peaked

solutions (spikes) in a two-dimensional domain with strong coupling case, and Wei and

Winter (2002) considered weak coupling case, when diffusion coefficients of activator

and inhibitor tend to zero and infinity respectively.

1.4.3 Brusselator reaction-diffusion system

The Brusselator reaction-diffusion system was proposed by Glansdorff and Prigogine

(1971b) as a model of hypothetical chemical reaction that could reproduce the non-

equilibrium phenomena (for example, uniform oscillations and travelling waves) observed

in the Belousov-Zhabotinsky reaction. The scheme of hypothetical reaction is described

as follows:
A→ X,
2X + Y → 3X,
B +X → Y +D,
X → E.

(1.15)

and the overall reaction is:

A+B → E +D.

It should be pointed out that reaction scheme (1.15) was not intended to describe a specific

chemical experiment. It contains a trimolecular step and as a result could be considered

as physically unrealistic (Glansdorff and Prigogine (1971b,a)). The scheme involves,

however, only two intermediate components X and Y , which significantly simplifies the

analysis of such a system. Next we consider as constants the concentrations of the ini-

tial and final products (A,B,D,E) and arrive at the model with only two intermediate

components X and Y . The corresponding kinetic equations are:

∂X

∂t
= k1A+ k2X

2Y − k3BX − k4X +DX

∂2X

∂x2
;

∂Y

∂t
= k3BX − k2X2Y +DY

∂2Y

∂x2
,

(1.16)

where x ∈ (0, L) and Neumann boundary conditions are set at the boundary.

The Brusselator reaction-diffusion system is obtained from system (1.16) by setting all

kinetic constants k1, k2, k3, and k4 equal to one, thus arriving at the following system of

equations:

∂X

∂t
= A+X2Y − (B + 1)X +DX

∂2X

∂x2
;

∂Y

∂t
= BX −X2Y +DY

∂2Y

∂x2
. (1.17)

Doelman et al. (1997a,b) showed the existence of single-pulse and multi-pulse stationary

patterns in the system (1.17) by using the techniques of geometric singular perturbation

theory and performed the stability analysis of these solutions. Doelman et al. (2000,

2001c) proved the existence of two symmetric pulses moving apart from each other with

slowly varying velocities, analysed their stability by applying the non-local eigenvalue
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problem method and studied the pulse-splitting bifurcations. Later, Morgan and Kaper

(2004) constructed the axisymmetric ring solutions for the 2D version of the model (1.17)

and studied the splitting of these regimes into spot patterns.

1.5 Author’s contribution

The candidate implemented the numerical code for the problem under study, performed

the numerical analysis, wrote the literature review and the original draft of the thesis.

The general supervision of the ongoing research and experiments being carried out, text

correction and proofreading were done by the candidate’s supervisor, Professor Heikki

Haario. The main results of the thesis were published in Kazarnikov and Haario (2020).

1.6 Structure of the thesis

The current thesis was completed according to the Double Degree agreement between

LUT University and Southern Federal University (Rostov-on-Don, Russia). Current re-

search can be divided into two parts. In the first part, completed under the supervision by

Svetlana V. Revina and defended in 2018 (see Kazarnikov (2018)) the analytical investi-

gation of the bifurcational behaviour of the FitzHugh-Nagumo reaction-diffusion system

and its limit cases was performed. In the second part, completed under the supervision

by Heikki Haario, the statistical parameter identification of reaction-diffusion systems by

Turing patterns was studied.

The dissertation consists of five chapters. Chapter 1 provides the background and presents

the relevance of the study. Chapter 2 summarises the previous analytical results obtained

under the supervision by Svetlana V. Revina. Chapter 3 contains the general overview

of the Correlation Integral Likelihood (CIL) approach to the parameter estimation of

reaction-diffusion systems and provides general information about the implementation

of the numerical part in MATLAB and CUDA. Chapter 4 presents the findings of numeri-

cal experiments. Finally, Chapter 5 concludes the thesis by summarising the main results

of the current research.
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2 Bifurcational behaviour of the FitzHugh-Nagumo

reaction-diffusion system

2.1 Introduction

This section contains the summary of the results included in the Ph.D. thesis (Kazarnikov

(2018)), which was completed by the author at Southern Federal University (Rostov-on-

Don, Russia) under the supervision of Svetlana V. Revina and defended in 2018. The main

aim of this thesis is to investigate by analytical methods the formation of spatially inhomo-

geneous time-periodic and stationary patterns in the FitzHugh-Nagumo reaction-diffusion

system and its limit cases, as well as determine the stability properties of branched-out

solutions and numerically analyse the evolution of the respective regimes for the values

of the bifurcation parameter far away from the threshold of instability.

The thesis considers the FitzHugh-Nagumo reaction-diffusion system, which can be writ-

ten in the form:

vt = ν1∆v + ǫ(w − αv − β); wt = ν2∆w − v + µw − w3, (2.1)

where v = v(x, t), w = w(x, t), x ∈ Ω, t > 0 denotes time; µ ∈ R, α, β ≥ 0, ǫ > 0
are reaction parameters, and ν1 > 0, ν2 > 0 are diffusion coefficients. It is assumed

that Ω ⊂ Rm, m = 1, 2, 3, is either a bounded domain with boundary ∂Ω of class C2

or a rectangular parallelepiped. In the thesis we focus on the Rayleigh reaction-diffusion

system, which is obtained from (2.1) by setting α = 0, β = 0 and ǫ = 1:

vt = ν1∆v + w; wt = ν2∆w − v + µw − w3. (2.2)

In addition to Neumann boundary conditions (1.2), we consider Dirichlet boundary con-

ditions:

v|∂Ω = w|∂Ω = 0, (2.3)

and mixed boundary conditions, when some part of boundary is supplied with Diriclet

boundary conditions while the remaining part is supplied with Neumann boundary con-

ditions:

v|S1
= w|S1

= 0,
∂v

∂n
|S2

=
∂w

∂n
|S2

= 0, S1 ∪ S2 = ∂Ω. (2.4)

In this work we provide analytical conditions for spatially inhomogeneous time-periodic

and stationary regimes branching out of the trivial (zero) solution. To this end, we ap-

ply the Liapunov-Schmidt method in the form, developed by V.I. Yudovich (Yudovich

(1971, 1972)). First, the bifurcations in the Rayleigh-reaction-diffusion system (2.2) are

studied under the assumption that the diffusion coefficients 0 < ν1 ≤ ν2 are fixed and

the boundary ∂Ω is supplied with Dirichlet boundary conditions (2.3) or mixed boundary

conditions (2.4). Next, for the special case of system (2.2) when spatial variable belongs

to one-dimensional interval x ∈ (0, 1):

vt = ν1vxx + w; wt = ν2wxx − v + µw − w3, (2.5)
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with Neumann boundary conditions:

∂v

∂x
|x=0,1 =

∂w

∂x
|x=0,1 = 0,

we show the existence of a countable set of infinite-dimensional invariant subspaces and

study the bifurcational behaviour of the solutions on the respective subspaces. Finally we

extend the results to the more general model (2.1) assuming that reaction parameters are

set to the values ǫ = 1 and β = 0. Here, boundary ∂Ω is supplied with Dirichlet boundary

conditions (2.3), mixed boundary conditions (2.4) or Neumann boundary conditions (1.2).

Parameter α ≥ 0 and diffusion coefficients ν1, ν2 are fixed, but no relation between ν1 and

ν2 is assumed.

The detailed proofs can be found in Kazarnikov and Revina (2016b,a, 2017, 2018).

2.2 Bifurcational behaviour of the Rayleigh reaction-diffusion sys-

tem

Let us write the Rayleigh reaction-diffusion system (2.2) as an ordinary differential equa-

tion in Hilbert space H of vector functions u = (v, w), whose components belong to

L2(Ω). It is assumed that Ω ⊂ Rm, m = 1, 2, 3 is a rectangular parallelepiped or a

bounded domain such that ∂Ω ∈ C2. Let us introduce linear operator A(µ) : H → H on

the assumption that for every vector function u = (v, w), v, w ∈ W 2
2 (Ω)

A(µ)u = −A0u+ Bu+ µCu. (2.6)

Here, operator A0 = −D∆, where ∆ is the vector Laplace operator. It is a self-adjoint,

positively defined operator in H , while operators B,C,D : R2 → R2 are defined by

matrices

B =

(
0 1
−1 0

)
, C =

(
0 0
0 1

)
, D =

(
ν1 0
0 ν2

)
. (2.7)

It is assumed that the domain of definition of operator A(µ) is the set D(A0) of vec-

tor functions u = (v, w), v, w ∈ W 2
2 (Ω), satisfying boundary conditions (2.3) or (2.4)

correspondingly. Diffusion coefficients ν1 and ν2 are fixed and satisfy the condition

0 < ν1 ≤ ν2.

Let us introduce tri-linear operator K(a, b, c) : H ×H ×H → H on the assumption that

K(a, b, c) = (0, a2b2c2) , (2.8)

for any a = (a1(x, t), a2(x, t)), b = (b1(x, t), b2(x, t)), and c = (c1(x, t), c2(x, t)) from

the set D(A0).

By applying the Hölder inequality to operator K(a, b, c) the following estimate is ob-

tained:

||K(a, b, c)||L2
≤ ||a2(x, t)||L6

||b2(x, t)||L6
||c2(x, t)||L6

, (2.9)

and from the Sobolev embedding theorems it follows that W 2
2 (Ω) ⊂ C(Ω̄) for m < 4;
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W 2
2 (Ω) ⊂ Lq(Ω), where q ∈ [1,+∞) for m = 4 and q ∈ [1, 10) for m = 5 correspond-

ingly, moreover the embedding is compact. Therefore, for m = 1, . . . , 5 the following

estimate holds:

||K(a, b, c)||L2
≤M ||a2(x, t)||W 2

2
||b2(x, t)||W 2

2
||c2(x, t)||W 2

2
. (2.10)

Then, system (2.2) can be written in operator form:

u̇ = A(µ)u−K(u,u,u); u ∈ H. (2.11)

Let us define as λk eigenvalues of the scalar Laplace operator −∆, whose domain of

definition is Ω with corresponding boundary conditions imposed on ∂Ω:

−∆ψk = λkψk, (2.12)

assuming that λk are arranged in ascending order and each eigenvalue is counted accord-

ing to its multiplicity and denoting as ψk the respective ordered orthonormal system of

eigenfunctions.

To analyse the linear stability of the Rayleigh reaction-diffusion system (2.11) around the

trivial (zero) solution, the linear spectral problem is considered:

A(µ)u = σu, u 6= 0, (2.13)

where u ∈ H .

Definition 1 We say that the value µcr is the critical value of the control parameter µ
if the spectrum of linear operator A(µcr) lies in the closed left half-plane of the complex

plane and there exists at least one eigenvalue σ laying on the imaginary axis and satisfying
dRe(σ)

dµ
|µ=µcr

6= 0. If only zero eigenvalue lies in the imaginary axis for µ = µcr, we say

that a monotonous instability occurs. If there exists a pair of purely imaginary eigenvalues

±iω0 (ω0 6= 0) for µ = µcr, we say that an oscillatory instability occurs.

Next, the critical values of control parameter µ, corresponding to monotonous and oscil-

latory instabilities, are found. Let ν1λ1 < 1. Then, lemma 1 is proved by expanding the

vector function u into a Fourier series (Kazarnikov (2018)).

Lemma 1 Let ν1 ≤ ν2 and ν1λ1 < 1. Then, an oscillatory instability of the zero solution

to system (2.11) occurs and the critical value of the control parameter µ is given by

formula:

µcr = (ν1 + ν2)λ1. (2.14)

Operator A(µcr) has a pair of simple purely imaginary eigenvalues:

σ1,2(µcr) = ±iω0, ω0 =
√

1− ν21λ21. (2.15)

By following the scheme of the Liapunov-Schmidt method, the eigenfunction ϕ ∈ H of

the linear spectral problem and the eigenfunction Φ ∈ H of the linear conjugated problem
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are sought:

A(µcr)ϕ− iω0ϕ = 0, A∗(µcr)Φ+ iω0Φ = 0,

assuming (ϕ,Φ) = 1. The eigenfunctions are expressed by:

ϕ =
i

2ω0

(
1

ν1λ1 + iω0

)
ψ1(x), Φ =

1

(ν1λ1 − iω0)

(
1

−(ν1λ1 − iω0)

)
ψ1(x).

