
FASTER THAN REAL-TIME SIMULATION OF
FLUID POWER-DRIVEN MECHATRONIC MACHINES

Julia Malysheva

ACTA UNIVERSITATIS LAPPEENRANTAENSIS 960



Julia Malysheva

FASTER THAN REAL-TIME SIMULATION OF 
FLUID POWER-DRIVEN MECHATRONIC MACHINES

Acta Universitatis 
Lappeenrantaensis 960

Dissertation for the degree of Doctor of Science (Technology) to be presented 
with due permission for public examination and criticism at Lappeenranta-
Lahti University of Technology LUT, Lappeenranta, Finland on 1st of June, 
2021, at noon.



Supervisor Professor Heikki Handroos 

LUT School of Energy Systems 

Lappeenranta-Lahti University of Technology LUT 

Finland 

 

Reviewers Professor Asko Ellman 

 Automation Technology and Mechanical Engineering 

Faculty of Engineering and Natural Sciences 

Tampere University 

Finland 

 

Professor Matti Pietola  

Department of Mechanical Engineering 

Aalto University 

Finland 

 

Opponent Professor Asko Ellman 

 Automation Technology and Mechanical Engineering 

Faculty of Engineering and Natural Sciences 

Tampere University 

Finland 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ISBN 978-952-335-652-8 

ISBN 978-952-335-653-5 (PDF) 

ISSN-L 1456-4491 

ISSN 1456-4491 

 

Lappeenranta-Lahti University of Technology LUT 

LUT University Press 2021 

  



Abstract 

Julia Malysheva  

Faster than real-time simulation of fluid power-driven mechatronic machines 

Lappeenranta 2021 

79 pages 

Acta Universitatis Lappeenrantaensis 960 

Diss. Lappeenranta-Lahti University of Technology LUT 

ISBN 978-952-335-652-8 

ISBN 978-952-335-653-5 (PDF)    

ISSN-L 1456-4491 

ISSN 1456-4491 

 

The level of automation of mechatronic machines, such as excavators, logging harvesters 

or fluid power-driven cranes, has increased significantly over the past few decades. In the 

machine industry, this led to the emergence and development of novel approaches for the 

new product development process, such as virtual prototyping. At the design and 

engineering stages of new mechatronic machine development, virtual prototypes are used 

for the studying of the design decision effects on machine dynamic behaviour, thus 

reducing the need for the construction of physical prototypes. Essentially, the virtual 

prototype of the mechatronic machine is a physics-based simulation model. Mechanical 

and fluid power components are the most important parts of such simulation models. 

These components are also inherent to other types of mechatronic systems such as 

aircraft, heavy industrial process machines, ships, offshore cranes, etc. Depending on the 

task, the virtual prototype can be run in real time or faster than real time. The required 

high simulation speed is often a major stumbling block in the employment of more 

advanced simulation models.  

In the work, the problem of a faster than real-time simulation of a mechatronic machine 

that includes the mechanical and fluid power components is considered. For this task, two 

different simulation models for a fluid power-driven crane were built and their properties 

compared. The first simulation model was built using a computationally efficient dynamic 

topological formulation (Iterative Newton-Euler Formulation) for the multibody 

modelling of the crane’s mechanical structure. The second simulation model was 

developed using commercial software and taken as a reference for the calculation 

accuracy and speed analysis. The fluid power components for both simulation models 

were built using mathematical modelling based on the lumped fluid power theory. The 

crane, whose dynamics were modelled in the work, is the PATU-655 fluid power-actuated 

mobile crane. The advantages and disadvantages of both simulation models in achieving 

faster than real-time simulation were discussed. 

Due to the presence of the nonlinearities and singularities inherent in the mathematical 

model of the fluid power components, during the simulation a very small time step should 

be used in the integration algorithm in order to maintain numerical stability of the 

solution. This may result in the simulation time overflows and the inability to maintain 

the high simulation speed. Machine learning approach can help in solution of such a 



problem. In particular, an artificial neural network (ANN) usage for fluid power system 

modelling can be beneficial. Thus, the work addresses the question of recurrent neural 

network (RNN) usage for the faster than real-time simulation of fluid power systems. A 

physics-based simulation model was created using an experimentally verified 

mathematical model of a hydraulic position servo system (HPS). The RNN of NARX 

architecture was developed, trained and tested on the training data produced by the 

physics-based simulation model. A pre-processing technique was developed and applied 

to the training data in order to speed up the training and simulation processes. The 

obtained results for the first time show that the employment of the RNN together with the 

developed pre-processing technique ensures the simulation speed-up of the complex fluid 

power system at the expense of a small decrease in accuracy.  

In the work, another solution for the task of the fast simulation of fluid power systems 

with singularities originating (in particular) from the presence of small volumes is also 

proposed. The solution was based on the development and usage of an advanced pseudo-

dynamic solver with adaptive criterion (AdvPDS), which is an enhanced version of a 

classical pseudo-dynamic solver (PDS). The AdvPDS seeks a steady-state solution of 

pressure building up in a small volume. Two main advantages of the proposed solver were 

obtained. The first was the higher accuracy and numerical stability of the solution 

compared with the PDS, owing to the enhanced solver structure and the use of an adaptive 

convergence criterion. The second was the faster calculation time compared with the 

conventional integration method, owing to the obtained possibility of larger integration 

time-step usage. Simulation results confirmed that the AdvPDS is better than 

conventional solvers for real-time systems that include fluid power components with 

small volumes. In addition, the work also studies which of the numerical integration 

methods incorporated into the AdvPDS ensure the efficient (fast and accurate) calculation 

of stiff fluid power models. Thus, the effect of three fixed-step integration methods 

(Euler, Runge-Kutta of fourth order, and modified Heun’s method) were considered. In 

the work, the numerical stability of the modified Heun’s method was improved by 

substituting the purely turbulent orifice model with the two-regime orifice model. The 

two-regime orifice accounts for both the turbulent and laminar flows and thus allows the 

avoidance of numerical problems related to the small pressure drops. The compiled C 

language that supports the real-time simulation was chosen as the implementation 

environment for the developed simulation models. The solutions obtained for the 

numerical examples using the AdvPDS based on the three integration approaches, their 

accuracies and calculation speeds were presented in comparison with the solution 

obtained using a conventional integration procedure. The results showed that, in general, 

the AdvPDS allows the solution of numerically stiff fluid power models in a very efficient 

way, ensuring accelerated simulation with high solution accuracy. It was also shown that 

the simulation speed-up can be obtained not only by the complexity reduction of the 

numerical integration method inside the AdvPDS, but also by increasing the numerical 

stability of the employed numerical integration method. 

Keywords: faster than real-time simulation, mechatronic machine, machine learning, 

recurrent neural network, stiff fluid power system modelling and simulation, advanced 

pseudo-dynamic solver, numerical integration.  
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Рівень автоматизації мехатронних машин, таких як екскаватор, лісозаготівельні 

комбайни або гідравлічні крани значно виріс за останнє десятиліття. У 

машинобудівельній галузі це призвело до появи інноваційного підходу до процесу 

розробки нових продуктів, а саме віртуального прототипування. На етапах 

проєктування і розробки нової мехатронної машини віртуальні прототипи 

використовуються для вивчення впливу проєктних рішень на динамічну поведінку 

машини, що знижує потреби в створенні фізичних прототипів. Віртуальний 

прототип мехатронної машини – це фізично обґрунтована симуляційна модель. 

Механічна і гідравлічна складові є суттєвими частинами симуляційної моделі. Ці 

складові входять до складу також й інших мехатронних систем, таких як літаки, 

важкі підіймально-транспортні машини, кораблі, морські крани тощо. Залежно від 

завдання віртуальний прототип може працювати в режимі реального часу або в 

режимі швидше, ніж реальний час. Вимога щодо високої швидкості обчислень 

часто є основною перепоною при використанні більш точних та досконалих 

симуляційних моделей. 

 

В роботі розглядається проблема симуляції у режимі швидше, ніж реальний час 

мехатронної машини із механічною і гідравлічною складовими. Для цього були 

створені дві різні симуляційні моделі гідравлічного крана та проведено порівняння 

їх властивостей. Перша симуляційна модель була побудована із застосуванням 

обчислювально ефективного топологічного динамічного формулювання (методу 

Ньютона-Ейлера) для багатотільного моделювання механічної конструкції крана. 

Друга симуляційна модель була розроблена з використанням комерційного 

програмного забезпечення й використовувалась як еталонна для оцінки точності та 

швидкості обчислень. Гідравлічна складова для обох симуляційних моделей була 

побудована шляхом математичного моделювання з використанням теорії 

гідравлічних ланцюгів із зосередженими параметрами. В роботі проведено 

моделювання динаміки мобільного крану із гідравлічним приводом PATU-655. 

Також проведено порівняння симуляційних моделей по досягненню симуляції у 

режимі швидше, ніж реальний час. 

 



Через наявні у математичних моделях гідравлічної складової нелінійності та 

сингулярності, в алгоритмі інтегрування при моделюванні слід використовувати 

дуже малий часовий крок для підтримки обчислювальної стійкості рішення. У 

протилежному випадку переповнення часу унеможливлює зберігання високої 

швидкостi симуляції. У розв’язанні такої проблеми може допомогти підхід із 

використанням машинного навчання. Зокрема, може бути корисним використання 

штучних нейронних мереж для моделювання гідравлічної системи. В роботі 

розглядається питання використання рекурентної нейронної мережі (PHМ) для 

симуляції гідравлічних систем в режимі швидше, ніж реальний час. Було створено 

фізично обґрунтовану симуляційну модель на базі експериментально перевіреної  

математичної моделі гідравлічної сервосистеми (ГСС). РНМ NARX-архітектури 

була розроблена, навчена і протестована на навчальних даних, створених за 

допомогою симуляційної моделі. Методика попередньої обробки був розроблений 

і застосований до навчальних даних, щоб прискорити процеси навчання і 

симуляції. Отримані результати вперше показали, що використання РНМ спільно 

із розробленою методикою попередньої обробки даних можуть забезпечити 

прискорення симуляції складної гідравліко-динамічної системи коштом 

невеликого зниження точності. 

 

Також в роботі запропоновано альтернативне розв’язання задачі швидкої симуляції 

гідравлічних систем із сингулярністю, зокрема, що виникає внаслідок присутності 

малих об'ємів. Розв’язання базується на розробці та використанні вдосконаленого 

псевдодинамічного інтегратора з адаптивним критерієм (ВПДІ), який є 

поліпшеною версією класичного псевдодинамічного інтегратора (ПДІ). ВПДІ 

шукає стаціонарне рішення для тиску, що виникає у малому об’ємі. Отримано дві 

основні переваги запропонованого інтегратору. По-перше, вищими є точність і 

стабільність обчислень у порівнянні з ПДІ завдяки вдосконаленій структурі 

інтегратора й використанню адаптивного критерію збіжності. По-друге, менший 

час обчислень, у порівнянні з традиційним методом інтегрування, завдяки 

можливості використання більшого кроку інтегрування. Результати симуляції 

підтвердили, що ВПДІ є кращим варіантом, ніж традиційні інтегратори для систем 

реального часу, що включають гідравлічну компоненту із малим об’ємом. Крім 

того, в роботі також досліджується які з методів чисельного інтегрування, що 

входять до складу ВПДІ, забезпечують ефективне (швидке і точне) обчислення 

жорстких моделей гідравлічних систем. Таким чином, було розглянуто вплив трьох 

методів інтегрування з фіксованим кроком (Ейлера, Рунге-Кутта четвертого 

порядку та модифікованого методу Хойна). У роботі була поліпшена чисельна 

стійкість модифікованого методу Хойна шляхом заміни суто турбулентної моделі 

отвору дворежимною моделлю отвору. Дворежимна модель отвору враховує як 

турбулентний, так і ламінарний потоки, що дозволяє уникнути числових проблем, 

пов’язаних з малими перепадами тиску. Компільовану мову C, що підтримує 

симуляцію в реальному часі, було обрано як середовище реалізації для розроблених 

симуляційних моделей. Рішення, отримані для чисельних прикладів з 

використанням ВПДІ на основі трьох підходів інтегрування, їх точності й 

швидкості обчислень, були представлені у порівнянні із рішеннями, що були 

отримані із використанням традиційної процедури інтегрування. Результати 



показали, що в цілому ВДПІ дозволяє дуже ефективно вирішувати чисельно 

жорсткі моделі гідравлічних систем, забезпечуючи швидку симуляцію із високою 

точністю. Також було показано, що прискорення симуляції може бути отримано не 

тільки шляхом зменшення складності методу чисельного інтегрування всередині 

ВПДІ, але й шляхом підвищення його чисельної стійкості. 

 

Ключові слова: симуляція в режимі швидше, ніж реальний час, мехатронні 

машини, машинне навчання, моделювання та симуляція жорстких моделей 

гідравлічних систем, вдосконалений псевдодинамічний інтегратор, чисельне 

інтегрування. 
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Nomenclature 

Latin alphabet 

A rotation matrix – 

A area m2 

ai Denavit-Hartenberg parameter m 

Be effective bulk modulus Pa 

Cd discharge coefficient – 

Cv flow constant – 

C1…C9 empirical constant – 

di Denavit-Hartenberg parameter m 

dt integration time step s 

F internal force N 

FC Coulomb friction force N 

Ff friction force N 

Fst Stribeck friction force N 

f(·) function – 

G vector of gravity terms – 

g(·) function – 

H cylinder stroke m 

I identity matrix – 

J Jacobian – 

K, ki semi-empirical flow coefficients – 

kv viscous friction coefficient Ns/m 

Li laminar leakage flow coefficient – 

li constant length m 

lij experimentally defined leakage constant – 

M mass matrix – 

m mass kg 

N internal torque Nm 

n number of links – 

ne time delay order for network error – 

nx time delay order for network input – 

ny time delay order for network output – 

p pressure Pa 

Q volume flow rate m3/s 

QL leakage volume flow rate m3/s 

R position-vector – 

Re Reynolds number – 

rP position-vector of the point P in global coordinate frame – 

si cylinder length plus its displacement m 

T homogeneous transformation matrix – 

t time s 

V vector of centrifugal and Coriolis terms – 

V volume m3 

V0 dead volume m3 
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vC Coulomb velocity m/s 

vCi linear velocity of the centre of mass of the link i m/s 

vst Stribeck velocity m/s 

U voltage V 

u input vector – 

uP position-vector of the point P in local coordinate frame  – 

x state vector – 

xp cylinder piston displacement m 

𝑍̂ directional unit vector – 

Greek alphabet 

αi Denavit-Hartenberg parameter rad 

βi angle rad 

γi angle rad 

Δ difference      

ε parameter describing binary input – 

ζ valve damping ratio 

θ vector of joint coordinates  – 

θi Denavit-Hartenberg parameter rad 

κ condition number – 

λ eigenvalue – 

π mathematical value π = 3.14159... rad 

ρ fluid density kg/m3 

σ0 flexibility coefficient 

σ1 damping coefficient 

τ vector of torques – 

τ time constant s-1 

ψ nonlinear mapping 

ωi link i rotational velocity rad/s 

ωn natural angular frequency rad/s 

Superscripts 

^ parameter estimate 

current current value of parameter 

next next value of parameter 

prev previous value of parameter 

T matrix transpose 

Subscripts  

A cylinder chamber A 

B cylinder chamber B 

db dead band 

e effective 

f friction 

H number of layers 
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limit low-limit level of parameter 

max maximum value 

min minimum value 

P pump 

p piston 

pseudo artificial parameter 

ref reference 

S supply 

s spool  

T tank 

tol high lower tolerance criteria for parameter 

tol low higher tolerance criteria for parameter 

Abbreviations 

ANN artificial neural network 

AdvPDS advanced pseudo-dynamic solver 

CAD computer-aided design 

HITL human-in-the-loop 

HPS hydraulic position servo 

INEF iterative Newton-Euler formulation 

LM Levenberg-Marquardt algorithm 

MSE mean-square error 

NARMAX nonlinear autoregressive moving average with exogenous inputs 

NARX nonlinear autoregressive network with exogenous inputs 

NFIR nonlinear finite impulse response 

ODE ordinary differential equations 

PRMS pseudo-random multilevel signal 

RMSE root-mean-square error 

RNN recurrent neural network 

SIMO single input multiple outputs 
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1 Introduction 

1.1 Background and motivations 

Since the levels of complexity and automation of mechatronic machines (excavators, logging 

harvesters, hydraulically-driven cranes, etc.) have increased significantly over the past few 

decades, the machine industry has shown great interest in harnessing the benefits of computer 

simulation. In the machine industry, this has led to the emergence of novel approaches in new 

product development processes, such as virtual prototyping (Mikkola & Handroos, 1996; 

Esqué, Raneda, & Ellman, 2003; Liu, Zhang, & Sun, 2019). Nowadays, the approach is also 

extensively used in product operation and maintenance periods (Boschert & Rosen, 2016). At 

the design and engineering stages of the mechatronic machine development process, a virtual 

prototype is used for studying the effects of design decisions on machine dynamic behaviour, 

thereby reducing the need for a physical prototype construction (Mikkola A. , 1997; Baharudin, 

Rouvinen, Korkealaakso, & Mikkola, 2014; Esqué, Raneda, & Ellman, 2003). Essentially, the 

virtual prototype of a mechatronic machine is a simulation model or, in other words, a 

mathematical representation of all machine elements as well as their interactions. To estimate 

the performances of the mechatronic machine under development, a simulation of the virtual 

prototype is used.  

Often a major problem of virtual prototypes is their maximum simulation speed, which is 

particularly related to the complexity and characteristics of the employed mathematical models. 

A number of recent studies have been dedicated to the problems of real-time (Esqué, Raneda, 

& Ellman, 2003; Zhidchenko, Malysheva, Handroos, & Kovartsev, 2018; Zheng, Ge, & Liu, 

2015; Rahikainen, Kiani, Sopanen, Jalali, & Mikkola, 2018) and faster than real-time 

simulation (Malysheva I. , Handroos, Zhidchenko, & Kovartsev, 2018) of the virtual prototypes 

of mechatronic machines. At the same time, the simulation models of mechatronic machines 

are also extensively exploited for studying human-machine interaction using human-in-the-

loop (HITL) simulation. Moreover, HITL simulation can be used for the training of  

mechatronic machine operators  (Baharudin, Rouvinen, Korkealaakso, & Mikkola, 2014). 

