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The level of automation of mechatronic machines, such as excavators, logging harvesters
or fluid power-driven cranes, has increased significantly over the past few decades. In the
machine industry, this led to the emergence and development of novel approaches for the
new product development process, such as virtual prototyping. At the design and
engineering stages of new mechatronic machine development, virtual prototypes are used
for the studying of the design decision effects on machine dynamic behaviour, thus
reducing the need for the construction of physical prototypes. Essentially, the virtual
prototype of the mechatronic machine is a physics-based simulation model. Mechanical
and fluid power components are the most important parts of such simulation models.
These components are also inherent to other types of mechatronic systems such as
aircraft, heavy industrial process machines, ships, offshore cranes, etc. Depending on the
task, the virtual prototype can be run in real time or faster than real time. The required
high simulation speed is often a major stumbling block in the employment of more
advanced simulation models.

In the work, the problem of a faster than real-time simulation of a mechatronic machine
that includes the mechanical and fluid power components is considered. For this task, two
different simulation models for a fluid power-driven crane were built and their properties
compared. The first simulation model was built using a computationally efficient dynamic
topological formulation (lterative Newton-Euler Formulation) for the multibody
modelling of the crane’s mechanical structure. The second simulation model was
developed using commercial software and taken as a reference for the calculation
accuracy and speed analysis. The fluid power components for both simulation models
were built using mathematical modelling based on the lumped fluid power theory. The
crane, whose dynamics were modelled in the work, is the PATU-655 fluid power-actuated
mobile crane. The advantages and disadvantages of both simulation models in achieving
faster than real-time simulation were discussed.

Due to the presence of the nonlinearities and singularities inherent in the mathematical
model of the fluid power components, during the simulation a very small time step should
be used in the integration algorithm in order to maintain numerical stability of the
solution. This may result in the simulation time overflows and the inability to maintain
the high simulation speed. Machine learning approach can help in solution of such a



problem. In particular, an artificial neural network (ANN) usage for fluid power system
modelling can be beneficial. Thus, the work addresses the question of recurrent neural
network (RNN) usage for the faster than real-time simulation of fluid power systems. A
physics-based simulation model was created using an experimentally verified
mathematical model of a hydraulic position servo system (HPS). The RNN of NARX
architecture was developed, trained and tested on the training data produced by the
physics-based simulation model. A pre-processing technique was developed and applied
to the training data in order to speed up the training and simulation processes. The
obtained results for the first time show that the employment of the RNN together with the
developed pre-processing technique ensures the simulation speed-up of the complex fluid
power system at the expense of a small decrease in accuracy.

In the work, another solution for the task of the fast simulation of fluid power systems
with singularities originating (in particular) from the presence of small volumes is also
proposed. The solution was based on the development and usage of an advanced pseudo-
dynamic solver with adaptive criterion (AdvPDS), which is an enhanced version of a
classical pseudo-dynamic solver (PDS). The AdvPDS seeks a steady-state solution of
pressure building up in a small volume. Two main advantages of the proposed solver were
obtained. The first was the higher accuracy and numerical stability of the solution
compared with the PDS, owing to the enhanced solver structure and the use of an adaptive
convergence criterion. The second was the faster calculation time compared with the
conventional integration method, owing to the obtained possibility of larger integration
time-step usage. Simulation results confirmed that the AdvPDS is better than
conventional solvers for real-time systems that include fluid power components with
small volumes. In addition, the work also studies which of the numerical integration
methods incorporated into the AdvPDS ensure the efficient (fast and accurate) calculation
of stiff fluid power models. Thus, the effect of three fixed-step integration methods
(Euler, Runge-Kutta of fourth order, and modified Heun’s method) were considered. In
the work, the numerical stability of the modified Heun’s method was improved by
substituting the purely turbulent orifice model with the two-regime orifice model. The
two-regime orifice accounts for both the turbulent and laminar flows and thus allows the
avoidance of numerical problems related to the small pressure drops. The compiled C
language that supports the real-time simulation was chosen as the implementation
environment for the developed simulation models. The solutions obtained for the
numerical examples using the AdvPDS based on the three integration approaches, their
accuracies and calculation speeds were presented in comparison with the solution
obtained using a conventional integration procedure. The results showed that, in general,
the AdvPDS allows the solution of numerically stiff fluid power models in a very efficient
way, ensuring accelerated simulation with high solution accuracy. It was also shown that
the simulation speed-up can be obtained not only by the complexity reduction of the
numerical integration method inside the AdvPDS, but also by increasing the numerical
stability of the employed numerical integration method.

Keywords: faster than real-time simulation, mechatronic machine, machine learning,
recurrent neural network, stiff fluid power system modelling and simulation, advanced
pseudo-dynamic solver, numerical integration.
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PiBeHb aBTOMATH3allii MEXaTPOHHUX MAILMH, TAKUX K EKCKaBaTop, JIiCO3aroTiBeJbHi
KOMOaiiHH a0o0 TiZpaBliYHI KpaHM 3HAYHO BHUPIC 32 OCTAaHHE JECATUIITTI. Y
MaIIMHOOYAiBENIbHIH rays3i e mpu3Beo A0 MOsSBH IHHOBAIIHOTO MiAX0AYy 0 IpOoLecy
pPO3pOOKM HOBUX MPOJIYKTIB, a caMe BipTyaJbHOrO NpOTOTHIYBaHHA. Ha eramax
MPOEKTYBaHHA 1 pO3POOKH HOBOI MEXaTPOHHOI MAaIIMHH BIPTyaJibHI MPOTOTHIIN
BUKOPHUCTOBYIOTHCS JJIsl BUBYCHHS BIUTHBY NMPOEKTHUX PIllICHb HA TUHAMIYHY ITOBEIIHKY
MalllMHU, 10 3HIXKYE MOTpeOM B CTBOpPEeHHI (Di3MYHUX MpOTOTHMIB. BipTyanbHuit
MPOTOTHIT MEXATPOHHOI MAaIMHK — 1e (i3UYHO OOTPYHTOBaHA CHUMYJIALIINHA MOJETb.
MexaHi4Ha 1 TijpaBiidyHa CKJIAJ0BI € CYTTEBUMH YaCTUHAMH CUMYJIALiiHOT Mmoaeni. L1i
CKJIaJIOBI BXOJATH 10 CKJIAJy TAKOXK M IHIIMX MEXaTPOHHUX CHCTEM, TAKHX SIK JIITaKH,
BaXKKi MiAIIMaTbHO-TPaHCTIOPTHI MAIMHU, KOpabiIi, MOPCHKI KPaHU TOMIO. 3aJIeXKHO BiJl
3aBJJaHHS BIPTyaJbHUU MPOTOTHII MOXKE IIPAILIOBATH B PEXHMi peajbHOro yacy abo B
peXUMI LIBHJIIE, HDK peanbHUi yac. Bumora moao BHCOKOI LIBHIKOCTI OOYHCIIEHb
YacTO € OCHOBHOK IEPENOHOI0 MPH BHKOPUCTAHHI OLIBII TOYHUX Ta JIOCKOHAJIHMX
CUMYJISIIIIHIX MOJIeIeH.

B po0ori po3rismaeTses mpodiieMa CHMYIAIIT y peKHMi IIBUIIIE, HDK peabHAIN dac
MEXaTpPOHHOI MAaIlllMHU i3 MEXaHIYHOK 1 TAPaBIIYHOI CKIagoBUMH. st 1iporo Oymu
CTBOpEHI JIBI pi3HI CUMYJISLIHHI MOJIEN T1APaBIIYHOTO KpaHa Ta MPOBEICHO MOPIBHAHHS
ix BmactuBocteil. [lepma cumymnsmiliHa Mozens Oyna moOymoBaHa i3 3aCTOCYBaHHSAM
00YHUCITIOBATILHO €(EKTUBHOTO TOIOJOTIYHOTO JUHAMIYHOTO (hOPMYJIIOBAHHS (METOIY
Herorona-Eitnepa) nist 6aratoTiibHOr0 MOJIEIIOBAaHHS MEXaHIYHOT KOHCTPYKIIi KpaHa.
Jpyra cumysiniiina mozpens Oyia po3poOiieHa 3 BHKOPHCTaHHSAM KOMEPILIHHOTO
MPOrpaMHOTo 3a0e3MeYCHHs i BAKOPHCTOBYBAIACH SIK €TATOHHA IS OL[IHKUA TOYHOCTI Ta
HIBUAKOCTI 00uuciieHb. [ipaBiiuHa CKIaqoBa Jijisi 000X CUMYJISIIHHUX MoJieiiel Oyia
noOyfoBaHa IUIIXOM MAaTeMaTHYHOTO MOJCIIOBAaHHSI 3 BHKOPHCTAHHSAM Teopii
TiIpaBIiYHUX JIAHLIOTIB 13 30cepePKeHHMMH NapameTpamu. B poOoTi mpoBeneHO
MOJZETIOBAaHHS AWHAMIKH MOOUTBHOTO KpaHy i3 TimpapiiuauM mpuBomoM PATU-655.
Takox MPOBEJICHO MOPIBHSIHHS CUMYISIIHHUX MOJEJCH MO JOCATHEHHIO CHMYJIALIL y
PeXUMI MIBHIMIE, HIX PEATbHHI dac.



Uepe3 HasBHI y MaTeMaTHYHUX MOJCNISAX TIAPABIIYHOI CKJIA0BOI HEMIHIHHOCTI Ta
CUHTYJISIPHOCTI, B alTOPUTMI IHTETpyBaHHS MPU MOJEIIOBAHHI CIIiJi BUKOPUCTOBYBAaTH
Jy’Ke MaJIMi YacOBUH KPOK U MIATPUMKH OOYUCIIOBAILHOI CTIMKOCTI pillleHHs. Y
IIPOTUJIEKHOMY BHIIQJIKy IEPEHOBHEHHS Yacy YHEMOXJIMBIIOE 30epiraHHsA BHCOKOI
MIBUAKOCTI CUMYyJIsitii. Y po3B’si3aHHI Takoi mpoOiieMH MOXeE JOMOMOITH MiAXid i3
BHUKOPHUCTaHHSIM MAITMHHOTO HAaBYaHHS. 30KpeMa, MOXe OyTH KOPUCHUM BHKOPHCTAHHS
IITYyYHUX HEHPOHHMX MeEpeX IUId MOJAETIOBaHHS TiIpaBiiuHOi cucTeMu. B poOoTi
pO3MIIAfaeThCsl MUTAHHSA BUKOPUCTaHHS PEKypeHTHOI HelpoHHol mepexi (PHM) mns
CUMYIJISIIIT TiAPaBIiYHAX CUCTEM B PEXKUMI HMIBUIIIE, HIX pealibHui yac. Byno cTBopeHo
¢bi3n4HO OOIPYHTOBaHY CHMYJISIIIHY MOJIeNb Ha 0a3i eKCIIEPUMEHTAILHO TePEeBipeHOT
MateMaTn4yHoi mozeni rigpasiiunoi cepBocucremu (I'CC). PHM NARX-apxitekrypu
Oyya po3poOiicHa, HaBYeHa 1 MPOTECTOBaHA HAa HABYAJIBHUX JIaHWX, CTBOPCHHX 3a
JIOTIOMOTO0 CUMYJISIIHHOT Mosieni. MeTouKa nmonepenboi 00poOku OyB po3podiIeHwmid
1 3aCTOCOBaHWI 10 HABYAIBHUX JaHUX, 100 TNPHUCKOPUTH TPOLECH HABYAHHS 1
cumysnii. OTpuMaHi pe3ynbTaTy BIEple T0Ka3alu, o Bukopuctanud PHM crinsHO
i3 pO3pOOJICHOI0 METOAMKOI0 TONEPEAHBOI OOpOOKM JaHUX MOXKYTh 3a0€3MEUUTH
IIPUCKOPEHHA CHUMYJIALil  CKIafgHOI  TifpaBiiKo-AMHAMIYHOI CHCTEMH  KOLITOM
HEBEJTMKOT0 3HIKEHHS TOYHOCTI.

Takox B poOOTi 3a1TpONIOHOBAHO aTbTEPHATHBHE PO3B’sI3aHHSI 3a/]a4i IBUAKOI CUMY IS
TiPaBIIYHIX CHCTEM i3 CHHTYIISIPHICTIO, 30KpeMa, [0 BUHHUKAE BHACTIIOK MPUCYTHOCTI
Manux 00'emiB. Po3B’s13aHHS 0a3yeThcsl Ha PO3pOOII Ta BUKOPUCTAHHI BJIOCKOHAJICHOTO
MICEBIOJJMHAMIYHOTO 1HTerparopa 3 ajgantuBHUM kputepiem (BITAI), saxwmii €
TIOJIIIIIEHOI0 BEPCIEI0 KJIACHYHOTO TIceBaoauHamivHoro inTterparopa (ITI). BITAI
IIyKa€e cTallioHapHe PillleHHS [T TUCKY, 1[0 BUHUKAE Y MajioMy 00’ emi. OTpUMaHO JBi
OCHOBHI IlepeBard 3alpoIllOHOBAaHOTrO iHTerparopy. Ilo-mepiue, BUIIMMHU € TOYHICTbH i
cTaOUIBHICTh OOuMclieHb y mopiBHsSHHI 3 I/l 3aBASKM BIOCKOHAJIEHIH CTPYKTYypi
iHTerpaTopa i BHKOPHCTAHHIO aJalTUBHOTO KpHUTepiro 30ikHOCTI. [lo-npyre, MeHImn
gac OOYMCIIeHb, y MOPIBHSAHHI 3 TPaJULIHHUM METOJOM IHTErPyBaHHS, 3aBASKU
MOXJIMBOCTI BHUKOPHCTaHHS OLIBLIOrO KPOKY iHTerpyBaHHs. Pesympratu cumymsumii
nigTBepauny, mo BIT/I € kpamum BapiaHTOM, HiXK TPaIUIiiHI IHTErpaTOPH )i CUCTEM
peansHOTo 4acy, 10 BKJIIOYAIOTh TiAPaBIidHYy KOMIOHEHTY i3 MamuM 06’eMoM. Kpim
TOTO, B pOOOTI TaKOX JOCIIJIKYETHCS SIKI 3 METOJIB YUCEIILHOTO IHTETpyBaHHS, IO
BxoAaTh 1o ckiany BIIJI, 3abe3neuytoTh edexTrBHE (IIBHIKE i TOYHE) OOYMCICHHS
KOPCTKUX MOJIeJIeH TipaBIiYHUX CUCTeM. TakuM YMHOM, 0YJI0 PO3IJISTHYTO BIUIMB TPbOX
MeTOMiB iHTerpyBaHHsA 3 (ikcoBanuM kpokom (Eiinepa, Pynre-Kyrra werBeproro
MOpSIIKY Ta MOAU(IKOBAHOTO MeTONy XoiHa). Y po0OoTi Oyna moJiimniieHa 4ucelbHa
CTIMKICTE MOJM(IKOBAHOTO MeTOy XOWHA NIISIXOM 3aMiHHM CYTO TYpOYyJIEHTHOI MOJIeNi
OTBOPY JABOPEKHMHOIO MOJEIII OTBOPY. J[BOpeKMMHA MOJeNIb OTBOPY BPaxoBY€ SK
TypOyJIEHTHHUH, TaK 1 JaMiHapHUHN MTOTOKH, IO JO3BOJISIE YHUKHYTH YHCIOBHX IPOOIIEM,
[IOB’SA3aHUX 3 MaJUMM Iepenagamu TucKy. KomminboBany moBy C, 1o HiaATpUMYye
CUMYJIALIIO B pealbHOMY 4aci, 0yJ10 00paHo K cepeoBHUIIe peanizalii 1 po3podIeHnX
CUMYJSIIHHNX Mopenei. PimieHHs, oTpuMaHi IS YHCENbHHX TMPHUKIALIB 3
BukopuctanHsiM BIIJIl Ha OCHOBI TphOX MIiAXOMIB IHTErpyBaHHs, iX TOYHOCTI M
MIBUAKOCTI OOYMCIIeHb, Oy TPEICTABIICHI Y MOPIBHSAHHI 13 PINICHHSIMH, IO Oymn
OTpUMaHi 13 BUKOPUCTAHHAM TpaauliiiHOI NpoueAypu IHTerpyBaHHA. Pesymbratn



nokazanu, mo B miiomy BJIIIl mo3Bonsie nyxe eQeKTMBHO BUPINIYBAaTH YHCEIHLHO
YKOPCTKI MOJIENI TiIPaBIiYHAX CUCTEM, 3a0€3MeUyI0UH IIBUKY CUMYJISIIIIO i3 BHCOKOIO
TouHicTIO. Takox OyI0 MOKa3aHo, MO MPUCKOPEHHS CUMYJISIIT MOXe OyTH OTPUMAaHO HE
TUTBKU MUITXOM 3MEHIICHHS CKIAaJHOCTI METOIy YMCENBHOTO IHTETPYBaHHS BCEpEIHHI
BII/II, ane ¥ muisixoM IMiJBUIIEHHS HOTO YHCENbHOT CTIMKOCTI.

