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Abstract

This paper describes and compares the use and limitations of two constraint-based formulations
for the wheel-rail contact simulation in multibody dynamics; (1) the use of contact lookup tables
and (2) the Knife-edge Equivalent Contact constraint method (KEC-method). Both formulations
are presented and an accurate procedure to interpolate within the data in the lookup table is also
described. Since the wheel-rail constraint contact approach finds difficulties at simultaneous tread
and flange contact scenarios, the lookup table method is implemented with a penetration-based
elastic contact model for the flange, turning the method into a hybrid (constant in the tread and
elastic in the flange) approach. To deal with the 2-point contact scenario in the KEC-method, a
regularisation of the tread-flange transition allows the use of the constraint approach in the tread
and also in the flange. To show the applicability and limitations of both methods, they are studied
and compared with special emphasis in the calculation of normal and tangential contact forces.
Numerical results are based on the simulation of a two-wheeled bogie vehicle in different case studies
that consider irregular tracks and two wheel-rail profiles combination: profiles that do not show
two-point wheel-rail contacts and profiles that do show two-point wheel-rail contacts. Although
results show a good agreement between both approaches, the use of the KEC-method is more
extensive since it allows to reproduce the wheel-climbing scenario that cannot be simulated with
the lookup table method with the hybrid contact approach. It is concluded that simulations with
this later method may not be in the safe side.

Keywords: Contact lookup table, KEC-method , Interpolation, Wheel-rail contact,
Wheel-climbing
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Nomenclature2

r̄lir, r̄rir The relative position vector of the irregular rail centreline with respect to the ideal rail3

centreline.4
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r̄lrp, r̄rrp The relative position vector of the ideal rail centreline with respect to the the track5

frame.6

r̄wi
c , r̄rp

c The position vectors of contact points on the wheel and rail in track frame.7

t̄wi
1,c, n̄rp

c The unit-tangent vector and normal vector at the contact point in track frame.8

β The orientation angle of the rail profiles9

λ The array of Lagrange multipliers.10

δ The linearised rotation angle due to the irregularity11

δwi, δ̇wi The wheel-rail penetration at the flange contact and its time derivative.12

ûrrp
P , ûlrp

Q The position vector of points P and Q in the rail profiles.13

ûwIi
R , ûwIi

L The position of the points in the wheel surface with respect to the wheelset intermediate14

frame.15

At,lrp, At,rrp The rotation matrix from the railhead frame with respect to the track frame.16

At The rotation matrix from the track frame to the global frame.17

Awti,wi, Awti,wIi, AwIi,wi The rotation matrices from wheel frame to the wheelset track frame, from18

wheelset intermediate frame to the wheelset track frame and from wheel frame to the wheelset19

intermediate frame.20

Cclt The wheel-rail contact constraints constraint equations modelled with lookup tables.21

Ccltq , Ċclt
q The Jacobian matrix and its time derivative of all wheel-rail contact constraints modelled22

with lookup tables.23

CKEC The contact constraint equations of a wheelset with KEC profiles.24

CKECq , ĊKEC
q The Jacobian matrix and its time derivative of KEC contact constraint equations25

with respect to generalised coordinates q.26

CKECs , ĊKEC
s The Jacobian matrix and its time derivative of KEC contact constraint equations27

with respect to KEC surface parameters.28

nrp
c The normal vector to the rail surface at the contact point in global frame.29

Q The force vectors of generalised applied forces and generalised quadratic-velocity inertia30

forces.31

Qnor
fla , Qtang, Qnor

tread The force vectors of generalised wheel-rail normal flange forces, generalised32

tangential tread and flange forces, and generalised normal forces at the wheel tread.33

Rt The absolute position vector of an arbitrary point on the ideal track centreline with respect34

to a global frame.35

Rwi
c , Rrp

c The position vectors of contact points on the wheel and rail in global frame.36

twi
1,c, twi

2,c The two unit-tangent vectors to the wheel surface at the contact point in global frame.37
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ψt, θt, ϕt The Euler angles which describes the orientation of the track frame with respect to a38

global frame.39

al, vp, gv, cl Alignment, vertical profile, gauge variation and cross level40

f lk, f rk The value of the equivalent profiles at the lateral positions of slk and srk.41

Khertz, Cdamp The Hertzian stiffness and the constant that introduces non-linear damping.42

Lw The lateral distance of the wheel frames with respect to the wheelset frame.43

Rt
x, Rt

y, Rt
z The absolute position of an arbitrary point on the ideal track centreline with respect44

to a global frame in X, Y and Z direction.45

r0 The rolling radius of the wheel when centred in the track.46

s The arc-length along the track.47

slk, srk The lateral positions of the contact point in the left and right KEC profiles.48

ylir, zlir, yrir, zrir The track irregularities in Y and Z direction.49

hr, hw The functions that define the railhead and wheel profiles.50

sr
1, sr

2, sw
1 , sw

2 The surface parameters of the railhead and wheel profiles.51

F̄wi
z , M̂wi

x The vertical force and roll torque at the wheelset due to the normal contact forces.52

ν The Poisson’s ratio.53

A, B and βh The parameters to compute Hertzian stiffness which depend on the curvatures of54

rail/wheel surfaces.55

E The Young’s modulus of the surface.56

1. Introduction57

In multibody dynamic simulation of railway vehicles, the modelling of wheel-rail contact plays58

a fundamental role through the literature. Contact forces and their locations within wheel and59

rail profiles highly influence in the dynamic behaviour of the vehicles. Hence, the development of60

contact models in terms of accuracy and efficiency is of great interest for the research community61

[1, 2, 3, 4, 5, 6]. Among these works, two well-known approaches are commonly used to simulate62

wheel/rail contact in multibody railway simulations. The first one is the elastic approach, in which63

interpenetration and separation between the wheel and rail surfaces is allowed and normal contact64

forces are computed, for example, using a Hertzian-based model that calculates normal contact65

forces using the interpenetration and interpenetration rate [7, 8, 9]. The second one is the constraint66

approach, where the contact between wheel and rail is computed by solving a set of nonlinear67

constraint equations that establish that both surfaces in contact coincide in one or more singular68

contact points without penetration or separation [10, 11]. In this approach, normal contact forces69

are described through the Lagrange multipliers, which are associated with the contact constraints70

at each contact point.71

One main feature of the elastic and the constraint approaches is the determination of the location72

of the contact points. In this sense, two methodologies can be used for this contact search. On the73
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one hand, this search can be addressed using the online method. In this approach, the location of74

the contact points is determined at each time step of the dynamic simulation by solving a set of75

algebraic nonlinear equations that evaluates the contact points as a function of the wheelset-track76

relative position. Many works can be found in the literature that use the online search method. In77

this sense, Marques et al. [12] present an approach to determine contact points in the conformal zone78

between wheel tread and flange, based on the evaluation of the contact between each wheel strip79

and rail avoiding inaccuracies of the minimum distance method. Magalhães et al. [13] proposed an80

elastic contact model for non-Hertzian conditions providing accurate results and efficient simulations.81

In this line, Sun et al. [14] presents a modified Kik-Piotrowski model [15] for the wheel-rail normal82

contact analysis, which is extended to the analysis of the influence of the wheelset yaw angle in [16].83

In the work of Pombo and Ambrósio, it is proposed a three dimensional online contact detection84

approach to analyse the lead/lag flange contact scenarios [17], small radius track simulation [18]85

and the inclusion of track irregularities [19]. Moreover, in the work of O’Shea and Shabana [20, 21],86

the initiation of the wheel-climb phenomenon is investigated at large angles of attack. They show87

that the Nadal L/V derailment criteria is not conservative. In the work of Malvezzi et al. [22],88

two contact elastic detection methods are proposed with the known analytical expressions of the89

wheel and rail surfaces, one is based on the idea of minimising the distance another is minimising90

the difference between the surfaces. Both methods are giving efficient computational times and91

good agreement in terms of kinematic variables and contact forces between Matlab and Simpack92

Rail models in [23]. Also, Baeza et al. [24] proposed a elastic detection approach to calculate the93

inter-penetration areas between wheel and rail. In their work, the geometries of the wheel surface94

are discretised by using cones and rail head by using knife-edge lines. Moreover, in the goal of95

reducing the computational cost of online contact search methods, Muñoz et al. [25] presents a96

multibody model of railway vehicles that uses simplified contact constraints for the online wheel-97

tread solution combined with an elastic approach for the flange. In the same context, Escalona98

et al. [26] presents the simplified constraint-based wheel-rail contact method called KEC-method99

(Knife-edge Equivalent Contact method), in which the rails, that are considered infinitely narrow,100

contact an equivalent wheel profile producing the same wheelset relative-track kinematics than101

using real wheel-rail profiles with a great computational efficiency.102

On the other hand, the search of the contact points can be done using the so-called offline method.103

In this approach, the contact solution is solved in a preprocessing stage as a function of the wheelset104

relative position with respect to the track, and it is stored in a lookup table, that is later used105

during the dynamic simulations by the interpolation in the stored data. In this sense, there are also106

many references that can be found in the literature about contact lookup tables. Most of them are107

based on the constraint approach [27, 28, 29, 30, 31, 32, 33] but also on the elastic approach [34].108

The reason is that the constraint one involves a reduced relative degrees of freedom of the wheelset109

with respect to the track, as shown in [26]. This reduces the number of entries, and in turn the110

stored data, of the lookup tables. In [27], a constraint contact lookup table approach that accounts111

for track irregularities using two independent variables (2-DOFs) is proposed and compared with the112

online solution of the contact constraints. It is demonstrated that dealing carefully with geometric113

assumptions, simplified contact lookup tables produce accurate and efficient results. In [34], a114

3-DOFs elastic contact lookup table is presented to study the advantages and disadvantages against115

an online procedure. The results showed that the time required for the lookup table approach is116

substantially lower than the online solution procedure. In [29], a combination of a constraint contact117

lookup table for the tread contact and an elastic online approach for the flange one is proposed and118
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called hybrid method. It is extended in [30] to the combination of nodal and non-conformal contact119

detection, to solve significant jumps of contact points in turnouts. Moreover, in [31], a regularisation120

of the non-elliptical wheel-rail contact areas named Kalker book of tables for non-Hertzian contact121

(KBTNH) is proposed and used in [32, 33] to analyse accuracy and contact patch moments.122

This paper supports and focuses on the use of the constraint approach in some applications. Clearly,123

the elastic approach is better suited for a more detailed contact analysis, because it allows more124

insight into the actual surface areas in contact. However, under some common circumstances, the125

use of the constraint approach is superior:126

1. When the profiles geometry is not well-known, due to wear for example.127

2. When the overall vehicle dynamics is of interest, instead of the intimate wheel-rail contact128

analysis.129

In addition, as it is accepted in the community, the constraint approach is computationally more130

efficient. However, one of its main drawbacks is its difficult application when dealing with two-point131

contact scenario. This scenario is very important in curving and safety analysis of the railway132

vehicles. That is why this paper focuses on this scenario.133

To this end, this paper compares accuracy, efficiency, applicability and limitations of two constraint-134

based formulations (offline and online respectively) for the dynamic simulation of the wheel-rail135

contact of railway vehicles in multibody dynamics. The offline methodology used in this paper136

is based on precalculated contact lookup tables and the online one is based on the Knife-edge137

