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A B S T R A C T

This conceptual research presents a new stochastic model of the dynamics of state-to-state transitions in so-
cial systems, the Zhukov–Khvatova model. Employing a mathematical approach based on percolation theory the
model caters for random changes, system memory and self-organisation. Curves representing the approach of the
system to the percolation threshold differ significantly from the smooth S-shaped curves predicted by existing
models, showing oscillations, steps and abrupt steep gradients.The modelling approach is new, working with sys-
tem level parameters, avoiding reference to node-level changes and modelling a non-Markov process by including
self-organisation and the effects (memory) of previous system states over a configurable number of time intervals.
Computational modelling is used to demonstrate how the percolation threshold (i.e. the share of nodes which
allows information to spread freely within the network) is reached.Possible applications of the model discussed
include modelling the dynamics of viewpoints in society during social unrest and elections, changing attitudes
in social networks and forecasting the outcome of promotions or uptake of campaigns. The easy availability of
system level data (network connectivity, evolving system penetration) makes the model a particularly valuable
addition to the toolkit for social sciences, politics, and potentially marketing.

1. Introduction

Conducting theoretical and practical research into processes of infor-
mation transmission, state changes and clustering in social systems is es-
sential for developing new approaches to forecasting people's behavior
in society, their demands and needs, as well as for forecasting and trying
to prevent the spread of undesired viewpoints.

This becomes especially important when new information technolo-
gies are developed and introduced, for example, social networks. When
measures to prevent the transmission of undesirable information/views
are absent, using technologies based on an understanding of the transfer
process becomes the only option to counter undesired effects.

Such an understanding is similarly of interest in relation to the
spread of public moods and emotional states in people networks. Pub-
lic moods and emotional states can be positive or negative, and can be
connected with certain people, products, politics and/or social issues
(Rahn et al, 1996; Kotler, Kartajaya, and Setiawan, 2010; Pe-
ter and Olson, 2010; Bell, 2011). This research explores information

adoption and consequent dissemination, wherein each participant of a
social system (or in a particular case, a user of a social network) is ready
to transmit onward a mood or viewpoint they have adopted. However,
we are not looking at the viewpoints and states of particular participants
of a social system. For us, only the change in the whole system which is
influenced by individuals’ interactions matters.

As an example of the model's applicability, social networks will be
used for modelling the spread of viewpoints. The spread of moods in so-
cial media networks has been proposed as a valuable heuristic in pre-
dicting a wide variety of phenomena ranging from stock market move-
ments (Bollen et al. 2011) to social values, acculturation and group
identity (Broniatowski, 2012; Choudhary et al., 2019) and its impor-
tance is well reported by Kramer et al. (2014).

To gain further relevant understanding, it is important to investigate
the essence of the processes operating in social systems and to develop
adequate models for monitoring and managing their states.

The objective of the current research is to develop a new stochastic
model of the dynamics of how moods and viewpoints change within so-
cial systems. With this new model, it will become possible to define the
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probable timing of a system reaching a critical threshold. To reach the
overall objective, the research analyses the application of the stochastic
model to social networks using specially developed computer software
(Zhukov et al., 2018). To demonstrate the practical applicability of the
model, the authors then propose an algorithm for monitoring the state
of a social network structure. Social networks are chosen as the example
for demonstrating the applicability of the model because we are able to
calculate the percolation threshold (i.e. the share of nodes which allows
information to spread freely within the network) by using the depen-
dencies between the percolation threshold and the network density we
obtained in previous works (Block et al., 2015; Zhukov and Lesko,
2015a,b).

Percolation refers to regular movement of media (whether informa-
tion, liquid, epidemics, etc.) within a random environment (Tarase-
vich, 2002; Zhukov and Aleshkin, 2008). Percolation occurs if the
neighboring active nodes of a network, with a certain probability, con-
nect and group together to form a cluster which gradually becomes large
enough to connect two “sides” of the net or two chosen nodes. This is
called the “percolation threshold” (PT): the proportion of transmitting
(non-blocked) nodes when conductivity between two randomly chosen
nodes in a network takes place (Zhukov et al., 2018). For the purpose
of this research, when observing the transmission of moods and view-
points, the PT is a defined proportion of people having certain moods
(emotions) and viewpoints. If this proportion is reached in a network,
the information (moods, views, emotions) can be transmitted across the
whole social system without any barriers.

In previous papers, the present authors developed new approaches
for describing the state of viewpoints and moods in social networks
based on percolation theory (Zhukov et al., 2018; Block et al., 2015).
Сomputer modelling was used to demonstrate how the density of a ran-
dom network - defined as the average number of connections per node
- influences its ability to transfer information from which percolation
thresholds were estimated and a dependency equation was obtained.
This equation enables us to model questions such as: how does the den-
sity of a popular social network (for example, supporters of a football
club) affect the optimal level of influence for changing people's opinions
about a product or service? In the current paper we will use the equa-
tions obtained earlier to define the PT in social networks while demon-
strating how the newly developed model can be applied.

The model presented in this research (the Zhukov-Khvatova model)
is novel due to several features: first, the model takes account of mem-
ory about previous states of the system, i.e. not only about the closest
previous state (as in the Markov processes), but also those states which
occurred before the immediately previous state. Secondly, the unique-
ness of this model lies in the fact that, while deriving the differential
equation, self-organization processes are considered. This is described in
the current paper where the logical meaning of each element of the new
equation is discussed in Section 3.1. Thirdly, formulating and solving
the boundary value problem enables us to obtain the probability density
function for social network transitions from one state to another with-
out making a priori assumptions about the process. Therefore, this paper
presents not only a new model, but also a new approach to modelling
incorporating stochasticity, self-organisation and memory.

A fundamental characteristic and benefit of our approach to model-
ling is that it is a macro statistical approach to describing processes in
complex social systems. For our model, it is important that each net-
work has a macro characteristic, which describes the system as a whole
– this is chosen to be the percolation threshold (PT), and this depends
on the network density. Our model can describe not only the processes
of reaching the PT, but also how the given critical value of the share of
people with a certain state of mind (viewpoint) can be reached.

The paper is structured as follows: Section 2 presents a literature
review of existing models that describe information distribution in soci

ety along with their strengths and weaknesses; and a gap in the research
is identified. Section 3 presents our newly developed model of the sto-
chastic dynamics of state-to-state transitions in social systems and social
networks (as the most obvious example of the model applicability) com-
bined with results previously obtained by the authors. Section 4 pre-
sents simulation results wherein the new stochastic model is compared
to the Blackman model which has been one of the key models describ-
ing the kinetics of state changes within a social system, and with other
models. Finally, in Section 5, an algorithm for monitoring the states of
a social network structure is proposed and further examples of practi-
cal applications of the proposed stochastic model in analysing and man-
aging processes in complex social and economic systems are discussed.
The Conclusions section summarises the results obtained, discusses lim-
itations and suggests avenues for further research.

2. Literature review

The first models to describe social dynamics and information distrib-
ution processes in society, both negative and positive, were mainly mod-
els borrowed from communication theories in the fields of Biology and
Economics (Minaev et al., 2013). These include, for example, the mod-
els of Griliches, Kalman, Blackman, Bass, Gompertz, Bertalanffy, etc. In
this research, they present an S-shaped logistic curve of how the number
of followers of a specific idea will change over time.

