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In many industries, direct materials budgeting is an essential part of financial planning 

processes. In practice, it implies predicting quantities and prices of dozens and hundreds of 

thousands of different materials that will be purchased by an industrial enterprise in the 

upcoming fiscal period. Lack of collaborative processes over the length of the supply chain, 

distortion effects in demand projections and overall uncertainty cause the enterprises to rely 

on internal data to build their budgets.  

This research addresses the need for a scalable solution that would use mathematical models 

to reveal intrinsic patterns in historical purchase quantities of direct materials and generate 

automatic forecast suggestions. Business context and limitations are explored, and relevant 

time series forecasting methods are shortlisted based on existing practice described in 

academic research. Furthermore, anonymized datasets of direct materials purchases from 

three industry partners are used to evaluate predictive performance of the shortlisted 

methods. Quantitative part of the study reports an improvement in prediction accuracy of up 

to 47% compared to the currently used naïve approach, with fuzzy time series models being 

most appropriate for the intermittent time series in question.  

By means of a comparative study, the research demonstrates that it is feasible to apply 

univariate models in direct materials budgeting processes, and suggests further topics such 

as implementation complexity that need to be explored prior to taking those models into use. 
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1 Introduction 

1.1 Background 

This Master thesis research addresses the challenge presented by Sievo Oy, a Finnish SaaS 

company that provides data-driven Procurement Analytics solution. The value proposition 

of the company consists of raw data extraction from a variety of corporate information 

systems, including Enterprise Resource Planning (ERP), Material Requirements Planning 

(MRP), Source-To-Pay (S2P) and others; data cleansing that includes collaborative 

classification of spend to the standardized category hierarchy, normalization of suppliers 

using external enrichments to identify parent-child relationships, automatic translations and 

currency conversions; and a business intelligence (BI) application that combines visibility 

dashboards and advanced AI-driven opportunity identification features. Sievo Procurement 

Analytics ecosystem consists of Spend Analysis, Savings Lifecycle, Contract Management, 

Procurement Benchmarking and Material Forecasting (MF) solution areas.  

This research is aimed at improvement of Material Forecasting solution. Material 

Forecasting, as currently offered by Sievo, is a highly customizable cloud-native tool that 

allows for tracking budget goals and maintaining quantities and prices outlooks for direct 

material purchases, combining data from multiple source systems. In industry, direct 

materials are defined as items used in the production of end-products, such as raw materials 

or packaging. In an average manufacturing company, based on Sievo industry experience, 

the proportion of direct material purchases in the total cost of goods sold (COGS) amounts 

on average to 80%. With many materials being subject to market price volatility, direct 

material purchases impose high risk to gross profit margins, thus urging the enterprises to 

manage the outlooks proactively in order to have better visibility over future profitability.  

The two key elements for direct material forecasting are the expected prices and quantities. 

The latter tend to come directly from planning processes, MRP systems – if in use. On the 

other hand, expected future prices could be gathered from procurement experts responsible 

for specific purchasing categories. Finally, financial department is the key stakeholder in 

managing the forecasts and estimating the impact on profitability.  

More specifically, monthly MF process implies having above-mentioned values on a 

material and stock-keeping unit (SKU) level, separately for each plant or production unit, 

and, sometimes, supplier. In terms of forecast horizon, the outlook is typically required for 
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the next fiscal year or quarter, depending on the budget round setup in the finance department 

of the organization. In reality, we see that complex organizational structure, multitude of 

ERP and MRP systems and limited data quality in those, on the one hand, and different units 

of measurement (UOM), purchasing currencies and dispersed procurement knowledge, on 

the other, does not allow for automatic collection of a consistent dataset of price and 

quantities series for MF purposes.  

With these limitations, Sievo as a solution provider leverages its expertise in data extraction 

and cleansing, completing its vision of a Procurement Information Hub. Alongside with the 

data coming from customer’s MRP, it feeds information from previous forecasts and 

historical purchasing data into the forecasting engine (Fig. 1), providing initial setup for 

manual entry and adjustments. Once the manual entry is finalized, the consolidated outlook 

on material, plant, supplier level, is visualized in an interactive reporting environment.  

 

Figure 1. Data flow in Sievo Material Forecasting solution 

The focus of this research is to explore and validate opportunities to enhance the workflow 

with predictive models. It is worth mentioning that manual entry remains an important 

channel of correcting forecasted values. While high-volatility or high-profit impact materials 

may remain subject to manual review by category experts, it is expected that for non-critical 

materials that would likely comprise the long-tail of purchases, predicted values can be 

accepted without mobilizing additional human resource. Furthermore, the ability to forecast 

internal demand for material items based entirely on historical spend data will enable the use 

of MF solution area without building integration processes with client’s MRP, which 

presents a strategic advantage in the field. 

The quantitative part of this research includes suitable predictive models from classic and 

fuzzy econometrics domains to support digital transformation of budgeting function in large 
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industrial enterprises. The business context, observed data limitations, computational 

requirements and the need for scalability are carefully considered when drawing conclusions 

and recommendation. 

1.2 Research questions and limitations 

The core research questions of the thesis and the underlying subtasks are described below. 

1. What are the suitable algorithms to tackle the material forecasting problem?  

To address this research question, we use existing knowledge to describe a longlist of 

applicable methods, and put those into context of existing data limitations. The initial 

selection of methods is based on previous research around resource planning automation, 

statistical inference for demand forecasting and time series forecasting models in general. 

The subtasks that need to be completed include: 

a. review previous work related to supply chain forecasting; 

b. identify available data points and perform data extraction; 

c. evaluate data quality and prototype model implementation. 

 

2. With selected methods of time series forecasting, is it possible to outperform the 

baseline (naïve) approach, currently used in Sievo solution? 

The second research question of the thesis refers directly to its quantitative part. It is essential 

to not only implement applicable methods for direct materials demand projection, but also 

provide a meaningful comparison to status-quo using available industry references. For the 

comprehensive evaluation, we undertake to complete the following subtasks: 

a. design the experiment and metrics for comparability; 

b. test the proposed methods on extracted datasets. 

Working on real data enables us to report results that are easy to interpret and are highly 

relevant for business decision support. At the same time, it introduces a number of 

limitations to the research. Lack of data points that would represent external factors of direct 

materials demand is a crucial constraint that affects models selection, essentially limiting 

those to the univariate kind. In addition to this, the dataset in use is subject to outliers, 

corrupted values, and other types of noise.  
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The time series containing purchasing information of different direct materials are various 

by their characteristics: time period, intermittency, recency, which calls for appropriate 

delimitation of the quantitative research. Data pre-processing and filtering based on logical 

rules is used to scope the model evaluation process.   

1.3 Structure of the thesis 

The text of this thesis is structured as follows. In Chapter 2, we present theoretical 

background for the research, including related work in supply chain forecasting domain as 

well as a high-level overview of econometric and machine learning methods tested 

previously for a range of demand forecasting research topics. Chapter 3 contains a formal 

description of data exploration, dimensionality reduction and time series forecasting 

methods shortlisted as applicable to the quantitative part of the research.  

Chapter 4 opens the empirical part of the thesis with exploration of the analyzed datasets. 

Specifically, eligible time series are picked and transformed for testing purposes, and 

exploratory data analysis is performed. Based on the knowledge obtained from early stages 

of the analysis, time series forecasting experiments are designed and listed in Chapter 5, and 

results are reported in Chapter 6. Finally, conclusions are drawn and recommendation is 

given with regards to applicability of the analyzed methods in Sievo MF solution.  
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2 Related work 

In this chapter, we introduce the definition of supply chain and positioning of supply chain 

forecasting (SCF) in the operational landscape of a modern enterprise. Unless specified 

otherwise, the study of knowledgebase in SCF domain is based on the comprehensive invited 

review (Syntetos et al., 2016). 

In further sections, we move on to an overview of statistical and machine learning techniques 

that have been applied to SCF in the past. Considering the objectives and limitations of the 

present research, we critically evaluate applicability of the mentioned techniques to the 

domain of direct material forecasting, and conclude the literature review with a list of 

identified research gaps as well as key points to consider in method selection and experiment 

design phases. 

2.1 Supply chain definition and physiology 

In broad terms, a supply chain encompasses all decision-making units involved in fulfilling 

a customer demand for a certain commodity (Copra & Meindl, 2012). Within any supply 

chain, it is common to distinguish flows of goods, services, information and money; different 

elements of the chain can be addressed separately depending on the purpose of the analysis. 

In its length, a complete supply chain would stretch from raw material suppliers, through 

wholesalers and retailers to the final customer. Edge-node demand for final goods and 

services is propagated throughout the chain with a series of sequential purchase requisitions 

and information inference as shown in Fig. 2.  

 

Figure 2. Demand inference. [Syntetos et al., 2016, p. 3] 

Modern digitalization technologies introduce possibilities for shorter delivery times than 

previously, which adds up to the factors of market competitiveness. With consumers of final 

goods and services being the starting point of any supply chain, elevated expectations urge 
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the suppliers to introduce intelligent forecasting models to the conventional manufacturing 

processes, traditionally prone to lags resulting in the cycles of overproduction.  

Scholars (Chopra & Meindl, 2012) state that the objective of any supply chain is 

maximization of overall value generated, where value is defined as the difference between 

sales revenue and total incurred costs throughout the chain of involved decision-making 

units. The resulting optimization problem would be a trivial part of enterprise operational 

analysis given complete information; otherwise, total costs of filling the demand at each 

node of the supply chain is an increasing function of the uncertainty associated with the 

upstream of information. This brings us to the reality where the choice and implementation 

of relevant SCF methods becomes a key factor to the performance of economic agents in a 

competitive landscape.  

In order to find the suitable approach to SCF, we decompose the physiology of a supply 

chain into dimensions: length, depth and time. We then describe various phenomena, 

concepts and research gaps that can be attributed to each one of these perspectives. 

Definition of those in mathematical context is of utmost importance, as it dictates the 

selection of methods and preceding data processing steps. 

2.1.1 Length dimension. Bullwhip effect 

One property of a supply chain that characterizes the number of parties involved in the value 

generation is its length. Naturally, the length of a supply chain is an increasing function of 

the complexity of the final product or service. 

When considering upstream propagation of demand in SCF process, i.e. how information 

about demand for final product is transition through the nodes over the length of a supply 

chain, it is important to recognize the complexity of a supply chain in question and the 

variety of factors – both internal and external – that can influence or distort the projections. 

The amplification of demand variance that takes place as the value proceeds through the 

chain nodes was defined as “Bullwhip Effect” (Lee et al., 1997). In the original work, the 

four root causes of the effect were given as demand signal processing, rationing and shortage 

gaming, batch ordering and price fluctuations. These can be summarized as operational 

inefficiencies and external factors that affect the deviation between expected and realized 

demand quantities.  
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Incomplete information and its increasing distortion effect on demand projections and, 

consecutively, on operational efficiency of manufacturers in the value chain, leave room for 

collaborative concepts that imply sharing information for overall value maximization 

(Chopra & Meindl, 2012). Collaborative forecasting and replenishment (CFAR) concept 

suggests interchange of decision-support models and strategies to facilitate forecasting 

processes (Raghunathan, 1999). Since then, a range of similar concepts have emerged both 

as research items and marketed digital solutions. Those include Collaborative planning, 

forecasting and replenishment (CPFR), Vendor managed inventory (VMI) information 

systems (Syntetos et al., 2016).  

It has been recognized that long-term collaborative efforts are often hindered by the non-

transparency that is normally attributed to strategic activities of commercial organizations. 

First listed in the work (Premkumar, 2000), success criteria that need to be fulfilled for such 

collaboration to thrive include aligned and non-competing business interests, competent 

team engaged in the joint project, transparent performance indicators, incentive systems and 

others. Some scholars (Davis and Spekman, 2004) state that these conditions have rarely 

been addressed as part of pilot implementations which may explain substandard outcomes. 

The latter have been shown and analyzed with statistical methods by several groups of 

researchers, concluding that many of the attempts to introduce collaborative supply chain 

forecasting systems actually yielded negative dynamics in the performance, widening the 

bullwhip effect and otherwise burdening the procurement function (Thonemann, 2002; 

Heikkilä, 2002). Finally, digital technologies and near real-time analytical platforms 

highlight the benefits of an agile procurement landscape and strengthens the position against 

long-term commitments (Vakharia, 2002; Yusuf et al., 2004).  

In the absence of proper collaborative mechanisms for SCF, it is becoming increasingly 

relevant to understand the options that modern business has for autonomous forecasting of 

demand. Moreover, the importance of decision-support system gets higher as we move 

towards the upstream end of the supply chain, i.e. as more parties get involved in the process 

(Carbonneau et al., 2008).  

When it comes to the length dimension in present research, given transactional dataset from 

the industry partners, we have full visibility to the first-tier suppliers of different stock-

keeping units (SKUs), i.e. we have the information on the quantities, prices and terms of 

each separate purchase that created financial liability in the source system; however, there is 
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no extended view on adjacent nodes of the supply chain, which is considered in the selection 

of feasible forecasting methods.  

2.1.2 Depth dimension. Cross-sectional aggregation 

Depth of a supply chain is a dimension that describes the complexity of organizational 

structure within procurement and distribution functions. It represents different levels of 

aggregation that are available for historical data analysis and supply forecasting activities. 