Equivalent Contact method (KEC-method) presented in [26]. The use of precalculated contact138

lookup tables is presented first. This method is well-known, computationally efficient and widely139

used [27, 28, 29, 30, 31, 32, 33, 34]. It is also presented an innovative procedure to interpolate140

between the stored data. However, an important drawback of lookup tables appears when using141

wheel-rail profile combinations that show two-point contact scenarios (tread contact and flange142

contact) because constraint contact lookup tables are not suitable to deal with simultaneous contacts143

using variable number of kinematic constraints. Since most of real wheel-rail profile combinations144

are of this type, this scenario is essential when analysing vehicle curving or wheel climbing and145

derailment. Instead, the two-point contact simulation with contact lookup tables is done in this146

work using a hybrid method in which the flange contact is analysed using a penetration-based147

elastic model. The second method used in this paper is the KEC-method [26]. It is an online148

constraint-based method that considers the rails as infinitely narrow lines (like the edge of a knife)149

that contact equivalent wheels such that they show the same subspace of allowable motion that the150

real wheel and rail profiles. As it is a constraint-based method, the two-point contact scenario used151

together with a regularisation method for the tread-flange transition as presented in [35], allows152

possible wheel climbing.153

The organisation of this paper is given as follows: Section 2 introduces the kinematics of the154

wheel-rail contact. Wheel-rail contact simulation with lookup tables and its interpolation procedure155

are presented in Section 3. The KEC-method approach is briefly explained in Section 4. Section 5156

presents the generation of lookup tables for flanging wheelsets and Section 6 presents three case157

studies of a bogie vehicle to analyse differences and limitations of both approaches: (1) simulation158

results in a tangent-curved track with irregularities using profiles that do not show 2-point contacts,159

(2) simulation results in a tangent-curved track with irregularities using profiles that show 2-point160
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contacts and (3) simulation results of a wheel climbing scenario in a small radius curved track161

without irregularities. Finally, Section 7 provides a summary and conclusion.162

2. Kinematics of the wheel-rail contact163

2.1. Track kinematics164

Track geometry is the superposition of the ideal geometry and the irregularities. The components165

of the absolute position vector of an arbitrary point on the ideal track centreline with respect to a166

global frame is a function of the arc-length s, as follows:167

Rt(s) =

Rt
x(s)

Rt
y(s)

Rt
z(s)

 , (1)

where Rt(s) contains the components of vector −→R t shown in Fig. 1. The geometry of the track168

centreline 3D-curve is defined by the horizontal profile and the vertical profile. The so-called169

track preprocessors implement these functions of s given the ideal track geometry using a set of170

segment-dependent parameters (length, curvature, slope, etc.)171

Fig. 1: Ideal track centreline.

Figure 1 shows the track frame 〈Ot;Xt, Y t, Zt〉 associated with the track centreline at each value of172

s. The orientation of the track frame with respect to a global frame can be measured with the Euler173

angles ψt (azimut or heading angle), θt (vertical slope, positive when downwards in the forward174

direction) and ϕt (cant or superelevation angle). These three angles are also functions of s that175

are implemented in the track pre-processor. The rotation matrix from the track frame to the global176

frame is given by:177

At(s) =

cθtcψt sϕtsθtcψt − cϕtsψt sϕtsψt + cϕtsθtcψt

cθtsψt cϕtcψt + sϕtsθtsψt cϕtsθtsψt − sϕtcψt

−sθt sϕtcθt cϕtcθt

 . (2)
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where the terms ‘c’ and ‘s’ in Eq. 2 refer to the cosine and sine functions respectively.178

Figure 2 on the left shows the relative position of the irregular right rail centreline with respect to179

the track frame. Figure 2 on the right shows the displacement of the railheads due to irregularity180

in a cross-section of the track (Y t − Zt plane). As observed in the figure, a frame is defined at each181

railhead (lrp, left rail profile frame, and rrp, right rail profile frame). Left and right rail profile182

frames are separated a distance 2Lr in the ideal track. The irregularity vectors −→r lir (lir, left rail183

irregularity) and −→r rir (rir, right rail irregularity) describe the displacement of the rail centrelines.184

The components of these vectors in the track frame are functions of s, given by:185

r̄lir(s) =

 0
ylir

zlir

 , r̄rir(s) =

 0
yrir

zrir

 (3)

Fig. 2: Track irregularity.

In the railway industry, the following four combinations of the railhead centrelines irregularities are186

measured:187

• Alignment(al) : al = (ylir + yrir)/2
• Verticle profile(vp) : vp = (zlir + zrir)/2
• Gauge variation(gv) : gv = ylir − yrir

• Cross level(cl) : cl = zlir − zrir

188

The orientation of the railhead frames with respect to the track frame is given by the following189

rotation matrices:190

At,lrp(s) =

1 0 0
0 cos (β + δ) − sin (β + δ)
0 sin (β + δ) cos (β + δ)

 , At,rrp(s) =

1 0 0
0 cos (−β + δ) − sin (−β + δ)
0 sin (−β + δ) cos (−β + δ)

 ,
(4)

where β is the orientation angle of the rail profiles and δ = (zlir−zrir)/2Lr is the linearized rotation191

angle due to the irregularity. Both angles can be observed in Fig. 2 on the right.192
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The absolute position vectors of two points, P and Q, defined in the right and left railheads,193

respectively, are given by:194

−→
R rrp

P = −→R t +−→r rrp +−→r rir +−→u rrp
P .

−→
R lrp

Q = −→R t +−→r lrp +−→r lir +−→u lrp
Q .

(5)

The components of these vectors in the global frame are given by:195

Rrrp
P = Rt + At(r̄rrp + r̄rir + At,rrpûrrp

P ),

Rlrp
Q = Rt + At(r̄lrp + r̄lir + At,lrpûlrp

Q ),
(6)

where ûrrp
P and ûlrp

Q contain the components of the position vector of points P and Q in the rail196

profiles as shown in Fig. 2 on the right. These vectors are parametrized following the railhead197

profile geometry:198

ûrrp
P =

 0
srr

2
hrr(srr

2 )

 , ûlrp
Q =

 0
slr

2
hlr(slr

2 )

 , (7)

where lr and rr stand for left rail and right rail, slr
2 and srr

2 are the transverse coordinates of the199

points in the railheads and hlr and hrr are the functions that define the railhead profile, as shown200

in Fig. 3.201

The calculation of the track geometry requires interpolation at two levels: (1) the description of the202

centreline shown in Eq. (1) as a function of the longitudinal arc-length s and (2) the description of203

the rail-head cross sections hlr and hrr shown in Eq. (7) as a function of the transverse parameters204

slr
2 and srr

2 . Both are implemented in this investigation using cubic splines. For the description of205

the track centreline, the analytic functions used in the industry to describe the track horizontal206

and vertical profiles (straight lines, circles, clothoids and cubic polynomials) are used to tabulate207

the absolute position a set of equally-spaced nodal points. For the description of the rail-head208

profiles, the straight lines and circles used to define the new (not worn) rail-head profiles are209

used to tabulate the functions hlr and hrr at a set of nodal points. Alternatively, experimentally210

measured rail-head profiles can be used if worn rail-head profiles are simulated. The benefits of the211

cubic interpolation compared with the evaluation of analytic functions is the smoothness of the212

higher-order space-derivatives of the geometry at the transition points.213

2.2. Vehicle kinematics214

For the modelling of a railway vehicle, a set of relative body-track frame coordinates, as shown215

in Fig. 4, is selected in this work. In this formulation [26], each modelled body belonging to the216

railway vehicle is accompanied by a track-frame along the track centreline. These frames are called217

body-track frames 〈Obti;Xbti, Y bti, Zbti〉 for each body i. The body-track frame is defined such218

that the relative position vector r̄i =
[
0 r̄i

y r̄i
z

]T
of the body frame with respect to the body-track219
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ws1
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wI
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Y
rp

rp

r

w

ws2

Fig. 3: Wheel profile and rail profile geometry.

frame has zero x-component along the track centreline. Therefore, for each body i, the following220

set of coordinates is defined:221

qi =
[
si r̄i

y r̄i
z (Φ̄i)T

]T
=
[
si r̄i

y r̄i
z ϕ̄i θ̄i ψ̄i

]T
, (8)

where the vector qi describes the absolute position of the body track frame (arc-length coordinate222

si ), the relative body frame to body-track frame position (position vector r̄i) and relative body223

frame to body-track frame orientation (Euler angles Φ̄i). Therefore, the set of coordinates for all224

vehicle bodies is:225

q =

 q
2

...
qnb

 , (9)

where nb is the number of modelled bodies in the railway vehicle. Superscripts start at 2 because226

body 1 is assumed to be the ground body, this is, the track.227

Using these coordinates, the absolute position vector of point P that belongs to body i is given228

by:229

−→
R i

P = −→R bti +−→r i +−→u i
P . (10)

where −→R i
P (not shown in Fig. 1) is the absolute position vector of P , −→R bti is the absolute position230

vector of the body-track frame, −→r i is the relative position vector of the origin of the body i frame231

with respect to its body-track frame and −→u i
P is the local position vector of point P in body i.232

Equation (10) can be projected in the global frame as follows:233

Ri
P = Rbti + Abti(r̄i + Abti,iûi

P ). (11)
9



Fig. 4: Kinematics of the bodies of a railway vehicle with relative body-track frame coordinates.

In this formula, the terms have the following meaning and functional dependency:234

Rbti = Rbti(si) Components of position vector of the body-track frame
in the global frame.

Abti = Abti(si) Transformation matrix of the body-track frame to the
global frame.

r̄i = r̄i(q) Components of position vector of the body with respect
to the body-track frame in the body-track frame.

Abti,i = Abti,i(q) Transformation matrix of the base body frame with
respect to the body-track frame.

ûi
P Components of the position vector of point P with

respect to body i in the body frame. These components
are constant.