Blackman (1905) was the first to create the equation for modelling
biotechnological processes. It has become an important theoretical tool
which helps in the understanding of many natural biological systems,
and industrial and social processes. The Blackman model has become
one of the central models describing the dynamics of state change in a
social system and will be described in more detail in Section 5.3 when
the model developed here is compared with it and other models.

The Gompertz model is another traditional model which presents a
function describing growth as being slowest at the start and end of a
given time period: a special case of a generalized logistic function. The
function was originally designed to describe human mortality, but now
it is also used to model market impacts in finance, new product uptake
such as mobile telephone diffusion (Sultanov et al., 2016), etc.

In certain very simple cases, Blackman and Gompertz models can
produce good results. However, they will generally not correctly de-
scribe the dynamics of such processes, which manifest themselves in an
avalanche growth of the number of followers of a new idea, gradually
reaching the threshold value before declining when interest in the new
idea decreases, or when the idea is replaced by another one. It is also im-
portant to note that neither the Blackman nor Gompertz models consider
the opportunity of change from one state to another, and then back, for
example, the transfer of a supporter to a loyal state then back to being
disloyal.

Griliches proposed a logistic growth function (an S-shaped curve) for
the Rogers diffusion-of-innovation framework (Griliches 1957). This
model has been very influential in marketing and management sciences
(Pannhorst and Dost, 2019, Fernández-Durán, 2014, etc).

As is evident above, models of processes in complex social systems
have evolved considerably over time - from early models described by
smooth S-shaped curves in which the inverse dependencies were not
taken into account, to more recently developed sophisticated curves
which account for positive and negative inverse dependencies among
variables (Van Oorschot, 2018).

The distinctive feature of the model developed in this paper (mak-
ing it different from all existing models) is that, while describing com-
plex social processes, it not only takes account of inverse dependencies,
but also of the potential in the system for self-organization and the pres-
ence of memory about previous states. In order to emphasize the par-
ticular features of the suggested model and point out its place along-
side the variety of existing models, a brief overview of some modern

2



UN
CO

RR
EC

TE
D

PR
OO

F

D. Zhukov et al. Technological Forecasting & Social Change xxx (xxxx) xxx-xxx

dynamic models which describe processes in social networks is included
later in this paper.

It is important to note that there are certain analogies between the
dynamics of processes taking place in social networks, the spread of epi-
demics and some physical diffusion (Barrat et al., 2008; Easley and
Kleinberg, 2010; Jackson, 2008; Lesko et al., 2019), and chain
processes appearing in paired interactions (Barrat et al., 2008). There-
fore, theoretical approaches to describe such social systems have much
in common with describing physical systems, which to a considerable
extent helps in understanding their behavior (Watts, 2002; Gleeson
and Cahalane, 2007, Liu, He, and Liu, 2018;).

Social processes are usually characterized by sophisticated mecha-
nisms of chain reactions and stochasticity, wherein various multiple con-
ditions of the nodes depend on the influence of their neighbors, and
their conditions can also vary (Easley and Kleinberg, 2010; Karsay
et al., 2014; Centola and Macey, 2007). For example, in a youth envi-
ronment it is essential to consider how peer pressure will influence the
dynamics and final outcome of the process (Centola and Macey, 2007).

Dynamic models, which use threshold mechanisms, mainly focus on
cascade events, where the share of network nodes in a certain condition
develops quickly from a certain microscopic state, which seizes more
and more new nodes. These approaches were created in earlier social
theories (Granovetter and Soong, 1983) and described in detail by
Watts in his model of cascade events (Watts, 2002). This model is cer-
tainly current (Watts, 2002, Watts, D. J. & Dodds, 2007; Gleeson,
2008, 2011, 2013, Nematzadeh et al., 2014; Singh et al., 2013;
Sreenivasan et al., 2013; Piedrah´ıta et al., 2013). However, observ-
ing the real processes in social networks reveals its limitations. In partic-
ular, Watts’ model focuses on the appearance of momentary global cas-
cades initiated by single localized disturbances, whereas examples can
be seen wherein it is the threshold mechanisms of social network process
development which play an important part. Furthermore, the stochastic
component of the processes is in question.

In many cases, dependency on time is applied to describe the
processes in social networks using a stochastic approach. For example,
in Airoldi et al. (2008) a model of mixed membership in stochasti-
cally formed groups is discussed. This model aims to explain pairwise
changes, such as the presence or absence of links among pairs of objects.
Analysis of probabilistic changes among the pairs requires specific as-
sumptions, for example, about independence or instability of the link (of
mixed membership in stochastically formed groups). Such a model en-
ables us to model the changes in the number of members in groups and
their clustering.

Du, Wang, and Faloutsos (2010) analysed large multimodal social
networks. The essence of their approach was that interactive social net-
works often simultaneously include multiple relations, people can build
a social network by adding each other as friends and they can also form
several implicit social networks (multimodality). The method used by
the authors was structure analysis of a multimodal social network graph
developing over time. Applying this approach to real structures reveals
temporary online regularity in people's social interactions. The phenom-
enological (or descriptive) nature of this model can be seen as a draw-
back. Like the previously discussed models, it does not consider self-or-
ganization of processes and the presence of memory of previous states
affecting the system participants.

Some progress in describing social processes was also achieved by
cellular automaton models, which consider the dynamics of change in
states over time. However, they present a number of significant dis-
advantages (for example, they consider only general scenarios). Mod-
els based on graph theories and matrices of Markov chain transitions
are also not entirely suitable for researching the dynamics of social
processes due to their static nature.

In summary, all the models described have strengths and weak-
nesses, and each has a specific field of application, so none are univer

sal. Arguably, the authors of the aforementioned models do not consider
a number of important circumstances: first that the human factor leads
to stochasticity in processes occurring in complex systems; and secondly
that account should be taken of self-organization present in the system
as well as of node-level memory about previous system states. No evi-
dence of such research has been found among existing works, and this
specifically motivated our research.

3. Developing a new model of stochastic dynamics of state-to-state
transitions in social systems and social networks (as an example
of the model's applicability)

3.1. Constructing probabilistic differential schemes of state-to-state
transitions

In the approach developed, we can consider society as a system
whose states at any moment in time can be described by certain para-
meters, for example, the share of people inclined against (or in favor of)
the ruling party, or people holding extremist views; such parameters can
possess continuous random values and follow a non-deterministic distri-
bution law. It is important to emphasize that our model is not about the
individual interactions among people or states (conditions) of certain
people. We describe macroscopic changes in the state of the whole social
system using the language of the theory of stochastic, but non-Markov
processes.

Quite often, when applying probabilistic models, researchers make
assumptions in advance about the characteristics of events and processes
they are researching. For example, assumptions can be made about the
value of an observed process (or a parameter describing this process) ac-
cording to a certain distribution law (for example, Poisson's law). How-
ever, the result of this is that the result obtained depends on the pre-
liminary assumptions. Non-determinacy (of our model), on the contrary,
assumes that a priori nothing is known about the characteristics of an
observed random value and its distribution law; this removes the de-
pendency of the final result on preliminary assumptions inherent in the
model.

We can call the whole set of a social system's states X. The state ob-
served at a certain moment of time t can be denoted as xi (xi ∈ X).