KiouoBi ciaoBa: cumyssiuis B peXuMi MIBHIAIIEC, HDK PeabHUM 4yac, MeXaTpOHHI
MAallvH{, MaIlMHHE HaBYaHHS, MOJENIOBAHHSI Ta CHMYJIAIIS JKOPCTKHUX MoJemel
TiOPaBIiYHUX CUCTEM, BIOCKOHAJICHHU IICEBAOTMHAMIYHUI IHTErpaTop, YHCEIbHE
IHTeTpyBaHHS.
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Nomenclature

Latin alphabet

A
A
ai
Be
Cq
Cv
Ci...
di
dt
F
Fc
Fr
Fst
f()
G

9()
H

K, Ki

Vo

Co

rotation matrix

area

Denavit-Hartenberg parameter
effective bulk modulus

discharge coefficient

flow constant

empirical constant
Denavit-Hartenberg parameter
integration time step

internal force

Coulomb friction force

friction force

Stribeck friction force

function

vector of gravity terms

function

cylinder stroke

identity matrix

Jacobian

semi-empirical flow coefficients
viscous friction coefficient

laminar leakage flow coefficient
constant length

experimentally defined leakage constant
mass matrix

mass

internal torque

number of links

time delay order for network error
time delay order for network input
time delay order for network output
pressure

volume flow rate

leakage volume flow rate
position-vector

Reynolds number

position-vector of the point P in global coordinate frame
cylinder length plus its displacement
homogeneous transformation matrix
time

vector of centrifugal and Coriolis terms
volume

dead volume

Z2Z2ZZ2Zw 3 |

m3/s
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Nomenclature

Ve Coulomb velocity

VCi linear velocity of the centre of mass of the link i
Vst Stribeck velocity

U voltage

u input vector

up position-vector of the point P in local coordinate frame
X state vector

Xp cylinder piston displacement

Z directional unit vector

Greek alphabet

ai Denavit-Hartenberg parameter

Bi angle

Vi angle

A difference

€ parameter describing binary input
¢ valve damping ratio

0 vector of joint coordinates

i Denavit-Hartenberg parameter

K condition number

A eigenvalue

T mathematical value © = 3.14159...
p fluid density

00 flexibility coefficient

o1 damping coefficient

T vector of torques

T time constant

W nonlinear mapping

i link i rotational velocity
@n natural angular frequency

Superscripts

A parameter estimate
current  current value of parameter
next next value of parameter
prev previous value of parameter
T matrix transpose
Subscripts

A cylinder chamber A

B cylinder chamber B

db dead band

e effective

f friction

H number of layers

m/s
m/s
m/s

rad
rad
rad

rad

rad
kg/m®

rad/s
rad/s
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limit
max
min

P

p
pseudo
ref

S

S

T

tol high
tol low

low-limit level of parameter
maximum value

minimum value

pump

piston

artificial parameter

reference

supply

spool

tank

lower tolerance criteria for parameter
higher tolerance criteria for parameter

Abbreviations

ANN
AdvPDS
CAD
HITL
HPS
INEF
LM
MSE

artificial neural network

advanced pseudo-dynamic solver
computer-aided design
human-in-the-loop

hydraulic position servo

iterative Newton-Euler formulation
Levenberg-Marquardt algorithm
mean-square error

NARMAX nonlinear autoregressive moving average with exogenous inputs

NARX
NFIR
ODE
PRMS
RMSE
RNN
SIMO

nonlinear autoregressive network with exogenous inputs
nonlinear finite impulse response

ordinary differential equations

pseudo-random multilevel signal

root-mean-square error

recurrent neural network

single input multiple outputs
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1 Introduction

1.1 Background and motivations

Since the levels of complexity and automation of mechatronic machines (excavators, logging
harvesters, hydraulically-driven cranes, etc.) have increased significantly over the past few
decades, the machine industry has shown great interest in harnessing the benefits of computer
simulation. In the machine industry, this has led to the emergence of novel approaches in new
product development processes, such as virtual prototyping (Mikkola & Handroos, 1996;
Esqué, Raneda, & Ellman, 2003; Liu, Zhang, & Sun, 2019). Nowadays, the approach is also
extensively used in product operation and maintenance periods (Boschert & Rosen, 2016). At
the design and engineering stages of the mechatronic machine development process, a virtual
prototype is used for studying the effects of design decisions on machine dynamic behaviour,
thereby reducing the need for a physical prototype construction (Mikkola A. , 1997; Baharudin,
Rouvinen, Korkealaakso, & Mikkola, 2014; Esqué, Raneda, & Ellman, 2003). Essentially, the
virtual prototype of a mechatronic machine is a simulation model or, in other words, a
mathematical representation of all machine elements as well as their interactions. To estimate
the performances of the mechatronic machine under development, a simulation of the virtual
prototype is used.

Often a major problem of virtual prototypes is their maximum simulation speed, which is
particularly related to the complexity and characteristics of the employed mathematical models.
A number of recent studies have been dedicated to the problems of real-time (Esqué, Raneda,
& Ellman, 2003; Zhidchenko, Malysheva, Handroos, & Kovartsev, 2018; Zheng, Ge, & Liu,
2015; Rahikainen, Kiani, Sopanen, Jalali, & Mikkola, 2018) and faster than real-time
simulation (Malysheva I. , Handroos, Zhidchenko, & Kovartsev, 2018) of the virtual prototypes
of mechatronic machines. At the same time, the simulation models of mechatronic machines
are also extensively exploited for studying human-machine interaction using human-in-the-
loop (HITL) simulation. Moreover, HITL simulation can be used for the training of
mechatronic machine operators (Baharudin, Rouvinen, Korkealaakso, & Mikkola, 2014).
HITL simulation requires the simulation model to be run in real time (Pedersen, Hansen, &
Ballebye, 2010). In addition, simulation models are used for real-time automation and control
tasks (Zheng, Ge, & Liu, 2015; Pedersen, Hansen, & Ballebye, 2010) and for the failure
prediction of the machine parts and systems (Andrade, Feucht, Haufe, & Neukamm, 2016).
Moreover, a highly popular control engineering approach based on the employment of
reinforcement learning (RL) for the optimal controller design for systems with nonlinear
dynamics (Karpenko, Anderson, & Sepehri, 2006) shows a high need for simulation models
that are able to run faster than real time. Such simulation models are able to provide large
amounts of the training examples for a short period of time that are needed for a RL-agent
training.

A typical simulation model of a mechatronic machine includes a mechanical component and a
fluid power component. These components are also the essential parts of the simulation models
of other types of mechatronic systems, such as aircraft, heavy industrial process machines,
ships, offshore cranes, and so on. The mechanical component includes the mathematical
representation of the structural elements (a set of rigid and/or flexible bodies) and their
interconnections composing a multibody system. For the derivation of the mathematical model
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of a multibody system composed of the rigid bodies the two main approaches are mainly used.
The first is based on the concept of virtual work and Lagrange’s equation. In the approach the
multibody system is considered as a whole. Algorithms based on this approach use the space
of generalised coordinates that follow certain minimisation principles and thus produce the
trajectories that automatically satisfy the kinematic constraints of the system (Korkealaakso,
2009). The second approach that can be used to formulate the mathematical model of the
multibody system is the direct approach, which is based on Newton and Euler equations.
According to this approach, the dynamic equations are produced separately for each body while
considering the motion explicitly in Cartesian space. The linear and angular momentum
conservation principles are applied directly to each body. The constrained reaction forces are
considered as external forces. The two approaches described above, as well as their
modifications and combinations, are widely used for the mathematical model formulation.
Although the approaches use different strategies, they provide equivalent dynamic
formulations that can differ in computational efficiency for the specific multibody model
(Korkealaakso, 2009).

The multibody system, which is the underlay to the mechanical component, often provides an
interface to the external systems, such as the fluid power system (Baharudin, Rouvinen,
Korkealaakso, & Mikkola, 2014; Esqué, Raneda, & Ellman, 2003; Zheng, Ge, & Liu, 2015;
Pedersen, Hansen, & Ballebye, 2010; Mikkola A., 1997). In this case the fluid power actuator
forces are taken in by the multibody system as the generalised forces. At the same time, the
positions and velocities are fed back from the multibody system to the fluid power component.
In composing the fluid power system model, the centralised pressures approach is usually used.
The modelling of the fluid power units such as pumps, actuators and valves are based on the
combination of the fluid dynamics and multibody models. In the centralised pressures
approach, the components are interconnected by continuity equations (Merritt, 1967).

Mathematically, the mechanical and fluid power components as well as their interactions are
expressed as a system of the algebraic and differential equations and referred to as the equations
of motion (EOM) or the mathematical model. The system is usually solved using a numerical
integration method that ensures the accuracy, stability and efficiency of a numerical solution
(Dormand & Prince, 1980; Esqué, 2008).

However, the dynamic processes taking place in the fluid power systems are very complex.
The flexibility of hydraulic fluid and the presence of small volumes introduce a numerical
stiffness into the mathematically formulated models (Piché & Ellman, 1994). Other
phenomena, such as friction in the fluid power units, valve closure, digital control signals and
purely turbulent orifices introduce strong nonlinearities, discontinuities and singular states to
the model (Piché & Ellman, 1994; Aman, Handroos, & Eskola, 2008). These features also
make the hydraulic model numerically stiff and thus difficult to integrate (Piché & Ellman,
1994). In their work (Bowns & Wang, 1990), Bowns and Wang formulated the mathematical
stiffness problem that arises during the solution of the fluid power systems in the presence of
small volumes, particularly in hydraulic pipes, for the first time. Physically, the mathematical
stiffness occurs when the pressure changes rapidly, owing to the low compliance of the fluid
in the pipe. According to their observations, this causes the solutions of the system differential
equations to decay at widely varying rates. However, it should be noted that the mathematical
stiffness is often a local phenomenon, meaning that it may occur occasionally. For example, if
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the orifice is located in the fluid power circuit, the stiffness increases approaching infinity if
the relationship 0Ap/oQ is small, which is true when the volume flow Q tends towards zero.
Moreover, according to (Ellman & Piché, 1996; Ellman & Piché, 1999; Aman, Handroos, &
Eskola, 2008), if the purely turbulent description of the orifice is used, mathematical stiffness
also occurs when the pressure drop Ap is approaching zero.

The numerical stiffness of the mathematical model directly affects the simulation time, which
is a vital aspect in the real-time simulation in mechatronic applications. For instance, such a
problem is highlighted in (Park, Yoo, Ahn, Kim, & Shin, 2020), where the authors tried to solve
the problem of the real-time simulation of an excavator with a numerically stiff fluid power
model. Thus, in order to achieve the real-time simulation speed, the model was divided into
multiple sub-models to ensure a parallel execution using a local stiff integration solver. The
same problem has been recently highlighted in a number of other works dedicated to human-
in-the-loop and hardware-in-the-loop systems that included fluid power components. For
example, in the work of (Ferreira, Almeida, Quintas, & de Oliveira, 2004), in order to ensure
the hardware-in-the-loop real-time simulation for developed controller strategy testing, the
authors first simplified the fluid power model and then used a third order explicit solver with a
small time step. Thus, the above-described mechatronic applications show the need for the
development of a method that can provide a generic practical solution to accelerate the
simulation of the mechatronic systems with minor costs in terms of accuracy.

In the solution of the mathematical models, which include ordinary differential equations
(ODEs), the family of explicit Runge-Kutta methods that use the integration time step of a fixed
size are well established. However, in the research by (Hairer & Wanner, 1996) it was shown
that the numerical integrators based on the explicit Runge-Kutta methods are not A-stable (i.e.
the numerical stability of the method is not guaranteed for any integration step size), which is
apparently why they are not very efficient at stiff problem-solving unless the very small
integration time step is used. At the same time, integrators based on implicit methods are A-
stable or even L-stable and provide accurate solutions for such problems. Unfortunately, the
implicit methods are much more computationally expensive, since they involve solving a
nonlinear system of algebraic equations at each time step. This requires the use of the modified
Newton iteration scheme, which includes the calculation of an iteration matrix of the form
(I-AtPod), where 1 is the identity matrix, J is the Jacobian and Ao is a scalar, and further its
factorisation. The iteration scheme is repeated until a convergence criterion is reached (Esqué,
2008). Due to such iteration scheme usage, the amount of computations can vary from step to
step, which can result in simulation time overflows. Thus, the implicit methods cannot be used
directly in real-time applications. In contrast to the implicit methods, the previously mentioned
explicit methods such as Euler, Runge-Kutta or Predictor-Corrector methods (Hairer &
Wanner, 1996) consume much less calculation time in a single time step and thus can ensure a
constant simulation time in time-critical real-time applications.

In the vast cases of computer simulations used in product development processes, the
simulations are free of solution time restrictions. This means that the simulation of a few
seconds is allowed to take several hours in real time. Consequently, all the control signals
intended for the simulated model should be predefined (Korkealaakso, 2009). However, in the
cases of the HITL simulators, where the operator produces a control signal during the
simulation, the optimal controller design based on the employment of reinforcement learning
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(RL), the digital twins for machine life-cycle assessment, and the decision support systems that
aid the machine operator in challenging environments, the simulation should be run in
synchrony with real time or much faster than real time. Thus, the real-time simulation and faster
than real-time simulation can be considered special cases of conventional computer simulation.
In these cases all the calculations related to the advancing in time of the simulation model
should be completed within the predetermined time range. The time range is usually dictated
by a time synchronous connection to the real world or by a favoured simulation speed. Figure
1.1 shows the conceptual difference between the real-time and faster than real-time simulations.
Here t, is the real-time instant, when the monitoring of the simulation model states is
performed, Trr and Trrrr are the times needed for a single run of the simulation model.

it [fn iy Lyt
o Real time
Ter 1 Ter + _Trr | (monitoring time)
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Figure 1.1: Real-time and faster than real-time simulations.

Accelerated simulation of the mechanical component can be obtained using computational
efficient multibody representation (Malysheva, Handroos, Zhidchenko, & Kovartsev, 2018;
Zhidchenko, Malysheva, Handroos, & Kovartsev, 2018). In the works the problem of faster
than real-time simulation of mechatronic machine which included the mechanical and fluid
power components was considered. For this task, two different simulation models for a
hydraulically-driven crane were built and their properties compared. The first simulation model
was built using a computationally efficient dynamic topological formulation (lterative Newton-
Euler Formulation) for the multibody modelling of the crane’s mechanical structure. The
second simulation model was developed using commercial software and taken as a reference
for the calculation accuracy and speed analysis. The advantages and disadvantages of both
simulation models in achieving the faster than real-time simulation were discussed. Julia
Malysheva was the first author of the paper (Malysheva, Handroos, Zhidchenko, & Kovartsev,
2018) and co-author in both of the other papers. In these papers the author was responsible for
the development of the reference models of the hydraulic mobile crane using commercial
software and their translation to the compiled programming language, as well as for the
development of the mathematical model of the crane fluid power system. She was also
responsible for performing experiments with the reference model, gathering and processing the
simulation results and writhing the respective parts of the papers.