HITL simulation requires the simulation model to be run in real time (Pedersen, Hansen, & 

Ballebye, 2010). In addition, simulation models are used for real-time automation and control 

tasks (Zheng, Ge, & Liu, 2015; Pedersen, Hansen, & Ballebye, 2010) and for the failure 

prediction of the machine parts and systems (Andrade, Feucht, Haufe, & Neukamm, 2016). 

Moreover, a highly popular control engineering approach based on the employment of 

reinforcement learning (RL) for the optimal controller design for systems with nonlinear 

dynamics (Karpenko, Anderson, & Sepehri, 2006) shows a high need for simulation models 

that are able to run faster than real time. Such simulation models are able to provide large 

amounts of the training examples for a short period of time that are needed for a RL-agent 

training.  

A typical simulation model of a mechatronic machine includes a mechanical component and a 

fluid power component. These components are also the essential parts of the simulation models 

of other types of mechatronic systems, such as aircraft, heavy industrial process machines, 

ships, offshore cranes, and so on. The mechanical component includes the mathematical 

representation of the structural elements (a set of rigid and/or flexible bodies) and their 

interconnections composing a multibody system. For the derivation of the mathematical model 
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of a multibody system composed of the rigid bodies the two main approaches are mainly used. 

The first is based on the concept of virtual work and Lagrange’s equation. In the approach the 

multibody system is considered as a whole. Algorithms based on this approach use the space 

of generalised coordinates that follow certain minimisation principles and thus produce the 

trajectories that automatically satisfy the kinematic constraints of the system (Korkealaakso, 

2009). The second approach that can be used to formulate the mathematical model of the 

multibody system is the direct approach, which is based on Newton and Euler equations. 

According to this approach, the dynamic equations are produced separately for each body while 

considering the motion explicitly in Cartesian space. The linear and angular momentum 

conservation principles are applied directly to each body. The constrained reaction forces are 

considered as external forces. The two approaches described above, as well as their 

modifications and combinations, are widely used for the mathematical model formulation. 

Although the approaches use different strategies, they provide equivalent dynamic 

formulations that can differ in computational efficiency for the specific multibody model 

(Korkealaakso, 2009). 

The multibody system, which is the underlay to the mechanical component, often provides an 

interface to the external systems, such as the fluid power system (Baharudin, Rouvinen, 

Korkealaakso, & Mikkola, 2014; Esqué, Raneda, & Ellman, 2003; Zheng, Ge, & Liu, 2015; 

Pedersen, Hansen, & Ballebye, 2010; Mikkola A., 1997). In this case the fluid power actuator 

forces are taken in by the multibody system as the generalised forces. At the same time, the 

positions and velocities are fed back from the multibody system to the fluid power component. 

In composing the fluid power system model, the centralised pressures approach is usually used. 

The modelling of the fluid power units such as pumps, actuators and valves are based on the 

combination of the fluid dynamics and multibody models. In the centralised pressures 

approach, the components are interconnected by continuity equations (Merritt, 1967). 

Mathematically, the mechanical and fluid power components as well as their interactions are 

expressed as a system of the algebraic and differential equations and referred to as the equations 

of motion (EOM) or the mathematical model. The system is usually solved using a numerical 

integration method that ensures the accuracy, stability and efficiency of a numerical solution 

(Dormand & Prince, 1980; Esqué, 2008).  

However, the dynamic processes taking place in the fluid power systems are very complex. 

The flexibility of hydraulic fluid and the presence of small volumes introduce a numerical 

stiffness into the mathematically formulated models (Piché & Ellman, 1994). Other 

phenomena, such as friction in the fluid power units, valve closure, digital control signals and 

purely turbulent orifices introduce strong nonlinearities, discontinuities and singular states to 

the model (Piché & Ellman, 1994; Åman, Handroos, & Eskola, 2008).  These features also 

make the hydraulic model numerically stiff and thus difficult to integrate (Piché & Ellman, 

1994). In their work (Bowns & Wang, 1990), Bowns and Wang formulated the mathematical 

stiffness problem that arises during the solution of the fluid power systems in the presence of 

small volumes, particularly in hydraulic pipes, for the first time. Physically, the mathematical 

stiffness occurs when the pressure changes rapidly, owing to the low compliance of the fluid 

in the pipe. According to their observations, this causes the solutions of the system differential 

equations to decay at widely varying rates. However, it should be noted that the mathematical 

stiffness is often a local phenomenon, meaning that it may occur occasionally. For example, if 
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the orifice is located in the fluid power circuit, the stiffness increases approaching infinity if 

the relationship ∂∆p/∂Q is small, which is true when the volume flow Q tends towards zero. 

Moreover, according to (Ellman & Piché, 1996; Ellman & Piché, 1999; Åman, Handroos, & 

Eskola, 2008), if the purely turbulent description of the orifice is used, mathematical stiffness 

also occurs when the pressure drop ∆p is approaching zero. 

The numerical stiffness of the mathematical model directly affects the simulation time, which 

is a vital aspect in the real-time simulation in mechatronic applications. For instance, such a 

problem is highlighted in (Park, Yoo, Ahn, Kim, & Shin, 2020), where the authors tried to solve 

the problem of the real-time simulation of an excavator with a numerically stiff fluid power 

model. Thus, in order to achieve the real-time simulation speed, the model was divided into 

multiple sub-models to ensure a parallel execution using a local stiff integration solver. The 

same problem has been recently highlighted in a number of other works dedicated to human-

in-the-loop and hardware-in-the-loop systems that included fluid power components. For 

example, in the work of (Ferreira, Almeida, Quintas, & de Oliveira, 2004), in order to ensure 

the hardware-in-the-loop real-time simulation for developed controller strategy testing, the 

authors first simplified the fluid power model and then used a third order explicit solver with a 

small time step. Thus, the above-described mechatronic applications show the need for the 

development of a method that can provide a generic practical solution to accelerate the 

simulation of the mechatronic systems with minor costs in terms of accuracy. 

In the solution of the mathematical models, which include ordinary differential equations 

(ODEs), the family of explicit Runge-Kutta methods that use the integration time step of a fixed 

size are well established. However, in the research by (Hairer & Wanner, 1996) it was shown 

that the numerical integrators based on the explicit Runge-Kutta methods are not A-stable (i.e. 

the numerical stability of the method is not guaranteed for any integration step size), which is 

apparently why they are not very efficient at stiff problem-solving unless the very small 

integration time step is used. At the same time, integrators based on implicit methods are A-

stable or even L-stable and provide accurate solutions for such problems. Unfortunately, the 

implicit methods are much more computationally expensive, since they involve solving a 

nonlinear system of algebraic equations at each time step. This requires the use of the modified 

Newton iteration scheme, which includes the calculation of an iteration matrix of the form 

(I−∆tβ0J), where I is the identity matrix, J is the Jacobian and ∆tβ0 is a scalar, and further its 

factorisation. The iteration scheme is repeated until a convergence criterion is reached (Esqué, 

2008). Due to such iteration scheme usage, the amount of computations can vary from step to 

step, which can result in simulation time overflows. Thus, the implicit methods cannot be used 

directly in real-time applications. In contrast to the implicit methods, the previously mentioned 

explicit methods such as Euler, Runge-Kutta or Predictor-Corrector methods (Hairer & 

Wanner, 1996) consume much less calculation time in a single time step and thus can ensure a 

constant simulation time in time-critical real-time applications. 

In the vast cases of computer simulations used in product development processes, the 

simulations are free of solution time restrictions. This means that the simulation of a few 

seconds is allowed to take several hours in real time. Consequently, all the control signals 

intended for the simulated model should be predefined (Korkealaakso, 2009). However, in the 

cases of the HITL simulators, where the operator produces a control signal during the 

simulation, the optimal controller design based on the employment of reinforcement learning 
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(RL), the digital twins for machine life-cycle assessment, and the decision support systems that 

aid the machine operator in challenging environments, the simulation should be run in 

synchrony with real time or much faster than real time. Thus, the real-time simulation and faster 

than real-time simulation can be considered special cases of conventional computer simulation. 

In these cases all the calculations related to the advancing in time of the simulation model 

should be completed within the predetermined time range. The time range is usually dictated 

by a time synchronous connection to the real world or by a favoured simulation speed. Figure 

1.1 shows the conceptual difference between the real-time and faster than real-time simulations. 

Here tn is the real-time instant, when the monitoring of the simulation model states is 

performed, TRT and TFTRT are the times needed for a single run of the simulation model.  

 
Figure 1.1: Real-time and faster than real-time simulations. 

Accelerated simulation of the mechanical component can be obtained using computational 

efficient multibody representation (Malysheva, Handroos, Zhidchenko, & Kovartsev, 2018; 

Zhidchenko, Malysheva, Handroos, & Kovartsev, 2018). In the works the problem of faster 

than real-time simulation of mechatronic machine which included the mechanical and fluid 

power components was considered. For this task, two different simulation models for a 

hydraulically-driven crane were built and their properties compared. The first simulation model 

was built using a computationally efficient dynamic topological formulation (Iterative Newton-

Euler Formulation) for the multibody modelling of the crane’s mechanical structure. The 

second simulation model was developed using commercial software and taken as a reference 

for the calculation accuracy and speed analysis. The advantages and disadvantages of both 

simulation models in achieving the faster than real-time simulation were discussed. Julia 

Malysheva was the first author of the paper (Malysheva, Handroos, Zhidchenko, & Kovartsev, 

2018) and co-author in both of the other papers. In these papers the author was responsible for 

the development of the reference models of the hydraulic mobile crane using commercial 

software and their translation to the compiled programming language, as well as for the 

development of the mathematical model of the crane fluid power system. She was also 

responsible for performing experiments with the reference model, gathering and processing the 

simulation results and writhing the respective parts of the papers. 

However, the faster than real-time simulation of the fluid power component is an even more 

challenging task. In the fluid power system research area, in order to improve the computational 

efficiency of the solution of the numerically stiff fluid power model, different approaches have 

been proposed. In particular, the accelerated simulation can be obtained using a semi-empirical 

modelling approach for particular fluid power units in the simulation model. For example, the 

use of the two-regime flow orifices (Ferreira, Almeida, Quintas, & de Oliveira, 2004; Ellman 

& Piché, 1996) instead of the purely turbulent orifice model allows singularities, which can 

appear when the pressure drop across the orifice is close to zero, to be avoided.  On the other 
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hand, the integration of the fluid power model can be performed with the help of special solvers 

(Piché & Ellman, 1994). To overcome the stiffness of differential equations in fluid power 

systems with the small volumes, a classical pseudo-dynamic solver (PDS) was proposed by 

Åman and Handroos (Åman & Handroos, 2008; Åman & Handroos, 2009; Åman & Handroos, 

2010). This solver can be related to the class of explicit solvers. The PDS algorithm ensured 

the accuracy increase and reduction of the computational time needed for the simulation of the 

stiff fluid power circuits. The PDS was based on the assumption that if the considered volume 

is small enough, the pressure building up in the volume can be substituted by a steady-state 

pressure value. This was achieved by implementing an iterative technique with the substitution 

of the small volume with a volume that is large enough to obtain a numerically stable pressure 

solution. During the stiff fluid power model integration, the PDS could use the larger 

integration time steps than the conventional integrators without being trapped in the numerical 

instability area, which affects the computational time of the simulation. However, in their work, 

only a short-term simulation (about two seconds) with predefined inputs was considered, which 

did not give a full picture of the solver characteristics. The research was continued by 

Malysheva, Ustinov and Handroos by proposing in (Malysheva, Ustinov, & Handroos, 2020; 

Malysheva & Handroos, 2020) a new and enhanced version of the classical pseudo-dynamic 

solver, referred to as an advanced pseudo-dynamic solver with adaptive criterion (AdvPDS). 

The new solver had two main advantages. The first was the higher accuracy and numerical 

stability of the solution compared with the PDS, owing to the enhanced solver structure and 

the use of an adaptive convergence criterion. The second was the faster calculation time 

compared with the conventional integration method, owing to the obtained possibility of larger 

integration time step usage. Julia Malysheva was the principal author and investigator of the 

paper. 

Another method for solving pressures in small volumes has recently been introduced, in (Kiani 

Oshtorjani, Mikkola, & Jalali, 2019). The proposed method was based on singular perturbation 

theory. The modified version of this theory was used for the algorithm. The main principle of 

the algorithm was the replacement of a stiff differential equation of pressure by the algebraic 

equation in accordance with singular perturbation theory. The replacement of the differential 

equation allows a numerically stable response of the pressure to be achieved at different 

integrator time steps. Consequently, the time step of the integration can be increased without 

significant losses in calculation accuracy, which allows the method to be implemented in real-

time simulations. However, the method can only be applied under the condition that the system 

boundary layer is exponentially stable (Rahikainen, Kiani, Sopanen, Jalali, & Mikkola, 2018; 

Kiani Oshtorjani, Mikkola, & Jalali, 2019). 

A different approach was presented by Krus in (Krus, 2011) who applied distributed modelling 

using transmission line elements (or bi-lateral delay lines) for modelling and simulation of 

large hydromechanical systems. Usage of the transmission line elements for the component 

connection in the complex fluid power system allowed to isolate the components numerically 

from each other. Then a local implicit solver can be applied to each component separately. This 

allowed to use larger time steps for system simulation ensuring faster simulation speeds. 

Moreover, since all the calculations of fluid power component are done within its model the 

parallel computation of the component is possible. The proposed modelling method was 

successfully adopted in HOPSAN software developed in Linköping University. 
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In contrast to the plain mathematical modelling of the simulated system, the modelling with an 

artificial neural network (ANN) can offer a way to achieve high simulation speeds while 

preserving accurate physical modelling. The approach is supported by the fact that, in general, 

with the correct architecture and proper training dataset, the universal approximating 

capabilities of neural networks guarantee that any continuous function can be modelled to any 

desired precision (Hornik, 1991). The recurrent neural network (and its variants) is a network 

architecture that has proved itself to be successful in the tasks of time-series prediction and 

dynamic systems identification and control (Ogunmolu, Gu, Jiang, & Gans, 2017; Bianchi, 

Maiorino, Kampffmeyer, Rizzi, & Jenssen, 2017). In contrast to common ANNs (such as 

multilayer feedforward networks), where the current output depends only on the input, in 

recurrent neural networks (RNNs) the current output can depend on the current input as well 

as on the history of previous inputs, outputs, errors and/or network states. This architectural 

feature can be considered a local memory and it enables RNNs to account for temporal 

information (Sinha, Gupta, & Rao, 2000; Petlenkov, 2007). Several recently published research 

papers have studied the modelling of complex dynamic systems with RNNs (Petlenkov, 2007), 

including hydraulic systems (Patel & Dunne, 2003). These studies have shown quite promising 

results. In the works, the variation of a recurrent neural network, namely a nonlinear 

autoregressive network with exogenous inputs (NARX), was employed. The reason for the 

architecture choice was based on results obtained in (Siegelmann, Horne, & Giles, 1997), 

where it was shown that NARX networks outperform conventional RNNs regarding problems 

with long-term dependencies and are computationally as strong as Turing machines. However, 

the modifications of NARX architecture, such as a nonlinear finite impulse response (NFIR) 

and nonlinear autoregressive moving average with exogenous inputs (NARMAX) architectures 

can also be used for dynamic system modelling (Łacny, 2012; Schram, Verhaegen, & 

Krijgsman, 1996). In (Malysheva, Li, & Handroos, 2020; Malysheva, Ustinov, & Handroos, 

2020; Malysheva & Handroos, 2020), a physics-based simulation model was created using an 

experimentally verified mathematical model of a hydraulic position servo system (HPS). The 

RNN of NARX architecture was developed, trained and tested on the training data produced 

by the physics-based simulation model. A pre-processing technique was developed and applied 

to the training data in order to speed up the training and simulation processes. The obtained 

results show for the first time that the employment of the RNN together with the developed 

pre-processing technique ensures the simulation speed-up of the complex fluid power system 

at the expense of a small decrease in accuracy. Julia Malysheva was the principal author and 

investigator in the paper. 

Another important aspect that should be considered is the implementation of the developed 

simulation model. Specifically, the choice of a programmable language for the implementation 

can significantly affect the simulation speed. According to the research (Pastorino, Cosco, 

Naets, Desmet, & Cuadrado, 2016), the interpreted languages such as MATLAB and Python 

NumPy are well developed and easy to use for software development, debugging and testing 

and are thus very popular among mechanical engineers. However, they are troublesome for 

real-time simulations due to their low computational efficiency. On the other hand, the 

compiled languages, such as C, C++ and Fortran can ensure the real-time simulation of the 

simulation model. Moreover, if the real-time simulation is required to be performed on the 

target machine (for example, onboard), the software written in the compiled language can be 

used without extensive modifications (Pastorino, Cosco, Naets, Desmet, & Cuadrado, 2016). 
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1.2 Scope of the work  

1.2.1 Research questions  

1. To study the state-of-the-art methods and approaches allowing for the acceleration of 

the simulation model computation of the complex mechatronic machines, which 

include the mechanical and fluid power components at real-time and faster than real-

time simulation speeds. 

2. To examine the problem of the computationally efficient mathematical modelling of 

the multibody system with fluid power actuation in comparison with the modelling 

using commercial software in terms of the model accuracy and simulation speed. 

3. To investigate the ability of the recurrent neural network together with the developed 

training data pre-processing technique to model a complex fluid power system and 

provide accelerated and accurate simulation. 

4. To investigate the effectiveness of the reduction of the numerical stiffness (originating 

from the presence of the small volumes in fluid power circuit) using developed 

advanced pseudo-dynamic solver in achieving accelerated simulation of the fluid power 

circuit. 

1.2.2 Research methods  

In this section an overview of the research methods that were used in the work in order to 

answer the research question is presented. A literature review was carried out to evaluate the 

state of knowledge and find out the suitable state-of-the-art methods and approaches allowing 

for the acceleration computation of the simulation model of the complex mechatronic machines 

at real-time and faster than real-time simulation speeds. 

To answer the question of how efficient is mathematical modelling of the multibody system 

with fluid power actuation in comparison with the modelling using commercial software a case 

study of a hydraulic mobile crane was implemented. Within this framework mathematical 

modelling of the crane and construction of the crane dynamic model in commercial software 

were performed. The simulation of the models provided the data for analysis.  

