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In this dissertation, a novel methodology based on process superstructures for the 

synthesis and optimization of multiple-effect evaporation systems is described. The 

methodology allows for the structure and heat transfer areas of multiple-effect 

evaporation systems to be simultaneously considered in optimization without having to 

resort to any previously selected arrangements. The methodology is applied to industrial 

evaporator case studies where it is necessary to simultaneously size and determine the 

best way to arrange additional evaporator bodies in an existing system to increase 

maximum load. An equation-oriented simulator for chemical pulp mill evaporator plants 

was developed and used in conjunction with differential evolution. A sequential-modular 

simulator was also developed for comparison. Multiple-effect evaporator plants were 

used as case studies to highlight the workings of the new method and to assess its viability 

in realistic systems. Through this methodology, it was possible to determine the optimal 

arrangement and heat transfer areas for the studied systems. 

Keywords: process synthesis, process optimization, Kraft process, multiple-effect 

evaporation, pulp and paper 
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Nesta tese é descrita uma nova metodologia para síntese e otimização de sistemas de 

evaporadores de múltiplo efeito baseada em superestruturas de processo. A metodologia 

permite que sistemas de evaporadores de múltiplo efeito sejam otimizados levando em 

conta, simultaneamente, a sua estrutura e as áreas de troca térmica, sem haver a 

necessidade de recorrer a estruturas predeterminadas. A metodologia foi aplicada a 

estudos de caso em que era necessário especificar e posicionar novos corpos evaporadores 

em sistemas pré-existentes cuja capacidade deveria ser aumentada. Um simulador 

orientado a equações para plantas de evaporação foi desenvolvido e utilizado em conjunto 

com o algoritmo de otimização estocástica Evolução Diferencial. Um sequencial modular 

foi também desenvolvido para comparação. Plantas de evaporação de múltiplo efeito 

foram tomadas como estudos de caso para destacar o funcionamento do novo método e 

para avaliar sua viabilidade de aplicação em sistemas realistas. Através desta 

metodologia, foi possível determinar o arranjo ótimo e as áreas de transferência de calor 

correspondentes aos sistemas estudados. 

Palavras-chave: síntese de processos, otimização de processos, processo Kraft, 

evaporação de múltiplo efeito, papel e celulose
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1 Introduction 

Chemical recovery plants are a fundamentally important subprocess in chemical pulping 

plants and are known to be highly energy intensive. Increasing their energy efficiency 

would not only give their operators a competitive edge, but would also allow more energy 

to be available for power generation, thus lowering carbon dioxide emissions from fossil 

fuels, which is key for sustainable development. 

When wood is chemically pulped to cellulose, a residue composed of organic and 

inorganic chemicals is generated. This residue is called black liquor, and it is burned in 

the recovery boiler, which generates power and recovers part of the chemicals necessary 

to pulp wood. To ensure that the liquor is effectively burned, its water content needs to 

be reduced to a dry solids mass fraction of about 80–85%. This is carried out in a multiple-

effect evaporator train, usually composed of 5–7+ evaporator bodies. Due to the relatively 

high latent heat needed to vaporize water, this process requires a considerable amount of 

energy. In fact, evaporation accounts for 24–30% of the total energy used in a pulp mill. 

The optimization of evaporation systems is, therefore, an important goal, for which reason 

there has been a significant effort in recent studies to address the modeling and 

optimization of evaporator systems. This is not a trivial task due to the complexity of the 

mathematical description of such systems. Commonly, given an evaporator plant of 

interest or a set of predetermined arrangements, a model composed of a system of mostly 

nonlinear equations that describe it is constructed. The model is then utilized, along with 

optimization algorithms, to minimize or maximize some variable of interest, such as the 

total heat transfer area or some measure of cost. 

However, the methodologies described so far assume that the arrangement of evaporators, 

vapor streams, and black liquor streams is known a priori. In practice, this may not be the 

case. In a situation where an existing evaporator system needs to, for instance, be 

expanded, the arrangement may not be immediately clear: 

a) How many evaporator bodies should be added, and what is their required heat 

transfer area? 

b) Should they be added in series with a pre-existent system, in parallel, or a 

combination thereof? 

c) How would the addition of a new evaporator body affect the energetic efficiency 

of the chemical recovery cycle? 

Likewise, during the design stage of a new evaporator plant, its final arrangement may be 

unknown. The designers, therefore, would need to decide on the number of effects and 

what arrangement should be selected. These questions are not trivial due to the potentially 

large set of different possible arrangements that must be considered, which is especially 

true for larger systems. The problem becomes even more complex if, as is often the case, 
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different combinations of variables, such as the heat transfer area or black liquor inflow 

rate, need to be considered for each arrangement. 

It is thus desirable to have a methodology that allows evaporator systems to 

simultaneously be optimized both with respect their arrangement and any other variables 

of interest, without having to resort to any predetermined configurations. 

1.1 Aim and scope 

This work, thus, develops a methodology that allows for evaporator systems to 

simultaneously be optimized both with respect to their arrangement and any other 

variables of interest, without having to resort to any predetermined configurations. The 

methodology is based on developing a robust steady-state simulation engine and pairing 

it with the well-known differential evolution stochastic optimization algorithm. 

This research is predicated on the hypothesis that it is possible to construct a steady-state 

process simulator for evaporator systems that is robust enough to converge reliably for a 

potentially large set of possible evaporator arrangements. Moreover, it is also 

hypothesized that the proposed methodology will converge in a reasonable computational 

time. To put it succinctly, the research hypothesis is as follows: 

Research hypothesis: It is possible to simultaneously optimize evaporator systems both 

with respect to their topological arrangement and other internal design variables using 

mathematical optimization techniques. 

The following questions are tackled in the research project: 

a) What mathematical difficulties arise when modeling an evaporator system? 

b) What numerical methods are best suited to solving the model? 

c) Is differential evolution well suited to performing this type of optimization? If 

so, are there any optimal ranges for its parameters? 

d) How well does the proposed methodology scale as the problems grow more 

complex? 

The proposed methodology is novel, as it presents a unified methodology for optimizing 

the structural arrangement and any other variables of evaporator systems, which would 

help engineers optimize their existent systems. It may also aid professionals in designing 

optimal evaporator systems without having to resort to trial and error. The methodology 

has, therefore, the potential to be applied in the pulp and paper industry. 
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1.2 Additional information 

 

This research was made possible due to a collaboration between the Department of 

Chemical Engineering at Universidade Federal de Minas Gerais (UFMG) and the 

Department of Energy Systems at Lappeenranta-Lahti University of Technology (LUT), 

which allowed the author to pursue a double doctoral degree. 
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2 Literature review 

2.1 Chemical recovery in the pulp and paper industry 

In the pulp and paper industry, cellulosic fibers are disassociated from the lignin found in 

wood, bagasse, straw, and other raw materials to produce what is referred to as pulp 

(Cardoso, de Oliveira and Passos, 2009). Once the pulp has been extracted, it can then be 

processed to produce paper, paperboard, and other cellulosic materials. This process, 

which is called pulping, can be either mechanical or chemical. 

The most common pulping method employed to produce wood pulps is the Kraft process 

(Cardoso, de Oliveira and Passos, 2009). With this method, wood chips are cooked with 

a solution of sodium sulfide (Na2S) and sodium hydroxide (NaOH), called white liquor, 

which causes cellulose to dissociate from the lignin to which it was bound. Once the 

cooking process is finished, the pulp is washed to remove spent cooking chemicals and 

any dissolved organic components (Tikka, 2008). The residue obtained from this washing 

step is a black alkaline liquid known as black liquor, and, until the 1930s, it was common 

practice to discard it (Tikka, 2008). 

As pulping mills grew larger and new equipment was developed, it became economically 

feasible to process the black liquor in order to regenerate the chemicals spent in the 

cooking process. This process is known as the chemical recovery cycle, and it is 

nowadays fundamental for making the Kraft process economically feasible (Tikka, 2008; 

Cardoso et al., 2009). The core piece of equipment used in recovery cycle is the so-called 

recovery boiler, which not only regenerates part of the spent chemicals, but also allows 

for energy to be produced in a pulping plant (Vakkilainen, 2007; Tikka, 2008). 

2.1.1 Chemical recovery cycle 

Figure 2-1 is a simplified diagram describing the steps of the chemical recovery cycle. 

After the cooking process, the Na2S that was present in the white liquor is oxidized to 

sodium sulfate, Na2SO4. To revert it back to Na2S, it needs to be reduced, a process that 

takes place in the recovery boiler. Well-operated recovery boilers can reduce almost all 

sulfate back to sulfide (Adams and Frederick, 1988; Adams et al., 1997). The recovery 

boiler is a very complex heterogeneous system where many reactions take place 

simultaneously under conditions of high temperature and pressure (Vakkilainen, 2007). 

Due to its central role in the recovery cycle and also its complexity, it is not surprising 

that so much space in the technical literature is dedicated to its proper modeling and 

optimization (Almeida et al., 2000; Costa, Biscaia Jr and Lima, 2004; Ferreira, Cardoso 

and Park, 2010; Saturnino, 2012).  

The products of the recovery boiler reactions include Na2S and Na2CO3, which come out 

in molten form and have mass fractions of approximately 23% and 74%, respectively 
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(Adams and Frederick, 1988; Adams et al., 1997). This molten mixture of Na2S and 

Na2CO3 is the so-called smelt. 

The black liquor produced in the washing process has a relatively low dry solids mass 

fraction and is usually termed weak black liquor. For the liquor to be efficiently burned 

in the boiler, its dry solids mass fraction needs to be increased. This is done by leading 

the liquor through an evaporation plant. The more concentrated liquor emerging from the 

MEE plant that is then sent to the boiler is termed strong black liquor. Strong black liquor 

is remarkably more dense and viscous than weak black liquor, and, in order to maintain 

its viscosity under the applicability limits for centrifugal pumps, it must be kept at 

temperatures on the order of 100oC (Ramamurthy, Van Heiningen and Kubes, 1993; 

Zaman, Wight and Fricke, 1994; Andreuccetti, Leite and D’Angelo, 2011; Bajpai, 2016). 

 

 

Figure 2-1: Simplified diagram of the chemical recovery cycle. 

 

In the recovery boiler, the water brought in by the liquor is converted to high-pressure 

steam, which is then fed to turbines, thus generating power. Modern recovery boilers are 

designed to withstand steam pressures on the order of 9.2 MPa and temperatures on the 

order of 490 °C (Vakkilainen, 2016). The smelt, on the other hand, is dissolved in water, 

producing the so-called green liquor, a solution containing Na2S and Na2CO3. 

The green liquor is mixed with lime (CaO) in a causticizing plant. The reaction of CaO 

with Na2CO3 regenerates NaOH and generates CaCO3, which precipitates out of the 

solution. Both Na2S and NaOH have thus been regenerated, and they can be fed back into 

the pulping process. The wet CaCO3 can be converted back to CaO by feeding it to a lime 

kiln, which removes its water and calcinates it, converting it to CaO and CO2. 
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2.1.2 Black liquor evaporation 

Before black liquor can be burned in the recovery boiler, it is necessary to reduce its water 

content. Typically, black liquors exit the cooking process with dry solids mass fractions 

of close to 15% (Olsson, 2009) ⁠. If the dry solids mass fraction in the liquor is lower than 

20%, then the liquor net heating value is negative (Vakkilainen, 2007)⁠. In other words, if 

the liquor water content is too high, the boiler would require more heat from external 

sources than the amount of heat that it can produce, which would defeat the purpose. 

Water content reduction is achieved by sending the black liquor to an evaporator train 

before it is sent to the recovery boiler. The evaporator train consists of a series of 

evaporator bodies through which black liquor flows and exchanges heat with low-

pressure steam. Figure 2-2 is a simplified diagram illustrating the inlet and outlet vapor 

streams (vapor feed, vapor outlet, and condensate outlet) and the inlet and outlet black 

liquor streams (black liquor feed and black liquor outlet) that are part of an evaporator. 

 

Figure 2-2: Simplified diagram of an evaporator displaying its inlet and outlet black liquor and 

vapor streams. 

 

As black liquor flows through the evaporator, heat is transferred from the hotter steam to 

the liquor, causing steam to condense and water from the liquor to vaporize. The liquor, 

therefore, exits the evaporator with a higher dry solids fraction than it originally had. It is 

important to acknowledge that the boiling point of the liquor is higher than that of pure 

water. As the liquor dry solids fraction increases, so does its boiling point. This increase 

in the liquor boiling point temperature relative to that of pure water is quantified by the 

boiling point rise (BPR), defined as the difference between the liquor boiling temperature 

and the water boiling temperature measured under the same pressure (Järvinen et al., 

2015; da Costa et al., 2016). One practical implication of the BPR is that the required 

steam pressure increases with the desired dry solids fraction. 
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Typically, there is not a single but rather multiple interconnected evaporators bodies in 

recovery cycle evaporator trains. The number of bodies is usually no less than five, 

possibly being higher than seven. Figure 2-3 depicts a typical evaporation train 

arrangement. 

 

 

Figure 2-3: Typical arrangement of a five-effect, multiple-effect evaporator train (vapor streams 

are drawn in red, whereas black liquor streams are drawn in black; outlet condensate streams 

have been omitted for clarity’s sake). 

 

Vapor streams are drawn in red and black liquor streams are drawn in black. In this 

system, live steam is fed to the first two evaporator bodies, E1A and E1B. Since these 

two bodies operate with steam under the same pressure, they are said to be part of the 

same effect. Therefore, evaporator bodies E1A and E1B constitute the first effect. Heat is 

transferred from the live steam to the black liquor, causing water to evaporate from the 

black liquor along with a minor fraction of volatile organic components found in the 

liquor. The live steam, composed of pure water, is condensed and collected as clean 

condensate (Tikka, 2008). The vapor generated at the first effect is then fed to the second 

effect, composed solely of the evaporator body, E2. As before, heat exchange takes place, 

causing water to evaporate from the liquor and vapor to condense. This time, however, 

the vapor is composed of a mixture of mostly water and the volatile organic components 

released from the black liquor in the first effect. For this reason, this condensate is 

separately collected as foul condensate (Tikka, 2008)⁠. The same process is repeated in all 

subsequent effects. It is quite common to use the term effect in the sense just described, 

for which reason this type of evaporator train arrangement is usually referred to as 

multiple effect evaporation (MEE). 
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The goal of MEE is to increase the energetic efficiency of the system as much as possible 

by using part of the heat contained in the outlet vapor stream, which would otherwise be 

discarded, to further drive water evaporation in the subsequent effects. 

2.1.3 Condensate flashing 

 
As black liquor flows through the evaporation train, its dry solids fraction increases. In 

Figure 2-3, black liquor flows from right to left, which means that the dry solids 

concentration also increases in that same direction. During evaporation, the temperature 

of the vapor generated in each effect is equal to the boiling point of the liquor exiting that 

same effect, since they are in thermal equilibrium. That same temperature, in turn, 

increases with the solids fraction due to the BPR. In other words, the saturation pressure 

of the vapor generated in effect number i is higher than that of effect number i+1. This 

natural pressure drop along the system allows further heat to be reused by vaporizing part 

of the condensate and reintroducing it in the vapor line. The process by which this 

pressure drop is used to drive condensate vaporization is known as condensate flashing. 

Figure 2-4 depicts a modified version of the previously discussed five-effect system. The 

condensate streams leaving effects 1 through 4 are drawn as blue lines. Condensate 

leaving the two bodies of the first effect are merged and sent to a clean condensate flash 

tank, drawn as a blue vessel. This tank is connected to the outlet vapor stream that leaves 

the first effect, which, as explained above, has a lower saturation pressure than that of the 

condensate. This pressure difference causes part of the condensate to vaporize. The 

vaporized fraction of the condensate then exits the flash tank and is fed to the second 

effect. The same logic applies to the condensates leaving effects 2 through 4. In these 

effects, however, foul condensate is formed. In Figure 2-4, foul condensate flash tanks 

are drawn as green vessels. 
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Figure 2-4: Typical arrangement of a five-effect, multiple-effect evaporator train with 

condensate flashing (condensate streams from effects 1–4 are drawn as blue lines, clean 

condensate flash tanks are drawn as blue vessels, and foul condensate tanks as green vessels). 

2.1.4 Evaporator types 

Evaporators vary by their design and function. In the next section, some of the most 

common evaporator designs are presented. 

2.1.4.1 Falling film evaporators 

With falling film (FF) evaporators, a thin film of black liquor flows downwards as a result 

of gravity onto a heat transfer surface, as depicted in Figure 2-5. Vapor flows on the other 

side of the surface, which causes heat to be transferred from the vapor to the liquor 

(Alhusseini, Tuzla and Chen, 1998; Chen and Gao, 2004). As the vapor loses heat, it 

condenses partially, causing a liquid condensate to be formed on the surface. After the 

black liquor reaches the bottom of the evaporator body, part of it is pumped back to the 

top of the evaporator, allowing it to trickle down the heat transfer surface once again. This 

helps maintain a relatively constant solids concentration in the evaporator, which makes 

it relatively insensitive to changes in the black liquor mass flow rate (Tikka, 2008).  The 

heat transfer surface may take various geometries, such as tubular and lamellar. 
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Figure 2-5: Heat transfer in a FF evaporator. Black liquor flows down the tube walls (left), 

while hot vapor (right) transfers heat (orange arrows) to it, causing water to evaporate. The 

release of heat by the vapor is accompanied by its condensation. 

2.1.4.2 Rising film evaporators  

Rising film evaporators, also known as long-tube-vertical (LTV) evaporators, were 

widely used in the pulp and paper industry until the mid-1980s. In modern evaporation 

plants, FF evaporators predominate (Tikka, 2008). 

 

 

 

Figure 2-6: Schematic representation of a rising film (LTV) evaporator. 
 

In this type of evaporator, black liquor is fed from its bottom and passes through an array 

of tubes, moving upwards, as can be seen in Figure 2-6. These tubes are usually 50 mm 

in diameter and have a length of about 8.5 m (Tikka, 2008). Vapor is fed to the evaporator 

shell and flows through the external surface of the tubes, transferring heat to the rising 
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black liquor and causing part of its water content to be vaporized. Having lost heat, part 

of the vapor condenses, and the condensate is collected below the vapor inlet. Both the 

vapor and the concentrated black liquor exit the evaporator from its upper shell. 

If this type of evaporator is operated at low black liquor mass flow rates, the boiling of 

black liquor may be unstable. Moreover, low mass flow rates may lead to the generation 

of hotspots, which could cause scaling to occur in the tubes, leading to plugging. In this 

type of evaporator, plugged tubes cannot be cleaned by washing, and manual cleaning 

must be carried out (Tikka, 2008). 

2.1.4.3 Concentrators 

Concentrators are the evaporators that take the black liquor to its final desired 

concentration in MEE plants. Since concentrators operate at relatively high solid 

fractions, scaling cannot be avoided, and so concentrators need to be periodically shut 

down and washed (Adams, 2001; Andersson, 2015). Depending on how high a solids 

fraction is desired, it may be necessary to feed the concentrators with steam that is hotter 

than that of other evaporators. Scaling in concentrators involves the formation of burkeite 

and dicarbonate, both of which are double salts of sodium sulfate and sodium carbonate 

and can reduce the lifespan of equipment and impair their heat transfer characteristics, for 

which reason scaling has been the subject of several chemical characterization and 

modeling studies (Shi and Rousseau, 2003; Frederick et al., 2004; Soemardji et al., 2004; 

Broberg, 2012; Karlsson, Gourdon and Vamling, 2016; Karlsson, 2017). 

2.1.5 Mass and energy balances in evaporators 

Evaporator calculations are commonly based on performing mass and energy balances 

around the evaporator body (Billet and Fullarton, 1989; Tikka, 2008).  

Figure 2-7: Black liquor (black), vapor (red) and condensate (blue) streams around an 

evaporator body. 

Figure 2-7 displays the inlet (F) and outlet (L) black liquor streams, inlet (S) and outlet 

(V) vapor streams, and condensate stream (C) connected to an evaporator body. The inlet
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vapor mass flow, 𝑚𝑆̇ , is equal to the condensate mass flow, 𝑚𝐶̇ , as the inlet vapor only 

undergoes condensation without any mass flow being added or removed from it, hence 

equation 2.1. 

𝑚𝑆̇ = 𝑚𝐶̇  (2.1) 

The black liquor mass flow, 𝑚𝐹̇ , entering the evaporator is split into vapor stream V 

having flow 𝑚𝑉̇  and concentrated liquor stream L having flow 𝑚𝐿̇ , as described in 

equation 2.2. 

𝑚𝐹̇ = 𝑚𝐿̇ + 𝑚𝑉̇  (2.2) 

Moreover, all the solids contained in stream F will be carried over to stream L, as given 

in equation 2.3. 