2.3. Wheelset kinematics235

The track-relative coordinates of a rigid wheelset i (superscript wi) are:236

qwi =
[
swi r̄wi

y r̄wi
z ϕ̄wi θ̄wi ψ̄wi

]T
. (12)

For each rigid wheelset, an additional frame that rotates with the wheelset without following the237

rolling angle θ̄wi is defined: the wheelset intermediate frame, wIi. Figure 5 shows the wheelset i238

body frame wi and the intermediate one wIi. The orientation of the wheelset body frame with239

respect to the wheelset track frame wti is given by the following matrix:240

Awti,wi = Awti,wIi(ψ̄wi, ϕ̄wi)AwIi,wi(θ̄wi), (13)
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Fig. 5: Frames for rigid wheelset kinematics.

where the brackets mean the functional dependency of the rotation matrices.241

The use of the wheelset intermediate frame allows a clearer description of the position of the242

wheel-rail contact points. This position varies very little in the wIi frame, but it greatly varies243

in the wi frame (this variation is approximately periodic, being the time taken by the wheel to244

complete a revolution the time-period). The position vector of an arbitrary point P on the surface245

of the left or right wheel profile can be obtained as:246

Rwi
P = Rwti + Awti(r̄wi + Awti,wIiûwIi

P ), (14)

where ûwIi
P may take the following forms for the left (P = L) or right wheels (P = R):247

ûwIi
R =

 hrw(srw
1 ) cos srw

2
−Lw + srw

1
−hrw(srw

1 ) sin srw
2

 , ûwIi
L =

 hlw(slw
1 ) cos slw

2
Lw + slw

1
−hlw(slw

1 ) sin slw
2

 , (15)

where lw and rw stand for left wheel and right wheel, slw
1 , slw

2 , srw
1 and srw

2 are the parameters248

needed to the define the points in the wheel surface, hlw and hrw are the functions that defines the249

left and right wheel profile, as shown in Fig. 3 and Lw is the lateral distance of the wheel frames250

with respect to the wheelset frame.251

2.4. Wheel-rail contact constraints252

The wheel-rail non-conformal contact constraints (see Fig. 6) establish that the absolute position of253

the contact point on the rail is the same as the absolute position of the contact point on the wheel.254

In addition, the tangent plane to the rail at the contact point is parallel to the tangent plane to the255
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wheel at the contact point. These are five constraint equations that can written as:256

Rwi
c (qwi, sw)−Rrp

c (sr) = 0,[
twi

1,c(qwi, sw)
]T
nrp

c (sr) = 0,[
twi

2,c(qwi, sw)
]T
nrp

c (sr) = 0,

(16)

where c can be lc (left contact) or rc (right contact), w can be lw (left wheel) or rw (right wheel),257

rp can be lrp (left rail profile) or rrp (right rail profile), sw =
[
sw

1 sw
2

]T
, sr =

[
sr

1 sr
2

]T
include258

all surface parameters needed to locate the contact points, twi
1,c and twi

2,c are the two unit-tangent259

vectors to the wheel surface at the contact point, nrp
c is the normal vector to the rail surface at the260

contact point.261

The tangent vectors twi
1,c and twi

2,c from Eq. (16), which are defined with respect to the surface262

parameters sw, span the tangent plane at the contact point. twi
1,c is perpendicular to the cross-section263

and twi
2,c lies in it. The normal vector nrp

c is defined as the cross-product of the two tangent264

vectors.265

C

Fig. 6: Wheel and rail in contact.

The approximate contact constraints represent a simplified version to Eq. (16). The approximate266

contact constraints neglect the influence of the wheelset yaw angle in the contact geometry. In267

other words, the 3D surface-to-surface contact constraints are reduced to 2D curve-to-curve contact268

constraints. The main implication of this approach is that the so-called lead-lag contact effect,269

that occurs due to the longitudinal displacement of the flange contact point with respect to the270

thread contact point, is neglected. The lead-lag contact effect has, in practice, influence in the271

vehicle motion when negotiating very narrow curves. This curve negotiation usually happens at272

very low velocities following a quasi-static motion. As shown in [27], the planar contact approach is273

commonly sufficiently accurate. The approximate contact constraints can be written as a set of274

three constraint equations per wheel-rail pair as follows:275

r̄wi
c (qwi, sw

1 )− r̄rp
c (sr

2) = 0,[
t̄wi

1,c(qwi, sw
1 )
]T
n̄rp

c (sr
2) = 0,

(17)
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In these equations, vectors are projected to the track frame. Due to the assumed 2D contact276

approach, the X-component of the vector equation on top is automatically fulfilled, because both277

vectors r̄wi
c and r̄rp

c are contained in the Y -Z plane of the track frame. Therefore, only the Y -Z278

components are used. Accordingly, the perpendicularity of n̄rp
c and t̄wi

2,c is guaranteed as well. Hence,279

the total set of equations in Eq. (17) is reduced to 3. The 2D contact approach also implies that280

sw
2 = π/2 and sr

1 = sw. Only one surface parameter per profile needs to be indentified. In practice,281

the set of surface parameters is reduced from 4 to 2. For that reason, the simplified nomenclature282

sw = sw
1 and sr = sr

2 will be used. More details about the use of these contact constraints for283

non-conformal contacts can be found in [27].284

3. Wheel-rail contact simulation with lookup tables285

This section explains the use of contact lookup tables for the simulation of railway vehicles using286

relative body-track frame coordinates.287

3.1. Calculation of lookup tables288

Lookup tables are calculated in a preprocessing stage. To create a contact lookup table, a set of289

discrete numerical values is assigned to the lateral displacement of the wheelset ywi in a range that290

will be discussed in Section 5. The position along the track swi and pitch angle θwi are assumed to291

be zero because these coordinates have no influence on the contact geometry. The yaw angle ψwi is292

also assumed to be zero because its influence in the contact geometry is assumed to be negligible,293

as explained in Section 2.4. For each of these positions, 6 simplified contact constraints Eq. (17) (3294

for left contact and 3 for right contact) are solved to find the values of 6 coordinates: the wheelset295

position and orientation coordinates zwi and roll angle ϕwi and the surface parameters slw, srw,296

slr and srr needed to locate the contact points on the left and right wheel and rail surfaces. The297

contact lookup table can be interpreted as a set of tabulated functions of the form:298

zwi = zclt(ywi), ϕwi = ϕclt(ywi),
slw = slw

clt(ywi), slr = slr
clt(ywi) srw = srw

clt (ywi), srr = srr
clt(ywi),

(18)

where the subscript clt stands for ‘contact lookup table’. The contact lookup table can be used299

in dynamic simulations to find the values of these six coordinates from the value of the lateral300

displacement. In order to deal with a track with irregularities, the contact lookup table has to be301

extended from 1 entry to 2 entries. The process of creation of the contact lookup table has to be302

repeated for a set of values of the gauge variation (gv) in a range that covers the extreme values of303

the gauge that appear in practical applications. This is, the contact lookup table is recalculated a304

number of times after approaching and separating the rails from the nominal distance 2Lr shown in305

Fig. 2. That way, the functions given above become functions of two variables, as follows:306

zwi = zclt(ywi, gv), ϕwi = ϕclt(ywi, gv)
slw = slw

clt(ywi, gv), slr = slr
clt(ywi, gv) srw = srw

clt (ywi, gv), srr = srr
clt(ywi, gv)

(19)
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The use of the lookup tables with irregular track is slightly different. In a dynamic simulation,307

given the longitudinal position of the wheelset swi , the values of the irregularities al, vp, gv and cl308

can be obtained. The lateral displacement that has to be used to enter the lookup table is not ywi309

that gives the lateral displacement with respect to the ideal track centreline, but ȳwi = ywi − al310

, that gives the lateral displacement with respect to the irregular track centreline. In turn, the311

outputs of the lookup table z̄wi and ϕ̄wi have to be interpreted differently, being z̄wi = zwi + vp and312

ϕ̄wi = ϕwi + cl/2Lr . The kinematic constraints associated with wheelset wi finally yield:313

Cclt,wi =
[

zwi − vp− zclt(ȳwi + al, gv)
ϕwi − cl/2Lr − ϕclt(ȳwi + al, gv)

]
= 0. (20)

More details in railway multibody simulation using contact lookup tables can be found in [27].314

3.2. Interpolation in the lookup tables315

As explained in the previous sections, for the generation of KEC-profiles and also during the316

simulation with the KEC-method, the lookup tables have to be used to find the location of the317

contact points in the real profiles and other geometric properties. This sub-section describes the318

interpolation in the lookup tables in these cases. However, when using the lookup table contact319

method with elastic contact in the flange, the lookup tables that are used do not account for contact320

constraints in the flange (penetration is assumed to occur instead). Therefore, the content of this321

section is not applicable in that case.322

In this context, the use of contact lookup tables that consider flange contact constraints (this is,323

wheel climb is admissible without flange penetration) and also include track irregularities, requires324

a special treatment in the interpolation procedure. In what follows and with the help of Fig. 7325

(superscript wi is omitted in the figure for simplicity), it is shown the error obtained when the326

interpolation is applied in the vicinity of the two-point of flange contact scenario.327

Fig. 7: Interpolation error at contact lookup tables with track irregularities.

Figure 7 shows in solid dark lines the wheelset vertical coordinate z̄wi stored in the lookup table328

for two different values of gauge irregularity (gvi and gvi+1 ) and in solid blue line the same for329
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an arbitrary track gauge irregularity gv between gvi and gvi+1 that is not stored in the table. Let330

us assume that in a specific instant of a simulation with track gauge gv (solutions given in blue331

line that are not stored in the table), the wheelset lateral displacement ȳwi is in the vicinity of the332

two-point wheel-rail contact scenario such that, in order to interpolate in table gvi+1 with ȳwi the333

wheelset is at a single point tread contact z̄wi
i+1, while in table gvi the wheelset is at a wheel climb334

scenario z̄wi. Obviously, the interpolation between z̄wi
i and z̄wi

i+1 provides an estimated wheelset335

vertical displacement z̄wi
est that is far from the correct value given by the blue line as shown in336

Fig. 7.337

In order to avoid these interpolation errors, the wheelset lateral displacement ȳwi cannot be used338

directly as an input to interpolate in the tables. It has to be updated to the values ȳwi
i and ȳwi

i+1339

that correspond to gauge variations gvi and gvi+1 that are stored in the table. This procedure,340

which is shown in Fig. 8, is defined as follows:341

• Given ȳwi and gv , find the point of convergence O and its theoretical irregularity gvO as:342

gvO = gvi+1 −
ȳf

i+1 · (gvi+1 − gvi)
ȳf

i+1 − ȳ
f
i

(21)

where superscript f refers to the flange starting point. Note that gvO is a conceptual gauge343

irregularity in which both wheels experience flange contact and the wheelset has no possible344

lateral displacement.345

• Interpolate in the direction O − ȳwi to obtain the corresponding two lateral displacements346