In broad terms, SCF can be viewed as a hierarchical concept that is designed to provide 

information to various stakeholders, from category buyers to executive management 

(Syntetos et al., 2009). 

Key element that needs to be defined in preparation of SCF execution or analysis is the target 

level of aggregation – e.g. whether forecasts will be used for the organization-wide 

overview, in a specific location or with regards to a particular subset of suppliers or product 

groups. This definition is bound by the availability of the data and/or operational processes 

in place; i.e. higher granularity requires corresponding level of detail in the historical data, 

while different options for aggregation are related to the availability of respective fields as 

dimensions in the original dataset.  

While forecasting output is subject to variability depending on the level of decision-making 

hierarchy, the forecasting input is commonly driven by existing data structures (Syntetos et 

al., 2016). This research is based on anonymized historical purchasing data from a number 

of industry partners which provides transaction line level granularity with various 

dimensions that include SKU (material, item), material group, GL account, cost center, plant 

(location), legal entity, vendor and others. We therefore possess a holistic view on the 

purchases that allow for all kinds of cross-sectional aggregation. Sievo MF best practice 

configuration offers forecast adjustments on a supplier-SKU-plant dimension level, thus 

providing both the aggregated view and the possibility to drill-down to a particular plant, 

material or supplier.  

In quantitative research aimed at evaluation of different forecasting methods, the 

dimensionality of cross-sectional aggregation needs to be defined so as to maximize its 

pattern recognition potential. When it comes to industrial time series, seasonality is an 

important aspect (Hyndman & Kostenko, 2007) that contextualizes the trade-off between 

aggregation level and sample size. It is likely to have more lengthy demand quantity time 
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series when aggregated from a number of individual materials or items by e.g. product group 

or location. Depending on the business context of the supply chain in focus, geographical 

aggregation can also enhance seasonal patterns (e.g. specific tourist destinations, agricultural 

zones); same holds true for certain groups of products, particularly evident for consumer 

goods (e.g. ice cream).  

Individual seasonal indices (ISI) or group seasonal indices (GSI) are derived depending on 

whether aggregation of any kind has been applied to the original items. Different methods 

include estimation of seasonal component directly from aggregated series (Wirthycombe, 

1989), linear combination of individual seasonal indices derived from each item (Dalhart, 

1974), or adjusted variations of the above (Chen & Boylan, 2007).  

It was shown by researchers (Ouwehand et al., 2005) that, while holding the potential to 

lengthen and enrich the original time series, aggregation of those yields very different 

performance depending on the grouping mechanism. Master data attributes that come from 

the source ERP systems need to be statistically validated. As an alternative to the latter, an 

unsupervised approach has been recently introduced (Boylan et al., 2014). It was 

demonstrated that K-means clustering provided a viable alternative to the product groupings 

available in the analyzed data. In chapter 4 of this research, we evaluate both the possibility 

to use original product dimensions as grouping factor and algorithmic approaches for 

dimensionality reduction.  

2.1.3  Time dimension. Temporal aggregation 

In absence of collaborative mechanisms, temporal patterns remain the key driving factor for 

automatic predictions. It is therefore important to determine the level of granularity that 

would, on the one hand, comply with the available dataset and, on the other hand, open 

possibilities to reveal intrinsic patterns.  

It is not uncommon that demand time series are intermittent; with degree of intermittency 

increasing alongside with the level of granularity. Selecting an appropriate forecasting model 

makes it an essential pre-processing step to distinguish between periods of more saturate, 

continuous data series and those with presence of zero observations. The research gap in this 

domain was characterized as “urgent” (Gardner, 2011). 

Temporal aggregation, a process of aggregating original time series to lower frequencies, is 

one possible solution to the intermittency issue (Syntetos, 2014). The two main types of 
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temporal aggregation are non-overlapping and overlapping, the latter being a sliding window 

moving average without loss of observations. Non-overlapping temporal aggregation, on the 

other hand, typically ends up in a significant shortening of the original series. It is therefore 

a trade-off between potential increase in uncertainty, stemming from loss of more granular 

information on demand, and intermittency of the resulting series that needs to be considered. 

Additionally, it was shown (Nikolopoulos et al., 2011) that having the degree of temporal 

aggregation aligned with the lead time in a production process resulted in a statistically 

significant improvement in forecasting accuracy, ceteris paribus. 

Agility of supply chains and dynamical structure of the inventory portfolios often mean that 

the demand time series may not only be intermittent but also short in number of observations, 

which needs to be addressed by the appropriate data manipulation and method selection. We 

have mentioned cross-sectional aggregation and composition of group seasonal indices as 

methods designed to enhance predictive power of the dataset. Other approaches utilizing the 

properties of time dimension include supplementing the original demand series with values 

of similar or preceding, outdated versions of the same product or incorporating expert 

judgement to bring in additional information. The latter gets increasingly important as we 

extend the forecasting horizon compared to the length of available historical data. Naturally, 

it is more likely that a purchasing process experiences structural change or additional 

external factors that would affect its quantitative representation in demand series values as 

we look further into the future. On the other hand, short-term forecast based on sufficient 

amount of historical data can potentially be scaled to large number of stock-keeping units 

without human interaction. As shown in Fig. 3, optimal real-life applications will likely land 

in a combination of statistical methods and expert adjustments.  

 

Figure 3. Types of forecasting. [Syntetos et al., 2016, p. 14] 
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Judgmental adjustments can take forms of simple forecast values override (currently 

implemented in Sievo MF), human-validated method selection or manual entry of missing 

or preceding observations to lengthen the learning base for statistical inference. Described 

as a very common practice in industry (Fildes & Goodwin, 2007), it has been demonstrated 

by multiple research teams that a collaborative approach involving human experts tends to 

improve forecasting accuracy (Fildes et al., 2009) for wider forecasting steps (significant 

directional corrections on monthly/quarterly level) while decreasing the quality and 

amplifying variance at higher frequency (weekly). Clearly, judgmental adjustment appears 

to be an adopted practice in the industry, lacking scientific formulation in many different 

ways: unaddressed topics include the effect of forecast adjustments on overall supply chain 

efficiency, in-depth analysis on different reasons for made adjustments etc. This research 

focuses on the quantitative validation of statistical methods for automated forecasting, 

leaving the collaborative component outside of the scope. 

2.2 Statistical methods in supply chain forecasting 

In this section of the literature review, we proceed to compile a list of various statistical 

methods that have been applied to supply chain forecasting problem in the past. Most 

recently available in this domain, such classes of models as feed-forward neural networks, 

recurrent neural networks (RNN), auto-regressive integrated moving average (ARIMA), 

exponential smoothing have been summarized against the selected benchmarks: naïve 

forecast, averages, trend forecast and multiple linear regression. The main source for this 

review is the research item (Carbonneau et al., 2008) and some of its references, most 

relevant to the business context of this thesis. 

2.2.1 Benchmark methods 

In a comparative study of predictive methods, there tends to be a selection of non-

sophisticated techniques rendering easily interpretable results. These results are further used 

as benchmarks for comparative assessment. Assuming time series 𝑋𝑡 with availability of 

historical observations up until 𝑋𝑡−1, the most common benchmark methods (Carbonneau et 

al., 2008), (Nikolopoulos et al., 2011), (Spithourakis et al., 2011) and the underlying logic 

for the forecasts, i.e. prediction of value 𝑋𝑡, are presented in Table 1. 
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Table 1. Benchmark forecasting methods 

Method Formula 

Naïve 𝑋𝑡 = 𝑋𝑡−1 

Average 
𝑋𝑡 = 

∑ 𝑋𝑖
𝑡−1
𝑖=1  

𝑡 − 1
⁄  

Moving average, with window length 𝑚 
𝑋𝑡 = 

∑ 𝑋𝑖
𝑡−1
𝑖=𝑡−𝑚  

𝑚⁄  

 

2.2.2 ARIMA processes in supply chain 

Temporal patterns within supply chain forecasting domain are often attempted to be 

approximated with autoregressive processes (Rostami-Tabar et al., 2013; Mohammadipour 

and Boylan, 2012). ARIMA is a common generalization of such models that accounts for 

possible non-stationarity of the original series and encompasses both autoregressive (AR) 

and stochastic (moving average: MA) elements. Industry-specific characteristics have been 

reflected in integer modifications to the ARIMA framework, translating into integer 

autoregressive moving average (INARMA) process (Mohammadipour and Boylan, 2012). 

Previous research dedicated to identification of ARIMA processes within supply chain time 

series provides numerical metrics with regards to representation of different models, as well 

as rules and patterns that can be used to estimate optimal specifications. The research (Ali et 

al., 2012) showed that 30% of the analyzed SKUs followed the AR(1) process, defined as 

𝑋𝑡 = 𝑐 + 𝜑1𝑋𝑡−1 + 𝜀𝑡. Transformation of stochastic processes through different types of 

temporal aggregation has been addressed separately. For non-overlapping temporal 

aggregation of an ARIMA (p, d, q) process, it was shown (Weiss, 1984) that the resulting 

series can be represented as ARIMA (p, d, r) where 𝑟 =  [(𝑝(𝑚 − 1) + (𝑑 + 1)(𝑚 − 1) +

𝑞)/𝑚], 𝑚 denoting the aggregation level. Similarly, for overlapping aggregation the 

resulting process is ARIMA (P, d, Q) where 𝑃 ≤ 𝑝 and 𝑄 ≤ 𝑞 +𝑚 − 1 (Luiz et al., 1992). 

Few studies have gone beyond accuracy-type metrics, including estimate impact of 

forecasting methods on overall supply chain optimization. As opposed to moving average 

and naïve forecasts, arguably inducing the bullwhip effect (Dejonckheere et al., 2003), 

ARIMA-based forecasting was shown to diminish demand signal distortion (Chandra & 

Grabis, 2005).  
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In many of the above-mentioned studies, the researchers acknowledge the data limitations 

and utilize the ARIMA framework to merely describe properties of the stochastic process. 

In the forecasting efforts, preference is given to alternative methods, exponential smoothing 

being the dominant one in the observed literature. In the quantitative part of the thesis, we 

apply ARIMA model on aggregated purchase quantity series as part of the comparison study.  

2.2.3 Neural networks 

Neural networks and recurring neural networks represent another class of methods 

commonly used in time series analysis. Neural networks are multilayer computational 

mechanism designed to approximate complex non-linear functions through error back-

propagation and optimization (Rumelhart et al., 1986). They are known for the ability to 

reveal hidden patterns in the data resulting in high predictive capability. Performance of 

neural networks tends to follow a direct relation with the complexity of its architecture 

(number and order of neurons, intermediary activation functions) and amount of available 

data for training.  

Recurrent neural networks differ from the standard feed-forward type with a specific 

composition of layers, as shown in Fig. 4. Within-layer feedback loop is providing additional 

capacity to isolate temporal patterns, dictating also a specific type of training called “back-

propagation through time” (Werbos, 1990).  

 

Figure 4. Recurrent neural network. [Carbonneau et al., 2008, p. 1144] 

The research (Carbonneau et al., 2008) utilized a dataset of demand quantity from Canadian 

steel industry to test the capabilities of neural networks against benchmark methods specified 

above. Both recurrent and feed-forward specifications were tested, alongside with other 

machine learning methods such as support vector machines (SVM) and linear regression. It 

was shown that, while nominally outperforming the benchmark methods by mean average 
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error (MAE), the metrics deviated insignificantly.    The gain in performance was 

characterized as marginal. Given the complexity of the implementation and absence of 

collaborative mechanisms that would contribute to the more comprehensive dataset, it was 

concluded that such advanced machine learning methods as neural networks did not 

correspond with the maturity of the business challenge that was addressed. 

There is also evidence of successful implementations of machine learning methods in supply 

chain forecasting (Efendigil et al., 2009). They combined the efforts in neural network 

architecture and fuzzification of the data, resulting in an adaptive neuro fuzzy inference 

system (ANFIS). Different specifications of the system, including membership functions and 

neurons architecture, were tested. The overall conclusion claimed ANFIS to be a superior 

method as opposed to the regular feed-forward neural network. Later, fuzzy inference 

systems were utilized in a comparative study of its applications to demand series of different 

properties (Efendigil & Önüt, 2012).  

2.3 Research gap 

It is notable that in most of the research items, the selection of methods was driven by 

availability of the data. One of the main contributions of this thesis is to obtain a realistic 

performance measurement of selected methods on historical purchasing data received from 

partners in different industries.  

In terms of the methods that have been mentioned as applicable by the community, we list 

multiple benchmark solutions including naïve forecast, average, simple and exponential 

moving average; autoregressive models ARIMA and INARMA; as well as more advanced 

machine learning concepts embracing artificial feed-forward neural networks, recurrent 

neural networks and artificial neuro fuzzy inference systems. More than two distinct 

approaches are rarely combined in scope of a single research, which presents another 

opportunity for contribution. 

Data processing and feature extraction are heavily underrepresented in existing studies. 