𝑚𝐹̇ 𝑥𝐹 = 𝑚𝐿̇ 𝑥𝐿 (2.3) 

Equations 2.1, 2.2, and 2.3 constitute the evaporator mass balance equations. Heat transfer 

is calculated by estimating the heat transfer coefficient, U, and applying it in equation 

2.4: 

𝑄̇ = 𝑈𝐴(𝑇𝑆 − 𝑇𝐿) (2.4) 

In this equation, 𝑄̇ is the transferred heat power, 𝐴 is the heat transfer area, 𝑇𝑆 is the live 

steam or vapor temperature, and 𝑇𝐿 is the outlet black liquor temperature. The value of U 

depends on the convective heat transfer coefficient, ℎliq, on the liquor side, on the 

convective heat transfer coefficient, ℎvap, on the vapor side, and on the thermal 

conductivity of the heat transfer surface, 𝑘surf (Costa et al., 2007b, 2007a), as shown in 

equation 2.5: 



2 Literature review 32 

U =
1

1
ℎliq

+ 𝑘surf +
1

ℎvap

(2.5) 

Heat transfer correlations can be calculated based on correlations that are functions of 

dimensionless numbers, such as Nusselt number Nu, Reynolds number Re, and Prandtl 

number Pr (Ding et al., 2009; Johansson, Vamling and Olausson, 2009; Karlsson et al., 

2013; Gourdon and Mura, 2017). One such correlation is shown in equation 2.6, where 

C, e, and f are empirically determined constants, 𝑘 is the fluid thermal conductivity, L is 

a characteristic length, 𝜌 is the fluid density, 𝜇 is the fluid dynamic viscosity, 𝑣 is the 

flow velocity, and 𝑐𝑝 is the fluid heat capacity. 

Nu =
ℎ𝐿

𝑘
= 𝐶Re𝑒Pr𝑓 = 𝐶 (

𝜌𝑣𝐿

𝜇
)

𝑒

(
𝑐𝑝𝜇

𝑘
)

𝑓

(2.6) 

A comprehensive list of correlations of this type has been provided by (Costa et al., 

2007b). It is common to use a correlation for Nu under turbulent flow and a different 

correlation for Nu under laminar flow. These correlations are then combined to obtain an 

average Nu, as shown in equations 2.7, 2.8, and 2.9 (Karlsson et al., 2013): 

Nulam = 0.882 Re−0.22 (2.7) 

Nuturb = 0.0038 Re0.4Pr0.65 (2.8) 

Nu = √Nulam
2 + Nuturb

2
(2.9) 

It is also possible to estimate U through other types of empirical correlations obtained 

from process data (Adib, Heyd and Vasseur, 2009; Khademi, Rahimpour and Jahanmiri, 

2009; Chantasiriwan, 2015). 
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2.2 Simulation and optimization of evaporative systems 

In this section, a description of the methods reported in the literature for simulating and 

optimizing evaporative systems is given. 

2.2.1 Linear and mixed integer linear programming 

Some researchers have modeled evaporative systems using linear models. This modeling 

strategy has the advantage of allowing for linear programming (LP) and mixed-integer 

linear programming (MILP) algorithms to be applied. More specifically, if an 

optimization can be posed as an LP, then, assuming that the problem is well posed, its 

global optimum can reliably and efficiently be found. On the other hand, if the problem 

is posed as an MILP, it is still the case that the global optimum can be reliably found, but 

the efficiency may suffer, since MILP algorithms usually rely on some type of branch-

and-bound strategy (Luenberger, Ye and others, 2010). 

Ji and collaborators (2012) attempted to optimize the energy cost of a pulp and paper mill 

subsystem comprised of a digester and an evaporation plant using LP. The model was 

solved using the commercial package CPLEX, which can solve both LP and MILP 

problems (Ji et al., 2012). In this study, the authors used data collected from an operating 

pulp and paper mill, whose evaporator plant structure is shown in Figure 2-8, to construct 

a linear Excel® model that correlated the outlet steam mass flow with other inlet steam 

and black liquor variables. The model is shown in in equation 2.11: 

 

 𝑓𝑠𝑡𝑒𝑎𝑚 = −0.6897 𝑇𝑆%𝑖𝑛 − 0.552𝑡𝑖𝑛 + 0.8655𝑓2 − 0.4288𝑡3

+ 0.2445 𝑇𝑆%𝑖𝑛 + 0.1182𝑓𝑖𝑛 
(2.10) 

 

In this equation, the terms of form TS% refer to the black liquor dry solids mass fraction, 

those of form f refer to mass flow rates, and those of form t refer to temperatures in ºC. 

The subscripts refer to the streams to which they pertain. These streams can be found in 

Figure 2-8. 

From an optimization standpoint, equation 2.10 acts as an equality constraint. The 

objective function to be minimized, which represents cost, is given in equation 2.11: 

 𝑓𝑜𝑏𝑗 = 𝑐𝑜𝑖𝑙𝑚𝑜𝑖𝑙 + 𝑐𝑏𝑎𝑟𝑘𝑚𝑏𝑎𝑟𝑘

+ 𝑐𝑒𝑙,𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑 𝑞𝑒𝑙,𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑 – 𝑐𝑒𝑙,𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑞𝑒𝑙,𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 
(2.11) 
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Figure 2-8: Seven-effect evaporation plant optimized by (Ji et al., 2012) using linear 

optimization techniques (derived from (Ji et al., 2012). 

 

In this equation, 𝑐oil, cbark, cel,purchased and cel,produced represent, respectively, the oil 

cost €/ton, bark cost in €/ton, electricity cost in €/MWh, and electricity revenue when 

electricity is sold (negative cost) in €/MWh. The terms of form m denote mass in tons, 

whereas terms of form q denote energy in MWh. 

The authors found that the model was useful for testing different operational scenarios 

for the pulp mill under study. It should be noted, however, that this type of study is a 

process-specific study, and that the values reported for this process may not be 

interchanged with others. 

A more sophisticated and more general study focusing on MILP was conducted by 

Kermani and collaborators (2016). In this study, the authors developed a MILP-based 

process integration methodology for simultaneously optimizing water and energy 

consumption in a Kraft pulping mill (Kermani et al., 2016). Also worth mentioning is a 

study by Khanam and Mohanty (2010), where they proposed energy reduction schemes 

for MEE systems (Khanam and Mohanty, 2010). Their study involved enumerating a 

collection of possible evaporator arrangements. 

The authors, starting from nonlinear heat exchanger models, generated new linearized 

models following a methodology similar to that described by Floudas (2006) in his 

seminal text Deterministic Global Optimization, where nonlinear terms are replaced by 

linear terms and extra constraints are added to the complete optimization problem 
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(Floudas, 2013). Once the models were linearized, the complete optimization problem 

was formulated as an MILP closely following the methodology described by Biegler and 

collaborators (1997) for pinch analysis (Biegler, Grossmann and Westerberg, 1997). 

Another noteworthy, albeit less mathematically sophisticated, linear approach to process 

integration is the one described by Mesfun and Toffolo (2015). In their study, the authors 

carried out the process integration of an entire Kraft pulp mill using pinch analysis 

(Mesfun and Toffolo, 2015). A simple but general linear optimization method has also 

been described by Kaya and Sarac (2007) for optimizing a four-effect, parallel-flow 

evaporator plant in terms of energy economy (Kaya and Ibrahim Sarac, 2007). 

2.2.2 Nonlinear programming 

From a phenomenological standpoint, the modeling of evaporative systems rests on mass 

and energy balances. The latter naturally introduces nonlinearities into the models, which 

accounts for the large number of nonlinear models among those reported in the literature. 

A comprehensive review of these methods has been given by (Verma, Manik and Sethi, 

2019). 

Bhargava and collaborators (2008) modeled the MEE system displayed in Figure 2-9 

using phenomenological equations corresponding to mass and energy balances. This 

MEE system is particularly important because it served as a basis for the work of 

subsequent researchers, such as Jyoti and Khanam (2014). The model was built using 

both linear equations, global mass balances, and nonlinear equations, solids balances and 

energy balances. 

 

 

Figure 2-9: Seven-effect MEE system studied by Bhargava and collaborators (derived from 

(Bhargava et al., 2008). 

 

The authors manually tried different black liquor flow patterns for this system to find the 

one that maximized steam economy, that is, the ratio between the total vapor generated 
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in the MEE plant and the amount of live steam supplied to it. Figure 2-10, derived from 

their original publication, shows the different arrangements that were tried. In this figure, 

F denotes the sequence of effects through which black liquor flows. 

 

 

Figure 2-10: Black liquor flow patterns studied by Bhargava and collaborators (E derived from 

(Bhargava et al., 2008). 

 

Jyoti and Khanam (2014) modeled the MEE system displayed in Figure 2-11 in a similar 

way as Bhargava and collaborators. The model was solved using a non-specified iterative 

procedure. The authors then manually experimented with different numbers of flashing 

tanks and vapor bleeding strategies to find the most economical arrangement, as measured 

by cost function. 

Mesfun and Toffolo (2013) carried out process integration of a combined heat and power 

(CHP) system and the evaporator plant at a Kraft mill. Their process integration approach 

was based on pinch analysis and used an evolutionary algorithm called the Genetic 

Diversity Evaluation Method (GeDEM). The authors claimed that this evolutionary 

algorithm was chosen due to its robustness to withstand potentially large variations in the 

calculated values for the pinch-point temperatures. By manually changing the MEE 

system configuration, the authors were able to identify energy-saving opportunities. 

Another interesting study involving MEE process integration is one by Sharan and 

Bandyopadhyay (2016), where they used models quite similar to those used by Bhargava 

and collaborators (2008) to model an evaporator train for a desalination system. It is worth 

noting that despite the fact that the present dissertation focuses on Kraft MEE plants, the 

models used to describe them can be modified to fit the needs of other industries. Diel 

and collaborators (2016) optimized a MEE system by generating response surfaces and 

then subjecting these surfaces to statistical analyses. Their methodology involved solving 

a nonlinear system of equations several times. 
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Figure 2-11: Seven-effect MEE system studied by Jyoti and Khanam (adapted from (Jyoti and 

Khanam, 2014). 

 

Olsson (2009b) developed a simulation tool called OptiVap for simulating MEE systems 

and used it to optimize MEE systems that account for lignin extraction and the use of 

excess heat. 

2.3 General process simulation techniques 

The methods described in the preceding section are best used for modeling evaporative 

systems that have a fixed topological structure. The term topological structure refers to 

the number of evaporator bodies, or any other unit processes, in a system and the way in 

which they are interconnected. Notice that, by following the above-mentioned 

methodologies, if a system were to change its structure, the equations that describe it 

would then have to be changed as well. These methodologies, for this reason, would have 

trouble describing a system whose structure is either unknown or dynamic. 

More general methodologies, which can accommodate a variety of process structures, 

have been thoroughly studied and reported in the chemical engineering literature, and it 

is due to them that a variety of general-purpose process simulators are available today. 

Process simulators are commonly used in the pulp and paper industry to facilitate the 

analysis and flowsheeting of evaporator plants. Cardoso and collaborators (2009) used 

the commercial simulator WinGEMS along with continuous data collected from a 

Brazilian pulp mill to identify opportunities for saving energy. In their work, continuous 

online data from a six-effect evaporation plant was fed to WinGEMS, which then 

calculated the heat transfer coefficient of each evaporator body in the plant (Cardoso et 
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al., 2009). The MEE plant is depicted in Figure 2-12. By analyzing how these calculated 

coefficients varied, it was possible to schedule a washing routine for the evaporators, 

which optimized their energy use. 

 

 

Figure 2-12: Six-effect MEE train from a Brazilian pulp mill studied by Cardoso and 

collaborators (derived from (Cardoso et al., 2009). 

 

 

Figure 2-13: ChemCAD diagram of a six-effect MEE train studied by Saturnino (adapted from 

(Saturnino, 2012). 

 

Saturnino (2012) calculated the chemical balance of an entire Kraft pulp mill as part of 

doctoral research, a procedure that involved calculating its evaporation plant, displayed 
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in Figure 2-13. He performed the MEE evaporator calculation with the aid of two process 

simulators, WinGEMS and ChemCAD, and then compared the results (Saturnino, 2012). 

Satisfactory agreement was found between the results obtained from both simulators. 

General process simulation methodologies are commonly divided into two broad 

categories, namely an equation-oriented approach (EOA) and sequential-modular 

approach (SMA) (Westerberg et al., 1979). It should be noted, however, that some 

methodologies combine aspects of both EOA and SMA. 

The hypothesis posed in this dissertation is that there exists a methodology through which 

it is possible to optimize evaporator systems both with respect to their topological 

arrangement and other internal design variables. If this is the case, the methodology must 

contain in its core a set of subroutines that allow for systems of general topological 

complexity to be simulated. In principle, both EOA and SMA simulation approaches can 

do so, which motivated their use in this dissertation. 

Of course, it remained to be seen whether these methodologies would have good 

convergence properties for the systems that were studied. Another question would be that 

of selecting an optimization procedure that would work well alongside the simulation 

procedure. In the next sections, the EOA and SMA approaches are described in more 

detail, and an overview of mathematical optimization methods is given. 

2.3.1 Sequential-modular approach 

With the sequential-modular approach, each unit process of a system is abstracted as an 

independent module. The mass and energy flows that are transferred between the unit 

processes are abstracted as process streams, which interconnect the modules. Each 

module is responsible for calculating the properties of its outlet streams given its module 

parameters and the properties of its inlet streams. Figure 2-14 shows a system consisting 

of three process modules, here represented by rectangular blocks, and six streams, 

represented by arrows. In this example, each module is connected to two input streams 

and two output streams. 

If the properties of the leftmost process streams are known, module 1 can be executed to 

calculate the properties of its two output streams. These streams serve as input for module 

2. Since their properties are now known, module 2 can be executed to calculate its outlet 

streams. These, in turn, serve as inputs for module 3. Upon executing block 3, the 

rightmost streams can finally be calculated. The properties of all streams can thus be 

determined by executing the modules in a certain order, in this example 1–2–3. Notice 

that the calculation order is tightly related to the topology of the process being analyzed. 
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Figure 2-14: Calculation of a process model using a SMA methodology. The process topology 

suggests that the modules should be calculated in the order of 1–2–3. 

 

In practical systems, however, it is quite common to find topologies such as the one shown 

in Figure 2-15(a). Notice that the blue stream serves as input for module 1 and as output 

for module 3. This topological feature is commonly known as a recycle, for which reason 

the blue stream is referred to as a recycle stream. In this case, the calculation is not as 

straightforward as before since the calculation for module 1 requires information that can 

only be obtained by calculating module 3. Module 3, on the other hand, depends on the 

outputs of module 1. 

In this case, an iterative procedure must be carried out. In Figure 2-15(b), the recycle 

stream has been torn. In the procedure known as stream tearing, recycles are eliminated 

by breaking recycle streams into pairs of independent streams (Westerberg et al., 1979; 

Mah, 2013). The calculation sequence in this example begins with an initial estimate of 

the properties of the torn stream. Module 1 can be executed based on this initial estimate, 

followed by modules 2 and 3. The result from module 3 will yield new property values 

for the torn stream, which will, in general, be different than the initial estimate. Based on 

these new values, the torn stream properties can be updated. This process is repeated until 

the difference is sufficiently small. This procedure is sometimes referred to as converging 

the recycles. 

Several methods have been described in the literature for tearing recycle streams as well 

as for converging recycles. Common algorithms for recycle convergence are fixed-point 

iteration, Wegstein’s method, and the NR method (Smith, 2016). 

 

Figure 2-15: Stream tearing procedure in an SMA simulator. 
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2.3.2 Equation-oriented approach 

Generally speaking, as the number of recycles in a system increases, the harder and slower 

it will be for SMA methods to converge, since more initial estimates need to be provided 

and more iterations will be necessary for convergence to be achieved. An alternative 

methodology that may facilitate convergence is the equation-oriented approach. 

With this approach, each unit process is abstracted as a set of equations. Figure 2-16 

displays a process flowsheet composed of three unit processes. Let 𝒙 be a vector 

containing all process variables necessary to calculate this flowsheet. In this example, 

process 1 is described by the equations 𝑓1(𝒙) and 𝑓2(𝒙), process 2 by 𝑔1(𝒙) and 𝑔2(𝒙), 

and process 3 by ℎ1(𝒙) and ℎ2(𝒙). These equations are collected and assembled into a 

global system of equations (GSOE). The GSOE can then be solved using any of the many 

available numerical methods for solving systems of linear and nonlinear equations. 

Notice, however, that these methods require initial estimates for the variables to be 

provided. The quality of these estimates will determine how well the algorithms will 

converge. 

Notice that the topological structure of the process is disregarded in EOA: the 

interconnectivity between the block no longer dictates the calculation order. If good initial 

estimates can be provided, this may greatly facilitate the convergence of systems with 

many recycles. The GSOE solution can be further facilitated by examining the 

dependences between its equations and variables. Equations that, for instance, only 

depend on a single variable can be solved first. 

 

Figure 2-16: Calculation of a process model of an EOA methodology. Each process module 

contributes a set of equations that make up an overall general system of equations (GSOE). 
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2.4 Mathematical optimization 

2.4.1 General aspects 

A general mathematical optimization problem can be written as follows (Floudas, 2013): 

 min 𝑓(𝒙)

s. t. ℎ𝑖(𝒙) = 0 

𝑔𝑗(𝒙) ≤ 0
 (2.12) 

In this type of problem, a vector of scalars denoted by 𝒙 is sought such that it minimizes 

the value of the objective function, here denoted by f, evaluated at 𝒙, while satisfying the 

equality and inequality constraints represented by equations ℎ𝐼 and inequalities 𝑔𝑗, 

respectively. 

An optimization problem may be either constrained or unconstrained. A constrained 

problem contains at least one equality or inequality constraint, whereas none are present 

in an unconstrained problem. 

A vast number of engineering problems can be modeled as mathematical optimization 

problems (Boyd and Vanderberghe, 2004; Floudas, 2013). Problems involving cost 

minimization are a natural fit. 

Finding a solution to the general problem expressed by equation 2.12 is not trivial. This 

is due to the general formulation-accommodating functions, which may be ill-behaved or 

contain local minima. A local minimum is a point whose objective function value is lower 

than that of those in its neighborhood. If its value is also lower than that of every other 

point in the function domain, then it is also said to be the global minimum. Figure 2-17 

displays a function with a local minimum at point (5,6) and a global minimum at point 

(3,3). 
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Figure 2-17: Graph of a function displaying a global minimum at point (3,3) and a local 

minimum at point (5,6). 

 

 

In many cases, such as in costs optimization, it is highly desirable to find the global 

minimum. The existence of local minima is an obstacle to optimization in these cases, 

since the algorithms usually applied to solve them are prone to being trapped in local 

minima. This situation can be remedied by either re-running the algorithm with new initial 

estimates or by trying new algorithms. A brief overview of the types of algorithms usually 

applied in practice is given in the following section. 

2.4.2 Deterministic algorithms 

Optimization algorithms are iterative and can be divided into two broad categories: 

deterministic and stochastic. Deterministic algorithms are guaranteed to execute the same 

sequence of steps every time. These algorithms usually depend on the user providing an 

initial estimate for the values of the choice variables. This initial estimate is then updated 

at each iteration until it either meets a predetermined convergence criterion or until a 

maximum number of iterations is reached. The quality of this initial estimate determines 

whether the algorithm will converge, how close it will get to the actual solution, and how 

many iterations are needed for it to halt. 

Since deterministic algorithms depend on the quality of the initial estimate, they are 

susceptible to converging to local minima, or to not converging at all. Even still, these 

algorithms tend to converge quickly with a high degree of precision if the problem under 

study is convex (Boyd and Vanderberghe, 2004), or if high-quality initial estimates can 

be provided. Important exceptions to the initial estimate requirement are the standard 

algorithms used for solving linear programming problems, that is to say, optimization 

problems whose objective function and constraints are linear. Such algorithms as the 

simplex method or interior point method have a built-in subroutine for generating initial 
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estimates that converge, for which reason they are, in practice, preferred (Luenberger, Ye 

and others, 2010). 

Deterministic algorithms for nonlinear optimization problems may be classified with 

respect to the order of the derivatives required during their execution. For instance, if no 

derivatives are required by the algorithm, it is said to be a zero-order method. Likewise, 

if at most the first derivative of the objective function and constraints are required, it is 

classified as a first-order method. Algorithms that require second derivatives are, finally, 

classified as second-order methods (Price, Storn and Lampinen, 2005; Luenberger, Ye 

and others, 2010). 

Zero-order methods are useful for optimizing problems whose functions are either 

discontinuous or whose first derivative is ill-behaved. Examples of such algorithms are 

the Hooke-Jeeves method and the Nelder-Mead method (Price, Storn and Lampinen, 

2005). Variants of these two algorithms are currently being implemented in scientific 

computing packages such as MATLAB® (‘MATLAB Optimization Toolbox’, 2018). 

These algorithms usually function by sampling points in the neighborhood of the current 

estimate at each iteration and updating the estimate using the objective function values at 

these points. 

First-order methods use the objective function’s first derivative to iteratively update the 

initial estimate, ideally bringing it closer to the minimum point. A well-known first-order 

algorithm for unconstrained nonlinear problems is the gradient descent method. With this 

method, the objective function gradient is calculated either analytically or numerically at 

each iteration, and the current estimate is moved in the direction opposite to that of the 

gradient, as shown in equation 2.13.  

