
This is a version of a publication

in

Please cite the publication as follows:

DOI:

Copyright of the original publication:

This is a parallel published version of an original publication.
This version can differ from the original published article.

published by

Toward a Technical Debt Conceptualization for Serverless Computing

Lenarduzzi Valentina, Daly Jeremy, Martini Antonio, Panichella Sebastiano,
Tamburri Damian Andrew

Lenarduzzi, V., Daly, J., Martini, A., Panichella, S., Tamburri, D. A. (2021). Toward a Technical
Debt Conceptualization for Serverless Computing. IEEE Software, vol. 38, no. 1. pp. 40-47. DOI:
10.1109/MS.2020.3030786

Post-print

IEEE

IEEE Software

10.1109/MS.2020.3030786

© IEEE 2021



Towards a Technical Debt
Conceptualization for
Serverless Computing

Valentina Lenarduzzi
.LUT University, Finland. valentina.lenarduzzi@lut.fi

Jeremy Daly
AlertMe, USA. jeremy@jeremydaly.com

Antonio Martini
University of Oslo, Norway. antonima@ifi.uio.no

Sebastiano Panichella
Zurich University of Applied Science (ZHAW). Switzerland. panc@zhaw.ch

Damian Andrew Tamburri
TU/e - Jheronimus Academy of Data Science, The Netherlands. d.a.tamburri@tue.nl

Abstract—Serverless computing aims at reducing processing and operational units to single
event-driven functions for service orchestration and choreography. With its micro-granular
architectural characteristics, serverless computing is bound to face considerable architectural
issues and challenges in the medium- and long-term; are these bound to become Technical
Debt? As known to many, technical debt is a metaphor that reflects the additional long-run
project costs connected to immediately-expedient but unsavvy technical decisions. However,
what does technical debt mean and how is it expressed in serverless computing and other
hybrid compute models? This article represents the first attempt to conceptualize Technical Debt
in such a context; we base our arguments over a technical overview of serverless computing
concepts and practices and elaborate on them via empirical inquiry. Our results suggest that
higher serviceability of serverless technologies is also characterized by the absence of
mechanisms to support an adequate maintainability, testability, and monitoring of serverless
systems. Indeed, in case of unexpected behaviours, testing and maintenance activities are more
complex and more expensive, as mainly based on non-automated, manual tasks.

SERVERLESS COMPUTING is growing in
popularity in the last year [5], [8]; in layman’s
terms, it means providing a platform wherefore
efficient development and deployment of appli-
cations to the market can take place in the
form of micro-granular functions, without having
to manage any underlying infrastructure hence,
serverless functions [3], [5]. Different serverless

computing platforms have been developed in re-
cent years, that enables developers to concen-
trate on the business logic, without scaling the
infrastructure as the program runs on external
servers, but thanks to the support of cloud service
providers.

In the last years most organizations migrated
or started to migrate from monolithic to Microser-

Author Version - IEEE Software, vol. 38, no. 1, pp. 40-47, Jan.-Feb. 2021, doi: 10.1109/MS.2020.3030786 2020 1



Lenarduzzi et al.

vices, and some of them to Serverless Func-
tions, to facilitate software system maintenance
and adaptability [10]. However, recent studies
on microservices migration processes, highlighted
that maintenance costs increased after the migra-
tion [9], [10], [4].

Considering the similarity between Serverless
Functions and Microservice designs, we expect
this maintainability problem to be even more
challenging in the context of Serverless Func-
tions. Similarly to microservices based systems,
the main issue about understanding and handling
Technical Debt1 also apply to systems using
Serverless Functions.

The goal of this paper is to investigate what
Technical Debt affects Serverless Functions, thus
preliminary identifying a set of issues that can be
potential predictors of Technical Debt.

To the best of our knowledge, this is the first
study that investigates the role of Technical Debt
in Serverless computing.

Based on available knowledge on TD and
Serverless, we first provide an analysis about
which Technical Debts [2] are most likely to af-
fect Serverless Computing. Then we interviewed
experts in such domain about which activities lead
to accrue Technical Debt.

Combining these two contributions, we identi-
fied Technical Debt patterns for Serverless Com-
puting that practitioners and developers can adopt
to mitigate Technical Debt. The different items
we identify in this work are based on the concepts
of Technical Debt contextualized for cloud-native
applications, anti-patterns, bad smells proposed in
microservices as well as our experience [11], [7].