For verification of the proposed modelling approaches concerning accelerated computation of 

the fluid power simulation models the experiments with five fluid power circuits of different 

complexity were carried out. Taking into account the inherent numerical stiffness of the 

mathematical representation of the fluid power systems, the study investigated the following 

modelling approaches. The first approach employs machine learning and the recurrent neural 

networks as a tool for the complex fluid power system accelerated and accurate simulation. In 

this framework the best trained network was selected using statistical analysis. The second 

approach investigates the effectiveness of the reduction of the numerical stiffness (originating 

from the presence of the small volumes in fluid power circuit) using special solvers. Within 

this approach the performances of the classical pseudo-dynamic solver was studied and further 

improved in the novel advanced pseudo-dynamic solver with adaptive criteria using simulation. 
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1.3 Scientific contribution of thesis 

The main contribution of the work lies in the research of methods that allow the realisation of 

faster than real-time simulation of mechatronic machines. 

1. The development of the detailed simulation model of an example hydraulic mobile 

crane composed of multibody mechanical components, and the mathematical model of 

the fluid power system using commercial software. Following translation to the 

compiled programming language, the model showed the ability to calculate faster than 

real-time at acceptable accuracy levels. 

2. The work successfully demonstrated that RNNs of the NARX architecture employment 

can ensure the faster simulation of a complex fluid power system in contrast to 

conventional mathematical modelling. RNNs of the NARX were developed, trained 

and tested on the training data produced by the mathematical-based simulation model 

of the fluid power system. A pre-processing technique was developed and applied to 

the training data in order to speed up the training and simulation processes. The 

obtained results show for the first time that the employment of the RNN together with 

the developed pre-processing technique ensures the simulation speed-up of the complex 

fluid power system at the expense of a small decrease in accuracy. 

3. The advanced pseudo-dynamic solver with adaptive criterion has been proposed for the 

efficient solution of fluid power systems with singularities originating (in particular) 

from the presence in the system of small volumes. There are two main advantages of 

the proposed solver. The first is the higher accuracy and numerical stability of the 

solution compared with the classical pseudo-dynamic solver, owing to the enhanced 

solver structure and the use of an adaptive convergence criterion. The second is the 

faster calculation times compared with conventional integration methods such as the 

fourth order Runge-Kutta method, owing to the achieved possibility of larger 

integration time step usage. Simulation results confirm that the advanced pseudo-

dynamic solver is more efficient than conventional solvers for the solution of the real-

time systems that include fluid power components with small volumes. The described 

advantages allow its use in simulations of mobile machines in real-time and faster than 

real-time applications. 

4. The effect of the three numerical integration methods (Euler, Runge-Kutta of fourth 

order, and modified Heun’s method with improved stability) used inside the AdvPSD 

on the solution efficiency of the stiff mathematical model was studied. The stability of 

the modified Heun’s method was improved by the use of the two-regime orifice model. 

Analysis of the obtained simulation results showed that, in general, harnessing the 

power of the AdvPDS allows the solution of numerically stiff hydraulic models in a 

very efficient way, ensuring accelerated simulation with high solution accuracy. It was 

also shown that the simulation speed-up can be obtained not only by the complexity 

reduction of the numerical integration method inside the AdvPDS, but also by 

increasing the numerical stability of the employed numerical integration method. 

1.4 Thesis outline 

The present doctoral dissertation is based on the five research publications and consists of two 

parts. The first part provides an overview of the methods and approaches that can ensure 
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accelerated simulation of the mechatronic machines and the real-time or faster than real-time 

simulation. Also, the first part outlines the most importing findings presented in the five articles 

the dissertation is based on. The second part introduces the detailed results that have been or 

will be published in the previously listed five scientific articles. 

Chapter 1 covers the background, motivation and scope of the study and presents the scientific 

contribution of this thesis. 

In Chapter 2, the mathematical modelling of a multibody system with fluid power actuation 

using computational effective INEF formulation in comparison with commercial modelling of 

the same system is presented in comparison with their accuracy and simulation time. The 

example multibody system and fluid power circuit modelling are also presented in the chapter. 

In Chapter 3, the approach to the fluid power system modelling with the recurrent neural 

network of NARX architecture for faster than real-time simulations is introduced, and the 

simulation results obtained are discussed. 

Chapter 4 presents the computationally efficient practical method for solving the dynamics of 

fluid power circuits in the presence of singularities using the developed advanced pseudo-

dynamic solver with adaptive criterion. The advantages of using the modified Hein method of 

improved numerical stability for pressure integration inside AdvPSD are also presented in this 

chapter. 

In Chapter 5 the conclusions are presented. 
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2 Fast simulation of a mobile working machine  

In this chapter, an example of a multibody system with a fluid power drive is considered. The 

selected system is the PATU-655 mobile hydraulic crane, which consists of mechanical and 

fluid power components. Structurally, the crane consists of a pillar, a lifting boom, a system of 

four interconnected side links, an outer boom and an extension boom. The crane has five 

hydraulic cylinders. Two of them actuate the slew mechanism, providing the rotation of the 

crane around the vertical axis. Two other cylinders raise the lifting boom and the outer boom 

respectively and the fifth cylinder provides the sliding motion of the extension boom and 

controls its length. The maximum admissible crane load for the case of the maximum boom 

extension is 500 kg. In this chapter, the full crane model is developed using commercial 

software as well as a computational efficient mathematical model, which considers only the 

planar motion of the crane (the dynamics of the slew mechanism is not taken into account). 

The two model calculation speeds and their accuracies are presented in comparison (Malysheva 

I. , Handroos, Zhidchenko, & Kovartsev, 2018; Zhidchenko, Malysheva, Handroos, & 

Kovartsev, 2018). 

2.1 Mathematical modelling of the multibody system of a crane 

2.1.1 Crane kinematics 

Most real-time methods for presenting the dynamics of multibody systems consisting of rigid 

bodies use relative coordinates, taking advantage of the mechanism topology (topological 

formulation). Also, the considered mobile crane kinematics can be presented using a 

topological formulation. In this case the crane is considered as the chain of the links (crane 

booms) connected through the revolute and prismatic joints (Jalon & Bayo, 1994).  

In order to represent the crane kinematics, the global frame OXYZ is set up at the base of the 

crane. The local coordinate frames with the origins located at the joints are assigned to each 

link using the Denavit–Hartenberg convention. According to the convention, each local frame 

𝑂𝑖𝑥𝑖𝑦𝑖𝑧𝑖 has the origin at the point representing the joint between the two adjacent links. The 

𝑧𝑖-axis is aligned in the direction of the joint i motion (rotational or translational), the 𝑥𝑖-axis 

is parallel to the common normal 𝑥𝑖 = ±(𝑧𝑖 × 𝑧𝑖−1) and the 𝑦𝑖-axis is chosen in order to 

complete the right-handed coordinate system. The crane has four independent joint 

coordinates: the angle of the pillar rotation, the angles of rotation of the lifting boom and 

extension boom, and the length of the extension boom. The joint numbering, orientation of 

assigned local frames and joint coordinates are shown in Figure 2.1. 
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Figure 2.1: Crane kinematics: Joint numbering, orientation of assigned local frames and joint 

coordinates. 

The Denavit–Hartenberg parameters of the crane can be written as shown in Table 2.1. 

Table 2.1: Denavit–Hartenberg parameters. 

Joint i 𝜽𝒊 𝒅𝒊 𝒂𝒊 𝜶𝒊 
1 𝜃1 𝑑1 𝑎1 −𝜋 2⁄  

2 𝜃2 0 −𝑎2 0 

3 𝜃3 +
𝜋
2⁄  0 −𝑎3 −𝜋 2⁄  

4 0 𝑑4 + 𝐿 0 0 

 

In Table 2.1, 𝜃𝑖 is the joint angle measured as a rotation angle from 𝑥𝑖−1 to 𝑥𝑖 about 𝑧𝑖−1,  𝑑𝑖 
is the joint distance measured from the origin 𝑂𝑖−1 to the intersection of the 𝑧𝑖−1 and 𝑥𝑖 along 

the 𝑧𝑖−1,  𝑎𝑖 is the link length measured from the intersection of the 𝑧𝑖−1 and 𝑥𝑖 to the origin 

𝑂𝑖,  
𝛼𝑖 is the link twist angle measured as a rotation angle from 𝑧𝑖−1 to 𝑧𝑖 about 𝑥𝑖. Thus, the joint 

coordinates that build up the generalised coordinates of the system are:  𝜃1, 𝜃2, 𝜃3, and 𝑑4. 

In general, the configuration of a rigid body in a three-dimensional space, meaning its position 

and orientation relative to some reference frame, can be described by a 4×4 homogeneous 

transformation matrix: 

𝐓𝐴
𝐵 = [𝐀𝐴

𝐵 𝐑𝐴
𝐵

𝟎 1
] (2.1) 

where 𝐀𝐴
𝐵 defines the 3×3 rotation matrix with det(𝐀𝐴

𝐵) = 1 of frame B with respect to frame A, 

and 𝐑𝐴
𝐵 defines the 3×1 position-vector of the origin of the frame B rigidly attached to the body 

with respect to reference frame A. 

The position of any point P of the body can be represented in the reference coordinate frame 

as: 
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𝐫𝑃 = 𝐑𝐴
𝐵 + 𝐀𝐴

𝐵𝐮𝑃 (2.2) 

where 𝐮𝑃 is the 3×1 position-vector of the point P in the local coordinate frame. In the 

homogeneous representation, the position of point P can be represented as follows: 

[
𝐫𝑃
1
] = 𝐓𝐴

𝐵 [
𝐮𝑃
1
] (2.3) 

Using the parameters presented in Table 2.1, the position and orientation of the i-th local 

coordinate frame with respect to (i-1)-th coordinate frame can be derived using the general 

form of the homogeneous transformation matrix for the adjacent coordinate frames: 

𝐓𝑖−1
𝑖 = [

cos(𝜃𝑖) − cos(𝛼𝑖) sin(𝜃𝑖) sin(𝛼𝑖) sin(𝜃𝑖) 𝑎𝑖 cos(𝜃𝑖)

sin(𝜃𝑖) cos(𝛼𝑖) cos(𝜃𝑖) −sin(𝛼𝑖) cos(𝜃𝑖) 𝑎𝑖 sin(𝜃𝑖)

0 sin(𝛼𝑖) cos(𝛼𝑖) 𝑑𝑖
0 0 0 1

] (2.4) 

𝐓0
1 = [

cos(𝜃1) 0 − sin(𝜃1) 𝑎1 cos(𝜃1)

sin(𝜃1) 0 cos(𝜃1) 𝑎1 sin(𝜃1)

0 −1 0 𝑑1
0 0 0 1

] (2.5) 

𝐓1
2 = [

cos(𝜃2) − sin(𝜃2) 0 𝑎2 cos(𝜃2)

sin(𝜃2) cos(𝜃2) 0 𝑎2 sin(𝜃2)

0 0 1 0
0 0 0 1

] (2.6) 

𝐓2
3 = [

−sin(𝜃3) 0 − cos(𝜃3) −𝑎3 sin(𝜃3)

cos(𝜃3) 0 − sin(𝜃3) 𝑎3 cos(𝜃3)
0 −1 0 0
0 0 0 1

] (2.7) 

𝐓3
4 = [

1 0 0 0
0 1 0 0
0 0 1 𝑑4 + 𝐿
0 0 0 1

] (2.8) 

Then, the link transformations can be multiplied together to find the full transformation that 

relates coordinate frame 0 to frame 4 as: 

𝐓0
4 = 𝐓0

1𝐓1
2𝐓2

3𝐓3
4 (2.9) 

In order to connect the hydraulic model to the kinematic model, it is necessary to determine 

the relationship between cylinder movements and joint coordinate change (Figure 2.2). This 

can be done using a trigonometric approach. For the joint variable 𝜃2 this relationship can be 

written as: 

𝜃2 = 𝛾1 + 𝛾2 + 𝛾3 + acos (
𝑙1
2 + 𝑙2

2 − 𝑠1
2

2𝑙1𝑙2
) −

𝜋

2
(2.10) 
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where 𝛾1, 𝛾2, 𝛾3 are the constant angles defined by the crane structure; 𝑙1, 𝑙2 are the constant 

lengths defined from the crane structure, and s1 is the cylinder length plus its displacement.  

The joint variable 𝜃3 is related to the cylinder displacement s2 as: 

𝜃3 = 𝛾5 + 𝛽3 + 𝛾4 −
𝜋

2
(2.11) 

𝛽3 = 𝛽5 + 𝛽6 (2.12) 

𝛽4 = 𝛽2 + 𝛾5 (2.13) 

𝛽5 = acos (
𝑙6
2 + 𝑙7

2 − 𝑠2
2

2𝑙6𝑙7
) (2.14) 

𝛽6 = acos (
𝑙5
2 + 𝑙7

2 − 𝑙4
2

2𝑙5𝑙7
) (2.15) 

𝑙7 = √𝑠2
2 + 𝑙6

2 − 2𝑠2𝑙6 cos 𝛽4 (2.16) 

Here 𝛽𝑖 represents the variable rotation angles, whereas 𝛾𝑖 and li represent constant angles and 

lengths that can be defined from the crane structure. 

 

Figure 2.2: Joint coordinate change due to cylinder movements. 

2.1.2 Crane dynamics modelling 

A widely used formulation to express the multibody dynamic model is based on Lagrangian 

dynamics (Khalil & Dombre, 2002; Craig, 2005). The computational complexity of such a 

formulation is O(n4). In order to provide the fast simulation of the dynamic model, a dynamic 
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formulation with low computational complexity should be employed. One such formulation 

that is widely used in the robotics community is the Iterative Newton-Euler formulation (INEF) 

(Luh, Walker, & Paul, 1980; Craig, 2005) of O(n) computational complexity. This formulation 

is employed in the work for crane dynamics modelling. 

The INEF consists of outward and inward iterations. Outward iterations are applied link-by-

link starting from link 1 and moving to link n. These iterations are intended to calculate for 

each link i the rotational velocity 𝜔𝑖 and acceleration 𝜔̇𝑖, as well as the linear acceleration of 

the centre of mass 𝑣̇𝐶𝑖. Then, using Newton-Euler equations of motion, the inertial forces 𝐹𝑖 
and torques 𝑁𝑖 acting at the centre of mass of each link i are calculated. During inward 

iterations, for each link the reaction forces 𝑓𝑖  and torques 𝑛𝑖 acting at the joints are calculated 

from the force-balance and moment-balance respectively. The link-by-link calculation starts 

from link n and moves backwards to link 1. The algorithm for INEF can be presented as 

Algorithm 2.1. Each link in the multibody system can be presented as shown in Figure 2.3.   

 

Figure 2.3: Forces acting in link i 

Algorithm 2. 1: INEF 

Input: 𝑛, 𝜃𝑖+1, 𝜃̇𝑖+1, 𝜃̈𝑖+1, 𝐴𝑖
𝑖+1, 𝐴𝑖+1

𝑖 , 𝑍̂𝑖+1, 𝐑𝑖
𝑖+1, 𝐑𝑖+1

𝐶𝑖+1,𝑚𝑖+1, 𝑑̇𝑖+1, 𝑑̈𝑖+1, 𝐼𝐶𝑖+1 

Output: 𝜏𝑖 
       Initialisation : 

1:  i = 0, 𝜔0 = 0, 𝜔̇0 = 0, 𝑣̇0 = 𝑔𝑍̂0, 𝑓𝑛 = 0, 𝑛𝑛 = 0 

      LOOP 1 (Outward iterations): 

2:  for i = 0 to 𝑛 − 1 do 

3:       𝜔𝑖+1 = 𝐴𝑖
𝑖+1𝜔𝑖 + 𝜃̇𝑖+1𝑍̂𝑖+1 

4:       if (joint 𝑖 + 1 is prismatic)  then  

5:              𝜔̇𝑖+1 = 𝐴𝑖
𝑖+1𝜔̇𝑖 

6:       else 𝜔̇𝑖+1 = 𝐴𝑖
𝑖+1𝜔̇𝑖 + 𝐴𝑖

𝑖+1𝜔𝑖 × 𝜃̇𝑖+1𝑍̂𝑖+1 + 𝜃̈𝑖+1𝑍̂𝑖+1 

7:       end if 

8:       if (joint 𝑖 + 1  is prismatic)  then 

9:               𝑣̇𝑖+1 = 𝐴𝑖
𝑖+1(𝜔𝑖 × 𝐑𝑖

𝑖+1 +𝜔𝑖 × (𝜔𝑖 × 𝐑𝑖
𝑖+1) + 𝑣̇𝑖) + 2𝜔𝑖+1 × 𝑑̇𝑖+1 + 𝑑̈𝑖+1𝑍̂𝑖+1 

10:     else 𝑣̇𝑖+1 = 𝐴𝑖
𝑖+1(𝜔𝑖 × 𝐑𝑖

𝑖+1 +𝜔𝑖 × (𝜔𝑖 × 𝐑𝑖
𝑖+1) + 𝑣̇𝑖) 

11:     end if        

12:     𝑣̇𝐶𝑖+1 = 𝜔̇𝑖+1 × 𝐑𝑖+1
𝐶𝑖+1 +𝜔𝑖+1 × (𝜔𝑖+1 × 𝐑𝑖+1

𝐶𝑖+1) + 𝑣̇𝑖+1         
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13:     𝐹𝑖+1 = 𝑚𝑖+1𝑣̇𝐶𝑖+1  

14:     𝑁𝑖+1 = 𝐼𝐶𝑖+1𝜔̇𝑖+1 +𝜔𝑖+1 × 𝐼𝐶𝑖+1𝜔𝑖+1 

15:     save 𝐹𝑖+1, 𝑁𝑖+1 

16: end for    

       LOOP 2 (Inward iterations): 

17: for i = 𝑛 − 1  to 1 do 

18:       𝑓𝑖 = 𝐴𝑖+1
𝑖 𝑓𝑖+1 + 𝐹𝑖 

19:       𝑛𝑖 = 𝑁𝑖 + 𝐴𝑖+1
𝑖 𝑛𝑖+1 + 𝐑𝑖

𝐶𝑖 × 𝐹𝑖 + 𝐑𝑖
𝑖+1 × 𝐴𝑖+1

𝑖 𝑓𝑖+1 

20:       𝜏𝑖 = 𝑛𝑖
𝑇𝑍̂𝑖 

21:       save 𝜏𝑖 
22: end for 

 

The INEF can be applied straightforwardly to the considered system or can be used analytically 

for obtaining closed-form dynamic equations as: 

𝝉 = 𝐌(𝜽)𝜽̈ + 𝐕(𝜽, 𝜽̇) + 𝐆(𝜽) (2.17) 

where 𝐌(𝜽) is the mass matrix of the system, 𝐕(𝜽, 𝜽̇) is a vector of centrifugal and Coriolis 

terms, 𝐆(𝜽) is a vector of gravity terms. Originally, INEF is intended for inverse dynamics 

problem solution. Thus, in (2.17) it is assumed that the position, velocity, and acceleration of 

each joint are known and the forces and torques needed in the joints are calculated. In order to 

find the solution for the joint coordinates 𝜽, the torques 𝝉 acting in the joints should be equated 

to the torques created by hydraulic cylinders, which are created from the hydraulic cylinder 

forces. In the work, only the angular accelerations of joint 2 and 3 are considered. The described 

above equations form the ODE system the solution of which gives the angles of rotation of the 

booms. The obtained angles of the booms are then can be used for the position calculation of 

other crane points with the help of the mentioned above kinematic expressions. 