 

 𝒙𝑛+1 = 𝒙𝑛 − 𝛼𝑛𝛻𝑓(𝒙𝑛) (2.13) 

   

In this equation, 𝒙𝑛 in the estimate for the minimum at the nth iteration and 𝛼𝑛 is a step-

control parameter, which is a positive number that may either depend on the current 

iteration or remain constant. If 𝛼𝑛 is taken as a sufficiently small value, it can be shown 

that 𝒙𝑛+1 is guaranteed to be less than 𝒙𝑛 (Luenberger, Ye and others, 2010). Even though 

smaller values of 𝛼𝑛 favor convergence, they also tend to increase the number of iterations 

necessary for the algorithm to converge. 

Second-order methods use the first and second derivatives of the objective function and 

constraints. The canonical example is the Newton-Raphson (NR) method, shown in 

equation 2.14.  
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 𝒙𝑛+1 = 𝒙𝑛 − 𝛼𝑛𝐇−1(𝒙𝑛)𝛻𝑓(𝒙𝑛) (2.14) 

   

In this equation, 𝐇−1(𝒙𝑛) denotes the inverse Hessian matrix of the objective function 

evaluated at 𝒙𝑛, where the Hessian is defined elementwise as [𝐇]𝑖𝑗 =
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
|

𝑥𝑛

 and 𝛼𝑛 is 

a positive step-control parameter. The NR method converges remarkably quickly when a 

good enough initial estimate is provided. This property, more properly stated, is known 

as quadratic convergence (Luenberger, Ye and others, 2010). Despite this attractive 

property, the NR method is still susceptible to being trapped in local optima, and, in 

practice, numerically evaluating the Hessian matrix at each iteration may be prohibitively 

costly since the number of entries in that matrix increases quadratically with the number 

of variables. In other words, the NR method may actually be too computationally heavy 

to be used in larger problems. It should be noted that equation 2.14 is not implemented as 

it is in robust computational packages, since this equation involves inverting the Hessian 

and then multiplying it by the gradient. It is instead more efficient to solve the linear 

system shown in equation 2.15, which is equivalent to the former equation (Boyd and 

Vanderberghe, 2004). 

 

 𝐇(𝒙𝑛)(𝒙𝑛+1 − 𝒙𝑛) = 𝛻𝑓(𝒙𝑛) (2.15) 

   

A family of algorithms known as Quasi-Newton was developed to combine the NR 

method’s rapid convergence rate, while remedying its scalability issues for large 

problems. The Broyden-Fletcher-Goldfarb-Shanno method, abbreviated as BFGS, 

belongs to this family and is commonly implemented in scientific packages. It proceeds 

very much like the NR method, but instead of recalculating the Hessian every iteration, it 

is instead updated using rank one updates (Luenberger, Ye and others, 2010).  

 𝐁𝑛𝒑𝑛 = 𝛻𝑓(𝒙𝑛) 

𝒔𝑛 = 𝛼𝑛𝒑𝑛 

𝒙𝑛+1 = 𝒙𝑛 + 𝒔𝑛 

𝒒𝑛 = 𝛻𝑓(𝒙𝑛+1) − 𝛻𝑓(𝒙𝑛) 

𝐁𝑛+1 = 𝐁𝑛 +
𝒒𝑛𝒒𝑛

𝑇

𝒒𝑛
𝑇𝒔𝑛

−
𝐁𝑛𝒔𝑛𝒔𝑛

𝑇𝐁𝑛

𝒔𝑛
𝑇𝐁𝑛𝒔𝑛

 
(2.16) 
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The formulae displayed in equation 2.16 show the steps involved in the BFGS method. 

The matrix 𝐁 is an approximation of the much slower to calculate Hessian matrix, and it 

is updated at each iteration and then used to calculate a step size, 𝒔𝑛, controlled by the 

step-control parameter 𝛼𝑛. Depending on the implementation, 𝐁 may be initially set to 

the identity matrix or made equal to the Hessian matrix evaluated at the initial estimate, 

𝒙0. The term rank one refers to the outer vector products of the form, 𝒒𝑛𝒒𝑛
𝑇 , which are 

matrices with a rank equal to one since all its columns are multiples of each other. Due to 

this unique characteristic of rank-one matrices, matrix operations involving them can be 

optimized, thus making the algorithm more efficient. 

2.4.3 Stochastic algorithms and differential evolution 

Stochastic algorithms involve randomness in their execution, for which reason the 

sequence of steps taken during their execution is not guaranteed to be the same. In fact, it 

is their very randomness that helps them overcome, to some extent, a major difficulty 

faced by deterministic algorithms, that is, the presence of local minima. 

Differential evolution (DE) is an evolutionary algorithm that has found wide acceptance 

in multiple fields of knowledge and is particularly well suited for global optimization over 

continuous spaces (Price, Storn and Lampinen, 2005). It has been successfully applied in 

the optimization of a wide variety of energy optimization systems, from heat exchangers 

to wind farms (Afanasyeva et al., 2013; Saari et al., 2014, 2019). The implementation 

details are given below. 

Initially, a population of Np D-dimensional vectors is randomly generated, where D is the 

number of choice variables of the problem under study. Each one of the vectors will be 

denoted by 𝒙𝑖, where 𝑖 ranges from 0 to Np - 1. This population will be referred to as the 

first generation of vectors. 

It is necessary that the user supplies upper and lower bounds for each one of the choice 

variables to be initialized for DE. Let 𝒙𝒊 be a population vector and let x𝑖,𝑗   denote its jth 

variable. Let 𝑏𝑗
𝐿 and 𝑏𝑗

𝑈 be the lower and upper bounds corresponding to the jth variable. 

Each variable is then uniformly sampled according to equation 2.17: 

 

 𝑥𝑖,𝑗 = 𝑏𝑗
𝐿 + rand(0,1)(𝑏𝑗

𝑈 − 𝑏𝑗
𝐿) (2.17) 

   

Once all variables of all Np vectors are uniformly sampled, the initialization step is 

complete. The algorithm now proceeds to the mutation step. 
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During mutation, Np mutant vectors 𝒗𝑖, also known as target vectors, are generated by 

adding a random, scaled difference between two randomly chosen vectors, 𝒙1 and 𝒙2, to 

a third one, 𝒙0. It is important that all three vectors are distinct from each other, meaning 

that no vector is sampled more than once. Vector 𝒙0 is known as the base vector, whereas 

𝒙1 and 𝒙2 are the difference vectors. In the basic DE implementation, 𝒙0 is randomly 

selected, while taking care that its index in the population is not equal to the target vector’s 

index. Other implementations of DE, however, might follow a different strategy. In fact, 

other implementations might even add more than one scaled difference to the base vector 

(Price, Storn and Lampinen, 2005). 

 

 𝒗𝑖 = 𝒙0 + 𝐹(𝒙1 − 𝒙2) (2.18) 

Here, F is known as the scale factor, which can, in theory, take any positive value. In 

practice, however, it is seldom the case that F takes values much higher than one (Price, 

Storn and Lampinen, 2005). 

Next, DE enters the crossover step, where the original and target vectors are interleaved 

to the extent determined by the crossover probability, CR. Intuitively, this means that the 

vectors are being shuffled, which helps to reduces the likelihood of the algorithm get 

trapped in a local optimum. A collection of Np trial vectors 𝒖𝑖 is constructed as follows. 

For every 𝑖 ∈ 0, … , 𝑁𝑝 − 1, initialize 𝒖𝑖 as an empty vector and uniformly select a 

variable index, 𝑗𝑟𝑎𝑛𝑑 ∈ 0, … , 𝐷 − 1. Take the corresponding original and target vectors, 

𝒙𝑖 and 𝒗𝑖, and copy their values to 𝒖𝑖 as follows: for each component 𝑗 ∈ 0, … , 𝐷 − 1, 

uniformly sample a random number 𝑟 between 0 and 1. If 𝑟 ≤ 𝐶𝑅, or if 𝑗 = 𝑗𝑟𝑎𝑛𝑑, copy 

𝑣𝑖,𝑗 into 𝑢𝑖,𝑗. If that is not the case, copy 𝑥𝑖,𝑗 into 𝑢𝑖,𝑗. Notice that if 𝑗 = 𝑗𝑟𝑎𝑛𝑑, then the 

trial vector is guaranteed to receive data from the target vector. This is done to ensure that 

trial vector 𝒖𝑖 is not a duplicate of 𝒙𝑖 (Price, Storn and Lampinen, 2005). 

Lastly comes the selection stage. Here, DE checks whether each of the generated trial 

vectors, 𝒖𝑖, resulted in a lower objective function value when compared to the 

corresponding original vector, 𝒙𝑖. If that is the case, 𝒖𝑖 replaces 𝒙𝑖 in the next generation. 

Once this check is made for all trial vectors, DE loops back to the mutation stage and the 

process is repeated until either a convergence criterion is met or the maximum number of 

generations is exceeded. 

The method just described is referred to by the original authors as Classic DE, or 

rand/1/bin. The latter notation, which is useful for describing variations of this method, 

states that during the mutation step, the base vector is randomly selected and then added 

to one scaled vector difference. In the crossover step, the components, j, of the trial vector 

are selected from either 𝒙𝑖 or 𝒗𝑖, a process controlled by the crossover probability, CR. 

This approximates a Bernoulli process with probability CR, the only difference being that 

if 𝑗 = 𝑗𝑟𝑎𝑛𝑑, then 𝑣𝑖,𝑗 is copied to 𝑢𝑖,𝑗 regardless of CR. Since the crossover step is 

approximated by a sequence of D independent Bernoulli steps, the probability distribution 
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of the components of 𝒖𝑖 approximates a binomial distribution (Feller, 1957; Price, Storn 

and Lampinen, 2005). 

Figure 2-18 provides a visual representation of how DE progresses when optimizing a 

function with two local minima. At generation zero, the population vectors, represented 

by black dots, are uniformly scattered throughout the domain. As the number of 

generations increases, the vectors cluster together close to the optima, eventually 

migrating to the global optimum. 

 

 

Figure 2-18: Optimizing a function with local optima using DE (the colored curves are the 

function’s contour lines and the black dots are the vectors corresponding to each generation). 

 

DE is parameter-dependent: the user needs to supply the number of vectors in the 

population, Np, the scaling factor, F, and the crossover probability, CR. These numbers 

can be determined by running DE with different combinations thereof, a procedure known 

as parameter tuning.  

Low values of F and 𝑁𝑝 accelerate convergence, but at the same time they increase the 

likelihood of convergence at a local optimum. As a rule of thumb, it is often recommended 

to set 𝑁𝑝 = 10𝐷 (Storn, 1996; Price, Storn and Lampinen, 2005). If D is very high, 

(Ghosh et al., 2017) recommend setting 𝑁𝑝 = 0.1𝐷.  As for F, an initial estimate of 0.7 ≤
𝐹 ≤ 0.9 is often recommended (Ronkkonen, Kukkonen and Price, 2005; Yang, 2010), 

even though lower (Gämperle, Müller and Koumoutsakos, 2002) and higher (Ghosh et 

al., 2017) values have also been suggested. 
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3 Methodology 

The research hypothesis of this dissertation is that there exists a methodology for 

simultaneously optimizing evaporation systems with respect to their structure and to their 

internal variables. It is also important to assess how well it converges and scales for larger 

problems. 

The optimization algorithm chosen for this type of problem was Differential Evolution, 

due to its reported success in optimizing a wide variety of problems, as well as due to it 

being particularly well suited for global optimization over continuous spaces (Price, Storn 

and Lampinen, 2005). 

Another reason for the choice of DE was the fact that each objective function evaluation 

corresponds to solving an entire MEE flowsheet, which is a computationally heavy 

operation. Other methods, such as those of the quasi-newton family would require many 

more function evaluations per iteration, which would sharply increase the computational 

load required for optimization, thus hindering it from being applied in practice. Another 

advantage of DE is the fact that its stochastic nature makes it less likely to become trapped 

at a global optimum. 

In this dissertation, the research hypothesis is proved by presenting s general 

methodology for performing the topological optimization of MEE systems. At its core, 

the methodology depends on a simulation engine that makes it possible to model and 

simulate the MEE systems of arbitrarily complex structures. 

Manually coding complex systems is a tedious and error-prone process. Assembling MEE 

flowsheets can be greatly facilitated by exposing the user to a graphical user interface 

(GUI), through which it is possible to assemble the block diagram corresponding to the 

MEE system under study and to input process parameters. 

Taken as a whole, the GUI and the simulation engine constitute a complete steady-state 

MEE EOA simulator. The simulator engine was initially written in MATLAB. Once the 

calculation procedures were shown to yield good results, the engine was rewritten in C++, 

and a GUI written in Python 3.8 was added.  

After the EOA simulator was built and tested, a new SMA engine was built and integrated 

with the same GUI. Switching engines was relatively straightforward, as the 

communication between GUI and engine was done using an application-programmer 

interface (API) based on the ubiquitous file format known as JSON, which helped to 

uncouple these two software components. 

In the following sections, the architecture of both the EOA and SMA simulation engines 

are described. Immediately after these sections, a description of the evaporator model 

chosen for this dissertation, as well as a simplified version thereof, are given. This is 
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followed by a description of calculation procedures utilized for physical properties 

estimation of water vapor and black liquor. 

Next, the validation procedure for the evaporator model is described. In this step, data 

taken from the literature was used to gauge how well the model performed. Once the 

model results were considered sufficiently good, the topological optimization of two 

MEE systems was carried out. This is described immediately after the model validation 

section. 

Next, a section describing improvements on the original model regarding its convergence 

characteristics. Lastly, a section describing an alternative way of improving the 

simulation methodology, by implementing an SMA simulator, is described. 

3.1 EOA simulator architecture 

Figure 3-1 summarizes the calculation process carried out by the simulator. Initially, the 

user inputs a block diagram and its respective process parameters into the GUI. Blocks 

and streams, collectively referred in Figure 3-1 as elements, supply equations to the 

simulation engine, which assembles the GSOE. The equations then facilitate convergence 

based on specific instructions. 

This global system of equations is then passed on to a solver (MATLAB Trust-Region or 

NR, for instance), along with a vector of initial estimates, which proceeds to solve the 

system. Once the system is solved, the simulator produces a report containing the values 

of all process variables, as calculated by the simulator.  

Initial estimates may either be directly supplied by the user or by the simulator itself, 

which defaults estimates to zero if not provided. This architecture allows for any variable 

to remain constant. Suppose it is desired that variable x, belonging to element 1, remain 

constant at a prespecified value of ten. All that must be done is to require that element 1 

provide the engine with the equation x − 10 = 0. 

The ordering process begins by constructing a bipartite graph corresponding to the GSOE 

(Fritzson, 2010). In this graph, two sets of vertices exist: equation vertices and variable 

vertices. An edge connects equation vertex i to variable vertex j if variable j takes part in 

equation i. As an example, suppose that the GSOE consists of the three equations shown 

in equation 3.1: 

 

 

{

f(x1) = 0

f(x1, x2, x3) = 0

f(x2, x3) = 0

 (3.1) 
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The bipartite graph corresponding to this system of equations is shown in Figure 3-2(a), 

where the squares represent equations and the circles represent variables. 

 

 

Figure 3-1: Steps taken by the EOA simulator during the calculation of an MEE process 

flowsheet. 

 

Given a bipartite graph, a matching is defined as a set of edges such that no edges share 

a vertex. A matching is said to be maximal if no matching exists with a higher number of 

edges (Fritzson, 2010). In the current example, the three bold edges shown in Figure 

3-2(b) form a matching, since none of these edges share a vertex. Notice that a matching 

cannot exist with a higher number of edges, as that would cause an equation to be shared 

between two edges. Therefore, the bold edges constitute a maximum bipartite matching 

of size three. 

In the simulator, the maximum bipartite matching, M, for this graph is determined using 

the Ford-Fulkerson algorithm (Sedgewick and Wayne, 2011). The bipartite graph is then 

converted into a directed graph through the following process: for every edge e 

connecting equation vertex i to the variable vertex j, if e belongs to M, then replace it with 

a directed edge connecting i to j. If e is not in M, then replace it with a directed edge 

connecting j to i. The topological ordering of this directed graph gives the ordering of the 

equations (Fritzson, 2010). The result of applying this procedure to the current example 

is displayed in Figure 3-2(c). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 3-2: Equation ordering and partitioning procedure starting from the bipartite graph 

corresponding to the GSOE. 

 

Once the order of the equations has been determined, the simulator determines the subsets 

of equations that need to be solved simultaneously. This step is referred to as partitioning. 

From a computational standpoint, partitioning is equivalent to finding the strongly 

connected components, or SCCs, of the ordered graph. In the simulator, this step is done 

with the well-known Kosaraju algorithm (Sedgewick and Wayne, 2011). The result of 

partitioning the current example is displayed in Figure 3-2(d). The ordered graph contains 

a total of three partitions, each of which is highlighted with a different background color. 

This partitioning step produces a complete calculation sequence for the GSOE. In the 

example provided, equation 1 is solved first, allowing variable 1 to be found. Then, 

equations 2 and 3 are solved together to find the values for variables 2 and 3. 

The simulator solves each partition using the NR method. Initial estimates for the 

variables may either be supplied by the user or calculated by the simulator. In the latter 

case, the simulator is run using simplified models for each unit process to facilitate 

convergence, and the values upon which it converges are used as estimates. 
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3.2 SMA simulator architecture 

Figure 3-3 summarizes the calculation process carried out by the SMA simulator. 

Initially, the user inputs a block diagram and its respective process parameters into the 

GUI. If the user wishes to supply initial estimates, it is also possible to do so. If no initial 

estimates are supplied, the simulator uses the default values. 

The simulator then creates the calculation modules corresponding to each GUI element, 

bringing to the module all user input information necessary for making a calculation. The 

simulator also generates an information flow graph representing the dependencies of each 

module with respect to every other module, as show in Figure 3-4. For example, an 

evaporator body requires data from its input vapor and black liquor streams and supplies 

data to the outlet vapor, condensate, and black liquor streams. Therefore, as shown in 

Figure 3-4, in the information flow graph the vertex corresponding to the evaporator will 

have incoming edges from its input streams and outgoing edges to its outlet streams. 

The information flow graph is then processed to identify all its circuits. A circuit is a loop 

within the graph made up of a sequence of non-repeating vertices and edges. If an edge 

is removed from this graph, then at least one loop will have been removed from the graph, 

which is equivalent to tearing a stream in the flowsheet. Therefore, repeatedly removing 

edges from the set of circuits of a graph eventually leads to an acyclic graph, which 

corresponds to a flowsheet with no remaining untorn recycle streams. By listing the set 

of all circuits in a graph, it is possible to select the smallest set of edges that, when 

removed, cause the graph not to have any loops. 

 

Figure 3-3: Steps taken by the SMA simulator during the calculation of an MEE process 

flowsheet. 
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Figure 3-4: Information flow graph (below) corresponding to an MEE process flowsheet 

(above). Evaporators and streams are represented by circles. Evaporators are displayed in 

yellow, vapor streams in red, condensate streams in blue, and black liquor streams in black. The 

arrows represent calculation dependencies. 

 

The set of all circuits was constructed by traversing the information flow graph using a 

depth-first search (DFS) (Sedgewick and Wayne, 2011).  

Once the set was constructed, a loop matrix, L, was constructed. In this matrix, each 

column corresponded to an edge and each row to a circuit. Element Li,j is equal to one if 

circuit i contains edge j, otherwise it is equal to zero. Notice that the sum of all elements 

under column j is equal to the number of circuits in which an edge participates. This gives 

rise to the following greedy heuristic for removing edges: 

• Identify the edge that participates in the most circuits; 

• Remove the edge from L and all circuits that contained it; 

• Repeat the steps above while circuits still remain in L. 

The edges that have been removed are each associated with a single stream in the 

flowsheet. These streams form a set of tearing streams. 
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Now that the information flow graph has been rendered acyclic, the calculation order can 

easily be determined by running a topological sort on it. At this point, the calculations 

may begin. 

In every iteration, the simulator loops through each of the modules in the order determined 

by the topological sort and keeps a cache of all torn stream variables. If the maximum 

relative error among all torn steam variables over two consecutive iterations is smaller 

than a predetermined relative tolerance, usually on the order of 1%, then the simulator 

stops and is assumed to have converged. Otherwise, another iteration is executed. 

The simulator modifies the calculated torn stream variable values after each iteration 

using Wegstein’s method, which is quite common in commercial process simulators and 

can greatly improve the likelihood and rates of convergence (Smith, 2016). 

3.3 Supported unit processes, blocks, and streams 

The unit processes currently supported by the simulator are as follows: evaporation, black 

liquor and condensate flashing, black liquor mixing and vapor and condensate mixing. 

The mass flows that take place between the unit processes are represented by streams that 

are divided into black liquor, vapor, and condensate streams. 

Table 3.1 lists the variables that describe each type of stream and Table 3.2 lists the 

currently supported process blocks and the equations corresponding to each of them. In 

these equations, variable subscripts denote the streams to which they correspond, except 

for subscript sat, which denotes saturation. Mass flows are indicated by 𝑚̇, enthalpies by 

H, temperatures and pressures by T  and P,  respectively, the dissolved solids mass 

fraction by 𝑥𝐷, the total solids mass fraction by 𝑥𝑇, and the boiling point rise of black 

liquor by BPR . Black liquor streams are graphically depicted by black lines. Vapor and 

condensate streams are in turn depicted as red and blue lines, respectively. 