ȳwi
i and ȳwi

i+1.347

• Enter the lookup tables gvi and gvi+1 with ȳwi
i and ȳwi

i+1 to obtain the contact solutions at the348

stored tables (i.e. z̄wi
i and z̄wi

i+1 for the vertical displacement, ϕ̄wi
i and ϕ̄wi

i+1 for the roll angle).349

• Interpolate between the stored solutions to obtain the accurate coordinate (i.e. z̄wi
est and ϕ̄wi

est).350

Fig. 8: Interpolation method at contact lookup tables with track irregularities.
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As it is shown by Fig. 7 and Fig. 8, the described linear interpolation procedure avoids errors that351

can be considerably high in the vicinity of the flange contact scenario.352

3.3. Calculation of contact forces when using lookup tables353

Contact forces are divided into normal contact forces and tangential contact forces. When using354

lookup tables, normal contact forces in the tread are computed as reaction forces associated with355

the contact constraints, while normal contact forces in the flange are computed as elastic forces356

as a function of the wheel-rail penetration. For both, tread and flange contact, tangential contact357

forces are computed as applied forces using any established creep contact theory (as Kalker non-358

linear theory [36] or Polach theory [37]). The resulting equations of motion of the railway vehicle359

yield:360

M (Ccltq )T

Ccltq 0


q̈

λ

 =

Q + Qnor
fla + Qtang

−Ċclu
q q̇

 (22)

where M is the vehicle mass matrix, Ccltq is the Jacobian matrix of all wheel-rail contact constraints361

modelled with lookup tables, λ is the array of Lagrange multipliers, Qnor
fla is the vector of generalised362

wheel-rail normal flange forces, Qtang is the vector of generalised tangential tread and flange forces,363

and Q include all other generalised applied forces and generalised quadratic-velocity inertia forces.364

For clarity, in this equation it has been assumed that the only constraints in the vehicle system365

are those due to the wheel rail contact. However, everything is valid under the existence of other366

constraints.367

The generalised normal forces at the wheel tread are computed using the Lagrange multipliers368

technique. Therefore, these forces are treated as reaction forces whose value can be computed369

as:370

Qnor
tread = −

(
Ccltq

)T
λ. (23)

The Jacobian matrix Ccltq is an assembly of the Jacobian matrices Cclt,wi
q associated with each371

wheelset, that is given by:372

Cclt,wi
q =

 − dvp
dswi − ∂zclt

∂y
dal

dswi − ∂zclt
∂gv

dgv
dswi −∂zclt

∂y 1 0 0 0

− 1
2Lr

dcl
dswi − ∂ϕclt

∂y
dal

dswi − ∂ϕclt
∂gv

dgv
dswi −∂ϕclt

∂y 0 1 0 0

 (24)

In this matrix the fact that the irregularities al, vp, gv and cl are a functions of the wheelset373

position along the track swi, has been accounted for. However, because these functions use to be374

such that the derivatives with respect to swi are very small, the Jacobian matrix can be simplified375
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to:376

Cclt,wi
q =

0 −∂zclt
∂y 1 0 0 0

0 −∂ϕclt
∂y 0 1 0 0

 (25)

The use of Eq. (24) would be needed if the wave-length of the track irregularities were short377

compared with the distance advanced by the wheel in one time-step. In practise, the measured378

irregularities have wave-lengths above 1 m, that is much longer than that distance.379

The generalised normal forces at the wheel flange are treated as applied forces. The contact point380

detection at flange can be obtained offline, while building the contact lookup table. Thus, the381

maximum relative-indentation condition [27] is used for potential contact point search at flange,382

which is:383

[
t̄wi

1,c(qwi, sw
fla,1)

]T
(r̄wi

c (qwi, sw
fla,1)− r̄rp

c (sr
fla,2)) = 0,[

t̄wi
1,c(qwi, sw

fla,1)
]T
n̄rp

c (sr
fla,2) = 0,

(26)

Note that the vectors are projected to the Y-Z plane of the track frame. Equation (26) is a set of384

two nonlinear equations of two unknown variables; the flange surface parameters at the wheel and385

the rail, sw
fla,1 and sr

fla,2, which can be solved using the Newton-Raphson method. The indentation386

δwi at flange is computed as:387

δwi =
[
r̄wi

c − r̄rp
c

]T
n̄wi

c (27)

In this research, the flange normal contact force at wheelset i (wi) is computed based on a388

Hunt-Crossley force model [27, 8, 38], including the elastic and dissipative components:389

Qnor,wi
fla =

(∂r̄wi
fla

∂qwi

)T
Fnor,wi

fla ,

Fnor,wi
fla =

{
Khertz(δwi)3/2 + Cdampδ̇

wiδwi if δwi > 0
0 if δwi ≤ 0

,

(28)

where r̄wi
fla is the position vector of the contact point in the flange, Fnor,wi

fla is the elastic normal390

force in the flange, δwi is the wheel-rail penetration at the flange contact, Khertz is the Hertzian391

stiffness and Cdamp is a constant that introduces non-linear damping. Note that the terms r̄wi
fla, δwi392

and Khertz are interpolated from the lookup table.393
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The Hertzian stiffness Khertz can be obtained based on the curvatures and material properties of394

the wheel and rail surfaces [39]:395

Khertz = 4βh

3(Ki +Kj)
√
A+B

, Kk = 1− ν2
k

πEk
(29)

where νk is the Poisson’s ratio and Ek is is the the Young’s modulus of surface k, A, B and βh are396

computed based on the curvatures of both surfaces (see [39, 40]). However, this formula that comes397

from Hertz contact theory, assumes that the bodies in contact behave like infinite semi-spaces.398

Thus, the contact stiffness can be modified (decreased) to account for the structural deformation of399

the bodies. This structural deformation can be important in the wheel flange.400

For the calculation of the contact-tangential creep forces that result in Qtang, the following data401

are needed for each wheel-rail contact pair (either tread or flange contact):402

1. The normal contact force.403

2. The relative velocity of the contact points404

3. Kalker’s constants and coefficient of friction405

Here, two problems arise just for the tread contacts:406

1. The generalised normal forces Qnor
tread (reaction forces) are known only after solving Eq. (20)407

and408

2. The calculation of the normal force at wheelset wi, Fnor,wi
tread , from the generalised normal force409

Qnor
tread is not straight forward.410

The solution to the first problem, that being strict would require an iterative solution of the411

equations of motion Eq. (22), is practically solved by assuming that the normal forces this time-step412

equal the normal forces obtained last time-step. This simple assumption works efficiently in practice413

because general time-steps used in railway multibody simulations are usually small (a maximum of414

around 1 ms). Also, to the best Authors’ knowledge, there are no simulation codes that implement415

such iterative procedure to find the tangential forces.416

For the second problem, the following approach is derived: the vertical force F̄wi
z (vertical component417

in the track frame) and roll torque M̂wi
x (longitudinal component in the wheelset intermediate418

frame) at the wheelset due to the normal contact forces on the treads can be easily identified as the419

third and fourth components of Qnor,wi
tread , as follows:420

Qnor,wi
tread = −

(
Cclu,wi
q

)T
λwi

F̄wi
z = Qnor,wi

tread (3), M̂wi
x = Qnor,wi

tread (4).
(30)

This is clear due to the physical interpretation of the reaction forces. These force and torque are421

due to the normal contact forces at the left tread Fnor,wi
ltread and the right tread Fnor,wi

rtread as shown422

by Fig. 9. The direction of these forces −→n ltread and −→n rtread are the normal vectors to the wheel423

surfaces that are stored in the lookup table since they only depend on the lateral displacement and424
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the irregularity. A simple force and torque balance allows to write a set of two linear algebraic425

equations that can be used to find the normal contact forces at the treads each time step. Input426

data are the reaction force and torque, that appear as independent terms, and the contact geometry427

(position of contact points and normal to the wheels at these points), that appear in the coefficient428

matrix and can be extracted from the contact lookup table, as follows:429

Fig. 9: Forces and torque on wheelset.


(
n̄ltread

)
z

(
n̄rtread

)
z

(r̂ltread × n̂ltread)x (r̂rtread × n̂rtread)x


F

nor,wi
ltread

Fnor,wi
rtread

 =

 F̄wi
z

M̂wi
x

 (31)

Once the location of the contact points and the normal contact forces at the tread and the flange of430

the wheels are known, the generalised tangential forces Qtang at these points can be computed. In431

this investigation, Polach method is used [37] because of its good balance between accuracy and432

simplicity. To this end, the relative velocity of the contact points on the wheels with respect to433

the contact points on the rails have to be calculated. These velocities are divided by the wheelset434

forward velocity to find the so-called creepages. Polach method uses the Kalker’s linear coefficients.435

These coefficients depend on the material properties of the wheel and rail, the curvatures of the436

surfaces at the contact points and the normal contact force. The curvatures and the normal contact437

forces are used to find the semi-axis of the contact ellipse (Hertz theory is assumed to be valid).438

If the wheel and rail profiles are assumed to be new, as in the examples presented in Sect. 6, the439

curvatures are piece-wise constant functions that are smoothed to avoid discontinuities. If the440

profiles are assumed to be worn, the curvatures are calculated using numerical differentiation of the441

geometry evaluated at the nodal points and possibly using numerical filtering to avoid high frequency442

space-oscillations of the output. Kalker’s linear coefficients cannot be precomputed because the443

value of the normal contact forces is not known in the pre-processing stage. The strategy followed in444

this research is to pre-compute the Kalker’s linear coefficients for each wheel-rail contact geometry445

used in the lookup table for a normal contact force equal to one. These “unit-force Kalker’s linear446

coefficients” are stored in the lookup table such that the calculation of the actual ones is very simply447

obtained online.448
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4. Wheel-rail contact simulation with KEC profiles449

This section presents the use of KEC profiles for the simulation of railway vehicles using relative450

body-track frame coordinates.451

4.1. KEC profiles452

The KEC profile associated with the wheel-rail profiles combination has the property that, when453

contacting ideal railheads with zero width, results in a wheelset with the same space of allowable454

motion than the wheelset with the real wheel-rail profiles combination. All details about this455

method can be seen in [26, 35]. Figure 10 on the left shows two wheelsets contacting rails. The456

sketch on the top with the real wheel-rail profiles combination while the sketch below with the457

KEC profile. The subspace of allowable motion is characterised by the functions zwi = zclt(ywi),458

ϕwi = ϕclt(ywi), that are plot on the right-upper part of the figure. The real and KEC wheel profiles459

are shown in the right-lower part of the figure.460
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Fig. 10: Real profile and KEC wheel profile.