(2.16)

Let ν1λ1 > 1. Then, lemma 2 is proved similarly to lemma 1 (Kazarnikov (2018)).

Lemma 2 Let ν1 ≤ ν2 and ν1λ1 > 1. Then, a monotonous instability of the zero solution

to system (2.11) occurs and the critical value of the control parameter µ is given by

formula:

µcr =
1

ν1λ1
+ ν2λ1. (2.17)

Here, zero eigenvalue σ = 0 of the operator A(µcr) is simple.

The case when ν1λ1 = 1 is a degenerate case (adjoined vector exists). In what follows,

only non-degenerate cases are considered. For ν1λ1 > 1 eigenfunctions ϕ ∈ H and

Φ ∈ H of the linear spectral problem and linear conjugated problem are defined as non-

trivial solutions of the equations:

A(µcr)ϕ = 0, A∗(µcr)Φ = 0, (ϕ,Φ) = 1

and are expressed by:

ϕ =
1

1 + ν1λ1

(
1

ν1λ1

)
ψ1(x), Φ =

1

1− ν1λ1

(
1

−ν1λ1

)
ψ1(x). (2.18)

Next, the Liapunov-Schmidt method is applied to find the 2π
ω

-periodic in time solution

of equation (2.11), where ω is unknown cyclic frequency. A change of time in equation

(2.11) is performed by setting τ = ωt and defining ε2 = µ − µcr and the following

equation is obtained:

ωu̇− A(µcr)u = ε2Cu−K(u,u,u), (2.19)

where the dot denotes the differentiation by τ . An unknown solution u, 2π-periodic in τ
and unknown cyclic frequency ω are sought in the form of a series expansion in powers

of ε:

u =
∞∑

i=1

εiui, ω =
∞∑

i=0

εiωi, (2.20)

where ω0 =
√
1− ν21λ21. By substituting (2.20) into (2.19) and equating the coefficients

of like powers of ε, the sequence of equations is obtained. By analysing the first five equa-

tions in the sequence, the following theorem is proved (Kazarnikov and Revina (2016b)).

Theorem 1 Let ν1 ≤ ν2 and ν1λ1 < 1. Then, there exists µcr = (ν1 + ν2)λ1 such that

the zero solution of the Rayleigh reaction-diffusion system (2.2) is asymptotically stable
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for µ < µcr. The soft oscillatory instability of the zero solution occurs for µ = µcr and

for small values of ε =
√
µ− µcr > 0, there exists a stable limit cycle of the system (2.2).

When µ = µcr the soft oscillatory loss of stability of the zero solution takes place and

there exists a stable limit cycle of the system (2.2) for small values of ε =
√
µ− µcr > 0.

The first terms of the power series expansion of auto-oscillation mode are given by:

u = εα1(e
iωtϕ+ e−iωtϕ∗) + ε3(α3(e

iωtϕ+ e−iωtϕ∗) + u
p
3(ωt)) +O(ε4)

ω =
√

1− ν21λ21 + ε4ω4 +O(ε5),

where ϕ is defined in (2.16), values α1, α3, ω4 and u
p
3 are found explicitly.

For n ≥ 5, the equation for finding the n-th term of the power series expansion can be

written in the form:

ω0u̇n −A(µcr)un = Cun−2 −
n−1∑

i=1

ωn−iu̇n −
∑

i1 + i2 + i3 = n

3K(ui1 ,ui2,ui3) ≡ fn,

(2.21)

where un ∈ H . The following two theorems can be proved by induction.

Theorem 2 Let ν1λ1 < 1. Then, even terms of the power series expansion of auto-

oscillation mode and even terms of the cyclic frequency ω are equal to zero: for every

k ∈ Nu2k = 0, ω2k−1 = 0.

Theorem 3 Let ν1λ1 < 1. Then, the right-hand side of the equation (2.21) for finding the

n-th term of the power series expansion of auto-oscillation mode is an odd trigonometric

polynomial of the degree n with respect to time:

ω0u̇n − A(µcr)un = f1n(x)e
iτ + f3n(x)e

3iτ + · · ·+ fnn(x)e
inτ + c.c., fkn(x) ∈ H

and its solution, 2π-periodic in time has the form:

un = αnϕe
iτ+w1n(x)e

iτ+· · ·+wnn(x)e
inτ+c.c., wkn(x) = −(A(µcr)−ikω0I)

−1fkn(x)

By setting in (2.19) ω = 0, the equation for finding stationary solutions of system (2.11)

is obtained:

−A(µcr)u = ε2Cu−K(u,u,u). (2.22)

The stationary solution u is sought in the form of a series expansion in powers of ε
(2.20). By applying the Liapunov-Schmidt method, the following theorems are proved

(Kazarnikov and Revina (2016a)):

Theorem 4 Let ν1 ≤ ν2 and ν1λ1 > 1. Then, there exists µcr = 1
ν1λ1

+ ν2λ1 such that

the zero solution of the Rayleigh reaction-diffusion system (2.2) is asymptotically stable

for µ < µcr. A soft monotonous loss of stability of the zero solution occurs for µ = µcr
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and there exists a pair of stable stationary solutions of the system (2.2) for small values

of ε =
√
µ− µcr > 0:

u = ±εα1ϕ± ε3(α3ϕ+ u
p
3) + O(ε4)

where ϕ is defined in (2.18), values α1, α3 and u
p
3 are found explicitly.

Theorem 5 Let ν1λ1 > 1. Then, even terms of the series expansion in powers of ε of the

stationary solution are equal to zero: for every k ∈ N u2k = 0.

2.3 Invariant subspaces

Let us consider the Rayleigh reaction-diffusion system in one-dimensional interval x ∈
(0, 1) supplied with Neumann boundary conditions (1.2). As before, it is assumed that

diffusion coefficients are fixed and satisfy the condition 0 < ν1 ≤ ν2.

Assume that number k ∈ N is fixed. Let us denote as Γk the set:

Γk = {k(2j − 1), j ∈ N}.

As Hk we denote the subspace of H with basis:

{e1ψi (x) , e2ψi (x)}, i ∈ Γk, (2.23)

where e1 = (1, 0), e2 = (0, 1) and ψk are defined in (2.12). In addition, we define

H0 = H . Then, the following theorem holds (Kazarnikov and Revina (2017)):

Theorem 6 Subspaces Hk, k ∈ N are invariant with respect to the Rayleigh reaction-

diffusion system (2.5) with Neumann boundary conditions (1.2).

By studying the linear spectral problem (2.13), we find that a spatially homogeneous auto-

oscillation mode branches out from the zero solution for µ
(0)
cr = 0 when u ∈ H0 ≡ H .

Next, by considering (2.13) for u ∈ Hk, k ∈ N, we arrive at a countable set of critical

values of the control parameter µ for which the branching out of spatially inhomogeneous

oscillatory and stationary solutions occurs. Taking into account that all λk are simple in a

one-dimensional case, the following analogues of lemmas 1 and 2 are proved (Kazarnikov

(2018)):

Lemma 3 Let ν1λk < 1. Then, an oscillatory instability of the zero solution to the

Rayleigh reaction-diffusion system (2.5) occurs on the invariant subspace Hk and the

critical value of the control parameter µ is:

µ(k)
cr = (ν1 + ν2)λk. (2.24)

Operator A(µ
(k)
cr ) has a pair of simple purely imaginary eigenvalues:

σ1,2(µ
(k)
cr ) = ±iω0, ω0k =

√
1− ν21λ2k. (2.25)
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As before, let us find the eigenfunction ϕ of the linear spectral problem and the eigen-

function Φ of the linear conjugated problem:

A(µ(k)
cr )ϕ− iω0kϕ = 0, A∗(µ(k)

cr )Φ+ iω0kΦ = 0, (ϕ,Φ) = 1.

They are expressed by:

ϕ =
i

2ω0k

(
1

ν1λk + iω0k

)
ψk(x), Φ =

1

(ν1λ1 − iω0k)

(
1

−ν1λk + i ω0k

)
ψk (x) .

(2.26)

Lemma 4 Let k 6= 0 and ν1λk > 1. Then, a monotonous loss instability of the zero

solution to the Rayleigh reaction-diffusion system (2.5) occurs on the invariant subspace

Hk and the critical value of the control parameter µ is:

µ(k)
cr =

1

ν1λk
+ ν2λk. (2.27)

Here, zero eigenvalue σ = 0 of operator A(µ
(k)
cr ) is simple.

Eigenfunctions ϕ and Φ of operator A(µ
(k)
cr ) are expressed by:

ϕ =
1

1 + ν1λk

(
1

ν1λk

)
ψk(x), Φ =

1

1− ν1λk

(
1

−ν1λk

)
ψk (x) . (2.28)

Let k ∈ N and ν1λk < 1. Let us consider the Rayleigh reaction-diffusion system on

the invariant subspace Hk. Then, the following theorem holds (Kazarnikov and Revina

(2017)):

Theorem 7 Consider the Rayleigh reaction-diffusion system (2.5) on the invariant sub-

space Hk, k ≥ 0 and let ν1λk < 1. Then, there exists µ
(k)
cr = (ν1 + ν2)λk such that the

zero solution to the Rayleigh reaction-diffusion system (2.2) is asymptotically stable in

Hk for µ < µ
(k)
cr . The soft oscillatory instability of the zero solution occurs when µ = µ

(k)
cr

and for small values of ε =

√
µ− µ(k)

cr > 0 there exists a limit cycle of the system (2.2),

stable in Hk. The first terms of the power series expansion of auto-oscillation mode are

given by:

u = εα1(e
iωtϕ+ e−iωtϕ∗) + ε3(α3(e

iωtϕ+ e−iωtϕ∗) + u
p
3(ωt)) +O(ε4),

ω = ω0 + ε4ω4 +O(ε5).

where ϕ is defined in (2.26), values α1, α3, ω4 and u
p
3 are found explicitly.

For n ≥ 5, the equation for finding the n-th term of the power series expansion of auto-

oscillation mode can be written in the form (2.21), where un ∈ H . The following theo-

rems can be proved by induction (Kazarnikov and Revina (2017)):
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Theorem 8 Consider the Rayleigh reaction-diffusion system on the invariant subspace

Hk, k ≥ 0 and let ν1λk < 1. Then, even terms of the power series expansion of auto-

oscillation mode and even terms of the power series expansion of cyclic frequency ω are

equal to zero: for every k ∈ N u2k = 0, ω2k−1 = 0.

Theorem 9 Consider the Rayleigh reaction-diffusion system on the invariant subspace

Hk, k ∈ N and let ν1λk < 1. Then, the right-hand side of the equation for finding

the n-th term of the power series expansion of auto-oscillation mode (2.21) is the even

trigonometric polynomial of the degree n with respect to τ :

ω0u̇n − A(µcr)un = f1n(x)e
iτ + f3n(x)e

3iτ + . . .+ fnn(x)e
inτ + c.c.,

where fsn(x) ∈ Hk, and functions fsn(x) are linear combinations of the basis functions

ψj with indexes j ∈ Γk,n = {j ∈ Γk : j ≤ kn}. The general solution of this equation can

be expressed in the form:

un = αnϕe
iτ +w1n(x)e

iτ + . . .+wnn(x)e
inτ + c.c.,

where wsn(x) = −(A − isω0I)
−1fsn(x), and functions wsn(x) are linear combinations

of basis functions ψj with indexes j ∈ Γk,n.

Considering the subspace H0, the results for the n-th term of the power series expansion

of volume oscillations are obtained (Kazarnikov and Revina (2017)).

Theorem 10 Consider the Rayleigh reaction-diffusion system on the invariant subspace

H0. Let us introduce set A1 = {m = 2s− 1, s ≥ 3} ⊂ Γ1. Note that n ∈ A1. Consider

equation (2.21). Then, the following holds:

1. The right-hand side of equation (2.21) is an odd trigonometric polynomial of the

degree n with respect to time

2. The solution of equation (2.21), 2π-periodic in time is an odd trigonometric poly-

nomial of the degree n with respect to time

3. Numbers αn−2 and ωn−1 are equal to zero in rotation on the elements n ∈ A1,

which means that the following holds:

• fsn = (iR1
ns, R

2
ns) for n = 5, 9, 13, . . ., where R1,2

ns ∈ R and αn−2 = 0;

• fkn = (R1
ns, iR

2
ns) for n = 7, 11, 15, . . ., where R1,2

ns ∈ R and ωn−1 = 0.