Table 3.1: Stream types supported by the EOA and SMA simulators and the variables that 

describe them. The subscripts D and T denote dissolved and total solids fractions, respectively. 

Stream type Variables 

Vapor ṁ, T, P 

Condensate ṁ, T, P 

Black liquor 𝑚̇, 𝑇, 𝑥𝐷 , 𝑥𝑇 
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Table 3.2: Unit processes supported by the EOA and SMA simulators and the equations that 

describe them 

Process block Description Equations 

 

 
Evaporator 

 

The black liquor stream, 

F, and the inlet vapor 

stream, S, enter the 

evaporator block. The 

outlet black liquor stream, 

L, the condensate stream, 

C, and the outlet vapor 

stream, V, exit the block. 

Evaporator blocks take as 

parameters the heat 

transfer coefficient, U, 

and the heat transfer area, 

A. 

ṁS = ṁC 
ṁF = ṁL+ṁV 

ṁFxD,F = ṁLxD,L 
ṁFxT,F = ṁLx𝑇,L 

PS = PC 
TC = Tsat(PS) 

TV = Tsat(PV)+BPR(PV,xD,L) 
TV = TL 

Q = ṁS(HS-HC) 
Q = UA(TS-TL) 

Q̇+ ṁFHF = ṁLHL+ṁVHV  
 

 

 
Flash tank 

 

The inlet black liquor or 

condensate stream, F, 

enters the flash block. The 

outlet vapor stream, V, 

and the outlet black liquor 

or condensate stream, L, 

exit the block. The flash 

tank pressure is 

determined by the outlet 

vapor stream pressure, PV. 

ṁF = ṁL+ṁV 
TV = TL 

PV = Psat(TV) 
PL = Psat(TV) 

ṁFxD,F = ṁLxD,L 
ṁFx𝑇,F = ṁLxT,L 

 

 
Black liquor mixer 

 

An arbitrary number of 

black liquor streams, Li, 

enter the mixer block and 

a single combined black 

liquor stream, Lout, exits 

it. 

∑ ṁi

i

= ṁout 

∑ ṁi

i

Hi = ṁoutHout 

∑ ṁi

i

xD,i = ṁoutxD,out 

∑ ṁi

i

x𝑇,i = ṁoutx𝑇,out 

 

 
Vapor mixer 

 

An arbitrary number of 

vapor or condensate 

streams, Vi, enter the 

mixer block and a single 

combined vapor or 

condensate stream, Vout, 

exits it. In this work, the 

vapor mixer is assumed to 

cause a negligible 

pressure drop and that all 

pressures will be equal. 

∑ ṁi

i

 = ṁout 

∑ ṁi

i

Hi = ṁoutHout 

P1=P2=…=Pn=Pout 
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Black liquor splitter 

An inlet black liquor 

stream is split it into two 

outlet streams, whose 

mass flows are defined by 

a splitter ratio R. The 

outlet streams are 

assumed to have the same 

values of temperature and 

solids fractions as the 

inlet stream. 

𝑚̇1 = 𝑅𝑚̇𝑖𝑛 
𝑚̇2 = (1 − 𝑅)𝑚̇𝑖𝑛 

𝑇1 = 𝑇2 = 𝑇𝑖𝑛 

𝑥𝐷,1 = 𝑥𝐷,2 = 𝑥𝐷,𝑖𝑛 

𝑥𝑇,1 = 𝑥𝑇,2 = 𝑥𝑇,𝑖𝑛 

 

Vapor splitter 

An inlet vapor stream is 

split it into two outlet 

streams, whose mass 

flows are defined by a 

splitter ratio R. The outlet 

streams are assumed to 

have the same values of 

temperature and pressure 

as the inlet stream. 

𝑚̇1 = 𝑅𝑚̇𝑖𝑛 
𝑚̇2 = (1 − 𝑅)𝑚̇𝑖𝑛 

𝑇1 = 𝑇2 = 𝑇𝑖𝑛 

𝑃1 = 𝑃2 = 𝑃𝑖𝑛 

 

3.3.1 A simplified evaporator model 

As will be discussed in later sections, solving the nonlinear equations shown in Table 3.2 

with NR requires that reasonably good initial estimates be provided. For this reason, an 

alternative, simplified evaporator model was developed. Solving this model is far easier 

in terms of convergence, and the results obtained from it serve as good initial estimates 

for solving the system of equations corresponding to the original model. The simplified 

evaporator model is shown below: 

 

 ṁS = ṁC 
(3.2) 

 ṁF = ṁL+ṁV (3.3) 

 ṁFxD,F = ṁLxD,L (3.4) 

 ṁFxT,F = ṁLx𝑇,L (3.5) 

 
𝑃𝑆 = 𝑃𝐶 

(3.6) 

 TC = Tsat(PS) (3.7) 

 TV = Tsat(PV)+BPR(PV,xD,L) (3.8) 
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 TV = TL (3.9) 

 
𝑄̇ = 2200 𝑚̇𝑆 

(3.10) 

 
Q̇ = UA(TS − TL) 

(3.11) 

 ṁ𝑆 = ṁ𝑉  (3.12) 

 

In the simplified model, the evaporator energy balance is replaced with 
𝑚̇𝑆 = 𝑚̇𝑉, the BPR is neglected, and the heat of steam condensation is approximated as 

𝑄̇ = 2200 𝑚̇𝑆. This procedure replaces the nonlinear equations representing energy 

balances, enthalpy, and BPR calculations with simple linear terms to generate a good 

enough approximate solution to serve as a starting point for solving for the full model. 

The simplified model was created by setting up the EOA simulator to calculate a single 

evaporator body, and then changing the evaporator model equations until a good 

compromise between accuracy and general ease of convergence was found. To gauge the 

general ease of convergence of a proposed model, directed bipartite graphs corresponding 

to its GSOEs were generated, following the procedure described in Figure 3-2, and then 

plotted using a Python script that implemented a simple force-directed graph plotting 

algorithm (Frishman and Tal, 2009). 

 

3.4 Physical properties  

Energy balances require that the water steam enthalpies of black liquor are known. Water 

and steam enthalpies were calculated based on steam table correlations and implemented 

in C++, as described in the 2007 revised release of the International Association for the 

Properties of Water and Steam IAPWS Industrial Formulation of 1997 standard (Cooper 

et al., 2007). 

Black liquor enthalpies were calculated based on the correlation described by Zaman and 

Fricke (1996), which expresses the enthalpy of black liquor at 80°C, H80, as shown in 

equation 3.13. In this equation, Hw,80 denotes the water enthalpy at 80°C, xD is the black 

liquor dissolved solids fraction, and the constants b and c depend on the type of black 

liquor being considered. In this work, it was assumed that b = 105.0 kJ/kg.K and c = 

0.300. 

 

 𝐻80 = 𝐻𝑤,80 + 𝑏 [−1 + exp (
𝑥𝐷

𝑐
)] (3.13) 
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To account for black liquor enthalpies at other temperatures, H80 is corrected using the 

black liquor heat capacity correlation given by equation 3.14, where t stands for the 

temperature measured in °C (Tikka, 2008): 

 

 𝑐𝑝 = 4.216(1 − 𝑥𝐷) + [1.675+
3.31𝑡

1000.0
] 𝑥𝐷 + [4.87 +

20𝑡

1000.0
] (1 − 𝑥𝐷)𝑥𝐷

3  (3.14) 

 

 

 

The black liquor boiling point rise (BPR) also needs to be considered in evaporator 

calculations. BPR is accounted for using equations 3.15 and 3.16, where TP is the boiling 

temperature of water at pressure P (Tikka, 2008): 

 

 
𝐵𝑃𝑅(𝑃, 𝑥𝐷) = 𝐵𝑃𝑅atm(𝑥𝐷) [1 +

0.6(𝑇𝑝 − 373.16)

100
] (3.15) 

 

 𝐵𝑃𝑅atm(𝑥𝐷) = 6.173𝑥𝐷 − 7.48𝑥𝐷
1.5 + 32.747𝑥𝐷

2  (3.16) 

3.5 Base scenarios 

Two MEE scenarios adapted from the literature were used to a) test and validate the 

results produced by the model and to b) test the evaporator systems’ topological 

optimization methodology. The first scenario, shown in Figure 3-5, is a simple three-

effect system with intermediate flashing, adapted from (Tikka, 2008). This scenario will 

be referred to as S1. 
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Figure 3-5: Simple three-effect MEE system (S1), adapted from (Tikka, 2008). 

 

Due to its simplicity, this scenario was useful for quickly testing whether the 

mathematical modeling yielded reasonable results and whether the proposed 

methodology would function as expected as well as for finding optimal ranges for the DE 

parameters. The second, more realistic scenario, referred to as S2, is shown in Figure 3-6. 

This system is a six-effect MEE plant, composed of seven evaporators, with intermediate 

condensate flashing as well as black liquor flashing. 

 

 

 

3.6 Model validation 

It is necessary to first verify whether the model would yield reasonable values compared 

to the reference data. To do that, both systems S1 and S2 were simulated using the EOA 

simulator and input data taken from the literature, and the values produced by the 

simulator were compared to those found in the references. Table 3.3 displays the input 

data used for validating S1, which was taken from a sample MEE calculation scenario 

(Tikka, 2008). 

Figure 3-6: Realistic six-effect MEE system (S2), adapted from (Saturnino, 2012). 
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Table 3.3: Input validation values for the three-effect system, S1 (reference values taken from 

(Tikka, 2008) 

Variable Value Units 

Live steam temperature 120 °C 

Black liquor inlet mass flow 50 kg/s 

Black liquor inlet temperature 70 °C 

Black liquor inlet dissolved solids 20 % 

Vapor temperature from Effect 3 60 °C 

Heat transfer coefficient of Effect 1 (U1) 1.2 kW/m²K 

Heat transfer coefficient of Effect 2 (U2) 1.6 kW/m²K 

Heat transfer coefficient of Effect 2 (U3) 2.0 kW/m²K 

Outlet black liquor dissolved solids 50 % 

 

Table 4 displays the input data used for validating S2. These values are more realistic and 

were taken from (Saturnino, 2012). 

 

Table 3.4: Input validation values for the six-effect system, S2 (reference values derived from 

(Saturnino, 2012) 

Variable Value Units 

Live steam temperature to Effect 1 140 °C 

Live steam temperature to Effect 2 147 °C 

Vapor temperature from Effect 7 52 °C 

Black liquor inlet mass flow 15.6 kg/s 

Black liquor inlet temperature 64.7 °C 

Black liquor inlet dissolved solids 11.8 % 

Black liquor outlet dissolved solids 31 % 

Heat transfer coefficient of Effect 1 (U1) 0.296 kW/m²K 

Heat transfer coefficient of Effect 2 (U2) 0.4303 kW/m²K 

Heat transfer coefficient of Effect 3 (U3) 0.2584 kW/m²K 

Heat transfer coefficient of Effect 4 (U4) 0.6955 kW/m²K 

Heat transfer coefficient of Effect 5 (U5) 0.839 kW/m²K 

Heat transfer coefficient of Effect 6 (U6) 0.9698 kW/m²K 

Heat transfer coefficient of Effect 7 (U7) 1.224 kW/m²K 

 

Once the simulator was capable of outputting values in agreement with the reference 

values, it was deemed suitable for optimization. 

3.7 Expanding the base scenarios using the EOA simulator 

S1 and S2 were considered to undergo a 15% increase in the black liquor feed rate over the 

values shown in tables Table 3.3 and Table 3.4. To maintain the same final dissolved 

solids concentration, new evaporator bodies are added to these systems. The objective of 
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this optimization scenario is to find the best arrangement for the new evaporator(s) and 

its(their) heat transfer area(s). Although this methodology allows for an infinite number 

of evaporator body arrangements to be considered, the problem was here constrained to 

only encode the possibilities of adding an evaporator in series and/or in parallel to the 

existing systems.  

To encode these possibilities, the new flowsheets shown in figures Figure 3-7 and Figure 

3-8 are drawn. In this diagram, two possible new evaporators, Epar and Eser, having heat 

transfer areas equal to Apar and Aser and are added to the original systems along with new 

mixers and splitters. By changing the splitter fractions of the splitters feeding black liquor 

and vapor streams to the new evaporators, an infinite number of arrangements can be 

encoded. 

This diagram has the property of encoding multiple tentative topological arrangements 

by means of varying the splitter fractions, making it useful for optimization. Diagrams 

with such a property have been described in the literature as superstructures, a 

nomenclature that is also adopted in this study (Biegler, Grossmann and Westerberg, 

1997). 

 

Figure 3-7: Superstructure encoding two typical possibilities (parallel/series) for expanding the 

three-effect train (S1). 
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Figure 3-8: Superstructure encoding two typical possibilities (parallel/series) for expanding the 

six-effect train (S2). 
 

To evaluate the cost of a proposed arrangement, a cost model must be adopted. In this 

study, the cost of a proposed evaporator arrangement with total heat transfer area A is 

given via equation 3.17, where the constant coefficients come from the professional 

experience of the author and his collaborators. This equation gives cost c in USD. The 

optimization goal is to select the arrangement that yielded the lowest value for c. It should 

be noted that the aim of this dissertation is not to give accurate estimates of the costs 

involved, as those may vary significantly in different parts of the world, but to present a 

methodology for optimizing evaporator systems that consider all feasible topological 

arrangements. 

 

 c = 30 000 + 1 000A0.9 (3.17) 

 

The evaporator plants in this study are each modeled via a system of nonlinear equations 

representing their mass and energy balances, which, when solved, yield a steady-state 

solution for the system. Determining the optimal arrangement for the new evaporator 

corresponds to solving an optimization problem, whose choice variables encode the 

different arrangement possibilities and whose objective function quantifies the cost of 

adding the new heat transfer surface. In this study, the optimization itself is carried out 

by means of DE. 

This metaheuristic was chosen to be the optimizer because it is widely used and because 

of its success in solving a variety of difficult multi-modal engineering optimization 
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problems combining continuous and discrete variables (Afanasyeva et al., 2013; Saari et 

al., 2014, 2019)  

In the following section, we describe how the EOA simulator was used along with DE to 

perform the desired topological optimization. 

3.7.1 Calculations 

To ensure reliable convergence of the actual model, a simplified system is first used to 

generate a starting point for solving the full model. The equations remain essentially 

unchanged for all blocks, except the evaporator, which had its energy balance equation 

simplified. In this stage of simulator development, all the code was written in MATLAB 

and the equation partitioning and ordering subroutines had not yet been implemented. In 

other words, all the equations composing the GSOE were solved simultaneously. For this 

reason, solving the simplified system was particularly useful, as good initial estimates 

greatly facilitate the convergence of such large systems of equations. 

In the simplified model, the evaporator energy balance is replaced with 
𝑚̇𝑆 = 𝑚̇𝑉, the BPR is neglected, and the heat of steam condensation is approximated as 

𝑄̇ = 2200 𝑚̇𝑆. More details can be found in section 3.3.1. This procedure replaces the 

nonlinear equations representing energy balances, enthalpy, and BPR calculations with 

simple linear terms to generate a good enough approximate solution to serve as a starting 

point for solving for the full model. 

As stated previously, the goal of the optimization problems was to find the least costly 

arrangement for the new evaporator body, or evaporator bodies, as well as the heat 

transfer areas capable of meeting the same outlet liquor dry solids concentration as before. 

For each combination of splitter fractions and heat transfer areas, the system of equations 

corresponding to the superstructure under study was solved to find the final black liquor 

concentration rate. The systems were solved via MATLAB’s implementation of the trust-

region method, whose convergence depends on the quality of the initial estimate. Due to 

the difficulty of finding an initial estimate that guarantees convergence, it proved 

necessary to include all the model variables in the optimization problem. 

The calculation proceeded as follows (see Figure 3-9): 

1. For each generation, DE generates a vector containing all variables describing 

the system, including both the optimization variables (splitter fractions and heat 

transfer areas) and non-optimization variables related to solving the system 

(mass flows, pressures, temperatures, and solid fractions); 

 

2. The optimization variables are given to the simulator as fixed parameters; the 

vector with all variables is used as an initial estimate. The simulator is then run 
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with the simplified model. This extra step was important, for it substantially 

increased the likelihood of convergence. If no solution was found, the objective 

function would return a constant of 1015; 

 

3. The values found for the variables based on solving the simplified model are 

used as initial estimates for the complete model. If a solution is found, equation 

3.17 is evaluated to obtain the cost, and this value is returned to DE; otherwise, 

the constant 1015 was returned. If the trust-region algorithm converges but with 

negative (thus, physically impossible) values for some of the variables, the 

objective function value is set at 1012 × nneg, where nneg is the number of negative 

values. If the outlet black liquor concentration is smaller than required, the cost 

function is penalized by 10
12

(xD

spec
 – xD

out), where xD

spec
 is the specified outlet-

dissolved solids concentration and xD
out is the actual solids concentration. 

 

The goal of the penalty scheme was to ensure that a candidate that fails to converge in the 

solver should lose out to any candidate that does converge; among candidates where the 

solver converges, one that violates constraints should always lose out to any legal 

candidate, no matter how poor otherwise, whereas between candidates that violate 

constraints, the one that violates fewer constraints should win.  

The constants 1012 and 1015 were chosen so that they would penalize the objective 

function with a relatively high value if the solver did not converge and with a still 

relatively high value, although lower, if it converged but with the constraints having been 

violated. Notice that a 1012 term is added to the total penalty for each violated constraint. 

The equations were solved using MATLAB’s implementation of the trust-region 

algorithm with numerically evaluated derivatives. 

The algorithm was assumed to have converged when either the Euclidean distance 

between the points of two successive iterations was less than 10−12 or when the absolute 

difference between two successive objective function evaluations was less than 10−12. To 

increase the probability of the points generated via DE converging at a feasible solution, 

upper and lower bounds were calculated for each problem based on their input 

parameters.  

3.7.2 Optimization parameters 

S1 was used to assess the validity and practicality of the proposed methodology, as it is a 

relatively small system. The lower and upper bounds assigned to each optimization 

variable are listed in Table 3.5. For this problem, the number of choice variables, D, is 

equal to 87. 
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Figure 3-9: Steps involved in evaluating the objective function. 

 

The problem was solved with DE for multiple combinations of Np and F, with CR fixed 

at 0.9. The goal was to identify the set of values for these parameters that allowed the 

problem to be solved both correctly and as efficiently as possible. For each combination 

of points, five trials were conducted. 

Table 3.6 displays the DE parameters used and shows their corresponding ranges and the 

number of sampled points within that range. For example, Np varied from 20 to 100 over 

a sample of five points, meaning that Np could assume values of 20, 40, 60, 80, or 100. 

The algorithm would terminate when the number of function evaluations (NFE) exceeded 

5000. In total, 5 × 4 × 5 = 100 runs were conducted. 
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Table 3.5: Lower and upper bounds for S1 

Variable Lower bound Upper bound Units 

Liquid stream temperatures 40 120 °C 

Vapor stream temperatures 40 120 °C 

Vapor stream pressures 7.38 198.73 kPa 

Liquid stream flows 0 50 kg/s 

Vapor stream flows 0 50 kg/s 

Exchanged heat 0 73000 kW 

Heat transfer areas 400 4000 m2 

Dissolved dry solids 0.2 0.5 – 

Total dry solids 0.2 0.5 – 

Splitter fractions 0 1 – 

 

Table 3.6: DE parameters corresponding to S1 

Parameter Range Sampled points in range Stopping criterion 

NP [20, 100] 5  

F [0.4, 1.0] 4 NFE = 5000 

CR 0.9 1  

 

S2 is a larger scenario, one used to assess whether the proposed methodology could 

optimize realistically sized systems. For this system, D = 218. Table 3.7 shows the upper 

and lower bounds that were used. As before, S2 was solved with DE for multiple 

combinations of Np and F, with CR fixed at 0.9. For each combination, five trials were 

conducted. The runs were interrupted when NFE exceeded 75000. The exact parameter 

ranges and sample sizes can be found in Table 3.8. 

A total of 3 × 2 × 5 = 30 runs were executed. The number of sample points chosen was 

smaller than in S1 due to its greater level of complexity and increased required 

computational time. 
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Table 3.7: Lower and upper bounds for S2 

Variable Lower bound Upper bound Units 

Liquid stream temperatures 40 120 °C 

Vapor stream temperatures 40 120 °C 

Vapor stream pressures 7.38 198.73 kPa 

Liquid stream flows 0 48.14 kg/s 

Vapor stream flows 0 5.18 kg/s 

Exchanged heat 6000 47000 kW 

Heat transfer areas 300 3000 m2 

Dissolved dry solids 0.1393 0.7 – 

Total dry solids 0.1393 0.7 – 

Splitter fractions 0 1 – 

 

Table 3.8: DE parameters corresponding to S2 

Parameter Range Sampled points in range Stopping criterion 

Np [64, 256] 3  

F [0.5, 0.8] 2 NFE = 75000 

CR 0.9 1  

 

3.8 Improving the convergence characteristics of the EOA simulator 

The evaporator optimization methodology described in the last section may experience 

numerical difficulties during its execution when evaporators are operating close to the 

point where boiling begins. This is the case because the set of equations that model the 

evaporators, shown in tTable 3.2, assume that a liquid-vapor equilibrium has been 

established. As the optimization calculations are executed, it may be the case that in a 

given iteration, some of the evaporator bodies do not transfer enough heat to the black 

liquor to raise its temperature to the boiling point. In this iteration, therefore, the 

evaporation assumption will not hold, which may lead the simulator to either diverge or 

converge at an incorrect solution. 