Recognizing the importance of implementation complexity factor in business applications, 

we believe there is room for improvement with the basic methods, built on top of 

preprocessed data. Additionally, dimensionality reduction techniques have not been 

considered for large-scale forecasts. 
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The selection of methods and design of experiments in this thesis will consider the prior 

knowledge in the field while trying to bridge the identified research gaps. 
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3 Methods 

In this chapter, we provide formal definition of the methods used in the quantitative part of 

the research. Starting with unsupervised techniques for exploratory data analysis and 

dimensionality reduction, we move on to the description of the forecasting models that have 

been shortlisted for the comparative analysis. 

3.1 Within-group correlation measures 

With a comprehensive dataset like the one utilized in this research, it is important to explore 

the potential of available dimensions, or attributes, to ensure the optimal selection of 

forecasting methods. Determining intrinsic patterns within demand quantity series of 

materials belonging to the same master data attribute is a key data exploration problem, 

having two major implications: revelation of the predictive capacity of the holistic dataset 

and options for dimensionality reduction. The latter is separately considered as a success 

criterion in final evaluation and conclusions.  

3.1.1 Pearson correlation 

Key concept for measurement of intrinsic patterns and similarities within groups of materials 

is correlation, defined as a statistical relationship between random variables. Arguably the 

most common variation of this measure is Pearson correlation coefficient (Pearson, 1895), 

which estimates the linear interdependency of two variables and is calculated for a sample 

as 

          𝑟𝑥𝑦 = 
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)
𝑛
𝑖=1

√∑ (𝑥𝑖−𝑥̅)
2𝑛

𝑖=1 √∑ (𝑦𝑖−𝑦̅)
2𝑛

𝑖=1

                  (1) 

where 𝑥𝑖 and 𝑦𝑖 are values of the variables, 𝑥̅ and 𝑦̅ are their means.  

3.1.2 Multiple correlation 

Various concepts have been offered to extend the principle of Pearson correlation to analyze 

datasets containing three or more variables. Multiple correlation provides the framework to 

estimate linear correlation between a selected dependent variable and its approximation by 

a linear combination of the remaining independent variables. It is estimated through an 

auxiliary linear regression – one dependent variable against the rest of them as regressors – 

as the square root of coefficient of determination 
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          𝑅𝑦∙(𝑥1..𝑥𝑛) = √𝑅2 = √1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
               (2) 

where 𝑅𝑆𝑆 = ∑ (𝑦𝑖 − 𝑦𝑖̂)
2𝑛

𝑖=1  is the residual sum of squares and 𝑇𝑆𝑆 = ∑ (𝑦𝑖 − 𝑦̅)
2𝑛

𝑖=1  is the 

total sum of squares, 𝑦̅ depicting the simple mean of observed 𝑦𝑖 values (Draper & Smith, 

1998). 

If the model fit is better than mean, the resulting measure takes values from 0 to 1, 

representing scale between the potential for perfect prediction of the basis variable from the 

set of regressors (value of 1) and the situation when no linear combination of the regressors 

can render a forecast that would be more accurate than the simple mean of the observations 

of the target variable (value of 0; basic intuition for 𝑅2 metrics).  

3.1.3 KMO Measure of Sampling Adequacy 

Kaiser’s index, more commonly known in its modification called Kaiser-Meyer-Olkin 

Measure of Sampling Adequacy (KMO-MSA), is one concept, closely linked and to a large 

extent based on the correlation matrix, that is designed to evaluate the fitness of the data for 

factor analysis or similar groupings. It can be derived from a dataset as 

   𝐾𝑀𝑂 = 
∑ 𝑟𝑖𝑗

2
𝑖≠𝑗

∑ 𝑟𝑖𝑗
2

𝑖≠𝑗 +∑ 𝑢𝑖𝑗𝑖≠𝑗
                          (3) 

where 𝑟𝑖𝑗 is the correlation and 𝑢𝑖𝑗 is the partial covariance between series 𝑖 and 𝑗 (Kaiser, 

1974). 

In our analysis, the measure is applicable to both evaluation of within-group correlation 

inside material groups and overall estimation of intrinsic patterns in the data.   

3.1.4 Multirelation 

Drezner (1995) introduces the multirelation concept which is designed to measure the degree 

of linear relation among all the vectors 𝑌𝑖 for 𝑖 = 1,… , 𝑘 in the dataset. It is claimed to 

provide better representation of the interdependency within a dataset than the Kaiser’s index. 

It measures how close a set of points in a 𝑘-dimensional space can be embedded into a (𝑘 −

1)-dimensional space, calculated as 

 𝑟(𝑥1, 𝑥2, … , 𝑥𝑘) = 1 − 𝜆(𝑅)     (4) 

where 𝜆(𝑅) is the least eigenvalue of the correlation matrix 𝑅𝑥𝑥. The higher the calculated 

coefficient, the more related the vectors are in a given dataset.  
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3.2 Clustering techniques 

Clustering is the task of dividing objects into homogeneous groups without prior knowledge 

on correct categorization. It therefore belongs to the unsupervised learning class of problems, 

which means that the data that we use do not have the target labels for different groups.  

3.2.1 Clustering method types 

The variety of clustering methods can be subdivided in two major categories: (1) model-

based clustering methods and (2) distance-based clustering methods. 

Model-based clustering methods assume that the data is a combination of groups sampled 

from different statistical distributions. The parameters of the distributions are unknown, and 

the model is trying to determine a specified number of groups with certain distribution 

characteristics that would explain the variance in the observations.  

Distance-based clustering aims at finding such grouping of the objects in the dataset that 

would ensure minimal distance (~ highest similarity) between the objects within one group, 

while keeping maximal distance (~ lowest similarity) to the objects belonging to other 

groups. The latter is a fundamental principle of an efficient clustering outcome.  

K-means (MacQueen, 1967) remains a very popular algorithm when it comes to clustering 

of large datasets. Its main advantages include simplicity of implementation and 

interpretation, linear time complexity w.r.t. sample size. The prerequisite to applying K-

means approach is that we need to know the exact target number of clusters (commonly 

denoted as k). Then, the procedure iterates as follows: 

1. Centroids of k clusters are initialized randomly;  

2. Distance is calculated between each data point and cluster centroid (various distance 

metrics may be used, including Euclidean, Manhattan, Minkowski etc.); 

3. Objects receive labels of their belonging to clusters based on the closest centroid; 

4. Centroid coordinates are recalculated with new cluster members. 

Steps 2-4 are repeated until no data point changes its label, i.e. the algorithm converges. An 

example of the K-means clustering technique applied to the Iris dataset (Fisher, 1936) and 

visualized in the dimension of the two principal components is presented in Fig. 5.  



27 

 

Figure 5. K-means clustering results on the normalized Iris dataset 

The K-means approach, while being commonly adopted, has a number of limitations that 

need to be acknowledged. Those include: 

• The result is dependent on initial centroid coordinates – it is better to iterate the whole 

process more than once; 

• Sensitivity to outliers; 

• Inability to handle non-linear datasets; 

• Certain distance metrics will cause bias on unscaled values – features need to be 

normalized. 

3.2.2 Elbow method for optimal number of clusters 

Certain clustering methods (such as K-means, described earlier) require prior knowledge on 

the number of clusters to be sought. Several methods have been derived to evaluate different 

outcomes of the clustering processes.  

The elbow method is a common visualization technique that allows to determine the optimal 

number of clusters. Clustering problem is repeatedly solved using predefined values of 

parameter 𝑘 ∈ {1, 2, … , 𝑘𝑚𝑎𝑥}; within sum-of-square measure, also referred to as inertia, 

calculated as the sum of squared distances of each sample to its closest cluster center, or 

distortion, the average of the same squared distances, are calculated and stored as measures 

of quality for each value of 𝑘. Typically, distortion is preferred over inertia, as it removes 

the bias caused by different number of elements in different clusters.  
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The selected metrics is visualized against number of clusters in the experiment in a linear 

chart, of inertia showing a strictly decreasing curve. The extremes would be 𝑘 =  1, 

resulting in the highest inertia/distortion measures, calculated as sum/mean of square 

distances from each sample to the global centroid, and 𝑘 =  𝑛, where 𝑛 is the size of the 

sample, resulting in 0 distance from each sample to itself representing a separate cluster. The 

intuition behind elbow method is to visually determine the value of 𝑘 at which the 

improvement in the quality metrics is no longer significant, compared to previous. An 

example of Elbow method application to the normalized Iris dataset (Fig. 6) suggests 2 or 3 

clusters as 𝑘. 

 

Figure 6. The elbow method for Iris dataset 

3.2.3 Silhouette score 

Silhouette score is an alternative quality measure of clustering outcome that does not require 

for human evaluation, as opposed to the Elbow method. The intuition behind the silhouette 

score reflects the fundamental principle of clustering process: the objects need to be as 

similar as possible within one cluster while remaining as different as possible from the 

samples outside of this cluster.  

The Silhouette score is calculated for each element and averaged across the sample for 

overall evaluation. The calculation uses the mean intra-cluster distance and mean distance 

from a sample to other cluster centroids, as follows: 

        𝑆 =
∑

𝑏(𝑖)−𝑎(𝑖)

max(𝑎(𝑖),𝑏(𝑖))
𝑛
𝑖=1

𝑛
                           (5) 
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where 𝑎(𝑖) is the mean intra-cluster distance, 𝑏(𝑖) is the mean distance from sample 𝑖 to its 

second-nearest cluster.  

Silhouette score values close to 1 represent highest clustering quality. Values around 0 

indicate overlapping clusters, while scores below 0 mean that the sample has been clustered 

sub-optimally, as there is at least one cluster centroid that is closer to the sample than the 

cluster of its current assignment.  

3.3 Dimensionality reduction 

Dimensionality reduction is the transformation of data into lower-dimensional space that 

preserves the properties of original data, relevant in the context of a particular data analysis 

problem. The motivation for dimensionality reduction can be described from two 

perspectives: 

1. Processing of data in low-dimensional space is less computationally complex, which 

allows for more agile model selection and makes the selected method easier to adopt 

in business context; 

2. Interpretation of the data and its pattern recognition potential is easier to reveal via 

e.g. data visualization techniques. 

Both specified elements of motivation hold their relevance in this research: forecasting 

model would require less resources should it be run on a reduced number of time series. 

Performed as part of exploratory data analysis, dimensionality reduction would provide the 

insights to intrinsic patterns which would also affect the ultimate selection process of the 

forecasting models.  

Factor analysis is a statistical technique used to explain covariance between a set of observed 

variables by a set of fewer unobserved (latent) factors and their weightings. The intuition 

behind factor analysis is that the original features of objects in the dataset can be represented 

as linear combinations of latent factors, unobserved in the original data, but estimated 

numerically. Then, the variance in each feature would be partially explained by the estimated 

factors, and partially unique (specific to the original feature and error term).  

Latent factors model can be represented in matrix form as  

                 𝑌(𝑛, 𝑣) = 𝐹(𝑛, 𝑓) ∙ 𝑃𝑇(𝑓, 𝑣) + 𝜀(𝑛, 𝑣)               (6) 
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where 𝑌(𝑛, 𝑣) is the matrix of original observations, with 𝑛 rows and 𝑣 columns; 𝐹(𝑛, 𝑓) is 

the matrix of factors, represented by 𝑛 values in 𝑓-dimensional space; 𝑃𝑇(𝑓, 𝑣) is the matrix 

of loadings; and 𝜀(𝑛, 𝑣)~𝑁(0, 𝛿2) is a matrix error terms, in optimal case assumed to follow 

the normal distribution with variance 𝛿2. 

Most commonly, the decomposition is achieved via maximum likelihood method, which is 

obtained by minimizing the fitting function, given as  

                   𝐹𝑀𝐿 = ln|𝛿| − ln|s̃| + tr(s̃ ∙ 𝛿−1) − 𝑝               (7) 

where ln|𝛿| is a logarithm of the determinant of variance matrix, 𝑙𝑛|s̃| is the logarithm of 

the determinant of variance-covariance matrix of the sample, 𝑡𝑟(s̃ ∙ 𝛿−1) is the trace of the 

ratio of the above mentioned matrices, and 𝑝 is the number of the observed variables. 

3.4 Stationarity 

The following sections (3.4 – 3.5.3) dominantly reference “Forecasting: Principles and 

Practice” by Hyndman & Athanasopoulos (2018).  

Some of the time series forecasting models require the series to fulfil the stationarity 

requirement. In broad terms, stationarity is the tendency of the series to preserve their 

statistical properties over time. Stationarity can be defined in a weak and strong form.  

3.4.1 Weak stationarity 

Weak form of stationarity implies that the time series hold constant mean, finite variance 

and constant autocovariance over time, formally defined as  

             {

∀𝑡, 𝐸[𝑥𝑡] = 𝜇

∀𝑡, 𝐸[(𝑥𝑡 − 𝜇)
2] < ∞

 𝑐𝑜𝑣(𝑥𝑢, 𝑥𝑣) = 𝑐𝑜𝑣(𝑥𝑢+𝑎, 𝑥𝑣+𝑎)

              (8) 

for any 𝑢, 𝑣, 𝑎 ∈ ℤ where 𝑢 ≠ 𝑣. 

Intuitively, it means that the series should not follow a trend but fluctuate around the mean 

value with constant variance. As opposed to the weakly stationary form (Fig. 7b), non-

stationary series (Fig. 7a) are not expected to revert to the mean value, and their variance 

approaches infinity alongside with the time.  
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Figure 7. Simulated time series: (a) Non-stationary; (b) Differenced, weakly stationary. 