The observed states may be related to, for example, economic and
political processes taking place in society. We can also introduce the
time interval τ, in which the state xi can change. In this case, any value
τ of current time t=hτ, where h is the number of transitions, or stage
of transition, between states (the process of transition between steps be-
comes quasi-сontinuous, with an infinitely small time interval τ), h=0,1,
2, 3, …, N. The current state xi at stage h, after transition to stage h+1
can either increase by a given value ε, or decrease by a given value ξ
under the influence of randomly appearing factors, and become equal to
xi+ε, or xi-ξ. The values of ε and ξ are the parameters of the processes
being modelled. Beyond this, the following limitations should be placed
on xi+ε, and xi-ξ: xi+ε≤L1 (L1 is the upper limit of the set X) and
xi-ξ≥L2 (L2 is the lower limit of the set X). In the most straightforward
scenario ε and ξ are certain constant values for every stage h and could
depend on the activities of mass media.

We can furthermore introduce the notion of the probability of the
system being in this or that state, with the assumptions that, for succes-
sive stages h, the described system can be characterized by:

P(x-ε,h) – the probability that the system is in state (x-ε);
P(x, h) – the probability that the system is in state x;
P(x+ξ,h) – the probability that the system is in state (x+ξ).

After each stage, the state xi (hereafter the index i is omitted to save
space), can change by ε or by ξ.
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The probability P(x, h+1) that in the next stage (h+1) the system
(or process) will shift to state x is

(1)
The expression (1) and schema in Fig. 1 can be explained as follows:

the probability P(x, h+1) of transition to state x in stage h is defined by
the sum of the probability of transition into this stage from state (x-ε)
and the probability P(x+ξ, h) of transition from state (x+ξ). In these
two states (x-ε) and (x+ξ), the system was in stage h. Then, the proba-
bility P(x,h) of system transition from state x (which it was in in stage h)
into any other state in the stage is h+1. In this case, it is assumed that
transitions occur with a probability which is equal to 1.

Let us note that, in this case, h increases by m=1.
If ε(x,h) and ξ(x,h) are 0, then: P(x,h+1)=P(x,h) and the state does

not change, which is logical. In this case we consider a continuous
Markov process in which the system does not have memory of former
states. However, in reality, in such a system as human society, there is
always memory of the former composition or state. The model should
therefore take this into account. To account for memory let us define the
probabilities P(x-ε,h), P(x+ξ,h) and P(x,h) accounting for the states of
the system at previous steps. The schemes of transitions can be depicted
in a similar way as in Fig.1. Considering that ε and ξ are certain per-
manent values, and t=h•τ, where t is the time of the process, h is the
number of a step, τ is the length of one step, let us change over from h to
t, and after some transformations, obtain the differential equation of our
model which describes the dynamics of changes in the states in a social
system:

(2)

The detailed derivation of this equation is presented in the Appen-
dix.

After deriving Eq. (2) with x, let us advance to the dependency of
the probability of the system being in state x time t and the depth of
memory m (m ranges from 1 to ∞):

(3)

The member of equation describes the ordered transition either
into a state where the described value is increasing (ɛ > ξ), or when
it is decreasing (ɛ < ξ); the member of equation describes the
random change in state (uncertainty of change). The member of equa-
tion – can be identified as the speed of general change of state of
the system over the course of time; the member of equation de-
scribes the process wherein the states become sources of other states

emerging (self-organization and acceleration of the ordered ( ) and
random ( ) transitions).

From the point at which the model becomes applicable in equations
(3), it is important to consider the limitation imposed on the coefficient
a=(mε2–2(m–1)εξ+mξ2)/2τ before the second derivative of x, which
considers the possibility of a random change of state. The following con-
dition should be fulfilled: (mε2–2(m–1)εξ+mξ2)≥(l–x0)2, and this means
that the transition from the starting state x0 across the threshold of the
event occurring cannot happen faster than the time taken to complete
one stage τ. If (mε2–2(m–1)εξ+mξ2)<(l–x0)2, then the system crosses
the threshold of event occurrence in just one stage.

3.2. Formulating and solving the boundary-value problem: an example of
social networks

As was noted earlier, research into the processes of state changes in
social systems is important for developing new approaches to forecasting
people's behavior in society, as well as for forecasting and trying to pre-
vent the spread of undesired viewpoints. This means that there should
be a criterion, which tells the system (the society) that the situation is
getting dangerous and some preventive steps should be taken. Such a
criterion for decision-making can be the share of people with undesired
viewpoints in a social system when the administrative bodies must start
acting to change the situation. In the context of our research, this crite-
rion can be naturally represented by the percolation threshold (PT).

We can demonstrate that the results of our previous research (Khva-
tova et al., 2017; Zhukov et al., 2018), on modelling percolation
thresholds depending on network density, can be explored in combina-
tion with the new model developed in the current research, in order to
create efficient algorithms for monitoring and managing the states of so-
cial networks.

The previously obtained results are important for the current re-
search in which we define the probable time of reaching the percola-
tion threshold in the newly developed model of stochastic dynamics of
state-to-state transitions in social systems in our example of social net-
work structures. It is important to note that the dependence on time of
the probability of reaching the PT has not been researched before.

The proportion of people who hold certain views, beyond which pro-
portion these views can unrestrictedly spread among all susceptible peo-
ple in society, can be called the percolation threshold (PT) of the social
network. People are nodes within this network and edges of this network
are represented by communication connections; the number of connec-
tions is random. In such a network, information transmission can hap-
pen simultaneously via many channels and through various nodes.

By illustration we might assume that it is important to monitor the
share of negatively-oriented citizens or consumers in society and aim to
make sure that this share does not rise above a certain value, i.e. make
sure that this share does not exceed the PT. This would mean that the
share of people with an undesired viewpoint must remain between 0
and the PT for the given social network. Let PT=l. If, for example, the
economic situation in the country (society) is having a negative impact,

Fig. 1. The schema of potential transitions between states of the system (process) in stage h+1 (Zhukov, Khvatova and Zaltcman, 2017).
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then as it continues the share of negatively-inclined citizens will increase
because the value of ε is bigger than the value of ξ at each stage of the
process. Hence the state z will come closer to the percolation threshold
PT. According to the present model applied in this way, stochastic dy-
namics are described by the change in the state of society as the para-
meters ε and ξ change, and their values are defined by the general eco-
nomic situation or the other external pressure acting on the network.

First boundary condition. We can choose the first boundary condition
on the basis of the following assumptions: that condition x=0 defines
the complete absence of any processes with particular and measurable
parameters in the IS (for example, there are no negative views in society
and the share of negative viewpoint-transmitters is zero). The probabil-
ity of identifying such a state can be different from 0 (although it should
be close to 0). However, the probability density which defines the flow
in the condition when x=0, should be set to 0 (the conditions of the
system cannot enter an area of negative values (the reflecting boundary
condition is realised), i.e.:

Second boundary condition. We can consider such condition of the IS
when the value of the vector is close to the boundary limit of its possi-
ble values (we can describe this limiting value as L). The probability of
discovering such a state will not be zero. However, it is important that
the probability density defining the probability flow in state x=L be set
at zero (the states of the system cannot enter the range of values beyond
the maximum possible value), i.e.:

Given that at the moment of time t=0, the system conditions can al-
ready be equal to a certain value x0, the initial condition should be set
as follows:

As the initial condition contains the delta function, the solution for
ρ(x,t) is split across two areas - when x>x0 and when x≤x0. The pres-
ence of the δ–function leads to the fact that the solution, remaining con-
tinuous at point x=x0, has derivative discontinuity at this point. For
solving Eq. (3), in which the second derivative of t is present, we need
to set the second initial condition: , i.e. the condition which sets
the speeds of change of probability density for any amplitude. The sec-
ond initial condition is not as obvious as the first, but in this case, we can
use the function discontinuity for any moment of time. Let us choose the
second initial condition as: . This is the condition of having
zero speed for the change of the probability density for the time t=0.