To alleviate this problem and attempt to broaden the convergence region of the model, a 

modification was proposed for the original evaporator model. The new equations are 

shown below: 
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 ṁS = ṁC 
(3.18) 

 ṁF = ṁL+ṁV (3.19) 

 ṁFxD,F = ṁLxD,L (3.20) 

 ṁFxT,F = ṁLx𝑇,L (3.21) 

 TC = Tsat(PS) (3.22) 

 𝑇𝑏𝑝 = 𝑇𝑠𝑎𝑡(𝑃𝑉) + 𝐵𝑃𝑅 (3.23) 

 𝐵𝑃𝑅 = 𝐵𝑃𝑅(𝑃𝑉 , 𝑥𝐷,𝐿) (3.24) 

 TV = TL (3.25) 

 
Q̇ = ṁS(HS − HC) 

(3.26) 

 
Q̇ = UA(TS − TL) 

(3.27) 

 
Q̇+ ṁFHF = ṁLHL+ṁVHV  

(3.28) 

 
Q̇1= ṁF(HF

bp − HF) 
(3.29) 

 

If  Q̇ < Q̇1 

 ṁ𝑉 = 0 

𝐄𝐥𝐬𝐞 

 TV = T𝑏𝑝 
 

(3.30) 

 

Notice that three new variables were introduced: Q̇
1
, BPR, and Tbp. Q̇

1
 denote the 

necessary power to raise the black liquor temperature from its feed temperature to its 

boiling point, where the liquor enthalpy is equal to HF
bp. BPR denotes the boiling point 

rise. Even though it had already been considered in the original model, it has been given 

its own separate variable for the sake of convenience. 

 

The form taken by equation 3.30 depends on the value of Q̇
1
. In the original model, the 

equality between the outlet liquid temperature and the liquor boiling point (the 

equilibrium condition) was always enforced. This, however, is not necessarily the case 

here. If the supplied heat, Q̇, is such that Q̇ < Q̇
1
, then not enough heat is available to 

cause the liquor temperature to rise to its boiling point. In this case, no vapor is produced 

and all Q̇ is spent increasing the liquor temperature. Under this condition, the equilibrium 

condition equation is replaced with  ṁV = 0. 
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3.8.1 Test cases 

To assess the quality of the new model, three test cases were considered: a single 

evaporator body, a simple three-effect MEE train, and a more realistic seven-effect MEE 

train. The latter two systems were loosely adapted from the base scenarios S1 and S2 

described in section 3.5. The intermediate flashing, however, was omitted to isolate the 

evaporator model’s behavior as much as possible. 

The single evaporator scenario was assumed to have a heat transfer coefficient of U = 1.2 

kW/m²K and a heat transfer area of 1 000 m². Its black liquor inlet and outlet properties 

were equal to those of the three-effect system, shown in Table 3.9. 

Figure 3-10 displays the flowsheet of the simple three-effect MEE train being considered 

and Table 3.9 displays the input variable values fed to it during the tests. The values for 

the live steam temperature, black liquor inlet mass flow, inlet total, and dissolved solids, 

as well as the heat transfer area, were also used for the single evaporator body tests. 

 

 

Figure 3-10: Simple three-effect MEE train adapted from S1. 
 

Table 3.9: Input values for the simple three-effect MEE train adapted from S1 

Variable Value Units 

Live steam temperature 120 °C 

Black liquor inlet mass flow 50 kg/s 

Black liquor inlet temperature 70 °C 

Black liquor inlet dissolved solids 20 % 

Black liquor inlet total solids 20 % 

Vapor temperature from Effect 3 60 °C 

Heat transfer coefficient of Effect 1 (U1) 1.2 kW/m²K 

Heat transfer coefficient of Effect 2 (U2) 1.6 kW/m²K 

Heat transfer coefficient of Effect 2 (U3) 2.0 kW/m²K 

Outlet black liquor dissolved solids 50 % 

Heat transfer area (all effects) 1 000 m² 
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Figure 3-10 displays the flowsheet of the realistic seven-effect MEE train being 

considered and Table 3.9 displays the input variable values fed to it during the tests. 

 

 
Figure 3-11: Realistic seven-effect MEE train loosely adapted from S2. 

 

Table 3.10: Input values for the realistic seven-effect MEE train loosely adapted from S2 

Variable Value Units 

Live steam temperature to Effect 1 120 °C 

Live steam mass flow 2.0 Kg/s 

Black liquor inlet mass flow 15.6 kg/s 

Black liquor inlet temperature 64.7 °C 

Black liquor inlet dissolved solids 11.8 % 

Black liquor inlet total solids 11.8 % 

Heat transfer coefficient of Effect 1 (U1) 0.296 kW/m²K 

Heat transfer coefficient of Effect 2 (U2) 0.4303 kW/m²K 

Heat transfer coefficient of Effect 3 (U3) 0.2584 kW/m²K 

Heat transfer coefficient of Effect 4 (U4) 0.6955 kW/m²K 

Heat transfer coefficient of Effect 5 (U5) 0.839 kW/m²K 

Heat transfer coefficient of Effect 6 (U6) 0.9698 kW/m²K 

Heat transfer coefficient of Effect 7 (U7) 1.224 kW/m²K 

Heat transfer area (all effects) 1000 m² 

3.8.2 Convergence rate assessment 

To assess how well the new model behaved, several simulations were executed for the 

single evaporator and for the three-effect MEE train using the new model for different 

combinations of the live steam mass flow and heat transfer area. These will be referred to 

as test variables. The test variable ranges and number of tested values for both systems 

are shown in tables Table 3.11 and Table 3.12. 
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Table 3.11: Test variables range for the single evaporator system 

Variable Range Number of points 

Live steam mass flow (kg/s) [0 – 20] 100 

Outlet vapor pressure (kPa) [50 – 85] 5 

 

Table 3.12: Test variables range for the three-effect MEE system 

Variable Range Number of points 

Live steam mass flow (kg/s) [0 – 20] 20 

Heat transfer area (m²) [1000 – 2000] 5 

 

Unlike what was done with the original model, a simplified model was not used to 

generate initial estimates for the variables. Instead, random initial estimates were 

generated for each combination of test variables and the corresponding GSOE was solved 

for a maximum of Ntrials = 20 000 times, or until convergence. The initial estimates were 

uniformly sampled from the ranges shown in Table 3.13. This was done to minimize the 

possibility of divergence due to poor initial estimates. The seven-effect model was also 

simulated for a single typical scenario, namely the one shown in Table 3.10, to check the 

validity of its output variables. 

The live steam mass flow and heat transfer area were chosen as test variables because 

they determine, to a great extent, the amount of heat needed for evaporation to occur. 

Since the new model was constructed to allow for more evaporative conditions to be 

simulated, experimenting with different values for these variables should give a good idea 

of how well the new model performs. 

 

Table 3.13: Lower and upper bounds for the uniformly sampled initial estimates 

Variable Lower bound Upper bound 

Mass flow (kg/s) 0 20 

Temperature (ºC) 70 120 

Pressure (kPa) 50 200 

Heat load (kW) 0 10000 

Boiling point rise (ºC) 0 10 

Dissolved solids fraction (-) 0.2 0.8 

Total solids fraction (-) 0.2 0.8 

Heat transfer area (m²) 0 2000 

 

3.9 Convergence characteristics of the SMA simulator 

Another way to alleviate the difficulties caused by the boiling/non-boiling transition in 

evaporators is to implement the same original model described in Table 3.2 in an SMA 
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simulator. One of the advantages of this approach is that, since each module is calculated 

in isolation in this type of simulator, the problematic calculation cases can be taken care 

of within the evaporator module, hindering it from interfering with other calculations. 

From a practical standpoint, this also makes errors easier to diagnose and correct, since 

they can be traced back to each individual module as opposed to a GSOE. 

The evaporator model was the same described by (Vianna Neto, Saari, et al., 2020). The 

proposed iterative calculation scheme was obtained by assuming that the inlet vapor and 

liquor variables were known and that the outlet liquor, vapor, and condensate variables 

were unknown. Table 3.14 shows all the known and unknown parameters corresponding 

to all evaporator streams and to the evaporator body itself. The labels F, S, L, V, and C, 

as before, correspond to liquor feed, inlet vapor, outlet liquor, outlet vapor, and 

condensate, respectively. 

 

Table 3.14: Known and unknown variables when calculating an evaporator in the SMA 

simulator 

Variable Evaporator F S L V C 

U Known - - - - - 

A Known - - - - - 

𝑄̇ Unknown - - - - - 

𝑚̇ - Known Known Unknown Unknown Unknown 

𝑥𝐷 - Known - Unknown - - 

𝑥𝑇 - Known - Unknown - - 

P - - Known - Unknown Unknown 

T - Known Known Unknown Unknown Unknown 

 

As mentioned before, it is quite important to order and partition the system of equations 

to ensure convergence. For this reason, the same procedure for ordering and partitioning 

equations used for the EOA simulator was also used to determine the calculation sequence 

for the evaporator module. 

3.9.1 Test scenarios 

MEE systems ranging from 3 to 7 evaporator bodies were constructed, while maintaining 

the same counter-current structure shown in Figure 3-12. 
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Figure 3-12: Base three-effect MEE system used for building similar larger systems.  

 

The systems were initially simulated for three live steam mass flow values: 0, 2.5, and 

5.0 kg/s. This first step was meant to assess how well the simulator could calculate 

scenarios where evaporation would not necessarily occur due to a low supply of steam. 

The number of iterations needed for convergence during each test was recorded. Table 

3.15 lists the input values used for all tested scenarios. 

 

Table 3.15: Input values for the generated MEE systems being used to test the SMA simulator 

Variable Value(s) Units 

Live steam temperature 120 °C 

Live steam mass flow 0.0, 2.5 and 5.0 kg/s 

Black liquor inlet mass flow 50 kg/s 

Black liquor inlet temperature 70 °C 

Black liquor inlet dissolved solids 20 % 

Vapor temperature from Effect 3 60 °C 

Heat transfer coefficient of all effects (U) 1.2 kW/m²K 

Heat transfer area of all effects (A) 1040 m² 

 

Each system was then simulated 100 times, with a fixed live steam mass flow of 5.0 kg/s, 

to measure the computational time required for the simulation to finish. This result is of 

great practical importance because the convergence time directly affects how practical it 

will be in optimization studies. The computer in which all the simulations were executed 

was equipped with a 2.7 GHz Intel® Core™ i7 and 4GB RAM and was run on Ubuntu 

16.04. Convergence was assumed to be reached when the relative change in all variables 

in every torn stream was lower than 1%. The initial estimates used for the stream variables 

were values deemed as typical, and are shown in Table 3.16. 
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Table 3.16: Initial values for each variable used for the SMA simulator convergence tests. 

Variable Value(s) Units 

Vapor stream mass flows 1 kg/s 

Vapor stream temperatures 100 °C 

Vapor stream pressures 200 kPa 

Black liquor stream mass flows 1 kg/s 

Black liquor stream temperatures 100 °C 

Black liquor stream dissolved solids 20 % 

Black liquor stream total solids 20 % 
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4 Results and discussion 

In the next two sections, the results corresponding to the calculation procedure and 

modeling and validation are presented. The results indicate that the model results display 

good agreement with the values found in the literature. 

Next, the topological optimization results using the EOA simulator are given. The results 

prove that the research hypothesis is true, as the proposed methodology successfully 

optimized both proposed multiple-effect evaporator systems. 

Following this section, the results corresponding to the proposed modification of the 

original model are given. They indicate that the modified model is capable of capturing 

scenarios where no evaporation takes place. They also suggest that the modified model 

suffers from convergence problems for large systems. 

The last section presents the results obtained for the SMA simulator. The new simulator 

was shown to converge very well for evaporator systems ranging from 3-7 effects even 

when no evaporation takes place. 

4.1 Simplified model 

Figure 4-1 and Figure 4-2 display the plotted, GSOE-oriented bipartite graphs produced 

by calculating a single evaporator with the complete model and with the simplified model, 

respectively. 

 

Figure 4-1: GSOE-oriented bipartite graph corresponding to a single evaporator using the 

complete evaporator model. 
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Figure 4-2: GSOE-oriented bipartite graph corresponding to a single evaporator using the 

simplified evaporator model. 

 

In these figures, the square boxes correspond to equations and the circles correspond to 

variables following the same convention adopted in Figure 3-1. Figure 4-1 shows that the 

GSOE produces a graph containing two separate subsystems. The rightmost, somewhat 

linear chain of equations and variables corresponds to the relatively straightforward 

sequential pre-processing of input variables, such as calculating the live steam pressure 

based on its temperature and then equating it with the condensate pressure. The leftmost 

subsystem corresponds to the bulk of the calculations, where most mass and energy 

balances are found. Note that the graph’s structure is quite intertwined due to the multiple 

interrelations that exist between variables and equations. From a practical standpoint, this 

means that in the partitioning stage, the EOA simulator will have to solve a relatively 

large part of these variables and equations together, thus making it that much more reliant 

on good initial estimates. 

When contrasting Figure 4-1 with Figure 4-2, it is immediately apparent that the graph’s 

structure is much more linear and less intertwined. In fact, this oriented graph has no 

loops, which allows each of its variables to be found sequentially. This structure sharply 

increases the likelihood of convergence for the simplified model, which makes it suitable 

for reliably generating initial estimates. 
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4.2 Evaporator model validation 

Table 4.1 displays some of the key output variables calculated for the three-effect system 

as well as their reference values, taken from the original reference. Note that there is a 

strong agreement between the calculated and reference values. Nonetheless, the simulator 

underestimated the heat transfer area and the black liquor outlet temperature as compared 

to the reference values. This discrepancy is justified by the fact that the black liquor 

enthalpies in this work were calculated from different correlations than those of the 

original reference. All other calculated variables, however, agree with their corresponding 

reference values within a tolerance of under 7%. 

 

Table 4.1: Comparison of calculated values and reference values for the three-effect system 

(derived from (Vianna Neto, Cardoso, Vakkilainen, et al., 2020) 

Variable Calculated value Reference value Units Relative error 

Heat transfer areas (all 
effects) 

810 1 040 m² 22.12% 

Vapor temperature from 
Effect 1 

93.7 91.6 °C 2.29% 

Vapor temperature from 
Effect 2 

74.2 73.3 °C 1.23% 

Vapor temperature from 
Effect 3 

60 60 °C 0.00% 

Black liquor dissolved 
solids from Effect 1 

50 50 % 0.00% 

Black liquor dissolved 
solids from Effect 2 

33.3 33 % 0.91% 

Black liquor dissolved 
solids from Effect 3 

25.2 25 % 0.80% 

Outlet black liquor 
temperature 

93.7 99.8 °C 6.11% 

Live steam mass flow 11.6 11.3 kg/s 2.65% 

 

Table 4.2 displays some of the key output variables calculated for the six-effect system 

as well as their reference values, taken from the original reference. As before, there is a 

strong agreement between the calculated and reference values, and any discrepancies are 

likely due to the different correlations used. Note that the heat transfer areas are not shown 

in Table 4.2, as they were not reported in the original publication. 
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Table 4.2: Comparison of calculated values and reference values for the six-effect system 

(derived from (Vianna Neto, Cardoso, Vakkilainen, et al., 2020) 

Variable 
Calculated 

value 
Reference 

value 
Units Relative error 

Vapor temperature from Effect 1 129 106.3 °C 21.35% 

Vapor temperature from Effect 2 128.5 126.8 °C 1.34% 

Vapor temperature from Effect 3 93.6 89.5 °C 4.58% 

Vapor temperature from Effect 4 78.3 77.2 °C 1.42% 

Vapor temperature from Effect 5 67.1 67.2 °C 0.15% 

Vapor temperature from Effect 6 58.3 58.7 °C 0.68% 

Vapor temperature from Effect 7 52 52 °C 0.00% 

Black liquor dissolved solids from Effect 1 29.17 31.65 % 7.84% 

Black liquor dissolved solids from Effect 2 26.59 26.29 % 1.14% 

Black liquor dissolved solids from Effect 3 23.08 24.42 % 5.49% 

Black liquor dissolved solids from Effect 4 19.59 20.32 % 3.59% 

Black liquor dissolved solids from Effect 5 16.66 17.29 % 3.64% 

Black liquor dissolved solids from Effect 6 14.67 15.12 % 2.98% 

Black liquor dissolved solids from Effect 7 13.24 13.45 % 1.56% 

Total live steam mass flow 2.2 1.9 kg/s 15.79% 

 

It should be noted that the steps for ordering the GSOE, partitioning it, and obtaining the 

initial estimates by solving the simplified model were critical to ensuring that the 

simulator would converge. In both scenarios, the combining of these steps allowed the 

simulator to converge with relative ease. This, however, was not the case when 

partitioning and solving the simplified model were skipped. Solving all the equations 

simultaneously via the NR method proved to be a particularly poor approach, as poor 

initial estimates often led to singular jacobians during the NR iterations. 

It must also be emphasized that the simulator determines the ordering of the GSOE based 

on the form taken by each equation, that is, the set of variables present in each equation. 

In other words, the way the equations are written has a direct impact on how the simulator 
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performs. The equations described in Table 3.2 are written in a way that yielded the most 

satisfactory results. 

4.3 Expanding the base scenarios using the EOA simulator 

Figure 4-3 shows the average number of function evaluations required for S1, when the 

stopping criteria included either reaching the maximum allowed NFE or a solution within 

1% of the best solution found by running the DE multiple times with conservative 

parameter settings that emphasized robustness over speed, that is, large F and very large 

population size: 2.497 × 105 USD. Due to the simplicity of this scenario, all runs 

converged at the same point, adding a new evaporator body in series with a heat transfer 

area of 400 m2. This is an interesting observation, because if the system to be optimized 

is relatively small, DE can find the optimal solution with smaller population sizes, which 

in turn reduces computation times. 

 

Figure 4-3: Average NFE required to solve S1 (derived from (Vianna Neto, Saari, et al., 2020). 

 

The average NFE increased with Np, as expected, since population numbers imply higher 

NFE counts per generation. The results do not indicate that there is a clear relation 

between F and NFE. Higher values for F tend to favor convergence reliability over 

convergence rate (Price, Storn and Lampinen, 2005). Since all S1 scenarios converged, 

the effect of F could not be clearly seen. 

Figures Figure 4-4 and Figure 4-5 show the best-case and worst-case convergence curves, 

as measured by the value of fobj until convergence, for solving S2. The worst-case curves 

are the ones which, for a given combination of Np and F, yielded the highest cost. 
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Conversely, the best-case curves are the ones that yielded the lowest cost for each 

combination of Np and F. Figures Figure 4-6(a) and Figure 4-6(c) show how the heat 

transfer areas, Apar and Aser, corresponding to evaporators Epar and Eser, respectively, 

evolved for the best-case scenario of S2. The evolution of Apar and Aser for the worst-case 

scenarios of S2 are shown in figures Figure 4-6(b) and Figure 4-6(d). When the 

methodology was applied to S1, Apar and Aser converged monotonically at their optimal 

values in all runs. 

Even though convergence was relatively straightforward for S1, the same ease does not 

transfer to more complex scenarios, such as the S2 scenario. Figures Figure 4-4 and Figure 

4-5 show that most, but not all, of the parameter combinations always converged at the 

identified value, 1.996×105 USD. When F = 0.5, some runs failed to find this value, as 

can be seen in the worst-case scenario curves, indicating that this is too greedy a setting 

and that higher values should be used for F. The optimal solution was adding a new 

evaporator body in parallel with a heat transfer area of 300 m2, in contrast to the optimal 

solution found for S1, where an evaporator body was added in series. 

The results above indicate that the proposed methodology can find the optimal 

arrangement for the new evaporator, whether it be in series or in parallel, thus validating 

the proposed methodology for the tested systems.  

It was interesting to examine the evolution of the optimization variables as the 

optimization was being carried out. When comparing Figure 4-6(d) with figures Figure 

4-4 and Figure 4-5, it is clear that the Np and F pairs whose worst-case scenario curves 

converged at the optimum also corresponded to Aser converging at 0. The two pairs that 

converged at a local minimum with a worse fobj also corresponded to a value of Aser on the 

order of 300 m2. Similarly, when comparing Figure 4-6(b) with Figure 4-5 it is clear that 

all pairs of NP and F converged at a value of Apar equal to 300 m2. Based on this finding, 

it is possible to draw two conclusions: a) the optimal arrangement for S2 consists of adding 

a new evaporator body in parallel and b) scenarios in which both an evaporator body in 

series and one in parallel would be added were contemplated at some point during 

optimization. The latter conclusion is critical, as it proves that the optimizer was indeed 

capable of testing different configurations as opposed to being trapped in a reduced search 

space. 

The best-case scenario curves displayed in figures Figure 4-6(a) and Figure 4-6(c) show 

that Apar and Aser converged monotonically at the optimal values. In fact, for these runs the 

optimization could be stopped for NFE values as low as 104. It is interesting to point out 

that in the best-case scenarios, Aser started off at zero and remained at zero until the end 

of the optimization. 
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Figure 4-4: Evolution of fobj with NFE for the best-case scenario for S2 (derived from (Vianna 

Neto, Cardoso, Vakkilainen, et al., 2020)). 