3.4.2 Strong stationarity 

Strong stationarity demands that the probability distribution of any sample from the time 

series is the same regardless of the time period or method with which the sample is drawn, 

formulated as   

            𝐹𝑋(𝑥1, … , 𝑥𝑛) = 𝐹𝑋(𝑥1+𝜏, … , 𝑥𝑛+𝜏)              (9) 

for any discrete step 𝜏. 

3.4.3 Dickey-fuller and Augmented dickey-fuller tests for unit root 

One common type of time series that represent non-stationarity is the random walk process, 

which can be defined as a first-order autoregressive process AR(1) with unit root 

               𝑦𝑡 = 𝜑𝑦𝑡−1 + 𝜀𝑡                    (10) 

where 𝜑 = 1.  Unit root implies that the process does not revert to its mean, i.e. it carries the 

shocks in (epsilon) forward with the autoregressive component. The absence of mean-

reversion property does not fulfil the condition for weak stationarity, therefore a process with 

the unit root is considered non-stationary by definition. When subtracted 𝑦𝑡−1 from both 

sides of the equation, we get 

                                                    𝑦𝑡 − 𝑦𝑡−1 = (𝜑 − 1)𝑦𝑡−1 + 𝜀𝑡                                  (11) 

and see that the existence of unit root is equivalent to having zero coefficient 𝜑 − 1 = 0 in 

an equation of differenced time series against its lag. The significance of (𝜑 − 1) can be 

tested with t-statistics (Dickey-Fuller test, DF). The more common version, known as 
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Augmented Dickey-Fuller (ADF) encompasses 𝑝 lags of the dependent variable, having 

auxiliary regression as  

                ∆𝑦𝑡 = (𝜌1 − 1)𝑦𝑡−1 + ∑ 𝜌𝑗(∆𝑦𝑡−𝑗+1)
𝑝
𝑗=2 + 𝜀𝑡.           (12) 

We accept the null hypothesis of the existence of unit root with p-value below accepted 

confidence level 𝛼 (𝑡-statistics above relevant critical value for the Dickey-Fuller test).  

3.4.4 Detrending and differencing 

The solution to non-stationarity of time series depends on the type of their non-stationarity. 

The main solution to stochastically non-stationary time series, presented in a random walk 

process example, is differencing. Derived from (11), we see that for non-stationary time 

series with unit root, i.e. 𝜑 = 1, the differenced time series 

      𝑦𝑡 − 𝑦𝑡−1 = 𝜀𝑡, 𝜀~𝑁(0, 𝛿)            (13) 

are strongly stationary given normal distribution of error term. The order of differencing, i.e. 

number of iterations that need to be undertaken to fulfil stationarity requirement, is 

determined by integration order, and obtained from repetitive ADF testing.  

If the non-stationarity is observed in a form of trend, detrending is to be performed. A 

common approach to detrending is running an auxiliary regression of the series against their 

integer indices, in case of a linear trend 𝑦𝑖~𝑖, 𝑖 = 1,… , 𝑛 thus obtaining 𝑦𝑖̂ = 𝛼 + 𝛽𝑖, and 

subtracting the predicted values from the original 𝑦𝑑𝑒𝑡𝑟𝑒𝑛𝑑𝑒𝑑 = 𝑦𝑖 − 𝑦𝑖̂. Higher-degree 

polynomial trend types may call for more complex auxiliary regression specifications, such 

as 𝑦𝑖~𝑖, 𝑖
2, … , 𝑖𝑛. 

3.5 Time series forecasting 

Time series is a series of numerical values indexed in time order. Usually, the observations 

are spaced in time at equal intervals; thus, the time dimension is discrete. Detail around time 

dimension, resampling and temporal aggregation are discussed in part 4.2 of this research.  

The selection of methods for predicting future values (i.e. forecasting) of time series is vast. 

Depending on the underlying principle and data requirements, we can distinguish three main 

types of methods: 

1. Explanatory model implies representing the dependent variable as a function of 

external factors (regressors), which often means that we need to determine causal 
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relationship in preparation for modelling. Error term accounts for unexplained 

variation; 

2. Autoregressive time series models generate forecasts based on historical values of 

the focused series, excluding all possible external variables. The results from this 

type of models are less intuitive to interpret, but are more robust when causal 

relationships are not determined; 

3. Mixed models contain both explanatory and dynamic components. These models are 

known as dynamic regressions, transfer function models, linear systems etc. 

Lack of numeric data points representing external factors available in an independent 

enterprise supply chain forecasting predispose us to the autoregressive time series 

forecasting models, which we describe in more detail in the current section of the thesis. 

3.5.1 Naïve benchmark 

Naïve forecasting method is the basic estimation technique in which series value from last 

period is taken as the forecast for the next one, without attempting to adjust it or establish 

causal factors. Naïve method 

𝑦𝑡+1 = 𝑦𝑡             (14) 

is often used for comparison against more sophisticated models. Naïve method is 

indicatively implemented as the default forecasting mechanism for both quantity and price 

series in Sievo MF module, which justifies its selection as a benchmark in the quantitative 

part of this research. 

3.5.2 Holt-Winters exponential smoothing 

In this section, we cover selected examples of models from the exponential smoothing 

family. First proposed in 1950s, these models generate forecasts as weighted averages of 

previous observations, with the weights decreasing exponentially over time periods.  

Holt-Winters (HW) seasonal method, also known as triple exponential smoothing, represents 

the kind of time series decomposition, in which the series estimation formula is split into 

three equations: level, trend and seasonality, bearing different smoothing coefficients, and 

being aggregated over the fourth, overall smoothing calculation, resulting in a system of 

simultaneous equations 
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{
 
 

 
 
𝑆𝑡 = 𝛼

𝑦𝑡

𝐼𝑡−𝐿
+ (1 − 𝛼)(𝑆𝑡−1 + 𝑏𝑡−1)

𝑏𝑡 = 𝛾(𝑆𝑡 − 𝑆𝑡−1) + (1 − 𝛾)𝑏𝑡−1

𝐼𝑡 = 𝛽
𝑦𝑡

𝑆𝑡
+ (1 − 𝛽)𝐼𝑡−𝐿

𝐹𝑡+𝑚 = (𝑆𝑡 +𝑚𝑏𝑡)𝐼𝑡−𝐿+𝑚

            (15) 

where 𝑦𝑡 is observation of the series, 𝑆𝑡 is the smoothed observation, 𝑏𝑡 is the trend factor, 

𝐼𝑡 is the seasonal index, 𝐹𝑡+𝑚 is the forecast at 𝑚 periods ahead; 𝛼, 𝛽 and 𝛾 are smoothing 

parameters that are estimated so as to minimize the fitting error.  

The resulting system is recursive with regards to its different components. The baseline value 

for trend is calculated as  

       𝑏0 =
1

𝐿
(
𝑦𝐿+1−𝑦1

𝐿
+
𝑦𝐿+2−𝑦2

𝐿
+⋯+

𝑦𝐿+𝐿−𝑦𝐿

𝐿
)            (16) 

where 𝐿 is the length of the season, 𝑦 are observation series, while the initial season factor 

is calculated as  

               𝐼0 =
∑

𝑦𝑡+𝑝𝐿

𝐴𝑝

𝑁
𝑝=𝑡

𝑁
             (17) 

where 𝑡 is the time period, 𝑁 is the number of complete seasons we have the data for, 𝑦 are 

observation series and 𝐴𝑝 =
∑ 𝑦𝑖
𝐿
𝑖=1

𝐿
, 𝑝 = 1,2, … ,𝑁. 

3.5.3 Seasonal Autoregressive Moving Average 

Autoregressive Moving average (ARMA) family represents a univariate class of 

econometric models, consisting of autoregressive (AR) and stochastic (MA) components. 

Autoregressive component reflects the dynamic structure of the series, explaining its linear 

relation to the lags up to order p, while the moving average component is a linear 

combination of q lags of the error term. ARMA models, formulated as  

       𝑦𝑡 = 𝐶 + ∑ 𝜑𝑖𝑦𝑡−𝑖 + 𝜀𝑡 + ∑ 𝜃𝑗𝜀𝑡−𝑗
𝑞
𝑗=1

𝑝
𝑖=1            (18) 

where 𝑦 is the estimated series, 𝐶, 𝜑𝑖 and 𝜃𝑗 are parameters to be estimated, and 𝜀𝑡 is an 

error, require the time series to fulfil weak stationarity requirements.  

Seasonal autoregressive integrated moving average (SARIMA) model is an extension of 

traditional integrated ARMA, which activates the pattern recognition potential over seasons 
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by introducing a new set of parameters: orders of seasonal autoregressive component (P), 

seasonal integration (D) and seasonal moving average (Q) that are combined in an equation  

             𝑦𝑡 = 𝐶 + ∑ 𝜑𝑖𝑦𝑡−𝑖 + ∑ 𝛾𝑘𝑦𝑡−𝑘𝐿 +
𝑃
𝑘=1 𝜀𝑡 +∑ 𝜃𝑗𝜀𝑡−𝑗

𝑞
𝑗=1 + ∑ 𝜇𝑟𝜀𝑡−𝑟𝐿

𝑄
𝑟=1

𝑝
𝑖=1         (19) 

where, in addition to terms from (19), we introduce 𝛾𝑘 and 𝜇𝑟 as seasonal parameters to be 

estimated with the length of seasonal period 𝐿. 

Selection of parameters for SARIMA model can be approached in several different ways. 

First, the decision on the parameters d and D (orders of simple and seasonal differencing) is 

to be made upon examination of the results of ADF test. The remaining parameters are orders 

of simple and seasonal autoregressive and moving average components.  

One of the common ways to determine optimal combinations of parameters (p, q) and (P, Q) 

is to plot the values of autocorrelation function (ACF) and partial autocorrelation function 

(PACF) against number of lags. ACF quantifies the dependency of the time series on lags 1 

to p, including the effects of all lags in-between. PACF represents correlation coefficient 

between the original series and itself with lag = p and excludes the effects of lagged series 

in-between. 

The visual criteria for optimal model are mirrored in cases of AR and MA processes, thus 

guiding us to identify 

• order p of AR as number of spikes in PACF with geometrically decaying ACF; 

• order q of MA as number of spikes in ACF with geometrically decaying PACF. 

For seasonal parameters, we should be observing similar behavior, as if the lags in-between 

seasonal spikes at regular interval of L periods would have no effect.  

An alternative approach is to utilize one of the information criteria, Akaike information 

criterion (AIC) being one of the most commonly used. Calculated as  

            𝐴𝐼𝐶 = 2𝑘 − 2 ln(𝐿̂)                        (20) 

where 𝑘 is the number of parameters in a model and 𝐿̂ is the value of log-likelihood function 

that the model would reproduce the observed values, it represents the loss of the model, i.e. 

unexplained variance in the series, and should be minimized to support the optimal 

combination. Additionally, the model can be tested for autocorrelation of residuals, which 

by definition of an autoregressive model should not be observable. The approach is more 
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scalable than visual identification, as it is fully logical and enables automated decision-

making. 

Forecasted values are obtained by shifting time indexing 

   𝑦̂𝑡+1 = 𝐶̂ + ∑ 𝜑̂𝑖𝑦𝑡−𝑖+1 + ∑ 𝛾𝑘𝑦𝑡−𝑘𝐿+1
𝑃
𝑘=1 + ∑ 𝜃𝑗𝜀𝑡−𝑗+1

𝑞
𝑗=1 + ∑ 𝜇̂𝑟𝑦𝑡−𝑟𝐿+1

𝑄
𝑟=1

𝑝
𝑖=1        (21) 

thus relying on existing observations or the ones predicted in earlier iterations.  

3.5.4 Fuzzy time series 

Fuzzy time series (FTS) is a concept from fuzzy data analysis domain, which is based on the 

fundamental concept of a fuzzy set. The latter was founded by Zadeh in 1965, and allows 

for a gradual membership 𝜇𝐴(𝑥), 𝑥 ∈ 𝑈  to a specified set A for every element 𝑥 of a universe 

of discourse 𝑈, thus serving as a flexible mathematical way to model uncertainty. The degree 

of membership of each element 𝜇𝐴(𝑥) ∈ [0, 1] and is calculated from the membership 

function. The membership function also determines the shape of the fuzzy set, most 

commonly – triangular (Fig. 8a), trapezoid (Fig. 8b) and Gaussian bell curve (Fig. 8c).  

 

Figure 8. Examples of fuzzy set membership functions: (a) Trianguar; (b) Trapezoid; (c) Gaussian bell curve. 

Fuzzy time series 𝐹(𝑡) on the subset of real numbers 𝑌(𝑡) (𝑡 =  0,1,2, … ) implies that 𝐹(𝑡) 

consists of 𝜇𝑖(𝑡) (𝑡 = 1,2, … ). Real time series can be transformed into their fuzzy 

representation by dividing the universe of discourse (range of observed values) into equal 

intervals and assigning values of membership function of each original observations to the 

corresponding fuzzy set(s), resulting in 𝑈 = (𝑢1, 𝑢2, … , 𝑢𝑚) where 𝑢𝑖 are linguistic 

variables. Alternatively, the fuzzy sets can be obtained as a result of c-means clustering of 

original values, which will render non-uniform splitting of the universe of discourse.  