Next we consider the Rayleigh reaction-diffusion system on the invariant subspace Hk

and assume that ν1λk > 1. By applying the Liapunov-Schmidt method, the following

theorem is proved (Kazarnikov and Revina (2017)):

Theorem 11 Consider the Rayleigh reaction-diffusion system on the invariant subspace

Hk, k ∈ N and let ν1λk > 1. Then, there exists µ
(k)
cr = 1

ν1λk

+ ν2λk such that the zero
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solution to the Rayleigh reaction-diffusion system (2.2) is asymptotically stable in Hk for

µ < µ
(k)
cr . The soft monotonous instability to the zero solution occurs for µ = µ

(k)
cr and for

small values of ε =

√
µ− µ(k)

cr > 0 there exists a pair of stable stationary solutions to

the system. The first terms of the power series expansions of the secondary solutions are

given by:

u = ±εa1 cos (πkx)± ε3(a3 cos (πkx) + b3 cos (3 πkx)) +O(ε4)

where the values a1, a3 and b3 are found explicitly.

For n ≥ 5, the equation for finding the n-th term of power series expansion can be written

in the form (2.21) for ωi = 0 and un ∈ H:

−A(µcr)un = Cun−2 −
∑

i1 + i2 + i3 = n

3K(ui1,ui2,ui3) ≡ fn. (2.29)

The following theorems can be proved by induction:

Theorem 12 Consider the Rayleigh reaction-diffusion system on the invariant subspace

Hk, k ∈ N and let ν1λk > 1. Then, even components of the power series expansion are

equal to zero: for every m ∈ N u2m = 0.

Theorem 13 Consider the Rayleigh reaction-diffusion system on the invariant subspace

Hk, k ∈ N and let ν1λk > 1. Then, the right-hand side fn(x) of the equation (2.29) and

partial solution up
n(x) of this equation, 2π-periodic in time are linear combinations of

basis functions ψj with indexes j ∈ Γk,n.

In summary, the general character of the bifurcation behaviour of the Rayleigh reaction-

diffusion system (2.5) on the subspaces Hk can be described as follows. The zero solu-

tion of the Rayleigh reaction-diffusion system is stable in the whole space H = H0 for

µ < µ
(0)
cr = 0. For µ = µ

(0)
cr it loses stability and enters a stable spatially uniform self-

oscillating regime. For µ 6 µ
(1)
cr , the zero solution of system (2.5) is stable in H1. For

small µ > µ
(1)
cr there is a stable secondary solution in H1. If ν1λ1 < 1, then µ

(1)
cr = 2ν1λ1

and the branching out of the limit cycle occurs; if ν1λ1 > 1, then µ
(1)
cr =

1

ν1λ1
+ ν1λ1 and

non-trivial stationary solution arises.

For µ 6 µ
(2)
cr , the zero solution (2.5) is stable in H2. For small µ > µ

(2)
cr there exists a sta-

ble secondary solution in H2 that is a non-trivial stationary solution or a cycle, depending

on whether the inequality ν1λ2 > 1 is satisfied.

Continuing this process, we conclude that on each of the invariant subspaces Hk, k =

1, 2, 3, . . ., when the control parameter µ passes through the critical value µ
(k)
cr , there is

a branching out of secondary solutions that are stable in Hk for small µ > µk
cr, but are

unstable in H . Among them, there can only be a finite number of cycles. Starting from

some k∗, which is specified by the condition ν1λk∗ > 1, only non-trivial stationary modes

branch out from the zero solution.
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The process of destruction of secondary solutions on the subspaces Hk, k = 1, 2 with

increasing values of µ was investigated in numerical experiments. The diffusion coeffi-

cients were fixed equal to ν1 = ν2 = 0.1. In this case, an oscillatory instability occurs on

the subspace H1, and monotonic instability occurs on H2.

The numerical solution of the system (2.2) was constructed using the Galerkin method for

increasing values of µ = µk
cr + ε2, k = 1, 2. The initial conditions were specified by the

formulas for the first terms of the expansion of the secondary time-periodic and stationary

solutions in the form of power series. For ε < 0.18, a spatially inhomogeneous self-

oscillating regime was observed on H1, being in good agreement with the formulas ob-

tained, which gradually changed to a stationary solution for ε ∈ (0.2, 0.3). With a further

increase in ε, the profile of the first component of the solution v(x, t) remained sinusoidal,

while w(x, t) asymptotically tended to meander mode, with maxx∈[0,l] |w(x, t)| ∼ ε. A

spatially inhomogeneous stationary solution was observed on the subspace H2 for µ >

µ
(2)
cr . As µ increased, the profile of the first component of the solution v(x, t) remained si-

nusoidal, whilew(x, t) asymptotically tended to meander mode, and maxx∈[0,1] |w(x, t)| ∼
ε.

The results of the analysis can be extended to other types of boundary conditions consid-

ered here. Invariant subspaces are introduced in a similar way in the case of the Dirichlet

boundary conditions (2.3). Further, an analysis of formulas for secondary solutions leads

to the conclusion that secondary stationary or time-periodic solutions satisfying the Neu-

mann conditions (1.2) on the interval [0, 1] also satisfy mixed boundary conditions on the

segment [0, 1
2
]: Neumann conditions at x = 0 and Dirichlet conditions at x = 1

2
. A similar

statement holds for the case of the Dirichlet boundary conditions (2.3).

The results for invariant subspaces can be generalised to the case of an m-dimensional

parallelepiped with incommensurate squares of sides.

2.4 Bifurcational behaviour of the FitzHugh-Nagumo reaction-diffusion

system

Let us consider the FitzHugh-Nagumo reaction-diffusion system (2.1) under assumption

that Ω ⊂ Rm, m = 1, 2, 3, is a bounded domain with boundary ∂Ω ∈ C2 or rectangular

parallelepiped and as well ǫ = 1 and β = 0. Parameter α ≥ 0 and diffusion coefficients

ν1, ν2 are assumed to be fixed. It is assumed that the boundary ∂Ω is supplied with Dirich-

let boundary conditions (2.3), or mixed boundary conditions (2.4) or Neumann boundary

conditions (1.2).

Let us write the system (2.1) as the ordinary differential equation in the Hilbert space H .

As before, we introduce a linear operator Aα(µ) : H → H on the assumption that for

every u = (v, w), v, w ∈ W 2
2 (Ω)

Aα(µ)u = D∆u+ Bαu+ µCu. (2.30)
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Here, operators Bα, C and D are defined by matrices:

Bα =

(
−α 1
−1 0

)
, C =

(
0 0
0 1

)
, D =

(
ν1 0
0 ν2

)
(2.31)

and in the limit case α = 0 expressions (2.31) and (2.30) transform into (2.7) and (2.6)

correspondingly.

As before, boundary conditions are taken into account by properly choosing the domain

of the definition of the operatorAα(µ). OperatorAα(µ) is defined either on the setD(A0)
of vector functions u = (v, w), v, w ∈ W 2

2 (Ω), satisfying Dirichlet boundary conditions

(2.3) or mixed boundary conditions (2.4) or on the set D(Ã0), Ã0 = A0 + I of vector

functions u = (v, w), v, w ∈ W 2
2 (Ω), satisfying Neumann boundary conditions (1.2).

For the tri-linear operator K(a, b, c) the estimates (2.9) and (2.10) hold. Then, the

FitzHugh-Nagumo reaction-diffusion system (2.1) can be written in operator form:

u̇ = Aα(µ)u−K(u,u,u); u ∈ H. (2.32)

Let us introduce function F (λ) = min(f1(λ), f2(λ)), where:

f1(λ) = λ(ν1 + ν2) + α; f2(λ) = λν2 +
1

λν1 + α
.

Then, the critical value of the control parameter µ is defined by formula:

µcr = min
λ∈{λk}

+∞

k=0

F (λ).

Function F (λ) is a monotonically increasing function and is bounded from below when

ν1 ≤ ν2. Then, µcr = F (λ0) and the results for this case are analogical to those obtained

earlier for the Rayleigh reaction-diffusion system. For studying the case ν1 > ν2 let us

consider the values γi(α), i = 1, . . . , 4:

γ1(α) = −
α

ν1
+

2
√
ν2

(ν1 + ν2)
√
ν1
, γ2(α) = λeq = −

α

ν1
+

1

ν1
,

γ3(α) = λmin = − α
ν1

+
1√
ν1ν2

, γ4(α) = −
α

ν1
+

1

ν2

and corresponding wave numbers ki = ki(γi), i = 1, . . . , 4. In addition, let us introduce

the values α1, α2, α3 and α4:

α1 =
2
√
ν1
√
ν2

ν1 + ν2
, α2 = 1, α3 =

√
ν1
ν2
, α4 =

ν1
ν2
, (2.33)

The values γi, i = 1, 2, 3, 4 are positive when α < α1, but successively change the sign

as α grows (see Table 2.1).

Let us study the dependence of µcr on diffusion coefficients ν1, ν2 and parameter α.
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Table 2.1: The sign of γi, i = 1, 2, 3, 4 for different values of α

The range of α The sign of γk
α ∈ [0, α1] γk ≥ 0
α ∈ (α1, α2] γ1 < 0, γ2, γ3, γ4 ≥ 0
α ∈ (α2, α3] γ1, γ2 < 0, γ3, γ4 ≥ 0
α ∈ (α3, α4] γ1, γ2, γ3 < 0, γ4 ≥ 0
α > α4 γ1, γ2, γ3, γ4 < 0

We have γk > 0, k = 1, 2, 3, 4 for small α ∈ (0, α1). Then, F (λ) = f1(λ) for λ <
γ2(α) and F (λ) = f2(λ) for λ ≥ γ2(α). As a result, either monotonous or oscillatory

instability of the zero solution to the FitzHugh-Nagumo reaction-diffusion system (2.1)

occurs depending on the values of diffusion coefficients ν1 and ν2. The formulas for

µcr and the classification of instability types for α ∈ (0, α1) and λ0 > 0 are given in

Table 2.2. If λ0 = 0, then µcr = α and oscillatory instability of the zero solution to the

FitzHugh-Nagumo reaction-diffusion system (2.1) always occurs.

The oscillatory instability cannot occur for the values of α ≥ α2 (see Table 2.3). Let

α ∈ [α2, α3). Then, γ1 < 0, γ2 ≤ 0 and γ3, γ4 > 0 and as a result F (λ) ≡ f2(λ).
However, F2(λ) is a non-monotonic function. In this case, monotonous instability always

occurs, but k0 depends on the values of model parameters. The results for α ∈ [α2, α3)
and λ0 > 0 are summarised in Table 2.3. When λ0 = 0 we get that µcr = 1

α
if ∄k0 :

f2(λk0) < f2(0) and µcr = λ0ν2 +
1

λ0ν1+α
otherwise.

The scheme of the Lyapunov-Schmidt method is applicable to the case of bounded do-

main Ω, if λk0 is a simple eigenvalue. Next we consider the one-dimensional case when

x ∈ (0, l) and as a result all λk are simple. Then, a monotonous instability of the zero so-

lution to the FitzHugh-Nagumo reaction-diffusion system (2.1) may occur for α > 0 and

Neumann boundary conditions (1.2), which is impossible in the limit case of the Rayleigh

reaction-diffusion system (2.5) when α = 0. If it occurs, then a pair of spatially homoge-

neous stationary solutions branches out, spatially homogeneous for k0 = 0 and spatially

inhomogeneous otherwise. Let us next consider the case k0 > 0. For the FitzHugh-

Nagumo reaction-diffusion system (2.1) holds the analogue of lemma 1 (Kazarnikov and

Revina (2018)).

Lemma 5 Consider the natural number k0 satisfying F (λk0) = min
λ∈{λk}

+∞

k=0

F (λ). Let

λk0 > γ2(α) and let the following inequality holds:

ν2 6=
1

(λk0 +
α
ν1
)(λk0+1 +

α
ν1
)ν1

. (2.34)

Then, a monotonous instability of the zero solution to the FitzHugh-Nagumo reaction-
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Table 2.2: Critical value of the parameter µcr for the FitzHugh-Nagumo reaction-diffusion

system (2.1). The case α ∈ (0, α1) and λ0 > 0.

Condition µcr Instability

ν1 ≤ ν2 λ0 < γ2(α) µcr = λ0 (ν1 + ν2) + α osc.

λ0 ≥ γ2(α) µcr = λ0ν2 +
1

λ0ν1+α
mon.

ν1 > ν2 λ0 < γ1(α) µcr = λ0 (ν1 + ν2) + α osc.