2.2 Fluid power system modelling 

Fluid power system modelling can be approached from the point of view of lumped fluid theory 

(Merritt, 1967). According to this theory, any fluid power system can be considered as a 

number of separate volumes with evenly distributed pressures. The volumes are separated by 

throttles and orifices that create pressure drops in the fluid when it passes through them. In turn, 

the pressure drop together with orifice geometrical parameters are used for the volume flow 

calculation. Finally, pressure built up in each volume can be calculated using a continuity 

equation that relates to the effective bulk modulus with respect to the considered volume and 

the difference between inlet 𝑄𝑖𝑛 and outlet 𝑄𝑜𝑢𝑡 volume flows (Merritt, 1967).  

In the following subsections, the modelling based on the lumped fluid power theory of the five 

fluid power circuits of different complexities is presented. All the circuits include the elements 

that negatively affect their simulation speed. These elements can be described mathematically 

as nonlinearities, discontinuities and singular states. These elements make the mathematical 

models of the circuits numerically stiff and thus difficult to integrate. In particular, the 

numerical stiffness of the model causes the solutions of the system of the differential equations 

to decay at widely varying rates. 
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2.2.1 Circuit 1: Simple fluid power system 

One of the simplest fluid power systems can be constructed using two sequentially connected 

orifices, as shown in Figure 2.4. In the circuit, two compressible volumes V1 and V2 are 

considered.  

 

Figure 2.4: Simple fluid power system (Circuit 1). 

The pressure developing in the volume V1 can be calculated from the following equation:  

𝑝̇1 =
𝐵𝑒
𝑉1
(𝑄1 − 𝑄2) (2.18) 

where 𝐵𝑒 is the effective bulk modulus in this part of the circuit, Q1 and Q2 are the orifice inlet 

and outlet volume flows, respectively. If we consider the sharp-edged orifice, the dependency 

of volume flow on the pressure drop can be approximated using the turbulent orifice model 

(Merritt, 1967) as: 

𝑄 =  𝐶𝑑𝐴√
2∆𝑝

𝜌
(2.19) 

In (2.19) Δp is the pressure drop across the orifice, A is the orifice cross-section area, Cd is the 

discharge coefficient and ρ is the fluid density. Thus, for the simple circuit the volume flows 

will be dependent on the respective pressure drops as:  

𝑄1 = 𝑘1√𝑝𝑠 − 𝑝1 (2.20) 

𝑄2 = 𝑘2√𝑝1 − 𝑝2 (2.21) 

where k1 and k2 are the semi-empirical volume flow coefficients, which can be determined for 

each orifice as 𝑘𝑖 = 𝐶𝑑𝑖𝐴𝑖√
2

𝜌
, (i = 1, 2). 

If volume V1 is set such that V1 << V2, it will introduce higher order dynamics to the system 

making its mathematical model numerically stiff. 

2.2.2 Circuit 2: Fluid power system with two-way flow control valve 

The second system under investigation includes a two-way flow control valve. The valve is 

often used in mobile working machines. The fluid power circuit related to the system is 

schematically depicted in Figure 2.5. The circuit consists of a pressure power source, two-way 
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flow control valve, orifice and 2/2 directional control valve. A two-way flow control valve 

consists of two components: pressure compensator and control throttle. Regardless of the load 

pressure, the valve ensures a constant volumetric flow by varying the size of the control throttle 

and thus regulating the speed of an actuator. The volume between the pressure compensator 

and control throttle is assumed to be a small volume, the presence of which increases the 

stiffness of the system. The power source is assumed to be an ideal pressure source with 

constant pressure. It is composed of a hydraulic accumulator, pump, pressure relief valve and 

tank. To reach the tank, hydraulic fluid flow passes through a two-way control valve and two 

orifices after the valve. One of the orifices is an ordinary sharp-edged orifice, whereas the other 

is a 2/2 directional control valve, the opening of which can be controlled by signal Ud.  

 

Figure 2.5: Fluid power system with two-way flow control valve (Circuit 2). 

Pressure in the system can be integrated from the following continuity equations: 

𝑝̇1 =
𝐵𝑒
𝑉1
(𝑄1 − 𝑄𝑡) (2.22) 

𝑝̇2 =
𝐵𝑒
𝑉2
(𝑄𝑡 − 𝑄𝑒1 − 𝑄𝑒2) (2.23) 

where 𝐵𝑒 is the oil effective bulk modulus, 𝑉1 and 𝑉2 are pipeline volumes, where 𝑉1 is a small 

volume, 𝑄1 and 𝑄𝑡 are volumetric flows through the pressure compensator and control throttles, 

and 𝑄𝑒1 and 𝑄𝑒2 are orifice and directional control valve volume flows, respectively. Volume 

flows 𝑄1 and 𝑄𝑡 can be obtained as follows: 

𝑄1 = 𝐾√|𝑝𝑠 − 𝑝1|sign(𝑝𝑠 − 𝑝1) (2.24) 

𝑄𝑡 = 𝑘𝑡√|𝑝1 − 𝑝2|sign(𝑝1 − 𝑝2) (2.25) 

where 𝑝𝑠 is the supply pressure, and 𝐾 and 𝑘𝑡 denote the semi-empirical flow coefficients for 

the pressure compensator throttle and for the control throttle respectively. Both coefficients can 

be integrated from the following differential equations: 
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𝐾̇ =
𝐶5 − 𝑝1 + 𝑝2 − (𝐶1 + 𝐶2(𝑝𝑠 − 𝑝1))𝐾

𝐶3
(2.26) 

𝑘̈𝑡 = (𝑈𝑒 − 𝐶9)𝐶6𝐶7
2 − 2𝑘̇𝑡𝐶8𝐶7 − 𝑘𝑡𝐶7

2 (2.27) 

where 𝑈𝑒 is the signal applied to control throttle (opening), and 𝐶1, 𝐶2, 𝐶3, 𝐶5, 𝐶6, 𝐶7, 𝐶8, 𝐶9 are 

empirical constants (Handroos & Vilenius, 1991). Volume flows 𝑄𝑒1 and 𝑄𝑒2 are obtained 

according to the following flow equations: 

𝑄𝑒1 = 𝑘1√|𝑝2 − 𝑝𝑡| (2.28) 

𝑄𝑒2 = 𝑘2√|𝑝2 − 𝑝𝑡| (2.29) 

where 𝑘1 and 𝑘2 are semi-empirical flow coefficients for the orifice and directional control 

valve, and 𝑝𝑡 is the tank pressure. The initial values and constants of the system used in the 

equations are shown in Table 2.2. 

Table 2.2: Circuit 2 parameters. 

Symbol Value Symbol Value 

𝐵𝑒 1.5×109 Pa 𝐶1 4.65×107 

𝑉1 1.0×10-5 m3 𝐶2 -1.79×104 

𝑉2 1.0×10-3 m3 𝐶3 4.0×1011 

𝑘1 5.62×10-7 𝐶5 1.02×106 

𝑘2 5.73×10-7 𝐶6 5.26×10-7 

𝐾 0.05×10-9 𝐶7 200 

𝑝𝑡 0 Pa 𝐶8 0.45 

𝑘𝑡 0.1×10-7 𝐶9 1.2 

 

2.2.3 Mathematical stiffness analysis of fluid power circuit model 

To analyse the mathematical stiffness of Circuit 2, its state-space representation should be 

derived. If we assign the state and input vectors as 𝐱 = [𝑥1 𝑥2 𝑥3 𝑥4 𝑥5]𝑇 =
[𝑝1 𝑝2 𝐾 𝑘𝑡 𝑘̇𝑡]

𝑇 and 𝐮 = [𝑢1 𝑢2 𝑢3]𝑇 = [𝑝𝑠 𝑈𝑒 𝜀]𝑇, respectively, then the state 

equations can be written as follows: 

𝑥̇1 =
𝐵𝑒
𝑉1
(𝑥3√𝑢1 − 𝑥1 − 𝑥4√𝑥1 − 𝑥2)

𝑥̇2 =
𝐵𝑒
𝑉2
(𝑥4√𝑥1 − 𝑥2 − 𝑘1√𝑥2 − 𝑢3𝑘2√𝑥2)

𝑥̇3 =
1

𝐶3
(𝑥2−𝑥1+𝐶2𝑥1𝑥3−𝐶2𝑥3𝑢1 − 𝐶1𝑥3+𝐶5)

𝑥̇4 = 𝑥5
𝑥̇5 = 𝐶6𝐶7

2𝑢2−2𝐶7𝐶8𝑥5 − 𝐶6𝐶7
2𝐶9−𝐶7

2𝑥4

(2.30) 
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The obtained state-space representation (2.30) is a multi-input multi-output nonlinear model, 

where ε is the parameter that describes the binary input of the 2/2 directional control valve. If 

ε is equal to 0 the valve is closed and the term 𝑘2√𝑥2 will also be equal to zero. One way to 

detect the stiffness in the problem is to estimate the dominant eigenvalues of its Jacobian 

directly. In linear system theory, the eigenvalues of the system Jacobian describe the behaviour 

modes inherent in the model. In nonlinear systems, eigenvalues and eigenvectors are time-

varying. Nevertheless, it is possible to apply this approach to nonlinear problems through 

model linearisation. Linearisation means that constantly differentiating nonlinearities are 

linearly approximated about their operating points. As the linearised solutions can be 

considered good approximations of nonlinear system solutions about the operating point, the 

observations obtained locally can be generalised to the rest of the system. Further, to simplify 

the model we also assume that flows through the compensator and control throttles have 

constant coefficients 𝐾 and 𝑘𝑡, which is often valid and frequently employed in fluid power 

systems design. The Jacobian of the system can be calculated as 

𝐉 =
𝜕𝐅

𝜕𝐱
|
𝐱=𝐱̅,𝐮=𝐮̅

(2.31) 

where 𝐅 is the left-hand side of the first and second equation of (2.30), 𝐱 is the model state 

vector, 𝐮 is the model input vector, and (𝐱̅, 𝐮̅) is the operating point. The Jacobian for the 

considered system can be written as follows: 

[
 
 
 
 −

𝐵𝑒
2𝑉1

(
𝐾

√𝑢1 − 𝑥1
+

𝑘𝑡

√𝑥1 − 𝑥2
)

𝐵𝑒
2𝑉1

𝑘𝑡

√𝑥1 − 𝑥2
𝐵𝑒
2𝑉2

𝑘𝑡

√𝑥1 − 𝑥2

𝐵𝑒
2𝑉2

(
𝑘1 + 𝑘2

√𝑥2
+

𝑘𝑡

√𝑥1 − 𝑥2
)
]
 
 
 
 

(2.32) 

To characterise the level of numerical stiffness of the model, we employ a condition number 

of the Jacobian, which, according to numerical analysis theory, can be written as 

𝜅(𝐉) =
|𝜆𝑚𝑎𝑥(𝐉)|

|𝜆𝑚𝑖𝑛(𝐉)|
(2.33) 

where 𝜆𝑚𝑎𝑥(𝐉) and 𝜆𝑚𝑖𝑛(𝐉)are the maximum and minimum eigenvalues of the Jacobian, 

respectively, which for 𝐉 ∈ 𝐌𝑛×𝑛 should satisfy |𝐉 − 𝜆𝐈| = 𝟎, where I is the identity matrix. 

The condition number shows how much the eigenvalues of the system differ, i.e. small values 

of 𝜅 show that the problem is well-conditioned, whereas large values of 𝜅 indicate the ill-

conditioned problem and the system can be considered stiff. The condition number can be 

determined for the certain configuration of the system. This means that the Jacobian should be 

calculated in the operating point (𝐱̅, 𝐮̅). To define such a point, the physical characteristics of 

the state variables should be considered. Thus, physical restrictions should be imposed on the 

state variables and inputs (Table 2.3). Under those restrictions, the operating point can be 

chosen as x = [198·105, 1.5·105, 10−6, 10−7, 0]T and u = [200·105, 6]T. Note that x1 and x2 are 

calculated from the first and second equation of (9) by substituting x3 and x4 with the constant 

values and assuming that all the rates are equal to zero. At this point, let us consider the two 

cases. In the first case V1 = 10−3 m3, i.e. the volume between compensator and control throttle, 

is quite large. The condition number of (11) in the chosen operating point for this case is 𝜅 = 
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1.28. In the second case the volume is reduced to V1 = 10−5 m3 and the corresponding condition 

number becomes as large as 𝜅 = 77.81. Analysing the system Jacobian (2.32), this effect can 

be seen through the fact that the small volume V1 appears in the denominator of the Jacobian 

elements and, thus, makes the eigenvalues differ significantly in magnitude and the 

mathematical model (2.30) become numerically stiff. 

Table 2.3: Physical restrictions imposed on the state variables and inputs. 

Variable Lower limit Upper limit 

𝑥1 0 - 

𝑥2 0 - 

𝑥3 0 10-6 

𝑥4 10-7 - 

𝑢1 0 - 

𝑢2 0 10 

𝑢3 0 1 

 

2.2.4 Circuit 3: Hydraulic position servo system 

The detailed mathematical model of the hydraulic position servo system (HPS) was employed 

in this work. The model was experimentally verified in (Liu, Wu, Handroos, & Haario, 2012). 

The fluid power system includes a differential cylinder with an attached sliding load, a 4/3-

proportional directional valve and a pump. The system is presented schematically in Figure 

2.6. The system is controlled through the voltage signal 𝑈 supplied to the valve input. The 

dynamic characteristics of the solenoid valve are presented using the second order model as: 

𝑈̈𝑠 = 𝐾𝜔𝑛
2𝑈 − 2𝜁𝜔𝑛𝑈̇𝑠 − 𝜔𝑛

2𝑈𝑠 (2.34) 

where 𝐾 is the valve gain, Us is the signal proportional to the valve spool displacement, 𝜁 is 

the valve damping ratio, and 𝜔𝑛 is the natural angular frequency.  

 

Figure 2.6: Schematic representation of hydraulic position servo system (Circuit 3). 

The volume flow rates model of the 4/3-proportional directional valve with turbulent orifices 

can be presented as: 
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𝑄1 = {
𝐶𝑣𝑈𝑠𝑠𝑖𝑔𝑛(𝑝𝑠 − 𝑝1)√|𝑝𝑠 − 𝑝1|, 𝑈𝑠 ≥ 0

𝐶𝑣𝑈𝑠𝑠𝑖𝑔𝑛(𝑝1 − 𝑝𝑡)√|𝑝1 − 𝑝𝑡|, 𝑈𝑠 < 0

𝑄2 = {
𝐶𝑣𝑈𝑠𝑠𝑖𝑔𝑛(𝑝2 − 𝑝𝑡)√|𝑝2 − 𝑝𝑡|, 𝑈𝑠 ≥ 0

𝐶𝑣𝑈𝑠𝑠𝑖𝑔𝑛(𝑝𝑠 − 𝑝2)√|𝑝𝑠 − 𝑝2|, 𝑈𝑠 < 0

(2.35) 

In (2.35) 𝑄1 and 𝑄2 are the volume flow rates produced by the valve, 𝐶𝑣 is the flow constant 

that accounts for cross-sectional areas of the valve orifices. p1, p2, ps, and pt are respectively 

the pressures inside the cylinder chambers, the supply pressure, and the pressure in the tank. 

As shown in [26], the external leakage model of the servo valve with the critical overlap that 

accounts for the wear to the edges of the spool and the sleeves can be presented as: 

{
 

 
𝑄𝐿1𝑡 = 𝑙1𝑡𝑓𝐿(𝑈𝑠, 𝑈𝑠1𝑡)(𝑝1 − 𝑝𝑡), 0 ≤ 𝑈𝑠 < 𝑈𝑠1𝑡
𝑄𝐿2𝑡 = 𝑙2𝑡𝑓𝐿(𝑈𝑠, 𝑈𝑠2𝑡)(𝑝2 − 𝑝𝑡), 𝑈𝑠1𝑡 < 𝑈𝑠 ≤ 0

𝑄𝐿𝑠1 = 𝑙𝑠1𝑓𝐿(𝑈𝑠, 𝑈𝑠𝑠1)(𝑝𝑠 − 𝑝1), 𝑈𝑠𝑠1 < 𝑈𝑠 ≤ 0

𝑄𝐿𝑠2 = 𝑙𝑠2𝑓𝐿(𝑈𝑠, 𝑈𝑠𝑠2)(𝑝𝑠 − 𝑝2), 0 ≤ 𝑈𝑠 < 𝑈𝑠𝑠2

(2.36) 

where 𝑄𝐿𝑖𝑗 are the leakage flows between the respective ports (𝑖𝑗 = 1𝑡, 2𝑡, 𝑠1, 𝑠2); 𝑙𝑖𝑗 are the 

experimentally defined leakage constants; 𝑈𝑠𝑖𝑗 are the proportional-to-the-position-of-the-

spool voltage signals at which the leakage between respective ports i and j disappears; and fL 

is the experimentally-defined function that accounts for the shape change as: 

𝑓𝐿(𝑈𝑠, 𝑈𝑠𝑖𝑗) = 1 − 3(
𝑈𝑠
𝑈𝑠𝑖𝑗

)

2

+ 2(
𝑈𝑠
𝑈𝑠𝑖𝑗

)

3

(2.37) 

According to Newton’s second law, the equation of motion for a double-acting hydraulic 

cylinder can be written as: 

𝑚𝑥̈𝑝 = 𝑝1𝐴1 − 𝑝2𝐴2 − 𝐹𝑓 (2.38) 

where 𝑥̈𝑝 is the acceleration of the cylinder piston; 𝑚 is the load mass; p1 and p2 are the 

pressures in the cylinder chambers; A1 and A2 are the piston-side and rod-side areas 

respectively; and Ff  is the cylinder friction force. In its turn, the friction formed in the cylinder 

can be represented using the LuGre friction model (Canudas de Wit, Olsson, Astrom, & 

Lischinsky, 1995): 

{
 
 

 
 
𝐹𝑓 = 𝜎0𝑧 + 𝜎1𝑧̇ + 𝑘𝑣𝑥̇𝑝

𝑧̇ = 𝑥̇𝑝 −
|𝑥̇𝑝|

𝑔(𝑥̇𝑝)
𝑧

𝑔(𝑥̇𝑝) =
1

𝜎0
(𝐹𝐶 + (𝐹𝑠𝑡 − 𝐹𝐶) exp (− (

𝑥̇𝑝

𝑣𝑠𝑡
)
2

))

(2.39) 

where 𝜎0 is the flexibility coefficient, 𝜎1 is the damping coefficient, 𝑘𝑣 is the friction 

coefficient, 𝐹𝐶 is the Coulomb friction, 𝐹𝑠𝑡 is the Stribeck friction and 𝑣𝑠𝑡 is the Stribeck 
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velocity. More specifically, 𝑧 represents the non-measurable internal state, 𝑔(𝑥̇𝑝) describes the 

friction behaviour during constant velocity motion, and 𝑘𝑣𝑥̇𝑝 is the viscous friction. The 

leakage flow between the cylinder chambers can be approximated as: 

𝑄𝐿𝑖 = 𝐿𝑖(𝑝1 − 𝑝2) (2.40) 

where 𝐿𝑖 is the laminar leakage flow coefficient. The presented mathematical models of the 

hydraulic elements are connected with the following continuity equations: 

{
 

 
𝑉1
𝐵𝑒1

𝑝̇1 = 𝑄1 − 𝐴1𝑥̇𝑝 + 𝑄𝐿𝑖 − 𝑄𝐿1𝑡 + 𝑄𝐿𝑠1

𝑉2
𝐵𝑒2

𝑝̇2 = −𝑄2 + 𝐴2𝑥̇𝑝 − 𝑄𝐿𝑖 − 𝑄𝐿2𝑡 + 𝑄𝐿𝑠2

(2.41) 

where the chamber volumes are calculated as 𝑉1 = 𝐴1𝑥𝑝 + 𝑉01 and 𝑉2 = 𝐴2(𝐻 − 𝑥𝑝) + 𝑉02. 