Let’s consider a simulated example of continuous time series simulated as 𝑦𝑡 = sin(𝑡) ∗

(1 + 𝑟), 𝑡 ∈ {0, 1, … ,14} and 𝑟~𝑈[−0.2, 0.2] (Fig. 9a). The naïve partitioning of the range 

of observed values into 4 fuzzy sets is illustrated in Fig. 9b.  
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Figure 9. Partitioning of universe of discourse: (a) Simulated sinusoid series with noise; (b) Partitioning of the value range. 

Transforming each value of the original time series by maximum of its membership degrees 

to the gridded fuzzy sets (standard procedure in non-probabilistic FTS approach), the 

continuous time series from example above take shape of FTS 

[𝐴2, 𝐴3, 𝐴3, 𝐴2, 𝐴1, 𝐴0, 𝐴1, 𝐴3, 𝐴3, 𝐴3, 𝐴1, 𝐴0, 𝐴1, 𝐴3, 𝐴3]. 

The fuzzy time series forecasting models rely on the notion of fuzzy logical relationships 

(FLR). The causal relationship 𝑅(𝑡 − 1, 𝑡) such that 𝐹(𝑡) = 𝐹(𝑡 − 1) ◦  𝑅(𝑡 − 1, 𝑡)  where 

◦ is an arithmetic operator that can be denoted by 𝐹(𝑡 − 1) → 𝐹(𝑡). Since both 𝐹(𝑡) and 

𝐹(𝑡 –  𝑖) are represented as fuzzy numbers 𝐴𝑖 and 𝐴𝑗, the logical relationship can be 

expressed with notation 𝐴𝑖  →  𝐴𝑗   (FTS model of order 1) which should be read as “if current 

value is 𝐴𝑖, the next value will be 𝐴𝑗” or [𝐴𝑖 , 𝐴𝑘] → 𝐴𝑗 (high-order FTS model with 2 lags), 

which reads “if sequence of 𝐴𝑖 and 𝐴𝑘, then the next value will be 𝐴𝑗”. In the examples 

above, 𝐴𝑖 and [𝐴𝑖 , 𝐴𝑘] are called left-hand side (LHS) of an FLR, while 𝐴𝑗 is its right-hand 

side (RHS). 

The FLRs observed from historical data are further clustered into fuzzy logical relationship 

groups (FLRGs) by distinct LHS, defining the knowledge, or rule base. That rule base serves 

as the reference point when inferring forecasts of future observations. In the example above, 

the rule base consists of  

       
𝐴0→𝐴1

𝐴1→𝐴0,𝐴3
𝐴2→𝐴1,𝐴3

𝐴3→𝐴1,𝐴2,𝐴3

             (22) 

With conventional FTS, the forecasting procedure manages different scenarios w.r.t. the rule 

base in the following manner: let 𝐹(𝑡) = 𝐴𝑖,  
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• if there is no relevant FLRG in the base, i.e. 𝐴𝑖 → ∅, then 𝐹(𝑡 + 1) = 𝐴𝑖 and the 

defuzzified forecast 𝑌(𝑡 + 1) is the midpoint of 𝐴𝑖; 

• if the LHS 𝐴𝑖 is uniquely represented by an FLR 𝐴𝑖 → 𝐴𝑗 , then 𝐹(𝑡 + 1) = 𝐴𝑗, 

𝑌(𝑡 + 1) being the midpoint of 𝐴𝑗; 

• if for LHS 𝐴𝑖 there are multiple FLRs 𝐴𝑖 → 𝐴𝑗1 , 𝐴𝑗2 , … , 𝐴𝑗𝑘 , there is no single fuzzy 

representation of 𝐹(𝑡 + 1), but the defuzzified value is derived directly as the 

arithmetic average of the midpoints of 𝐴𝑗1 , 𝐴𝑗2 , … , 𝐴𝑗𝑘 . 

Weighted FTS (WFTS) implies more accurate consideration of the scenario in which 𝐴𝑖 →

𝐴𝑗1 , 𝐴𝑗2 , … , 𝐴𝑗𝑘 . Designed to fix the drawback of constant importance of all RHS elements, 

it alters the defuzzification step in a way that  

               𝑌(𝑡 + 1) = ∑ 𝑤𝑗 ∗ 𝑐𝑗𝑗∈𝑅𝐻𝑆               (23) 

with 

                   𝑤𝑗 =
#𝐴𝑗

#𝑅𝐻𝑆
 ∀𝐴𝑗 ∈ 𝑅𝐻𝑆             (24) 

where #𝐴𝑗 is the number of occurrences of 𝐴𝑗 in FLRs with the same precedent LHS and 

#𝑅𝐻𝑆 is the total number of temporal patterns within that FLRG (Ortiz-Arroyo & Poulsen, 

2018).  

Probabilistic Weighted FTS (PWFTS) take a step forward to incorporate information about 

membership degrees of precedents, i.e. LHS of the FLRs. The knowledge base for PWFTS 

is given as  

                   
𝜋1∗𝐴1→𝑤11∗𝐴1,…,𝑤1𝑘∗𝐴𝑘…
𝜋𝑘∗𝐴𝑘→𝑤𝑘1∗𝐴1,…,𝑤𝑘𝑘∗𝐴𝑘

             (25) 

where each weight 𝜋𝑖 is the normalized sum of all LHS values of membership functions 

where the LHS is fuzzy set 𝐴𝑖 (Silva, 2019). Thus, 𝜋𝑖 can be interpreted as the empirical a 

priori probability of having 𝐴𝑖 as an LHS. Weight wij is the normalized sum of all RHS 

memberships where LHS is 𝐴𝑖 and RHS is 𝐴𝑗, which can be understood as a conditional 

probability 𝑃(𝐹(𝑡 + 1) = 𝐴𝑗|𝐹(𝑡) = 𝐴𝑖).  

The forecasting procedure in PWFTS starts with the computation of probability distribution 
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𝑃(𝑌(𝑡)|𝑌(𝑡 − 1)) =  ∑
𝑃(𝑌(𝑡)|𝐴𝑗)∗∑ 𝑃(𝑌(𝑡 + 1)|𝐴𝑖, 𝐴𝑗)

𝑘
𝑖=1

∑ 𝑃(𝑌(𝑡)|𝐴𝑖)𝑘
𝑖=1

𝐴𝑗∈𝐴̃
=

∑
𝜋𝑗

𝜇𝐴𝑗
(𝑌(𝑡))

𝑍𝐴𝑗

∗∑ 𝑤𝑖𝑗
𝜇𝐴𝑖

(𝑌(𝑡+1))

𝑍𝐴𝑖

𝑘
𝑖=1

∑ 𝜋𝑖
𝜇𝐴𝑖

(𝑌(𝑡))

𝑍𝐴𝑖

𝑘
𝑖=1

𝐴𝑗∈𝐴̃
                                                                                  (26) 

where, in addition to previous notations, 𝜇𝐴(𝑌) is degree of membership of continuous value 

𝑌 to a fuzzy set 𝐴, and 𝑍𝐴 is the total area under membership function of 𝐴. The point forecast 

is then produced by 

         𝑌(𝑡 + 1) = ∑
𝑃(𝑌(𝑡)|𝐴𝑗)∗𝐸[𝐴𝑗]
∑ 𝑃(𝑌(𝑡)|𝐴𝑗)𝐴𝑗∈𝐴̃

𝐴𝑗∈𝐴̃
             (27) 

where 𝐸[𝐴𝑗] = ∑ 𝑤𝑖𝑗 ∗ 𝑚𝑝𝑖𝑖∈𝐴𝑗
𝑅𝐻𝑆 , 𝑚𝑝 denoting a midpoint of a fuzzy set. 

FTS as a computer intelligence framework is presenting a real alternative to the traditional 

econometrics methods. Among other things, fuzzification of original time series makes 

redundant the requirement for stationarity. Reducing the allowed value domain to a finite 

number of fuzzy sets serves as a self-aided normalization technique that intensifies pattern 

recognition processes that follow. 
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4 Data 

This chapter contains the description of the data that is taken as the basis for quantitative 

part of the research. The data is extracted from Sievo database, from the accounts which 

granted their permission to utilize anonymized historical data in the research to validate the 

quality of different algorithms for spend forecasting. Overall, three independent datasets are 

analyzed, originating from companies that operate in different industries on a global scale, 

hereafter referred to as companies A, B and C. The diversity of industry profiles enables us 

to compare the performance of the shortlisted forecasting methods between each other to 

draw conclusions with regards to potential difference in applicability of the methods to the 

reported cases. 

As presented in Fig. 10, the first stage of data transformation and filtering takes place on 

transactional level in SQL Server, managed in export queries to ensure extraction of the 

minimum required volume of data. Further data transformation, starting with cross-sectional 

and temporal aggregation, is performed in iPython notebook environment which provides 

the flexibility of data exploration and visualization methods. The outcome of data cleansing 

processes described in this chapter is a collection of quantity and price datasets qualified for 

testing time series forecasting models.  

 

Figure 10. Overview of data filtering and cleansing processes 

4.1 Source data structure 

Sievo in-house developed data model is leveraged to ensure correct linkages of the data 

points. Most commonly, Sievo obtains the transactional and master data via automated 

monthly extraction from one or multiple ERP systems that are part of the customers’ IT 

landscape. When data is extracted from modern versions of ERP systems, a so-called three-

way match is performed to normalize the data (Fig. 11). 
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Figure 11. Sievo data model 

By taking the numeric fields from accounting documents and enriching them with 

information from associated purchase orders and payments, Sievo secures such data points 

as GL account, material group, cost and profit center, etc., thus ensuring maximal 

identifiability of the purchased goods or services while preserving accurate accounting 

detail.  

One of the early stages of procurement analytics process is the definition of addressable 

spend. Transactions are excluded from focused analysis based on combinations of one or 

more data points, most commonly to remove the effect of intercompany transfers, payroll, 

VAT and other taxes. To ensure business relevance of the results from present research, we 

follow the established guidelines and do not export transactions marked as excluded in 

Sievo. 

Another filter that is applied at the early stage of data export from Sievo database is related 

to units of measurement. While there exist such things as “service materials”, i.e. SKUs 

tracked in ERP systems that represent certain services rather than products, most of the 

material items tend to be tangible goods, measured discretely or continuously, most 

commonly – by pieces, units of mass, volume or length. When aggregating the data into time 

series format, it is important to account for different units of measurement (UOMs) in the 

source. Exploratory research in the source database reveals that material purchases are 

mostly measured in single UOM, with small number of materials measured in 2 UOMs. To 

avoid parsing distinct UOMs and their conversion for each material and considering low 

representation of such materials in the base (0-2% of addressable spend), we simply 

disregard purchases of materials with more than 1 UOM. The excluded materials with more 

than 1 UOM are not characterized by any common parameter, and thus do not distort the 

results. 
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As shown in Table 2, the applied filters result in the scope of research narrowed down to 21-

46% of total addressable spend figures, and 71-96% of direct addressable spend. At the same 

time, the theoretical maximum of number of time series to analyze (both in cases of material 

and material + plant cross-sectional aggregation) are reduced by no more than 12%, which 

is a justified limitation to enable smooth transition to aggregation and further cleansing steps.  

Table 2. Transactional data cleansing funnel 

 

The ultimate dataset used in the present analysis comprises transactional data covering 

addressable spend extracted from Sievo database that includes accounting document line 

detail on invoiced amount and quantity as well as unique identifiers of the associated SKU 

and the location of the purchase. Additional export is run over materials and the 

corresponding material groups of their belonging, to see if the quantity series of materials 

behave similarly within their groupings. If the source data indicate that certain material 

relates to more than one material group, the decision is made in a spend-weighted manner, 

i.e. we pick the material group that includes highest proportion of spend associated with that 

material. 

4.2 Time period selection and cross-sectional aggregation 

Time period selection is an essential step of a data extraction process. When exploring the 

space of feasible time selections, the three main criteria that we consider are 

• availability of material-covered transactional data for all 3 data sources to enable 

representative comparison, i.e. report the results from the same time period; 

• potential to reveal annual seasonality, i.e. at least 3 full years of data – 2 periods to 

capture seasonality and 1 to test the performance; 

• relevance for the business, i.e. the most recent data available.  
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According to these conditions, a period of January 2016 – November 2020 has been selected 

as the most recent representation of direct material purchases of the three partner companies.  

Multidimensional dataset is transformed into time series format through cross-sectional and 

temporal aggregation. Amount values of transactions (onwards – spend) and quantities for 

each material (or combination of material with another relevant data point) are aggregated 

through addition within predefined time intervals, thus representing total spend and quantity 

of purchases of each material during the periods of selection. According to industry best-

practice, implemented in Sievo MF solution, the period is set to calendar month, while cross-

sectional aggregation is performed on a combination of material and plant, i.e. each series 

represents amount of monthly purchases of different materials by separate operational units 

of the business. Monthly aggregation is a compromise that allows to capture temporal 

patterns both on quarterly and annual level, aligned with financial reporting standards, and 

is reasonable for the users of the final solution to introduce expert corrections as part of the 

monthly process (as opposed to e.g. daily granularity). 