However, the faster than real-time simulation of the fluid power component is an even more
challenging task. In the fluid power system research area, in order to improve the computational
efficiency of the solution of the numerically stiff fluid power model, different approaches have
been proposed. In particular, the accelerated simulation can be obtained using a semi-empirical
modelling approach for particular fluid power units in the simulation model. For example, the
use of the two-regime flow orifices (Ferreira, Almeida, Quintas, & de Oliveira, 2004; Ellman
& Piché, 1996) instead of the purely turbulent orifice model allows singularities, which can
appear when the pressure drop across the orifice is close to zero, to be avoided. On the other
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hand, the integration of the fluid power model can be performed with the help of special solvers
(Piché & Ellman, 1994). To overcome the stiffness of differential equations in fluid power
systems with the small volumes, a classical pseudo-dynamic solver (PDS) was proposed by
Aman and Handroos (Aman & Handroos, 2008; Aman & Handroos, 2009; Aman & Handroos,
2010). This solver can be related to the class of explicit solvers. The PDS algorithm ensured
the accuracy increase and reduction of the computational time needed for the simulation of the
stiff fluid power circuits. The PDS was based on the assumption that if the considered volume
is small enough, the pressure building up in the volume can be substituted by a steady-state
pressure value. This was achieved by implementing an iterative technique with the substitution
of the small volume with a volume that is large enough to obtain a numerically stable pressure
solution. During the stiff fluid power model integration, the PDS could use the larger
integration time steps than the conventional integrators without being trapped in the numerical
instability area, which affects the computational time of the simulation. However, in their work,
only a short-term simulation (about two seconds) with predefined inputs was considered, which
did not give a full picture of the solver characteristics. The research was continued by
Malysheva, Ustinov and Handroos by proposing in (Malysheva, Ustinov, & Handroos, 2020;
Malysheva & Handroos, 2020) a new and enhanced version of the classical pseudo-dynamic
solver, referred to as an advanced pseudo-dynamic solver with adaptive criterion (AdvPDS).
The new solver had two main advantages. The first was the higher accuracy and numerical
stability of the solution compared with the PDS, owing to the enhanced solver structure and
the use of an adaptive convergence criterion. The second was the faster calculation time
compared with the conventional integration method, owing to the obtained possibility of larger
integration time step usage. Julia Malysheva was the principal author and investigator of the
paper.

Another method for solving pressures in small volumes has recently been introduced, in (Kiani
Oshtorjani, Mikkola, & Jalali, 2019). The proposed method was based on singular perturbation
theory. The modified version of this theory was used for the algorithm. The main principle of
the algorithm was the replacement of a stiff differential equation of pressure by the algebraic
equation in accordance with singular perturbation theory. The replacement of the differential
equation allows a numerically stable response of the pressure to be achieved at different
integrator time steps. Consequently, the time step of the integration can be increased without
significant losses in calculation accuracy, which allows the method to be implemented in real-
time simulations. However, the method can only be applied under the condition that the system
boundary layer is exponentially stable (Rahikainen, Kiani, Sopanen, Jalali, & Mikkola, 2018;
Kiani Oshtorjani, Mikkola, & Jalali, 2019).

A different approach was presented by Krus in (Krus, 2011) who applied distributed modelling
using transmission line elements (or bi-lateral delay lines) for modelling and simulation of
large hydromechanical systems. Usage of the transmission line elements for the component
connection in the complex fluid power system allowed to isolate the components numerically
from each other. Then a local implicit solver can be applied to each component separately. This
allowed to use larger time steps for system simulation ensuring faster simulation speeds.
Moreover, since all the calculations of fluid power component are done within its model the
parallel computation of the component is possible. The proposed modelling method was
successfully adopted in HOPSAN software developed in Link6ping University.
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In contrast to the plain mathematical modelling of the simulated system, the modelling with an
artificial neural network (ANN) can offer a way to achieve high simulation speeds while
preserving accurate physical modelling. The approach is supported by the fact that, in general,
with the correct architecture and proper training dataset, the universal approximating
capabilities of neural networks guarantee that any continuous function can be modelled to any
desired precision (Hornik, 1991). The recurrent neural network (and its variants) is a network
architecture that has proved itself to be successful in the tasks of time-series prediction and
dynamic systems identification and control (Ogunmolu, Gu, Jiang, & Gans, 2017; Bianchi,
Maiorino, Kampffmeyer, Rizzi, & Jenssen, 2017). In contrast to common ANNSs (such as
multilayer feedforward networks), where the current output depends only on the input, in
recurrent neural networks (RNNs) the current output can depend on the current input as well
as on the history of previous inputs, outputs, errors and/or network states. This architectural
feature can be considered a local memory and it enables RNNs to account for temporal
information (Sinha, Gupta, & Rao, 2000; Petlenkov, 2007). Several recently published research
papers have studied the modelling of complex dynamic systems with RNNs (Petlenkov, 2007),
including hydraulic systems (Patel & Dunne, 2003). These studies have shown quite promising
results. In the works, the variation of a recurrent neural network, namely a nonlinear
autoregressive network with exogenous inputs (NARX), was employed. The reason for the
architecture choice was based on results obtained in (Siegelmann, Horne, & Giles, 1997),
where it was shown that NARX networks outperform conventional RNNs regarding problems
with long-term dependencies and are computationally as strong as Turing machines. However,
the modifications of NARX architecture, such as a nonlinear finite impulse response (NFIR)
and nonlinear autoregressive moving average with exogenous inputs (NARMAX) architectures
can also be used for dynamic system modelling (Lacny, 2012; Schram, Verhaegen, &
Krijgsman, 1996). In (Malysheva, Li, & Handroos, 2020; Malysheva, Ustinov, & Handroos,
2020; Malysheva & Handroos, 2020), a physics-based simulation model was created using an
experimentally verified mathematical model of a hydraulic position servo system (HPS). The
RNN of NARX architecture was developed, trained and tested on the training data produced
by the physics-based simulation model. A pre-processing technique was developed and applied
to the training data in order to speed up the training and simulation processes. The obtained
results show for the first time that the employment of the RNN together with the developed
pre-processing technique ensures the simulation speed-up of the complex fluid power system
at the expense of a small decrease in accuracy. Julia Malysheva was the principal author and
investigator in the paper.

Another important aspect that should be considered is the implementation of the developed
simulation model. Specifically, the choice of a programmable language for the implementation
can significantly affect the simulation speed. According to the research (Pastorino, Cosco,
Naets, Desmet, & Cuadrado, 2016), the interpreted languages such as MATLAB and Python
NumPy are well developed and easy to use for software development, debugging and testing
and are thus very popular among mechanical engineers. However, they are troublesome for
real-time simulations due to their low computational efficiency. On the other hand, the
compiled languages, such as C, C++ and Fortran can ensure the real-time simulation of the
simulation model. Moreover, if the real-time simulation is required to be performed on the
target machine (for example, onboard), the software written in the compiled language can be
used without extensive modifications (Pastorino, Cosco, Naets, Desmet, & Cuadrado, 2016).
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1.2 Scope of the work

1.2.1 Research questions

1. To study the state-of-the-art methods and approaches allowing for the acceleration of
the simulation model computation of the complex mechatronic machines, which
include the mechanical and fluid power components at real-time and faster than real-
time simulation speeds.

2. To examine the problem of the computationally efficient mathematical modelling of
the multibody system with fluid power actuation in comparison with the modelling
using commercial software in terms of the model accuracy and simulation speed.

3. To investigate the ability of the recurrent neural network together with the developed
training data pre-processing technique to model a complex fluid power system and
provide accelerated and accurate simulation.

4. To investigate the effectiveness of the reduction of the numerical stiffness (originating
from the presence of the small volumes in fluid power circuit) using developed
advanced pseudo-dynamic solver in achieving accelerated simulation of the fluid power
circuit.

1.2.2 Research methods

In this section an overview of the research methods that were used in the work in order to
answer the research question is presented. A literature review was carried out to evaluate the
state of knowledge and find out the suitable state-of-the-art methods and approaches allowing
for the acceleration computation of the simulation model of the complex mechatronic machines
at real-time and faster than real-time simulation speeds.

To answer the question of how efficient is mathematical modelling of the multibody system
with fluid power actuation in comparison with the modelling using commercial software a case
study of a hydraulic mobile crane was implemented. Within this framework mathematical
modelling of the crane and construction of the crane dynamic model in commercial software
were performed. The simulation of the models provided the data for analysis.

For verification of the proposed modelling approaches concerning accelerated computation of
the fluid power simulation models the experiments with five fluid power circuits of different
complexity were carried out. Taking into account the inherent numerical stiffness of the
mathematical representation of the fluid power systems, the study investigated the following
modelling approaches. The first approach employs machine learning and the recurrent neural
networks as a tool for the complex fluid power system accelerated and accurate simulation. In
this framework the best trained network was selected using statistical analysis. The second
approach investigates the effectiveness of the reduction of the numerical stiffness (originating
from the presence of the small volumes in fluid power circuit) using special solvers. Within
this approach the performances of the classical pseudo-dynamic solver was studied and further
improved in the novel advanced pseudo-dynamic solver with adaptive criteria using simulation.
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1.3 Scientific contribution of thesis

The main contribution of the work lies in the research of methods that allow the realisation of
faster than real-time simulation of mechatronic machines.

1. The development of the detailed simulation model of an example hydraulic mobile
crane composed of multibody mechanical components, and the mathematical model of
the fluid power system using commercial software. Following translation to the
compiled programming language, the model showed the ability to calculate faster than
real-time at acceptable accuracy levels.

2. The work successfully demonstrated that RNNs of the NARX architecture employment
can ensure the faster simulation of a complex fluid power system in contrast to
conventional mathematical modelling. RNNs of the NARX were developed, trained
and tested on the training data produced by the mathematical-based simulation model
of the fluid power system. A pre-processing technique was developed and applied to
the training data in order to speed up the training and simulation processes. The
obtained results show for the first time that the employment of the RNN together with
the developed pre-processing technique ensures the simulation speed-up of the complex
fluid power system at the expense of a small decrease in accuracy.

3. The advanced pseudo-dynamic solver with adaptive criterion has been proposed for the
efficient solution of fluid power systems with singularities originating (in particular)
from the presence in the system of small volumes. There are two main advantages of
the proposed solver. The first is the higher accuracy and numerical stability of the
solution compared with the classical pseudo-dynamic solver, owing to the enhanced
solver structure and the use of an adaptive convergence criterion. The second is the
faster calculation times compared with conventional integration methods such as the
fourth order Runge-Kutta method, owing to the achieved possibility of larger
integration time step usage. Simulation results confirm that the advanced pseudo-
dynamic solver is more efficient than conventional solvers for the solution of the real-
time systems that include fluid power components with small volumes. The described
advantages allow its use in simulations of mobile machines in real-time and faster than
real-time applications.

4. The effect of the three numerical integration methods (Euler, Runge-Kutta of fourth
order, and modified Heun’s method with improved stability) used inside the AdvPSD
on the solution efficiency of the stiff mathematical model was studied. The stability of
the modified Heun’s method was improved by the use of the two-regime orifice model.
Analysis of the obtained simulation results showed that, in general, harnessing the
power of the AdvPDS allows the solution of numerically stiff hydraulic models in a
very efficient way, ensuring accelerated simulation with high solution accuracy. It was
also shown that the simulation speed-up can be obtained not only by the complexity
reduction of the numerical integration method inside the AdvPDS, but also by
increasing the numerical stability of the employed numerical integration method.

1.4 Thesis outline

The present doctoral dissertation is based on the five research publications and consists of two
parts. The first part provides an overview of the methods and approaches that can ensure
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accelerated simulation of the mechatronic machines and the real-time or faster than real-time
simulation. Also, the first part outlines the most importing findings presented in the five articles
the dissertation is based on. The second part introduces the detailed results that have been or
will be published in the previously listed five scientific articles.

Chapter 1 covers the background, motivation and scope of the study and presents the scientific
contribution of this thesis.

In Chapter 2, the mathematical modelling of a multibody system with fluid power actuation
using computational effective INEF formulation in comparison with commercial modelling of
the same system is presented in comparison with their accuracy and simulation time. The
example multibody system and fluid power circuit modelling are also presented in the chapter.

In Chapter 3, the approach to the fluid power system modelling with the recurrent neural
network of NARX architecture for faster than real-time simulations is introduced, and the
simulation results obtained are discussed.

Chapter 4 presents the computationally efficient practical method for solving the dynamics of
fluid power circuits in the presence of singularities using the developed advanced pseudo-
dynamic solver with adaptive criterion. The advantages of using the modified Hein method of
improved numerical stability for pressure integration inside AdvPSD are also presented in this
chapter.

In Chapter 5 the conclusions are presented.
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2 Fast simulation of a mobile working machine

In this chapter, an example of a multibody system with a fluid power drive is considered. The
selected system is the PATU-655 mobile hydraulic crane, which consists of mechanical and
fluid power components. Structurally, the crane consists of a pillar, a lifting boom, a system of
four interconnected side links, an outer boom and an extension boom. The crane has five
hydraulic cylinders. Two of them actuate the slew mechanism, providing the rotation of the
crane around the vertical axis. Two other cylinders raise the lifting boom and the outer boom
respectively and the fifth cylinder provides the sliding motion of the extension boom and
controls its length. The maximum admissible crane load for the case of the maximum boom
extension is 500 kg. In this chapter, the full crane model is developed using commercial
software as well as a computational efficient mathematical model, which considers only the
planar motion of the crane (the dynamics of the slew mechanism is not taken into account).
The two model calculation speeds and their accuracies are presented in comparison (Malysheva
I. , Handroos, Zhidchenko, & Kovartsev, 2018; Zhidchenko, Malysheva, Handroos, &
Kovartsev, 2018).

2.1 Mathematical modelling of the multibody system of a crane

2.1.1 Crane kinematics

Most real-time methods for presenting the dynamics of multibody systems consisting of rigid
bodies use relative coordinates, taking advantage of the mechanism topology (topological
formulation). Also, the considered mobile crane kinematics can be presented using a
topological formulation. In this case the crane is considered as the chain of the links (crane
booms) connected through the revolute and prismatic joints (Jalon & Bayo, 1994).

In order to represent the crane kinematics, the global frame OXYZ is set up at the base of the
crane. The local coordinate frames with the origins located at the joints are assigned to each
link using the Denavit-Hartenberg convention. According to the convention, each local frame
0;x;y;z; has the origin at the point representing the joint between the two adjacent links. The
z;-axis is aligned in the direction of the joint i motion (rotational or translational), the x;-axis
is parallel to the common normal x; = +(z; X z;_;) and the y;-axis is chosen in order to
complete the right-handed coordinate system. The crane has four independent joint
coordinates: the angle of the pillar rotation, the angles of rotation of the lifting boom and
extension boom, and the length of the extension boom. The joint numbering, orientation of
assigned local frames and joint coordinates are shown in Figure 2.1.
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Figure 2.1: Crane kinematics: Joint numbering, orientation of assigned local frames and joint
coordinates.

The Denavit—Hartenberg parameters of the crane can be written as shown in Table 2.1.

Table 2.1: Denavit-Hartenberg parameters.

Joint i Bi di a; a;
1 0, dy a; -/
2 6, 0 —a, 0
3 03 +7/y 0 —az =/
4 0 ds+1L 0 0

In Table 2.1, 6; is the joint angle measured as a rotation angle from x;_, to x; about z;_;, d;
is the joint distance measured from the origin 0;_; to the intersection of the z;_; and x; along
the z;_4, a; is the link length measured from the intersection of the z;_; and x; to the origin
0;,

«a; is the link twist angle measured as a rotation angle from z;_, to z; about x;. Thus, the joint
coordinates that build up the generalised coordinates of the system are: 6,, 6,, 65, and d,.

In general, the configuration of a rigid body in a three-dimensional space, meaning its position
and orientation relative to some reference frame, can be described by a 4x4 homogeneous
transformation matrix:

B B
TS = [AA Ri 2.1
e @1
where AZ defines the 3x3 rotation matrix with det(AE) = 1 of frame B with respect to frame A,
and RE defines the 3x1 position-vector of the origin of the frame B rigidly attached to the body
with respect to reference frame A.