λ0 = γ1, ∄k : λk = γ3(α) µcr = λ0 (ν1 + ν2) + α osc.

γ1(α) < λ0 < γ2(α), µcr = λ0 (ν1 + ν2) + α osc.

∀k ∈ [k2, k4] f2(λk) > f1(λ0)
γ1(α) < λ0 < γ2(α), µcr = λ0 (ν1 + ν2) + α osc.

∄k ∈ [k2, k4] : λk ∈ (γ2(α), γ4(α))
γ1(α) < λ0 < γ2(α), µcr = λk0ν2 +

1
λk0

ν1+α
mon.

∃k0 : f2(λk0) < f1(λ0)
γ2(α) < λ0 < γ3(α), µcr = λ0ν2 +

1
λ0ν1+α

mon.

∀k ∈ [k2, k4] : f2(λk) > f2(λ0)
γ2(α) < λ0 < γ3(α), µcr = λ0ν2 +

1
λ0ν1+α

mon.

∄k ∈ [k2, k4] : λk ∈ (γ2(α), γ4(α))
γ2(α) < λ0 < γ3(α), µcr = λk0ν2 +

1
λk0

ν1+α
mon.

∃k0 ∈ [k2, k4] : f2(λk0) < f2(λ0)
λ0 ≥ γ3(α) µcr = λ0ν2 +

1
λ0ν1+α

mon.

Table 2.3: Critical value of the parameter µcr for the FitzHugh-Nagumo reaction-diffusion

system (2.1). The case α ∈ [α2, α3) and λ0 > 0

Condition µcr Instability

ν1 ≤ ν2 — µcr = λ0ν2 +
1

λ0ν1+α
mon.

ν1 > ν2 λ0 < γ3(α), µcr = λ0ν2 +
1

λ0ν1+α
mon.

∀k ∈ [k2, k4] : f2(λk) > f2(λ0)
λ0 < γ3(α), µcr = λ0ν2 +

1
λ0ν1+α

mon.

∄k ∈ [k2, k4] : λk ∈ (γ2(α), γ4(α))
λ0 < γ3(α), µcr = λk0ν2 +

1
λk0

ν1+α
mon.

∃k0 ∈ [k2, k4] : f2(k0) ≤ f2(λ0)
λ0 ≥ γ3(α) µcr = λ0ν2 +

1
λ0ν1+α

mon.
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diffusion system (2.1) occurs and the critical value of the control parameter µ is:

µcr = λk0ν2 +
1

λk0ν1 + α
. (2.35)

Here, zero eigenvalue σ = 0 of operator Aα(µcr) is simple.

The following theorem is proved by applying the Liapunov-Schmidt method (Kazarnikov

and Revina (2018)):

Theorem 14 Let us assume that the requirements of lemma 5 are satisfied. Then, there

exist µcr = λk0ν2+
1

λk0
ν1+α

such that the zero solution to the FitzHugh-Nagumo reaction-

diffusion system (2.1) is asymptotically stable for µ < µcr. The soft monotonous instabil-

ity of the zero solution occurs for At µ = µcr and for small values of ε =
√
µ− µcr > 0

there exists a pair of stable stationary solutions to the system. The first terms of a power

series expansions of stationary solutions are given by:

u = ±εa1 cos

(
πk0x

l

)
± ε3(a3 cos

(
πk0x

l

)
+ b3 cos

(
3
πk0x

l

)
) +O(ε4)

where the values a1, a3 and b3 are found explicitly.

The following two theorems can be proved by induction:

Theorem 15 Even components of the power series expansion of stationary solutions are

equal to zero: for every k ∈ N u2k = 0.

Theorem 16 Vector functions fn(x) on the right-hand side of the equation for finding the

n-th term of the power series expansion are linear combinations of the basis functions ψk,

where k is an odd number satisfying the condition k0 ≤ k ≤ nk0.

The evolution of secondary stationary solutions of the system (2.1) as values of µ grow

has been studied numerically. The experiments were carried out for the parameter values

α = 1, ν1 = 1, ν2 = 10−2, 10−4, 10−5, µ = µcr + ε2. The initial data was set up by

the formulas for the first terms of the asymptotics for the secondary stationary solution,

the equation (2.1) was approximated by the Method of Lines on the equidistant grid and

numerical integration of the ODE system was done using the Dormand-Prince method.

It was found that for the values ε << 1 the secondary solutions keep their form. As

the values of ε grow, the secondary solutions are replaced by the Turing patterns. When

ε > 10 the spatially homogeneous stationary regime is observed in the system.

Function F (λ) is a bounded-from-below and monotonically-growing function for ν1 ≤
ν2. Then, there exists a unique value λ = λ0 = 0 : µcr = F (λ0). Thus, an oscillatory

instability of the zero solution occurs if α < α2 and monotonous instability occurs oth-

erwise. The case α = α2 is a degenerate case. Because µcr = F (λ0), the branched-out

secondary solutions are spatially homogeneous. Let us consider system (2.1) on sub-

spaces Hk (2.23), defined earlier for the Rayleigh reaction-diffusion system (2.5). Then,

theorem 17 holds.
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Theorem 17 Let x ∈ (0, l) and ν1 ≤ ν2. Then, subspaces Hk, k ∈ N are invariant with

respect to the FitzHugh-Nagumo reaction-diffusion system (2.1) with Neumann boundary

conditions (1.2).

By considering linear spectral problem (2.1) for u ∈ Hk, k ∈ N we arrive at the countable

set of critical values µ
(k)
cr , for which occurs the branching out of new spatially inhomoge-

neous oscillatory and stationary regimes on Hk. Let us consider the FitzHugh-Nagumo

reaction-diffusion system (2.1) on the invariant subspace Hk for k ∈ N. By applying the

Lyapunov-Schmidt method, the following theorems can be proved:

Theorem 18 Let us consider the FitzHugh-Nagumo reaction-diffusion system (2.1) on the

invariant subspace Hk, k ∈ N and assume that the condition ν1λk + α < 1 is satisfied.

Then, there exists µ
(k)
cr = (ν1 + ν2)λk + α such that the zero solution to the FitzHugh-

Nagumo reaction-diffusion system (2.1) is asymptotically stable in Hk for µ < µ
(k)
cr . The

soft oscillatory instability of the zero solution occurs for µ = µ
(k)
cr and for small values of

ε =

√
µ− µ(k)

cr > 0 there exists a limit cycle of system (2.1), stable in Hk.

Theorem 19 Let us consider the FitzHugh-Nagumo reaction-diffusion system (2.1) on the

invariant subspace Hk, k ∈ N and assume that the condition ν1λk + α > 1 is satisfied.

Then, there exists µ
(k)
cr = 1

ν1λk+α
+ ν2λk such that the zero solution to the FitzHugh-

Nagumo reaction-diffusion system (2.1) is asymptotically stable in Hk for µ < µ
(k)
cr . The

soft monotonous instability of the zero solution occurs for µ = µ
(k)
cr and for small values

of ε =

√
µ− µ(k)

cr > 0 there exists a pair of stationary solutions to system (2.1), stable in

Hk.

2.5 Summary

The main results of the thesis (Kazarnikov (2018)) can be summarised as follows:

1. Exact power series representations for spatio-temporal and stationary patterns branch-

ing out from the zero solution to the Rayleigh reaction-diffusion system due to

monotonous or oscillatory instability were obtained for the case when Ω ⊂ Rm,

m = 1, 2, 3 is a bounded domain with ∂Ω ∈ C2 or rectangular parallelepiped

supplied with Diriclet or mixed boundary conditions. By constructing an abstract

scheme and applying the Liapunov-Schmidt method, formulas for the n-th term

of a power series expansions were obtained. The evolution of the branched-out

regimes was studied numerically for the special cases of interval and rectangular

spatial domains.

2. The bifurcational behaviour of the solutions to the Rayleigh reaction-diffusion sys-

tem was studied on the infinite-dimensional subspaces of the phase space in the

case of one spatial variable and Neumann boundary conditions. It was shown that

there exists a countable set of critical values of the control parameter for which the

branching out of spatially inhomogeneous stationary and auto-oscillation modes
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occurs. The first terms of power series expansions of secondary solutions were

found explicitly and the formulas for the n-th term of the power series expansion

were analysed. By conducting the numerical experiments, it was found out that

the transformation of secondary auto-oscillation modes into stationary regimes oc-

curred as the control parameter value passes away from the threshold of instability.

3. The partial case of the FitzHugh-Nagumo reaction-diffusion system (2.1) was con-

sidered in Ω ⊂ Rm, m = 1, 2, 3, where Ω is a bounded domain with ∂Ω ∈ C2

or rectangular parallelepiped for ε = 1 and different diffusion coefficients ν1 and

ν2. The critical values of the control parameter µ were found, the dependence of

instability type on the values of diffusion coefficients ν1 and ν2 was studied. For the

case of one spatial variable x ∈ (0, ℓ) and Neumann boundary conditions the first

terms of power series expansions of spatially inhomogeneous stationary solutions

were found explicitly and the evolution of the branched-out solutions was studied

numerically.

In (Kazarnikov (2018)), reaction parameter µ played the role of bifurcational parameter. It

is naturally possible, however, to apply the same scheme to other model parameters, such

as diffusion coefficients. For example, considering d = ν1
ν2

as a varying control parameter

allows us to perform the analytical investigation of the branching out of stationary solu-

tions, known as Turing patterns. It should be pointed out that those analytical approaches

discussed in the current chapter, can be applied only in the situation when the bifurcational

parameter is close to the onset of instability. The analysis of far-from-equilibrium patterns

can be carried out analytically as well, by using the techniques of geometric singular per-

turbation theory. However, parameter identification of the equations under study usually

require numerical simulation of the model to be performed. This situation is discussed in

the next section.
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3 Correlation Integral Likelihood

3.1 Introduction

This section contains general information about Correlation Integral Likelihood and its

numerical implementation for parameter identification of reaction-diffusion systems by

Turing patterns. CIL can be considered as a method allowing quantification of the “same-

ness” of patterns that are created by a given pattern formation process. In a more formal

sense, the task is to create a statistical likelihood that quantifies the variability of a given

data set of patterns. Having CIL allows the identification of the parameters of the model

employed. After the identification step, the posterior distribution of the parameters can be

constructed by finding “all” parameter values for which the model matches the likelihood

function. The likelihood is naturally conditional on data. A large data set provides more

accurate information than a limited one.

In the remainder of this section we consider a reaction-diffusion system (1.1) in a squared

unit domain Ω = (0, 1)× (0, 1) supplied with homogeneous Neumann (zero-flux) bound-

ary conditions (1.2). We focus on three well-known types of kinetics: the FitzHugh-

Nagumo model, the Gierer-Meinhardt activator-inhibitor system, and the Brusselator reaction-

diffusion system. For each model, we assume that all parameters are fixed except the pair

of varying control parameters. Recall that the FitzHugh-Nagumo model involves the fol-

lowing reaction terms:

f(v, w) = ε(w − αv); g(v, w) = −v + µw − w3, (3.1)

where µ ∈ R and ε > 0 are varying control parameters, α ≥ 0 is the fixed reaction term.

The kinetics of the Gierer-Meinhardt activator-inhibitor system are given by equations:

f(v, w) = −µvv +
v2

w
; g(v, w) = −µww + v2, (3.2)

where activator and inhibitor decay rates µv, µw > 0 are chosen as control parameters.

Finally, the Brusselator reaction-diffusion system is given by the following kinetics:

f(v, w) = A− (B + 1)v + v2w; g(v, w) = Bv − v2w, (3.3)

where constant concentrations of reagents A and B are varying control parameters.

As initial conditions, we take spatially homogeneous steady states (v0, w0) of the system

(1.1), given by the following condition:

f(v0, w0) = g(v0, w0) = 0, (3.4)

perturbed with a small uniform random noise:

v(x, 0) = v0 + U(0, δ), w(x, 0) = w0 + U(0, δ), δ < 1,

where U(0, δ) is a uniformly distributed random variable, (v0, w0) = (0, 0) for model



44 3 Correlation Integral Likelihood

(3.1), (v0, w0) = (µw

µv
, µw

µ2
v

) for system (3.2) and (v0, w0) = (A, B
A
) for equations (3.3)

respectively.