4.3 Data filtering 

Before moving forward with parametrized data cleansing steps, we refer to Pareto principle, 

also known as “80-20” rule, to further narrow down the focus of quantitative research. As 

shown on Fig. 12, the dominating share of spend originates from relatively low share of total 

number of SKUs.  

 

Figure 12. Long tail of SKUs and 90% spend threshold 

In all 3 partner cases, the total count of unique SKUs land in the order of dozens and 

hundreds of thousands, with the number getting bigger when we consider unique 

combinations of SKUs and purchasing business unit. Such a high number of time series is 

not feasible to analyse with the computing power at hand, as calculations will take 

unreasonably long. We therefore include such combinations of SKUs and purchasing 

business units that contain materials from the subset of those largest ones that correspond 
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with 90% of spend amount. From all variety of SKUs and their combinations with 

purchasing business units, from 1.34% to 3.70% of series add up to 90% of cumulative spend 

(Table 3). 

Table 3. Share of SKUs and SKU-business unit combinations adding up to 90% of spend 

 

As material resource planning process tends to take place for months in advance, it is natural 

to expect that supply schedule is intermittent. Even with monthly aggregation of spend and 

quantity values, we see all of the previously qualified series to show empty observations in 

all datasets.  

The forecasting methods in use need to be able to capture the factor of intermittency as well 

as the overall trend, it is therefore reasonable to leave null observations intact. However, we 

need to account for possible changes in the material master data: it is not uncommon that 

some records are replaced by new ones, or simply become redundant. In order to meet the 

relevance criterion and only test the proposed methods on those material records that are 

being used to the day, we perform the analysis on series that have non-zero values of quantity 

and spend in the last 12 months of recorded period. Across the datasets, 77.31-90.41% of 

time series fulfil this requirement.  

Another criterion for exclusion is the availability of sufficient training data for the models. 

This condition is met by removing the series for which the time between the earliest and the 

most recent observations is under 3 years. Depending on the data source, only 18.30-53.96% 

of the time series have enough observations between first and last non-zero month.  

When the subsets of qualified time series are united, we see 17.99-50.99% acceptance rate, 

i.e. this share of all SKU-business unit combinations qualified from previous filtering 

processes both have been actively used in the last 12 months, and have enough training data 

for the purpose (Table 4). 
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Table 4. Qualification of time series by business relevance and sufficiency of training data 

 

Low share of time series with more than 3 calendar years of observation may be explained 

by modernization of material master data in source ERP systems or relative recency of client 

environment in Sievo solution. Multistep process of data filtering and cleansing results in 

thousands of time series to be used in the evaluation of forecasting models. While the 

introduced conditions are justified in mathematical modelling context, the business need is 

equally present in cases of material purchases with and without sufficient amount of 

historical data. The impact of these limitations will be considered in the conclusion of this 

research.  

4.4 Outlier detection 

Outlier detection is an essential step of exploratory data analysis. Outlier is an observation 

in the dataset that deviates significantly from the mean, median or most commonly observed 

value. It is important to distinguish the outliers that indicate data errors from those that 

correctly depict the business case.  

Outliers are unlikely to appear in the spend datasets, which are based on accounting 

document entries, as those would create excessive financial liability. On the other hand, 

information on quantities of different material purchases is fetched from purchase orders, 

which are often filled in manually and are subject to human error. Following a common 

convention, we use statistical measures of median and standard deviation and call value 𝑦𝑡 

from series 𝑌 an outlier if 

   |𝑦𝑡 −𝑚𝑒𝑑𝑖𝑎𝑛(𝑌)| ≥ 𝑋 ∗ 𝜎̂(𝑌)               (28) 

where 𝑚𝑒𝑑𝑖𝑎𝑛(𝑌) is the median value of observed series of length 𝑁, and 𝜎̂(𝑌) = √
∑(𝑦𝑡−𝑌̅)2

𝑁
 

is its standard deviation. The selection of median over mean value in the formula is explained 

by the motivation to exclude the bias of outlier observation, which may deviate from 

“normal” ranges manifold. Values 𝑋 = {2, 3} are common in the analytical practice, 
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representing approximately 95% and 99% of observed values drawn from normal 

distribution. However, we cannot expect the values of purchased quantities to bear the 

properties of a normal distribution, and therefore run the outlier detection procedure over 

values of 𝑋 from 1 to 𝑋𝑚𝑎𝑥, where 𝑋𝑚𝑎𝑥 is the first natural number resulting in zero share 

of time series with non-zero number of outlier observations. The results of the procedure are 

presented in Fig. 13.  

 

Figure 13. Share of series with identified outliers 

Up until values of 𝑋 ≥ 7, we see more than 10% share of the time series that contain outliers. 

Without having more grounds to distinguish between data errors and actual sourcing 

patterns, we leave all values as observed in the original extract. Potential presence of outliers 

is considered separately in the evaluation of forecasting methods.  

4.5 Data normalization 

Data normalization is a transformation of original numerical values, commonly linear, into 

a new representation with controlled statistical properties such as mean, standard deviation, 

minimal and maximal values. Quantity series are normalized using min-max normalization 

technique (eq. 29), resulting in series scaled to range [0, 1] to enable comparison of similarity 

and forecasting accuracy metrics.  

        𝑦𝑛𝑜𝑟𝑚 = 
yt−min (Y)

max(𝑌)−min (𝑌)
             (29) 

4.6 Master data grouping evaluation 

Apart from the data points primarily used in temporal and cross-sectional aggregation, i.e. 

posting date, material and plant numbers, data export includes information about the 

hierarchical material-material group relationship. In case of large number of material-plant 

level time series, we utilize a number of methods described in section 2.1 of this thesis to 

examine the degree of similarity between material series belonging to the same material 
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group. High similarity of patterns within those will enable additional level of aggregation 

which can be utilized as the basis for the final forecast decisions. 

The first stage of the evaluation relies on the Pearson correlation metrics; for each material 

group that contains more than 1 qualified SKU + business unit combinations, pairwise 

correlation coefficients are averaged and described across all relevant material groups (Table 

5). The ultimate metrics is derived as weighted average of within-material group correlation 

coefficients, with spend under material group as weighting factor. Resulting values in range 

between 0.099 and 0.254 bring us to the conclusion that master data groupings are of limited 

value when it comes to spend forecasting modelling.  

Table 5. Descriptive statistics of correlation between time series within same Material groups 

 

4.7 Clustering 

Clustering is an advanced stage of exploratory data analysis that is performed in an 

unsupervised manner, i.e. not relying on any prior information, with a view to introduce 

meaningful grouping of original time series. K-means clustering algorithm is applied to 

normalized quantity series to detect similar patterns within resulting groups of SKU + 

business unit combinations. 

A key element to K-means clustering is identification of optimal number of clusters, which 

needs to be specified prior to running the algorithm. Elbow method, a common visual way 

to identify significant marginal improvement in clustering quality when increasing number 

of clusters, reveals that 𝑘 ≈ 100 is worth further evaluation (Fig. 14).  
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Figure 14. Elbow method for optimal number of clusters 

Silhouette score is a core quantitative metrics used to evaluate the quality of clustering 

results. It combines measurements of how similar objects are within clusters and how 

different they are across those. Values range between 0 and 1, showing higher performance 

of clustering as the score increases. 

We see low values of Silhouette score for the tested cases (Table 6) which does not confirm 

the feasibility of clustering with 𝑘 ≈ 100 or any other value from the tested range. Highest 

scores are derived with 𝑘 = 2, which means partitioning of the dataset into 2 parts and does 

not add value for dimensionality reduction or intrinsic pattern recognition purposes.  

Table 6. Silhouette score for clustering evaluation 

 

The above results indicate that there is no significant grouping to be sought in the datasets. 
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5 Design of experiments 

This chapter contains a description of experiments that are conducted to evaluate the quality 

of different time series forecasting methods, described in chapter 2, based on the real direct 

procurement data from industry partners. In part 5.1, we go through the core principles of 

splitting time series data into parts for training and testing purposes. In parts 5.3 – 5.5, we 

describe the experiments and sets of hyperparameters included for relevant comparison in 

cases of exponential smoothing, SARIMA and fuzzy time series methods. 

5.1 Performance measurement 

Selection of an appropriate measurement of the algorithm performance is essential to a 

quantitative research in time series forecasting domain. Once the model is fitted based on 

training data, its predictive capacity is evaluated on a test data sample. Forecast errors are 

defined as difference between forecasted and original values. The errors are aggregated in 

one or more of the alternative metrics, including  

• Mean Absolute Error (MAE), calculated as 𝑀𝐴𝐸 =
∑ |𝑦𝑝𝑟𝑒𝑑−𝑦𝑖|
𝑛
𝑖=1

𝑛
; 

• Mean Squared Error (MSE), calculated as 𝑀𝑆𝐸 =
∑ (𝑦𝑝𝑟𝑒𝑑−𝑦𝑖)

2𝑛
𝑖=1

𝑛
; 

• Root Mean Squared Error (RMSE), calculated as 𝑅𝑀𝑆𝐸 = √∑ (𝑦𝑝𝑟𝑒𝑑−𝑦𝑖)
2𝑛

𝑖=1

𝑛
;  

where 𝑦𝑝𝑟𝑒𝑑 is the series of forecasted values, 𝑦𝑡 is the series of the corresponding original 

values. Commonly, RMSE is a good representation of an average error term, which accounts 

for both positive and negative deviations and is scaled back to the original power.  

Using normalized values of purchase quantities – scaled to range [0, 1] – allows us to utilize 

RMSE metrics across datasets and forecasting windows as a comparable performance 

measure.  

5.2 Datasets for training and testing 

It is essential for any quantitative study to have appropriate representation of data to fit the 

model parameters and test their performance. Time series data characteristics present 

additional challenges related to separation of observations for training and testing purposes. 

Random selection of objects may ruin the experiment because of sequential nature of 

observations, i.e. the order of values in data feed cannot be disregarded. It is therefore 
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common that the split of time series data is performed over temporal indices, thus ensuring 

original order of values. 

The first parameter that needs to be specified with regards to the selection of testing window 

is its width, or forecast horizon, i.e. number of future observations that we want to generate 

as a model output. Business context needs to be accounted for in the selection. In this 

research, we deal with specifics of financial departments and the process of budgetary 

revisions, which tend to take place with quarterly frequency. With monthly granularity of 

original observations, we see it reasonable to specify the forecast horizon to 3 months (1 

quarter) to support the budgetary revision process.  

Dealing with anonymized real data from existing companies implies potential bias related to 

seasonality or simple coincidence related to externalities. One way to overcome the bias is 

to include multiple testing windows in the analysis, as per availability and volume of original 

data. This means a multitude of divisions of a single time series into training and testing 

periods. Rolling and expanding windows are two related approaches to achieve better 

representation of data characteristics in testing periods. A traditional rolling window means 

that, once picked an initial separation, we gain alternative split by shifting the indices by a 

step of 1 (or any other custom number of observations). With that approach and a step = 1, 

all data is used in either training and testing capacity, and we have every data point included 

in the testing period in at least one splitting. The expanding window, in comparison, means 

that we gradually increase the number of observations in the training dataset, shifting the 

index of the testing period in a similar fashion. This provides additional dimension to the 

analysis of results by revealing the sensitivity of algorithms to the amount of training data, 

thus being a preferred approach in present research. 

Finally, there is a decision to be made on the step of index shifting for expanding window 

approach. Having the length of the series between 36 and 58 (representing 3 to ~5 years of 

data with monthly frequency), a step of 1 observation would inflate the number of models 

to be fitted by fold of the length of the series, which is not feasible with the thousands of 

series that we have at hand. However, there is a clear research need to address the mentioned 

bias. A compromise would be achieved by specifying an appropriate shifting step, thus 

controlling the total factor of how many models are fitted on each series.  
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One important factor that needs to be considered when fixing the approach to the splitting 

logic is the potential misalignment of time indices for relevant observations across the time 

series. Data filtering steps guarantee that there is no time series qualified for analysis that 

would have fewer than 3 full years of relevant observations; however, start and end months 

of those series may differ within the datasets. If we were to introduce additional constraint 

and only keep the series that contain business-relevant values over same periods of time, it 

would further reduce the resulting number of series for analysis, which is not justified. 

Choosing larger count of qualified time series over aligned time periods, we lose 

comparability of aggregated results against time dimension (e.g. average performance across 

all time series based on a fixed testing period). Alternatively, we address this analytical need 

by introducing a linguistic attribute that specifies the amount of data available for fitting. 

With allowed length of the series between 36 and 58 values, we call the amount of training 

data in series under 4 full years of data as “Low” and the rest of them as “High” which allows 

for some degree of horizontal aggregation.  

All things considered, the experiment for each series is implemented in the following 

algorithm: 

1. Identify the first and last period with non-zero normalized quantity values and 

remove leading and lagging null observations; 

2. Split the resulting series into 𝑛𝑤𝑖𝑛𝑑𝑜𝑤𝑠 expanding windows, starting with the first 

33 + 3 = 36 months of data (33 observations for training and 3 – for testing 

purposes) and incrementing the index of last observation included in the sample by 

[
𝑖𝑚𝑎𝑥−36

𝑛𝑤𝑖𝑛𝑑𝑜𝑤𝑠
] where 𝑖𝑚𝑎𝑥 is the largest integer index of the series (starting with 1, equal 

to number of observations) and 𝑛𝑤𝑖𝑛𝑑𝑜𝑤𝑠 is the target number of windows per series; 

3. Run all configurations of each model family (Exponential Smoothing, SARIMA or 

FTS) on each of the windows and store the results in such a format that it would 

include 

a. unique identifier of an experiment; 

b. identifier of the dataset; 

c. identifier of the series; 

d. number of observations in training dataset as per the expanding window 

approach; 

e. attribute of “High” or “Low” amount of training data; 
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f. values of tested hyperparameters;  

g. RMSE measure calculated on forecasted normalized values over the testing 

window of specified width (3 months).  