Moreover, we outline several issues related to
Technical Debt that limiting the real potential of
Serverless Computing.

Serverless Computing: A Primer
Serverless computing “allows companies to

efficiently develop and deploy functions with-
out having to manage any underlying infrastruc-
ture” [6]. For example, in the AWS Cloud2, de-
veloping applications that use Lambda functions

1Technical Debt is a “design or implementation construct that
is expedient in the short term, but sets up a technical context
that can make a future change more costly or impossible” and
is “limited to internal system qualities, primarily maintainability
and evolvability” [1]

2https://aws.amazon.com

for compute, are automatically highly-available
across multiple Availability Zones within a re-
gion, and require no additional infrastructure (e.g.
load balancers, automation systems, or other soft-
ware/components) to gracefully handle massive
amounts of load. However, this also reduces the
amount of proprietary code that must be written
to make your application aware of the complexity
of its host infrastructure.

The serverless paradigm is currently receiving
enormous interest within the cloud computing
domain and the development communities around
it. Major cloud providers are promoting such
a paradigm as the basis for the next wave of
innovation while many application developers are
indicating that serverless approaches are going
to address key development challenges for many
and diverse application scenarios. In the last
year, an increasing usage of emerging several
serverless computing platforms can be observed
(e.g. Amazon Web service (AWS) Lambda3,
Microsoft Azure Functions4, OpenWhisk5, and
Google Cloud Functions)6. These platforms allow
developers to focus mainly on the business logic,
while the overhead of monitoring, provisioning,
scaling and managing the infrastructure are oper-
ated by the cloud service providers [8].

Available Serverless technologies can be
grouped in two main categories:

Backend-as-a-Service (BaaS) replaces
server-side components with off-the-shelf
services, allowing developers to outsource aspects
the behind the scene their applications such as
databases, messages buses, or cloud storage. An
example of BaaS is AWS DynamoDB, a fully
managed database that manage data components
on the developer’s behalf [8].

Functions-as-a-Service (FaaS) are environ-
ment that enable developers to run software func-
tions. FaaS allows to deploy code that, upon
being triggered, is executed in an isolated en-
vironment. Serverless functions are event-driven,
cloud-based systems where application develop-
ment relies solely on a combination of third-
party services, client-side logic, and cloud-hosted
remote procedure calls [8].

3https://aws.amazon.com/lambda/
4https://azure.microsoft.com
5openwhisk.apache.org
6cloud.google.com

2

https://aws.amazon.com
https://aws.amazon.com/lambda/
https://azure.microsoft.com
openwhisk.apache.org
cloud.google.com


The Berkeley view on Serverless [13] makes
the important point that serverless platforms are
more than FaaS runtimes; indeed the severless
programming model only makes sense if the FaaS
layer sits atop a set of high-level and value-based
services, i.e., services which only require the
addition of modest functionality which is reusable
and very cheap computationally—delivered via
FaaS—to provide real business value. We elab-
orate in the next section the limitations of the
Serverless programming model.

Serverless Computing: Issues and Challenges
Since Serverless is in its infancy, researchers

and practitioners have proposed a few sets of best
practices for its adoption and operations as well as
patterns for composing and triggering serverless
functions [5] together with bad practices that
should be avoided [8], [5]. Nupponen et al. [8]
and Leitner et al. [5] proposed different bad
practices that should be avoided in Serverless
applications, such as Asynchronous Calls, Shared
Code between functions or too many functions.

Technical Debt in Serverless
Computing: A Preliminary Analysis

Serverless can be affected by different types
of TD, which can increase serverless applications’
costs. Based on the existing academic knowledge
on TD and the known features of serverless com-
puting, we elaborated the main types of technical
debt that can affect such applications and we
provide concrete examples.

Architectural debt: Serveless-based applica-
tions are prone to be re-architected, especially
because they allow easy experimentation. How-
ever, the continuous change in serveless-based
applications, if not properly controlled, increases
the risk of quickly degrading the architecture [2],
For example, a typical architectural problem af-
fecting serveless-based applications is the low
separation between the system business logic and
its platform-specific interfaces.