Turing (1952) discovered that the reaction between two chemicals in system (1.1) with

different diffusion rates may cause the destabilisation of the homogeneous steady state

(3.4), and lead to the formation of non-homogeneous spatial structures. This mechanism

is called the diffusion-driven instability. It has inspired a vast number of mathematical

models, providing explanations of symmetry breaking, animal coat markings formation

(Murray (1993)), oscillating chemical reactions (Glansdorff and Prigogine (1971a)) and

other phenomena. The conditions for Turing bifurcation can be obtained by analysing the

linear stability of system (1.1) around the spatially homogeneous steady state (3.4). This

analysis was first performed by Turing (1952) for a reaction-diffusion system with linear

reaction terms and then extended by Prigogine and Nicolis (1967) to non-linear systems.

For fixed parameters, satisfying diffusion-driven instability conditions, the models (1.1)

with kinetics (3.1), (3.2) and (3.3) exhibit the formation of spatially inhomogeneous pat-

terns (Turing patterns). The patterns, observed in numerical simulations, differ for differ-

ent random initial perturbations of the homogeneous steady state (see Fig. 3.1). These

patterns, however, can be considered as belonging to one type with respect to model pa-

rameters. At the same time, changes in model parameters naturally affect the final shape,

appearance and type of patterns being observed in the system (see Fig. 3.2).

3.2 Finite difference approximation

To project an infinite-dimensional system onto a finite-dimensional system we apply the

Method of Lines (MOL). We create the decomposition of domain Ω by equidistant grid

with fixed step size h = 1/(Mdim − 1), Mdim ∈ N and arrive at a finite set of points:

{(xi1, xj2) : xi1 = ih, xj2 = jh, i, j = 0, . . . ,Mdim − 1}.

Next, the Laplace operator is discretised by the five-point stencil (Grossmann et al. (2007);

Hupkes and Van Vleck (2016)):

∆u ≈ ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j
h2

= ∇2
5ui,j,

and an infinite-dimensional reaction-diffusion system (1.1) is reduced to a finite set of

2M2
dim ordinary differential equations (ODE), which is expressed by the system:

v̇i,j(t) = ν1∇2
5vi,j(t) + f(vi,j(t), wi,j(t)),

ẇi,j(t) = ν2∇2
5wi,j(t) + g(vi,j(t), wi,j(t)), (3.5)

where i, j = 0, 1, . . . ,Mdim−1 and Neumann boundary conditions are taken into account

by applying a central difference scheme (Grossmann et al. (2007)). In all numerical ex-

periments we use Mdim = 64 (with the exception of a sparse grid case with Mdim = 32,

which is discussed in Sec. 4.3).

When the control parameters of a reaction-diffusion model are fixed and belong to Turing
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Figure 3.1: Turing patterns obtained from direct simulations with fixed parameter val-

ues and different initial conditions, taken as small random perturbations of the homo-

geneous steady state: (a)-(c) labyrinthine-type patterns (variable w) in the FitzHugh-

Nagumo model (ν1 = 0.05, ν2 = 0.00028, α = 1, ε = 10, µ = 1), (d)-(f) isolated

spot peaks (variable w) in the Gierer-Meinhardt system (ν1 = 0.00025, ν2 = 0.01, µv =
0.5, µw = 1) and (g)-(i) hexagons (variable v) in the Brusselator reaction diffusion-system

(ν1 = 0.0016, ν2 = 0.0131, A = 4.5, B = 6.96).

domain, patterns are obtained from numerical simulations as steady states of the MOL

ODE system (3.5). Perturbations of initial conditions result in convergence of numerical

solution to different steady states.

3.3 Correlation Integral Likelihood

In this section we recall the distance concept introduced by Haario et al. (2015) for chaotic

dynamical systems, and adapt its use to quantify pattern formation in reaction-diffusion

systems. Individual trajectories of chaotic systems are unpredictable with respect to small

perturbations of initial values. Turing patterns are stationary solutions of the reaction-

diffusion system and naturally depend on the initial state. In most real experimental situ-

ations the initial values cannot be assumed to be exactly known, so this rules out the use

of usual likelihood functions for parameter estimation, based on residuals between model

and data. Instead, we create a likelihood that characterises a family of solutions, given

either by real data or, as in the examples here, by model simulations.

The general idea of the approach is as follows. We assume to have a training set of data
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Figure 3.2: Turing patterns obtained from direct simulations with different parameter

values and fixed initial conditions. Diffusion coefficients and plotted system variables are

the same as in Fig. 3.1. The FitzHugh-Nagumo model: (a) α = 1, ε = 1, µ = 1, (b)

α = 1.25, ε = 5.5, µ = 1, (c) α = 1.02, ε = 6.45, µ = 1.8. The Gierer-Meinhardt

system: (d) µv = 0.35, µw = 1.0, (e) µv = 0.75, µw = 4.0, (f) µv = 1.0, µw = 0.75. The

Brusselator reaction-diffusion system: (g) A = 5, B = 13, (h) A = 4.5, B = 8.72, (i)

A = 4.5, B = 13.29.

consisting of an ensemble of nens subsets, each consisting of N vectors. For any given

ensemble pair we compute the N2 distances between all their vectors, and construct the

empirical cumulative distribution function (eCDF, see, e.g., van der Vaart (1998)) of the

distances. It turns out that these eCDF vectors are normally distributed. To empirically

estimate the distribution, the eCDF vectors are computed between all the nens(nens−1)/2
pairs of the ensemble subsets. The mean and covariance of the ensuing set of eCDF

vectors can then be calculated. So we arrive at a Gaussian likelihood for the ’feature

vector’, the eCDF of distances between vectors from two data sets of length N .

The original motivation for such a likelihood construction comes from the literature on

fractal dimensions. We briefly recall this background of the method, and proceed then to

the modifications needed when applying the approach to Turing type patterns.

Consider a chaotic ODE system, defined by the following equation:

ds

dt
= F (s, θ), s(t)|t=0 = x, (3.6)

where s ∈ Rn is a system state, x is a vector of initial conditions and θ ∈ Rd is a
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parameter vector. Such systems (for example, the classical Lorenz system) are highly

sensitive to initial conditions and model parameters; small changes in these values lead to

widely diverging trajectories, which makes long-term predictions impossible in general.

Haario et al. (2015) deal with the following question: how can a practically computable

distance concept for chaotic trajectories be defined; i.e. how can the distribution of model

parameters be defined for which the variability due to the differences in parameter values

is indistinguishable from the chaotic variability of the system, as quantified by a given

amount of training data?

The distance concept is based on the notion of correlation integral vector. In the following,

we use the notation s = s(θ,x, t) for a trajectory s of chaotic system (3.6) that depends

on a model parameter vector θ, input values x and time t. Generally, x may include any

variables whose small changes lead to chaotic unpredictability, e.g., the tolerances of the

numerical solver. In the current paper, however, we denote the initial values of an ODE

system by x only.

Denoted by si ∈ Rn, i = 1, 2, . . . , N the points of the trajectory s = s(θ,x, t), evaluated

for consecutive time points t = ti. For a fixed R > 0 set

C(R,N) =
1

N2

∑

1≤i,j≤N

#(||si − sj || < R).

Above, ||.|| denotes the Euclidean distance. So C(R,N) gives the fraction of pairs of

points with a distance less than R. As the radius R tends to zero, C(R,N)∼Rγ , where γ
is the classical correlation dimension, given by the formula (see Cencini et al. (2009)):

γ = lim
R→0

logC(R,N)

logR
. (3.7)

We are, however, not interested in the intrinsic fractal dimension of a given trajectory

as given by the limit R → 0, but want to characterise the distance between different

trajectories, using all relevant scales R.

Suppose we have an ensemble of different trajectories sk = sk(θ,x), k = 1, ..., nens,

each evaluated at time points ti, i = 1, ..., N . For fixed R > 0 and k, l set:

C(R,N, sk, sl) =
1

N2

∑

1≤i,j≤N

#(||ski − slj|| < R). (3.8)

We assume furthermore that the state s remains bounded, and all the trajectory vectors ski
are samples from the same underlying fixed attractor (i.e., they are measurements given by

a stationary time series, or obtained by integrating a fixed chaotic system with perturbed

initial values x). Choose R0 > 0 such that ||ski − slj|| < R0 for all k, l = 1, ..., nens,

i, j = 1, . . . , N . For a given integer M , the generalised correlation integral vector yk,l

of the pair sk, sl is given by the components:

yk,lm = C(Rm, N, s
k, sl), m = 1, 2, . . . ,M, (3.9)
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where Rm = b−mR0 with b > 1 (for the numerical evaluations we follow the usual

settings found in literature (Cencini et al. (2009), see also the examples below).

The correlation integral vector y is stochastic, as the evaluations are done by randomised

initial conditions x. It turns out that the distribution of the correlation integral vector

is Gaussian. Intuitively, as the expression (3.8) consists of averages, the Central Limit

Theorem might be expected to hold. More exactly, the expression y = (ym)
M
m=1 defines

the empirical cumulative distribution function of the respective set of distances, evaluated

at bin values Rm. The basic form of Donsker’s theorem states that empirical cumulative

distribution functions of i.i.d scalar random numbers asymptotically tend to a Brownian

bridge (Donsker (1951, 1952)). In more general settings that cover our situation, the

Gaussianity is established by theorems of the so-called U-statistics; see Borovkova et al.

(2001); Neumeyer (2004). In Borovkova et al. (2001), especially, the Gaussianity of the

numerical construction used to estimate the correlation dimension (3.7) of the classical

Lorenz attractor is discussed.

The Correlation Integral Likelihood (CIL) is defined as the Gaussian distributionN(µ0,Σ0),
where µ0 and Σ0 are the mean and covariance of the vector y. Numerically, µ0 and Σ0

are estimated as discussed in the beginning of this section using the vectors (3.9) given by

the training set using all the pairs k, l = 1, 2, ..., nens.

In this paper we use the generalised correlation integral in order to create a statistical dis-

tribution that quantifies the variability of Turing patterns within a given reaction-diffusion

system (1.1). Certain modifications to the approach in Haario et al. (2015) are neces-

sary. First, by applying the Method of Lines we reduce an infinite-dimensional reaction-

diffusion system (1.1) to a finite ODE system (3.5), which makes it possible to apply the

CIL concept.

Next, we modify the concept of trajectory s = s(θ,x). In Haario et al. (2015), the

samples si are vectors from a numerically computed trajectory s, evaluated at time points

ti. So in the case of chaotic ODE system, they actually are samples from the global

chaotic attractor in the phase space. In the case of the reaction-diffusion system (1.1),

when model parameters belong to a pure Turing domain, numerical simulations converge

to stable stationary states. These stationary states belong to a global attracting set of the

system considered. Therefore, we choose inhomogeneous steady states of the reaction-

diffusion systems to be the samples si. Each ensemble of N patterns is obtained by

solving the equation (1.1) N times with a fixed model parameter vector θ but randomised

initial values x.

Finally, we choose the distance appropriately. For si, sj we define the distance by L2-

norm formula:

||si − sj||2 =
∫

Ω

[(vi − vj)2 + (wi − wj)
2]dx1dx2.

In numerical experiments this integral is approximated by the trapezoidal rule.

Numerically, the mean and covariance of the Gaussian distribution of the correlation in-

tegral vector y can be empirically estimated by an ensemble of vectors yl, l = 1, ..., nens.

After this we can employ the usual MCMC (Markov Chain Monte Carlo) sampling meth-

ods to find out the distribution of model parameters for which the variability due to the
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Figure 3.3: Time taken by consecutive integration ofN MOL systems (3.5) by the explicit

Runge-Kutta method “RK4” in C++ (host code) for the case of sparse spatial grid (32×32
nodes).

differences in parameter values is indistinguishable from the variability of the training

set. Equally well, a given set of empirical data, such as patterns in the present case, can

be used to construct the likelihood, which enables the identification of unknown model

parameters.

Numerical experiments are discussed in detail in Section 4. The code was written in MAT-

LAB language, while the most time-consuming parts were implemented in C++/CUDA

and integrated into MATLAB via MEX interface. For running the MCMC sampling meth-

ods the MCMC toolbox for MATLAB was used (see Haario et al. (2006) for details). The

rest of the current section is devoted to the details of numerical implementation of the CIL

approach.

3.4 Numerical implementation of the approach

The construction of a parameter posterior distribution using the Metropolis-Hastings al-

gorithm requires a long enough MCMC chain to be computed. In general situations,

one chain contains at least 4000 elements. Evaluating one element of the chain requires

computing N repeated solutions of the underlying reaction-diffusion model (1.1). In the

experiments, discussed in current thesis, N ≤ 500 (see Section 4). As a result, com-

puting one MCMC chain in the most difficult case N = 500 requires approximately

500× 4000 = 2× 106 model integrations.