The contact constraint equations of a wheelset with KEC profiles have a simple form compared461

with Eq. (17): (a) only the condition of the coincidence of two points belonging to the two surfaces462

has to be fulfilled, (b) the orthogonality condition for the normal and tangential vectors of two463

contact surfaces is not needed [26]. Thus, these equations are given by:464

CKEC,wi(qwi, sk) =


0 r0 + f lk 1 0
0 r0 + f rk 0 1
1 Lw ϕwi 0
1 −Lw 0 ϕwi



z̄wi

ϕwi

slk

srk

−

ywi − ylir

ywi − yrir

−f lk − zlir

−f rk − zrir

 (32)
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where sk =
[
slk srk

]T
are the lateral positions of the contact point in the left and right KEC465

profiles, f lk and f rk are the value of the equivalent profiles at these locations and r0 is the rolling466

radius of the wheel when centered in the track. The main advantage of the use of KEC profiles467

instead of the real ones are [26, 35]:468

1. Contact forces on the tread and the flange are treated equally (avoiding hybrid methods).469

2. Contact constraints can be solved online keeping a good computational efficiency.470

3. Wheel climbing can be simulated.471

4. Two-point contact scenario can be simulated with a smooth transition of the normal contact472

forces from tread to flange.473

Regarding the simulation of wheel climbing, some authors claim that the lead-lag contact may474

have important influence on this phenomenon. Lead-lag contact cannot be simulated with the475

KEC-method. However, recent work and the author’s experience [27] shows that this influence of476

the lead-lag contact may not be that important.477

4.2. Equivalence of lookup tables and KEC-method in irregular tracks478

In the KEC-method, the computation of the equivalent wheel profiles requires the wheelset kinematics479

with respect to an ideal track [26]. However, these profiles can be used in irregular tracks with480

accuracy. This is an advantage with respect to traditional contact lookup tables that need to store481

the wheelset kinematics and contact solution for tracks with a set of different values of the gauge.482

This is, the lookup table contact method requires a 2-entry table, while the KEC-method requires a483

1-entry table. Nonetheless, the resulting KEC profiles appear to be valid for different values of the484

gauge, as shown below.485

To show this equivalence in irregular tracks, the wheelset kinematics using contact lookup tables486

and KEC-method is compared next. To that end, a wheelset with wheels S1002 profile and487

rails LB.140-AREA profile are considered [35]. Figure 11 and Fig. 12 show the wheelset vertical488

displacement and roll angle coordinate with respect to the track centreline within a range of track489

gauge variations ∆gv of ±9 mm respectively.490

Figure 13 and Fig. 14 show the absolute differences between the contact solution using lookup491

tables and KEC-method. As shown in both figures, the error obtained for both wheelset vertical492

displacement and roll angle is bigger the higher the gauge variation is. This outermost case, which493

is given by a 9-mm track gauge variation, provides a 60 µm vertical distance and a 0.16 mrad494

errors when the contact point is at the flange before wheel climb. These are quite low errors495

when compared to the high-order magnitudes given at Fig. 11 and Fig. 12 respectively. Moreover,496

those differences are almost inappreciable when the contact point lies on the tread. It can be497

concluded that the KEC-method provides an accurate kinematic solution for its use in tracks with498

irregularities.499

4.3. Calculation of contact forces when using the KEC method500

When using the KEC method two main difficulties are found:501

1. Normal contact forces cannot be obtained with the classical Lagrange multiplier method.502

2. The tangential contact forces cannot be applied on the equivalent profile.503
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Fig. 11: Wheelset vertical displacement with respect to track centreline for different values of gauge irregularity. Left:
contact lookup table. Right: KEC-method.

The second problem has an easy solution. When finding the KEC profile, a table is created to find504

the position of the contact points in the real profiles once the position of the contact points in505

the KEC profile is found solving Eq. (32). The solution of the first problem is more involved as506

explained next. Equation (32) is written in terms of the wheelset coordinates qwi and the profile507

parameters sk . If these profile parameters could be eliminated from Eq. (32), reducing it to a set508

of two equations and three unknowns (ywi, zwi and ϕwi), just like Eq. (20), then the problem would509

be solved and the Lagrange multipliers method could be used to find the normal contact forces.510

Unfortunately, the elimination of sk is not possible due to the non-linearity of Eq. (32). It can be511

concluded that, for the KEC-method:512

Qnor 6= −
(
CKECq

)T
λ. (33)

where the Jacobian matrix CKECq is the result of assembling the Jacobian matrices CKEC,wi
q513

associated with all wheelsets in the vehicle.514

In the classical method of the Lagrange multipliers, the rows of the Jacobian matrix provide the515

direction of the reaction forces in the space of the generalised coordinates, while the multipliers516

mean the number that these rows have to be multiplied by to obtain the generalised reaction forces.517

In the problem at hand, the Jacobian matrix is not needed to find the direction of the reaction518

forces, because these directions are known in advance: the normal vectors to the real wheel profiles.519

Therefore, the reaction forces for wheelset wi can be obtained as:520

Qnor = −

 n̄lw n̄rw

r̂lw × n̂lw r̂rw × n̂rw


λwi

lw

λwi
rw

 = −Nwiλwi (34)

The coefficient matrixNwi of this equation looks similar to the one that appear in Eq. (31). However,521

Nwi includes the complete set vector components (it is 6× 2) instead of single components (the522
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Fig. 12: Wheelset roll angle with respect to track centreline for different values of gauge irregularity. Left: contact
lookup table. Right: KEC-method.

one in Eq. (31) is 2 × 2). An important benefit of this alternative formulation of the Lagrange523

multipliers method is that the multipliers can be directly identified with the normal contact forces,524

this is:525

Fnor,wi
lw = λwi

lw ,

Fnor,wi
rw = λwi

rw.
(35)

Therefore, once the Lagrange multipliers are obtained after solving the equations of motion each526

time-step, no additional equations, like Eq. (31), have to be solved to find the normal contact527

forces.528

Substituting the reaction forces from Eq. (34) into the equations of motion yields:529

Mq̈ + Nλ = Q + Qtang

CKEC = 0
(36)

where N and CKEC are the results of assembling the matrices Nwi and the vectors CKEC,wi
530

associated with all the wheelsets in the vehicle.531

Equation (36) represents a system of differential-algebraic equations (DAE). Because the constraints532

are augmented at position level, this DAE system is called index-3 [41]. It is common in multibody533

dynamics to substitute the constraint equations by their second time-derivative. In that case the534

system is called DAE-index 1. In these derivatives, the wheelset accelerations have to be isolated535

with respect to sk . In this case, this isolation has no difficulty because the constraint equations at536

acceleration level are linear. The process starts with the calculation of the first time-derivative of537
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Fig. 13: Absolute differences between contact lookup tables and KEC kinematics in the wheelset vertical displacement
with respect to track centreline for different values of gauge irregularity.

the KEC constraints, as follows:538

ĊKEC,wi = ∂CKEC,wi

∂qwi
q̇wi + ∂CKEC,wi

∂sk
ṡk +


ẏlir

żlir

ẏrir

żrir

 = CKEC,wi
q q̇wi + CKEC,wi

s ṡk + ẋir = 0, (37)

where xir includes the four track irregularities. The second-time derivative of the constraints are539

given by:540

C̈KEC,wi = CKEC,wi
q q̈wi + CKEC,wi

s s̈k + ĊKEC,wi
q q̇wi + ĊKEC,wi

s ṡk + ẍir = 0. (38)

The Jacobian matrices CKEC,wi
q (4× 6) and CKEC,wi

s (4× 2) can be separated into two submatrices541

with two rows each, as follows:542

CKEC,wi
q =

[
Caq
Cbq

]
, CKEC,wi

s =
[
Cas
Cbs

]
. (39)

Accordingly, the second time-derivative of the constraints given in Eq. (38) can be separated into543

two vectors with two rows:544

C̈a = Caqq̈wi + Cass̈k + Ċa
qq̇wi + Ċa

sṡk + (ẍir)a = 0. (40a)
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Fig. 14: Absolute differences between contact lookup tables and KEC kinematics in the wheelset roll angle with
respect to track centreline for different values of gauge irregularity.

C̈b = Cbqq̈wi + Cbss̈k + Ċb
qq̇wi + Ċb

sṡk + (ẍir)b = 0. (40b)

The second time-derivative of the constraints of Eq. (40b) can be manipulated to isolate s̈k , as545

follows:546

Cbqq̈wi + Cbss̈k = −Ċb
qq̇wi − Ċb

sṡk − (ẍir)b ⇒

⇒ s̈k = −(Cbs)−1
[
Cbqq̈wi + Ċb

q + Ċb
sṡk + (ẍir)b

] (41)

Substituting Eq. (41) into Eq. (40a), one gets:547

Caqq̈wi −Cas(Cbs)−1
[
Cbqq̈wi + Ċb

qq̇wi + Ċb
sṡk + (ẍir)b

]
= −Ċa

qq̇wi − Ċa
sṡk − (ẍir)a ⇒

⇒
(
Caq −Cas(Cbs)−1Cbq

)
q̈wi =

= −(ẍir)a −Cas(Cbs)−1(ẍir)b −
(
Ċa
q −Cas(Cbs)−1Ċb

q
)
q̇wi −

(
Ċa
s −Cas(Cbs)−1Ċb

s
)
ṡk

(42)

These are two constraint equations in which s̈k does not appear. They can be augmented to the548

generalised force balance in the equations of motion. This equation can be written with a simplified549

notation as follows:550

Bwiq̈wi = −Dwi
ir −Ewiq̇wi −Gwiṡk, (43)
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where551

Bwi = Caq −Cas(Cbs)−1Cbq,

Dwi
ir = −(ẍir)a −Cas(Cbs)−1(ẍir)b,

Ewi = Ċa
q −Cas(Cbs)−1Ċb

q,

Gwi = Ċa
s −Cas(Cbs)−1Ċb

s.

(44)

The term Dwi
ir is linear with respect to the second time-derivative of the irregularities. This term552

has little influence because the relatively high-wave length irregularities that are considered in553

rigid-body railway dynamics vary smoothly. In addition, it is a term that in practice is difficult to554

know accurately. Therefore, this term will be neglected in the following.555

Considering all the developments shown in this chapter, the equations of motion of the railway556

vehicle of Eq. (36) can also be written in the following DAE-index 1 form:557

M N

B 0


q̈

λ

 =

Q + Qtang

−Eq̇−Gṡ

 (45)

where N, B, E and G are the result of assembling the matrices Nwi, Bwi, Ewi and Gwi associated558

with all the wheelsets in the vehicle. Vector ṡ includes the profile parameters ṡk of all the wheelsets559

in the vehicle. To find the value of ṡk, the first derivative of the constraint equations given in560

Eq. (37) has to be solved each time-step. This is a linear algebraic system of 4 equations and561

2 unknowns. If the coordinates fulfil the KEC equations, the resulting linear system has to be562

compatible and it can be solved using the pseudo-inverse.563

The calculation of the generalised tangential forces Qtang follows the same procedure that was564

explained in Section 3.3.565

5. Generation of lookup tables for flanging wheelsets566

For the generation of contact lookup tables of wheelsets with wheel-rail profiles combination that567

show 2-point contact, this is, simultaneous contact in the tread and the flange, the procedure568

differs depending on whether these tables are going to be used with a hybrid method (explained569

in Section 3) or with a KEC-method (explained in Section 4). Recall that the KEC-method is an570

online contact method that requires the real wheel-rail contact problem to be solved first to find571

the equivalent profiles. In this context, Fig. 15 illustrates such difference between methods.572
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Fig. 15: Lateral displacement of wheels in the generation of lookup tables.