Code debt: As any fast development lifecy-
cle, the organizational structure can misbehave
creating types of waste including replicated code
in the form of extremely similar functions [2].
For example, a typical code problem affecting
serveless-based applications is the use of multi-
purpose functions, which significantly increase

the likelihood of code debt (as consequence also
the architectural debt). Indeed, a wide scope of
serverless functions leads to less modular com-
ponents and less flexible reuse of the code

Testing debt: Testing several serverless can
become very complex very quickly, which might
cause the testing activity to be postponed, which
can create a high risk with respect to quality and
reliability [2]. For example, a typical test problem
affecting serveless-based applications concern the
difficulty of testing multi-purpose functions and
boilerplate code. Indeed, is is very expensive
and usually error-prone the testing boilerplate
code and multi-purpose functions in serverless
applications.

We discuss how to address these problems in
Section “The Path Forward”.

Techincal Debt considerations for Cloud-
Native Applications: Severless vs. Microser-
vices: based on the aforementioned issues,
Serverless Functions face a clear risk of accumu-
lating higher TD than Microservices-based sys-
tems. Indeed, the Serverless programming model
allows developers to explore different technolo-
gies and technical solutions but experimentations
in creating ”quick and dirty” features that, in
the future, are not to be well-maintained and
refactored from the company leads to misunder-
standing among the teams that work in a single
Serverless function and then have to integrate
their work. Another factor that should be con-
sidered is the higher risk to create a distributed
monolith system composed by too many Server-
less Functions. The Integration of a higher num-
ber of Serverless Functions implies creating mi-
croservices composed of many sub-components,
resulting in a mesh with unpredictable architec-
tural and technical characteristics. However, if a
distributed microservice monolith system is an
issue currently investigated [5], [11], [10] having
unmanageable serverless functions is a risk which
demands further work.

Exploring the expert point of view
To better conceptualize the aforementioned

conjectures and what is Technical Debt in Server-
less Computing, we interviewed experts in such
domain. We focused our questions on identify-
ing the development activities that might accrue
Technical Debt in Serverless-based applications.

May/June 2020 3



Lenarduzzi et al.

Specifically, We interviewed three experts in
Serverless Computing (3+ hands-on years expe-
rience with the technology). The first involved
expert is Jeremy Daly (also one of the authors
of this paper), an active member of the server-
less community, who contributes to a number
of serverless projects, including Lambda API,
Serverless MySQL, and Lambda Warmer. The
second expert is Ran Ribenzaft, the Co-Founder
& CTO of Epsagon, while the third one is
Emrah Şamdan, one of the two Leader members
of Thundra. Specifically, Epsagon is a serverless
monitoring tool that leverages distributed tracing
and Artificial Intelligence (AI) technologies to
provide a comprehensive, end-to-end view of
serverless applications. Thundra is a provider
that offers an application management, security,
and compliance service that pinpoints down to the
line of code if there is an issue.

The survey was kept minimalistic by design
and consisted in the following questions:

• Which activities are postponed during Server-
less based development?

• Which of these postponed activities might ac-
crue Technical Debt?

We collected the information through open-
ended questions to allow the respondents to report
their experience. The face to face interviews
lasted 30 minutes each. Two authors collected
the answers separately and then checked possible
conflicts. Any disagreement was discussed and
clarified with the co-authors.

Technical Debt in Serverless
Computing: a Conceptualization

Based on the experts’ answers, we grouped
the activities that can accrue TD in the following
categories.

Unsanctioned technology use
The adoption of the wrong technology can

cause a bigger TD in serverless compared to
traditional microservices architectures. Serverless
is more event-driven than traditional environ-
ments, which requires to architect the software
correctly and with sanctioned and rigorously-
evaluated alternatives, in a way that is possible to
exchange the correct type of events over correct
managed services, by using the right operational

approach. We identified clear examples: “you
might start with using an SQS to exchange a
message but after a while you discover that some
other Lambda function needs to consume the
same message. It is typical to see that the second
lambda function reads the same message from
another queue instead of replacing the SQS with
an SNS”. This creates an architectural TD which
can cause major architectural overhauls rotating
around even a single function.

Knowledge churn
Serverless doesn’t require any prior knowl-

edge to build large scale applications, and the
ability to ship fast but it does force you into a
position of capturing and continuously confirm-
ing what best-practices and business as well as
technical requirements and solutions work best
for you (e.g., a very granular vs. a very coarse-
grained decomposition). To him “When doing it
not-right, you are just getting to an overall TD,
but with the right experience and knowledge you
can avoid it”. This also leads to the necessity to
find efficient and effective knowledge exchange
mechanisms across teams as well as single indi-
viduals.