Implementing an efficient algorithm for a numerical solution of the equations under study

is crucial for the successful use of the CIL algorithm. As a result, some commonly
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used approaches cannot be applied to this problem. For example, the numerical inte-

gration of the MOL system (3.5) in MATLAB (ode45 routine, Dormand-Prince method,

sparse spatial grid) requires approximately 13.43 seconds. Hereinafter we consider the

FitzHugh-Nagumo model (3.1) as an example, because integrating other equations under

study (3.2) and (3.3) takes approximately the same time. Therefore, time taken by com-

putation of one MCMC chain will require around 310 days, which is not acceptable for

any practical applications.

It should be pointed out that interpreted code (such as MATLAB code) is usually slower

than compiled code. It is possible to increase the performance of numerical integration

by implementing the algorithms in some compiled language (like C++ or Fortran) and

then accessing the corresponding routines from MATLAB via MEX API. This results in

a significant performance increase: one numerical integration of the MOL system (3.5)

performed with C++ implementation of the Runge-Kutta method (“RK4”) takes approxi-

mately 0.8 seconds (which is 37 times faster than in MATLAB). In this case, however, the

computational time for one chain will be approximately 18 days, which is still not enough

for the effective use of the CIL approach. In addition, Central Processing Unit (CPU) is

most effective while working with a moderate amount of parallel threads; therefore it is

not possible to effectively perform the parallel integration of several systems. As a result,

the computation time grows linearly with the number of independent simulations N (see

Fig. 3.3).

In this situation one solution is to employ several computers, organised in a cluster (for ex-

ample, it was succesfully performed by Campillo-Funollet et al. (2019)) by using Message

Passing Interface (MPI). Another approach is conducting the computations on Graphics

Processing Units (GPUs), which allow an efficient computation of a large number of so-

lutions in parallel. Model simulations, required for computing MCMC chains, are done

with the same values of model parameters and similar values of initial data, taken as small

perturbations of the homogeneous steady state (3.4). As a result, these simulations can

be effectively batched and executed on GPU. This enables a significant improvement in

performance, making the proposed approach more suitable for numerical applications. In

addition, it is possible to run all the computations by using only one machine equipped

with a suitable GPU device.

3.5 General overview of CUDA

Modern GPUs are very effective at processing a large number of independent tasks in

parallel if each single task is relatively simple. CUDA (Compute Unified Device Archi-

tecture) is a parallel computing platform and application programming interface (API)

developed by Nvidia. The platform makes it possible to use GPU devices for general

processing computing, usually termed GPGPU (General-Purpose computing on Graphics

Processing Units). The CUDA platform allows the programmer to access the GPU in-

struction set and execute kernels, which are subroutines, designated to run on GPU and

scheduled for execution from the host side. Kernel code may be written using the CUDA

dialect of C++ or Fortran languages and compiled using the specialised Nvidia compiler

NVCC. It is possible, however, to work with CUDA from other programming languages
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as well, by using third-party wrapper libraries, such as PyCUDA.

In the CUDA programming model, each computational task (represented as kernel) is

executed multiple times in parallel by different CUDA threads, which may be consid-

ered as normal CPU threads with much lighter context. All CUDA threads are grouped

into blocks and blocks are packed into a grid. Grids and blocks can be defined as one-

dimensional, two-dimensional or three-dimensional arrays. Each block can be considered

as a Single Instruction Multiple Thread (SIMT) machine. Not all threads in the block,

however, are necessarily executed in parallel. The subset of threads, which is executed

physically in parallel, is called a warp. On modern machines one warp always contains

32 threads and the maximum number of threads per block is usually equal to 1024.

The NVIDIA GPU architecture is built around a scalable array of multithreaded stream-

ing multiprocessors (SM). When the host invokes a kernel, the blocks of the kernel grid

are enumerated and distributed to available multiprocessors. The threads of each block

execute concurrently on one multiprocessor, and multiple thread blocks can execute con-

currently on one multiprocessor. As thread blocks terminate, new blocks are launched

on the vacated multiprocessors. The multiprocessor creates, manages, schedules and ex-

ecutes threads in groups of 32 parallel threads (warps). Individual threads composing

a warp start together at the same program address, but they have their own instruction

address counter and register state and are therefore free to branch and execute indepen-

dently.

When a multiprocessor is given one or more thread blocks to execute, it partitions them

into warps and each warp gets scheduled by a warp scheduler for execution. The way

a block is partitioned into warps is always the same. A warp executes one common

instruction at a time, so full efficiency is realised when all 32 threads of a warp agree

on their execution path. If threads of a warp diverge via a data-dependent conditional

branch, the warp executes each branch path taken, disabling threads that are not on that

path. Branch divergence occurs only within a warp; different warps execute independently

regardless of whether they are executing common or disjoint code paths.

The execution context (program counters, registers, etc.) for each warp processed by a

multiprocessor is maintained on-chip during the entire lifetime of the warp. Therefore,

switching from one execution context to another incurs no cost, and at every instruction

issue time, a warp scheduler selects a warp that has threads ready to execute its next

instruction (the active threads of the warp) and issues the instruction to those threads.

Each multiprocessor has a set of 32-bit registers that are partitioned among the warps,

and a parallel L1/L2 data cache (called shared memory, usually 96 KB) that is partitioned

among the thread blocks.

3.6 Implementation of the numerical algorithms

In general, modern libraries for numerical solutions of ODEs (for example SUNDIALS

suite or ODEINT library) support GPGPU computing. This functionality is either em-

bedded into the library from the beginning or can be added to existing numerical solvers

by providing new used-defined data structures. This approach allows the incorporation of

required GPGPU functionality into the existing code. However, library architecture suited
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Algorithm 1: Computing the numerical solution of the MOL system (3.5) for

the case of sparse spatial grid

Input : w0, batch of N arrays containing initial data with 2048 elements in each

(global memory)

Input : T , time interval length (scalar)

Input : dt, time integration step (scalar)

Input : s, batch of N temporary arrays with 2048 elements in each (shared

memory)

Input : z, batch of N temporary arrays with 2048 elements in each (shared

memory)

Output: wT , batch of N arrays containing computed patterns with 2048
elements in each (global memory)

begin
s← w0

syncthreads()

Ndim ← 1024, n0 ← blockIdx.x, k = threadIdx.x

for (t = 0; t ≤ T ; t+ = dt) do
dv = 0, dw = 0
zn0

[k]←∇2
5sn0

[k] + f(sn0
[k], sn0

[k +Ndim])
zn0

[k +Ndim]← ∇2
5sn0

[k +Ndim] + g(sn0
[k], sn0

[k +Ndim])
syncthreads()

du+ = (1/6) ∗ zn0
[k], dv+ = (1/6) ∗ zn0

[k +Ndim]
zn0

[k]← sn0
[k] + (1/2) ∗ dt ∗ zn0

[k]
zn0

[k +Ndim]← sn0
[k +Ndim] + (1/2) ∗ dt ∗ zn0

[k +Ndim]
syncthreads()

zn0
[k]←∇2

5zn0
[k] + f(zn0

[k], zn0
[k +Ndim])

zn0
[k +Ndim]← ∇2

5zn0
[k +Ndim] + g(zn0

[k], zn0
[k +Ndim])

syncthreads()

du+ = (1/3) ∗ zn0
[k], dv+ = (1/3) ∗ zn0

[k +Ndim]
zn0

[k]← sn0
[k] + (1/2) ∗ dt ∗ zn0

[k]
zn0

[k +Ndim]← sn0
[k +Ndim] + (1/2) ∗ dt ∗ zn0

[k +Ndim]
syncthreads()

zn0
[k]←∇2

5zn0
[k] + f(zn0

[k], zn0
[k +Ndim])

zn0
[k +Ndim]← ∇2

5zn0
[k +Ndim] + g(zn0

[k], zn0
[k +Ndim])

syncthreads()

du+ = (1/3) ∗ zn0
[k], dv+ = (1/3) ∗ zn0

[k +Ndim]
zn0

[k]← sn0
[k] + dt ∗ zn0

[k]
zn0

[k +Ndim]← sn0
[k +Ndim] + dt ∗ zn0

[k +Ndim]
syncthreads()

zn0
[k]←∇2

5zn0
[k] + f(zn0

[k], zn0
[k +Ndim])

zn0
[k +Ndim]← ∇2

5zn0
[k +Ndim] + g(zn0

[k], zn0
[k +Ndim])

syncthreads()

du+ = (1/6) ∗ zn0
[k], dv+ = (1/6) ∗ zn0

[k +Ndim]
sn0

[k]+ = dt ∗ du
sn0

[k +Ndim]+ = dt ∗ dv
syncthreads()

w0 ← s
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Algorithm 2: Computing the numerical solution of the MOL system (3.5) for

the case of dense spatial grid

Input : w0, batch of N arrays containing initial data with 8192 elements in each

(global memory)

Input : T , time interval length (scalar)

Input : dt, time integration step (scalar)

Input : s, batch of N temporary arrays with 8192 elements in each (shared

memory)

Input : z, batch of N temporary arrays with 8192 elements in each (shared

memory)

Output: wT , batch of N arrays containing computed patterns with 8192
elements in each (global memory)

begin
s← w0

syncthreads()

Ndim ← 4096, n0 ← blockIdx.x, k0 = threadIdx.x

for (t = 0; t ≤ T ; t+ = dt) do

for k ∈ [k0,k0 + 1024,k0 + 2048,k0 + 3072] do
dv = 0, dw = 0
zn0

[k]←∇2
5sn0

[k] + f(sn0
[k], sn0

[k +Ndim])
zn0

[k +Ndim]←∇2
5sn0

[k +Ndim] + g(sn0
[k], sn0

[k +Ndim])
syncthreads()

du+ = (1/6) ∗ zn0
[k], dv+ = (1/6) ∗ zn0

[k +Ndim]
zn0

[k]← sn0
[k] + (1/2) ∗ dt ∗ zn0

[k]
zn0

[k +Ndim]← sn0
[k +Ndim] + (1/2) ∗ dt ∗ zn0

[k +Ndim]
syncthreads()

zn0
[k]←∇2

5zn0
[k] + f(zn0

[k], zn0
[k +Ndim])

zn0
[k +Ndim]←∇2

5zn0
[k +Ndim] + g(zn0

[k], zn0
[k +Ndim])

syncthreads()

du+ = (1/3) ∗ zn0
[k], dv+ = (1/3) ∗ zn0

[k +Ndim]
zn0

[k]← sn0
[k] + (1/2) ∗ dt ∗ zn0

[k]
zn0

[k +Ndim]← sn0
[k +Ndim] + (1/2) ∗ dt ∗ zn0

[k +Ndim]
syncthreads()

zn0
[k]←∇2

5zn0
[k] + f(zn0

[k], zn0
[k +Ndim])

zn0
[k +Ndim]←∇2

5zn0
[k +Ndim] + g(zn0

[k], zn0
[k +Ndim])

syncthreads()

du+ = (1/3) ∗ zn0
[k], dv+ = (1/3) ∗ zn0

[k +Ndim]
zn0

[k]← sn0
[k] + dt ∗ zn0

[k]
zn0

[k +Ndim]← sn0
[k +Ndim] + dt ∗ zn0

[k +Ndim]
syncthreads()

zn0
[k]←∇2

5zn0
[k] + f(zn0

[k], zn0
[k +Ndim])

zn0
[k +Ndim]←∇2

5zn0
[k +Ndim] + g(zn0

[k], zn0
[k +Ndim])

syncthreads()

du+ = (1/6) ∗ zn0
[k], dv+ = (1/6) ∗ zn0

[k +Ndim]
sn0

[k]+ = dt ∗ du
sn0

[k +Ndim]+ = dt ∗ dv
syncthreads()

w0 ← s
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(a) (b)

Figure 3.4: Time taken by batched integration of N MOL systems (3.5) by the explicit

Runge-Kutta method “RK4” for the case of sparse spatial grid (a) and dense spatial grid

(b). Red line: Nvidia GTX 980 (one device), blue line: Nvidia GTX 980 SLI (two de-

vices)

for a wide range of problems necessarily introduces an overhead, as a result sometimes

significantly limiting the performance of available device for a specific problem. In addi-

tion, it limits the possibility of employing the shared memory, available in Nvidia devices,

which could significantly increase the performance for such moderate-sized problems,

which are discussed in the current work.