The position of any point P of the body can be represented in the reference coordinate frame
as:
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where up is the 3x1 position-vector of the point P in the local coordinate frame. In the
homogeneous representation, the position of point P can be represented as follows:

)= m ) @)

Using the parameters presented in Table 2.1, the position and orientation of the i-th local
coordinate frame with respect to (i-1)-th coordinate frame can be derived using the general
form of the homogeneous transformation matrix for the adjacent coordinate frames:

cos(8;) —cos(a;)sin(6;) sin(a;)sin(8;) a; cos(6;)
sin(0;) cos(a;)cos(6;) —sin(a;) cos(0;) a;sin(H;)

T, = 2.4
=t 0 sin(a;) cos(a;) d; 24
0 0 0 1
cos(,) 0 —sin(8,) a,cos(6;)
T! = sin(f;) 0 cos(f;) a;sin(6,) (2.5)
0 0 —1 0 d, '
0 0 0 1
cos(@,) —sin(8,) 0 a,cos(8,)
12 — | sin(62) cos(8,) 0 a,sin(6,) (2.6)
! 0 0 1 0
0 0 0 1
—sin(@3) 0 —cos(f;) —azsin(f;)
13 = | cos(63) 0 —sin(f3) ascos(63) 2.7
2 0 -1 0 0 '
0 0 0 1
1 0 O 0
. o1 0 o
=10 0 1 d, + L (28)
0 0 O 1

Then, the link transformations can be multiplied together to find the full transformation that
relates coordinate frame 0 to frame 4 as:

TS = TETETSTS (2.9

In order to connect the hydraulic model to the kinematic model, it is necessary to determine
the relationship between cylinder movements and joint coordinate change (Figure 2.2). This
can be done using a trigonometric approach. For the joint variable 6, this relationship can be
written as:

z§+z§-sf>_n 210

6, =y, +7y, +y3+acos< T 0
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where y,, v,, Y3 are the constant angles defined by the crane structure; [, [, are the constant
lengths defined from the crane structure, and s is the cylinder length plus its displacement.

The joint variable 85 is related to the cylinder displacement s; as:

T
03 =ys+ B3 +V4_E (2.11)
Bz = PBs + PBs (2.12)
Ba=P2+7s (2.13)
12412 —s2
Bs = acos <Tel7 (2.14)
1241212
Be = acos <T517 (2.15)
l, = \/522 + 12 — 2s,lg cos B, (2.16)

Here S; represents the variable rotation angles, whereas y; and i represent constant angles and
lengths that can be defined from the crane structure.

(v, * 'Y:):

Figure 2.2: Joint coordinate change due to cylinder movements.

2.1.2  Crane dynamics modelling

A widely used formulation to express the multibody dynamic model is based on Lagrangian
dynamics (Khalil & Dombre, 2002; Craig, 2005). The computational complexity of such a
formulation is O(n“). In order to provide the fast simulation of the dynamic model, a dynamic
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formulation with low computational complexity should be employed. One such formulation
that is widely used in the robotics community is the Iterative Newton-Euler formulation (INEF)
(Luh, Walker, & Paul, 1980; Craig, 2005) of O(n) computational complexity. This formulation
is employed in the work for crane dynamics modelling.

The INEF consists of outward and inward iterations. Outward iterations are applied link-by-
link starting from link 1 and moving to link n. These iterations are intended to calculate for
each link i the rotational velocity w; and acceleration w;, as well as the linear acceleration of
the centre of mass v;. Then, using Newton-Euler equations of motion, the inertial forces F;
and torques N; acting at the centre of mass of each link i are calculated. During inward
iterations, for each link the reaction forces f; and torques n; acting at the joints are calculated
from the force-balance and moment-balance respectively. The link-by-link calculation starts
from link n and moves backwards to link 1. The algorithm for INEF can be presented as
Algorithm 2.1. Each link in the multibody system can be presented as shown in Figure 2.3.

Figure 2.3: Forces acting in link i

Algorithm 2. 1: INEF

; ; Tl 1 pCitl
Input: n, 0;44,0;41, 0141, A7 Aip1, Zis, R R Mgy, digg, A, Ieinn

Output: ;
Initialisation :
1 i=0,w9 = 0,0 = 0,9 = gZy,f, =0,n, =0

LOOP 1 (Outward iterations):

2: fori=0ton—1do

3w =AM w0+ 01074

4: if (joint i 4+ 1 isprismatic) then

5t Wiy = A g

6:  else iy = Aoy + A w; X 014121y + 01412144

7 end if

8 if (jointi + 1 isprismatic) then

9 Vier = AL (@ X R 4+ w0 X (0 X REY) 4 9) + 20441 X digq + dig1Zigq

10:  else vyy1 = AP (w; X R + w; x (w; x R + 1)
11: endif

. : _ Ci+1 Ci+1 B
120 Dgigy = @ppy X RET + 041 X (@441 X RET) + 014y
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130 Fip1 = Mip1Vcinn
14 Niyq = lcip1@ip1 + Wip1 X oip1 Wi
15: save Fiy 1, Niiq
16: end for
LOOP 2 (Inward iterations):
17:fori=n—1 toldo
18:  fi= A§+1fi+.1 + F; ' ' '
19: ;= N+ Ajpqnig +REXF + R X AL fin
20: T = Tl’erAl'
21: save T;
22: end for

The INEF can be applied straightforwardly to the considered system or can be used analytically
for obtaining closed-form dynamic equations as:

T=M(0)0+V(6,0) + G(0) (2.17)

where M(8) is the mass matrix of the system, V(8, 8) is a vector of centrifugal and Coriolis
terms, G(@) is a vector of gravity terms. Originally, INEF is intended for inverse dynamics
problem solution. Thus, in (2.17) it is assumed that the position, velocity, and acceleration of
each joint are known and the forces and torques needed in the joints are calculated. In order to
find the solution for the joint coordinates 8, the torques T acting in the joints should be equated
to the torques created by hydraulic cylinders, which are created from the hydraulic cylinder
forces. In the work, only the angular accelerations of joint 2 and 3 are considered. The described
above equations form the ODE system the solution of which gives the angles of rotation of the
booms. The obtained angles of the booms are then can be used for the position calculation of
other crane points with the help of the mentioned above kinematic expressions.

2.2 Fluid power system modelling

Fluid power system modelling can be approached from the point of view of lumped fluid theory
(Merritt, 1967). According to this theory, any fluid power system can be considered as a
number of separate volumes with evenly distributed pressures. The volumes are separated by
throttles and orifices that create pressure drops in the fluid when it passes through them. In turn,
the pressure drop together with orifice geometrical parameters are used for the volume flow
calculation. Finally, pressure built up in each volume can be calculated using a continuity
equation that relates to the effective bulk modulus with respect to the considered volume and
the difference between inlet Q;,, and outlet Q,,,; volume flows (Merritt, 1967).

In the following subsections, the modelling based on the lumped fluid power theory of the five
fluid power circuits of different complexities is presented. All the circuits include the elements
that negatively affect their simulation speed. These elements can be described mathematically
as nonlinearities, discontinuities and singular states. These elements make the mathematical
models of the circuits numerically stiff and thus difficult to integrate. In particular, the
numerical stiffness of the model causes the solutions of the system of the differential equations
to decay at widely varying rates.
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2.2.1  Circuit 1: Simple fluid power system

One of the simplest fluid power systems can be constructed using two sequentially connected
orifices, as shown in Figure 2.4. In the circuit, two compressible volumes Vi and V> are
considered.

Figure 2.4: Simple fluid power system (Circuit 1).

The pressure developing in the volume V1 can be calculated from the following equation:
. B
pr=7-(Q—Q2) (2.18)
1

where B, is the effective bulk modulus in this part of the circuit, Q1 and Q- are the orifice inlet
and outlet volume flows, respectively. If we consider the sharp-edged orifice, the dependency
of volume flow on the pressure drop can be approximated using the turbulent orifice model

(Merritt, 1967) as:
2Ap
Q = C4A — (2.19)

In (2.19) Ap is the pressure drop across the orifice, A is the orifice cross-section area, Cq is the
discharge coefficient and p is the fluid density. Thus, for the simple circuit the volume flows
will be dependent on the respective pressure drops as:

Q1 = ki\JPs — P1 (2.20)

Q= kzx/ P1— D2 (2.21)

where ki1 and k2 are the semi-empirical volume flow coefficients, which can be determined for
each orifice as k; = CdiAi\/%, (i=1,2).

If volume V1 is set such that Vi << V5, it will introduce higher order dynamics to the system
making its mathematical model numerically stiff.

2.2.2  Circuit 2: Fluid power system with two-way flow control valve

The second system under investigation includes a two-way flow control valve. The valve is
often used in mobile working machines. The fluid power circuit related to the system is
schematically depicted in Figure 2.5. The circuit consists of a pressure power source, two-way
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flow control valve, orifice and 2/2 directional control valve. A two-way flow control valve
consists of two components: pressure compensator and control throttle. Regardless of the load
pressure, the valve ensures a constant volumetric flow by varying the size of the control throttle
and thus regulating the speed of an actuator. The volume between the pressure compensator
and control throttle is assumed to be a small volume, the presence of which increases the
stiffness of the system. The power source is assumed to be an ideal pressure source with
constant pressure. It is composed of a hydraulic accumulator, pump, pressure relief valve and
tank. To reach the tank, hydraulic fluid flow passes through a two-way control valve and two
orifices after the valve. One of the orifices is an ordinary sharp-edged orifice, whereas the other
is a 2/2 directional control valve, the opening of which can be controlled by signal Uq.

2-way flow control valve ~

Figure 2.5: Fluid power system with two-way flow control valve (Circuit 2).

Pressure in the system can be integrated from the following continuity equations:

B,
p1 = 7((21 - Qv (2.22)
1

B,
P2 = V(Qt — Qe — Qez) (2.23)
2

where B, is the oil effective bulk modulus, V; and V,, are pipeline volumes, where V; is a small
volume, Q, and Q; are volumetric flows through the pressure compensator and control throttles,
and Q,; and Q. are orifice and directional control valve volume flows, respectively. Volume
flows Q; and Q, can be obtained as follows:

Q1 = K+/Ips — p1Isign(ps — p1) (2.24)
Q¢ = ke Ip1 — p2lsign(py — p2) (2.25)

where p; is the supply pressure, and K and k; denote the semi-empirical flow coefficients for
the pressure compensator throttle and for the control throttle respectively. Both coefficients can
be integrated from the following differential equations:
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. Cs—py+p,—(C+C — K
K= 5 —P1T P2 (C1 2 (Ds pl)) (2.26)
3

ke = (U, = C5)CsC? — 2k, CgCy — K, C? (2.27)
where U, is the signal applied to control throttle (opening), and C;, C5, Cs, Cs, Cq, C7, Cg, Co are

empirical constants (Handroos & Vilenius, 1991). Volume flows Q.; and Q., are obtained
according to the following flow equations:

Qe1 = k1 Ip2 — Pl (2.28)

Qez2 = k2v/|D2 — el (2.29)

where k; and k, are semi-empirical flow coefficients for the orifice and directional control
valve, and p; is the tank pressure. The initial values and constants of the system used in the
equations are shown in Table 2.2.

Table 2.2: Circuit 2 parameters.

Symbol Value Symbol  Value
B, 1.5x10° Pa C, 4.65%107
4 1.0x10° m® C, -1.79x10*
v, 1.0x10°% m® Cs 4.0x101
kq 5.62x107 Cs 1.02x10°8
k, 5.73x107 Ce 5.26x107
K 0.05x10°° C; 200
Dt 0Pa Cg 0.45
k; 0.1x107 Co 1.2

2.2.3 Mathematical stiffness analysis of fluid power circuit model

To analyse the mathematical stiffness of Circuit 2, its state-space representation should be
derived. If we assign the state and input vectors as x =[X1 X2 X3 X3 X5]T =
[p, p, K ko kJlandu=[ur ux u3]"=[ps U, &]7,respectively, then the state
equations can be written as follows:

B
5C1 = 7:(X31[ul - x1 - X4_1/.x1 - xz)
B
Xy = 7:(354\/ X1 — X2 — k1\/x_2 - u3k2\/x_2)

X3 = o (x2—x1+Cox1x3—Cox3uy — C1x3+C5)
3
Xy = X5

5C5 = CGC72u2—2C768X5 - CGC7269_C72‘X4'

(2.30)
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The obtained state-space representation (2.30) is a multi-input multi-output nonlinear model,
where ¢ is the parameter that describes the binary input of the 2/2 directional control valve. If
¢ is equal to 0 the valve is closed and the term k,+/x; will also be equal to zero. One way to
detect the stiffness in the problem is to estimate the dominant eigenvalues of its Jacobian
directly. In linear system theory, the eigenvalues of the system Jacobian describe the behaviour
modes inherent in the model. In nonlinear systems, eigenvalues and eigenvectors are time-
varying. Nevertheless, it is possible to apply this approach to nonlinear problems through
model linearisation. Linearisation means that constantly differentiating nonlinearities are
linearly approximated about their operating points. As the linearised solutions can be
considered good approximations of nonlinear system solutions about the operating point, the
observations obtained locally can be generalised to the rest of the system. Further, to simplify
the model we also assume that flows through the compensator and control throttles have
constant coefficients K and k;, which is often valid and frequently employed in fluid power
systems design. The Jacobian of the system can be calculated as

_OF

6x X=X,u=u

J (2.31)

where F is the left-hand side of the first and second equation of (2.30), x is the model state
vector, u is the model input vector, and (X, u) is the operating point. The Jacobian for the
considered system can be written as follows:

B, ( K 4 k¢ ) B, k¢

2V \Wuy — % Vxg —x, 2V \x; — x; (2.32)
B, ke B, (k1 +k, 4 ke ) '
ZVZ VX1 — Xy 2V2 \/x_z VX1 — Xy

To characterise the level of numerical stiffness of the model, we employ a condition number
of the Jacobian, which, according to numerical analysis theory, can be written as

w0
D= P @33)

where 1,,,,(J) and A,,;,(J)are the maximum and minimum eigenvalues of the Jacobian,
respectively, which for J € M,,,, should satisfy [J — AI| = 0, where | is the identity matrix.
The condition number shows how much the eigenvalues of the system differ, i.e. small values
of k show that the problem is well-conditioned, whereas large values of ¥ indicate the ill-
conditioned problem and the system can be considered stiff. The condition number can be
determined for the certain configuration of the system. This means that the Jacobian should be
calculated in the operating point (X, ). To define such a point, the physical characteristics of
the state variables should be considered. Thus, physical restrictions should be imposed on the
state variables and inputs (Table 2.3). Under those restrictions, the operating point can be
chosen as x = [198-10°, 1.5-10% 107, 1077, 0]" and u = [200-10°, 6]". Note that x; and x are
calculated from the first and second equation of (9) by substituting X3 and x4 with the constant
values and assuming that all the rates are equal to zero. At this point, let us consider the two
cases. In the first case V1 = 107> m?, i.e. the volume between compensator and control throttle,
is quite large. The condition number of (11) in the chosen operating point for this case is k =
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1.28. In the second case the volume is reduced to V1 = 107> m® and the corresponding condition
number becomes as large as x = 77.81. Analysing the system Jacobian (2.32), this effect can
be seen through the fact that the small volume V1 appears in the denominator of the Jacobian
elements and, thus, makes the eigenvalues differ significantly in magnitude and the
mathematical model (2.30) become numerically stiff.

Table 2.3: Physical restrictions imposed on the state variables and inputs.

Variable Lower limit Upper limit

X1 0 -
Xy 0 -
X3 0 106
X4 107 -
Uy 0 -
u, 0 10
Uz 0 1

2.2.4  Circuit 3: Hydraulic position servo system

The detailed mathematical model of the hydraulic position servo system (HPS) was employed
in this work. The model was experimentally verified in (Liu, Wu, Handroos, & Haario, 2012).
The fluid power system includes a differential cylinder with an attached sliding load, a 4/3-
proportional directional valve and a pump. The system is presented schematically in Figure
2.6. The system is controlled through the voltage signal U supplied to the valve input. The
dynamic characteristics of the solenoid valve are presented using the second order model as:

U, = Kw?U — 2{w,Us — w2U; (2.34)

where K is the valve gain, Us is the signal proportional to the valve spool displacement, ¢ is
the valve damping ratio, and w,, is the natural angular frequency.