Process automation not set up
As a second major point, we outlined that

CI/CD processes are also often delayed when
first building an application since most start off
small and become more complex over time. Cou-
ple this with poor test coverage and it results
in low deployment confidence (and doesn’t take
advantage of blue/green, red/black, or canary de-
ployments).

Not fully setting up an appropriate
Infrastructure-as-Code (IaC) pipeline increases
the deployment overhead since developers
need to manually deploy each function
independently, and if not using a proper
CI/CD the situation would only get worse. Fully
setting up infrastructure-as-code (for all of the
resources, not just the functions) is therefore a
must.

IaC could become a huge source of TD. This
is often the case when too many resources are
combined into single stacks, and shared resources
(like persistence layers, communication channels,
and other shared infrastructure) become inter-

4



twined and hard to decouple. Moreover, not set-
ting up a CD/CI and IaC pipelines can lead to an
immediate, constant and continuous TD. Without
an automated process, developers should integrate
and deploy manually the different serverless ap-
plications. As a consequence, developers should
allocate time that can lead to postponing other
activities.

Secrets management
Secrets management results in the inability

(or inflexibility) of easily rotating credentials in
external systems. This single issue would lead to
broader security implications (discussed later) but
in general also force some serverless solutions
to actually become service-full applications! This
means using hosted services to augment appli-
cations capacity in security—think DynamoDB
for safe data storage or Mailchimp for more fine-
grained email management..

Security
Security is also often delayed or never im-

plemented. Most serverless developers are not
“Cloud Engineers” or “Security Experts”, so they
like bypass IAM to speed development (think
“star permissions”). These issues almost never
get fixed. Moreover, most FaaS providers require
explicit logging, which is perfect for developer
abuse, while Secrets management is often over-
looked or implemented incorrectly.

We fear that bypassing Identity and Access
Management (IAM) to speed development could
create considerable TD. For example in the er-
roneous design, implementation, and/or manage-
ment of critical system functions as opposed to
the management of other more regular functions.
At the same time, the lack of knowledge of
the developers about Security in the serverless
domain and how it shall be managed, can only
negatively influence the TD.

Testing activities postponed or not completely
performed

Testing is one of the most dire issues. Sepa-
ration of code into reusable pieces of business
logic (e.g., hexagonal architecture) is often an
afterthought, which makes writing unit tests more
difficult. Integration tests are often “quick and

dirty” as well, using sample code to generate
events to test functions locally.

In particular during our interviews, all re-
spondents focused the attention on Integration
Testing and Load/stress tests respectively as
crucial problems.

Load/stress test simulates “actual user load
on any application or website”. During normal
and high loads it is deputy to check the appli-
cation behaviour, determining the stability and
robustness of the system.

Many times companies do not write Inte-
gration Tests because it’s hard to accomplish.
Instead, they test the integrated architecture in
a staging environment by simply running the
system with a specific set of inputs. This usually
helps but does not verify the system 100%. Once
they miss the integration tests, developers never
come back and write those.

As reported for Security, testing is also a
complex activity. Postponing testing or not testing
completely a serlevess application, especially at
integration level, does not allow to verify the
entire system operability. A clear consequence is
that the system does not correctly respond or does
not comply with the requirements, and problems
that developers do not know exist. This accumu-
lates “invisible” TD that might be more “danger-
ous” compared with the visible. Load/stress tests.
We believe that ot using load/stress tests could led
to TD for two main reasons: Developers oversize
the system compared with what they really need
due to managing a higher load. Serverless despite
being a system that automatically scales, some
patterns [5], [12] can be used to support a higher
load. The systems can anomaly react under stress.
Some functions take more time increasing the
cost or “hit” the maximum execution time or
memory.

Inadequate or verbose logging
We believe that Inadequate or verbose log-

ging can be also considered as a consequence
of not completing testing. Developers to avoid
this issue use logging in a massive way. However,
logging leads to accumulating a lot of data that
are unmanageable and require extra effort. More-
over, logging implies debugging that increases the
effort for the developers and the possibility to
accrue other TD.

May/June 2020 5



Lenarduzzi et al.

TD design patterns for serverless
functions

Based on the reported anaysis and expert
experience, we identified concrete examples of
design patterns Serverless-specific which—as dis-
cussed with Jeremy Daly—are useful to minimize
TD levels and spread in Serverless applications.

• TD minimization in Serverless Pipelines.
Utilizing package managers or, in AWS en-
vironments, Lambda Layers can facilitate the
reuse of boilerplate code to minimize code
debt. This allows functions to focus primarily
on business logic and allows for that boiler-
plate code to be updated across multiple func-
tions, iteratively and incrementally following
typical DevOps principles.