Assume that, for the track with nominal gauge, the lateral displacement that produces 2-point573

contact is yflan. Then, the range of values of ywi for which the lookup table is calculated is574 [
0 ymax

]
, being ymax > yflan. In the sub-range ywi ∈

[
0 yflan

]
the lookup tables for both575

methods are equal. However, in the sub-range ywi ∈
[
yflan ymax

]
the lookup table for both576

methods differs.577

In the case of lookup tables to be used with a hybrid method, the constraint contact on the tread is578

kept, allowing the wheel flange to penetrate the railhead. The location of the point of maximum579

indentation is stored in the lookup table to be used online as the flange contact point. In the case580

of the KEC-method, the constraint contact is moved to the flange, allowing the wheel tread to581

separate the railhead [35]. That way, the KEC-method accounts for the wheel climbing that is582

fundamental in simulation of derailment.583

6. Simulation results584

In this section, to analyse the differences between the lookup table and the KEC-method, a numerical585

comparison of three different case studies is presented: (1) simulation in irregular track with a586

wheel-rail profile combination that does not show 2-point contact, (2) simulation in irregular track587

with a wheel-rail profile combination that shows 2-point contact and (3) a wheelset climbing and588

derailment scenario with a wheel-rail profile combination that shows 2-point contact. The contact589

lookup tables for the different wheel-rail combinations are discretized for 11 different track gauge590

irregularities and a range of 350-400 different wheelset lateral displacements, which results in a591

storage size of around 25 KB for each case. Also, the variable-time step integrator ode15s with592
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relative and absolute tolerances of 1 · 10−6 and a maximum time step of ∆t = 1 ms is used for the593

dynamic simulations described in the rest of the paper.594

Tab. 1: Simulation parameters for the vehicle

Wheelsets Parameters Bogie Parameters
Mass mwh 1568 kg Mass mb 2982 kg

Roll inertia Iwh
xx 656 kg·m2 Roll inertia Ib

xx 1398.5 kg·m2

Pitch inertia Iwh
yy 168 kg·m2 Pitch inertia Ib

yy 2667 kg·m2

Yaw inertia Iwh
zz 656 kg·m2 Yaw inertia Ib

zz 2667 kg·m2

For all cases, a three-body suspended vehicle formed by two wheelsets and a bogie frame is analysed.595

The mass, inertia properties with respect to the wheelset and bogie frame are presented in Table 1.596

The primary suspension is modelled with four three-dimensional spring-damper elements per wheel597

depicted in Fig. 16. These elements, that connect the axlebox to the bogie frame, have stiffness and598

damping properties defined in lateral, vertical and longitudinal direction as shown in Table 2. In599

this work, axleboxes are assumed to follow the wheelset motion with the exception of the rolling600

motion. In other words, the body frame of the axle boxed is assumed to be parallel to the wheelset601

intermediate-frame. Moreover, Polach rolling contact theory [42] is used for tangential contact force602

computation.603

(a)

(b)

Z

X

Z

Y

Fig. 16: Three-dimensional vehicle (a) elevation; (b) end view.

Track irregularities are generated using analytical expressions of the power spectral density functions604

(PSD) [43]. The alignment, vertical profile, gauge variation and cross level are shown in Fig. 17.605
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Tab. 2: Primary suspension element used in the vehicle

Suspension
element direction

Spring stiffness
(N/m)

Damping Coeff.
(N·s/m)

Number of
elements

Lateral 1.5 · 106 4.5 · 104 4 per bogie
Vertical 3 · 106 6.75 · 104 4 per bogie

Longitudinal 6 · 106 9 · 104 8 per bogie

Fig. 17: Track irregularities, al is alignment, vp is vertical profile, gv is gauge variation, cl is cross level.

6.1. Simulation results in a track with irregularities with 1-point contact wheel-rail profile combina-606

tion607

The proposed first case study considers a wheel-rail profile combination that does not show 2-point608

contacts. It is simulated at a constant forward velocity of V = 10 m/s, in a 700-m track with609

irregularities formed by the following five segments: 100-m tangent, 50-m transition, 400-m left610

curve of R = 235 m radius segment, 50-m transition and 100-m tangent. The track geometry is611

shown in Fig. 18 where the different track segments limits are identified. This segment description612

is latter used in all simulation results figures. Wheel and rail profiles are shown in Fig. 19, which are613

those used by the metropolitan train at the city of Seville. The parameters for both the wheelset614

and the rail are given in Table 3.615
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Fig. 18: Track geometry in solid dark line. Lines perpendicular to the track geometry show the transition points of
the track segments.

Fig. 19: Wheel-rail profile combination which does not show two point contacts (used by the metropolitan train of
the city of Seville).

Tab. 3: Simulation parameters for the wheelset which do not show 2-point contact

Parameters Model Parameters Model Parameters Model Parameters Model
Lw (m) 0.7526 R0 (m) 0.43 Lr (m) 0.7526 β (rad) 0.05

The relationship of transverse curve parameters between KEC and real wheel profiles can be found616

in Fig. 20. It can be seen that for each value of the equivalent parameter slk, only one contact617

point in the real profile slw can be obtained. This corresponds to a single point wheel-rail contact618
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scenario.619

Fig. 20: Transverse curve parameters relation between KEC and real wheel profiles.

The comparison of lateral displacement and yaw angle for the wheelsets and bogie frame using620

lookup table and KEC-method is shown in Fig. 21. As it can be seen from the figures, the results of621

both approaches are almost identical. Due to the curve negotiation, the three bodies show negative622

values of the lateral displacement and the yaw angle. A steady curving motion is not achieved due623

to the track irregularities.624

(a) Lateral displacement (b) Yaw angle

Fig. 21: Comparison of kinematics with the profiles which do not show two-point contact using both approaches.
Full vertical lines refer to the limits of track segments as shown in Fig. 18. Top figures show the motion of the front
wheelset, middle figures show the motion of the rear wheelset and bottom figures show the motion of the bogie frame.

Figure 22 and Fig. 23 show the comparison of normal contact forces at front and rear wheelsets625
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using both approaches. Since there is always an unique contact point per wheel-rail pair, normal626

contact forces of both approaches are treated as reaction forces using Eq. (23). In this context,627

the results from both approaches are very close to each other. When the vehicle negotiates the628

left curve, right wheel for both wheelsets experiences a higher normal contact force than left one,629

which has identical behaviour as in [26]. Also note that all constraints used in the paper (for both630

KEC-method and lookup table method) are bilateral. That means that the associated normal631

contact force, that is calculated as a reaction force, can be negative (adhesion force). Clearly, these632

forces would be physically inadmissible. Therefore, simulation results, are acceptable only if the633

calculated normal contact forces are all compressive.634

Fig. 22: Comparison of normal contact forces at front wheelset using both approaches. Left: original figure, Right:
zoom within the distance travelled from 200 m to 260 m.

Fig. 23: Comparison of normal contact forces at rear wheelset using both approaches. Left: original figure, Right:
zoom within the distance travelled from 200 m to 260 m.

635

6.2. The selection of the flange contact stiffness with 2-point contact wheel-rail profile combina-636

tion637
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The second case study is the same bogie vehicle whose wheelsets use a wheel-rail profile combination638

that shows two-point contacts. Wheel and rail profiles are shown in Fig. 24. The parameters for639

the wheelset and the rail are given in Table 4. Moreover, the vehicle is assumed to have a constant640

forward velocity of V = 10 m/s along the same 700-m length track with irregularities shown in641

Fig. 18.642

Fig. 24: Wheel-rail profile combination which shows two point contact (S1002 wheel profile and LB-140-Area rail
profile).

Tab. 4: Parameters for the wheel-rail profile combination which can show two point contact

Parameters Model Parameters Model Parameters Model Parameters Model
Lw (m) 0.7515 R0 (m) 0.457 Lr (m) 0.7555 β (rad) 0

For this case study in which two-point wheel-rail contact scenarios occur, there is an important643

parameter that controls the simulations using the lookup table method and hybrid contact. This644

parameter is the flange contact stiffness. According to the wheel-rail profile combination shown in645

Fig. 24, the Hertzian stiffness at the flange contact point can be computed from the application of646

the Hertz contact theory in Eq. (29) as Khertz = 7.7075 · 1013 N/m1.5, where the Poisson’s ratio647

is ν = 0.28 and Young’s modulus is Ek = 2.1 · 1011 N/m2. However, the value of this Hertzian648

stiffness is actually higher than the real one, because Hertz theory assumes that both bodies in649

contact are semi-infinite spaces. This means that the structural flexibility, which is important for650

the flange when the load is applied transversely, is not considered.651

Since the rail and wheel profiles have fast change of curvature from tread contact to flange contact,652

the computed Hertzian stiffness evolves similarly. However, the surface parameters to rail/wheel at653

the flange contact points shows almost no difference for different lateral displacement ywh. The654

flange contact point remains the same with two-point contact scenario and hybrid method. Thus,655

in this work, constant values are chosen for flange contact stiffness.656

Due to the high values of contact stiffness and because flange contact is an event that appears657

suddenly as an impact, simulations slow down tremendously any time flange contact occurs. In658

these conditions, the resulting flange normal contact forces are so high that they can be considered659

as physically inadmissible.660

In this context, Tab. 5 shows a comparison of the computational efficiency of the lookup table661

method with different flange contact stiffness. Along the different stiffness used for the flange contact,662

the one that is close to 7.075 · 1013 N/m1.5 leads the integrators to stall during the simulation. If the663
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selected contact stiffness is low, simulations are relatively smooth even with multiple flange contacts.664

For this reason, the dynamicist may be tempted to use low value of the stiffness just to get any665

simulation results, or to get them in a reasonable period of time, such as Khertz = 1 · 109 N/m1.5.666

However, the results may show flange to rail-head indentations so large that they can be considered667

as physically inadmissible as shown in Fig. 25.668

Tab. 5: Computation efficiency with different flange contact stiffness and damping parameters by using lookup table
approach

Khertz (N/m1.5) 1 · 1013 1 · 1012 1 · 1011 1 · 1010 1 · 109

Cdamp (N · s/m2) 1 · 1011 1 · 1010 1 · 109 1 · 108 1 · 107

CPU time ratio (s/1s) Stall 11.8 6.9 2.45 1.09
Function evaluation Stall 153338 81265 20901 11822

Fig. 25: Flange to rail-head indentations at front wheelsets with different flange contact stiffness when using the
lookup table approach. The unit of flange contact stiffness Khertz is N/m1.5.