5 Xl

M;VW‘ 7y 11
vl

P A= Py

>
N

Figure 2.6: Schematic representation of hydraulic position servo system (Circuit 3).

The volume flow rates model of the 4/3-proportional directional valve with turbulent orifices
can be presented as:
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0, = {Cstsign(ps — PV Ips —p1l, Us 2 0
CyUssign(py — pe)V Ip1 — pel, Us < O
0, = {Cstsign(pz —pVIp2 = el Us 2 0
CoUssign(ps — p2)V Ips = p2l, Us < 0

(2.35)

In (2.35) Q; and @, are the volume flow rates produced by the valve, C, is the flow constant
that accounts for cross-sectional areas of the valve orifices. p1, p2, ps, and p are respectively
the pressures inside the cylinder chambers, the supply pressure, and the pressure in the tank.

As shown in [26], the external leakage model of the servo valve with the critical overlap that
accounts for the wear to the edges of the spool and the sleeves can be presented as:

Qrie = LiefiUs, Us1) (P11 — 06, 0 < Us < Ugye
Qrat = Lot fi(Us, Uz ) (02 — Pe), U1 < Ug < 0
Qus1 = ls1f1 (U5, Ugs1) (s — P1), Uss1 < Us <0
QLs2 = lstL(Us' Ussz)(ps - Pz): 0=<Us; < U

(2.36)

where @Q;; are the leakage flows between the respective ports (ij = 1t, 2t, s1, s2); [;; are the
experimentally defined leakage constants; Ug; are the proportional-to-the-position-of-the-

spool voltage signals at which the leakage between respective ports i and j disappears; and f.
is the experimentally-defined function that accounts for the shape change as:

Us \° U, \°
£.(Us, Usij) =1- 3< > > + 2< = > (2.37)
Usij Usij

According to Newton’s second law, the equation of motion for a double-acting hydraulic
cylinder can be written as:

where %, is the acceleration of the cylinder piston; m is the load mass; p1 and p. are the
pressures in the cylinder chambers; A1 and A. are the piston-side and rod-side areas
respectively; and F; is the cylinder friction force. In its turn, the friction formed in the cylinder
can be represented using the LuGre friction model (Canudas de Wit, Olsson, Astrom, &
Lischinsky, 1995):

(Ff =00z + 01Z + kyX,

|Z'=5c _ sl
P g(xy) (2:39)

1 ¢\
g(xp) = 0_0<FC + (Fse — F¢) exp (‘ (::_i) ))

where g, is the flexibility coefficient, g, is the damping coefficient, k, is the friction
coefficient, F is the Coulomb friction, F; is the Stribeck friction and v, is the Stribeck
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velocity. More specifically, z represents the non-measurable internal state, g(a‘cp) describes the
friction behaviour during constant velocity motion, and k,x, is the viscous friction. The
leakage flow between the cylinder chambers can be approximated as:

Qui = Li(p1 — p2) (2.40)

where L; is the laminar leakage flow coefficient. The presented mathematical models of the
hydraulic elements are connected with the following continuity equations:

Vi . ;

g P1= Q1 — Ayxp + Qri — Qrac + Qust

V‘” (2.41)
2 . ;

g P2= —Q + Ayxy, — Qui — Qrz¢ + Urs2
2

where the chamber volumes are calculated as V; = A;x, + V,, and V, = AZ(H — xp) + Vpa.
Here H is the cylinder stroke and V,;are the dead volumes connected to the respective ports. In
(2.41) the compressibility of hydraulic oil is accounted for by the effective bulk modulus B,;.
The effective bulk modulus for each cylinder chamber is calculated regarding the local chamber
pressure using the following empirical formula (Jelai & Kroll, 2003):

B.; = a1Bemax l0g (a2 Pi + a3) (2.42)

pmax

where B,,,., denotes the maximum bulk modulus of the oil, py,ax IS the maximum pressure in
the system, and a; (i = 1, 2, 3) are the empirical constants. The values of parameters used in
the hydraulic model described in this section are shown in Table 2.4.

Table 2.4: Circuit 3 parameters.

Symbol  Value Symbol  Value
m 210 kg L; 1.59x10%? m¥sPa
A, 8.04x10* m? Lie 1.15x10%
A, 4.24x10 m? Ly 7.21x10°13
Vor  213x10%m? lgy 5.96x10%3
Vo,  1.07x10%m3 ls, 2.92x10°13
C, 2.36x10° m¥sVVPa Uy,  7.94x101V
H im Use  -5.92x101V
Ds 1.40x107 Pa Ug, — -9.09x102V
e 9x10° Pa Us, 9.08V
K 9.90x10! 0o 3.20x10% N/m
Wy, 3.31x10? rad/s oy 6.30 Ns/m
¢ 6.18x10! ky, 1.28x10° Ns/m
a, 0.50 F, 2.15x10° N
a, 920 Fy 1.13x10%° N
as 3 Vgt 3.47x10% m/s

Bopax  1.80x10° Pa Pmax  2.80x107 Pa
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The HPS model presented in this section gives an extremely good fit to the experimental data
as demonstrated in (Liu, Wu, Handroos, & Haario, 2012). Thus, performing the mathematical
model validation with real experimental data is not necessary.

2.2.5 Circuit 4: Fluid power system with pressure compensating proportional valve

The next fluid power system considered here is the modified and extended version of the
previous one. The pressure compensator was added to the 4/3-proportional directional valve
and the valve leakage was removed. In the system, the small volume appears between the
directional valve and pressure compensator. In Figure 2.7 the small volume and the pressure
developing within it are denoted by V3 and ps, respectively. Further only the differences from
Circuit 3 will be explained.

>
U X
QJ:'"_

Ps l 0;

Figure 2.7: Fluid power system with pressure compensating proportional valve (Circuit 4).

The volume flow rates model of the 4/3-proportional directional valve using turbulent orifice
model with triangular groove cross-section can be presented as

Cv(Us - Udb)ZSign(ps - pl)\/ |ps - pll; Us = Ugp
Q1 =1 C,(Us — Ugp)?sign(py — p1p1 — pel, Us < —Ugy

0, otherwise

—Cy(Us + Ugp)?sign(pz — po Ip2 — vl Us = Ugp

Q2 =Y —C, (U + Ugp)?sign(ps — p)Vps — pal, Us < —Ugy,
0, otherwise

(2.43)

In (2.43), C, is the flow constant that accounts for cross-sectional areas of the valve orifices,
Uab is the dead band voltage of the valve, and pa, p2, ps, and pt are the pressures in two cylinder
chambers, the supply pressure, and the pressure in the tank, respectively. In this work, the
directional valve is assumed as being ideal, such that there are no internal leakages. The volume
flow Qs related to the pressure compensator is modelled using the semi-empirical approach
developed in (Handroos & Vilenius, 1991):
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Q3 = K\/ps — ps3 (2.44)

. 1
K = G (Cs — b3 + Psnuttie — (C1 + C2(ps — p3))K) (2.45)

where psputtie = max (pq, p2) is the output of the shuttle valve. The volume flow Qa4 between
valve and pressure compensator can be considered as equal to Q if U; = Uy, and equal to
—Q, ifUs < —Uyy,.

The pressures that are building up in the circuit can be calculated from

(V1 . .

_Bﬂ P1 =01 — Ayx, + 0y
v, . ;

. 3 P, = —0Q + Azxp — Quy (2.46)
e

Vs |
B_e3p3 =0Q3—0Q4

Equations (2.43) — (2.46) as well as (2.34), (2.38) — (2.40), (2.42) make up the mathematical
model of Circuit 4. The presence in the model of the pressurised small volume makes the
mathematical equations stiff and, hence, computationally costly. Parameters used in Circuit 4
are presented in Table 2.5.

Table 2.5: Circuit 4 parameters.

Symbol Value Symbol  Value
m  210kg C,  4.65x107
Vo1 1x10°% m® C, -1.79x10*
Vo2 1x10°% m?® Cs 4x10%
K,  9.90x10% Cs  8x10°
A 8.04x10* m? L; 1.72x10® m¥/sPa
A, 4.24x10* m? Vs 1x10° m3
De 9x10° Pa k, 1.28x10% Ns/m
Ds 1.40x107 Pa Up 2V
Cy 2.31x10° m3sVyvPa  Bemax  1.80x10°Pa
Wy, 3.31x102 rad/s Pmax  2.80x107 Pa
¢ 6.20x10" o,  3.20x10%N/m
a, 050 o 6.30 Ns/m
a;, 90 F,  2.15x10°N
as 3 Fe  1.13x10°N
H 1m Vgt 3.47x10% m/s

2.2.6  Circuit 5: Fluid power system of the mobile crane

The fluid power system used in the crane modelling has the following structure, presented in
Figure 2.8. The flow is supplied to the system by a variable displacement pressure-compensated
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pump. Such a pump maintains the assigned pressure level by adjusting the delivered flow.
Three asymmetric double-acting hydraulic cylinders are controlled through the block of the
three proportional directional valves with the closed centre position. The drawback of the
presented configuration is that the pressure level of the most loaded actuator affects the
velocities of the others. In order to overcome this phenomenon, the pressure compensator is
added to each control valve. The pressure compensator will ensure the constant pressure drop
across the control valve and, thus, will maintain the linear dependency between the flow rate
and the valve opening area.

Cylinder 2 Cylinder 3

Figure 2.8: Fluid power system of the mobile crane (Circuit 5).

The hydraulic circuit, which is used for modelling, is schematically presented in Figure 2.8.
Each hydraulic cylinder produces the force that can be derived using (2.38), where the friction
force in cylinder F; accounts for its velocity dependency as follows (Andersson, Soderberg, &
Bjorklund, 2007):

Fr=F¢ tanh + kX, (2.47)

In (2.47), F¢ is a Coulomb friction; v is a Coulomb velocity threshold; x, is a cylinder
velocity; and k,, is a viscous friction coefficient.

The volume flows created by the proportional 4/3 spool valve with positive overlap and the
closed centre position can be modelled as:

Cy(U — Ugp)*y/Ips — pal sign(ps — pa), UzUg

Q4 = =C,(U + Ugp) \/ b4 —prlsigna —pr), U< —Ug (2.48)
, _Udb < U < Udb
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C,(U - Udb)Z\/ |ps — prl sign(pp — pr), UzUg

Qs =3 ~C,(U + Ug)Ips — psl sign(ps —ps), U < Uy, (2.49)
0, —Uy <U<Uyg,
Qa, U=Ug
Qp =1—0Us U< —-Ugp (2.50)
0, —Ugp<U<Uyg

where py4, pg, ps and pr are pressures in cylinder chambers, supply pressure and pressure in
the tank respectively; Uy, is the voltage proportional to the positive overlap of the valve; and
C, is the coefficient that accounts for the dependency between the cross-section area of the
valve orifices and supplied voltage. It is calculated from technical data of the control valve
provided by its manufacturer. The factor (U + Ug;,)? is used to model the effect of valve
grooves with triangular cross-sections. In order to introduce the pressure compensators to the
valves in the model, the pressure drops ps — p4 and ps — pg should be set to constant. The
dynamics of pressure compensators are much faster than the dynamics of the system.
Moreover, their introduction can increase the calculation load due to inherent nonlinearities. In
order to keep the calculation time minimal, the dynamics of the pressure compensators are
neglected. The dynamics of the proportional solenoids is described by a first order delay
between the input voltage and feedback voltage from a spool position.

The flow supplied by the pressure compensated pump can be calculated as:

_ kP(pref - ps) - QP
= -

Qp (2.51)
where kp is the flow-pressure coefficient of the pump; 7, is the pump time constant; and p...¢
is the reference pressure of the pump. Finally, the pressures in the system can be calculated

using continuity equation accounting for inlet and outlet volume flows for each considered
volume as:

B,
Ps = I (Qp — Qs) (2.52)
: Bea ,
e, A (Qa— A1xy) (2.53)
s = Bes (—Qp + 45%,) (2.54)
PB =y s AL (H - x) Us + 4%y '

Here B, is the bulk modulus of the volume V emerging between the pump and the
corresponding directional valve. For each considered hydraulic cylinder B,4 and B, represent
the corresponding bulk modulus of the volumes of the cylinder chambers; V, is the dead
volume; x,, and x,, are the piston position and velocity respectively; H is the piston stroke.
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2.3 Mobile crane modelling using commercial software

One of the types of the modelling implemented in the work is the crane modelling using
MATLAB/Simulink commercial software. For the multibody system of the crane, a Simulink
extension Simscape Multibody was used. In its turn the fluid power system was modelled with
basic Simulink blocks using equations presented in the previous subsection. The Simscape
Multibody was chosen since it provides an opportunity to use the CAD drawings of the crane
components directly together with their size and weight characteristics calculated beforehand
in other engineering CAD software. Moreover, automatically generated 3D animation by
Simscape Multibody allowed the system dynamics to be visualised.

In Figure 2.9 and Figure 2.10 the resulting block diagram of the crane in Simscape Multibody
and a screenshot of the generated 3D animation are presented. In Figure 2.10 the separate
bodies are shown in different colours. The crane model was built using only revolute and
prismatic joints. The prismatic joints were used only in the modelling of the sliding motion of
the hydraulic cylinders and the extension boom with respect to the outer boom. In the resulting
model the forces created by the cylinders are calculated in the fluid power model and then taken
as inputs into the multibody model. In its turn, the positions and velocities of the cylinder rods
are calculated in the multibody model and further supplied back to the fluid power model. The
crane motion control in the model is realised through control voltages supplied to the
directional valves.

GUTER BOGM

EXTENSION BOOM

Figure 2.9: Mobile crane model in MATLAB/Simulink and Simscape Multibody.
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Figure 2.10: Screenshot of the generated 3D animation of mobile crane.

2.4 Mobile crane simulation: results and discussion

In the work, the model obtained using commercial software was taken as a reference of
calculation speed and accuracy. The model was calculated using two fixed-step solvers ode 1
and ode 4, which exploit the 1 order Euler numerical method and the 4" order Runge-Kutta
method, respectively. In general, the Euler solver, due to its structure, provides faster but less
accurate simulation results when compared with the Runge-Kutta solver. A time step as small
as 10™ s for both solvers was used. The reference models were translated to C source code
using MATLAB Embedded Coder. The program was optimised for its execution efficiency.
The code also enables the logging to the file of the main variables, such as coordinates of tip
location and values of the forces produced by actuators. The derived mathematical model was
directly implemented as C source code. All programs were executed on a personal computer
running 2.26 GHz Intel(R) Core(TM) 2 Duo CPU and 4 GB of RAM.

The movement of the crane was modelled from the static initial position. The cylinders of the
lifting boom and outer boom were actuated by providing the input voltage of 5 V to their control
valves. All other cylinders were fixed in their initial positions. The movement during a time
period of 5 s was simulated. In Figure 2.11 global coordinates of the crane tip produced by the
simulation of the reference and mathematical INEF models are presented for comparison. The
resulting coordinates of the crane tip calculated by the models differ less than 5 cm from each
other. Thus, the accuracy of the models can be considered as comparable. The time spent for
the execution of each program implementing different models is compared in Figure 2.12. The
black line indicates the real-time period of 5 s. Any values of time below this line can be
considered faster than real time, while the value above the line indicates that simulation
overflow. The program implementing INEF method demonstrates the fastest execution. It
consumes less than half of the real-time period that is simulated and provides the maximum
amount of time for analysis of predicted system behaviour.
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Figure 2.11: Trajectory of the boom tip: Accuracy comparison.
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Figure 2.12: Performance comparison.

The advantage of the direct mathematical modelling built with the use of the INEF method can
be seen in the ability of its fine tuning in terms of performance and portability. The
implementation of such a model does not depend on any particular programming language,
software library, operating system or hardware platform. At the same time the commercial
software modelling ensures simplicity of implementation, and even the complex mechatronic
systems in certain cases can also be used in real-time applications.
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3 Fast simulation of hydraulic models using recurrent neural
network

In this chapter the modelling and fast simulation of the fluid power system using an artificial
neural network with recurrent architecture is studied. As an example of the fluid power system,
a mathematical model of the HPS system (Circuit 3) is considered. The system was chosen
since it includes the features that are typical for the wide variety of fluid power system models,
such as stiff differential equations, strong nonlinearities and non-smooth dependencies. Such
models are complex and very time-consuming to solve with conventional numerical integration
methods.