Using the methods of operator calculus to solve Eq. (3), for the prob-
ability density ρ1(x,t) and ρ2(x,t) of discovering the state of the system
in one of the values on the interval from 0 to L, it is possible to derive
the following system of equations:

When x ≥ x0:

When x < x0

where

The integral P(l,t) can be calculated:

(4)

Then, the P(l,t) function will set the probability that the system state
by moment t will be along the interval from 0 to l, i.e. the threshold l will
not be reached.

Respectively, the probability Qi(t) that the threshold l will have been
reached or exceeded by moment t, can be defined as follows:

(5)

4. Solving the boundary-value problem through dynamics and
self-organization of social states in society, and discussion

Analysis of social processes shows that if society is in a stable station-
ary economic and political state, then the share of people with strictly
negative views (viewpoints) is comparatively small, ranging between
0.05 and 0.1, and this provides stability (Sharan 1995). All other indi-
viduals (these can be called neutral or pendulous) compose a share of
approximately 0.9–0.8. N.B. here we refer to people's true internal con-
victions.

4.1. Computation experiment and discussion of the results

In order to analyse the proposed model, it is important to set the ap-
propriate values of percolation thresholds of random networks, which
were defined in previous works (Khvatova et al., 2017, Zhukov and
Lesko, 2015a, b). The values of percolation thresholds depend on the
network density (average number of connections per node). The density
of a social network can be determined experimentally and then, by us-
ing the dependencies of percolation threshold on the average number of
connections per node, possible percolation thresholds can be computed
(Khvatova et al., 2017, Zhukov and Lesko 2015a, b).

The most common modelling proposed in percolation theory is that
of nodes or of bonds (Grimmet, 1989). In the field of bond modelling,
researchers attempt to discover the proportion of bonds which must be
removed in such a way that the net would fall into two parts in order
to prevent percolation. For node modelling, researchers investigate how
many nodes must be blocked in order to break the network

For node modelling, the equation is used (Zhukov
et al., 2018), wherein z=1/ ω, where ω is the network density; y is
the natural logarithm of percolation threshold PT (PT = the share of
nodes at which transmissivity occurs). When z=1/5=0.2 we obtain
y = lnP = –1.532 and the PT P=e−1.532 equals 0.22 (in this case, this
is a ratio of the unblocked or ‘open’ nodes required for information
transfer). For bond modelling, the equation is ap-
plied (Zhukov et al., 2018). When z=0.2 we obtain a ratio of broken
bonds which cause the percolation within the whole network to disap-
pear as being equal to 0.22. Therefore, percolation will occur if the ratio
of transmissive connections is equal to 0.78.

To model the process, let us suppose that the share of alternatively
inclined citizens x0 in stable stationary economic and social conditions
does not exceed 5% (x0=0.05, see Fig. 2) or 10% (see Fig. 3); the
value τ is equal to one conditional unit of time (τ=1), ε=0.02 (2%)
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Fig. 2. Graphic representation of modelling results for exceeding the percolation thresholds of negative viewpoints in society (the initial share of negatively-inclined citizens is given as
0.05; this share can decrease by 0.01 and increase by 0.02 with every unit of time).

Fig. 3. Graphic representation of modelling results for exceeding the percolation thresholds of negative viewpoints in society (the initial share of negatively-inclined citizens is given as
0.10; this share can decrease by 0.01 and increase by 0.02 with every unit of time).

and ξ=0.01 (1%). Remember that if the situation in the country (in so-
ciety) is not favourable, the share of alternatively inclined individuals
will increase because the value of ε is greater than the value of ξ at every
stage of the process. Moreover, the values of ε and ξ may depend on the
actions undertaken by mass media.

Let us consider a case when the depth of memory is not too large, for
example, when m=2, i.e. information is preserved not only about the
previous state, but also about the state before that.

The results of modelling the time of reaching the percolation thresh-
old (Eq. 5) using Eq. (4) and the above example set of parameters, are
represented graphically in Fig. 2 and Fig.3.

6
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Curve 1 in Fig.2 and Fig. 3 is constructed for the PT equal to 0.1;
curve 2 is made for the PT equal to 0.2; curve 3 – for the PT equal to
0.3; and curve 4 – for the PT equal to 0.4.

Results of the model analysis represented in Figs. 2 and 3 demon-
strate the capacity of the system's self-organization which resides in the
following: the values of change in state x in one stage ε (increase of x)
and ξ (decrease of x) are, in themselves, random. A simple arithmetic
approach shows that the number of stages (we can call this q) at which
the PT=l might be reached cannot be smaller than q=(l–x0)/(ε–ξ). For
percolation thresholds l=0.1; 0.2; 0.3; 0.4; the initial state x0=0.05,
at ε=0.02 and ξ=0.01 for q will obtain respectively 5; 15; 25 and 35.
However as the modelling results show (see Fig. 2) the probability of
exceeding the PT is already not equal to zero after the first stage, and
this grows significantly faster over time, as the simple arithmetic cal-
culations show. This can be explained by the system's self-organization
(not only do ε and ξ define the change in the state of x, but also the
states of x themselves are sources of change) and by including memory
in the developed model.

Furthermore, Figs. 2 and 3 demonstrate the following:

1. The closer the value of the initial state of the system to the value
of the percolation threshold, the faster the probability of it being
reached approaches 1.

2. The increase of the probability of PT occurrence has a jump-like char-
acter, the length of a step depends on how close the initial share of
negatively-inclined individuals x0 is to the percolation threshold.

3. The probability of reaching the PT has an oscillating character. The
farther the initial value of the share of negatively-inclined individu-
als x0 is from the PT, the stronger the oscillations will be.

This can be illustrated in Fig. 3: for Curve 1 – x0 is closest to the
percolation threshold and there are almost no oscillations observed. The
farther x0 is from the percolation threshold, the stronger the oscilla-
tions. This is especially obvious for Curves 3 and 4 (from the begin

ning until the first horizontal area. However, this is only true for the
given values of ξ and ε. For other ξ and ε the curves will look different,
but the general conclusion will be the same. It is important to consider
that the model has several parameters, so the dependence of the proba-
bility of reaching the percolation threshold on these can be graphically
represented as a hypersurface within the space of these parameter val-
ues. The number of dimensions of this space is equal to the number of
parameters.

This hypersurface will contain particular areas of interest, but this is
beyond the scope of this paper and requires further research. The no-
table characteristic of the process of reaching the PT in stochastic dy-
namics is the presence of a plateau, which is lengthy in time. Its value
depends on the initial share of negatively-inclined citizens x0.

The special feature of the process of reaching the PT in stochastic dy-
namics is that if the initial value of negatively-inclined individuals x0 is
equal to the PT (see curve 1 in Fig. 3), the probability of reaching the
PT is not equal to 1, but it quickly converges to this value, and this does
not contradict our theory. This can arguably be explained as follows:
during any sufficiently small time period τ0 the condition of the system
can decrease by values ε=0.02 and ξ=0.01 and move away from the
percolation threshold 0.10.