Having this level of granularity enables multidimensional representation of final results 

using pivot table and charts functionalities.  

5.3 Holt-Winters hyperparameters 

In the following sections of the chapter we follow the same notations as those introduced in 

the respective parts of chapter “Methods”.  

In triple exponential smoothing, also known as Holt-Winters model, loss optimization 

methods are leveraged to determine overall, seasonal and trend smoothing factors 𝛼, 𝛽 and 

𝛾. Their actual values do not bring additional information to the analysis, and are therefore 

omitted from the results summary.  

The hyperparameters relevant for Holt-Winters model configuration include  

• Trend type: Additive or Multiplicative; 

• Seasonality: True or False depending on whether seasonal component is enabled. 

In case of enabled seasonality, the following parameters are added to the list: 

• Seasonal trend type: Additive or Multiplicative; 

• Length of a seasonal period: [4, 12] describing quarterly and annual seasonality 

respectively. 

In total, there are 10 configuration types (2 non-seasonal and 8 seasonal) to be tested per 

each time series entity.  

5.4 SARIMA hyperparameters 

SARIMA model requires prior specification of all non-seasonal and seasonal lags, as well 

as the length of the season, i.e. the complete list of hyperparameters comprises 

• Number of AR lags 𝑝 ∈ {0, 1, 2, 3}; 

• Number of MA lags 𝑞 ∈ {0, 1, 2, 3}; 

• Number of seasonal AR lags 𝑃 ∈ {0, 1, 2}; 

• Number of seasonal MA lags 𝑄 ∈ {0, 1, 2}; 
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• Length of the season 𝐿 ∈ {4, 12}; 

The range of tested values for p and q relates to the statistical property of time series to be 

in their majority represented by one of the resulting specifications. Maximal values of P and 

Q are limited to 2 given that this is the highest lag we can guarantee for annual seasonality 

with minimal length of the training dataset set to 36 values, i.e. 3 full years of data.  

The total number of model specifications tested on each time series is 144. For each of the 

experiments, AIC criterion is stored alongside with the hyperparameter values. 

5.5 Fuzzy Time Series hyperparameters 

Similarly, in the domain of fuzzy time series analysis there is configuration setup that needs 

to be established prior to fitting the models. According to the description of shortlisted FTS 

methods (section 2.5.4), we test all three main types of models: simple High Order FTS 

(HOFTS), Weighted High Order FTS (WHOFTS) and Probabilistic Weighted FTS 

(PWHOFTS).  

Specific to fuzzification mechanism, we introduce additional parameter for number of 

linguistic variables to divide the universe of discourse 𝑛𝑝𝑎𝑟𝑡. Without better means to make 

the decision prior to fitting the model, we specify this parameter discretely in a number of 

non-evenly distributed steps between extreme values of 5, representing low number of parts, 

and 50, representing excessively high number.  

Finally, order of an FTS model reflects the number of lags included in the fitting process. 

Thus, hyperparameters for FTS models can be summarized in the following list: 

• Model type: HOFTS, WHOFTS, PWHOFTS; 

• Number of fuzzy sets in partitioning 𝑛𝑝𝑎𝑟𝑡 ∈ {5, 10, 20, 50}; 

• Order of the model ~ number of lags 𝑜𝑟𝑑𝑒𝑟 ∈ {1, 2}; 

resulting in a total of 24 models per time series. 
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6 Results and discussion 

This concluding chapter of the thesis reveals the outcomes of multiple predictions run over 

prepared datasets. For each of the methods described in section 3.5, we present a comparative 

analysis across datasets, evaluate different model specification options to see which 

parameters stand behind significant differences in the performance metrics, and compare the 

latter against those of the benchmark approach.  

6.1 Holt-Winters performance analysis 

The comprehensive results report containing RMSE measurement for every prediction, i.e. 

every combination of parameters and testing windows of the time series, allows for granular 

analysis of the model performance across datasets.  

6.1.1 Coverage and outliers 

It is worth mentioning that not all model specifications resulted in successful fitting. 

Specifically, over 68% of the predictions failed across the datasets, if we consider the total 

number of distinct time series – testing windows – hyperparameter values combinations. 

(Table 7). Further investigation reveals that the cause for failures is that log-likelihood 

maximization does not converge in a number of cases that are characterized with specified 

multiplicative type of a general or seasonal trend. It should not raise concern as we omit the 

exploratory phase of analysis for each individual case and thus do not have full information 

on feasibility of different specifications. In other words, for some time series it is so 

inappropriate to fit a model with multiplicative trend, that there is no feasible solution to the 

error minimization problem, i.e. the parameters cannot be found. It is important to note that 

every testing window under every series receives at least one feasible prediction (fitting 

failures in cases of additive trend types are non-existent). This observation proves feasibility 

of using Holt-Winters model as a method for material forecasting despite unsuccessful 

fittings of certain model specifications.  

Table 7. HW successful and failed experiments 

  Success Count of predictions 

Company B 
FALSE 33362 

TRUE 21478 

Company C 
FALSE 32816 

TRUE 17604 

Company A 
FALSE 18095 

TRUE 9785 
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While certain specifications cause failure in the convergence of log-likelihood 

maximization, others yield feasible outcomes which however show prediction values outside 

of plausible range, resulting in RMSE values approaching infinity. These situations are 

believed to be caused by multiplicative type of general or seasonal trends too, when fitting 

such models would not be appropriate even though numerically feasible.  

We ensure comparability of results by predicting normalized time series, transformed with 

a min-max technique to a range of allowed values between 0 and 1. Thus, RMSE below 0.5 

can be intuitively perceived as an error of a reasonably good prediction. An overview of 

predictions labelled as outliers depending on the threshold of RMSE (Fig. 15) shows that 

most of the cases (47863) are within 0-0.5 range of the error term; a small yet significant 

number of experiments (4073) show RMSE between 0.5 and 1.0, with another 649 

corresponding with the 1.0-2.0 range of the value. The scarcity of the remaining cases, 

represented by RMSE > 2.0, justify the decision of dropping those experiments from further 

analysis to avoid distortion in aggregations. After removal of outliers, we continue seeing at 

least one feasible outcome for each combination of series with all associated testing 

windows, thus proving that in a business scenario there exists a better alternative – in terms 

of RMSE – for each of the cases affected by outlier detection procedure.  

 

Figure 15. HW results outlier detection 

6.1.2 Performance against benchmark 

For the sake of benchmarking general performance of forecasting methods against the naïve 

approach, the lowest RMSE for each time series is selected from the variety of predictions 

representing different model specifications. This brings us closer to the original business 

scenario in which the best-performing model would be utilized based on out-of-sample 
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validation. Thus, aggregation of results is performed on the individual time series level, 

applying mean and standard deviation calculation to both RMSE and benchmark RMSE 

measurements (Table 8). 

Table 8. HW performance against benchmark 

 HW RMSE Naive RMSE 

 Mean Std. Mean Std. 

Company B 0.165 0.084 0.219 0.123 

Company C 0.210 0.107 0.295 0.153 

Company A 0.163 0.075 0.199 0.101 

 

Overall, we see significant improvement in forecasting accuracy (18.1-28.9% reduction in 

average RMSE compared to the naïve approach) coupled with 25.7-32.1% decrease in its 

standard deviation, i.e. showing better results in a less volatile way.  

In Fig. 16 and in similar visualization describing further methods, we show overlapping 

distributions of RMSE measurement across predictions made with the tested and benchmark 

approaches. In the overlapping region of the histograms, a third color is visible to make the 

overlap distinguishable. In comparison of HW model against the naïve method (Fig. 16), we 

see a more narrow distribution of observed errors in case of triple exponential smoothing 

which illustrates the decreased volatility of predictions.  

 

Figure 16. HW performance against benchmark across datasets 

6.1.3 Model specifications ranking 

Having the complete data at hand, we turn to an overview of model specifications and 

number of predictions in which those specifications end up being the best-performing 

alternative for a particular combination of dataset, series, and testing window.  The overview 

(Table 9) indicates that simple additive trend without any seasonal component resulted in 

lowest RMSE in the highest number of cases (4961), followed by combinations of additive 

trend with annual (3802) and quarterly (3735) seasonality. Variations with multiplicative 
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trend type represent minority of predictions, however those can be expected to yield 

significantly better results on occasions when such specification would be appropriate. 

Table 9. Overview of HW model specifications 

Trend type Seasonal trend type Length of a season Best performance cases 

Additive None 0 4961 

Additive Additive 12 3802 

Additive Additive 4 3735 

Multiplicative None 0 201 

Multiplicative Additive 12 121 

Additive Multiplicative 4 108 

Multiplicative Additive 4 103 

Additive Multiplicative 12 99 

Multiplicative Multiplicative 4 99 

Multiplicative Multiplicative 12 83 

 

Next, we proceed with more granular analysis of results with regards to different values of 

configurable parameters. Starting with number of observations in a seasonal period, we have 

tested scenarios of 0, 4 and 12 months representing no seasonality, quarterly and annual 

seasonality, respectively. The mean and standard deviation of the RMSE metrics (Table 10) 

indicate that there is no strong domination of a single length of a season, with only minor 

(<10%) swing towards quarterly seasonality in 2 out of 3 datasets, backed by lower standard 

deviation values.  

Table 10. HW Performance with different lengths of a seasonal period 

  HW RMSE 

 Periods in a season Mean Std. 

Company B 

0 0.218 0.120 

4 0.204 0.093 

12 0.229 0.100 

Company C 

0 0.277 0.150 

4 0.264 0.120 

12 0.293 0.132 

Company A 

0 0.217 0.118 

4 0.212 0.094 

12 0.211 0.083 

 

The absence of a clear pattern with seasonality is confirmed based on the overlapping 

distributions overview (Fig. 17).  
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Figure 17. HW RMSE by different lengths of a seasonal window across datasets 

Alternative trend types – additive and multiplicative – have been mentioned earlier in this 

section in the context of non-converging maximum likelihood method resulting in failed 

fittings. However, as we have seen earlier (Table 9), the multiplicative trend may come as a 

reasonable solution for certain type of series, e.g. with exponentially increasing or decreasing 

values. This is also visible in Table 11, where we present the mean RMSE based on utilized 

trend type across successful predictions, and models with multiplicative trend type show 

competitive error metrics, while the low number of successful predictions highlights the 

limited applicability of this specification. 

Table 11. HW RMSE by trend type across datasets 

  HW RMSE 

 Trend type Mean Std. Count 

Company B 
Additive 0.166 0.084 1371 

Multiplicative 0.170 0.112 284 

Company C 
Additive 0.211 0.107 2521 

Multiplicative 0.285 0.113 219 

Company A 
Additive 0.164 0.075 697 

Multiplicative 0.154 0.115 80 

 

Finally, the amount of training data, defined as Low for number of observations below 40, 

and High for number of observations above 40, seems to have a predictably refining impact 

on the performance measurement (Table 12). Small deviation of mean RMSE depending on 

the amount of training data can be explained by the same ballpark count of observations, i.e. 

even though we distinguish between Low and High amount of training data, in the big picture 

the line is not too clear, and one could characterize the number of observations used for 

fitting the models as low for all time series in scope of the analysis. However, even with a 

small difference in number of values in the training dataset, having more of those has a 

positive impact on the accuracy volatility which is visible in lower standard deviation levels. 

Additionally, it is worth mentioning that in one of the datasets the overall availability of 
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historical data leaves room for only limited analysis with no more than 38 observations used 

for training. 

Table 12. HW RMSE by amount of training data across datasets 

  HW RMSE 

 Amount of training data Mean Std. 

Company B 
High 0.164 0.092 

Low 0.166 0.134 

Company C Low 0.210 0.107 

Company A 
High 0.166 0.084 

Low 0.154 0.123 

 

Based on the overview of HW applied to material forecasting, we see that this traditional 

time series model represents a viable alternative to the naïve approach. No clear pattern has 

been identified with regards to the preferred length of a seasonal period, it is therefore 

reasonable to perform out-of-sample validation and select the appropriate value among no-, 

quarterly or annual seasonality per time series. With regards to the trend type to be used in 

predictions, we see that additive trend is much more common in the analyzed datasets; 

however, if prediction accuracy is a priority, multiplicative trend models can be considered 

for some cases. The implementation effort for a Holt-Winters model is lowest among the 

shortlisted methods, which, coupled with clearly better performance as compared to the 

naïve approach, makes it a good candidate for consideration. 