 

Figure 4-5: Evolution of fobj with NFE for the worst-case scenario for S2 (derived from (Vianna 

Neto, Cardoso, Vakkilainen, et al., 2020)). 
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(a) 

 

(b)

 

(c)

 

(d) 

 

Figure 4-6: Evolution of heat exchange areas Apar and Aser for system S2 versus NFE for the best-

case and worst-case scenarios (derived from (Vianna Neto, Cardoso, Vakkilainen, et al., 2020)). 

 

It should be noted that the heat exchange areas of both scenarios converged at their lower 

bounds. This suggests that adding evaporator bodies whose areas are equal to the lower 

bounds is more than sufficient to ensure that the systems maintain the same dissolved 

solids fraction, despite operating at higher black liquor mass flow rates. It is also 

important to realize that increasing the black liquor flow or changing the lower bounds 

for the areas may result in different final configurations. 

4.4 Improving the convergence characteristics of the EOA simulator 

The long plateaus that can be seen in figures Figure 4-6(a)-(d) indicated that the optimizer 

might have been evaluating scenarios that were hard for the simulator to converge. This 

observation motivated the search for improvements in the convergence characteristics of 

the EOA simulator. 
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Figure 4-7 shows the outlet solids mass fraction of a single evaporator versus its inlet live 

steam flow and its outlet vapor pressure. It is important to notice that the intended effect 

of using the modified model was achieved: when there is no live steam inflow, the outlet 

solids fraction is equal to the inlet solids fraction. This is to be expected, as no evaporation 

can take place when no live steam is supplied. 

This scenario was simple enough that convergence was achieved with the first initial 

estimate for all calculated values. The graph shows that the new evaporator model can be 

used to simulate isolated evaporator bodies where no live steam is supplied. This is an 

important result because it suggests that the new model may be used for simulating larger, 

more realistic systems, since those would be described by the same mass and energy 

balances. This was, indeed, shown to be the case, as confirmed by the results obtained by 

solving the larger systems. 

The three-effect system was also successfully solved. However, since this system is more 

complex when compared with the single evaporator scenario, its corresponding GSOE 

was larger, thus making the problem more challenging to solve, as would be expected. 

Unlike the single evaporator scenario, some initial estimates did not lead to convergence. 

The summary statistics for the number of random initial estimates that were necessary for 

convergence are listed in Table 4.3. The sample space was taken as the set of all simulated 

scenarios. It should be noted that, even though it may be necessary to repeatedly try initial 

estimates, convergence could be achieved for all scenarios. 

Table 4.3: Summary statistics for the number of trials required for the three-effect MEE system 

to converge (derived from (Vianna Neto, Márcio R Cardoso, Vakkilainen and Oliveira, 2020). 

Variable Value 

Average 436.4 

Standard deviance 1 238.4 

Maximum 11 413 

Minimum 1 

 

A striking feature shown in Table 4.3 is the high variability in the necessary initial 

estimates for convergence, which was on the order of three standard deviances. The 

simulation could converge on the first try or take as long as 11,000 estimates. On average, 

however, 400 estimates were sufficient. This difficulty can be traced back to two factors: 

a) the fact that the initial estimates for all variables were chosen at random and b) that 

equation 3.30 introduces a discontinuity in the GSOE, which may cause the Jacobian 

matrix to become singular during the solution process. This discontinuity is due to the if 

statement, which radically changes the variables that are involved in that equation. For 

this reason, at points close to the boiling/non-boiling transition, there is a chance that the 

Jacobian would be non-invertible, causing it to fail to correctly guide the NR method or 

resulting in the fact that the numerically calculated derivatives would not be accurate at 

all. 
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Figure 4-7: Outlet solids mass fraction versus live steam mass flow and outlet vapor pressure for 

a single evaporator (derived from (Vianna Neto, Márcio R Cardoso, Vakkilainen and Oliveira, 

2020). 

 

It may be possible to minimize these problems by systematically generating better initial 

estimates using, for instance, a simplified model or by attempting to make the numerical 

solution method more robust. For that purpose, using analytically calculated derivatives 

may be helpful. 

Figure 4-8 shows the calculated inlet and outlet black liquor solids fractions 

corresponding to each effect as a function of the live steam mass flow for a fixed heat 

transfer area of A = 1,000 m². All values displayed in the graph correspond to runs that 

converged. Notice that the black liquor dry dissolved solids fraction curves are smooth. 

Had there been numerical instabilities, or had the GSOE been ill-posed, the curves might 

have displayed a jagged appearance. 

As would be expected, solids fractions increase with the effect number and with live 

steam flow. This behavior replicates what is shown in Figure 4-7. More importantly, the 

model was capable of simulating scenarios where the live steam flow was low, yielding 

sensible results. 
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Figure 4-8: Inlet and outlet solids mass fraction versus live steam mass flow for the three-effect 

system (A = 1 000 m²) (derived from (Vianna Neto, Cardoso, Sermyagina, et al., 2020). 

 

The seven-effect scenario was, as expected, more difficult to converge, taking no less 

than 400 initial estimates to converge. The reasons for this behavior are the same: initial 

estimates were randomly sampled for the occurrence of singular Jacobians close to the 

boiling/non-boiling transition, which becomes more likely as the number of variables 

increases. Some key calculated results for this scenario are shown in Table 4.4. 

 

Table 4.4: Summarized results for the seven-effect MEE system (derived from (Vianna Neto, 

Cardoso, Sermyagina, et al., 2020). 

Variable Value Units 

Outlet vapor temperature from Effect 7 68.0 °C 

Black liquor outlet mass flow from Effect 1 6.6 kg/s 

Black liquor outlet temperature from Effect 1 104.8 °C 

Outlet dissolved solids from Effect 1 49.4 % 

Outlet dissolved solids from Effect 2 38.7 % 

Outlet dissolved solids from Effect 3 32.7 % 

Outlet dissolved solids from Effect 4 28.6 % 

Outlet dissolved solids from Effect 5 25.6 % 

Outlet dissolved solids from Effect 6 23.4 % 

Outlet dissolved solids from Effect 7 21.6 % 
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4.5 Convergence characteristics of the SMA simulator 

The results obtained with the SMA simulator were the most reliable of all. The simulator 

converged for every tested scenario using initial estimates derived from typical values 

and the convergence occurred in under 100 iterations. 

Figure 4-9 shows the number of iterations required for each system to converge for 

different live steam mass flows. The number of iterations ranged from ten for the three-

effect system to almost 100 for the seven-effect system. As mentioned before, the SMA 

simulator behaved quite reliably, converging for all scenarios. It is worth mentioning that 

this reliability took place despite not resorting to simplified models, as was done 

originally in the EOA simulator. 

    

Figure 4-9: Number of iterations required for each system to converge (adapted from (Vianna 

Neto, Cardoso, Sermyagina, et al., 2020). 

 

The number of iterations increases as the systems grow larger. This is to be expected 

because larger systems require more recycles to be torn and, therefore, more convergence 

variables to converge. An interesting feature that can be seen in Figure 4-9 is that the 

number of iterations grows as the live steam mass flow approaches zero. When the steam 

mass flow values are low, the evaporator modules alternate between letting off steam and 

not evaporating at all as the iterations proceed. This is the same difficulty encountered 

when dealing with the EOA simulator. This switching behavior slows convergence and 

causes the number of iterations to increase. However, in the SMA runs convergence was 
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slowed down, but not prevented. This indicates that the SMA simulator is far more robust 

when dealing with the threshold where boiling begins to take place. 

Wegstein’s method gave very good and reliable results, in contrast with the simpler fixed-

point iteration scheme, which rarely converged. Wegstein’s method is less expensive 

from a computational standpoint when compared to NR, and, at the same time, more 

robust than fixed-point iterations, since it does not require a full jacobian matrix to be 

recalculated at each step, but still attempts to estimate derivatives using information from 

earlier iterations. Since it is faster to evaluate than NR, but still converges satisfactorily, 

it should be the preferred method. 

The number of iterations required to solve the tested systems can easily be handled by 

common desktop computers, since the running times are relatively low. This can be seen 

in Figure 4-10, which shows the mean computational time in milliseconds required for 

each system to converge over 100 runs. The vertical bars shown in the figure are standard 

deviations.  

Note that running times range from 5ms to 50ms, thus allowing it to be used within 

optimization algorithms. Standard deviations are relatively small, on the order of 5ms, 

being most noticeable in the five-effect scenarios. As would be expected, running times 

increase as the systems grow larger. This is a direct consequence of the larger iteration 

numbers needed for convergence. 

 

Computational time to converge with the SMA simulator 

 

Figure 4-10: Mean computational time in milliseconds required for each system to converge 

over 100 runs. The vertical bars denote standard deviations (adapted from (Vianna Neto, 

Cardoso, Sermyagina, et al., 2020). 
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4.6 Discussion 

4.6.1 Theoretical implications 

The answers to the key questions posed at the beginning of the thesis can be stated as 

follows: 

Question a) What mathematical difficulties arise when modeling an evaporator 

system? 

Paper I argued that to facilitate convergence, it is desirable to make sure that the equations 

take a suitable form and that they be ordered and partitioned. If no good initial estimates 

can be given, it is also desirable to solve a simplified model to generate reasonable 

estimates. The importance of these measures cannot be overstated since the high 

nonlinearity of the evaporator model can easily cause divergence. 

Optimization using differential evolution requires that the evaporator model often be 

solved more than several thousand times. To speed up calculations, one should not solve 

all parameters during all calculation rounds. (Vianna Neto, Saari, et al., 2020) have 

suggested that the heat transfer coefficient should be given by the user as opposed to being 

calculated by the simulator. In the future, this constraint may be relaxed by introducing 

heat transfer correlations that are periodically updated. 

Question b) What numerical methods are best suited to solving the model? 

The NR method proved effective when calculating evaporator systems with the equation-

oriented approach, as can be seen in publications by (Vianna Neto, Cardoso, Vakkilainen, 

et al., 2020) and (Vianna Neto, Márcio R Cardoso, Vakkilainen and Oliveira, 2020). If 

evaporator optimization is to be done in the manner discussed by (Vianna Neto, Saari, et 

al., 2020), however, trust-region methods tend to be more robust. In a sequential-modular 

architecture, Wegstein’s method gave very good and reliable results, in contrast with the 

simpler fixed-point iteration scheme, which rarely converged. Since it is faster to evaluate 

than NR, but still converges satisfactorily, it should be the preferred method. 

Question c) Is differential evolution well suited to performing this type of 

optimization? If so, are there any optimal ranges for its parameters? 

Differential evolution was shown to be suitable for this type of problem, even though it 

might require parameter tuning. No clear optimal parameter ranges were verified. 

However, it should be noted that the proposed methodology may lead to local optima, 

and higher F values should be preferred. 

Question d) How well does the proposed methodology scale as the problems grow 

more complex? 
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The proposed optimization methodology was tested with a simple scenario and a more 

comprehensive and realistic scenario, and it successfully optimized both. As was 

expected, difficulty increased with scenario complexity, but this did not hinder its 

applicability. (Vianna Neto, Saari, et al., 2020) have proposed that in future studies, more 

unit processes can be modeled, such as condensate preheaters and recovery boilers, which 

would allow for more realistic scenarios to be simulated. More complex systems should 

also be tested to verify whether the current solution strategy remains robust. 

4.6.2 Practical implications 

In this dissertation, a practical sequential-modular method for rapidly solving evaporator 

trains was developed. This method, when used with Wegstein’s method, was shown to be 

very effective for calculating evaporator systems. The simulator architecture is also 

versatile enough to be expanded and accommodate other unit processes.  

The development of a simulation engine is a complex procedure, but if done correctly, it 

should be general enough to allow the user to be able to add new models with relative 

ease. If the proposed methodology is to be applied in practice, users should be able to 

implement their models without having to reimplement the engine from scratch. Keeping 

this in mind, the sequential-modular engine will be made publicly available in open-

source format, with the hope that it will make the proposed methodology more easily 

usable.   

It should be noted that the simulation engine is general enough that it can be used for 

simulating processes other than evaporation systems. An obvious candidate are steam 

power cycles, as steam table calculation have already been implemented. Future studies 

should be done with the simulation engine to assess how robust it is for solving other 

processes. 

Differential evolution proved suitable for this type of problem, even though it might 

require parameter tuning. No clear optimal parameter ranges were verified. However, it 

should be noted that the proposed methodology may lead to local optima, and higher F 

values should be preferred. 

Both the EOA and SMA simulators can be improved in many ways. In their current 

implementation, it is assumed that the heat transfer coefficient is given by the user, as 

opposed to being calculated by the simulator. In the future, this issue may be addressed 

by introducing heat transfer correlations. In future work, more unit processes can be 

modeled, such as condensate preheaters and recovery boilers, which would allow for 

more realistic scenarios to be simulated.  

More specifically, with respect to the sequential-modular simulator, more complex 

systems should also be tested to verify whether the current solution strategy remains 

robust and scales well. Finally, the same optimization methodology as applied to the 

equation-oriented simulator should be tested using the sequential-modular simulator. 
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5 Conclusions 

The research hypothesis was confirmed in this study. Indeed, a methodology for 

simultaneously optimizing evaporator systems based on their topological arrangement 

and other internal design variables was presented, and a realistic evaporator system 

expansion scenario was successfully optimized. 

The methodology made use of an equation-oriented simulator capable of simulating a 

wide array of evaporator arrangements. To facilitate convergence, it is important to make 

sure that the equations take a suitable form, as different formulations lead to different 

convergence behaviors, and that they are ordered and partitioned. If no good initial 

estimates can be given, it is also desirable to solve a simplified model to generate 

reasonable estimates. 

The methodology, however adequate, caused plateaus in the objective function evolution 

graphs. This was attributed to mathematical convergence issues in corner cases where the 

evaporators transitioned from being at a non-boiling state to a boiling state. This issue 

was partially addressed, but not completely solved, by changing the original evaporator 

model formulation. The changes were effective for small systems, but ineffective for 

realistically sized systems.  

Changing the simulator design to a sequential-modular design, however, drastically 

increased convergence rates, and the results indicate that this should be the preferred 

simulation architecture for the optimization of topological evaporator systems. The 

results also indicate that this architecture solves the scaling issues that were verified with 

the equation-oriented architecture, as all simulations were successfully completed in 

fractions of a second. 

Differential evolution was shown to be suitable for this type of problem, even though it 

might require parameter tuning.  

Both simulators can be improved in many ways, such as by introducing heat transfer 

correlations. In the future, more unit processes can be modeled, such as condensate 

preheaters and recovery boilers, which would allow for more realistic scenarios to be 

simulated.  
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In this paper, a novel methodology based on process superstructures is described that enables structure and heat-transfer areas to be 
simultaneously considered in optimization without having to resort to any previously selected arrangements. This methodology is applied 
to an industrial evaporator case study of simultaneously sizing and determining the best way to arrange additional evaporator bodies in 
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MÁRCIO R. VIANNA NETO*, JUSSI SAARI, ESA K. VAKKILAINEN, MARCELO CARDOSO, ÉDER D. OLIVEIRA

A SUPERSTRUCTURE-BASED METHODOLOGY 
FOR SIMULTANEOUSLY SIZING AND ARRANGING 
ADDITIONAL EVAPORATOR BODIES IN MULTIPLE-
EFFECT EVAPORATOR PLANTS

Background
Increasing the energetic efficiency of  
chemical pulping has received much at-
tention [1–2]. Higher pulping efficiency 
would not only provide a competitive 
edge, but gain environmental benefits as 
well. The increased energy available for 
other uses could be used, for example, in 
power generation or to create additional 
revenue streams, for instance through re-
newable biofuels [3], both of  which can 
contribute to reducing CO2 emissions 
from fossil fuels and thus benefit sustain-
able development [4–5].

When wood is pulped to cellulose 
using heat and chemicals, a residue called 
black liquor is produced. Before this liquor 
is burned in the recovery boiler, its water 
concentration must be reduced by evapo-
ration to enable effective combustion in 
the recovery boiler [1,6-8]. Evaporation 
and drying are the most energy-intensive 
steps in chemical pulping. Evaporation is 
typically carried out in a multiple-effect 
evaporator train (MEE), where five to sev-
en or more effects are used to increase the 
black liquor dry solids mass fraction from 
approximately 15% to about 80–85% [9]. 

INTRODUCTION

Evaporation makes up 24–30% of  pulp 
mill heat consumption, making its optimi-
zation an important goal [10].

Both the arrangement and the physi-
cal characteristics of  the evaporators 
impact steam usage and thus energetic 
efficiency. Steam and black liquor run 
countercurrently in the evaporator train, 
i.e., vapor from a higher-dry-solids effect 
is used in a lower-concentration effect. 
This makes modelling the MEE train chal-
lenging.
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Related Work
Many authors have attempted to model 
evaporators to gain insight into how to 
operate them as efficiently as possible. 
Bhargava et al. [11] developed a phenom-
enological model for a seven-effect system 
and used it to select an optimal liquor flow 
sequence. Cardoso et al. [6] took online 
data from the evaporator plant of  a pulp 
mill and fed it into the well-known com-
mercial software, WinGEMS. This pro-
vided estimates of  the global heat transfer 
coefficients in the process and identified 
energy saving opportunities.

Ding et al. [12] proposed an evapo-
rator simulation methodology based on a 
two-phase non-linear flow model. Ji et al. 
[1] built a simplified evaporator model and 
attempted to conduct process integration 
of  an evaporator plant, aiming to opti-
mize it in terms of  energy cost through a 
mixed-integer linear programming (MILP) 
approach. Mesfun and Toffolo [2] applied 
a similar process integration methodology 
to optimize the evaporator train and the 
CHP (combined heat and power) system 
of  a Kraft pulp and paper mill. Other 
modelling studies include those by Kha-
nam and Mohanty [13], Saturnino [7], Jyoti 
and Khanam [10], Sagharichiha et al. [14], 
and, more recently, those by Diel et al. [15], 
Kermani et al. [16], and Verma et al. [17].

Deterministic and stochastic non-
linear programming techniques have also 
been used to optimize energy consump-
tion in existing evaporator plants [18–23]. 
Recently, Verma et al. [22] published a 
comprehensive review of  methods used 
for modelling and optimizing evaporator 
trains [22]. Up to this point, however, the 
proposed methodologies restrict their op-
timization scenarios either to one particu-
lar evaporation plant or to a finite set of  
previously chosen scenarios [9,11]. More-
over, to make the models tractable to de-
terministic optimization algorithms, or to 
improve their likelihood of  convergence, 
simplifications are often made [11,22,24].

Contributions of This Study
This paper tackles these limitations by pre-
senting a superstructure-based methodol-
ogy that enables structure and heat-trans-

fer area to be simultaneously considered 
in optimization, without having to resort 
to any previously selected evaporator ar-
rangements. Through this methodology, 
it is possible to calculate the optimal way 
of  expanding evaporator systems of  arbi-
trary sizes, or to design new systems that 
are optimal by design. A methodology 
with such a scope has not been presented 
before in the literature. To validate the 
proposed methodology, it is applied to an 
industrial case study.

This study focusses on a newer, in-
dustrially representative problem of  simul-
taneously sizing and arranging additional 
evaporator bodies to an existing system. 
How they should be sized and connected 
is determined without having to pre-se-
lect an arrangement. This means finding 
the best series or parallel arrangement of  
the vapor and black liquor streams cor-
responding to the new configuration, as 
well as its optimal heat-transfer area, so as 
to minimize total costs. This is a practical 
industrial problem because new evapora-
tor bodies often must be added to exist-
ing systems if  mill capacity is increased. 
The proposed methodology, due to its 
stochastic nature, enables non-simplified 
models to be used and permits many com-
binations of  evaporator arrangement and 
heat-transfer area to be simultaneously 
considered in one unified framework.

A simplified equation-oriented 
simulator was developed to enable dif-
ferent evaporator arrangements, encoded 
through a superstructure, to be calculated. 
The simulator results were then used to 
evaluate an objective function, determin-
ing the cost of  the arrangement. Dif-
ferential evolution (DE), a well-known 
evolutionary algorithm, was used in the 
optimization. The simulator architecture 
was based on the one recently described 
by Vianna Neto et al. [25].

MATERIALS AND METHODS

In this study, the optimal way of  adding 
a new evaporator to two MEE plants to 
increase their capacities was sought. The 
first plant, henceforth referred to as S1, 
consisted of  a three-effect evaporator sys-

tem, whereas the considerably larger sec-
ond plant, S2, was composed of  six ef-
fects. From a practical standpoint, when 
the capacity of  a chemical pulp mill (as 
measured by the black liquor flow rate) is 
increased, it is often necessary to expand 
the evaporator train to maintain the same 
final dry solids concentration. Typically, to 
add heat-transfer surface, a new pressure 
vessel containing heat-transfer surfaces 
— called an evaporator body — must be 
built and connected. In this case, several 
design decisions must be made, such as: 
(a) How much heat-transfer area should 
the new evaporator body have? (b) Should 
the new evaporator body be in parallel or 
in series with respect to the vapor streams? 
(c) Should it be in parallel or in series with 
respect to the black liquor streams? and 
(d) At what temperature should the out-
let vapor from the last effect be fed to the 
surface condenser? Different decisions 
will lead to different topological arrange-
ments and therefore different heat-trans-
fer and thermodynamic characteristics and 
likely different costs as well. To minimize 
cost, it is therefore important to examine a 
wide variety of  arrangements. Because the 
set of  possible arrangements may be very 
large and each arrangement may introduce 
local optima to the problem, it is clear that 
the optimization problem is nontrivial and 
may require significant computational ef-
fort to solve.