Taking all these considerations into account, the algorithm for computing the numerical

solution of the MOL system (3.5) was implemented from scratch on C++/CUDA. The

system was integrated with the classic Runge-Kutta method “RK4” (see Butcher (1987)).

All computations were conducted in a single kernel call using the shared memory of the

device to handle the intermediate data for computations. There are two separate imple-

mentations for the sparse spatial grid (32 × 32 nodes) and dense spatial grid (64 × 64
nodes), which result from the hardware limitations. In the sparse spatial grid case, the

spatial resolution is equal to 1024 nodes, which is at the same time the maximal allowed

number of threads in one CUDA block. In this case each block processes one simulation,

which means that each thread of the block computes both components of the solution

for a single pixel (see Algorithm 1). In the case of a dense spatial grid, one thread pro-

cesses four spatial nodes (see Algorithm 2), which lowers the parallelism level, but at

the same time it allows us to keep the computations in the shared memory of the device,

thus enabling the achievement of a significant impact for memory reading and writing

operations.

Implementing the numerics in CUDA allowed us to lower the time taken by integrating

500 independent systems to 0.78 seconds in the case of a sparse spatial grid and to 6.14
seconds in the case of a dense spatial grid. As a result, computing one MCMC chain takes

approximately 50 minutes and 7 hours respectively. This performance level is reached by

employing the hardware-level efficiency of GPU to perform batched computations. In

addition, the code can be trivially parallelised between multiple devices. If the number of
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simulations N is large enough, this results in a linear increase in performance, see Fig.

3.4.

In all numerical examples considered in the current work (see the next section), the nu-

merical solution was computed in the time interval [0, 100]. Following the idea, proposed

in Campillo-Funollet et al. (2019), the time derivative of the solution was evaluated at

final time point T = 100 by a finite difference scheme. It was checked that for the chosen

time interval the L2-norm of the time derivative was less than δ = 10−3 for all the systems

considered. This value was relatively small compared to the values observed during the

transient process; therefore it was assumed that the steady state was reached. For several

randomly chosen values of control parameters used in numerical experiments, the sys-

tem was also integrated on the interval [0, 2T ] to verify that the difference between the

solutions at both times was less than δ.

3.7 Summary

Correlation Integral Likelihood allows for a statistically sound way to determine if a given

set of patterns belongs to the same family of patterns as the training data. The Gaussian

likelihood can be used as a cost function for parameter identification, which can be done

by the methods of statistical optimisation. MCMC sampling methods can be applied to

determine the distribution of those parameters of a reaction-diffusion system that produce

patterns similar to data.

The construction of a parameter posterior distribution by the Metropolis-Hastings algo-

rithm requires a long enough MCMC chain to be computed. Moreover, the evaluation

of the cost function based on the correlation integral vector requires repeated solutions

of the underlying model. Running the simulations on GPU allows for an efficient com-

putation of a large number of solutions in parallel. The code for numerical simulations

was built using the Nvidia CUDA parallel computing platform. This enables a significant

improvement in performance, making the proposed approach more suitable for numerical

applications.

The MATLAB/C++ code, which was used for all numerical simulations discussed here,

is publicly available on GitHub. Please see the link:

https://github.com/AlexeyKazarnikov/CILNumericalCode
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4 Numerical experiments

4.1 Introduction

In this section we study the performance of the CIL approach, which was introduced in the

previous section. First, the accuracy is considered. That is, we analyse how well the model

parameters are identified by a given training data. We create synthetic training data using a

known model parameter vector θ0 and create the CIL likelihood as described in Section 3.

Next, we employ MCMC (Markov Chain Monte Carlo) sampling methods to find out the

posterior distribution of model parameters determined by the likelihood. We begin with

large data sets and next consider a limited data case. Finally, we demonstrate parameter

estimation, i.e. convergence of the method when starting with initial parameter values far

away from the correct one. This leads to minimising of a stochastic cost function, solved

by an evolutionary optimisation algorithm.

4.2 Numerical construction of the CIL likelihood

For simplicity, we consider only two parameters to be estimated for each equation system,

grouped in a vector θ. All other model parameters are fixed, see Table 4.1 for the values.

Denote the given “correct” values of the estimated parameters by θ0. Typical Turing

patterns obtained for the chosen parameter values are shown in Fig. 3.1. Where possible,

we verified that the patterns we obtained for θ = θ0 are similar to those obtained by other

authors and available in literature (see Painter et al. (2012) for the case of the Gierer-

Meinhardt system (3.2) and Peña and Pérez-Garcı́a (2001) for the case of the Brusselator

reaction-diffusion system (3.3)).

We start by constructing an empirical approximation for the likelihood of the correlation

Table 4.1: Parameter values used for creating the training set for statistics of generalised

correlation integral vector y(x, θ0). FHN, GM and BRS mean the FitzHugh-Nagumo

model, Gierer-Meinhardt system and Brusselator reaction-diffusion system respectively.

Parameter FHN GM BRS

θ (µ, ε) (µv, µw) (A,B)
θ0 (1, 10) (0.5, 1) (4.5, 6.96)

ν1 = 0.05, ν1 = 0.00025, ν1 = 0.0016
ν2 = 0.00028, ν2 = 0.01 ν2 = 0.0132
α = 1

R0 1.23 6.3 1.9
M 18 18 18
b 1.031 1.050 1.040
N 500 500 500
nens 46 46 46
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Figure 4.1: Creation of the correlation integral likelihood. The training set is divided

into nens subsets, each containing N samples. Next, for any given subset pair the dis-

tances between all respective samples are computed (N2 values). Next, the empirical

cumulative distribution function (eCDF) of the distances is constructed. This gives us

Npair = nens(nens−1)/2 samples of eCDF vectors, from which the mean and covariance

of the eCDF vectors are estimated.
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integral vector y. To create the statistics of y at θ = θ0 we first create ensembles of

N = 500 samples si, repeated nens = 46 times. This yields Npair = 46(46−1)
2

= 1035
different ensemble pairs. For each pair we compute the N2 distances between the pattern

samples and create the respective eCDF vector. The set of ensemble pairs gives us 1035
examples of the eCDF vectors, from which the mean and covariance of y(x, θ0) are

estimated (see Fig. 4.1 for details).

So, altogether we create Nset = nens × N = 23000 patterns for the training set, each by

randomising the initial conditions and solving the ODE system (3.5). For the numerical

experiments we discretise the spatial terms in a square mesh of 64× 64 points and arrive

at a set of 8192 equations in the MOL system.

Next, we find the constants used to construct the cumulative distribution functions of the

distances. For this we setR0 as the maximum of all computed distances. As the bin values

are given by Rk = b−kR0, k = 1, ...,M some manual tuning is needed to find suitableM ,

as always with histograms or empirical CDF functions. With R0 and M given, the value

of b can be found by the requirement that the smallest radius RM = b−MR0 is somewhat

larger than the minimum of the distances computed by the training set. A final check for

the Rk values is performed to verify that the resulting covariance matrix is not singular,

which might happen if some Rk values are too large or too small. All parameter values

for the current experiment are listed in Table 4.1.

To numerically verify the Gaussianity of the set of vectors (3.9), we apply the chi-square

criterion, which states that if the Gaussian hypothesis is true then:

(µ0 − y)Σ−1
0 (µ0 − y) ∼ χ2

M , (4.1)

where µ0 and Σ0 are mean vector and covariance matrix of the training set, χ2
M is a chi-

squared distribution with M degrees of freedom. Examples of the density function of

χ2
M and the corresponding empirical histogram of (4.1) are shown in Fig. 4.2. Individual

components yk,lm of the vectors (3.9) are also normally distributed, which can be verified

by any scalar Normality test.

The parameter posterior distribution can now be constructed by MCMC sampling meth-

ods. We generate a sequence of parameter values θ1
0, θ2

0, . . ., θn
0 whose empirical distribu-

tion approaches the posterior distribution. A new point θn+1

0 in the chain is generated by

the following rule. First, a new candidate θ∗ is generated by a Gaussian proposal distribu-

tion with a prescribed covariance matrix. The reaction-diffusion system (1.1) is simulated

N times for the proposed parameter vector θ∗, and a CIL vector yk,θ∗

is calculated using

distances between the simulated patterns and those from a randomly chosen ensemble

sk from the training set. The proposed parameter θ∗ is finally accepted or rejected, de-

pending on the value of the likelihood for yk,θ∗

. For more details on MCMC methods

see Hastings (1970). We use the adaptive Metropolis-Hastings algorithm, which updates

the covariance matrix in order to improve the proposal during the sampling (Haario et al.

(2001, 2006)).

We sample a parameter chain of length 4000. The results shown in Fig. 4.2 demonstrate

that the sampling performs well, producing a strong correlation but clearly limited vari-

ability of the parameter values. Fig. 4.3 shows examples of Turing patterns, obtained for
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Figure 4.2: Density function χ2
M with the corresponding empirical histograms and pos-

terior distributions of model parameters with verification values inside and outside the

region for the case N = 500: (a)-(b) the FitzHugh-Nagumo model (verification val-

ues are: (A) µ = 1.01, ε = 10.47, (B) µ = 0.97, ε = 8.4, (C) µ = 0.98, ε = 10.5
and (D) µ = 1.0, ε = 8.1), (c)-(d) the Gierer-Meinhard system (verification values are:

(A) µv = 0.5, µw = 1.002, (B) µv = 0.47, µw = 0.89, (C) µv = 0.5, µw = 0.88
and (D) µv = 0.47, µw = 1.0) and (e)-(f) the Brusselator reaction-diffusion system

(verification values are: (A) A = 4.522, B = 6.992, (B) A = 4.42, B = 6.827, (C)

A = 4.5, B = 6.84 and (D) A = 4.44, B = 7.0).
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Figure 4.3: Turing patterns, obtained from direct simulations of the equations under

study for verification values of control parameters, lying inside the posterior distribution

region for the case N = 500 (points (A) and (B)) and outside it (points (C) and (D)).

Initial conditions are taken as small random perturbations of the homogeneous steady

state. Verification values of varying control parameters and posterior distribution regions

are shown in Fig. 4.2, while values of fixed model parameters are listed in Table 4.1.

Left column: the FitzHugh-Nagumo model (variable w). Central column: the Gierer-

Meinhardt system (variable w). Right column: the Brusselator reaction-diffusion system

(variable v).

the verification values from inside the parameter posterior and slightly outside it. We can

observe that while the algorithm is able to detect structural changes in the patterns due to

slightly changed parameter values, it would be practically impossible to distinguish any

systematic differences between those pictures with the naked eye. The strong correlation

of the parameters might naturally suggest the underlying invariance of the patterns. This

does not affect, however, the ability of the approach to properly identify the bounded pos-

terior regions. It can be verified numerically that parameter values, lying on the respective

curves outside of the posteriors give bigger values of the likelihood than points inside the

sampled regions and as a result can be successfully distinguished by the algorithm.

4.3 Limited data

We have to note that our previous training set contains a large number of Turing pattern

examples, of the order 23,000. Such an amount of data allows us to keep the number of

patterns for one feature vector, as well as the number of pairs of the vectors, high enough

to produce smooth eCDF curves and accurate estimates of µ0 and Σ0. It is, however, most

likely an “overkill” for many practical purposes. Let us next consider situations where we

possess a limited amount of information. First we assume that we have a limited set

S = {si}Nset

i=1 of patterns available. In this situation it is possible to use a bootstrapping

method that allows us to keep the number of trajectory pairs in training set high enough by

resampling. However, posterior distributions of model parameters naturally grow larger

as the amount of data N decreases. Next we consider the situation when data patterns

are scaled by min-max normalisation. This may be considered as switching to the 2D

“observations” of patterns, which could be treated as greyscale images of the data. In
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Table 4.2: Parameter values used for creating the training set for statistics of generalised

correlation integral vector y(x, θ0) in the case of min-max normalised data. FHN, GM

and BRS denote the FitzHugh-Nagumo model, Gierer-Meinhardt system and Brusselator

reaction-diffusion system respectively.

Parameter FHN GM BRS

R0 0.81 0.47 0.7
M 32 32 32
b 1.016 1.05 1.025
N 500 500 500
nens 46 46 46

this situation the approach performs well; however, the posterior regions become larger

as some amount of information has been lost. Finally we test the method in the situation

of a sparse mesh when the spatial resolution of the picture decreases.