When the values of ε and ξ are equal (for example, ε=ξ=0.02)
the character of curves describing the probability of reaching the PT
changes slightly (see Fig. 4), in particular, the lengthy plateau with
smoothly growing probability of exceeding the PT until it reaches 1, is
not observed anymore. The increase of the probability of transition has a
sharply pronounced jump-like character. This is connected with the fact
that the coefficient in Eq. (3)
is equal to 0, and the equation itself looks as follows (when m=2):

(6)

Fig. 4. Graphic representation of modelling results for exceeding the percolation thresholds of negative viewpoints in society (the initial share of negatively-inclined citizens is given as
0.05; this share can decrease by 0.02 with every unit of time; and it can increase by 0.02).
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Regular transitions are not possible because the term of Eq. (6)
disappears. The term of the equation remains and defines the ran-
dom change (only random transitions). In this case, the term of Eq. (6)

defines the acceleration only of random transitions, while the reg-
ular transitions are not accelerated (the term of Eq. (6) is missing).

Increases in the values of ε and ξ (when ε>ξ) change the size of the
plateau (the horizontal part of the correlation of probability of exceed-
ing the percolation threshold to the second part of sharp increase) in
Figs. 2 and 3, however the general correlation between the probability
of transition and time does not change in nature.

Using this stochastic dynamic model of changes in the states of
a social network which accounts for memory of previous states and
processes self-organization, it is possible to investigate any number of
steps (m) of the process wherein memory about previous states is pre-
served, and analyse the model's behaviour. However, this is beyond the
scope of the present research and provides a promising avenue for future
research.

4.2. Comparing the new stochastic model with the Blackman model

Our next step is to compare the results obtained with the Blackman
model, which provides a logistic curve of change over time of the num-
ber of supporters of a given idea. The Blackman model was, for a long
time, one of the central models describing the dynamics of state change
in a social system and is itself developed from many existing models.
This model can be obtained from the following statements:

- Any randomly chosen node of the social network is negatively inclined
with the probability ;

- Any randomly chosen node of the social network is positively or neu-
trally inclined with probability (Q – the number of people in
the described system).

The process of transmission of the negative influence can be viewed
as the chain of steps, each step having a length τ. The number of nodes
in the social network which happen to be in negative state in step (h+1)
are denoted as Rh+1, the number of nodes in negative state in step h - as
Rh.

The increase in the number of negatively-inclined citizens (contam-
ination) caused owing to negatively-inclined ones on the (h+1) will be
equal to: , (Rh of negatively-inclined individuals with
n0 connections, with the coefficient Ω influence on neutrally or pos-
itively-inclined people, at the probability of the event that
one connection leads to such a node of a social network). Therefore

.
The length of every step τ0, when all the lengths t of the process and

the number of steps h are connected to each other is as follows: t=h τ.
Substituting the number of steps h and k by the time of the process t, we
obtain: .

Decomposing the obtained equation into the Taylor row and retain-
ing only the first derivative, we get:

(7)

where τ is the length of one step in conditional units of time, n0 is the av-
erage number of connections of every node of a social network, Ω is the
coefficient of proportionality (of influence) which is an empirical value,
R(t) is the number of negatively-inclined citizens, L is the total number
of citizens.

Let us divide the right and the left parts of Eq. (7) by the total num-
ber of people in the given society, and we get:

(8)

where , and r(t) is the share of negatively-inclined citizens in the
moment of time t. After integrating the equation (8), considering that
at the moment of time t=0, the share of negatively-inclined people is r0,
we derive the key equation of the Blackman logistic model:

(9)

As the results in Figs. 2 and 3 show, the model developed in the cur-
rent research is considerably different from Blackman's model (see Fig.
5) and provides significantly new results. It is important to note that the
Blackman logistic model in Fig. 5 is created not for the probability of
reaching the percolation threshold for negative influence depending on
time, but for the relation of the share of negatively-inclined individu-
als with time (when r0=1% and k=0.25 – curve 1, k=0.30 – curve 2,
k=0.35 – curve 3, k=0.40 – curve 4, k=0.45 – curve 5 in Eq. (6)).

In a logistic model, the growth in the number of negatively-inclined
individuals starts from the proportion of such individuals in the initial
moment of time and then reaches 1 demonstrating an S-shaped charac-
ter of the process (Fig.5).

The Blackman logistic model has a fundamental drawback: it does
not consider the possibility of individuals’ transition from a negative to
a non-negative state.

The Gompertz model can also help us to better understand the re-
sults of this research. If the speed of growth is described by the following
differential equation: , wnere k and ∝ are numeric pa-
rameters of the model, then after this equation is integrated on the time
parameter t, the Gompertz equation is obtained:
, where β is a numeric parameter defined by the integrating conditions.
The graph of the r(t) function depending on t has the shape of an S-curve
(as does the Blackman model), however, it is not symmetrical in relation
to the inflection point.

Among other S-shaped models, it is important to note the Berta-
lanffy model which is rooted in biology (Bertalanffy, 1941).

, where α, θ, k and m are the numeric parame-
ters of the model which should be estimated. If m=2 and θ=β/α, the
Bertalanffy equation turns into a logistic function; if m→1, the curve
tends to look like the Gompertz model.

Richardson's model is based on the following system of differential
equations:

where is the speed of change of military expenditures of a state, and
is the speed of military expenditures of another state, α, β, γ, ϵ, θ and

φ are numeric parameters of the model. In the first equation, the para-
meter ∝ defines the increase in the rate of military expenditure of the
first state ( ) when the expenditure of the second state equals y; the pa-
rameter β accounts for the decrease in the rate of military expenditure
considering the fact that the higher the current level of expenditure is,
the lower the rate of growth will be (inverse negative dependency); the
parameter θ defines the level of constant expenditure, whether there is
a military threat or not.

When t →∞, Richardson's model may behave in three ways:

1. Endless military race: х →∞ and у →∞.
2. Mutual disarming: х → 0, у → 0.

8
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Fig. 5. Graphic representation of the results of the modelling the share of negatively-inclined citizens in the Blackman model

3. Balance of armament: х → х*, у→ у*, where у*, х* > 0.

In Table 1 we summarize the characteristics of some existing models
and compare them to the newly developed model of stochastic dynamics
of transitions between states in social systems which considers self-or-
ganisation and the presence of memory (the Zhukov-Khvatova model).

As is evident above, the traditional models proposed by Blackman,
Gompertz and Bertalanfi result in smooth S-shaped curves, while the
presently developed model results in more sophisticated non-smooth
step-like S-shaped curves. These traditional models do not account for
inverse dependencies among the variables, while the present model
does, and this is important for social processes. Being based on the
system of differential equations, Richardson's model considers inverse
positive and negative dependencies, but does not consider the system's
self-organization processes and the potential for memory. These features
are important when a human factor is present in the process. And the
Zhukov-Khvatova model developed here incorporates all features: in-
verse dependencies, self-organization and the presence of memory about
previous states.