As a conclusion, on the one hand, the selection of the contact stiffness is fundamental in the669

simulation of wheel flange contact with a hybrid method and, on the other hand, this selection is670

some-how arbitrary when not much information is known about the local contact process and the671

wheel structural deformation. In order to improve computation efficiency and obtain physically672

admissible indentations of the vehicle motion, the Hertzian parameters for the flange contact when673

using the lookup table approach are chosen as constant values of Khertz = 1 · 1010 N/m1.5 and674

Cdamp = 1 · 108 N · s/m2, in the rest of the work.675

676

6.3. Simulation results in a track with irregularities with 2-point contact wheel-rail profile combina-677

tion678

Due to the cumbersome effort to choose flange contact stiffness for the lookup table approach, it is679

preferable to use a method that treats equally the tread and the flange contacts, as the KEC-method680

does. The use of the KEC-method results in smooth simulations even with multiple flange contacts.681

More importantly, the KEC-method is able to simulate wheel climbing. The KEC-method fulfils682
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these conditions. In this and the following sections, the KEC method is compared to the lookup683

table approach with the two-point contact problem and the wheel-rail profile combination shown in684

Fig. 24.685

Figure 26 plots the location of the contact points in the real profile as a function of the location686

of the contact point in the KEC profile. It can be seen that for a certain value of the equivalent687

parameter slk there are two simultaneous contact points in the real profile slw. This corresponds to688

a two-point wheel-rail contact scenario where one contact point is located at the tread slw
t , and689

another one is located at the flange slw
f . Based on the parameters given in [35] to efficiently use the690

KEC-method with the two-point contact scenario, this relation between the equivalent and real691

wheel profiles is regularised as a dashed green line in Fig. 26. This allows a continuous contact point692

evolution from tread to flange avoiding the discontinuities associated with the contact constraints.693

However, Fig. 26 is not completely used for the lookup table approach, since only tread contact is694

considered. Instead, an compliant lateral force model is considered to account for wheel penetration695

at the flange, as shown in Sec. 5.696

Fig. 26: Regularisation of the transverse curve parameter relation for the left equivalent and real wheels when
KEC-method is used.

The vehicle is assumed to have a constant forward velocity of V = 10 m/s along the same 700-m697

length track with irregularities shown in Fig. 18. Due to these rail irregularities, a high frequency698

content can be observed in the following figures. The lateral displacement and the yaw angle of699

both wheelsets are compared in Fig. 27. The resulting lateral displacements are quite similar using700

both approaches. However, when the vehicle enters into the 235 m radius curve, flange contacts701

occurs. The lateral displacement ywh enters into the sub-range ywh ∈
[
yflan ymax

]
, in which the702

kinematic of yaw angle for both methods differs (see Fig. 15 in Sec. 5). However, as it can be seen703

in Fig. 27, the lateral displacement of the vehicle bodies is very similar in this particular problem.704

Slight differences can be observed in the yaw angles shown in Fig. 27.705
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(a) Lateral displacement (b) Yaw angle

Fig. 27: Comparison of kinematics using profiles that show two-point contacts. Left: lateral displacement, Right: yaw
angle.

Figure 28 and Fig. 29 show the comparison of the normal contact force at right wheel of front and706

rear wheelset using both approaches. The normal contact forces at the right tread and flange differ707

when the wheelset is negotiating the curve. That is due to the two different contact approaches708

(constrained in the KEC-method, elastic in the lookup table method) used in the wheel flange709

area.710

Fig. 28: Comparison of normal contact forces at front wheelset with two-point contacts. Left: original figure, Right:
zoom within the distance travelled from 200 m to 260 m.
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Fig. 29: Comparison of normal contact forces at rear wheelset with two-point contacts. Left: original figure, Right:
zoom within the distance travelled from 200 m to 260 m.

6.4. Wheelset climbing and derailment with 2-point contact wheel-rail profile combination711

Due to the large angle of attack generated by friction force, wheel climbing and derailment may712

occur, when the vehicle is running with a high forward velocity or on a small radius curve. In this713

case study, the bogie vehicle is running at a constant forward velocity of V = 25 m/s on a 1000-m714

track without irregularities, formed by the following five segments: 100-m tangent, 50-m transition,715

350-m left curve of R = 100 m radius segment, 150-m transition and 350-m tangent.716

The comparison of the lateral and vertical displacement using both approaches is shown in Fig. 30.717

When using the lookup table approach, the lateral displacement reaches the steady motion due718

to permanent flange contact. As a result, the vertical displacement keeps constant during the719

simulation. However, when using the KEC-method, the wheelset vertical displacement at Fig. 30720

shows that the wheelset tends to climb several times when it starts to enter into transitions at721

around 100 m. Due to regularised tread-flange transition used in KEC-method, the rear flange722

climbs when passing through the small curve and the derailment occurs when the longitudinal723

coordinate is approximately 380 m.724
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(a) Lateral displacement (b) Vertical displacement

Fig. 30: Comparison of kinematics at wheel-climbing scenario using profiles that show two-point contacts. Left:
lateral displacement, Right: vertical displacement.

Finally, Fig. 31 shows the wheelset climbing scenario during the simulation. Accordingly, the725

configurations of the rear left wheel in the contact point section during the simulation is shown in726

the same figure with different wheelset lateral displacements. It is observed that the rear left wheel727

is climbing the rail with one distinct jumps in contact point. The contact point on the wheel tread728

which is in contact with the top of the rail is jumped to the rail corner, in which wheel flange is in729

contact. As the lateral displacement increases, the wheel is completely moved up to the top of the730

rail. This scenario agrees with the results proposed in [30].731

Fig. 31: Frames of the wheelsets during wheelset climbing using KEC approach (Left); Wheel/rail contact in point
section with different wheelset lateral displacement during the simulation (Right).

In this example, the lookup method and the KEC-method result in totally different behaviour732

of the vehicle. As it has been shown, simulations based on the hybrid-lookup table method may733

produce results that are not in the safe side, because wheel climbing cannot be.734

38



7. Conclusion735

Two constraint-based formulations for the wheel-rail contact simulation in multibody dynamics736

are introduced and compared: the use of precalculated contact lookup tables and the Knife-edge737

Equivalent Contact method (KEC-method). Contact search simulation with lookup tables is a738

well-known and widely used technique. This paper describes a method that does not consider the739

influence of the yaw angle in the contact geometry. This approach, that is sufficiently accurate740

in most scenarios, is commonly improved in most simulation codes by including the wheelset yaw741

as an additional entry to the lookup tables. Regarding this method, the original contributions742

of this paper are: (1) a method for interpolating the tables in the presence of irregularities and743

(2) a method for the calculation of the normal contact forces that does not require the use of the744

Jacobian of the wheel-rail contact constraints. This method models the wheel-rail flange contact745

using an elastic approach to be able to simulate the two-point contact scenario. That is why this746

method is considered as a hybrid approach.747

The KEC-method is a new wheel-rail contact approach recently developed by the authors. The748

KEC-method substitutes the real wheel and rail profiles with a fictitious wheel profile that contacts749

a spatial curve such that the relative wheel-track motion remains unchanged. This method results750

in very important advantages for the simulations: (1) the contact constraints are very simple and751

can be solved on-line, (2) constraint functions are continuous even in the case of two-point contact,752

(3) it allows a smooth transition of the contact force from the wheel-tread to the wheel-flange and753

(4) it is effective in the simulation of wheel climbing. This is the only constraint-based contact754

method that can be used to simulate the two-point wheel rail contact. Regarding this method, the755

main contribution of this paper is to show that the wheel KEC profile, that is generated using an756

irregularity-free track section, remains valid, this is, keeps the same space of allowable motion, also757

in the presence of track irregularities.758

Three different case studies of a bogie vehicle with different wheel-rail profile combinations in a759

tangent and curved track are examined. Results show that, in general, both approaches provide760

a similar dynamic behaviour and normal contact forces. Due to the differences in the simulation761

of flange contact, the wheelsets yaw angle differs at curve negotiation. However, when simulating762

the negotiation of a curve at relatively high velocity, the results of both methods are drastically763

different. Due to its ability to simulate wheel climbing, the KEC-method predicts derailment while764

the lookup-hybrid method predicts a permanent and stable flange contact, even in the presence765

of track irregularities. It can be concluded that simulations with the lookup-hybrid method may766

not be on the safe side and the KEC-method can be considered as superior when doing safety767

analysis.768

Acknowledgements769

The first and third authors thank the Department of Economy, Science, Enterprise and University770

of the Andalusian Regional Government, in Spain, under the PAIDI 2020 program with project771

reference P18-RT-1772. The second author thanks for the support given by Business of Finland772

under the SmartTram-LUT project with reference 6292/31/2018. All this support is gratefully773

acknowledged.774

39



Conflicts of interest775

The authors declare that there is no conflict of interest to this work.776

References777

[1] S. Bruni, J. Meijaard, G. Rill, A. Schwab, State-of-the-art and challenges of railway and road vehicle dynamics778

with multibody dynamics approaches, Multibody Syst Dyn 49 (2020) 1–32.779

[2] S. Z. Meymand, A. Keylin, M. Ahmadian, A survey of wheel–rail contact models for rail vehicles, Vehicle System780

Dynamics 54 (3) (2016) 386–428. doi:10.1080/00423114.2015.1137956.781

[3] A. A. Shabana, M. Tobaa, H. Sugiyama, K. E. Zaazaa, On the computer formulations of the wheel/rail contact782

problem, Nonlinear Dynamics 40 (2) (2005) 169–193. doi:10.1007/s11071-005-5200-y.783

[4] Y. Ye, Y. Sun, S. Dongfang, D. Shi, M. Hecht, Optimizing wheel profiles and suspensions for railway vehicles784

operating on specific lines to reduce wheel wear: a case study, Multibody System Dynamics (2020) 1–32.785

[5] P. Antunes, H. Magalhães, J. Ambrosio, J. Pombo, J. Costa, A co-simulation approach to the wheel–rail contact786

with flexible railway track, Multibody System Dynamics 45 (2) (2019) 245–272.787

[6] T. W. Tu, Dynamic modelling of a railway wheelset based on kane’s method, International Journal of Heavy788

Vehicle Systems 27 (1-2) (2020) 202–226.789

[7] A. A. Shabana, K. E. Zaazaa, J. L. Escalona, J. R. Sany, Development of elastic force model for wheel/rail790

contact problems, Journal of Sound and Vibration 269 (1–2) (2004) 295–325. doi:https://doi.org/10.1016/791

S0022-460X(03)00074-9.792

[8] M. Machado, P. Moreira, P. Flores, H. M. Lankarani, Compliant contact force models in multibody dynamics:793

Evolution of the hertz contact theory, Mechanism and Machine Theory 53 (2012) 99–121.794

[9] P. Flores, H. M. Lankarani, Contact force models for multibody dynamics, Vol. 226, Springer, 2016.795

[10] A. A. Shabana, J. R. Sany, An augmented formulation for mechanical systems with non-generalized coordinates:796

application to rigid body contact problems, Nonlinear dynamics 24 (2) (2001) 183–204. doi:10.1023/A:797

1008362309558.798

[11] H. Sugiyama, Y. Suda, On the contact search algorithms for wheel/rail contact problems, Journal of computational799

and nonlinear dynamics 4 (4).800

[12] F. Marques, H. Magalhães, J. Pombo, J. Ambrósio, P. Flores, A three-dimensional approach for contact detection801

between realistic wheel and rail surfaces for improved railway dynamic analysis, Mechanism and Machine Theory802

149 (2020) 103825.803

[13] H. Magalhães, F. Marques, B. Liu, P. Antunes, J. Pombo, P. Flores, J. Ambrósio, J. Piotrowski, S. Bruni,804

Implementation of a non-hertzian contact model for railway dynamic application, Multibody System Dynamics805