Here H is the cylinder stroke and 𝑉0𝑖are the dead volumes connected to the respective ports. In 

(2.41) the compressibility of hydraulic oil is accounted for by the effective bulk modulus 𝐵𝑒𝑖. 
The effective bulk modulus for each cylinder chamber is calculated regarding the local chamber 

pressure using the following empirical formula (Jelai & Kroll, 2003): 

𝐵𝑒𝑖 = 𝑎1𝐵𝑒max log (𝑎2
𝑝𝑖
𝑝max

+ 𝑎3) (2.42) 

where 𝐵𝑒max denotes the maximum bulk modulus of the oil, 𝑝max is the maximum pressure in 

the system, and 𝑎𝑖 (i = 1, 2, 3) are the empirical constants. The values of parameters used in 

the hydraulic model described in this section are shown in Table 2.4.  

Table 2.4: Circuit 3 parameters. 

Symbol  Value Symbol  Value 

𝑚  210 kg 𝐿𝑖  1.59×10-12 m3/sPa 

𝐴1  8.04×10-4 m2 𝑙1𝑡  1.15×10-13 

𝐴2  4.24×10-4 m2 𝑙2𝑡  7.21×10-13 

𝑉01  2.13×10-4 m3 𝑙𝑠1  5.96×10-13 

𝑉02  1.07×10-4 m3 𝑙𝑠2  2.92×10-13 

𝐶𝑣  2.36×10-5 m3/sV√Pa 𝑈𝑠1𝑡  7.94×10-1 V 

𝐻  1 m 𝑈𝑠2𝑡 -5.92×10-1 V 

𝑝𝑠  1.40×107 Pa 𝑈𝑠𝑠1 -9.09×10-2 V 

𝑝𝑡  9×105 Pa 𝑈𝑠𝑠2  9.08 V 

𝐾  9.90×10-1 𝜎0  3.20×102 N/m 

𝜔𝑛  3.31×102 rad/s 𝜎1  6.30 Ns/m 

𝜁  6.18×10-1 𝑘𝑣  1.28×103 Ns/m 

𝑎1  0.50 𝐹𝐶  2.15×106 N 

𝑎2  90 stF   1.13×1010 N 

𝑎3  3 𝑣𝑠𝑡  3.47×102 m/s 

𝐵𝑒max  1.80×109 Pa 𝑝𝑚𝑎𝑥  2.80×107 Pa 
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The HPS model presented in this section gives an extremely good fit to the experimental data 

as demonstrated in (Liu, Wu, Handroos, & Haario, 2012). Thus, performing the mathematical 

model validation with real experimental data is not necessary. 

2.2.5 Circuit 4: Fluid power system with pressure compensating proportional valve 

The next fluid power system considered here is the modified and extended version of the 

previous one. The pressure compensator was added to the 4/3-proportional directional valve 

and the valve leakage was removed. In the system, the small volume appears between the 

directional valve and pressure compensator. In Figure 2.7 the small volume and the pressure 

developing within it are denoted by V3 and p3, respectively. Further only the differences from 

Circuit 3 will be explained. 

 

Figure 2.7: Fluid power system with pressure compensating proportional valve (Circuit 4). 

The volume flow rates model of the 4/3-proportional directional valve using turbulent orifice 

model with triangular groove cross-section can be presented as 

𝑄1 = {

𝐶𝑣(𝑈𝑠 − 𝑈𝑑𝑏)
2sign(𝑝𝑠 − 𝑝1)√|𝑝𝑠 − 𝑝1|, 𝑈𝑠 ≥ 𝑈𝑑𝑏

𝐶𝑣(𝑈𝑠 − 𝑈𝑑𝑏)
2sign(𝑝1 − 𝑝𝑡)√|𝑝1 − 𝑝𝑡|, 𝑈𝑠 ≤ −𝑈𝑑𝑏

0, otherwise

𝑄2 = {

−𝐶𝑣(𝑈𝑠 + 𝑈𝑑𝑏)
2sign(𝑝2 − 𝑝𝑡)√|𝑝2 − 𝑝𝑡|, 𝑈𝑠 ≥ 𝑈𝑑𝑏

−𝐶𝑣(𝑈𝑠 + 𝑈𝑑𝑏)
2sign(𝑝𝑠 − 𝑝2)√|𝑝𝑠 − 𝑝2|, 𝑈𝑠 ≤ −𝑈𝑑𝑏

0, otherwise

(2.43) 

In (2.43), Cν is the flow constant that accounts for cross-sectional areas of the valve orifices, 

Udb is the dead band voltage of the valve, and p1, p2, ps, and pt are the pressures in two cylinder 

chambers, the supply pressure, and the pressure in the tank, respectively. In this work, the 

directional valve is assumed as being ideal, such that there are no internal leakages. The volume 

flow Q3 related to the pressure compensator is modelled using the semi-empirical approach 

developed in (Handroos & Vilenius, 1991): 



2.2 Fluid power system modelling  43 

 

𝑄3 = 𝐾√𝑝𝑠 − 𝑝3 (2.44) 

𝐾̇ =
1

𝐶3
(𝐶5 − 𝑝3 + 𝑝𝑠ℎ𝑢𝑡𝑡𝑙𝑒 − (𝐶1 + 𝐶2(𝑝𝑠 − 𝑝3))𝐾) (2.45) 

where 𝑝𝑠ℎ𝑢𝑡𝑡𝑙𝑒 = max (𝑝1, 𝑝2) is the output of the shuttle valve. The volume flow Q4 between 

valve and pressure compensator can be considered as equal to 𝑄1 if 𝑈𝑠 ≥ 𝑈𝑑𝑏, and equal to 

−𝑄2 if 𝑈𝑠 ≤ −𝑈𝑑𝑏. 

The pressures that are building up in the circuit can be calculated from 

{
  
 

  
 
𝑉1
𝐵𝑒1

𝑝̇1 = 𝑄1 − 𝐴1𝑥̇𝑝 + 𝑄𝐿𝑖

𝑉2
𝐵𝑒2

𝑝̇2 = −𝑄2 + 𝐴2𝑥̇𝑝 − 𝑄𝐿𝑖

𝑉3
𝐵𝑒3

𝑝̇3 = 𝑄3 − 𝑄4

(2.46) 

Equations (2.43) – (2.46) as well as (2.34), (2.38) – (2.40), (2.42) make up the mathematical 

model of Circuit 4. The presence in the model of the pressurised small volume makes the 

mathematical equations stiff and, hence, computationally costly. Parameters used in Circuit 4 

are presented in Table 2.5. 

Table 2.5: Circuit 4 parameters. 

Symbol  Value Symbol  Value 

𝑚  210 kg 𝐶1  4.65×107 

𝑉01  1×10-3 m3 𝐶2 -1.79×104 

𝑉02  1×10-3 m3 𝐶3  4×1011 

𝐾𝑣  9.90×10-1 𝐶5  8×105  

𝐴1  8.04×10-4 m2 𝐿𝑖  1.72×10-13 m3/sPa 

𝐴2  4.24×10-4 m2 𝑉3  1×10-5 m3 

𝑝𝑡  9×105 Pa 𝑘𝑣  1.28×103 Ns/m 

𝑝𝑠  1.40×107 Pa 𝑈𝑑𝑏  2 V 

𝐶𝑣  2.31×10-9 m3/sV√Pa 𝐵𝑒max  1.80×109 Pa 

𝜔𝑛  3.31×102 rad/s 𝑝max  2.80×107 Pa 

𝜁  6.20×10-1 𝜎0  3.20×102 N/m 

𝑎1  0.50 𝜎1  6.30 Ns/m 

𝑎2  90 𝐹𝐶  2.15×106 N 

𝑎3  3 𝐹𝑠𝑡  1.13×1010 N 

H  1 m 𝑣𝑠𝑡  3.47×102 m/s 

 

2.2.6 Circuit 5: Fluid power system of the mobile crane  

The fluid power system used in the crane modelling has the following structure, presented in 

Figure 2.8. The flow is supplied to the system by a variable displacement pressure-compensated 
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pump. Such a pump maintains the assigned pressure level by adjusting the delivered flow. 

Three asymmetric double-acting hydraulic cylinders are controlled through the block of the 

three proportional directional valves with the closed centre position. The drawback of the 

presented configuration is that the pressure level of the most loaded actuator affects the 

velocities of the others. In order to overcome this phenomenon, the pressure compensator is 

added to each control valve. The pressure compensator will ensure the constant pressure drop 

across the control valve and, thus, will maintain the linear dependency between the flow rate 

and the valve opening area.  

 

Figure 2.8: Fluid power system of the mobile crane (Circuit 5). 

The hydraulic circuit, which is used for modelling, is schematically presented in Figure 2.8. 

Each hydraulic cylinder produces the force that can be derived using (2.38), where the friction 

force in cylinder 𝐹𝑓 accounts for its velocity dependency as follows (Andersson, Söderberg, & 

Björklund, 2007): 

𝐹𝑓 = 𝐹𝐶 tanh
𝑥𝑝̇

𝑣𝐶
+ 𝑘𝑣𝑥𝑝̇ (2.47) 

In (2.47), 𝐹𝐶 is a Coulomb friction; 𝑣𝐶  is a Coulomb velocity threshold; 𝑥𝑝̇ is a cylinder 

velocity; and 𝑘𝑣 is a viscous friction coefficient.   

The volume flows created by the proportional 4/3 spool valve with positive overlap and the 

closed centre position can be modelled as: 

𝑄𝐴 = {

𝐶𝑣(𝑈 − 𝑈𝑑𝑏)
2√|𝑝𝑆 − 𝑝𝐴| sign(𝑝𝑆 − 𝑝𝐴), 𝑈 ≥ 𝑈𝑑𝑏 

−𝐶𝑣(𝑈 + 𝑈𝑑𝑏)
2√|𝑝𝐴 − 𝑝𝑇| sign(𝑝𝐴 − 𝑝𝑇), 𝑈 ≤ −𝑈𝑑𝑏  

0, −𝑈𝑑𝑏 < 𝑈 < 𝑈𝑑𝑏 

(2.48) 
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𝑄𝐵 = {

𝐶𝑣(𝑈 − 𝑈𝑑𝑏)
2√|𝑝𝐵 − 𝑝𝑇| sign(𝑝𝐵 − 𝑝𝑇), 𝑈 ≥ 𝑈𝑑𝑏 

−𝐶𝑣(𝑈 + 𝑈𝑑𝑏)
2√|𝑝𝑆 − 𝑝𝐵| sign(𝑝𝑆 − 𝑝𝐵), 𝑈 ≤ −𝑈𝑑𝑏   

0, −𝑈𝑑𝑏 < 𝑈 < 𝑈𝑑𝑏 

(2.49) 

𝑄𝑃 = {

   𝑄𝐴, 𝑈 ≥ 𝑈𝑑𝑏 
−𝑄𝐵, 𝑈 ≤ −𝑈𝑑𝑏
    0, −𝑈𝑑𝑏 < 𝑈 < 𝑈𝑑𝑏 

(2.50) 

where 𝑝𝐴, 𝑝𝐵, 𝑝𝑆 and 𝑝𝑇 are pressures in cylinder chambers, supply pressure and pressure in 

the tank respectively; 𝑈𝑑𝑏 is the voltage proportional to the positive overlap of the valve; and 

𝐶𝑣 is the coefficient that accounts for the dependency between the cross-section area of the 

valve orifices and supplied voltage. It is calculated from technical data of the control valve 

provided by its manufacturer. The factor (𝑈 ± 𝑈𝑑𝑏)
2 is used to model the effect of valve 

grooves with triangular cross-sections. In order to introduce the pressure compensators to the 

valves in the model, the pressure drops 𝑝𝑆 − 𝑝𝐴 and 𝑝𝑆 − 𝑝𝐵 should be set to constant. The 

dynamics of pressure compensators are much faster than the dynamics of the system. 

Moreover, their introduction can increase the calculation load due to inherent nonlinearities. In 

order to keep the calculation time minimal, the dynamics of the pressure compensators are 

neglected. The dynamics of the proportional solenoids is described by a first order delay 

between the input voltage and feedback voltage from a spool position.  

The flow supplied by the pressure compensated pump can be calculated as: 

𝑄̇𝑃 =
𝑘𝑃(𝑝𝑟𝑒𝑓 − 𝑝𝑆) − 𝑄𝑃

𝜏𝑃
(2.51) 

where 𝑘𝑃 is the flow-pressure coefficient of the pump; 𝜏𝑃 is the pump time constant; and 𝑝𝑟𝑒𝑓 

is the reference pressure of the pump. Finally, the pressures in the system can be calculated 

using continuity equation accounting for inlet and outlet volume flows for each considered 

volume as: 

𝑝̇𝑆 =
𝐵𝑒
𝑉
(𝑄𝑃 − 𝑄𝑆) (2.52) 

𝑝̇𝐴 =
𝐵𝑒𝐴

𝑉0 + 𝐴1𝑥𝑝
(𝑄𝐴 − 𝐴1𝑥̇𝑝) (2.53) 

𝑝̇𝐵 =
𝐵𝑒𝐵

𝑉0 + 𝐴2(𝐻 − 𝑥𝑝)
(−𝑄𝐵 + 𝐴2𝑥̇𝑝) (2.54) 

Here 𝐵𝑒 is the bulk modulus of the volume V emerging between the pump and the 

corresponding directional valve. For each considered hydraulic cylinder 𝐵𝑒𝐴 and 𝐵𝑒𝐵 represent 

the corresponding bulk modulus of the volumes of the cylinder chambers; 𝑉0 is the dead 

volume; 𝑥𝑝 and 𝑥̇𝑝 are the piston position and velocity respectively; H is the piston stroke. 
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2.3 Mobile crane modelling using commercial software 

One of the types of the modelling implemented in the work is the crane modelling using 

MATLAB/Simulink commercial software. For the multibody system of the crane, a Simulink 

extension Simscape Multibody was used. In its turn the fluid power system was modelled with 

basic Simulink blocks using equations presented in the previous subsection. The Simscape 

Multibody was chosen since it provides an opportunity to use the CAD drawings of the crane 

components directly together with their size and weight characteristics calculated beforehand 

in other engineering CAD software. Moreover, automatically generated 3D animation by 

Simscape Multibody allowed the system dynamics to be visualised.  

In Figure 2.9 and Figure 2.10 the resulting block diagram of the crane in Simscape Multibody 

and a screenshot of the generated 3D animation are presented. In Figure 2.10 the separate 

bodies are shown in different colours. The crane model was built using only revolute and 

prismatic joints. The prismatic joints were used only in the modelling of the sliding motion of 

the hydraulic cylinders and the extension boom with respect to the outer boom. In the resulting 

model the forces created by the cylinders are calculated in the fluid power model and then taken 

as inputs into the multibody model. In its turn, the positions and velocities of the cylinder rods 

are calculated in the multibody model and further supplied back to the fluid power model. The 

crane motion control in the model is realised through control voltages supplied to the 

directional valves. 

 

Figure 2.9: Mobile crane model in MATLAB/Simulink and Simscape Multibody. 
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Figure 2.10: Screenshot of the generated 3D animation of mobile crane. 

2.4 Mobile crane simulation: results and discussion 

In the work, the model obtained using commercial software was taken as a reference of 

calculation speed and accuracy. The model was calculated using two fixed-step solvers ode 1 

and ode 4, which exploit the 1st order Euler numerical method and the 4th order Runge-Kutta 

method, respectively. In general, the Euler solver, due to its structure, provides faster but less 

accurate simulation results when compared with the Runge-Kutta solver. A time step as small 

as 10-4 s for both solvers was used. The reference models were translated to C source code 

using MATLAB Embedded Coder. The program was optimised for its execution efficiency. 

The code also enables the logging to the file of the main variables, such as coordinates of tip 

location and values of the forces produced by actuators. The derived mathematical model was 

directly implemented as C source code. All programs were executed on a personal computer 

running 2.26 GHz Intel(R) Core(TM) 2 Duo CPU and 4 GB of RAM.  

The movement of the crane was modelled from the static initial position. The cylinders of the 

lifting boom and outer boom were actuated by providing the input voltage of 5 V to their control 

valves. All other cylinders were fixed in their initial positions. The movement during a time 

period of 5 s was simulated. In Figure 2.11 global coordinates of the crane tip produced by the 

simulation of the reference and mathematical INEF models are presented for comparison. The 

resulting coordinates of the crane tip calculated by the models differ less than 5 cm from each 

other. Thus, the accuracy of the models can be considered as comparable. The time spent for 

the execution of each program implementing different models is compared in Figure 2.12. The 

black line indicates the real-time period of 5 s. Any values of time below this line can be 

considered faster than real time, while the value above the line indicates that simulation 

overflow. The program implementing INEF method demonstrates the fastest execution. It 

consumes less than half of the real-time period that is simulated and provides the maximum 

amount of time for analysis of predicted system behaviour. 
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Figure 2.11: Trajectory of the boom tip: Accuracy comparison. 