• TD minimization using hexagonal ar-
chitectures. Separating business logic from
platform-specific interfaces using hexagonal
architectures, i.e., handling AWS event pars-
ing within a Lambda function and passing a
standardized format to underlying components.
This can ensure that proprietary business pro-
cesses remain encapsulated and can be reused
or moved even if the interface technology (e.g.,
Lambda) changes. This architectural device
also helps to address testing debt while ensur-
ing that unit tests remain viable regardless of
infrastructure or other architectural changes.

• TD minimization and higher serverless
functions testability. The use of single-
purpose functions significantly reduces the
likelihood of code debt and architectural debt.
indeed, by minimizing the scope of functions,
it is possible to create more modular com-
ponents that enforce the DRY principle (i.e.,
the “don’t repeat yourself” principle wherefore
every piece of knowledge must have a sin-
gle, unambiguous, authoritative representation
within a system [15]), as well as allow for
more flexible reuse and testability of involved
functions. For example, single-purpose func-
tions can be orchestrated via Step Functions—
either in AWS or using other orchestration
technology—with those same functions being
choreographed via events and message buses
(e.g., EventBridge in AWS) to achieve com-
plex workflows.

The Path Forward
Complementary to previous work, we found

that the Serverless functions adoption is charac-
terized by activities, practices, and aspects that,
according also to experts, can lead to higher TD
levels. Having analyzed and conceptualized these
issues, we identified the aspects that require en-
hancements and innovations for implementing the
vision of more maintainable, evolvable (i.e., TD
free) and secure systems, leveraging Serverless
Functions:

Serviceability v.s. maintainability: Higher
serviceability of serverless technologies has also
the side effect of not having to their disposal
also mechanisms to support an adequate main-
tainability and testability of the systems built
on top of them. Indeed, in case of unexpected
behaviours, testing and maintenance activities are
more complex and more expensive, as mainly
based on non-automated, manual tasks.

Technical Debt in Serverless computing is
characterized by several conceptual antipatterns
especially related to Test Debt, as indicated by
the experts:

• Unit testing: system build with serverless func-
tions are difficult to test, because identifying
atomic business logic units that can be tested
in isolation units is an open problem, leav-
ing business-critical behaviours at system unit
level uncovered.

• Integration testing: contemporary practices are
not supported by automate tools for integration
testing, which lead to incomplete or absent
integration test code, leaving business-critical
behaviours at system level uncovered.

• CI/CD and IaC practices: among the typical
stages of CD/CI pipelines testing and deploy-
ment are highly limited (e.g., by the low testing
coverage and not fully setting up of an IaC),
which limit the benefits of fully operational
CD/CI and IaC Pipelines.

Inadequate debugging and monitoring
mechanisms: the actual observability and testa-
bility of system build on top of serverless plat-
forms is very limited and contemporary logging,
tracing, security practices and technologies are
not adequate or “ready” in the serverless context.

6



Conclusion
This paper offers a first investigation on the

existence of Technical Debt affecting serverless
applications. Our findings, based on experts’ ex-
perience on contemporary serveless “status quo” ,
highlighted several issues limiting the real poten-
tial of serverless functions in different industrial
contexts and domains specifically issues reflect:
(a) testing and testability (including aspects of
overall service observability [14]); (b) organi-
sational structure and knowledge management;
(c) security. Although the examples we present
are anecdotal, they reflect recurring conditions
in industry encountered by our interviewees and
which deserve further research—both from an or-
ganisational and technical perspective—for their
resolution.

We conclude that, with respect to the afore-
mentioned specific issues and challenges, techni-
cal debt research has put forth several manage-
ment approaches which are altogether lacking for
the serverless domain.

At the same time, the orthogonal nature of
the aforementioned challenges seems to suggest
entirely new areas of technical debt management
theory which still remain completely untapped
also for the scope of conventional systems or even
systems which combine serverless and regular
architectures alike.

Acknowledgment
We thank Ran Ribenzaft (Epsagon), and Em-

rah Şamdan (Thundra) for taking the time to
share their experience and provide us their opin-
ion. Some of the authors’ work is partially
supported by the European Commission grant
no. 0421 (Interreg ICT), Werkinzicht, the Eu-
ropean Commission grant no. 787061 (H2020),
ANITA, European Commission grant no. 825040
(H2020), RADON, European Commission grant
no. 825480 (H2020), SODALITE.