We split the set S into two equal parts S1 and S2, each containing N = Nset

2
elements.

Then, we create the training set for statistics of y(x, θ0) using the following algorithm:

1. Create a set S̃1 by sampling N patterns with replacement from data set S1.

2. Create a set S̃2 by sampling N patterns with replacement from data set S2.

3. Use the sets S̃1 and S̃2 to compute the correlation integral vector y(S̃1, S̃2, θ0).

4. Randomising S1 and S2, repeat steps 1-3 until Npair vectors y for the training set

have been created.

The vectors y constructed in the above way again follow a multivariate Gaussian distri-

bution, as can be once more verified by the chi-square test. The bootstrapping is able to

produce estimates for mean vector µ0 and covariance matrix Σ0, which are needed for

the construction of parameter posterior distribution. We tested the impact of decreasing

data using training sets containing 1000, 500 and 50 patterns. The results of the MCMC

sampling for the model parameters are shown in Fig. 4.4. We see how the decrease in

original data samples results in larger parameter posterior distributions. But this is only

natural: a decreasing amount of data always results in increasing uncertainty. However,

we note that the value Nset = 50 is at the lower limit where the bootstrapping approach

still works in a numerically stable manner, because a smaller set of distances gives too

crude an approximation for eCDF (see Fig. 4.5).

Finally, we can again visually verify the patterns created by the model using parameter

values at the tails or outside the sampled distribution. As the verification points we se-

lected a few examples as shown in Fig. 4.6, using the least accurate case obtained with

Nset = 50 data patterns. Examples of Turing patterns obtained for these verification

values are shown in Fig. 4.7. We might observe that the patterns corresponding to the

parameters at the tails of the posterior are yet difficult to distinguish from the reference
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Figure 4.4: Posterior distribution of model parameters for the different number of samples

in the training set (Nset = 1000 (yellow), Nset = 500 (red) and Nset = 50 (blue)). Left

column: non-normalised case. Right column: min-max normalised case. Values of all

model parameters are given in Table 4.1 for non-normalised data and in Table 4.2 for min-

max normalised data. The FitzHugh-Nagumo model: (a) and (b), the Gierer-Meinhardt

system: (c) and (d) and the Brusselator reaction-diffusion system: (e) and (f).

patterns with the naked eye, while the patterns created using the parameter values outside

the distribution now are clearly different.

Recall that the Turing patterns used as data samples are the steady state concentration

fields, obtained from points of a square domain Ω, determined by equations (3.5). How-

ever, we can also consider the case when the information of the absolute concentration

values is removed from the data. This is done by normalisation. We scale all samples si
by min-max values, i.e. by the transformation:

si = (vi(x), wi(x))→ s̃i = (ṽi(x), w̃i(x)),

ṽi(x) =
vi(x)−vmin

i

vmax

i
−vmin

i

, w̃i(x) =
wi(x)−wmin

i

wmax

i
−wmin

i

,
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Figure 4.5: The distribution of correlation integral vector components yk for different

number of samples in the training set (Nset = 1000 (yellow), Nset = 500 (red) and

Nset = 50 (blue)). The FitzHugh-Nagumo model (a), the Gierer-Meinhardt system (b)

and the Brusselator reaction-system (c).

where vmin
i , wmin

i and vmax
i , wmax

i are minimum and maximum values of corresponding

functions on a squared domain Ω. We may consider this transformation as a replacement

of the computed Turing pattern by its greyscale image (Nomura et al. (2011); Ebihara

et al. (2003)).

We create the training set in the same way as in the first case, and successfully test the

normality of the correlation integral vectors, again by the chi-square criterion. All param-

eter values used for the construction of the likelihood for the normalised case are listed in

Table 4.2.

The sampled parameter distributions for both normalised and non-normalised cases are

shown in Fig. 4.4. It can be seen that the posterior distribution region is larger in the

latter case. However, if the number of data samples is large enough, the variability of

the model parameters remains very low and the overall conclusion remains: with a large

enough training set the algorithm finds small systematic changes of pattern formation, far

below what one can intuitively see with the naked eye, even if only 2D information of the

patterns is employed.

We also tested the robustness of the proposed approach in the situation with larger spatial

step h. We repeated all the experiments from this and previous sections in a square mesh

of 32 × 32 points (and spatial step size h = 1/31 = 0.0322). Considering less dense

meshes may be inappropriate due to the size of spatial step with respect to the domain size.

However, we have found that in this case the statistical approach worked in a numerically

stable manner, reproducing similar results and conclusions for the spatial mesh of 64×64
points. The posterior distribution of model parameters for the different values of Nset and

Brusselator reaction-diffusion system (3.3) are shown in Fig. 4.8.

It is naturally possible to sample other model parameters as well, such as the diffusion

coefficients ν1, ν2. The approach works as expected; however, a higher number of sampled

parameters results in longer MCMC chains.

As noted above, the number of Nset = 50 patterns was observed to be a lower limit for

reliable results. While the number nens of disjoint subsets, of size N = Nset/2 that can

be drawn from the training set, is not a limiting factor, a too small value of N2 leads

to too noisy values for the calculated eCDF vectors. A way around the limitation is to
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Figure 4.7: Turing patterns, obtained from direct simulations of the equations under

study for verification values of control parameters, lying inside the posterior distribution

region for the case Nset = 50 (points (A) and (B)) and outside it (points (C) and (D)).

Non-normalised case. Initial conditions are taken as small random perturbations of the

homogeneous steady state. Verification values of varying control parameters and posterior

distributions are shown in Fig. 4.6, values of fixed model parameters are listed in Table

4.1. Left column: the FitzHugh-Nagumo model (variablew). Central column: the Gierer-

Meinhardt system (variable w). Right column: the Brusselator reaction-diffusion system

(variable v).



66 4 Numerical experiments

./0
4.0 5.0

.10
4.2

6.2

7.6

4.8

8.0

6.0

2set345
2set3455
2set36555

2set345
2set3455
2set36555

A

B

A

B
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non-normalised case (a) and min-max normalised case (b). The values of model control

parameter vector θ0 and fixed model parameters are given in Table 4.1.

employ a different strategy, the so-called synthetic likelihood (Price et al. (2018); Wood

(2010)). In this approach, the likelihood is computationally re-created for every new

parameter value, and the data is tested against the likelihood. In our situation, even the

data of one pattern could be used. Naturally, the results remain less accurate with less

data. Moreover, the re-creation of the likelihood at every estimation step considerably

increases the computational cost. If enough parallel processing power is available, the

simulations can be performed, but nevertheless they need more resources than the off-line

likelihood construction employed here.

Table 4.3: Parameter values used for creating the training set for statistics of y(x, θ0)
and running the DE algorithm of stochastic optimisation. FHN, GM and BRS mean the

FitzHugh-Nagumo model, Gierer-Meinhardt system and Brusselator reaction-diffusion

system respectively.

Parameter FHN GM BRS

θ0 (1, 10) (0.5, 1) (4.5, 6.96)
Nset 50 50 50
Niter 100 100 100
D0 [1, 2]× [35, 50] [0.5, 1]× [2.5, 5] [3, 6]× [10, 15]

θ̃0 (1.067, 10.27) (0.46, 0.9) (4.47, 6.86)
R0 0.81 0.47 0.7
M 32 32 32
b 1.016 1.05 1.025
N 25 25 25
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4.4 Parameter identification

In the numerical experiments of the previous sections we started from known values of

parameters to study the identifiability of them, by constructing the parameter posterior

distributions in different cases. In this section we describe the correlation integral likeli-

hood as a cost function for parameter identification of the same systems (3.1), (3.2) and

(3.3). Now we start from creating a training set of Nset = 50 Turing patterns for the

control parameter vector θ0 and “forget” the true value θ0. Next we apply CIL approach

to estimate the values of control parameters from the data. In all experiments here we use

the min-max normalised version of data.

We use the same likelihood construction as above (see Table 4.3 for details) to define the

likelihood as a stochastic cost function:

f(θ) = (µ0 − y(θ))Σ−1
0 (µ0 − y(θ)),

and minimise it with respect to θ, starting with initial parameter values far away from

θ0. For the cost function minimisation we employ the method of Differential Evolution

(Storn and Price (1997)). We create an initial population of candidate solutions (control
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Figure 4.9: Parameter identification for the case of the FitzHugh-Nagumo model. The

optimisation of stochastic cost function f(θ) is done by Differential Evolution algorithm:

(a) step 0 (initial population), (b) step 3, (c) step 10, (d) step 100 (final population).

Parameters values, used for the numerical experiment, are given in Table 4.3.
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parameter values), uniformly distributed on a squareD0. Note that in our example caseD0

does not contain the point θ0 (see Table 4.3). The algorithm optimises the cost function

f(θ) by iteratively updating a population of candidate solutions. New candidate solutions

are created from existing ones by defined combination rules; points with lowest values for

the cost function replace the old ones. However, due to the stochasticity in f(θ), values

for all candidate solutions are updated here at each iteration step.

In our example, the algorithm is run for Niter = 100 iterations. The behaviour of the opti-

misation steps is exhibited in Fig. 4.9. It can be observed that after several “generations”

the population converges towards θ0 and remains in the vicinity of it, but the stochasticity

of the cost function prevents convergence to a point estimate. After the optimisation we

can continue with MCMC sampling to find the posterior distribution of the parameters, as

given in Fig. 4.9. Note also that the parameter values of the populations at final iteration

steps of DE can be used to create an initial proposal covariance for the adaptive sampling

algorithms.

Similar results were observed in other examples, but we omit further details here. We

can conclude that the approach provides a robust algorithm to identify the distribution of

those model parameters that correspond to a given data set of patterns, without the need

for transient data or knowledge of initial values.

4.5 Summary

In this section the Correlation Integral Likelihood was tested using the well-known FitzHugh-

Nagumo, Gierer-Meinhardt and Brusselator reaction-diffusion systems. The amount of

training data was varied from 23000 to 50 patterns. For a large data set the proposed

approach shows a strong sensitivity with respect to even small changes in pattern for-

mation, which are practically impossible to detect visually. The method was used as a

tool for estimating parameters of the reaction-diffusion systems, only using a collection

of steady-state solutions as data, without the knowledge of initial state values. The per-

formance of the method was satisfactory in all cases: a large amount of data leads to

an extremely accurate detection of model parameters, while a modest amount of training

patterns leads to the same level of detection as, roughly speaking, might be observed by

the naked eye.
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5 Discussion

In this thesis the problem of parameter identification of reaction-diffusion systems by

Turing patterns was studied. By applying the concept of Correlation Integral Likelihood,

a statistical feature vector following a multinomial Gaussian distribution was introduced.

With a large enough set of pattern data, this allowed a statistically sound way to determine

if a given set of patterns belongs to the same family of patterns as the training data.

The parameter identification can then be done by the methods of statistical optimization,

while Markov Chain Monte Carlo (MCMC) sampling methods can be used to determine

the distribution of those parameters of a reaction-diffusion system that produce patterns

similar to data.

The method was tested using the well-known FitzHugh-Nagumo, Gierer-Meinhardt and

Brusselator reaction-diffusion systems. The amount of training data was varied from

23000 to 50 patterns. The performance of the method was satisfactory in all cases: a large

amount of data leads to an extremely accurate detection of changes in model parameters,

practically impossible to detect visually, while a modest amount of training patterns leads

to the same level of detection as, roughly speaking, might be observed with the naked eye.

It is possible to further minimize the amount of data needed, all the way to one pattern

only, by combining the correlation integral likelihood (CIL) feature vectors with the idea

of synthetic likelihoods. This, however, will come at the cost of considerably increased

computational demands.

The efficiency of numerical simulations is crucial for the successful run of the algorithm.

That results from the fact that numerical simulation of the model is repeated many times to

construct parameter posterior distribution by MCMC methods or to run DE stochastic op-

timization. To resolve this issue, an efficient parallel algorithm for solving the equations

under study by the explicit Runge-Kutta ”RK4” method was implemented. The compu-

tations were done on GPU by using Nvidia CUDA computing platform. All experiments,

discussed in the current work, were performed by using a single laptop with two Nvidia

GTX 980 graphic cards.

Possible future applications of the approach include model identification in developmen-

tal biology based on patterns obtained from experimental data and comparing the perfor-

mance of different models suggested to explain various pattern formation processes. The

presented technique can also be applied to the case of dynamic spatio-temporal patterns,

with some necessary modifications.
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