 

Figure 2.12: Performance comparison. 

The advantage of the direct mathematical modelling built with the use of the INEF method can 

be seen in the ability of its fine tuning in terms of performance and portability. The 

implementation of such a model does not depend on any particular programming language, 

software library, operating system or hardware platform. At the same time the commercial 

software modelling ensures simplicity of implementation, and even the complex mechatronic 

systems in certain cases can also be used in real-time applications. 
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3 Fast simulation of hydraulic models using recurrent neural 

network 

In this chapter the modelling and fast simulation of the fluid power system using an artificial 

neural network with recurrent architecture is studied. As an example of the fluid power system, 

a mathematical model of the HPS system (Circuit 3) is considered. The system was chosen 

since it includes the features that are typical for the wide variety of fluid power system models, 

such as stiff differential equations, strong nonlinearities and non-smooth dependencies. Such 

models are complex and very time-consuming to solve with conventional numerical integration 

methods.  

3.1 Recurrent neural network architectures 

A number of the RNN architectures can be used for dynamic system modelling, such as the 

NFIR, NARX and the NARMAX architectures. These three architectures are similar in their 

structure; however, they differ in how much previous information is recurrently supplied to the 

network input, which, in turn, affects the network prediction accuracy, stability, size and 

calculation time. 

The NFIR architecture can be considered the simplest and can be presented by the following 

defining equation (Schram, Verhaegen, & Krijgsman, 1996): 

𝐲̂(𝑡) = 𝜓𝐻(𝐱(𝑡), 𝐱(𝑡 − 1), … , 𝐱(𝑡 − 𝑛𝑥)) (3.1) 

where 𝐱(𝑡) = [𝑥1(𝑡),… , 𝑥𝑚(𝑡)]
𝑇 is the network input vector at time t; 𝑛𝑥 is the time delay 

order for input; and 𝜓𝐻 is the nonlinear mapping performed by multilayer feedforward network 

with H layers. In (3.1) and in the following equations the hatted variables represent the network 

estimations of the states of the dynamic system to be modelled. According to (Schram, 

Verhaegen, & Krijgsman, 1996), the NFIR architecture ensures stable simulation as long as the 

time of dynamic response is fully covered by past inputs. This leads to a larger number of 

parameters to be estimated in comparison with the NARX architecture, for example. The 

NARX architecture is an extended version of the NFIR architecture where also the past outputs 

are recurrently supplied. The defining equation for the NARX architecture is (Siegelmann, 

Horne, & Giles, 1997): 

𝐲̂(𝑡) = 𝜓𝐻 (𝐲̂(𝑡 − 1), … , 𝐲̂(𝑡 − 𝑛𝑦), 𝐱(𝑡), 𝐱(𝑡 − 1), … , 𝐱(𝑡 − 𝑛𝑥)) (3.2) 

where, in addition to described above parameters, 𝐲(𝑡) = [𝑦̂1(𝑡),… , 𝑦̂𝑙(𝑡)]
𝑇is the network 

output vector at time t and 𝑛𝑦 is the time delay order for output. In comparison to the NFIR, 

this architecture is inherently less stable, since it operates in a closed loop, i.e. it uses its 

predictions as additional input. At the same time, the NARX network is considered to be a 

more accurate approximator. The NARX network can be obtained from the basic multilayer 

feedforward network by delaying the input vector 𝐱 and feeding back the output vector 𝐲̂ 

(Figure 3.1, Figure 3.2). 

The predictive performance of the NARX network can be enhanced by also adding the error 
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information to the network input vector. This approach is used in the NARMAX architecture, 

whose defining equation can be written as: 

𝐲̂(𝑡) = 𝜓𝐻 (𝐲̂(𝑡 − 1), … , 𝐲̂(𝑡 − 𝑛𝑦), 𝐱(𝑡), 𝐱(𝑡 − 1), … , 𝐱(𝑡 − 𝑛𝑥), 𝐞(𝑡 − 1), … , 𝐞(𝑡 − 𝑛𝑒)) (3.3) 

where 𝐞(𝑡 − 1) = 𝐲(𝑡 − 1) − 𝐲̂(𝑡 − 1) is the network error at time t - 1 and 𝑛𝑒 is the time 

delay order for error. In (3.3) elements presented by x are sometimes called “controlled input” 

and thus e elements can be considered as “uncontrolled input”. From this point of view, the 

NARMAX architecture is the most beneficial in the case of the real-world datasets with the 

unobserved noise as it is explicitly modelled in the network structure. However, in order to 

identify this kind of architecture, the previous 𝑛𝑒  prediction errors are needed. Thus, the need 

arises for another predictor that has to be used during the training. This makes the identification 

process for the NARMAX network much more complex than for the NFIR or NARX networks. 

  

In our case, the used datasets do not include any noise as they are produced by a simulation of 

the mathematical model. Moreover, the smaller number of network parameters means faster 

calculations during operation, which is our goal. At the same time the prediction accuracy is 

still important. At this point, it can be concluded that the NARX architecture is seen as the most 

suitable for our application. 

Network training is an iterative process of finding the set of network parameters (weights and 

biases) that satisfy some optimal criterion, such as mean square error minimum, using training 

data (a set of samples where each sample includes the input vector and the desired output 

vector). Using training data, a typical feedforward network can be trained by applying one of 

the backpropagation-based algorithms (Rojas, 1996). One of the most successful up-to-date 

training algorithms for this kind of network is the Levenberg-Marquardt (LM) algorithm (Yu 

& Wilamowski, 2011). In order for the trained network to be not only able to reproduce the 

training data but also to generalise well, Early Stopping (Demuth, Beale, de Jess, & Hagan, 

2014) and Bayesian Regularisation (Demuth, Beale, de Jess, & Hagan, 2014) techniques should 

Figure 3.1: Training configuration of the NARX 

network. 
Figure 3.2: General configuration of the 

NARX network. 
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be used. Both the techniques allow network overfitting to be avoided. The latter technique also 

provides additional information about which part of the neurons is used efficiently. 

One of the main advantages of the NARX architecture is that it allows the network to be trained 

in an open loop configuration. In this configuration during the training, the real output vectors 

of a dynamic system y are fed instead of prone-to-errors estimations 𝐲̂, as shown in Figure 3.2. 

Thus, the accurate input is provided to the feedforward network. Moreover, the resulting 

network acquires a purely feedforward architecture providing the opportunity to apply standard 

backpropagation-based algorithms for training. However, during operation the trained network 

is used in a closed loop configuration (Figure 3.1). 

3.2 Training data generation 

The mathematical model of Circuit 3 described in detail in Section 2.2.4 was implemented in 

MATLAB Simulink. The training data was obtained by simulating the model for 4,000 

seconds. Each sample of the resulting training data consisted of three values: the input voltage 

u (V) applied to the solenoid valve and two output values, namely the hydraulic cylinder spool 

position 𝑥𝑝 (m) (with respect to its zero position when the cylinder is fully retracted) and spool 

velocity 𝑥̇𝑝 (m/s). In order to produce adequate training data, which should cover all the regions 

of the input space where the RNN will be used in the future, a pseudo-random multilevel signal 

(PRMS) was employed. The PRMS was placed in the range -10…10 V and supplied as the 

input. The explicit Runge-Kutta solver with a fixed time step 10-4 s was used to solve the model. 

The integration time step of such a small size is usually considered safe for simulation, as it 

ensures the numerically stable solution of the hydraulic model.  

3.3 Pre-processing technique 

Let us examine the training data produced by the simulation of Circuit 3 more closely. Figure 

3.3 shows a magnification of the areas within the circle. In Figure 3.3 each point represents the 

separate training example for the neural network. It is obvious that the closest neighbours of 

each point will represent the similar training examples. During the training process these 

examples do not bring much new information to the network while making the process longer. 

In order to speed up the training process and concentrate on the temporal information carried 

by the sequence, in this study we developed a technique according to which only each 100th 

example of the initial dataset was used for the training. Thus, the new training data slightly 

differed from the initial one in terms of shape, while they differed significantly in length (Figure 

3.4). The absolute measure of fit of the new data to the initial data was with RMSE of 3.87×10-

5. On the other hand, the new training data comprised only 339,000 samples. Part of the training 

data is presented in Table 3.1. Further, for training purposes, the new data was divided into 

training, validation and test subsets as 70/15/15%. 
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Figure 3.3: Closer look at the training data obtained by numerical integration                                       

of the mathematical model (time step 0.1 ms). 

 

 
Figure 3.4: Difference between the initial (smoother line) and pre-processed training data. 
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Table 3.1: Training data layout. 

Sample 

number 

Input 

u, V 

Output 1 

𝒙𝒑, m 

Output 2 

𝒙̇𝒑, m/s 

195 1.1866 0.1328 0.1433 

196 1.1866 0.1342 0.1433 

197 1.1866 0.1357 0.1433 

198 1.1866 0.1371 0.1433 

199 1.1866 0.1385 0.1433 

200 1.1866 0.1400 0.1433 

201 4.0328 0.1414 0.1433 

202 4.0328 0.1430 0.2023 

203 4.0328 0.1460 0.4127 

204 4.0328 0.1509 0.5361 

205 4.0328 0.1564 0.5384 

3.4 Results and discussion 

The single input multiple outputs (SIMO) NARX network was implemented using the Neural 

Network Toolbox. The number of hidden layers, the number of neurons in each layer and the 

delay parameters were selected by trial and error until the desired accuracy was obtained. The 

resulting network included four fully connected hidden layers with sigmoid activation 

functions, and one output layer with a linear activation function. The number of input and 

output delays was determined by the experiment described further in the section.  

One of the major differences between the NARX network presented in this paper and the 

networks studied in other works (for example in (Patel & Dunne, 2003)) is the network size. 

The present network has much deeper architecture that allows for the approximation of more 

complex functions with multiple inflections inherent to the hydraulic model. 

Let us address the stability issues of the network. As was noted previously, adding global 

feedback to a network can lead to instability in an otherwise stable open loop network. One 

way to assess the stability of a trained neural network is to apply Lyapunov stability analysis. 

However, it can be considered a rather tedious approach (Barabanov & Prokhorov, 2002). In 

our work we implemented a more practical approach consisting of multiple training with 

random parameter initialisation (Patel & Dunne, 2003). Following the selected approach, 15 

randomly initialised networks of the same structure were trained using the same training data. 

The networks were then ranked according to their posterior accuracy on the test dataset in 

closed loop configuration (Table 3.2). Experience shows that the network with minimum 

posterior error is stable (Patel & Dunne, 2003). 

For all networks in Table 3.2 the LM algorithm supplemented by Bayesian Regularisation and 

Early Stopping were used for training. Training of the network with the highest rank took 2 

hours and 57 minutes for 293 epochs and stopped by Early Stopping regularisation (the 

validation subset error continuously increased for 6 epochs). Figure 3.5 shows the evolution of 

the training, validation and test performances of the open loop network during the training. The 

best validation performance at epoch 287 was 7.94×10-6, whereas training and testing 

performances were 4.62×10-6 and 7.36×10-6, respectively. The number of parameters (weights 
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and biases) being effectively used by the network was equal to 956. The closeness of this value 

to the total number of parameters, i.e. 1,053, showed that the size of the network was 

appropriately chosen. After the training, the network was transformed to the closed loop 

architecture. A dataset that included 1,000 samples and corresponded to 10 seconds of real time 

was used for testing. The output accuracy of the trained NARX network with the highest rank 

was MSE = 1.87×10-4. 

Table 3.2: Ranking of the 15 trained networks with Random Initialisation. 

Rank 
MSETrain 

x 10-6 

MSEValid 

x 10-6 

MSETest 

X 10-6 

Valid. 

Stop 

MSETest 

CL* 

1 4.62 7.94 7.36 287 1.87×10-4 

2 6.11 11.30 6.87 181 4.83×10-4 

3 2.59 4.91 4.51 554 5.03×10-4 

4 10.80 17.10 11.60 144 6.04×10-4 

5 2.62 34.70 27.40 1000 6.93×10-4 

6 2.08 2.76 4.06 209 6.98×10-4 

7 6.09 10.80 8.73 415 7.01×10-4 

8 9.96 10.30 11.30 172 7.02×10-4 

9 5.95 10.40 7.17 327 0.25×10-2 

10 5.77 9.74 7.45 105 0.77×10-2 

11 3.98 10.40 12.10 373 0.69 

12 3.54 8.31 8.02 453 1.09 

13 4.16 7.29 6.16 110 1.31 

14 8.61 12.50 10.50 159 2.38 

15 5.66 10.40 7.59 422 3.59 
* Closed loop. 

 

The additional experiments to study the influence of the number of input and output time delays 

on the accuracy of the considered network were carried out. The results are summarised in 

Table 3.3. It should be noted that all seven networks were initialised with the same parameters. 

The visual inspection of the produced responses was also performed. The responses of the most 

accurate networks (Case 5 and Case 6 in Table 3.3) are presented in Figure 3.6. Although the 

overall accuracy of network Case 5 is the highest, network Case 6 represents the transition 

process in velocity in a more natural way. Thus, network Case 6 might be a better choice for 

the simulation. 

Table 3.3: Network performances with different number of input/output time delays. 

Case 
Input 

TD** 

Output 

TD** 

MSETrain 

× 10-6 

MSETest 

× 10-6 

MSETest 

CL* 

1 0…5 1…6 2.74 7.44 7.71×10-4 

2 0…6 1…7 6.39 7.79 3.37×10-4 

3 0…7 1…8 3.49 7.04 8.39×10-2 

4 0…8 1…9 7.71 10.20 2.99×10-4 

5 0…9 1…10 4.66 6.20 4.70×10-4 

6 0...10 1…11 4.62 7.36 1.87×10-4 

7 0…11 1…12 4.63 7.88 0.12 

* Closed loop. 

** Time delay. 
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Figure 3.5: Training, validation and test performances of the open-loop NARX network               

during training. 
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Figure 3.6: Position and velocity responses of the most accurate networks                                       

(Case 5 and Case 6 in Table 3.3). 
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In order to compare the calculation speed on the test dataset, the reference mathematical model 

implemented in Simulink and the trained NARX network (Case 6) were translated in stand-

alone C code using MATLAB Embedded Coder 7.0. The C code was optimised for execution 

efficiency. Both codes were compiled and run on a personal computer that had a 2.26 GHz 

Intel(R) Core(TM) 2 Duo CPU and 4 Gb of RAM. It took 78 ms for the mathematical model 

to simulate an interval of 10 seconds of real time that was 128 times faster than real time, 

whereas for the NARX network model it took only 16 ms to simulate the same time interval 

that, in turn, was 625 times faster than real time (see Table 3.4). Thus, for the considered case 

of the hydraulic system the NARX network model is able to provide the solution 4.8 times 

faster than the reference mathematical model. Moreover, the visual compression of the NARX 

network model and mathematical model responses to a longer test dataset (30,000 samples) 

revealed very good generalisation capabilities of the developed NARX network model (Figure 

3.7). For readability reasons only some of the samples are shown in Figure 3.7. By analysing 

the results presented in Figure 3.7, one can notice the regions with lower accuracy. However, 

these regions are transitional and often retain the form of the target model.  

 

Table 3.4: Computational time of stand-along C codes of the mathematical model and the model 

produces by the proposed method. 

Modelling approach 
Computational time, ms 

(corresponds to 10 s of real time) 

Times faster than  

real time 

Mathematical 78 128 

   

RNN network 

 (+ pre-proc. tech.) 
16 625 

 

 

 
Figure 3.7: Comparison between the responses of the mathematical model (Target) and NARX 

network-based model (Network) using the test dataset. 
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The obtained results show that the NARX network with deep architecture and proper chosen 

size provides an accurate solution for the considered hydraulic system and can be used for 

simulation purposes. In addition to the benefits provided by the NARX network-based 

modelling approach, the pre-processing technique developed in this work allows the simulation 

of the hydraulic system to be sped up. In particular, for the considered HPS model the NARX 

network-based simulation was 4.8 times faster than the mathematical model-based simulation.  

It should be noted that both simulations of the considered hydraulic system were performed 

faster than real time. However, with the increasing size of the system model (by adding more 

hydraulic components such hydraulic cylinders and valves and by adding the multibody model 

of the mobile machine) or with increasing model complexity (by taking into account the small 

volumes of the valves and/or the flexibility of the hydraulic components), the computational 

time increases for the mathematical model-based simulation much faster than for the NARX 

network model-based simulation. The reason for this is that the RNN calculation speed is 

mainly related to the number of network parameters and only partly depends on the complexity 

of the mathematical model, which is used for the training. Thus, it can be expected that the 

number of the network parameters will not increase much as the number considered in this 

work is already sufficient to represent rather complex dynamics. 

Another aspect that deserves special attention is that any ANN with adequate training can 

achieve the good performance with interpolation problems and at the same time has quite poor 

behaviour with extrapolation problems. Here interpolation and extrapolation are considered 

with respect to the training set. Fortunately, the fluid power systems often have limited number 

of states that can be formulated as interpolation problem. In the work, the RNN is used only as 

a tool for simulation acceleration. All the dynamics of the fluid power system is provided by 

the mathematical model that is used for the RNN training. Thus, in the case of another fluid 

power system the dynamics of interest should be reflected in the mathematical model. Then 

the structure (inputs/outputs number and character, neurons number) of the RNN should be 

revised in a way that will help the network to reproduce the dynamics correctly. 
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4 An efficient method for solving the fluid power models with 

singularities 

In this chapter on simulation acceleration, the method based on the developed advanced 

pseudo-dynamic solver with adaptive criterion (AdvPDS) is used. This solver artificially 

reduces the numerical stiffness of the mathematical model of the fluid power system, which is 

caused by the presence of a small volume in the system (Malysheva, Ustinov, & Handroos, 

2020; Malysheva & Handroos, 2020). Also in the chapter, the effect of the three different fixed-

step integration methods (Euler, Runge-Kutta of fourth order, and modified Heun’s method) 

used within AdvPDS are considered. The numerical stability of the modified Heun’s method 

was improved by substituting the purely turbulent orifice model with the two-regime orifice 

model. The two-regime orifice accounts for both the turbulent and laminar flows and thus 

allows the numerical problems related to the small pressure drops to be avoided. 