4.3. Summary of the features of the stochastic model

In the presently developed model, the probability of reaching and
exceeding the PT of information distribution in a social network with
a given number of connections per node (the network density) is sim-
ulated. The PT depends greatly on this parameter. The shape of curves
in Figs. 2 and 3 show the capacity for an increase of the probability
of exceeding the PT as from the start of the process. This model takes
into account the existence of the system's memory of former states and
enables us to describe the system's self-organization as it considers the
second order derivative in the differential equation. It is important
to note that the model presented can be applied to any social systems
where a human factor is present.

The second feature of this model is the opportunity to monitor (and
anticipate) several jump-like changes of the probability of exceeding the
PT; this is in accordance with the observed processes in revolutions,
where, as revolutionary viewpoints increase, over time, a plateau may
be observed (for example, curves 3 and 4 in Figs. 2 and 3), before the
rapid approach to exceeding the PT occurs.

Table 1
Comparing selected existing models and the newly developed Zhukov-Khvatova model.

Name of the
model

Number of parameters
used in the model

The graphic representation of the modelled
dependency of time

Presence of inverse
dependencies

Accounting for memory
about previous states

Considering self-
organization

Blackman 1 S-shaped curves No No No
Gompertz 3 S-shaped curves No No No
Bertalanfi 4 S-shaped curves No No No
Richardson 6 S-shaped curves Yes No No
Zhukov -
Khvatova

3 Non smooth S–shaped curves, having an
oscillating character and several steps

Yes Yes Yes

9



UN
CO

RR
EC

TE
D

PR
OO

F

D. Zhukov et al. Technological Forecasting & Social Change xxx (xxxx) xxx-xxx

It is worth mentioning here that the jump-like transition occurs
within a very short period of time without any external influence and
is defined by the system's self-organization. Such behaviour of a social
system is hard to deal with in sociological research. To give an exam-
ple, such a jump-like transition could account for what happened in the
United Kingdom during the events surrounding the referendum on leav-
ing the European Union (“Brexit”), wherein, on the eve of the referen-
dum vote, all opinion surveys predicted that the British would vote to
remain in Europe.

The third feature of the proposed model is the presence of oscilla-
tions in the probability of reaching the PT; this is also very coherent
with how viewpoints really do change during revolutions, preparations
for referendums and presidential elections. The approach developed pro-
vides a tool which is more nuanced and may therefore be better able
to describe social dynamic processes. Going farther would require much
more empirical evidence. In particular, if sociological data on the av-
erage number of connections per person in a given society exists, then
it is possible to find the percolation threshold of that society's transi-
tion into a negative state (Khvatova et al, 2017, Zhukov and Lesko,
2015, Zhukov et al., 2018). Moreover, using the proposed stochastic
dynamic model, it is possible to forecast the time at which a negative
situation or any suggested scenario will probably occur. However, this is
true only if a stable trend in ε and ξ is assumed, as described below. This
assumes that efforts to affect opinion will not succeed and the trend will
simply continue irrespective of these.

5. Applying the stochastic model in social systems

5.1. An algorithm for monitoring the states of a social network structure

The model currently developed enables us to create an algorithm
for monitoring social states which can be easily put into practice. The
essence of this algorithm is as follows:

1. Using sociological monitoring, the average number of connections
per person in a given society is defined; then, the share of alterna-
tively inclined individuals is defined for a given moment of time x0
(t=0).

2. Based on the data on average number of connections, the PT of the
researched social network is calculated (Zhukov et al., 2018).

3. After one chosen conditional unit of time (τ=1, for example, one
week or one month) the share of alternatively inclined individuals is
re-сalculated at another given moment of time (t=0+τ). The change
of the share enables us to define the value of an upward or downward
trend. Furthermore, the value ε= - is calculated, and the value of ξ is
set at 0. If ε<0, then the value ξ= x1- x0, and ε=0.

4. By using Eq. (5) according to the values of x0, ε, ξ defined in steps
1-3 of this algorithm, and according to the values of parameters and
PT l, the behaviour of the probability of exceeding the PT is mod-
elled; then, the acceptable limit of time for changing the situation is
defined.

5. Furthermore, the model makes it possible to mirror what might be
described as ‘manipulation’, in cases where efforts are made to delay
the PT being reached, for example by isolating a set of the network
nodes (people with undesired views), by decreasing their number of
connections, or by decreasing the values defining the trend by using
external influence (for example, agitation, campaigning, etc).

The percolation threshold and how it is reached is an illustration of
one of the possible applications of our new model. As a ‘toy’ example,
we can look at the following example. Let us imagine a wish to con-
trol the dynamics of changes in people's opinions about the leader of a
country. The perception is that the share of negative views in society
should not be higher than 0.15 (15 %). Just to simplify, let us call this
share a critical threshold, i.e. the level when certain action should be

taken to improve the public opinion; it may in fact be the percolation
threshold for uncontrollable diffusion of the negative views, but in pol-
icy terms it is seen as that “tipping point”. Polling data is gathered on
a regular basis and the implications for decisions are considered. Let
us imagine that one week ago from 1000 randomly chosen people 30
people had a negative attitude (3%), but today there are 50 people like
that (5%). Further analysis indicates that of the original 30 people, 10
people converted their opinion from negative to positive. Correspond-
ingly the number of people who have become negative is 30 (taking into
account the 10 converts who are no longer negative). In applying the
model the unit of time of the process is τ=1 week, the parameters are:
ε=50-(30-10)=30 (ε=0,03), and ξ=10 (0,01). If starting the modelling
from today x0=50/1000=0,05 (this is the starting point for modelling).

A simple extrapolation process will produce an assessment of the
time after which the critical threshold of 0.15 will be reached and ap-
propriate action can be decided on. However, a simple extrapolation ig-
nores the network effects. In real life the existence of a given level of
dissatisfaction (say the 5% in this case) is itself a factor affecting pro-
gression the next week - over and above any trend as a result of other
factors. The prevailing level of dissatisfaction may make some nega-
tively-minded people nervous and cause them to switch to positive and
may make others, previously positive, more willing to “join the band-
wagon”. Such complex influences are represented only at first-order
level, if at all, in prevailing models; in reality the effects extend to sec-
ond, third and higher orders and create complex interactions – further-
more stochastic characteristics at each level make detailed micro-mod-
elling impractical.

For forecasting, working with a conventional modelling approach the
observations will be plotted on either a straight line for simple extrap-
olation or an S curve according to the model concerned. When the re-
sults for the following week(s) are available and the results do not match
what was forecast, there are two options: the model may be abandoned
or belief in the model may lead to a search for features that explain the
deviation. Where there is strong belief in a particular model, particularly
an S-curve model, a normal “explanation” is achieved by finding a sec-
tion of the curve where the data points fit well enough. The consequence
of that is forecasts based on the remaining shape of the curve arguing,
for instance, that the current observations of rapid change correspond to
“take off” or conversely that reduced change reflects to “flattening out”
or near saturation in the case of an S-curve. These interpretations have
direct consequences for the prediction of what will happen over future
time periods and there are potentially serious consequences if the curve
is not correct.

The model described here shows that the developing levels of the
monitored variable can display oscillations and plateaux instead of a
smooth straight line or a smooth S-curve. It none the less does have an
“end point” in that it addresses the probability of having reached the
critical level and for many practical purposes it is the percolation thresh-
old that is of most interest. Observations which appear to be “flattening
out” or “take off” therefore need to be interpreted in terms of the mod-
elled curve for the ε and ξ values and network density in the particular
case. If a close fit can be found and the ε and ξ values remain constant,
then the mathematics assures us that a more accurate prediction of the
future development can be made.