6.2 SARIMA performance analysis 

6.2.1 Coverage and outliers 

Maximum likelihood methodology is employed to estimate parameters of SARIMA models, 

too. As opposed to ordinary least squares (OLS), it does not require all regressors to be 

observable, which is a condition that would not be met in cases of activated moving average 

(q) or seasonal moving average (Q) components. Log-likelihood maximization, in its turn, 

makes room for unsuccessful fittings. Exploratory analysis reveals (Table 13) that only a 

small fraction of error minimization attempts do not converge, and the set of successful 

fittings is sufficient to have at least one feasible outcome for each testing window of each 

time series in scope.  
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Table 13. SARIMA successful and failed experiments 

  Success Count of experiments 

Company B 
FALSE 23 

TRUE 16429 

Company C 
FALSE 1 

TRUE 15125 

Company A 
FALSE 5 

TRUE 8359 

 

Another distinction from previously analysed HW methodology is the practical non-

existence of outliers among the results, as defined in earlier sections by RMSE > 2.0. Dozens 

of thousands of experiments land in RMSE < 0.5, with only 24 in range between 1.0 and 2.0 

(Fig. 18).  

 

Figure 18. SARIMA results outlier detection 

6.2.2 Performance against benchmark 

The best-performing configuration selected based on out-of-sample validation is compared 

against naïve benchmark (Table 14) revealing 10.8 to 23.4% improvement in average 

RMSE, with 24.5 to 29.4% decrease in standard deviation of the metrics.  

Table 14. SARIMA performance against benchmark 

 SARIMA RMSE Naive RMSE 

 Mean Std. Mean Std. 

Company B 0.179 0.087 0.219 0.123 

Company C 0.226 0.109 0.295 0.153 

Company A 0.178 0.076 0.199 0.101 
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As shown in Fig. 19, the improvement in RMSE is achieved by more narrow distribution 

(quantified above with standard deviation), and in 2 out of 3 datasets – shifted peak of the 

histogram towards lower error values.  

 

Figure 19. SARIMA performance against benchmark across datasets 

6.2.3 Model specifications ranking 

As ARIMA models are not designed to deal with intermittent time series, which many of the 

experiments in this research are based on, it is especially interesting to observe which 

specifications resulted in lowest error metrics, beating the benchmark by a margin. In total, 

302 distinct sets of parameters showed best results on various occasions. More than 75% of 

the cases are covered with top 19 most frequent specifications, presented in Table 15.  

Table 15. Overview of SARIMA configuration options (top 19) 

p d q P D Q Intercept Seasonal Best performance cases 

0 0 0 0 0 0 TRUE FALSE 4352 

0 0 1 0 0 0 TRUE FALSE 1195 

1 0 0 0 0 0 TRUE FALSE 1063 

0 1 1 0 0 0 FALSE FALSE 825 

2 0 0 0 0 0 TRUE FALSE 486 

0 0 0 0 0 1 TRUE TRUE 403 

0 0 0 1 0 0 TRUE TRUE 251 

3 0 0 0 0 0 TRUE FALSE 225 

0 1 0 0 0 0 FALSE FALSE 204 

0 1 2 0 0 0 FALSE FALSE 175 

0 0 0 0 0 0 FALSE FALSE 167 

1 0 1 0 0 0 TRUE FALSE 151 

0 1 1 0 0 0 TRUE FALSE 148 

1 0 1 0 0 0 FALSE FALSE 130 

1 1 1 0 0 0 FALSE FALSE 126 

1 1 0 0 0 0 FALSE FALSE 120 

2 1 0 0 0 0 FALSE FALSE 118 

0 0 2 0 0 0 TRUE FALSE 107 

0 0 1 0 0 1 TRUE TRUE 105 
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It is notable that in the 32.7% of all cases the best performing configuration appeared to be 

what is technically not even an ARIMA model – all zero-valued parameters except for an 

intercept, or a constant term, which essentially means a simple average of observed historical 

values. Top 3 is composed of MA(1) and AR(1) models, followed by ARIMA(0, 1, 1) and 

AR(2). Unlike HW results, seasonal patterns are more heavily underrepresented, with only 

three options on the top 20 list containing seasonal components, and in total accounting for 

15.8% of all cases.  

In terms of amount of training data, one would expect ARIMA-type of models to be most 

sensitive to this limitation as compared to alternatives. However, it is important to remember 

that in the big picture the amount of training data available for each time series in scope of 

this research can be characterized as “Low”, and the distinction that we are making in this 

dimension (calling series of <40 observations as “Low” and >40 observations as “High”) is 

quite situational, given that the maximum available number of values for fitting the model 

is 59. We nevertheless see (Table 16) similar patterns as in the HW case – significantly lower 

standard deviation metrics for experiments with more training data, even though the 

tendency is not captured in the mean RMSE.  

Table 16. SARIMA RMSE by amount of training data across datasets 

  SARIMA RMSE 

 Amount of training data Mean Std. 

Company B 
High 0.180 0.096 

Low 0.176 0.133 

Company C Low 0.226 0.109 

Company A 
High 0.182 0.084 

Low 0.165 0.126 

 

Automatic approach to SARIMA model specification selection has yielded interesting 

results – the most successful combination of parameter specifies a simple arithmetic average 

rather than a complex univariate equation. This fact, alongside with higher mean error term 

as compared to the HW results, makes SARIMA a less favorable option for implementation 

in material forecasting information system. Two main reasons for suboptimal performance 

are named to be intermittent nature of the target series and low amount of training data.  

In the course of results interpretation, we propose to think of SARIMA method, which in 

many cases transformed into a simple arithmetic average, as another benchmark solution. In 
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cross-method comparison the best-performing specification is picked for each time series, 

which means that the performance measurement of a SARIMA model will be no-worse than 

the performance of a simple arithmetic average forecast; thus, if we see evidence of other 

methods beating SARIMA as of this research, it proves that these methods are also capable 

of outperforming the simple average as a benchmark method.  

6.3 Fuzzy Time Series performance analysis 

Fuzzy Time Series modelling, better suited to deal with outliers and intermittency in the 

original observations, have not been tested before as a method for supply chain forecasting 

tasks, and thus represents the most interesting and innovative piece of this research. 

6.3.1 Coverage and outliers 

Overview of successful and failed predictions (Table 17) indicates very low count of series 

that resulted in unsuccessful fitting due to divergence of error optimization techniques. The 

same view highlights the special focus on FTS models through high number of predictions 

conducted with different values of hyperparameters, which allows for granular investigation 

of optimal specification options.  

Table 17. FTS results outlier detection 

  Success Count of experiments 

Company B 
FALSE 18 

TRUE 131598 

Company C 
FALSE 0 

TRUE 121008 

Company A 
FALSE 15 

TRUE 66897 

 

Similar to SARIMA model, FTS does not yield any outlying results, with <0.1% of 

predictions showing RMSE between 1.0 and 2.0, and none – beyond RMSE = 2.0 threshold.  

6.3.2 Performance against benchmark 

Even before direct comparison of aggregated RMSE to that from other model types, we see 

absolute dominance of FTS in terms of its predictive power (Table 18, Fig. 20). 

Benchmarked against naïve forecasts, we see 39.4 to 47.2% increase in accuracy, and ~40% 

decrease in standard deviation measuring the variability of error terms across different series 

and associated testing windows.  
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Table 18. FTS performance against benchmark 

 FTS RMSE Naive RMSE 

 Mean Std. Mean Std. 

Company B 0.125 0.069 0.219 0.123 

Company C 0.156 0.088 0.295 0.153 

Company A 0.121 0.055 0.199 0.101 

 

 

Figure 20. FTS performance against benchmark across datasets 

6.3.3 Model specifications ranking 

Looking at an overview of model specifications that resulted in best performance over 

different time series and testing windows combinations (Table 19), we do not observe any 

clear dominance in any of the dimensions. However, we see that probabilistic weighted fuzzy 

time series seem to have outperformed weighted high order fuzzy time series in most cases 

where complex dependencies need to be captured, alongside with simple high order models 

in cases where the patterns are allegedly more linear. Order values 1 and 2 are evenly present 

in the report. 
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Table 19. FTS configuration options 

Model type Number of fuzzy sets Order Best performance cases 

PWFTS 50 2 1104 

PWFTS 50 1 838 

HOFTS 50 2 769 

HOFTS 5 1 740 

PWFTS 5 1 705 

PWFTS 20 2 698 

HOFTS 50 1 658 

HOFTS 10 2 601 

HOFTS 5 2 593 

HOFTS 20 2 592 

PWFTS 5 2 591 

PWFTS 10 2 585 

HOFTS 20 1 541 

PWFTS 20 1 525 

WHOFTS 5 2 499 

HOFTS 10 1 482 

WHOFTS 10 2 410 

WHOFTS 50 1 400 

WHOFTS 5 1 387 

WHOFTS 20 1 369 

WHOFTS 10 1 340 

PWFTS 10 1 303 

WHOFTS 50 2 293 

WHOFTS 20 2 291 

 

Arguably the clearest pattern with regards to different values of hyperparameters is visible 

in the case of number of fuzzy sets into which the universe of discourse is partitioned. Having 

tested options of [5, 10, 20, 50] characterized as ranging between extremes of insufficiency 

and excess, we see a downward trend (Fig. 21) in RMSE against the value of that parameter. 

At the same time, it is visible that the trend does not extend to higher values of fuzzy sets 

count, taking a slight lift in the rightmost part of the range, implying that the optimal value 

of the parameter resides within the proposed subset.  
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Figure 21. FTS RMSE by number of fuzzy sets in partitioning across datasets 

6.4 Comparison of performance across methods 

Combining information on mean RMSE as a measurement of performance of different 

methods (Table 20), we see confirmation of FTS yielding best results across all datasets in 

terms of both average error term and its standard deviation. All three methods beat the 

benchmark by a margin, which has been mentioned in earlier sections of this chapter.  

Table 20. Comparison of performance of different methods 

 HW RMSE SARIMA RMSE FTS RMSE Naive RMSE 

 Mean Std. Mean Std. Mean Std. Mean Std. 

Company B 0.165 0.084 0.179 0.087 0.125 0.069 0.219 0.123 

Company C 0.210 0.107 0.226 0.109 0.156 0.088 0.295 0.153 

Company A 0.163 0.075 0.178 0.076 0.121 0.055 0.199 0.101 

 

For additional perspective, let us consider in how many cases each model type showed best 

performance (Table 21). Properly configured FTS would be the best choice in almost 60% 

of the cases, followed by HW and Naïve benchmark. Stemming from limitations related to 

amount of training data and intermittency of the values, SARIMA outperforms other models 

in only about 8% of the experiments, in this respect showing worst results among the 

alternatives incl. the benchmark. 
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Table 21. Number of experiments by best performing method 

Model Best performance in … cases 

FTS 7947 

HW 2642 

Naive 1624 

SARIMA 1099 

 

Referring to an earlier remark on SARIMA models transforming into simple arithmetic 

average in a large number of cases, the above results may also claim that Fuzzy Time Series 

and Holt-Winters models outperform both naïve and simple average benchmarks, thus 

proving that more sophisticated time series forecasting techniques have the potential to 

reveal hidden patterns in the real-world supply chain data.  

Fuzzy approach shows particularly good prediction accuracy compared to other methods in 

scope of this research. The main reason for this is its ability to handle the intermittency 

situation by fuzzification of original series, as opposed to the methods that operate on a 

continuous scale. During that part of data processing, zero values alternating with non-zero 

ones are translated into a discrete number of fuzzy sets, which reduces the noise in 

identifying sequential patterns. 
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7 Conclusion 

In this research, we have outlined the theoretical background for supply chain forecasting 

problem, shortlisted and tested three types of univariate time series models using real direct 

materials purchasing data of the industry partners. Next, we summarize the outcomes of the 

research and implications in business context. 

Supply chains of modern enterprises are complex and involve multiple parties. Previous 

research papers unanimously claim that most accurate and interpretable demand forecasts 

require collaborative mechanisms over the length of the supply chain, which, for a variety 

of business reasons, tend to fail. It is therefore important to understand the univariate models 

for direct material forecasting. Holt-Winters exponential smoothing, SARIMA and Fuzzy 

Time Series have been shortlisted for detailed analysis as part of this research; the latter 

being a novel approach to the domain. 

In the quantitative part of the research, we have tested the shortlisted models on three 

independent datasets containing historical direct material purchasing data of industry 

partners. Overall, the results of the research indicate that there is potential to reveal hidden 

intrinsic and seasonal patterns and increase the accuracy of the currently used naïve approach 

by a margin of up to 47% depending on the dataset and the method. We have also shown 

substantial improvement compared to simple statistical forecasts, such as arithmetic average.  

Fuzzy Time Series models have shown the best performance across all datasets, arguably 

due to their ability to reduce the noise caused by intermittency of the original series. Holt-

Winters represents another viable alternative to benchmark methods, showing stable 

improvement to the error metrics. We do not recommend exploring SARIMA in Sievo 

business context, because the amount of training data is insufficient for this model type, 

resulting in its underperformance compared to the alternatives. 

When it comes to method selection for business application, there is a tradeoff between 

forecast accuracy and complexity of implementation. We recommend that those are 

considered for Fuzzy Time Series and Holt-Winters models. The selected method may be 

used to generate automatic forecasts of direct material demand quantity for the series with 

sufficient amount of historical data – those would cover 35-86% of spend in the analyzed 

datasets; benchmark methods, such as simple average or last observed value, can be used for 

others. 
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