4.1 Classical pseudo-dynamic solver 

The classical pseudo-dynamic solver (PDS) was proposed and studied in (Åman & Handroos, 

2008; Åman & Handroos, 2010; Åman R. , 2011; Pedersen H. , 2007). The main purpose of 

the PDS is to find a steady-state solution for the pressure building up in a small volume. The 

solver outputs the pressure value only after its steady state is reached using derivative 

convergence criterion. Then PDS includes two integration loops: the main loop, which contains 

algebraic and differential equations related to larger volumes, and the inner loop. The inner 

loop, using artificially enlarged fluid volumes, searches for the steady-state value of pressure 

passing by the transition process of pressure formation. The steady-state value of pressure is 

sought out during the single time step of the main loop. The PDS is used only for small volume 

presser integration. For all other parts of the hydraulic model the common numerical 

integration method is used. 

The pressure inside the inner loop can be calculated from the classical continuity equation using 

an artificially enlarged fluid volume as follows: 

𝑝̇ =
𝐵𝑒

𝑉𝑝𝑠𝑒𝑢𝑑𝑜
(𝑄𝑖𝑛 − 𝑄𝑜𝑢𝑡) (4.1) 

where 𝑉𝑝𝑠𝑒𝑢𝑑𝑜 is the artificial pseudo-volume, and 𝑄𝑖𝑛 and 𝑄𝑜𝑢𝑡 are the inlet and outlet volume 

flows, respectively. According to (Malysheva, Ustinov, & Handroos, 2020), it is recommended 

that the pseudo-volume is set at least 10 times higher than the actual volume. Inlet and outlet 

volume flows can be expressed as a function of pressure drop as follows: 

𝑄 = 𝑓(∆𝑝) (4.2) 

The integration of the differential equation inside the inner loop of classical PDS occurs using 

an explicit fixed-step fourth order Runge–Kutta integration routine with an independent 

sufficiently small time step ti. The integration routine continues until the convergence criterion 

is reached. The criterion is a predefined user parameter, which represents the first derivative of 

the pressure. It is important to note that the activation of the inner loop suspends the main loop 
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until the steady-state pressure value is found. In general, the PDS allows the hydraulic model 

overall stiffness to be reduced by neglecting the high order dynamics that do not play a major 

role in the dominant dynamic behaviour of the mobile machine.  

4.2 Advanced pseudo-dynamic solver with adaptive criteria 

To study the characteristics of the PDS described in Section 4.1, a fluid power system (Circuit 

2) was employed. The three random signals in the form of pseudo-random multilevel signals 

(PRMSs) were supplied as the inputs: supply pressure ps in the range 14–20 MPa, control 

voltage to the control throttle Ue in the range −10 to +10 V, and directional valve control signal 

Ud, which took either 1 when it is open or 0 when it is closed (Figure 4.1). The signals were 

supplied asynchronously with a period of 0.5 s. The system was simulated using a conventional 

fourth order Runge–Kutta integrator with a sufficiently small time step of 10−6 s for 100.5 s.  

 

Figure 4.1: Input signals for Circuit 2. 

During the simulation, the small volume V1 is equal to 10−5 m3. The simulation took about five 

hours using the following simulation environment: MATLAB 2018b, Intel Core i5-4590 3.30 

GHz with 16 GB of RAM, running OS Windows 7 64-bit. The fourth order Runge–Kutta solver 

is considered further in this work as a reference solver and the solutions obtained with its help 

are thus also considered as a reference. The solution for the pressure p1 was obtained under 

such conditions and was used as a reference in the case of Circuit 2. The classical pseudo-

dynamic solver was introduced in the same simulation using recommended parameters. 

Unfortunately, it could not achieve a stable solution without compromising its speed and 

accuracy. While studying the reasons for such a behaviour, it was discovered that the solver 

becomes numerically unstable in areas of sudden pressure change, owing to fixed 𝑄𝑜𝑢𝑡 in (4.1) 

during integration in the inner loop. To stabilise the numerical solution, it was decided to move 

the calculation of 𝑄𝑜𝑢𝑡 into the inner loop. Thus, in terms of Circuit 2, the pressure build-up in 

the small volume (2.22) as well as inlet and outlet volume flows described by (2.24) and (2.25), 

respectively, are calculated in the inner loop. However, it was also found that the calculation 

of other system elements such as K and kt inside the inner loop does not have much of an effect 

on the solution accuracy; moreover, it makes the simulation longer. These findings formed the 

basis for the AdvPDS.  
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In the classical PDS, the single convergence criterion was used. The criterion was based on the 

rate of pressure change between the iterations in the inner loop. The rate of pressure change 

between the iterations ∆p1 can be written as:  

∆𝑝1 = 𝑝1 − 𝑝1𝑝𝑟𝑒𝑣 (4.3) 

where p1 is the pressure from the current iteration, and p1prev is the pressure from the previous 

iteration of the inner loop. The rate of pressure change is compared with the convergence 

criterion value to detect the beginning of the steady-state process of the pressure. The captured 

steady-state value is further passed to the main loop. The effect of the single criterion value in 

the inner loop of the AdvPDS on the solution accuracy was also studied. It was discovered that 

applying a smaller convergence criterion in the inner loop produces a more numerically stable 

result when the pressure approaches its lower values during the simulation. In Figure 4.2 the 

effect of the criterion value on the calculation of the low pressures using the AdvPDS is shown. 

At the same time, it was noted that the computational time of the simulation increases with the 

criterion decrease, owing to the large number of iterations performed inside the inner loop. 

Thus, the adaptive convergence criterion was proposed. The idea behind the adaptive criterion 

is that depending on the pressure level, the criterion with the most suitable time efficient and 

numerically stable effect on the pressure is automatically selected during the fluid power circuit 

simulation.  

 

Figure 4.2: Effect of the criterion value on the low-pressure calculation using the AdvPDS. 

When the pressure difference between the iterations ∆p1 is calculated using (4.3), the current 

pressure level p1 is compared to the assigned low-pressure level plimit. If the current pressure 

level is low, the smaller criteria is used, i.e. the inner loop continues to iterate until the change 

in the pressure is less than p1 tol low. If p1 > plimit the inner loop proceeds with criteria p1 tol high. In 

other words, at low pressure levels in the system, the smaller criterion is implemented to 

achieve a more numerically stable result. At pressure levels higher than the low-pressure limit, 

the bigger criterion is used to reduce the computational time of the simulation. The low-

pressure level was defined experimentally and for both Circuits 2 and Circuit 4 it was 22 bar. 

Both criteria have to be predefined by the user before the simulation, based on the 

recommendations given further in this work. When the criterion is satisfied, the value of 

pressure p1 and flow Qt are updated for subsequent calculations in the main loop. The main 
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loop further updates the pressure p2, and flows Qe1 and Qe2 according to (2.23), (2.28), and 

(2.29), respectively. Then the calculation of flow coefficients K and kt according to equations 

(2.26) and (2.27) is performed. The next iteration of the main loop begins at the next time step 

∆t. The process continues for all the specified simulation time. 

In the work (Malysheva, Ustinov, & Handroos, 2020) the subtlety of the classical PDS was 

improved by modifying the original structure and introducing the second convergence criterion 

for the small pressures (AdvPDS). In order to show the operating principle of the AdvPDS, let 

us consider the simple Circuit 1 with two orifices presented in Section 2.2.1 by the equations 

(2.18) –(2.21). 

An algorithm for the AdvPDS built in the structure of this fluid power circuit for pressure 

calculation in the small volume is presented below (Algorithm 4.1). It should be noted that 

inside the loop the Q1, Q2 and p1 are being recalculated during the integration whereas all other 

parameters, like p2, are constant. 

In Algorithm 4.1 Vpseudo is the pseudo volume, p1 tol high and p1 tol low are the convergence criteria 

for the high-pressure and low-pressure areas, respectively, and tmax is the maximum allowed 

iteration time. 

Algorithm 4.1. AdvPDS 

Input: p1
prev, p2, Vpseudo, dti, tmax,  

Output: p1
next, Q2

next 

       Initialisation: 

1:  ti = 0 

      LOOP : 

2:  for ti = 0 to tmax do 

3:       ti = ti + dti 

4:       use (2.21) to calculate Q2   

5:       use (2.20) to calculate Q1 

6:       use (2.18) and V1 = Vpseudo to calculate ṗ 

7:       calculate p1
current using the numerical integration method 

8:       Δp1 = p1
current – p1

prev 

9:       if (p1
current < plimit)  then 

10:          if (Δp1 < p1 tol low)  then p1
next = p1

current, Q2
next = Q2           

11:              return  p1
next, Q2

next 

12:              break  LOOP 

13:          else p1
prev = p1

current  goto LOOP 

14:          end if 

15:     else  

16:           if (Δp1 < p1 tol high)  then p1
next = p1

current, Q2
next = Q2 

17:               return  p1
next, Q2

next 

18:               break  LOOP 

19:           else p1
prev = p1

current  goto LOOP 

20:           end if 

21:      end if 

22: end for 

 

There are two main differences in the AdvPDS when compared with the classical pseudo-

dynamic solver. First, the calculation of the outlet volume flow rate related to the small volume 

is included in the solver, which allowed the numerical stability of the solution to be increased. 
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Second, the adaptive convergence criterion is introduced, which allowed the simulation time 

to be decreased and the calculation accuracy to be increased. 

4.3 Numerical Integration Methods for the AdvPDS  

In this section, four numerical integration methods that are further used in the framework of 

the AdvPDS are presented. The first three methods (Euler method, Runge-Kutta method and 

Heun’s method) are the general mathematical numerical integration methods, while the fourth 

is an ad hoc method developed specially for pressure integration in hydraulic circuits.   

4.3.1 Euler Method 

Euler’s numerical integration method is the simplest and most computationally efficient, since 

only a single function calculation is performed at each time step. Let us consider an initial value 

problem of the form: 

𝑦̇ = 𝑓(𝑡, 𝑦(𝑡)), 𝑦(𝑡0) = 𝑦0 (4.4) 

where t is the time flow. The governing equation of the Euler method can be written as: 

𝑦𝑛+1 = 𝑦𝑛 + 𝑑𝑡𝑓(𝑡𝑛, 𝑦𝑛) (4.5) 

where dt is the integration time step, and yn+1 and yn are respectively the next and the previous 

values (estimations) of the integrated parameter y. However, the applicability of the method for 

the stiff problem solution is quite limited due to its narrow stability performances (Hairer & 

Wanner, 1996). The global error of Euler method is proportional to the maximum step size 

(Hairer & Wanner, 1996). 

4.3.2 Runge-Kutta Method 

The well-known Runge-Kutta method of the fourth order has a larger stability area and 

provides a more accurate approximation for the integrating parameter compared with the Euler 

method. However, it is more computationally expensive as it requires four function calculations 

at each time step. The method can be written in the form: 

𝑠1 = 𝑓(𝑡𝑛, 𝑦𝑛) (4.6) 

𝑠2 = 𝑓 (𝑡𝑛 +
𝑑𝑡

2
, 𝑦𝑛 +

𝑑𝑡

2
𝑠1) (4.7) 

𝑠3 = 𝑓 (𝑡𝑛 +
𝑑𝑡

2
, 𝑦𝑛 +

𝑑𝑡

2
𝑠2) (4.8) 

𝑠4 = 𝑓(𝑡𝑛 + 𝑑𝑡, 𝑦𝑛 + 𝑑𝑡𝑠3) (4.9) 

𝑦𝑛+1 = 𝑦𝑛 + 𝑑𝑡 (
𝑠1
6
+
𝑠2
3
+
𝑠3
3
+
𝑠4
6
) (4.10) 
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4.3.3 Heun’s Method 

The third numerical integration method considered in this work is Heun’s method. This is a 

two-stage method that first uses Euler’s equation for the calculation of the intermediate value 

for the integrating parameter (predictor) and then the implicit trapezoidal method for the final 

approximation (corrector). The procedure for Heun’s predictor-corrector method can be written 

as: 

𝑦̂𝑛+1 = 𝑦𝑛 + 𝑑𝑡 ∗ 𝑓(𝑡𝑛, 𝑦𝑛) (4.11) 

𝑦𝑛+1 = 𝑦𝑛 +
𝑑𝑡

2
[𝑓(𝑡𝑛+1, 𝑦̂𝑛+1) + 𝑓(𝑡𝑛, 𝑦𝑛)] (4.12) 

The accuracy of the solution ensured by the Euler method improves linearly with the step size 

decrease (the error is O(dt)). However, the solution accuracy obtained using Heun’s method 

improves quadratically (the error is O(dt2)). In its turn the accuracy of the Runge-Kutta method 

is O(dt4). 

4.3.4 Modified Heun’s Method with improved stability 

In the work (Ellman A. , 1992) the above-described Heun’s method was modified and adopted 

for the pressure integration in fluid power circuits. The convergence of the method was 

improved by means of Newton’s single iteration method. For the simple fluid power circuit 

(Circuit 1) the predictor equation of the modified Heun’s method can be written as: 

𝑝̂1
𝑛𝑒𝑥𝑡 =

𝑝̂1
𝑝𝑟𝑒𝑣 + 𝑑𝑡

𝐵𝑒
𝑉1
(𝑄Σ

𝑝𝑟𝑒𝑣 −
𝜕𝑄Σ

𝑝𝑟𝑒𝑣

𝜕𝑝1
𝑝𝑟𝑒𝑣 𝑝1

𝑝𝑟𝑒𝑣)

1 − 𝑑𝑡
𝐵𝑒
𝑉1

𝜕𝑄Σ
𝑝𝑟𝑒𝑣

𝜕𝑝1
𝑝𝑟𝑒𝑣

(4.13) 

where 𝑝̂1
𝑛𝑒𝑥𝑡 is the estimate of the next pressure value, 𝑄Σ

𝑝𝑟𝑒𝑣
 is the total volume flow calculated 

with respect to the previous pressure value, and dt is the integration time step. In its turn, the 

corrector equation can be presented as: 

𝑝1
𝑛𝑒𝑥𝑡 =

𝑝1
𝑝𝑟𝑒𝑣 +

𝑑𝑡
2
𝐵𝑒
𝑉1
(𝑄Σ

𝑝𝑟𝑒𝑣 + 𝑄̂Σ
𝑛𝑒𝑥𝑡 −

𝜕𝑄̂Σ
𝑛𝑒𝑥𝑡

𝜕𝑝1
𝑛𝑒𝑥𝑡 ∙ 𝑝̂1

𝑛𝑒𝑥𝑡)

1 −
𝑑𝑡
2
𝐵𝑒
𝑉1

𝜕𝑄̂Σ
𝑛𝑒𝑥𝑡

𝜕𝑝̂1
𝑛𝑒𝑥𝑡

(4.14) 

where 𝑝1
𝑛𝑒𝑥𝑡 is the resulting pressure value, and 𝑄̂Σ

𝑛𝑒𝑥𝑡 is the total volume flow calculated with 

respect to the estimate of the next pressure value. It should be noted that both the predictor 

(4.13) and corrector (4.14) equations include a partial derivative of the total flow with respect 

to the pressure. The derivatives originate from the employed Newton single iteration method. 

The use of the conventional turbulent orifice model (2.19) inside the derivatives may have led 

to a singularity problem, as the model has singularity in the Jacobian at zero pressure difference 

(Piché & Ellman, 1994). In particular, when the pressure drop across the turbulent orifice model 
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nears zero, the first derivative of flow with respect to pressure drop approaches infinity and the 

second derivative becomes discontinuous (Åman, Handroos, & Eskola, 2008). This model 

property can cause arithmetical overflow in the numerical integration process. However, this 

property related only to the mathematical representation of the volume flow. Model (2.19) 

describes only the turbulent flow through the orifice, whereas in reality the transition from 

turbulent to laminar flow occurs when the orifice pressure drop is small. Thus, in order to avoid 

the singularities in the integration process, a more accurate model of the flow through the 

orifice is needed. For this reason, the two-regime orifice model (Åman, Handroos, & Eskola, 

2008) is employed in the work. This model includes both the turbulent flow model as (2.19) 

and the laminar flow model for the pressure drops close to zero. The laminar flow model is 

based on the cubic spline approximation and can be written as: 

𝑄 = 𝑎1∆𝑝 + 𝑎2∆𝑝
2 + 𝑎3∆𝑝

3, |∆𝑝| < |∆𝑝0| (4.15) 

where Δp is the pressure difference across the orifice, p0 is the boundary pressure of transition, 

and a1, a2, a3 are the coefficients of the cubic spline that can be calculated as: 

𝑎1 =
5𝑘𝑖

4√∆𝑝0
𝑎2 = 0

𝑎3 = −
𝑘𝑖

4(∆𝑝0)
5
2⁄

(4.16) 

The physical adequate value for the boundary pressures can be found as (Åman, Handroos, & 

Eskola, 2008): 

∆𝑝0 = ±
𝑅𝑒𝑡𝑟

2 𝜈2𝜋√𝜌

5.657𝐶𝑑𝑘𝑖
(4.17) 

where Retr is the transition Reynolds number, Cd is the value of the discharge coefficient in the 

turbulent region, v is the kinematical viscosity of hydraulic fluid, and ki is the semi-empirical 

volume flow coefficient. 

4.4 Simulation results using AdvPDS with the fourth order Runge-Kutta 

solver 

In this section, the results of the simulation of the two fluid power systems Circuit 2 and Circuit 

4 are presented. The results are represented through a comparison of the responses of the 

considered fluid power circuits obtained using the referenced fourth order Runge-Kutta solver 

and the AdvPDS. The results demonstrate the features of the proposed method and its 

advantages compared with the traditional method of fluid power system modelling and 

simulation. 
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4.4.1 Circuit 2 simulation 

Circuit 2 was simulated for 100.5 s using the AdvPDS and the reference solver with the inputs 

presented in Figure 4.1. The presence of the small volume (V1 = 10−5 m3) in the circuit between 

the pressure compensator and control throttle increased the stiffness of the whole system, and 

also determined the selection of the integration time step for the reference solver. The 

integration time step of the reference system was set to the largest possible value of 1 × 10−6 s, 

at which point the solution for the pressure appeared numerically stable. The use of the 

AdvPDS with Circuit 2 allows the stiffness of the system to be reduced, owing to substitution 

of the small volume by the larger artificial volume. In the mathematical model of Circuit 2 the 

artificial volume Vpseudo substitutes the real volume V1 in (2.22). This volume directly affects 

the resulting pressure p1. In order to analyse how the size of the artificial volume affects the 

respective pressure solution, a simple sensitivity analysis was carried out. The sensitivity 

analysis was performed in a way that Circuit 2 is simulated five times with the same input 

signals and parameter values except for the pseudo-volume value. In the experiment, Vpseudo 

took the following values: 0.5×10−2 m3, 1×10−3 m3, 0.5×10−3 m3, 1×10−4 m3, and 0.5×10−4 m3. 