REFERENCES
1. P. Avgeriou, P. Kruchten, I. Ozkaya, C. Seaman, Man-

aging technical debt in software engineering (dagstuhl

seminar 16162). In Dagstuhl Reports (Vol. 6, No. 4).

Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2016.

2. Z. Li, P. Avgeriou, P. Liang, A systematic mapping study

on technical debt and its management. Journal of Sys-

tems and Software (Vol. 101). 2015.

3. Casale, G., Artač, M., van den Heuvel, W. et al. RADON:

rational decomposition and orchestration for serverless

computing. SICS Software.-Intensive. Cyber-Phys. Syst.

(2019).

4. S. Soares de Toledo and A. Martini and A. Przy-

byszewska and D. I. K. Sjøberg. Architectural Technical

Debt in Microservices: A Case Study in a Large Com-

pany. International Conference on Technical Debt. 2019.

5. P. Leitner, Erik Wittern, J. Spillner and W. Hummer. A

mixed-method empirical study of Function-as-a-Service

software development in industrial practice. Journal of

Systems and Software. 2019

6. W. Lloyd and S. Ramesh and S. Chinthalapati and L.

Ly and S. Pallickara. Serverless Computing: An Investi-

gation of Factors Influencing Microservice Performance.

International Conference on Cloud Engineering. pp. 159-

169. 2018.

7. D. Neri and J. Soldani and O. Zimmermann and A. Brogi.

Design principles, architectural smells and refactorings

for microservices: a multivocal review. SICS Software-

Intensive Cyber-Physical Systems. 2019

8. J. Nupponen and D. Taibi. Serverless: What it Is,What

to Do and What Not to Do. International Conference on

Software Architecture (ICSA 2020). 2020

9. J. Soldani and D.A. Tamburri and W.J. Van Den Heuvel.

The pains and gains of microservices: A Systematic grey

literature review. Journal of System and Software. 2018.

10. D. Taibi and V. Lenarduzzi and C. Pahl. Processes,

Motivations, and Issues for Migrating to Microservices

Architectures: An Empirical Investigation. IEEE Cloud

Computing. 2017.

11. D. Taibi and V. Lenarduzzi. On the Definition of Mi-

croservice Bad Smells. IEEE Software. Vol 35 (3), pp.

56-62. 2018

12. D. Taibi, N. El Ioini, C. Pahl and J. R. Schmid

Niederkofler. Patterns for Serverless Functions

(Function-as-a-Service): A Multivocal Literature Review.

10th International Conference on Cloud Computing and

Services Science (CLOSER 2020). 2020

13. E. Jonas, J. Schleier-Smith, V. Sreekanti, C. Tsai,

A. Khandelwal, Q. Pu, V. Shankar, J. Carreira, K.

Krauth, N. Yadwadkar, J.E. Gonzalez, R.A. Popa, I. Sto-

ica, D.A. Patterson. Cloud Programming Simplified: A

Berkeley View on Serverless Computing. arXiv preprint

arXiv:1902.03383. 2019

14. Tamburri, D. A., Bersani, M. M., Mirandola, R. & Pea,

G. (2018). DevOps Service Observability By-Design: Ex-

perimenting with Model-View-Controller. (ESOCC 2018),

Springer.

15. Hunt, A., Thomas, D. (2000). The Pragmatic program-

May/June 2020 7



Lenarduzzi et al.

mer : from journeyman to master. Boston [etc.]: Addison-

Wesley.

Valentina Lenarduzzi is a researcher at the LUT
University in Finland. Her primary research interest
is related to data analysis in software engineering,
software quality, software maintenance and evolution,
with a special focus on Technical Debt. She obtained
her PhD in Computer Science at the Università degli
Studi dell’Insubria, Italy, in 2015. She also spent 8
months as Visiting Researcher at the Technical Uni-
versity of Kaiserslautern and Fraunhofer Institute for
Experimental Software Engineering (IESE). In 2011
she was one of the co-founders of Opensoftengineer-
ing s.r.l., a spin-off company of the Università degli
Studi dell’Insubria.