As a further toy example, we can caricature an application in rela-
tion to entertainment. Consider an audience witnessing an event which
has a series of stages at which the audience satisfaction level can be
considered/’measured’ (e.g. after performances of successive musical
pieces or comedy acts). It is a normal expectation that the audience re-
sponse (clapping or booing) will be a group reaction (individuals being
influenced by how others respond) and in this sense there is self-orga-
nization. We may also postulate that there is system memory, for ex-
ample that the effect on audience satisfaction level is affected by the
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progress of the event – the audience satisfaction level at earlier stages
and critics’ reviews in the newspaper. The model addresses the issue of
predicting when the audience satisfaction level will reach a threshold
level (perhaps the trigger for critics to decide to report that the audience
was satisfied).

In such a case, and as a toy example, the impresario who finances
such events can estimate ε, ξ (from long experience). They are incre-
ments and decrements in the level of satisfaction of the audience as a
whole. A figure for the number of links is also required, but since this is
a toy example, we can assume that this is also known (perhaps the audi-
ence is a group for which it is known). We then have to follow the logic
as set out in the paper:

1. The average number of connections is R (given and we want to apply the
model starting from an x0 (t=0) of 0.25 = 25% satisfied audience)

2. The PT is calculated (say it comes out as 45%) 1

3. After 1 act/performance/unit of time the percentage satisfaction is, let us
say, 28%. ε= x1- x0 is calculated – in this case 3 percentage points. ξ is
set at 0.

4. “By using equation (5) according to the values of x0, ε, ξ defined in steps
1-3 of this algorithm, and according to the values of parameters and PT l,
the behaviour of the probability of exceeding the PT is modelled; then, the
acceptable limit of time for changing the situation is defined."

“Respectively, the probability Qi(t) that the threshold l will have
been reached or exceeded by moment t, can be defined as follows:

and
The integral P(l,t) can be calculated:

Inspecting the resulting graph, we can see that if the measured satis-
faction level is say 44% then it is not certain that the PT will be reached
one act later. Linear extrapolation and smooth S curve models will in-
dicate that the next act will increase audience satisfaction to over 45%,
whereas our model will allow for the possibility of a plateau in the in-
crease in satisfaction rate. In real life this might arise from a “memory”
effect such as a realisation by the audience that they had been laugh-
ing more than was justified by the average of the earlier acts. Similarly
when the measured level is 48% the other models would indicate that
there is still a need for several more acts/units of time to push the per-
centage to well over 50% in order for the critics’ positive reports to be
assured, but the present model, because it indicates that the PT has prob-
ably been reached, would give more assurance that the 50% plus will
arise naturally and the critics would report satisfaction without addition
input.

5.2. Discussing potential practical implications

The stochastic dynamic model of influence expansion and transitions
between states in social networks developed here has many potential
practical applications. In the current research it is applied to analysis of
processes in complex social and economic systems. It is too early to fully
draw conclusions regarding its strengths and weaknesses; however, sev-
eral important practical implications can be discussed.

1 although we may imagine that the critics will only give the positive report we want if
the satisfaction level is 65%, the percolation theory result means that once 45% is reached
there is nothing else we can do – or need to.

First, there are processes in the business world, for example, manag-
ing an advertising campaign in social networks. Given stiff competition,
each marketing company wants their product/brand to be easily recog-
nizable, and information about it to be freely transmissible among ex-
isting and potential customers. It is now a commonplace that social net-
works can play a significant role in this. At a given moment in time, the
nodes of such networks (users, customers) can have various attitudes to-
wards a given brand (product or service), ranging from “know nothing
about the product/service” to “highly recommend this brand”. The goal
of every advertising campaign in a social network is to (with minimal
investment of time and funds) achieve the state wherein favourable in-
formation about the product starts to spread freely throughout the net-
work without any additional external influence. This is the state where
the PT has been achieved. In other words, the share of users holding
a good opinion about the brand and ready to share this opinion with
other users will be equal to or higher than the PT of the given social net-
work. After having analysed the social network structure using SNA, it is
possible to define its density (average number of connections per node).
Then, using the dependencies of PT in random networks on the density
obtained in this research, it is possible to calculate the PT of the given
social network in which the advertising campaign is planned. Further-
more, by analysing the share of some existing nodes within the social
network (let us call them the initial share of influential individuals se-
lected to promote the product) over a certain period of time (for exam-
ple, one week or one day) positive information about the acceptance of
the promoted brand is obtained and the resulting transition in the state
of the network is tracked. In our model of stochastic dynamics, the net-
work state corresponding to the initial share of influential individuals is
x0, and the time interval of influence upon the network is the parameter
τ.

Then, after the period τ, using for instance automated text message
analysis, the change in the social network nodes (i.e. changes in people's
opinions about the brand) is measured and linked to the altered state of
the network. Modern approaches using computer linguistics enable us to
define not only the change in frequency of a brand being mentioned, but
also the sentiment of users’ messages. Based on the impact of the pool
of positive and negative responses about the brand collected during the
interval τ, it is possible to define the parameters ξ and ε (upward and
downward trends correspondingly) of the stochastic dynamic model.

Furthermore, this new model enables us to assess the time needed to
reach the PT after which a majority of consumers will be ready to adopt
the brand. If the market has to be prepared faster, then decisions will
have to be taken to increase the group of influential individuals. How-
ever, this will inevitably lead to increased expenditures in advertising/
promotion and control of such additional expenditure requires insight
into the trajectory of progress toward reaching the PT. Applying this
model can provide such an insight and thereby help to optimize the nec-
essary expenditures of time and money according to the priorities of the
marketing company. It is important to note that the example described
above is only one example of potential applications of this model in busi-
ness systems.

Secondly, this model can be used to analyse processes in social sys-
tems. Electoral campaigns of various levels and referendums on signifi-
cant societal issues (such as Brexit) can serve as good examples. In this
case the ‘brand’ is represented by a candidate or an idea (for example,
to remain in or leave the EU). The goal of the ‘advertising campaign’
is to increase the level of support for a candidate, an idea or political
party. Otherwise, the approach is identical to that described above.

An example of a negative application of the proposed model could
be adverse publicity generated with the aim of decreasing the support
for a candidate or an idea. In this case, influential people will create
and spread negative opinions in a social network, and in so doing, de-
crease the share of individuals positively-inclined towards the candi
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date/idea until this share is lower than the PT. After this occurs, the po-
litical influence is reduced, which can potentially lead to the victory of
another candidate, idea or party.