The upper bound of the pseudo-volume range was limited by the system stability while holding 

the condition ∆ti = 10−5 s. In Figure 4.3 the results of five simulations are presented. For clarity, 

only a short range of the simulation time is shown in the figure. It should be noted that the 

biggest difference in the pressure solutions of five simulations is observed in the transition 

areas, when one of the control signals was changed. One such area is shown in Figure 4.3. It 

can be seen from the figure that the four solutions that refer to the smaller pseudo-volumes are 

rather close to the reference one. Only the solution obtained using the biggest volume 0.5×10−2 

m3 compromised the accuracy. Taking into account the obtained results, the artificial volume 

was set to Vpseudo = 1 × 10−3 m3. On the one hand, the pseudo-volume of this size ensured quite 

high accuracy of the solution. On the other hand, it allowed the integration time steps for the 

main and inner loops to increase significantly and to be set to the values of 10−4 s and 10−5 s, 

respectively. As previously mentioned, the number of iterations performed in the inner loop at 

each time step also has a direct effect on the simulation time. The transition process is more 

oscillatory, and the larger the pressure changes, the more iterations are performed in the inner 

loop. At the same time, the number of iterations is dependent on the chosen convergence 

criterion. It was found experimentally that the larger criterion is associated with the smaller 

number of iterations. Thus, to speed up the simulation of the AdvPDS-based system, the 

adaptive convergence criterion 300 Pa/10 Pa was selected based on experimental results. In 

Figure 4.4, the number of iterations performed by the AdvPDS using a single convergence 

criterion in comparison with the use of the adaptive criterion is shown for the first 20 seconds 

of the simulation. It can be seen from the figures that the AdvPDS executed a higher number 

of iterations in transition areas with the single criterion than with the adaptive criterion, which 

resulted in a shorter simulation time. Figure 4.5 shows the pressure responses p1 of Circuit 2, 

obtained with the reference solver and the AdvPDS. One can observe that the two curves are 

highly coincidental with each other. Now the high accuracy of the AdvPDS-based system was 

also achieved on the low-pressure areas. The accuracy of the system was represented through 

root-mean-square error (RMSE). The overall error was RMSE = 1.12·104Pa, which is 

insignificant for such high-pressure levels in the system. Thus, the use of larger integration 

time steps together with the adaptive convergence criteria allowed the computational time of 

the simulation to be reduced compared with the reference system. The simulation time with the 

reference solver was about five hours, whereas only 147.983 seconds were spent for the same 
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simulation using the AdvPDS. Moreover, it should be noted that the system with the AdvPDS 

(in contrast to the use of the classical pseudo-dynamic solver) is numerically stable during the 

whole 100.5 seconds of simulation (i.e. the solver kept the same pressure level as the reference 

system). 

 

Figure 4.3: Sensitivity analysis of p1 solution to the changes in Vpseudo. 

 

Figure 4.4: Number of iterations performed by the AdvPDS in the inner loop during the first 20 s of 

the simulation with 10 (upper plot) and 300/10 (lower plot) criteria. 
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Figure 4.5: Pressure responses of Circuit 2 obtained using the reference solver and AdvPDS          

(with enlarged areas). 

4.4.2 Circuit 4 simulation 

Circuit 4 was simulated for 10 seconds with input signals, which are a constant supply pressure 

of 14 MPa and voltage signal for the directional control valve that varies from −5 to 8 V within 

a one-second period. The simulation of the system in the presence of the small volume between 

the pressure compensator and directional control valve using the reference solver was run with 

the safe integration time step of 10−5 s. Such a time step ensured a numerically stable solution 

for the system. The adaptive criterion values for the AdvPDS under the condition of trade-off 

between the accuracy and simulation time was experimentally chosen using Circuit 2. In order 

to verify the applicability of the chosen criterion values to other fluid power circuits, which 

also include small volumes, Circuit 4 with the AdvPDS was used in another experiment. In this 

experiment the circuit was simulated 14 times with the different values of the criterion of the 

AdvPDS, while the simulation times and solution accuracy for the cylinder position piston xp 

(against the responses obtained with the reference solver) were measured. The use of AdvPDS 

for the solution of the system allowed the integration time step to be increased to 10−4 seconds 

for both the main and inner loops. The single criteria value was used in order for the 

dependency (criterion value/accuracy vs. simulation time) to show itself more clearly. The 

experimental results are summarised in Table 4.1 and graphically illustrated in Figure 4.6. It 

can be seen from the figure that the calculation accuracy and simulation time have exponential 

dependency. Thus, it can be concluded that a larger criterion reduces the simulation time but 

decreases the calculation accuracy, which is expressed by an increased RMSE. In this case, the 

criterion equal to 100 can be considered optimal. However, according to the results, the 

increase in overall accuracy was not significant in contrast with the decrease in simulation time, 

which in our work is the more advantageous system performance. While also taking into 

account the solution problems in the low-pressure areas, which were solved by use of a smaller 

criterion, it became clear that the adaptive criteria 300/20 Pa was the most suitable choice. 

Consequently, the simulation time was 27.572 s, which is a better result compared with the 

reference system and with systems having a single convergence criterion.  



4.4 Simulation results using AdvPDS with the fourth order Runge-Kutta solver  69 

 

 

Figure 4.6: Dependency between simulation time and RMSE using AdvPDS with a single criterion. 

The response of the pressure p3 built up in the small volume as well as the cylinder position 

piston xp against the responses obtained with the reference solver can be observed in Figure 

4.7. The obtained responses of the AdvPDS-based system in the pressure and cylinder piston 

position were accurate and differed from the reference responses with RMSEs of 1.12×105 Pa 

and only 4.24×10−4 m for the pressure and piston position, respectively. The obtained accuracy 

of the responses was ensured, in particular, by the adaptive criteria, which provided a more 

precise solution in the low-pressure areas. In Table 4.2, the resulting simulation times for both 

circuits using reference solver and AdvPDS are presented. The appropriateness of the adaptive 

criterion chosen was confirmed by a number of experiments that were also carried out with 

Circuit 4. 

Table 4.1: Relationship between criteria value, simulation time, and calculation accuracy for the 

AdvPDS with a single criterion. 

Criteria, Pa Simulation time, s RMSE ×10-4, m 

10 115.593 4.2950 

20 101.847 4.3251 

50 63.766 4.3554 

70 46.558 4.3720 

100 27.546 4.3939   

200 25.222 4.4529   

300 24.307 4.5051   

400 23.609 4.5480   

500 22.815 4.5897   

600 22.638 4.6339 

700 21.829 4.6704   

800 22.084 4.7151 

900 22.400 4.7496   

1000 21.043 4.7881   
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Figure 4.7: Circuit 4 responses in pressure p3 and cylinder piston position xp using the reference solver 

and the AdvPDS. 

Table 4.2: Simulation time of Circuit 2 and Circuit 4 using the reference solver and the AdvPDS. 

Circuit Solver Real -

time, s 

Time Step, s 

(main/inner) 

Simulation 

Time 

Adaptive 

Criterion 

RMSE w.r.t. Ref. 

2 Ref. 100.5 10-6/- ~5 h - - 

 AdvPDS 100.5 10-4/10-5 147.983 s 300/10 RMSEp1 = 

1.12×104 Pa 

4 Ref. 10 10-5/- 200.350 s - - 

 AdvPDS 10 10-4/10-4 27.572 s 300/20 RMSEp3 = 

1.89×105 Pa 

RMSExp = 

4.24×10-4 m 
 

4.4.3 Real-time implementation 

To investigate the possibilities of the use of the developed method in real-time and faster than 

real-time implementations, MATLAB codes for Circuit 4 with the reference solver and the 

AdvPDS were translated into standalone C code using MATLAB Coder 4.1. Both codes were 

compiled and run outside MATLAB on a PC with an Intel Core i5-4590 3.30 GHz with 16 GB 

RAM. As a result, to simulate an interval of 10 s of real time, it took 219 ms for the reference 

system, whereas for the AdvPDS-based system it took only 47 ms to simulate the same time 

interval. Thus, the introduction of the developed AdvPDS solver allowed Circuit 4 to be 

simulated 4.7 times faster in comparison with the reference solver. It should be noted that in 

our case, both implementations were calculated much faster than real time. However, in virtual 

prototypes the fluid power system is usually employed in conjunction with mechanical 

components (i.e. multibody dynamic representation of the mobile machine structure). Thus, the 

mechanical component should also be calculated at each time step of the real-time simulation. 

Based on the results, it can be concluded that the use of the AdvPDS for the solution of real-

time and faster than real-time systems, which include fluid power components with the small 

volumes, can be more beneficial than the reference solver application. 
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4.5 Simulation results using AdvPDS with the improved modified Heun’s 

method  

In order to maximise the simulation speed of the developed simulation model (Circuit 2) an 

implementation and algorithmic perspectives are considered. From an implementation 

perspective, the compiled C language and procedural programming approach allows for a 

higher simulation speed in comparison with, for example, MATLAB or Python languages. 

Thus, the mathematical model of the hydraulic circuit with the two-way flow control valve 

described in the previous section was implemented in C code.  

From an algorithmic perspective, four integration approaches were developed, implemented 

and compared in solution accuracy and simulation time. In Approach 1 the conventional 

Runge-Kutta method was employed for the whole system integration. The solution obtained in 

this way for p1 was used as a reference solution. For the pressure integration in the three other 

approaches the AdvPDS was used. The difference between these three approaches was that 

inside the AdvPDS the Runge-Kutta method (in Approach 2), Euler method (in Approach 3), 

and the modified Heun’s method with improved stability (in Approach 4) were used. It should 

be noted that the integration outside the AdvPDS loop was still carried out using the Runge-

Kutta method.  

For the simulation the internal parameters of the AdvPDS, such as the pseudo-volume, two 

criteria, and maximum iteration time were assigned as recommended in (Malysheva, Ustinov, 

& Handroos, Computationally Efficient Practical Method for Solving the Dynamics of Fluid 

Power Circuits in the Presence of Singularities, 2020): Vpseudo = 10-3 m3, p1 tol high = 300 Pa, p1 

tol low = 20 Pa, and tmax = 10 s. Thus, the hydraulic circuit with the two-way flow control valve 

was simulated for 40.5 s using four described above approaches. As the input, randomly 

generated signals ps, Ue and Ud with the respective ranges of 14…20 MPa, 0…10 V and [0,1] 

V were used. All the signals had periods equal to 1.5 s and were shifted in 0.5 s with respect to 

each other. For the simulation, the different integration step sizes were chosen for each 

approach. In each case the step size was as large as the one that provides the numerically stable 

solution. In addition, inside the AdvPDS loop the local time step was used. 

The simulation results for all four approaches are presented in Figure 4.8 and Table 4.3. If we 

assume that the solution provided by Approach 1 is the reference one, then from the upper plot 

of Figure 4.8 one can see that in general, all three approaches that use the AdvPDS provided 

very good approximations of the model solution. In particular, Approaches 2 and 3 were close 

in accuracy with the errors 0.0539% and 0.0531%, respectively, of the p1 operating range. 

Figure 4.8 (bottom plots) reveals that these two approaches provide the solutions that deviated 

from the reference solution mostly in the transition areas. At the same time, Approach 4 was 

more accurate with an error as small as 0.0341% of the pressure operating range. Although, the 

difference in accuracy of the considered approaches was not very significant, as the simulation 

time varied dramatically from one approach to another. Thus, it took 5.687 s for Approach 1 to 

simulate 40.5 s of real time, whereas it took 0.115 s and 0.099 s for Approach 2 and Approach 

4, respectively. However, Approach 3 was able to handle the same simulation within 0.054 s. 

 

 



72 4 An efficient method for solving the fluid power models with singularities 

 
Table 4.3: Simulation results of the four integration approaches. 

Approach Description 

Integration step 

sizes 

(main/AdvPDS), s 

Simulation time 

(of real time = 

40.5 s), ms 

RMSEp1 (wrt 

Reference), Pa 

1 Reference 10-6/- 5687 - 

2 AdvPDS RK4 10-4/10-5 115 1.0774×104 

3 AdvPDS Euler 10-4/10-5 54 1.0616×104 

4 
AdvPDS modif. 

Heun 

10-4/10-4 99 0.6816×104 

 

Analysing the obtained results, it can be concluded the following. In general, in comparison 

with the conventional integration approaches applied to the stiff hydraulic model, the 

employment of AdvPDS allows a noticeable increase in the model’s simulation speed, no 

matter which integration approach is used inside the AdvPDS loop. For the considered 

numerical example with a single small volume in the circuit, a speed-up of 49.4 with Approach 

2, of 57.4 with Approach 4 and of 105.3 with Approach 3 were achieved. However, it is 

important to note that the speed-up obtained in Approach 3 was due to the reduced number of 

function calculations needed by the Euler method, whereas the speed-up achieved with 

Approach 4 was due to the more numerically stable solution provided by the modified Heun’s 

method inside the AdvPDS loop. This fact is also confirmed by the higher error level of 

Approach 3 in comparison with the error level of Approach 4 (Table 4.3). 

Figure 4.8: Simulation results of the four approaches: Approach 1 – Reference; Approach 2 – AdvPDS 

with RK4 method; Approach 3 – AdvPDS with Euler method; Approach 4 – AdvPDS with modified 

Heun’s method with improved stability. 
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5 Conclusions 

In this thesis the modelling methods that allow the simulation of the mechatronic machines to 

accelerate to faster than real-time computational speeds have been proposed. The main findings 

highlighted in the publications and chapters above are listed as follows: 

- Simulation results showed that the application of the computationally efficient dynamic 

topological formulation of computational complexity O(n) (similar to INEF) together 

with the reasonable simplification of the mechanical component of the simulation 

model of a mechatronic machine allow the faster than real-time simulation of the 

acceptable accuracy to be achieved under the condition that the fluid power model of 

moderate stiffness is used (integration time step should not be less than 10-4 s). At the 

same time, the faster than real-time simulation model of a mechatronic machine of 

worse computation efficiency can be obtained using commercial software (like 

MATLAB/Simulink Simscape). However, the integrator of the lower accuracy (similar 

to the first order Euler method) and obligatory translation to the lower lever 

programming language (similar to C) should be applied. Thus, the advantage of the 

direct mathematical modelling built with the use of the computational efficient 

multibody dynamic method can be seen in the ability of its fine tuning in terms of 

performance and portability. The implementation of a such model does not depend on 

any particular programming language, software library, operating system or hardware 

platform. At the same time, the commercial software modelling can ensure the 

simplicity of implementation, and even the complex mechatronic systems can in certain 

cases be used in faster than real-time applications. 

 

- In order to achieve faster than real-time simulation for the fluid power systems, which 

include features such as stiff differential equations and strong nonlinearities and thus 

are complex and very time-consuming to solve with numerical integration methods, the 

RNN with NARX architecture can be used as modelling approach. According to the 

developed approach, the mathematical model was used for the training data generation. 

The training data was intended for network training. The pre-processing technique, 

which concentrates on the temporal information carried by the sequence, was developed 

and applied to the training data. This technique allowed both the training and simulation 

processes to speed up. In the considered case of Circuit 3, a calculation speed-up of 

factor 4.8 was obtained in comparison to the mathematical model-based simulation. 

Analysing the obtained results, it can be concluded that compared to mathematical 

model-based simulation, the utilisation of the RNN in combination with the developed 

pre-processing technique allows simulation speed-up to be obtained at the expense of a 

minor decrease in accuracy. 

 

- The AdvPDS with adaptive criterion has been proposed for the efficient solution of fluid 

power systems with singularities originating (in particular) from the presence of small 

volumes in the system. Based on the results of the experiments performed with two test 

fluid power circuits, which contained small volumes in their structure, the model for the 

AdvPDS was formulated. There are two main differences in the AdvPDS in comparison 

with the classical pseudo-dynamic solver. First, the calculation of the outlet volume 

flow rate related to the small volume is included in the solver, which allowed the 
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numerical stability of the solution to be increased. Second, the adaptive convergence 

criterion is introduced, which allowed the simulation time to be decreased and the 

calculation accuracy to be increased. Side-by-side simulation results confirmed that the 

proposed solver is much more efficient in the solution of the fluid power circuits than 

the conventional method, as well as the classical pseudo-dynamic solver. The main 

advantage of the proposed solver is that it produces fewer errors than the classical 

pseudo-dynamic solver with single criteria. In addition, the AdvPDS-based model can 

be calculated faster than the conventional model of the fluid power circuit with small 

volumes, due to the possibility of the application of a larger integration time step. 

Moreover, the AdvPDS solver may be the preferable method in the modelling of more 

detailed fluid power circuits, especially in such cases when the classical pseudo-

dynamic solver may show a numerically unstable and slow response. The described 

advantages in the solution of the fluid power systems with small volumes of the 

developed solver allow AdvPDS to be used in simulations of mobile machines in real-

time and faster than real-time applications.  

 

- The effect of the three numerical integration methods (Euler, Runge-Kutta of fourth 

order, and modified Heun’s method with improved stability) used inside the AdvPDS 

loop on the solution efficiency of the stiff mathematical model was studied. The 

simulation of the fluid power model was carried out using four approaches. The first 

approach was based on a conventional integration procedure (Rung-Kutta method). The 

other three approaches included the AdvPDS for the small volume pressure integration 

and were based on the different numerical integration methods: the Euler method, the 

Runge-Kutta method of fourth order, and the modified Heun’s method with improved 

numerical stability. The stability of the modified Heun’s method was improved by the 

use of the two-regime orifice model.   

 

- Analysis of the obtained simulation results showed that, in general, the harnessing of 

the power of the AdvPDS allows numerically stiff hydraulic models to be solved in a 

very efficient way, ensuring accelerated simulation with high solution accuracy. It was 

also shown that the simulation speed-up can be achieved not only by the complexity 

reduction of the numerical integration method inside the AdvPDS (as in the AdvPDS 

with Euler method), but also by increasing the numerical stability of the employed 

numerical integration method (as in the AdvPDS with modified Heun’s method with 

improved stability).   

The above-mentioned findings and methods can be directly implemented in real-time and faster 

than real-time simulations of mechatronic machines. 
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