To evaluate how costly a proposed 
arrangement is, a cost model must be 
used. In this study, the cost of  a proposed 
evaporator arrangement with total heat-
transfer area A is given by the widely used 
Eq. (1), where the constant coefficients 
come from the professional experience of  
the authors. This equation gives the cost 
in US$. The optimization goal would be 
to select the arrangement that yielded the 
lowest value of  c. Note that the aim of  
this paper is not to give accurate estimates 
of  the costs involved, because those may 
vary significantly in different parts of  the 
world, but to present a methodology for 
optimizing evaporator systems consider-
ing all feasible topological arrangements:

c(A) = 30000 + 1000A0.9                      (1)
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TABLE 1 Stream types and variables 
used to describe them.

Stream type
Vapor

Condensate
Black liquor

Variables
m, T, P
m, T, P
m, T, xD, xT

 ̇
 ̇
 ̇

Fig. 1 - Overview of the simulator architecture.

TABLE 2

List of blocks that 
take parameters 
and descriptions of 
these parameters.

Block
Evaporator

Vapor splitter
Black liquor splitter

Parameters
U, A

R
R

The evaporator plants in this study 
are modelled by systems of  non-linear 
equations representing mass and energy 
balances. Their solution yields a steady-
state solution to the system. A more de-
tailed description of  the models from 
which the systems of  non-linear equations 
arise is given in the “Modelling and simu-
lation” section.

Determining the optimal arrange-
ment for the new evaporator corresponds 
to solving an optimization problem whose 
choice variables encode the different ar-
rangement possibilities and whose objec-
tive function quantifies the cost of  adding 
the new evaporator body. In this study, 
the optimization is performed with differ-
ential evolution (DE), a well-known evo-
lutionary algorithm. DE was chosen for 
its reputation for robust performance on 
difficult problems, including the authors’ 
earlier successful use of  it on a variety of  
difficult multi-modal engineering optimi-
zation problems combining continuous 
and discrete variables [26–28].

Modeling and Simulation
An equation-oriented process simula-
tor was built in MATLAB® R2015b to 
simulate the evaporator systems. The 
simulator models each system as a collec-
tion of  blocks and streams. Each block 
corresponds to either a physical unit op-
eration (evaporation and flashing within 
this study) or an abstract process such as 
stream mixing or splitting. Streams con-
necting the blocks were differentiated 
between black liquor, condensate, and 
vapor streams. Streams containing non-
condensable gases were ruled to be out-
side the scope of  the study. Table 1 shows 
the variables describing the stream types. 
Each black liquor stream was character-
ized by its mass flow (m), temperature (T), 
dissolved dry solids fraction (xD), and to-
tal dry solids fraction (xT), whereas vapor 
and condensate streams were described by 
mass flow, temperature, and pressure (P). 
The variables could be set as constants or 
calculated in the model.

Simulator Architecture Overview
The simulator enables the user to input 
block diagrams of  blocks interconnected 
by streams either through a graphical in-
terface or directly by means of  MATLAB 
code. Blocks and streams are generally re-
ferred to as elements. Each element pro-
vides the simulation engine with a set of  
equations, which are then collected into 
a global system of  equations, as depicted 
in Fig. 1. This global system of  equations 
and a vector of  initial estimates are then 
passed on to a solver such as Trust-Region 
or Newton-Raphson. Once the system is 
solved, the simulator outputs a report con-
taining the values of  all process variables, 
as calculated by the simulator.

Process Blocks
Among the process blocks and streams, 
each block represents either a physical 
process or an abstract operation over the 
streams connected to it. Some blocks also 
take parameters. Like all variables, these 
can be set as constants or calculated by 
the simulator. These blocks and their pa-
rameters are listed in Table 2. Table A.1 in 
Appendix A lists the types of  blocks that 
were implemented in more detail, includ-
ing the equations.

Estimation of Physical Properties
The energy balance equations for each 
block require the enthalpies of  water and 
steam to be calculated, as well as steam 
saturation temperatures and pressures. 
These were obtained from steam table 
correlations implemented in MATLAB 
according to IAPWS [29].

Black liquor enthalpies were based 
on the correlation by Zaman and Fricke 
[30] for enthalpy at 80°C, H80, and a cor-
rection for the difference between the 
actual temperature and 80°C. H80 can be 
determined as:

  (2)

where xD is the black liquor dissolved 
solids fraction, Hw is saturated liquid water 
enthalpy at 80ºC, taken from steam tables 
with saturated liquid water at 0ºC as refer-
ence state, and b and c are constants de-
pending on the type of  black liquor con-
sidered. In this study, values of  b = 105.0 
kJ/kg K and c = 0.300 were used, which 
are considered typical averages of  those 
presented by Zaman and Fricke [30].

H80 from Eq. (2) is then corrected for 
the actual temperature of  black liquor by 
integrating the specific heat:

.
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Fig. 2 - Flowsheet corresponding to the original three-effect evaporator train (S1).

Fig. 3 - Superstructure encoding two typical possibilities (parallel/series) for expanding the 
three-effect train (S1).

TABLE 3 Input parameters corresponding to system S1.
Variable
Live steam temperature
Strong liquor temperature
Vapor temperature out of Eff ect 3
Weak liquor fl ow
Weak liquor dry solids fraction
Weak liquor total solids fraction
Strong liquor dry solids fraction
Heat transfer area (eff ects 1, 2, and 3)
Global heat transfer coeffi  cient (all eff ects)

Value
120
40
60
50

20%
20%
50%
1000
1.0

Units
◦C
◦C
◦C

kg/s
-
-
-

m2

kW/m2K

[8]                                                         (3)

where t denotes temperature in ºC.
The liquor boiling point rise (BPR), 

which depends on dissolved solids frac-
tion and pressure, is calculated through 
the correlations of  Equations (4) and (5). 
TP represents the water boiling point at 
pressure P [8].

 (4)

 (5)

Studied Systems 
The two systems considered in this study 
(an expanding three-effect plant (S1) and 
an expanding six-effect plant (S2))are de-
scribed in the following section; the pro-
cess diagram blocks shown are detailed in 
Table A.1 of  Appendix A.

Three-Effect Plant (S1)
The first system, shown in Fig. 2 and Table 
3, is a three-effect countercurrent evapo-
rator train adapted from that described by 
Tikka [8]. This system represents a typical, 
but somewhat simplified arrangement of  
MEE for black liquor. All evaporator bod-
ies were assumed to have equal heat-trans-
fer areas. Table 3 displays the input vari-
ables corresponding to this system. In this 
system, the inlet dry solids content (weak 
liquor) is 20%, and the outlet dry solids 
content (strong liquor) is 50%, which are 
typical values before the liquor is fed to an 
additional concentrator. 

S1 was assumed to undergo a 15% 
increase in black liquor feed rate over the 
original value, to 57.5 kg/s. To maintain 
a final dissolved solids concentration of  
50%, a new evaporator body was added. 
As pointed out previously, several design 
choices must be made. Although this

methodology enables infinitely many 
evaporator body arrangements to be con-
sidered, the problem was here constrained 
to encode only the possibilities of  adding 
an evaporator in series and/or in parallel 
to the existing system. To encode these 
possibilities, the new flowsheet shown in 
Fig. 3 was drawn. In this diagram, two 
possible new evaporators, Epar and Eser, are 
added to the original system, along with 
new mixers and splitters. By changing the 
fractions of  the splitters feeding black li-
quor and vapor streams to the new evapo-
rators, infinitely many arrangements can 
be encoded. This diagram has the prop-
erty of  encoding multiple tentative topo-
logical arrangements by means of  varying 
the splitter fractions, making it useful for 
optimization. Diagrams with this prop-
erty have been described in the literature 
as superstructures, a nomenclature that is 
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Fig. 4 - Superstructure corresponding to the flowsheet of the original six-effect evaporator train (S2) and encoding two typical possibilities 
(parallel/series) for expanding the six-effect train (S2).

TABLE 4 Input parameters corresponding to system S2.
Variable
Live steam pressure
Strong liquor temperature
Vapor pressure at the last eff ect
Weak liquor fl ow
Weak liquor dry solids fraction
Weak liquor total solids fraction
Strong liquor dry solids fraction
Heat transfer area (eff ects 1A and 1B)
Heat transfer area (eff ects 2–6)
Global heat transfer coeffi  cient (all eff ects)

Value
317.18

40
88.05
41.95

13.93%
13.93%
51.40%
408.78
817.55
1.42

Units
kPa
◦C

kPa
kg/s

-
-
-

m2

m2

kW/m2K

adopted in this study [31].

Six-Effect Plant (S2)
The larger system was adapted from 
Saturnino [7], representing a realistic com-
mercial MEE for black liquor. It consists 
of  a counter-current, six-effect evaporator 
plant, as shown in Fig. 4. The first effect is 
composed of  two evaporators, 1A and 1B, 
arranged in parallel with respect to steam 
and in series with respect to black liquor. 
The inverse is the case in effects 5 and 6—
namely, they are in parallel with respect to 
the liquor streams and in series with re-
spect to the vapor streams. Condensate is 
flashed between every pair of  adjacent ef-
fects, whereas strong black liquor out of  
the first effect (evaporator 1B) is flashed, 
and its vapor is fed to the third effect. Ta-
ble 4 displays the operating parameters of  
this system.

Similarly to S1, the possibility of  add-
ing a new evaporator in series with the last 
evaporator or in parallel with those on the 
first effect is examined. It should be em-
phasized that the proposed methodology 
enables many different arrangements to 
be considered and is not limited to adding 
a single evaporator body to the system, a 
simplification that was made for the pur-
pose of  validating the methodology.

OPTIMIZATION ALGORITHM

The next sections give a brief  description 
of  DE and explain in detail how the opti-
mization problems were constructed.

Differential Evolution (DE)
First introduced in 1996 [32], DE is a type 
of  evolutionary algorithm (EA). EA’s are 
a category of  stochastic global optimiz-
ers that mimic the processes of  evolution 
in nature by using populations of  candi-
date solutions to the optimization prob-
lem. Optimization takes place by applying 

crossover and mutation to generate new 
solutions, with selection ensuring the sur-
vival of  the fittest and convergence to-
wards better solutions. 

Among EA’s, DE resembles evolu-
tion strategies in being a real-valued algo-
rithm emphasizing mutation over cross-
over and selection, but it is applied only 
to offspring survival, not to parent selec-
tion. Central to DE is so-called differential 
mutation, whose magnitude is adjusted by 
basing it on the difference between two 
randomly chosen vectors (candidate solu-
tions) x1 and x2 from the current popula-
tion. This implementation automatically
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scales the mutation steps to become short-
er as the population converges, altering 
the search strategy increasingly from wide 
global search to fine-tuning local search.

In DE, a new generation is created by 
having each candidate solution (vector) of  
the current generation serve once as a tar-
get vector xt. It survives to the next gener-
ation if  it wins the comparison with a trial 
vector u generated by crossover between a 
noise vector v and the target vector itself. 
In crossover, the decision variables of  u 
are taken from v with a probability defined 
by the crossover parameter CR; otherwise, 
they are taken from the xt. The noise vec-
tor v is created by adding to a randomly 
chosen base vector xr0 a difference vec-
tor xr1 − xr2 scaled by a weight factor F; 
this process is known as differential mu-
tation, and it forms the core of  the DE 
algorithm. The form of  DE described 
above is known as DE/rand/1/bin, which 
stands for random selection of  a base vec-
tor perturbed in differential mutation by 
1 vector difference followed by binomial 
crossover with the target vector. Various 
strategies exist for both base vector selec-
tion and crossover; DE/rand/1/bin was 
used in this work. The three main control 
parameters for DE are the population size 
(number of  parents) NP, the mutation 
weight F, and the crossover parameter 
CR. Small values of  F and NP accelerate 
convergence at the cost of  reliability. It is 
often recommended to set the population 
size NP to 10D, where D is the number of  
problem variables [32–33].

As for mutation weight, an initial es-
timate of  0.7 ≤ F ≤ 0.9 is often recom-
mended, as in [34–35], but both lower 
[36] and higher [37] values of  F have also 
been suggested. For very high-dimension-
al problems where D > 500, [37] recom-
mends much smaller population sizes on 
the order of  NP = 0.1 × D. As for CR, 
which represents the probability of  a value 
being taken from the noise vector as op-
posed to the target vector, small values 
promote search along the variable axes. 
For non-separable problems, a rotation-
ally invariant search is achieved with values 
close to 1. In the problem considered here, 
suitable values for most decision variables

values depend heavily on the values of  
other variables. CR = 0.9 was therefore 
used in all trials, and only NP and F were 
varied when investigating algorithm per-
formance with different control parameter 
values. Because the dimensionality of  the 
problems considered was relatively high, 
comparatively small NP values relative to 
the problem size D were used based on 
Das [37].

CALCULATIONS

Objective Functions, Variables, and 
Constraints
In both systems, the goal of  the optimiza-
tion problems was to find the least costly 
arrangement for the new evaporator body 
or bodies, as well as the heat-transfer areas 
capable of  meeting the same outlet liquor 
dry solids concentration as before.

For each combination of  splitter 
fractions and heat-transfer areas, the sys-
tem of  equations corresponding to the 
superstructure under study was solved to 
find the final black liquor concentration. 
The systems were solved using MATLAB’s 
implementation of  the Trust-Region 
method, whose convergence depends on 
the quality of  the initial guess provided to 
it. Due to the difficulty of  finding an initial 
guess that guarantees convergence, it was 
found necessary to include all the model 
variables in the optimization problem.

The calculation proceeded as follows 
(see Fig. 5):

1. For each generation, DE produced 
a vector containing all the variables 
describing the system, including both 
optimization variables (splitter frac-
tions and heat-transfer areas) and non-
optimization variables related to solv-
ing the system (mass flows, pressures, 
temperatures, and solid fractions);
2. The optimization variables were 
given to the simulator as fixed param-
eters; the vector with all variables was 
used as an initial estimate. The simu-
lator was then run with the simplified 
model. This extra step was important 
because it substantially increased the 
likelihood of  convergence. If  no solu-

tion was found, the objective function 
returned 1015;
3. The values found for the variables 
from solving the simplified model were 
used as initial guesses for the complete 
model. If  a solution was found, Eq. (1) 
was evaluated to obtain the cost, and 
this value was returned to DE; other-
wise, 1015 was returned. If  Trust-Re-
gion converged, but with negative (and 
therefore physically impossible) values 
for some variables, the objective func-
tion value was set to 1012 × nneg, where 
nneg was the number of  negative values. 
If  the outlet black liquor concentra-
tion was lower than required, the cost 
function was penalized by 
where        was the specified outlet 
dissolved solids concentration and 
       was the actual solids concentration.

The simplified system in Step 2 gen-
erated the initial guess for solving the full 
model. The equations in the simplified 
model remained essentially unchanged for 
all blocks, except for the following modi-
fications:

1. The rates of  steam entering and 
vapor leaving an evaporator were set 
equal, mS = mV.
	 The condensation heat transfer 
2. Q was set to 2200 mS, using 2200 kJ/
kg as a reasonable first approximation 
for the heat of  condensation of  water.
3. The boiling point rise of  black li-
quor was set to zero.

This procedure replaced the non-
linear equations representing energy bal-
ances, enthalpy, and BPR calculations by 
simple linear terms to generate a good 
enough approximate solution to serve as 
a starting point for solving the full model.

The goal of  the penalty scheme was 
to ensure that a candidate that failed to 
converge in the solver should lose to any 
candidate that did converge; among candi-
dates where the solver converged, one that 
violated constraints should always lose to 
one that did not, no matter how poor that 
solution was otherwise; and between can-
didates that violated constraints, the one

. .

.
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Fig. 5 - Steps involved in evaluating the objective function.

TABLE 5 Lower and upper bounds for S1.
Variable
Liquid stream temperatures
Vapor stream temperatures
Vapor stream pressures
Liquid stream fl ows
Vapor stream fl ows
Exchanged heat
Heat-transfer areas
Dissolved dry solids
Total dry solids
Splitter fractions

Lower bound
40
40

7.38
0
0
0

400
0.2
0.2
0

Upper bound
120
120

198.73
50
50

73000
4000
0.5
0.5
1

Units
°C
°C

kPa
kg/s
kg/s
kW
m†
–
–

TABLE 6 DE parameters corresponding to S2.
Parameter

NP
F

CR

Range
[20, 100]
[0.4, 1.0]

0.9

Sampled points in range
5
4
1

Stopping criterion

NFE = 5000

that violated fewer constraints should win. 
The algorithm was assumed to have 

converged when either the Euclidean dis-
tance between the points of  two succes-
sive iterations was less than 10−12 or when 
the absolute difference between two suc-
cessive objective function evaluations was 
less than 10−12. To increase the probability 
of  points generated by DE converging 
to a feasible solution, upper and lower 
bounds were calculated for each problem 
from their input parameters.

Optimization of S1
S1 was used to assess the validity and prac-
ticality of  the proposed methodology be-
cause it was a relatively small system. The 
lower and upper bounds assigned to each 
optimization variable are listed in Table 5. 
For this problem, D = 87.

The problem was solved with DE 
for multiple combinations of  NP and F, 
keeping CR fixed at 0.9. The goal was to 
identify the set of  values for these pa-
rameters that enabled the problem to be 
solved both correctly and as efficiently as 
possible. For each combination of  points, 
five trials were conducted.

Table 6 displays the DE parameters 
used, along with their corresponding 
ranges and the number of  points sampled 
within each range. For example, NP var-
ied from 20 to 100 over a sample of  five 
points, and therefore NP could take on the 
values of  20, 40, 60, 80 or 100. The algo-
rithm would terminate when the number 
of  function evaluations (NFE) exceeded 
5000. In total, 5 × 4 × 5 = 100 runs were 
conducted.

Optimization of S2
S2 was a larger scenario and was used to 
assess whether the proposed methodology 
could optimize realistically sized systems. 
For this system, D = 218. Table 7 shows 
the upper and lower bounds that were 
used. As before, S2 was solved using DE
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Fig. 6 - Average number of function evaluations (NFE) required to solve S1.

TABLE 7 Lower and upper bounds for S2.
Variable
Liquid stream temperatures
Vapor stream temperatures
Vapor stream pressures
Liquid stream fl ows
Vapor stream fl ows
Exchanged heat
Heat-transfer areas
Dissolved dry solids
Total dry solids
Splitter fractions

Lower bound
40
40

7.38
0
0

6000
300

0.1393
0.1393

0

Upper bound
120
120

198.73
48.14
5.18

47000
3000
0.7
0.7
1

Units
°C
°C

kPa
kg/s
kg/s
kW
m†
–
–
–

TABLE 8 DE parameters corresponding to S2.
Parameter

NP
F

CR

Range
[64, 256]
[0.5, 0.8]

0.9

Sampled points in range
3
2
1

Stopping criterion

NFE = 75000

with multiple combinations of  NP and F, 
with CR fixed at 0.9. For each combina-
tion, five trials were conducted. The runs 
were interrupted when NFE exceeded 
75000. The exact parameter ranges and 
sample sizes can be found in Table 8.

A total of  3 × 2 × 5 = 30 runs were 
executed. The number of  sample points 
chosen was smaller than in S1 due to S2’s 
higher complexity and increased comput-
ing time requirements.

RESULTS

Figure 6 shows the average number of  
function evaluations required for S1, when 
the stopping criteria either reached the 
maximum allowed NFE, or a solution 
within 1% of  the best solution was found 
by running the DE multiple times with 
conservative parameter settings empha-
sizing robustness over speed, i.e., large F 
and very large population size: 2.497 × 105 
USD. Due to the simplicity of  this scenar-
io, all runs converged to the same point, 
adding a new evaporator body in series 
with a heat-transfer area of  400 m2.

Figure 7 shows the average and 
worst-case convergence curves for solv-
ing the S2 system. Figures 8a and 8b show

how the heat-transfer areas Apar and 
Aser, corresponding to evaporators Epar 
and Eser respectively, evolved for the 
worst-case scenario of  S2. The evolution 
of  Apar and Aser for the best-case scenarios 
of  S2 is shown in Figs. 8c and 8d. With S1, 
Apar and Aser converged monotonically 

to their optimal values in all runs.

DISCUSSION

Figure 6 displays the relation between the 
average NFE and the DE parameters NP 
and F for optimization of  S1. The aver-
age NFE increased with NP, as expected, 
because larger population numbers imply 
higher NFE counts per generation. The 
results do not indicate a clear relation be-
tween F and NFE. Higher values of  F 
tend to favour convergence reliability over 
convergence rate [33]. Because all S1 sce-
narios converged, the effect of  F could 
not be clearly seen.