Jeremy Daly is a passionate serverless advocate,
an AWS Serverless Hero, and a senior technology
leader with more than 20 years of experience building
web and mobile applications. He is an active member
of the serverless community, creating and contribut-
ing to open source serverless projects, and frequently
consulting with companies looking to adopt server-
less. Jeremy also writes extensively about serverless
on his blog (jeremydaly.com), publishes Off-by-none,
a weekly email newsletter that focuses on all things
serverless (offbynone.io), and hosts the Serverless
Chats Podcast (serverlesschats.com). He is currently
the CTO of AlertMe.

Antonio Martini is Associate Professor at the Uni-
versity of Oslo and is a part-time researcher at
Chalmers University of Technology. The current focus
of Antonio’s research is on Technical Debt, Architec-
ture, Technical Leadership and Agile software devel-
opment. Antonio’s experience covers Software Engi-
neering and Management in several contexts: large,
embedded software companies, small, web compa-
nies, business to business companies, startups. His
expertise ranges from technical programming to soft-
ware architecture and software quality, to Agile ways
of working and software business. Antonio Martini
has worked as Principal Strategic Researcher at CA
Technologies for a co-financed project for technology
transfer related to Technical Debt and Architecture
by the H2020 Marie Skłodowska-Curie grant of the
European Union. Antonio has collaborated with sev-
eral large companies such as Ericsson, Volvo, Saab,
Axis, Grundfos, Siemens, Bosch and Jeppesen. He
has also started his own consultancy company and
has run projects with large companies in north- and
central-Europe to manage and visualize Technical
Debt. Antonio has been employed as a Postdoc Re-

searcher at Chalmers, after having obtained a PhD
in Software Engineering at Chalmers University of
Technology, Sweden in 2015.

Sebastiano Panichella is a passionate Senior Com-
puter Science Researcher at Zurich University of
Applied Science (ZHAW). His research interests are
in the domain of Software Engineering (SE) and
cloud computing (CC): DevOps, Machine learning
applied to SE, Software maintenance and evolution
(with particular focus on Cloud, mobile, and Cyber-
physical applications), Mobile Computing. Moreover,
he is promoting research on Summarization Tech-
niques for Code, Changes, and Testing. He is author
(or co-author) of over several papers appeared in
International Conferences (ICSE, ASE, FSE, ICSME,
etc.) and Journals (EMSE, TSE, etc.). His research
involved studies with industrial companies and open
source projects and received best paper awards. He
serves and has served as program committee mem-
ber of various international conferences (e.g., ICSE,
ASE, ICPC, ICSME, SANER, MSR). Dr. Panichella
was selected as one of the top-20 (second in Switzer-
land) Most Active Early Stage Researchers (Results
of the JSS journal) in Software Engineering (SE). He
is a member of the ACM and IEEE. He is Editorial
Board Member of Journal of Software: evolution and
process (JSEP). He was Editor of a special Issues at
EMSE and IST. He is also a Review Board member of
the EMSE and TOSEM journals.

Damian Andrew Tamburri is an Associate Pro-
fessor at the Eindhoven University of Technology
and the Jheronimus Academy of Data Science, in
s’Hertogenbosch, The Netherlands. His research in-
terests rotate around DevOps and DataOps archi-
tectures, properties, and tools from a technical, so-
cial, and organisational perspective. Damian has pub-
lished over 100+ papers in either top Journals or con-
ferences in Software Engineering, Information Sys-
tems, and Services Computing. Also, Damian has
been an active contributor and lead research in many
EU FP6, FP7, and H2020 projects, such as S-Cube,
MODAClouds, SeaClouds, DICE, ANITA, Dossier-
CLOUD, ProTECT, and more. In addition, Damian
is IEEE Software and ACM TOSEM editorial board
member, secretary of the TOSCA TC as well as
secretary of the IFIP TC2, TC6, and TC8 WG on
“Service-Oriented Computing”.

8


	kansi_lenarduzzi_toward
	ServerlessTD_open
	Serverless Computing: A Primer
	Serverless Computing: Issues and Challenges

	Technical Debt in Serverless Computing: A Preliminary Analysis
	Exploring the expert point of view
	Technical Debt in Serverless Computing: a Conceptualization
	Unsanctioned technology use
	Knowledge churn
	Process automation not set up
	Secrets management
	Security
	Testing activities postponed or not completely performed
	Inadequate or verbose logging

	TD design patterns for serverless functions
	The Path Forward
	Conclusion
	Acknowledgment

	REFERENCES
	Biographies
	Valentina Lenarduzzi
	Jeremy Daly
	Antonio Martini
	Sebastiano Panichella
	Damian Andrew Tamburri