6. Conclusions

In this research a new stochastic model of the dynamics of
state-to-state transitions in social systems was developed. The processes
taking place within social structures were described using a mathemati-
cal approach based on percolation theory. The features of the suggested
new model were illustrated using the example of social networks which
can be easily modelled. These networks have been considered because
while describing network characteristics as a whole, we are able to dis-
cuss parameters such as the percolation threshold that are important
from the point of information transfer. This allowed us to connect the
suggested model of processes happening in networks over time, with
the opportunity to estimate the time by which the percolation threshold
would have been reached. In previous research, we modelled the depen-
dency of the percolation threshold of a viewpoint, allegiance or mood in
the social network on the network density, i.e. the average number of
connections per node. In this paper, the relationship between the perco-
lation threshold and time was modelled. It is important to note that such
a relationship has not been researched before. A new second order dif-
ferential equation based on differential schemes for probabilities of tran-
sitions was obtained. Based on this, a boundary problem was formulated
and resolved. This enabled us to describe the dynamics of state-to-state
transitions within a system with memory and self-organization. Using
the model developed in the current research, it is possible to define the
probable time of reaching the percolation threshold in a social network
with a given density in the context of measured impacts of factors deter-
mining trends. The implications of the new model were tested using spe-
cially developed computer software (Zhukov et al., 2018). Furthermore,
the new stochastic model was compared to the Blackman model which
is currently one of the key models describing the kinetics of state change
in social systems. The Blackman logistic model was found to have funda-
mental drawbacks: it does not consider either the strength of the factors
affecting individuals’ transition from a negative to a non-negative state
or the system's capacity for self-organization and the presence of mem-
ory. The model we developed in the current research overcomes these
drawbacks. Finally, an algorithm for assessing the state of a social net-
work structure was developed which proves the practical importance of
the stochastic model.

The peculiarity of our approach to modelling is that we are taking a
macroscopic approach to describing processes in complex systems. Also,
for us it is not important how the system is built, or whether it has a
regular structure or not. It is not important whether each node has a ran-
dom number of connections with a random number of other nodes (as
for example in a random network) or whether the system is symmetri-
cal (i.e. square, triangular, etc.). Similarly, our model does not require
the number of connections of a node to follow the power law. For our
model, however, it is important that each network (regular or random)
has a macro characteristic whose behaviour describes the state of the
system as a whole – our reference to percolation theory is because that
macro characteristic emerges in the form of the system's evolution to-
ward the percolation threshold, which, following earlier work, we note
can be determined by reference to the network density.

Our model of stochastic dynamics with self-organisation and mem-
ory describes how this percolation threshold can be reached over time,
after which the system transfers into either a) a transmissive state or b)
a quiet state. Our new Zhukov-Khvatova model can be interpreted not
only as describing the processes of reaching the percolation threshold,
but also as describing how the given critical value of the share of peo-
ple with the characteristic relevant to the system state (e.g. the percent-
age supporting a given position, the percentage using a particular facil

ity) can be reached. For our macro dynamic approach, it is not impor-
tant exactly which node is in which condition at any given time. Nor is it
important how the nodes communicate with one another. Only the total
share of nodes which are in this or that condition matters. The advan-
tage of the macro model is that it considers only macro parameters, for
example, the percolation threshold.

Our model is new and different, and we feel is more advanced and su-
perior, because it allows us to deal with more sophisticated process dy-
namics. It is more sophisticated compared to what can be described by
S-shaped smooth curves; and poor experience in forecasting the dynam-
ics of social systems using such curves indicates the need for a new ap-
proach in some cases. This model is more advanced because it addresses
features believed to be significant in social systems (self-organisation
and system memory) and approaches these through a macro model that
uses probability to deal with stochastic aspects

• The advantage of the stochastic model is that it considers macro
parameters. It does not require assumptions about the micro level
processes involved in state change. The model incorporates stochastic
changes, memory and self-organisation.

• Accepted probability theory is used by the representation of stochas-
tic changes in the initial differential equation by the factor . This
factor is responsible for self-organisation.

• The model allows us to estimate the period until given states such as
the percolation threshold will be reached.

Our model also demonstrates a new approach to modelling, in which
the following key features emerge from our work:

1. The model demonstrates the potential increase in the probability of
reaching the percolation threshold event in the social system as from
the start of the process, taking into account both memory of previous
states of the system and its capacity for self-organization. The pro-
posed model shows the possibility of jump-like changes in the proba-
bility of exceeding the percolation threshold and models the presence
of oscillations in how this probability behaves.

2. The closer the value of the initial state of the system to the value
of the percolation threshold, the faster the probability of it being
reached approaches.

3. The increase in probability of exceeding the threshold has a step-like
aspect, in which the length of a stage in time depends on how
close the initial value of the system state was to the threshold. The
post-stage transition takes place over a very short period of time
without any external influence and is defined by the system's self-or-
ganization. It is worth mentioning that such behaviour of a social sys-
tem is quite difficult to identify through sociological research alone.

4. The notable characteristic of the process of reaching the PT in sto-
chastic dynamics is the presence of a plateau, which is lengthy in
time. Its value (in probability terms) depends on the initial network
state (e.g. corresponding to the share of nodes (citizens) in the rele-
vant state).

Our research has the following limitations. The model developed uses
a macro-kinetic approach, i.e. the social system/network can be de-
scribed as a whole, as one object considering collective characteristics –
the network density and the percolation threshold. However, the model
cannot consider at the same time the micro-level of process description
inside social networks, i.e. the description at the level of certain nodes
and clusters. Parameters used in this model, such as the share of nodes
being in a given condition and their changes within each stage of inter-
action, require further research involving social science approaches pos-
sibly including techniques such as e.g. psycholinguistic analysis of users’
messages in social networks.
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A limitation on practical applicability, as opposed to a limitation
on the model structure, is that while using the new stochastic dynamic
model it is possible to forecast the time at which a negative situation
or any suggested scenario will occur, this is true only if a stable trend,
reflected in ε and ξ is assumed, as described earlier. This assumes that
additional efforts to affect opinion will not be effective and the trend
will simply continue irrespective of these. A similar limitation, however,
applies to most other available modelling techniques.

A possible avenue for future research is to develop applications of
our newly presented stochastic model of state-to-state node transitions.
One idea is to apply the present approach to describe the dependence
of amplitudes of voter preference oscillations in election campaigns on
the time intervals for which they are calculated. Preliminary research
demonstrates that the polling data observed, for example, during the
2008 US Presidential election campaign, reflects fluctuations that are
very much in keeping with our new model. However, this requires fur-
ther investigation.
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Appendix

Deriving the differential equation for the model
We can define probabilities P(x–ε,h), P(x+ξ,h) and P(x,h) via states

in stage h–1.
Considering that ε and ξ are certain constants, we can write for every

stage h as follows:

(1)

(2)

(3)
If (1), (2) and (3) are inserted into Eq. (1), we obtain the following

equation:

Note that in the left part of Eq. (4) the number of stages is (h+1),
while in the right part it is (h–1). In order to avoid Taylor decomposition
of the right part of Eq. (4) in the vicinity of the number of stages h (or
in time) and decompose only in the vicinity of point x, we can transform
(4) as follows:

Note that, in this case, h increases by m=2. Furthermore, we can ex-
press the members of the right side of Eq. (2) in terms of probabilities
of the corresponding transitions on the previous step; and after certain
transformations when m=3, we will obtain:

For m=4, the following will be obtained:

After analyzing Eqs. (4) – (7), for any m, it is possible to derive the
following recurrent equation for the probability where P(x,h+m), that
for a certain time (h+m), the state will be x:

Where m is the number of steps considered while studying the
change in the system's state (m can be called ‘depth of memory’). Fur-
thermore, considering that t=h•τ, where t is the time of the process, h is
the number of the step, τ is the length of one step, let us advance from h
to t.

(8)

Let us do Taylor transformations of the members of Eq. (8), and
then, considering derivatives no higher than of second order, we can ob-
tain the following differential equation for the probability that the sys-
tem will be in a certain state x depending on time t and depth of mem-
ory m:

Furthermore, considering that:
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We obtain:

(9)
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