3.1 Recurrent neural network architectures

A number of the RNN architectures can be used for dynamic system modelling, such as the
NFIR, NARX and the NARMAX architectures. These three architectures are similar in their
structure; however, they differ in how much previous information is recurrently supplied to the
network input, which, in turn, affects the network prediction accuracy, stability, size and
calculation time.

The NFIR architecture can be considered the simplest and can be presented by the following
defining equation (Schram, Verhaegen, & Krijgsman, 1996):

y(t) = wH(x(t),x(t -1),..,x(t— nx)) (3.1)

where x(t) = [x,(t), ..., x,, (£)]7 is the network input vector at time t; n, is the time delay
order for input; and 1 is the nonlinear mapping performed by multilayer feedforward network
with H layers. In (3.1) and in the following equations the hatted variables represent the network
estimations of the states of the dynamic system to be modelled. According to (Schram,
Verhaegen, & Krijgsman, 1996), the NFIR architecture ensures stable simulation as long as the
time of dynamic response is fully covered by past inputs. This leads to a larger number of
parameters to be estimated in comparison with the NARX architecture, for example. The
NARX architecture is an extended version of the NFIR architecture where also the past outputs
are recurrently supplied. The defining equation for the NARX architecture is (Siegelmann,
Horne, & Giles, 1997):

96 = Py (9Ct = 1), .., 9(t = ny)), x(0), X(¢ = 1), ..., x(t — ) (3.2)

where, in addition to described above parameters, y(t) = [9;(t), ..., y;(£)]"is the network
output vector at time t and n,, is the time delay order for output. In comparison to the NFIR,
this architecture is inherently less stable, since it operates in a closed loop, i.e. it uses its
predictions as additional input. At the same time, the NARX network is considered to be a
more accurate approximator. The NARX network can be obtained from the basic multilayer
feedforward network by delaying the input vector x and feeding back the output vector §
(Figure 3.1, Figure 3.2).

The predictive performance of the NARX network can be enhanced by also adding the error
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information to the network input vector. This approach is used in the NARMAX architecture,
whose defining equation can be written as:

9(6) = Py (y(t = 1), o, 9t = 1), X, X(t = 1), .., X(t = 1), €(t = 1), ..., et — ) ) (3.3)

where e(t — 1) = y(t — 1) — §(t — 1) is the network error at time t - 1 and n, is the time
delay order for error. In (3.3) elements presented by x are sometimes called “controlled input”
and thus e elements can be considered as “uncontrolled input”. From this point of view, the
NARMAX architecture is the most beneficial in the case of the real-world datasets with the
unobserved noise as it is explicitly modelled in the network structure. However, in order to
identify this kind of architecture, the previous n, prediction errors are needed. Thus, the need
arises for another predictor that has to be used during the training. This makes the identification
process for the NARMAX network much more complex than for the NFIR or NARX networks.
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v(t — network
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Figure 3.1: Training configuration of the NARX Figure 3.2: General configuration of the
network. NARX network.

In our case, the used datasets do not include any noise as they are produced by a simulation of
the mathematical model. Moreover, the smaller number of network parameters means faster
calculations during operation, which is our goal. At the same time the prediction accuracy is
still important. At this point, it can be concluded that the NARX architecture is seen as the most
suitable for our application.

Network training is an iterative process of finding the set of network parameters (weights and
biases) that satisfy some optimal criterion, such as mean square error minimum, using training
data (a set of samples where each sample includes the input vector and the desired output
vector). Using training data, a typical feedforward network can be trained by applying one of
the backpropagation-based algorithms (Rojas, 1996). One of the most successful up-to-date
training algorithms for this kind of network is the Levenberg-Marquardt (LM) algorithm (Yu
& Wilamowski, 2011). In order for the trained network to be not only able to reproduce the
training data but also to generalise well, Early Stopping (Demuth, Beale, de Jess, & Hagan,
2014) and Bayesian Regularisation (Demuth, Beale, de Jess, & Hagan, 2014) techniques should
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be used. Both the techniques allow network overfitting to be avoided. The latter technique also
provides additional information about which part of the neurons is used efficiently.

One of the main advantages of the NARX architecture is that it allows the network to be trained
in an open loop configuration. In this configuration during the training, the real output vectors
of a dynamic system y are fed instead of prone-to-errors estimations §, as shown in Figure 3.2.
Thus, the accurate input is provided to the feedforward network. Moreover, the resulting
network acquires a purely feedforward architecture providing the opportunity to apply standard
backpropagation-based algorithms for training. However, during operation the trained network
is used in a closed loop configuration (Figure 3.1).

3.2 Training data generation

The mathematical model of Circuit 3 described in detail in Section 2.2.4 was implemented in
MATLAB Simulink. The training data was obtained by simulating the model for 4,000
seconds. Each sample of the resulting training data consisted of three values: the input voltage
u (V) applied to the solenoid valve and two output values, namely the hydraulic cylinder spool
position x,, (m) (with respect to its zero position when the cylinder is fully retracted) and spool
velocity x,, (m/s). In order to produce adequate training data, which should cover all the regions
of the input space where the RNN will be used in the future, a pseudo-random multilevel signal
(PRMS) was employed. The PRMS was placed in the range -10...10 V and supplied as the
input. The explicit Runge-Kutta solver with a fixed time step 10 s was used to solve the model.
The integration time step of such a small size is usually considered safe for simulation, as it
ensures the numerically stable solution of the hydraulic model.

3.3 Pre-processing technique

Let us examine the training data produced by the simulation of Circuit 3 more closely. Figure
3.3 shows a magnification of the areas within the circle. In Figure 3.3 each point represents the
separate training example for the neural network. It is obvious that the closest neighbours of
each point will represent the similar training examples. During the training process these
examples do not bring much new information to the network while making the process longer.
In order to speed up the training process and concentrate on the temporal information carried
by the sequence, in this study we developed a technique according to which only each 100th
example of the initial dataset was used for the training. Thus, the new training data slightly
differed from the initial one in terms of shape, while they differed significantly in length (Figure
3.4). The absolute measure of fit of the new data to the initial data was with RMSE of 3.87x10"
°. On the other hand, the new training data comprised only 339,000 samples. Part of the training
data is presented in Table 3.1. Further, for training purposes, the new data was divided into
training, validation and test subsets as 70/15/15%.
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Figure 3.3: Closer look at the training data obtained by numerical integration
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Table 3.1: Training data layout.

Sample Input Outputl Output?2

number u, v Xp, M Xp, M/s
195 1.1866 0.1328 0.1433
196 1.1866 0.1342 0.1433
197 1.1866 0.1357 0.1433
198 1.1866 0.1371 0.1433
199 1.1866 0.1385 0.1433
200 1.1866 0.1400 0.1433
201 4.0328 0.1414 0.1433
202 4.0328 0.1430 0.2023
203 4.0328 0.1460 0.4127
204 4.0328 0.1509 0.5361
205 4.0328 0.1564 0.5384

3.4 Results and discussion

The single input multiple outputs (SIMO) NARX network was implemented using the Neural
Network Toolbox. The number of hidden layers, the number of neurons in each layer and the
delay parameters were selected by trial and error until the desired accuracy was obtained. The
resulting network included four fully connected hidden layers with sigmoid activation
functions, and one output layer with a linear activation function. The number of input and
output delays was determined by the experiment described further in the section.

One of the major differences between the NARX network presented in this paper and the
networks studied in other works (for example in (Patel & Dunne, 2003)) is the network size.
The present network has much deeper architecture that allows for the approximation of more
complex functions with multiple inflections inherent to the hydraulic model.

Let us address the stability issues of the network. As was noted previously, adding global
feedback to a network can lead to instability in an otherwise stable open loop network. One
way to assess the stability of a trained neural network is to apply Lyapunov stability analysis.
However, it can be considered a rather tedious approach (Barabanov & Prokhorov, 2002). In
our work we implemented a more practical approach consisting of multiple training with
random parameter initialisation (Patel & Dunne, 2003). Following the selected approach, 15
randomly initialised networks of the same structure were trained using the same training data.
The networks were then ranked according to their posterior accuracy on the test dataset in
closed loop configuration (Table 3.2). Experience shows that the network with minimum
posterior error is stable (Patel & Dunne, 2003).

For all networks in Table 3.2 the LM algorithm supplemented by Bayesian Regularisation and
Early Stopping were used for training. Training of the network with the highest rank took 2
hours and 57 minutes for 293 epochs and stopped by Early Stopping regularisation (the
validation subset error continuously increased for 6 epochs). Figure 3.5 shows the evolution of
the training, validation and test performances of the open loop network during the training. The
best validation performance at epoch 287 was 7.94x10®, whereas training and testing
performances were 4.62x10 and 7.36x10°®, respectively. The number of parameters (weights
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and biases) being effectively used by the network was equal to 956. The closeness of this value
to the total number of parameters, i.e. 1,053, showed that the size of the network was
appropriately chosen. After the training, the network was transformed to the closed loop
architecture. A dataset that included 1,000 samples and corresponded to 10 seconds of real time
was used for testing. The output accuracy of the trained NARX network with the highest rank
was MSE = 1.87x10*.

Table 3.2: Ranking of the 15 trained networks with Random Initialisation.

MSE+rain - MSEvaia MSEtest Valid.  MSErvest

Rank " 06 10  x10° Stop  CL”
1 4.62 7.94 7.36 287 1.87x10*
2 6.11 11.30 6.87 181 4.83x10*
3 2.59 491 451 554 5.03x10*
4 10.80 17.10 11.60 144 6.04x10*
5 2.62 34.70 2740 1000 6.93x10*
6 2.08 2.76 4.06 209 6.98x10*
7 6.09 10.80 8.73 415 7.01x10*
8 9.96 10.30 11.30 172 7.02x10*
9 5.95 10.40 7.17 327 0.25x107?
10 5.77 9.74 7.45 105 0.77x10%?
11 3.98 10.40 12.10 373 0.69
12 3.54 8.31 8.02 453 1.09
13 4.16 7.29 6.16 110 131
14 8.61 12.50 10.50 159 2.38
15 5.66 10.40 7.59 422 3.59
“Closed loop.

The additional experiments to study the influence of the number of input and output time delays
on the accuracy of the considered network were carried out. The results are summarised in
Table 3.3. It should be noted that all seven networks were initialised with the same parameters.
The visual inspection of the produced responses was also performed. The responses of the most
accurate networks (Case 5 and Case 6 in Table 3.3) are presented in Figure 3.6. Although the
overall accuracy of network Case 5 is the highest, network Case 6 represents the transition
process in velocity in a more natural way. Thus, network Case 6 might be a better choice for
the simulation.

Table 3.3: Network performances with different number of input/output time delays.

Input Output MSEtrain MSEtest MSErest

Case Tps TD*  x10° x10°  CL*

1 0.5 1.6 2.74 7.44 7.71x10*
2 0.6 1.7 6.39 7.79 3.37x10*
3 0.7 1.8 3.49 7.04 8.39x107?
4 0.8 1.9 7.71 10.20 2.99x10*
5 0.9 1..10 466 6.20 4.70x10*
6 0.10 1..11 462 7.36 1.87x10*
7 0..11 1...12 463 7.88 0.12
* Closed loop.

** Time delay.
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In order to compare the calculation speed on the test dataset, the reference mathematical model
implemented in Simulink and the trained NARX network (Case 6) were translated in stand-
alone C code using MATLAB Embedded Coder 7.0. The C code was optimised for execution
efficiency. Both codes were compiled and run on a personal computer that had a 2.26 GHz
Intel(R) Core(TM) 2 Duo CPU and 4 Gb of RAM. It took 78 ms for the mathematical model
to simulate an interval of 10 seconds of real time that was 128 times faster than real time,
whereas for the NARX network model it took only 16 ms to simulate the same time interval
that, in turn, was 625 times faster than real time (see Table 3.4). Thus, for the considered case
of the hydraulic system the NARX network model is able to provide the solution 4.8 times
faster than the reference mathematical model. Moreover, the visual compression of the NARX
network model and mathematical model responses to a longer test dataset (30,000 samples)
revealed very good generalisation capabilities of the developed NARX network model (Figure
3.7). For readability reasons only some of the samples are shown in Figure 3.7. By analysing
the results presented in Figure 3.7, one can notice the regions with lower accuracy. However,
these regions are transitional and often retain the form of the target model.

Table 3.4: Computational time of stand-along C codes of the mathematical model and the model
produces by the proposed method.

Modelling anproach Computational time, ms Times faster than
gapp (corresponds to 10 s of real time) real time
Mathematical 78 128
RNN network 16 625

(+ pre-proc. tech.)
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Figure 3.7: Comparison between the responses of the mathematical model (Target) and NARX
network-based model (Network) using the test dataset.
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The obtained results show that the NARX network with deep architecture and proper chosen
size provides an accurate solution for the considered hydraulic system and can be used for
simulation purposes. In addition to the benefits provided by the NARX network-based
modelling approach, the pre-processing technique developed in this work allows the simulation
of the hydraulic system to be sped up. In particular, for the considered HPS model the NARX
network-based simulation was 4.8 times faster than the mathematical model-based simulation.

It should be noted that both simulations of the considered hydraulic system were performed
faster than real time. However, with the increasing size of the system model (by adding more
hydraulic components such hydraulic cylinders and valves and by adding the multibody model
of the mobile machine) or with increasing model complexity (by taking into account the small
volumes of the valves and/or the flexibility of the hydraulic components), the computational
time increases for the mathematical model-based simulation much faster than for the NARX
network model-based simulation. The reason for this is that the RNN calculation speed is
mainly related to the number of network parameters and only partly depends on the complexity
of the mathematical model, which is used for the training. Thus, it can be expected that the
number of the network parameters will not increase much as the number considered in this
work is already sufficient to represent rather complex dynamics.

Another aspect that deserves special attention is that any ANN with adequate training can
achieve the good performance with interpolation problems and at the same time has quite poor
behaviour with extrapolation problems. Here interpolation and extrapolation are considered
with respect to the training set. Fortunately, the fluid power systems often have limited number
of states that can be formulated as interpolation problem. In the work, the RNN is used only as
a tool for simulation acceleration. All the dynamics of the fluid power system is provided by
the mathematical model that is used for the RNN training. Thus, in the case of another fluid
power system the dynamics of interest should be reflected in the mathematical model. Then
the structure (inputs/outputs number and character, neurons number) of the RNN should be
revised in a way that will help the network to reproduce the dynamics correctly.
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4 An efficient method for solving the fluid power models with
singularities

In this chapter on simulation acceleration, the method based on the developed advanced
pseudo-dynamic solver with adaptive criterion (AdvPDS) is used. This solver artificially
reduces the numerical stiffness of the mathematical model of the fluid power system, which is
caused by the presence of a small volume in the system (Malysheva, Ustinov, & Handroos,
2020; Malysheva & Handroos, 2020). Also in the chapter, the effect of the three different fixed-
step integration methods (Euler, Runge-Kutta of fourth order, and modified Heun’s method)
used within AdvPDS are considered. The numerical stability of the modified Heun’s method
was improved by substituting the purely turbulent orifice model with the two-regime orifice
model. The two-regime orifice accounts for both the turbulent and laminar flows and thus
allows the numerical problems related to the small pressure drops to be avoided.

4.1 Classical pseudo-dynamic solver

The classical pseudo-dynamic solver (PDS) was proposed and studied in (Aman & Handroos,
2008; Aman & Handroos, 2010; Aman R. , 2011; Pedersen H. , 2007). The main purpose of
the PDS is to find a steady-state solution for the pressure building up in a small volume. The
solver outputs the pressure value only after its steady state is reached using derivative
convergence criterion. Then PDS includes two integration loops: the main loop, which contains
algebraic and differential equations related to larger volumes, and the inner loop. The inner
loop, using artificially enlarged fluid volumes, searches for the steady-state value of pressure
passing by the transition process of pressure formation. The steady-state value of pressure is
sought out during the single time step of the main loop. The PDS is used only for small volume
presser integration. For all other parts of the hydraulic model the common numerical
integration method is used.