Even though convergence was rela-
tively straightforward for S1, the same ease 
did not transfer over to more complex 
scenarios, such as S2. Figure 7 shows that 
most, but not all, of  the parameter com-
binations always converged to the value 
found, 1.996×105 USD. With F=0.5, some 
runs failed to find this values, indicating 
that this was a too greedy setting and high-
er values of  F should be used. The opti-
mal solution was adding a new evaporator 
body in parallel with a heat-transfer area 
of  300 m2, in contrast with the optimal so-
lution found for S1, where an evaporator
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Fig. 7 - Evolution of fobj with NFE for the best- and worst-case scenarios for S2.

Fig. 8 - Convergence curves of heat-exchange areas Apar and Aser for system S2.

body was added in series.
The above results indicate that the 

proposed methodology can find the opti-
mal arrangement for the new evaporator, 
whether it be in series or in parallel, thus 
validating the proposed methodology for 
the tested systems. 

It is interesting to examine the evolu-
tion of  the optimization variables as the 
optimization was carried out. Comparing 
Fig. 8b with Fig. 7 reveals that the pairs 
of  NP and F whose worst-case scenario 
curves converged to the optimum also 
corresponded to Aser converging to 0. The 
two pairs that converged to a local mini-
mum with a worse fobj also corresponded 
to a value of  Aser on the order of  300 
m2. Similarly, comparing Fig. 8a with Fig. 
7b shows that all pairs of  NP and F con-
verged to a value of  Apar equal to 300 m2. 
From this, two conclusions can be drawn: 
a) the optimal arrangement for S2 con-
sists of  adding a new evaporator body in 
parallel, and b) scenarios where both an 
evaporator body in series and one in paral-
lel would be added were contemplated at 
some point during optimization. The latter 
conclusion is critical because it proves that 
the optimizer was indeed capable of  test-
ing different configurations, as opposed to 
being trapped in a reduced search space.

The best-case scenario curves dis-
played in Figs. 8c and 8d show that Apar 
and Aser converged monotonically to the 
optimal values. In fact, for these runs, op-
timization could be stopped for values of  
NFE as low as 10000. It is interesting to 
point out that in the best-case scenarios, 
Aser started off  at 0 and remained at 0 until 
the end of  the optimization.

CONCLUSIONS

The proposed methodology was capable 
of  optimally positioning and sizing a new 
evaporator body to expand an existing 
evaporator train in a feasible computa-
tional time. This shows that the method 
is applicable for solving practical indus-
trial engineering problems, where the need 
for evaporator plant expansion is often 
encountered when pulp mill capacity is 
increased. The cost function used in this

paper only reflected the cost of  adding an-
other evaporator to the train. It is also im-
portant to note that the methodology used 
is very general and can also be used to op-
timize more complex systems than those 
described in the paper. By changing the 
objective function and the optimization 
variables accordingly, as many new evapo-
rator bodies as necessary can be added. 
In fact, the methodology can be used to

expand evaporator systems of  arbitrary 
size and to synthesize evaporator sys-
tems that are optimal by default, as will be 
shown in upcoming studies.

This methodology may be improved 
in many ways. New strategies for solving 
the equations corresponding to mass and 
heat balances for the evaporator system 
may yield better results than Trust-Region. 
Optimization algorithms other than DE
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may also be tried, possibly reducing the 
computational effort required to find an 
optimal solution.

The model may also be improved by 
refining the block models described here 
and by adding new ones.
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NOMENCLATURE

m           Mass flow
A	 Heat transfer area
cp	 Specific heat
H	 Enthalpy
P	 Absolute pressure
Psat	 Saturation pressure
Q	 Heat transfer rate
R	 Splitter fraction to first stream
T	 Temperature in K
t	 Temperature in °C
Tsat	 Saturation temperature
U	 Global heat-transfer coefficient
xD	 Dissolved solids fraction
xT	 Total solids fraction
BPR	 Boiling point rise
CR	 Differential evolution crossover 
parameter
D	 Number of  variables
F	 Differential evolution weight fac-
tor
NP	 Population size
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APPENDIX A
Table A.1: Process blocks and model descriptions; subscripts in the 
variables denote the stream to which the variable belongs.
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ABSTRACT
An equation-oriented process simulator was developed for 

simulating evaporation plants. The simulator graphical user 
interface was written in Python 2.7, and its engine, in C++. 
The simulator orders and partitions the system of equations 
that describe the evaporator system under study and solves 
the partitions sequentially using the Newton-Raphson 
method. If no good initial estimates can be provided by the 
user, the simulator solves a simplified problem to generate the 
estimates, which greatly facilitates convergence. Calculations 
are based on steam table correlations and on black liquor 
enthalpy correlations described in the literature. Two multiple-
effect counter-current evaporator scenarios were extracted 
from the literature and used to validate the simulator: a simple 
3-effect system and a realistic 6-effect system. The simulator 
converged to the solutions with relative ease, provided that 
the model equations were written as described, that equations 
were ordered and partitioned, and the simplified model was 
used to generate good initial estimates. Good agreement was 
found between the calculated values and those reported in the 
literature, indicating that the proposed simulation framework 
could be extended to accommodate more complex systems. 
Deviations from the reported values can be explained by the 
different choices of physical properties correlations.

Keywords: simulation, multiple-effect, evaporation, equation-
oriented, partitioning

1. INTRODUCTION
It is desirable to increase the energetic efficiency of pulping 

plants to make the process more competitive. Moreover, by 
increasing its energetic efficiency, less energy resources need to 
be consumed, lowering fossil-fired carbon dioxide generation, 
which is key to achieving sustainable development [1,2]. For 
these reasons, the energetic optimization of chemical pulping 
plants has received attention in the literature [3,4].

Black liquor is a residue produced during the chemical 
pulping process. In the chemical recovery cycle, black liquor is 
burned in the recovery boiler to produce energy and to recover 
chemicals that are consumed during the cooking process. 
This step is key to making the pulping process economically 
feasible [4, 5–7]. Before the black liquor can be burned in the 
recovery boiler, it is necessary to reduce its water fraction 
to increase combustion efficiency. Evaporation and drying 
are the most energy intensive steps in the chemical pulping 
process. Evaporation is typically carried out in a Multiple-
Effect Evaporator (MEE) train, usually constituted of 5 to 7+ 
evaporator bodies. MEE trains concentrate black liquors from a 
dry solids mass fraction of approximately 15% to about 80-85% 
[8]. The evaporation step makes up 24-30% of the total energy 
used by a pulp mill, which justifies its optimization [9].

The simulation and optimization of MEE systems has 
received considerable attention in the literature. Cardoso et 
al. (2009) simulated and optimized a pulp mill for minimum 
energy consumption [6]. Saturnino (2012) modeled the 
chemical balance of a Kraft mill. The evaporator train was 
simulated using two commercial process simulators [7]. Ji 
et al. (2012) constructed a simplified evaporator model and 
conducted process integration through a mixed-integer linear 
programming (MILP) approach [4]. Mesfun and Toffolo (2013) 
applied a process integration methodology to optimize the 
evaporator train and the CHP system of a Kraft pulp and paper 
mill [3]. Several other deterministic and non-deterministic 
approaches to simulate MEE trains and optimize their energy 
consumption have also been tried [10–22]. Verma et al. (2019) 
recently published a review of methods used evaporator train 
simulation and optimization [19].

However, these approaches rely on the user having to 
hard code each individual system to be optimized, which 
is tedious and error-prone for large systems. In this paper 
we present an equation-oriented steady-state simulator 
constructed specifically to facilitate the optimization 

Corresponding author: Márcio R. Vianna Neto. Universidade Federal de Minas Gerais. Av. Pres. Antônio Carlos, 6627 – Pampulha. 
Belo Horizonte – MG. 31270-901. Brazil. Phone: +55-31-34091735. marciorvneto@ufmg.br
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of MEE systems. The equation-oriented architecture is 
advantageous for optimization because it exposes the 
equations that constitute the system under study, allowing 
their mathematical properties to be fully exploited. The 
simulator is general enough to enable systems of arbitrary 
complexity to be constructed, simulated and optimized. In 
this paper, we will focus on the architecture and validation 
of the results calculated by the simulator engine.

METHODS

Simulator architecture
The simulator is equation-oriented, which means that 

the unit processes involved in the simulation are abstracted 
as a system of equations, which is then solved. A Graphical 
User Interface (GUI) is exposed, through which it is possible 
to assemble the block diagram corresponding to the MEE 
system under study and to input process parameters. In these 
diagrams, unit processes are represented as blocks, which are 
interconnected through streams. 

Figure 1 summarizes the calculation process carried out by 
the simulator. Initially, the user inputs a block diagram and its 
respective process parameters through the GUI. Blocks and 
streams, collectively referred in Figure  1 as elements, supply 
equations to the simulation engine, which assembles the Global 
System of Equations (GSE). The equations are then ordered to 
facilitate convergence.

The ordering process begins by constructing the bipartite 
graph corresponding to the GSE, as shown in [24]. In this graph, 
two sets of vertices exist: equation vertices and variable vertices. 

An edge connects an equation vertex i to a variable vertex j 
if variable j takes part in equation i. The maximum bipartite 
matching M for this graph is then determined using the Ford-
Fulkerson algorithm. The bipartite graph is then converted into 
a directed graph through the following process: for every edge 
e connecting the equation vertex i to the variable vertex j, if e 
belongs to M, replace it by a directed edge connecting i to j. If e 
is not in M, replace it by a directed edge connecting  j to i. The 
topological ordering of this directed graph gives the ordering of 
the equations.

Once the equations ordering has been determined, the 
simulator proceeds to determine the clusters of equations that 
need to be solved simultaneously. This step is referred to as 
partitioning the GSE.

Having completed these steps, the simulator solves each 
partition following the determined equation ordering using 
the Newton-Raphson (NR) method. Initial estimates for the 
variables may either be supplied by the user or asked to be 
calculated by the simulator. In the latter case, the simulator is 
run using simplified models for each unit process to facilitate 
convergence, as will be detailed in the next section. The values 
found by solving the simplified models are then used as initial 
estimates for the original system. The stopping criterion for NR 
is the Euclidean distance between two successive iterations, 
which must be smaller than some small error tolerance input 
by the user. Once the simulator has concluded its calculations, 
the results can be either displayed to the user via the GUI, or be 
fed to an objective function, if optimization is to be performed.

The GUI was developed using Python 2.7, whereas the 
graph algorithms, as well as the numerical routines were 
implemented in C++.

Figure 1. Simulator architecture
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Unit processes, blocks and streams
The unit processes currently supported by the simulator are: 

evaporation, black liquor and condensate flashing, black liquor 
mixing, vapor and condensate mixing. Streams represent mass 
flows, and are divided into black liquor, vapor and condensate 
streams. Table  1 lists the currently supported process blocks 
and the equations corresponding to each of them. Table  2 
lists the variables that describe each type of stream. In these 
equations, variable subscripts denote the streams to which they 
correspond, except the subscript sat, which denotes saturation. 

Mass flows are indicated by m , enthalpies by H , temperatures 
and pressures by T  and  P respectively, the dissolved solids mass 
fraction by xD  and the boiling point rise of black liquor, by BPR.

As mentioned before, if no initial estimates are supplied by 
the user, the simulator solves simplified models to obtain those 
estimates. The simplified model equations are the same as those 
listed in Table 1, for all blocks, except the Evaporator. Its energy 
balance is replaced by the equation mS=mV   and the heat of 
steam condensation is approximated by Q=2200⋅mS .

Table 1. Unit processes supported by the simulator and their respective equations.

Process block Description Equations

Evaporator

The black liquor stream F and the inlet 
vapor stream S enter the Evaporator 
block. The outlet black liquor stream 
L, the condensate stream C and the 

outlet vapor stream V exit the block. 
Evaporator blocks take as parameters the 
heat transfer coefficient U and the heat 

transfer area A.

mS = mC 
mF = mL+mV 

mFxD,F = mLxD,L 
PS = PC 
TC = Tsat(PS) 

TV = Tsat PV +BPR(PV,xD,L) 
TV = TL 

Q = mS(HS-HC) 
Q = UA(TS-TL) 

Q+ mFHF = mLHL+mVHV 

Flash tank

The inlet black liquor or condensate 
stream F enters the Flash block. The 
outlet vapor stream V and the outlet 
black liquor or condensate stream L 

exit the block. The flash tank pressure is 
determined by the outlet vapor stream 

pressure, PV.

mF = mL+mV 

TV = TL 
PV = Psat(TV) 
PL = Psat(TV) 

mFxD,F = mLxD,L 

Black liquor mixer

An arbitrary number of black liquor 
streams Li enter the mixer block, and a 

single combined black liquor stream Lout 
exits it.

mi
i

= mout 

mi
i

Hi = moutHout 

mi
i

xD,i = moutxD,out 

Vapor mixer

An arbitrary number of vapor or 
condensate streams Vi enter the mixer 
block, and a single combined vapor or 
condensate stream Vout exits it. In this 
work, the vapor mixer is assumed to 
cause negligible pressure drop and to 

impose that all pressures be equal.

mi
i

= mout 

mi
i

= mout 

P1=P2=…=Pn=Pout 
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Validation scenarios
Two MEE plants were taken as case studies to validate the 

results given by the simulator. The first scenario was a simple 
counter-current 3-effect MEE system, depicted in Figure 2. In 
this scenario, condensate leaving the first and second effects are 
flashed and fed to the second and third effects, respectively. This 
system was adapted from [5] and, due to its relative simplicity, 
was intended to aid in the testing of the unit process models 
and the simulator code. Black streams denote black liquor, red 
streams denote vapor and blue streams, condensate.

The input values for this system are listed in Table 3. All heat 
exchange areas were assumed to be equal.

Table 2. Stream types and their describing variables.

Stream type Variables

Black liquor m,  T,  xD 

Vapor m,  T,  P 

Condensate m,  T,  P 

Physical properties
Energy balances require black liquor, water steam enthalpies 

to be known. Water and steam enthalpies were calculated from 
steam table correlations, implemented in C++ as described in 
the 2007 revised release on the International Association for the 
Properties of Water and Steam IAPWS Industrial Formulation 
of 1997 standard [25].

Black liquor enthalpies were calculated from the correlation 
described by Zaman and Fricke (1996), which expresses the 
enthalpy of black liquor at 80 °C, H80, as shown in Equation (1) 
[26]. In this equation, Hw denotes the water enthalpy at 80 °C, 
xD is the black liquor dissolved solids fraction, and the constants  
and  depend on the type of black liquor being considered. In 
this work, it was assumed that  kJ/kg.K and .

 							     
	

H80=Hw+b -1+exp
xD
c

 
	

(1)

In order to account for black liquor enthalpies at other 
temperatures, H80 is corrected using the black liquor specific 
heat correlation given by Equation (2), where t stands for the 
temperature measured in °C [5].

cp=4.216 1-xD + 1.675+
3.31t
1000.0

xD+ 4.87+
20t
1000.0

1-xD xD3     (2)

The black liquor Boiling Point Rise (BPR) also needs to be 
considered in evaporator calculations. BPR is accounted for 
using Equations (3) and (4), where TP is the boiling temperature 
of water at pressure P.

BPR(P,xD)=BPRatm(xD)[1+0.6(TP-373.16)/100]    (3)
			 
BPRatm xD =6.173xD-7.48xD1.5+32.747xD2     (4)

Figure 2. The simple 3-effect MEE system, adapted from [5]

Table 3. Input values for the 3-effect MEE system.

Variable Value Units

Live steam temperature 120 °C

Black liquor inlet mass flow 50 kg/s

Black liquor inlet 
temperature 70 °C

Black liquor inlet  
dissolved solids 20 %

Vapor temperature  
from E3 60 °C

Heat transfer coefficient  
of E1 (U1) 1.2 kW/m²K

Heat transfer coefficient  
of E2 (U2) 1.6 kW/m²K

Heat transfer coefficient  
of E2 (U3) 2.0 kW/m²K

Outlet black liquor 
dissolved solids 50 %
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A more realistic 6-effect system was adapted from [9] 
and is shown in Figure  3. It should be noted that black 
liquor exiting the first effect is flashed and its vapor is 
fed to the fourth effect. In their original paper, Jyoti and 
Khanam (2014) used polynomial fits to estimate steam table 
properties and correlations to calculate the evaporators 
heat transfer coefficients. The input values for this system 

are listed in Table 4. All heat transfer areas were assumed 
to be equal.

Figure 2: Realistic 6-effect MEE system, adapted from [9].
The two systems were input to the simulator without 

supplying any initial estimates for the variables, which means 
that they were calculated by first solving the simplified models. 
The NR error tolerance was set to 10-6.

Figure 3. Realistic 6-effect MEE system, adapted from [9].

Table 4. Input values for the 6-effect MEE system

Variable Value Units

Live steam temperature to E1 140 °C

Live steam temperature to E2 147 °C

Vapor temperature from E7 52 °C

Black liquor inlet mass flow 15.6 kg/s

Black liquor inlet temperature 64.7 °C

Black liquor inlet dissolved solids 11.8 %

Black liquor outlet dissolved solids 31 %

Heat transfer coefficient of E1 (U1) 0.296 kW/m²K

Heat transfer coefficient of E2 (U2) 0.4303 kW/m²K

Heat transfer coefficient of E2 (U3) 0.2584 kW/m²K

Heat transfer coefficient of E2 (U4) 0.6955 kW/m²K

Heat transfer coefficient of E2 (U5) 0.839 kW/m²K

Heat transfer coefficient of E2 (U6) 0.9698 kW/m²K

Heat transfer coefficient of E2 (U7) 1.224 kW/m²K
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RESULTS AND DISCUSSION
Table  5 displays some of the key variables found for the 

3-effect MEE system, and their respective values as reported 
from the original reference. Notice that there is a strong 
agreement between calculated and reference values. There is, 
however, the simulator underestimated the heat transfer area 
and the black liquor outlet temperature, as compared to the 
reference values. This discrepancy is justified by the fact that 
the black liquor enthalpies in this work were calculated from 
different correlations than those of the original reference.

Table 6 displays some of the key variables found for the 
6-effect MEE system, and their respective values as reported 
from the original reference. As before, there is a strong 
agreement between calculated and reference values, and the 
discrepancy are likely due to the different correlations used. 

Notice that the heat transfer areas are not shown in Table 6, 
as they were not reported in the original publication.

It should be noted that the steps of ordering the GSE, 
partitioning it and obtaining initial estimates by solving the 
simplified model were critical to ensure that the simulator 
would converge. In both scenarios, the combination of 
these steps allowed the simulator to converge with relative 
ease. This, however, was not the case when any of the steps 
were skipped. Solving all the equations simultaneously 
via NR proved to be a particularly poor approach, as poor 
initial estimates often led to singular Jacobians during the 
NR iterations.

It must also be emphasized that the simulator determines the 
ordering of the GSE based on the form taken by each equation 

Table 5. Comparison between calculated values and reference values for the 3-effect system

Variable Calculated value Reference value Units

Heat transfer areas (all effects) 810.0 1040.0 m²
Vapor temperature from E1 93.7 91.6 °C
Vapor temperature from E2 74.2 73.3 °C
Vapor temperature from E3 60.0 60.0 °C

Black liquor dissolved solids from E1 50.0 50.0 %
Black liquor dissolved solids from E2 33.3 33 %
Black liquor dissolved solids from E3 25.2 25 %

Outlet black liquor temperature 93.7 99.8 °C
Live steam mass flow 11.6 11.3 kg/s

Table 6. Comparison between calculated values and reference values for the 6-effect system

Variable Calculated value Reference value Units
Vapor temperature from E1 129,0 106,3 °C
Vapor temperature from E2 128,5 126,8 °C
Vapor temperature from E3 93,6 89,5 °C
Vapor temperature from E4 78,3 77,2 °C
Vapor temperature from E5 67,1 67,2 °C
Vapor temperature from E6 58,3 58,7 °C
Vapor temperature from E7 52,0 52 °C

Black liquor dissolved solids from E1 29.17 31.65 %
Black liquor dissolved solids from E2 26.59 26.29 %
Black liquor dissolved solids from E3 23.08 24.42 %
Black liquor dissolved solids from E4 19.59 20.32 %
Black liquor dissolved solids from E5 16.66 17.29 %
Black liquor dissolved solids from E6 14.67 15.12 %
Black liquor dissolved solids from E7 13.24 13.45 %

Total live steam mass flow 2.2 1.9 kg/s
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i.e. the set of variables present in each equation. In other words, 
the way the equations are written has a direct impact on the 
performance of the simulator. The equations described in Table 1 
are written in the way that yielded the most satisfactory results.

CONCLUSIONS
The simulator was capable of calculating realistic MEE 

systems. To facilitate convergence, it is desirable to make 
sure that the equations take a suitable form and that they 
are ordered and partitioned. If no good initial estimates can 
be given, it is also desirable to solve a simplified model to 
generate reasonable estimates.

The simulator currently assumes that the heat transfer 

coefficient is given by the user, as opposed to being calculated 
by the simulator. In the future, this issue may be addressed by 
introducing heat transfer correlations. In future work, more unit 
processes can be modeled, such as condensate preheaters and 
recovery boilers, which would allow for more realistic scenarios 
to be simulated. More complex systems should also be tested to 
verify if the current solution strategy remains robust.
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