48 (1) (2020) 41–78.806

[14] Y. Sun, W. Zhai, Y. Guo, A robust non-hertzian contact method for wheel–rail normal contact analysis, Vehicle807

System Dynamics 56 (12) (2018) 1899–1921.808

[15] J. Piotrowski, W. Kik, A simplified model of wheel/rail contact mechanics for non-hertzian problems and its809

application in rail vehicle dynamic simulations, Vehicle System Dynamics 46 (1-2) (2008) 27–48.810

[16] Y. Sun, W. Zhai, Y. Ye, L. Zhu, Y. Guo, A simplified model for solving wheel-rail non-hertzian normal contact811

problem under the influence of yaw angle, International Journal of Mechanical Sciences (2020) 105554.812

[17] J. Pombo, J. Ambrósio, M. Silva, A new wheel–rail contact model for railway dynamics, Vehicle System Dynamics813

45 (2) (2007) 165–189. doi:https://doi.org/10.1080/00423110600996017.814

[18] J. Pombo, J. Ambrósio, Application of a wheel–rail contact model to railway dynamics in small radius curved815

tracks, Multibody System Dynamics 19 (2008) 91–114. doi:https://doi.org/10.1007/s11044-007-9094-y.816

[19] J. Pombo, J. Ambrósio, An alternative method to include track irregularities in railway vehicle dynamic analyses,817

Nonlinear Dynamics 68 (2012) 161–176. doi:https://doi.org/10.1007/s11071-011-0212-2.818

[20] J. J. O’Shea, A. A. Shabana, Analytical and numerical investigation of wheel climb at large angle of attack,819

Nonlinear Dynamics 83 (2016) 555–577. doi:https://doi.org/10.1007/s11071-015-2347-z.820

[21] J. J. O’Shea, A. A. Shabana, Further investigation of wheel climb initiation: Three-point contact, Proceedings of821

the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics 231 (1) (2017) 121–132.822

[22] M. Malvezzi, E. Meli, S. Falomi, A. Rindi, Determination of wheel–rail contact points with semianalytic methods,823

Multibody System Dynamics 20 (4) (2008) 327–358. doi:10.1007/s11044-008-9123-5.824

[23] S. Falomi, M. Malvezzi, E. Meli, Multibody modeling of railway vehicles: Innovative algorithms for the detection of825

wheel–rail contact points, Wear 271 (1-2) (2011) 453–461. doi:https://doi.org/10.1016/j.wear.2010.10.039.826

40

http://dx.doi.org/10.1080/00423114.2015.1137956
http://dx.doi.org/10.1007/s11071-005-5200-y
http://dx.doi.org/https://doi.org/10.1016/S0022-460X(03)00074-9
http://dx.doi.org/https://doi.org/10.1016/S0022-460X(03)00074-9
http://dx.doi.org/https://doi.org/10.1016/S0022-460X(03)00074-9
http://dx.doi.org/10.1023/A:1008362309558
http://dx.doi.org/10.1023/A:1008362309558
http://dx.doi.org/10.1023/A:1008362309558
http://dx.doi.org/https://doi.org/10.1080/00423110600996017
http://dx.doi.org/https://doi.org/10.1007/s11044-007-9094-y
http://dx.doi.org/https://doi.org/10.1007/s11071-011-0212-2
http://dx.doi.org/https://doi.org/10.1007/s11071-015-2347-z
http://dx.doi.org/10.1007/s11044-008-9123-5
http://dx.doi.org/https://doi.org/10.1016/j.wear.2010.10.039


[24] L. Baeza, D. J. Thompson, G. Squicciarini, F. D. Denia, Method for obtaining the wheel–rail contact location827

and its application to the normal problem calculation through ‘CONTACT’, Vehicle System Dynamics 56 (11)828

(2018) 1734–1746. doi:10.1080/00423114.2018.1439178.829

[25] S. Muñoz, J. F. Aceituno, P. Urda, J. L. Escalona, Multibody model of railway vehicles with weakly coupled830

vertical and lateral dynamics, Mechanical Systems and Signal Processing 115 (2019) 570–592. doi:10.1016/j.831

ymssp.2018.06.019.832

[26] J. L. Escalona, J. F. Aceituno, P. Urda, O. Balling, Railway multibody simulation with the knife-edge-equivalent833

wheel–rail constraint equations, Multibody System Dynamics (2019) 1–30doi:10.1007/s11044-019-09708-x.834

[27] J. L. Escalona, J. F. Aceituno, Multibody simulation of railway vehicles with contact lookup tables, International835

Journal of Mechanical Science 155 (2019) 571–582. doi:https://doi.org/10.1016/j.ijmecsci.2018.01.020.836

[28] M. Bozzone, E. Pennestrì, P. Salvini, A lookup table-based method for wheel–rail contact analysis, Proceedings837

of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics 225 (2) (2011) 127–138.838

[29] H. Sugiyama, K. Araki, Y. Suda, On-line and off-line wheel/rail contact algorithm in the analysis of multibody839

railroad vehicle systems, Journal of Mechanical Science and Technology 23 (2009) 991–996. doi:https://doi.840

org/10.1007/s12206-009-0327-2.841

[30] H. Sugiyama, T. Sekiguchi, R. Matsumura, S. Yamashita, Y. Suda, Wheel/rail contact dynamics in turnout842

negotiations with combined nodal and non-conformal contact approach, Multibody System Dynamics 27 (2012)843

55–74. doi:https://doi.org/10.1007/s11044-011-9252-0.844

[31] J. Piotrowski, B. Liu, S. Bruni, The kalker book of tables for non-hertzian contact of wheel and rail, Vehicle845

System Dynamics 55 (6) (2017) 875–901.846

[32] F. Marques, H. Magalhães, B. Liu, J. Pombo, P. Flores, J. Ambrósio, J. Piotrowski, S. Bruni, On the generation847

of enhanced lookup tables for wheel-rail contact models, Wear 434–435 (2019) 202993. doi:https://doi.org/848

10.1016/j.wear.2019.202993.849

[33] J. Piotrowski, S. Bruni, B. Liu, E. D. Gialleonardo, A fast method for determination of creep forces in non-850

Hertzian contact of wheel and rail base on a book of tables, Multibody System Dynamics 45 (2019) 169–184.851

doi:https://doi.org/10.1007/s11044-018-09635-3.852

[34] J. Santamaría, E. G. Vadillo, J. Gómez, A comprehensive method for the elastic calculation of the two-853

point wheel–rail contact, Vehicle System Dynamic 44 (sup1) (2006) 240–250. doi:https://doi.org/10.1080/854

00423110600870337.855

[35] J. F. Aceituno, P. Urda, E. Briales, J. L. Escalona, Analysis of the two-point wheel-rail contact scenario856

using the knife-edge-equivalent contact constraint method, Mechanism and Machine Theory 148 (2020) 103803.857

doi:https://doi.org/10.1016/j.mechmachtheory.2020.103803.858

[36] J. Kalker, Three dimensional elastic bodies in rolling contact, Kluwer Academic Publishers, Dordrecht/-859

Boston/London, 1990.860

[37] O. Polach, Creep forces in simulations of traction vehicles running on adhesion limit, Wear 258 (7-8) (2005)861

992–1000. doi:10.1016/j.wear.2004.03.046.862

[38] K. Hunt, E. Crossley, Coefficient of restitution interpreted as damping in vibroimpact, Journal of Applied863

Mechanics 7 (1975) 440–445.864

[39] A. A. Shabana, K. E. Zaazaa, H. Sugiyama, Railroad vehicle dynamics: a computational approach, CRC press,865

2007.866

[40] W. Goldsmith, Impact-the theory and physical pehaviour of colliding solids, Edward Arnold Ltd., London,England,867

1960.868

[41] U. M. Ascher, L. R. Petzold, Computer methods for ordinary differential equations and differential-algebraic869

equations, Vol. 61, Siam, 1998.870

[42] O. Polach, A fast wheel-rail forces calculation computer code, Vehicle System Dynamics 33 (sup1) (1999) 728–739.871

doi:10.1080/00423114.1999.12063125.872

[43] H. Claus, W. Schiehlen, Modeling and simulation of railway bogie structural vibrations, Vehicle System Dynamics873

29 (1998) 538–552. doi:10.1080/00423119808969585.874

41

http://dx.doi.org/10.1080/00423114.2018.1439178
http://dx.doi.org/10.1016/j.ymssp.2018.06.019
http://dx.doi.org/10.1016/j.ymssp.2018.06.019
http://dx.doi.org/10.1016/j.ymssp.2018.06.019
http://dx.doi.org/10.1007/s11044-019-09708-x
http://dx.doi.org/https://doi.org/10.1016/j.ijmecsci.2018.01.020
http://dx.doi.org/https://doi.org/10.1007/s12206-009-0327-2
http://dx.doi.org/https://doi.org/10.1007/s12206-009-0327-2
http://dx.doi.org/https://doi.org/10.1007/s12206-009-0327-2
http://dx.doi.org/https://doi.org/10.1007/s11044-011-9252-0
http://dx.doi.org/https://doi.org/10.1016/j.wear.2019.202993
http://dx.doi.org/https://doi.org/10.1016/j.wear.2019.202993
http://dx.doi.org/https://doi.org/10.1016/j.wear.2019.202993
http://dx.doi.org/https://doi.org/10.1007/s11044-018-09635-3
http://dx.doi.org/https://doi.org/10.1080/00423110600870337
http://dx.doi.org/https://doi.org/10.1080/00423110600870337
http://dx.doi.org/https://doi.org/10.1080/00423110600870337
http://dx.doi.org/https://doi.org/10.1016/j.mechmachtheory.2020.103803
http://dx.doi.org/10.1016/j.wear.2004.03.046
http://dx.doi.org/10.1080/00423114.1999.12063125
http://dx.doi.org/10.1080/00423119808969585

	kansi_escalona_wheel-rail
	WHEEL_RAIL_CONTACT_SIMULATION_WITH_LOOKUP_TABLES_AND_KEC_EQUIVALENT_PROFILES
	Introduction
	Kinematics of the wheel-rail contact
	Track kinematics
	Vehicle kinematics
	Wheelset kinematics
	Wheel-rail contact constraints

	Wheel-rail contact simulation with lookup tables
	Calculation of lookup tables
	Interpolation in the lookup tables 
	Calculation of contact forces when using lookup tables

	Wheel-rail contact simulation with KEC profiles
	KEC profiles
	Equivalence of lookup tables and KEC-method in irregular tracks
	Calculation of contact forces when using the KEC method

	Generation of lookup tables for flanging wheelsets
	Simulation results
	Simulation results in a track with irregularities with 1-point contact wheel-rail profile combination
	The selection of the flange contact stiffness with 2-point contact wheel-rail profile combination
	Simulation results in a track with irregularities with 2-point contact wheel-rail profile combination
	Wheelset climbing and derailment with 2-point contact wheel-rail profile combination

	Conclusion