The pressure inside the inner loop can be calculated from the classical continuity equation using
an artificially enlarged fluid volume as follows:

B,

p= (Qin — Qout) (4.1)

Vpseudo
where Vyseyqo is the artificial pseudo-volume, and Q;, and Q,,, are the inlet and outlet volume
flows, respectively. According to (Malysheva, Ustinov, & Handroos, 2020), it is recommended
that the pseudo-volume is set at least 10 times higher than the actual volume. Inlet and outlet
volume flows can be expressed as a function of pressure drop as follows:

Q = f(4p) (4.2)

The integration of the differential equation inside the inner loop of classical PDS occurs using
an explicit fixed-step fourth order Runge—Kutta integration routine with an independent
sufficiently small time step ti. The integration routine continues until the convergence criterion
is reached. The criterion is a predefined user parameter, which represents the first derivative of
the pressure. It is important to note that the activation of the inner loop suspends the main loop
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until the steady-state pressure value is found. In general, the PDS allows the hydraulic model
overall stiffness to be reduced by neglecting the high order dynamics that do not play a major
role in the dominant dynamic behaviour of the mobile machine.

4.2 Advanced pseudo-dynamic solver with adaptive criteria

To study the characteristics of the PDS described in Section 4.1, a fluid power system (Circuit
2) was employed. The three random signals in the form of pseudo-random multilevel signals
(PRMSs) were supplied as the inputs: supply pressure psin the range 14-20 MPa, control
voltage to the control throttle Ue in the range —10 to +10 V, and directional valve control signal
Ug, which took either 1 when it is open or 0 when it is closed (Figure 4.1). The signals were
supplied asynchronously with a period of 0.5 s. The system was simulated using a conventional
fourth order Runge—Kutta integrator with a sufficiently small time step of 107° s for 100.5 s.
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Figure 4.1: Input signals for Circuit 2.

During the simulation, the small volume V1 is equal to 10~% m®. The simulation took about five
hours using the following simulation environment: MATLAB 2018b, Intel Core i5-4590 3.30
GHz with 16 GB of RAM, running OS Windows 7 64-bit. The fourth order Runge—Kutta solver
is considered further in this work as a reference solver and the solutions obtained with its help
are thus also considered as a reference. The solution for the pressure p: was obtained under
such conditions and was used as a reference in the case of Circuit 2. The classical pseudo-
dynamic solver was introduced in the same simulation using recommended parameters.
Unfortunately, it could not achieve a stable solution without compromising its speed and
accuracy. While studying the reasons for such a behaviour, it was discovered that the solver
becomes numerically unstable in areas of sudden pressure change, owing to fixed Q,,, in (4.1)
during integration in the inner loop. To stabilise the numerical solution, it was decided to move
the calculation of Q. into the inner loop. Thus, in terms of Circuit 2, the pressure build-up in
the small volume (2.22) as well as inlet and outlet volume flows described by (2.24) and (2.25),
respectively, are calculated in the inner loop. However, it was also found that the calculation
of other system elements such as K and k inside the inner loop does not have much of an effect
on the solution accuracy; moreover, it makes the simulation longer. These findings formed the
basis for the AdvPDS.
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In the classical PDS, the single convergence criterion was used. The criterion was based on the
rate of pressure change between the iterations in the inner loop. The rate of pressure change
between the iterations Apz can be written as:

Apy =py — Piprev (4-3)

where p1 is the pressure from the current iteration, and pprev is the pressure from the previous
iteration of the inner loop. The rate of pressure change is compared with the convergence
criterion value to detect the beginning of the steady-state process of the pressure. The captured
steady-state value is further passed to the main loop. The effect of the single criterion value in
the inner loop of the AdvPDS on the solution accuracy was also studied. It was discovered that
applying a smaller convergence criterion in the inner loop produces a more numerically stable
result when the pressure approaches its lower values during the simulation. In Figure 4.2 the
effect of the criterion value on the calculation of the low pressures using the AdvPDS is shown.
At the same time, it was noted that the computational time of the simulation increases with the
criterion decrease, owing to the large number of iterations performed inside the inner loop.
Thus, the adaptive convergence criterion was proposed. The idea behind the adaptive criterion
is that depending on the pressure level, the criterion with the most suitable time efficient and
numerically stable effect on the pressure is automatically selected during the fluid power circuit
simulation.

x10° p1

----------- criterion=10
L criterion =100
11 ——criterion =300 |
' criterion = 500
D{f 1.08} —reference
]
5 1.06
w
]
L104r
o

Y

[=}

S}
T

=y
T

8.1 8.2 8.3 8.4 8.5 8.6 8.7
Simulation time, s

Figure 4.2: Effect of the criterion value on the low-pressure calculation using the AdvPDS.

When the pressure difference between the iterations Apy is calculated using (4.3), the current
pressure level p1 is compared to the assigned low-pressure level piimit. If the current pressure
level is low, the smaller criteria is used, i.e. the inner loop continues to iterate until the change
in the pressure is less than pz tof 1ow. If p1 > primit the inner loop proceeds with criteria p1 tof high. I
other words, at low pressure levels in the system, the smaller criterion is implemented to
achieve a more numerically stable result. At pressure levels higher than the low-pressure limit,
the bigger criterion is used to reduce the computational time of the simulation. The low-
pressure level was defined experimentally and for both Circuits 2 and Circuit 4 it was 22 bar.
Both criteria have to be predefined by the user before the simulation, based on the
recommendations given further in this work. When the criterion is satisfied, the value of
pressure p1 and flow Qtare updated for subsequent calculations in the main loop. The main
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loop further updates the pressure p2, and flows Qe1 and Qe2 according to (2.23), (2.28), and
(2.29), respectively. Then the calculation of flow coefficients K and k; according to equations
(2.26) and (2.27) is performed. The next iteration of the main loop begins at the next time step
At. The process continues for all the specified simulation time.

In the work (Malysheva, Ustinov, & Handroos, 2020) the subtlety of the classical PDS was
improved by modifying the original structure and introducing the second convergence criterion
for the small pressures (AdvPDS). In order to show the operating principle of the AdvPDS, let
us consider the simple Circuit 1 with two orifices presented in Section 2.2.1 by the equations
(2.18) —(2.21).

An algorithm for the AdvPDS built in the structure of this fluid power circuit for pressure
calculation in the small volume is presented below (Algorithm 4.1). It should be noted that
inside the loop the Q1, Q2 and p1 are being recalculated during the integration whereas all other
parameters, like p2, are constant.

In Algorithm 4.1 Vpseudo is the pseudo volume, pz tor high and Pu tol 10w are the convergence criteria
for the high-pressure and low-pressure areas, respectively, and tmax is the maximum allowed
iteration time.

Algorithm 4.1. AdvPDS
Input: p:, po, Vpseudo, dt;, tmax,
OUtpUt: plnEXt, anext
Initialisation:
1: =0
LOOP :
2: fOI’ ti =0to tmax dO
3 ti=ti+dt
4: use (2.21) to calculate Q-
5:  use (2.20) to calculate Q1
6.
7
8

use (2.18) and V1 = Vpseudo to calculate p
calculate p;®™" using the numerical integration method
] Apl - plcurrent _ plprev
9: if (P < piimit) then

10: if (4p1 < Prrotiow) then ps"t = pyerrent, Q" = Q,
11: return p;", Q"

12: break LOOP

13: else plprev - plcurrent goto LOOP

14: end if

15:  else

16: if (Ap1 < P1woinign) then py™t = paeurrent Qurext= Q,
17: return plnexty anext

18: break LOOP

19: else plprev - plcurrent gOtO LOOP

20: end if

21:  endif

22: end for

There are two main differences in the AdvPDS when compared with the classical pseudo-
dynamic solver. First, the calculation of the outlet volume flow rate related to the small volume
is included in the solver, which allowed the numerical stability of the solution to be increased.
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Second, the adaptive convergence criterion is introduced, which allowed the simulation time
to be decreased and the calculation accuracy to be increased.

4.3 Numerical Integration Methods for the AdvPDS

In this section, four numerical integration methods that are further used in the framework of
the AdvPDS are presented. The first three methods (Euler method, Runge-Kutta method and
Heun’s method) are the general mathematical numerical integration methods, while the fourth
is an ad hoc method developed specially for pressure integration in hydraulic circuits.

4.3.1 Euler Method

Euler’s numerical integration method is the simplest and most computationally efficient, since
only asingle function calculation is performed at each time step. Let us consider an initial value
problem of the form:

v =f(t.y®),y(to) = o (44)
where t is the time flow. The governing equation of the Euler method can be written as:

Yn+1 = Yn t dtf(tn: yn) (4.5)

where dt is the integration time step, and yn+1 and yn are respectively the next and the previous
values (estimations) of the integrated parameter y. However, the applicability of the method for
the stiff problem solution is quite limited due to its narrow stability performances (Hairer &
Wanner, 1996). The global error of Euler method is proportional to the maximum step size
(Hairer & Wanner, 1996).

4.3.2 Runge-Kutta Method

The well-known Runge-Kutta method of the fourth order has a larger stability area and
provides a more accurate approximation for the integrating parameter compared with the Euler
method. However, it is more computationally expensive as it requires four function calculations
at each time step. The method can be written in the form:

S1 = f(tn: yn) (4-6)
dt dt
s;=f (tn + =,y + —51) 4.7)
2 2
dt dt
s3=f (tn +—, v, + —52) (4.8)
2 2
s, = f(t, +dt,y, + dtss3) (4.9)
_ S1 , S2 Sz S4
Yn+1 = Yn + dt (€+§+?+E) (4.10)



64 4 An efficient method for solving the fluid power models with singularities

4.3.3 Heun’s Method

The third numerical integration method considered in this work is Heun’s method. This is a
two-stage method that first uses Euler’s equation for the calculation of the intermediate value
for the integrating parameter (predictor) and then the implicit trapezoidal method for the final
approximation (corrector). The procedure for Heun’s predictor-corrector method can be written
as:

In+1 = Yn +dt = f(tnryn) (4.11)

d
Vs = Y+ S (nen, Fnan) + f 7] (412)

The accuracy of the solution ensured by the Euler method improves linearly with the step size
decrease (the error is O(dt)). However, the solution accuracy obtained using Heun’s method
improves quadratically (the error is O(dt?)). In its turn the accuracy of the Runge-Kutta method
is O(dt*).

4.3.4 Modified Heun’s Method with improved stability

In the work (Ellman A. , 1992) the above-described Heun’s method was modified and adopted
for the pressure integration in fluid power circuits. The convergence of the method was
improved by means of Newton’s single iteration method. For the simple fluid power circuit
(Circuit 1) the predictor equation of the modified Heun’s method can be written as:

~ADTev + dt& prev _ aQSTW prev
121 A 5 9pPTev 121
1

& a Qgrev
Vl apfrev

Anext _
P1 =

(4.13)
1—dt
where pI*** is the estimate of the next pressure value, Q" *” is the total volume flow calculated

with respect to the previous pressure value, and dt is the integration time step. In its turn, the
corrector equation can be presented as:

dt Be ~ aQnext

rev rev b N

pf + 2V, ( g + zr:Lext - Qpnext ' pILEXt
next _ 1 P1

p1

(4.14)

. ﬁ& a@gext

2 Vi oppert

where pI'®*t s the resulting pressure value, and Q¢*¢ is the total volume flow calculated with
respect to the estimate of the next pressure value. It should be noted that both the predictor
(4.13) and corrector (4.14) equations include a partial derivative of the total flow with respect
to the pressure. The derivatives originate from the employed Newton single iteration method.
The use of the conventional turbulent orifice model (2.19) inside the derivatives may have led
to a singularity problem, as the model has singularity in the Jacobian at zero pressure difference
(Piché & Ellman, 1994). In particular, when the pressure drop across the turbulent orifice model
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nears zero, the first derivative of flow with respect to pressure drop approaches infinity and the
second derivative becomes discontinuous (Aman, Handroos, & Eskola, 2008). This model
property can cause arithmetical overflow in the numerical integration process. However, this
property related only to the mathematical representation of the volume flow. Model (2.19)
describes only the turbulent flow through the orifice, whereas in reality the transition from
turbulent to laminar flow occurs when the orifice pressure drop is small. Thus, in order to avoid
the singularities in the integration process, a more accurate model of the flow through the
orifice is needed. For this reason, the two-regime orifice model (Aman, Handroos, & Eskola,
2008) is employed in the work. This model includes both the turbulent flow model as (2.19)
and the laminar flow model for the pressure drops close to zero. The laminar flow model is
based on the cubic spline approximation and can be written as:

Q = a;Ap + a,Ap? + azAp?, |Ap| < |Apy| (4.15)

where Ap is the pressure difference across the orifice, po is the boundary pressure of transition,
and ai, a, as are the coefficients of the cubic spline that can be calculated as:

5k;
al =
4./Ap,
a, =0 (4.16)
k;
a3 = ————+
4(Apo) /2

The physical adequate value for the boundary pressures can be found as (Aman, Handroos, &
Eskola, 2008):

N ReZv*m [p

= 5.657C4k; (4.17)

Apo =

where Reyr is the transition Reynolds number, Cq is the value of the discharge coefficient in the
turbulent region, v is the kinematical viscosity of hydraulic fluid, and ki is the semi-empirical
volume flow coefficient.

4.4  Simulation results using AdvPDS with the fourth order Runge-Kutta
solver

In this section, the results of the simulation of the two fluid power systems Circuit 2 and Circuit
4 are presented. The results are represented through a comparison of the responses of the
considered fluid power circuits obtained using the referenced fourth order Runge-Kutta solver
and the AdvPDS. The results demonstrate the features of the proposed method and its
advantages compared with the traditional method of fluid power system modelling and
simulation.
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4.4.1 Circuit 2 simulation

Circuit 2 was simulated for 100.5 s using the AdvPDS and the reference solver with the inputs
presented in Figure 4.1. The presence of the small volume (V1 = 107° m®) in the circuit between
the pressure compensator and control throttle increased the stiffness of the whole system, and
also determined the selection of the integration time step for the reference solver. The
integration time step of the reference system was set to the largest possible value of 1 x 107% s,
at which point the solution for the pressure appeared numerically stable. The use of the
AdvPDS with Circuit 2 allows the stiffness of the system to be reduced, owing to substitution
of the small volume by the larger artificial volume. In the mathematical model of Circuit 2 the
artificial volume Vpseudo SUbstitutes the real volume V1 in (2.22). This volume directly affects
the resulting pressure pi1. In order to analyse how the size of the artificial volume affects the
respective pressure solution, a simple sensitivity analysis was carried out. The sensitivity
analysis was performed in a way that Circuit 2 is simulated five times with the same input
signals and parameter values except for the pseudo-volume value. In the experiment, Vpseudo
took the following values: 0.5x1072 m?, 1x107> m3, 0.5x1073 m3, 1x10* m3, and 0.5x10~* m3,
The upper bound of the pseudo-volume range was limited by the system stability while holding
the condition Ati = 107° s. In Figure 4.3 the results of five simulations are presented. For clarity,
only a short range of the simulation time is shown in the figure. It should be noted that the
biggest difference in the pressure solutions of five simulations is observed in the transition
areas, when one of the control signals was changed. One such area is shown in Figure 4.3. It
can be seen from the figure that the four solutions that refer to the smaller pseudo-volumes are
rather close to the reference one. Only the solution obtained using the biggest volume 0.5x1072
m® compromised the accuracy. Taking into account the obtained results, the artificial volume
was set t0 Vpseudo = 1 x 102 m®. On the one hand, the pseudo-volume of this size ensured quite
high accuracy of the solution. On the other hand, it allowed the integration time steps for the
main and inner loops to increase significantly and to be set to the values of 10 s and 1073 s,
respectively. As previously mentioned, the number of iterations performed in the inner loop at
each time step also has a direct effect on the simulation time. The transition process is more
oscillatory, and the larger the pressure changes, the more iterations are performed in the inner
loop. At the same time, the number of iterations is dependent on the chosen convergence
criterion. It was found experimentally that the larger criterion is associated with the smaller
number of iterations. Thus, to speed up the simulation of the AdvPDS-based system, the
adaptive convergence criterion 300 Pa/10 Pa was selected based on experimental results. In
Figure 4.4, the number of iterations performed by the AdvPDS using a single convergence
criterion in comparison with the use of the adaptive criterion is shown for the first 20 seconds
of the simulation. It can be seen from the figures that the AdvPDS executed a higher number
of iterations in transition areas with the single criterion than with the adaptive criterion, which
resulted in a shorter simulation time. Figure 4.5 shows the pressure responses p1 of Circuit 2,
obtained with the reference solver and the AdvPDS. One can observe that the two curves are
highly coincidental with each other. Now the high accuracy of the AdvPDS-based system was
also achieved on the low-pressure areas. The accuracy of the system was represented through
root-mean-square error (RMSE). The overall error was RMSE = 1.12.10*Pa, which is
insignificant for such high-pressure levels in the system. Thus, the use of larger integration
time steps together with the adaptive convergence criteria allowed the computational time of
the simulation to be reduced compared with the reference system. The simulation time with the
reference solver was about five hours, whereas only 147.983 seconds were spent for the same
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simulation using the AdvPDS. Moreover, it should be noted that the system with the AdvPDS
(in contrast to the use of the classical pseudo-dynamic solver) is numerically stable during the
whole 100.5 seconds of simulation (i.e. the solver kept the same pressure level as the reference

system).
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Figure 4.4: Number of iterations performed by the AdvPDS in the inner loop during the first 20 s of
the simulation with 10 (upper plot) and 300/10 (lower plot) criteria.



68 4 An efficient method for solving the fluid power models with singularities

0 80 90 100
7
5 X107 Pa :
— — Ref
—— AdvPDS
a1 ]
0 L L |
0 5 10 15 20 43 44 45
Simulation time Simulation time

Figure 4.5: Pressure responses of Circuit 2 obtained using the reference solver and AdvPDS
(with enlarged areas).

4.4.2 Circuit 4 simulation

Circuit 4 was simulated for 10 seconds with input signals, which are a constant supply pressure
of 14 MPa and voltage signal for the directional control valve that varies from —5 to 8 V within
a one-second period. The simulation of the system in the presence of the small volume between
the pressure compensator and directional control valve using the reference solver was run with
the safe integration time step of 1075 s. Such a time step ensured a numerically stable solution
for the system. The adaptive criterion values for the AdvPDS under the condition of trade-off
between the accuracy and simulation time was experimentally chosen using Circuit 2. In order
to verify the applicability of the chosen criterion values to other fluid power circuits, which
also include small volumes, Circuit 4 with the AdvPDS was used in another experiment. In this
experiment the circuit was simulated 14 times with the different values of the criterion of the
AdvPDS, while the simulation times and solution accuracy for the cylinder position piston x,
(against the responses obtained with the reference solver) were measured. The use of AdvPDS
for the solution of the system allowed the integration time step to be increased to 10 seconds
for both the main and inner loops. The single criteria value was used in order for the
dependency (criterion value/accuracy vs. simulation time) to show itself more clearly. The
experimental results are summarised in Table 4.1 and graphically illustrated in Figure 4.6. It
can be seen from the figure that the calculation accuracy and simulation time have exponential
dependency. Thus, it can be concluded that a larger criterion reduces the simulation time but
decreases the calculation accuracy, which is expressed by an increased RMSE. In this case, the
criterion equal to 100 can be considered optimal. However, according to the results, the
increase in overall accuracy was not significant in contrast with the decrease in simulation time,
which in our work is the more advantageous system performance. While also taking into
account the solution problems in the low-pressure areas, which were solved by use of a smaller
criterion, it became clear that the adaptive criteria 300/20 Pa was the most suitable choice.
Consequently, the simulation time was 27.572 s, which is a better result compared with the
reference system and with systems having a single convergence criterion.
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Figure 4.6: Dependency between simulation time and RMSE using AdvPDS with a single criterion.

The response of the pressure ps built up in the small volume as well as the cylinder position
piston xp against the responses obtained with the reference solver can be observed in Figure
4.7. The obtained responses of the AdvPDS-based system in the pressure and cylinder piston
position were accurate and differed from the reference responses with RMSEs of 1.12x10° Pa
and only 4.24x10™* m for the pressure and piston position, respectively. The obtained accuracy
of the responses was ensured, in particular, by the adaptive criteria, which provided a more
precise solution in the low-pressure areas. In Table 4.2, the resulting simulation times for both
circuits using reference solver and AdvPDS are presented. The appropriateness of the adaptive
criterion chosen was confirmed by a number of experiments that were also carried out with
Circuit 4.

Table 4.1: Relationship between criteria value, simulation time, and calculation accuracy for the
AdvPDS with a single criterion.

Criteria, Pa Simulation time,s RMSE x10* m

10 115.593 4.2950
20 101.847 4.3251
50 63.766 4.3554
70 46.558 4.3720
100 27.546 4.3939
200 25.222 4.4529
300 24.307 4.5051
400 23.609 4.5480
500 22.815 4.5897
600 22.638 4.6339
700 21.829 4.6704
800 22.084 4.7151
900 22.400 4.7496

1000 21.043 4.7881
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Figure 4.7: Circuit 4 responses in pressure pz and cylinder piston position x, using the reference solver
and the AdvPDS.

Table 4.2: Simulation time of Circuit 2 and Circuit 4 using the reference solver and the AdvPDS.

Circuit Solver  Real - Time Step, s  Simulation Adaptive RMSE w.r.t. Ref.
time, s (main/inner) Time Criterion
2 Ref. 100.5 10°9/- ~5h - -
AdvPDS 100.5 104/10° 147.983 s 300/10 RMSE; =
1.12x10* Pa
4 Ref. 10 10%/- 200.350 s - -
AdvPDS 10 104/10* 27.572s 300/20 RMSE; =
1.89x10°Pa
RMSEy, =
4.24x10* m

4.4.3 Real-time implementation

To investigate the possibilities of the use of the developed method in real-time and faster than
real-time implementations, MATLAB codes for Circuit 4 with the reference solver and the
AdvPDS were translated into standalone C code using MATLAB Coder 4.1. Both codes were
compiled and run outside MATLAB on a PC with an Intel Core i5-4590 3.30 GHz with 16 GB
RAM. As a result, to simulate an interval of 10 s of real time, it took 219 ms for the reference
system, whereas for the AdvPDS-based system it took only 47 ms to simulate the same time
interval. Thus, the introduction of the developed AdvPDS solver allowed Circuit 4 to be
simulated 4.7 times faster in comparison with the reference solver. It should be noted that in
our case, both implementations were calculated much faster than real time. However, in virtual
prototypes the fluid power system is usually employed in conjunction with mechanical
components (i.e. multibody dynamic representation of the mobile machine structure). Thus, the
mechanical component should also be calculated at each time step of the real-time simulation.
Based on the results, it can be concluded that the use of the AdvPDS for the solution of real-
time and faster than real-time systems, which include fluid power components with the small
volumes, can be more beneficial than the reference solver application.
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4.5 Simulation results using AdvPDS with the improved modified Heun’s
method

In order to maximise the simulation speed of the developed simulation model (Circuit 2) an
implementation and algorithmic perspectives are considered. From an implementation
perspective, the compiled C language and procedural programming approach allows for a
higher simulation speed in comparison with, for example, MATLAB or Python languages.
Thus, the mathematical model of the hydraulic circuit with the two-way flow control valve
described in the previous section was implemented in C code.

From an algorithmic perspective, four integration approaches were developed, implemented
and compared in solution accuracy and simulation time. In Approach 1 the conventional
Runge-Kutta method was employed for the whole system integration. The solution obtained in
this way for p1 was used as a reference solution. For the pressure integration in the three other
approaches the AdvPDS was used. The difference between these three approaches was that
inside the AdvPDS the Runge-Kutta method (in Approach 2), Euler method (in Approach 3),
and the modified Heun’s method with improved stability (in Approach 4) were used. It should
be noted that the integration outside the AdvPDS loop was still carried out using the Runge-
Kutta method.

For the simulation the internal parameters of the AdvPDS, such as the pseudo-volume, two
criteria, and maximum iteration time were assigned as recommended in (Malysheva, Ustinov,
& Handroos, Computationally Efficient Practical Method for Solving the Dynamics of Fluid
Power Circuits in the Presence of Singularities, 2020): Vpseudo = 10" M2, p1 101 high = 300 Pa, p1
tol low = 20 Pa, and tmax = 10 s. Thus, the hydraulic circuit with the two-way flow control valve
was simulated for 40.5 s using four described above approaches. As the input, randomly
generated signals ps, Ue and Ugq with the respective ranges of 14...20 MPa, 0...10 V and [0,1]
V were used. All the signals had periods equal to 1.5 s and were shifted in 0.5 s with respect to
each other. For the simulation, the different integration step sizes were chosen for each
approach. In each case the step size was as large as the one that provides the numerically stable
solution. In addition, inside the AdvPDS loop the local time step was used.

The simulation results for all four approaches are presented in Figure 4.8 and Table 4.3. If we
assume that the solution provided by Approach 1 is the reference one, then from the upper plot
of Figure 4.8 one can see that in general, all three approaches that use the AdvPDS provided
very good approximations of the model solution. In particular, Approaches 2 and 3 were close
in accuracy with the errors 0.0539% and 0.0531%, respectively, of the p1 operating range.
Figure 4.8 (bottom plots) reveals that these two approaches provide the solutions that deviated
from the reference solution mostly in the transition areas. At the same time, Approach 4 was
more accurate with an error as small as 0.0341% of the pressure operating range. Although, the
difference in accuracy of the considered approaches was not very significant, as the simulation
time varied dramatically from one approach to another. Thus, it took 5.687 s for Approach 1 to
simulate 40.5 s of real time, whereas it took 0.115 s and 0.099 s for Approach 2 and Approach
4, respectively. However, Approach 3 was able to handle the same simulation within 0.054 s.
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Table 4.3: Simulation results of the four integration approaches.

Integration step Simulation time

Approach Description sizes (of real time = RRe l;gfeEnpée()ng
(main/AdvPDS), s 40.5s), ms '
1 Reference 109/ 5687 -
2 AdvPDS RK4 104/10° 115 1.0774x10*
3 AdvPDS Euler 104/10°® 54 1.0616x10*
4 AdvPDS modif. 104/10* 99 0.6816x10*
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Figure 4.8: Simulation results of the four approaches: Approach 1 — Reference; Approach 2 — AdvPDS
with RK4 method; Approach 3 — AdvPDS with Euler method; Approach 4 — AdvPDS with modified
Heun’s method with improved stability.

Analysing the obtained results, it can be concluded the following. In general, in comparison
with the conventional integration approaches applied to the stiff hydraulic model, the
employment of AdvPDS allows a noticeable increase in the model’s simulation speed, no
matter which integration approach is used inside the AdvPDS loop. For the considered
numerical example with a single small volume in the circuit, a speed-up of 49.4 with Approach
2, of 57.4 with Approach 4 and of 105.3 with Approach 3 were achieved. However, it is
important to note that the speed-up obtained in Approach 3 was due to the reduced number of
function calculations needed by the Euler method, whereas the speed-up achieved with
Approach 4 was due to the more numerically stable solution provided by the modified Heun’s
method inside the AdvPDS loop. This fact is also confirmed by the higher error level of
Approach 3 in comparison with the error level of Approach 4 (Table 4.3).
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5 Conclusions

In this thesis the modelling methods that allow the simulation of the mechatronic machines to
accelerate to faster than real-time computational speeds have been proposed. The main findings
highlighted in the publications and chapters above are listed as follows:

Simulation results showed that the application of the computationally efficient dynamic
topological formulation of computational complexity O(n) (similar to INEF) together
with the reasonable simplification of the mechanical component of the simulation
model of a mechatronic machine allow the faster than real-time simulation of the
acceptable accuracy to be achieved under the condition that the fluid power model of
moderate stiffness is used (integration time step should not be less than 10 s). At the
same time, the faster than real-time simulation model of a mechatronic machine of
worse computation efficiency can be obtained using commercial software (like
MATLAB/Simulink Simscape). However, the integrator of the lower accuracy (similar
to the first order Euler method) and obligatory translation to the lower lever
programming language (similar to C) should be applied. Thus, the advantage of the
direct mathematical modelling built with the use of the computational efficient
multibody dynamic method can be seen in the ability of its fine tuning in terms of
performance and portability. The implementation of a such model does not depend on
any particular programming language, software library, operating system or hardware
platform. At the same time, the commercial software modelling can ensure the
simplicity of implementation, and even the complex mechatronic systems can in certain
cases be used in faster than real-time applications.

In order to achieve faster than real-time simulation for the fluid power systems, which
include features such as stiff differential equations and strong nonlinearities and thus
are complex and very time-consuming to solve with numerical integration methods, the
RNN with NARX architecture can be used as modelling approach. According to the
developed approach, the mathematical model was used for the training data generation.
The training data was intended for network training. The pre-processing technique,
which concentrates on the temporal information carried by the sequence, was developed
and applied to the training data. This technique allowed both the training and simulation
processes to speed up. In the considered case of Circuit 3, a calculation speed-up of
factor 4.8 was obtained in comparison to the mathematical model-based simulation.
Analysing the obtained results, it can be concluded that compared to mathematical
model-based simulation, the utilisation of the RNN in combination with the developed
pre-processing technique allows simulation speed-up to be obtained at the expense of a
minor decrease in accuracy.

The AdvPDS with adaptive criterion has been proposed for the efficient solution of fluid
power systems with singularities originating (in particular) from the presence of small
volumes in the system. Based on the results of the experiments performed with two test
fluid power circuits, which contained small volumes in their structure, the model for the
AdvPDS was formulated. There are two main differences in the AdvPDS in comparison
with the classical pseudo-dynamic solver. First, the calculation of the outlet volume
flow rate related to the small volume is included in the solver, which allowed the
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numerical stability of the solution to be increased. Second, the adaptive convergence
criterion is introduced, which allowed the simulation time to be decreased and the
calculation accuracy to be increased. Side-by-side simulation results confirmed that the
proposed solver is much more efficient in the solution of the fluid power circuits than
the conventional method, as well as the classical pseudo-dynamic solver. The main
advantage of the proposed solver is that it produces fewer errors than the classical
pseudo-dynamic solver with single criteria. In addition, the AdvPDS-based model can
be calculated faster than the conventional model of the fluid power circuit with small
volumes, due to the possibility of the application of a larger integration time step.
Moreover, the AdvPDS solver may be the preferable method in the modelling of more
detailed fluid power circuits, especially in such cases when the classical pseudo-
dynamic solver may show a numerically unstable and slow response. The described
advantages in the solution of the fluid power systems with small volumes of the
developed solver allow AdvPDS to be used in simulations of mobile machines in real-
time and faster than real-time applications.

The effect of the three numerical integration methods (Euler, Runge-Kutta of fourth
order, and modified Heun’s method with improved stability) used inside the AdvPDS
loop on the solution efficiency of the stiff mathematical model was studied. The
simulation of the fluid power model was carried out using four approaches. The first
approach was based on a conventional integration procedure (Rung-Kutta method). The
other three approaches included the AdvPDS for the small volume pressure integration
and were based on the different numerical integration methods: the Euler method, the
Runge-Kutta method of fourth order, and the modified Heun’s method with improved
numerical stability. The stability of the modified Heun’s method was improved by the
use of the two-regime orifice model.

Analysis of the obtained simulation results showed that, in general, the harnessing of
the power of the AdvPDS allows numerically stiff hydraulic models to be solved in a
very efficient way, ensuring accelerated simulation with high solution accuracy. It was
also shown that the simulation speed-up can be achieved not only by the complexity
reduction of the numerical integration method inside the AdvPDS (as in the AdvPDS
with Euler method), but also by increasing the numerical stability of the employed
numerical integration method (as in the AdvPDS with modified Heun’s method with
improved stability).

The above-mentioned findings and methods can be directly implemented in real-time and faster
than real-time simulations of mechatronic machines.
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