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The aim of this thesis is to investigate the predictability of financial markets. The research is con-

ducted by using machine learning and deep learning techniques to predict the next day’s direction of 

the stock index return. Support Vector Machine (SVM) is chosen as a machine learning model and 

Long Short-Term Memory (LSTM) as a deep learning model. The chosen models have proved their 

stock market predicting capability in previous studies. The studies have pointed out the superiority 

of deep learning models in stock market forecasting. This study involves to the debate by conducting 

a case study of the Finnish stock index – OMXH25. The LSTM and SVM models are trained for the 

OMXH25 data, but the models are tested for the three correlated datasets, namely: OMXH25, S&P 

500, and FTSE 100.  

 

The sample data is collected from the period 2009-2019. The data sets included the opening, high, 

low, closing, and adjusted closing price of the indices. The indices' daily returns are calculated from 

the adjusted closing price and transformed to binary variables indicating positive and negative returns. 

The empirical part consists of preprocessing of data where input variables are transformed to percent-

age returns and standardized. The data of OMXH25 was divided into training (80%), validation 

(10%), and testing data (10%). Parameter optimization of both models was conducted by predicting 

the validation set and based on these results, the optimal parameter combinations were chosen. The 

optimized models were used to predict testing sets of all three indices. Predicting performance was 

evaluated by using accuracies, confusion matrices, and precisions. The results of the LSTM and SVM 

models were also benchmarked with a random guess.  

 

The LSTM model outperformed the SVM model and a random guess when predicting the OMXH25, 

S&P 500, and FTSE 100 testing sets. The results of LSTM were the most promising ones, and the 

LSTM model can increase the predicting accuracy over a random guess up to five percent. The SVM 

models' accuracy was over 50%, but the confusion matrices revealed that the predictions were over-

weighted to positives due to the overfitting problem. However, also the SVM model outperformed a 

random guess. The accuracy of the LSTM model was the highest for the OMXH25. The results still 

evince that the other similar indices’ predictability does not significantly decrease when the model is 

trained with one index.   



 

TIIVISTELMÄ 

 

Tekijä:   Emilia Härkönen 
Tutkielman nimi: Osakeindeksin suunnan ennustaminen Support Vector Machine - ja 

Long-Short term memory -menetelmillä – tapaustutkimus OMXH25 da-

talla sovitetuista malleista  

Tiedekunta:  Kauppakorkeakoulu 
Maisteriohjelma: Strategic Finance and Analytics 
Vuosi:   2021 
Pro Gradu -tutkielma:  Lappeenrannan-Lahden teknillinen yliopisto 

73 sivua, 22 kuviota, 27 taulukkoa, 5 liitettä 

Tarkastajat:  Professori Mikael Collan 

  Tutkijatohtori Jyrki Savolainen 

Avainsanat:   Koneoppiminen, Syväoppiminen, SVM, LSTM, Osakemarkkinan ennus-

taminen, Taloudellinen aikasarja 
 

Tämän tutkielman tarkoituksena on tutkia rahoitusmarkkinoiden ennustettavuutta. Tutkimus on to-

teutettu hyödyntämällä koneoppimisen sekä syväoppimisen tekniikoita ja tutkimuksessa ennustetaan 

seuraavan päivän osakeindeksin suuntaa. Koneoppimisen tekniikaksi on valittu Support Vector 

Machine ja syväoppimisen tekniikaksi Long-Short term memory. Nämä mallit ovat esittäneet todis-

teita osakemarkkinan ennustamiskyvystä aiemmissa tutkimuksissa. Tutkimuksissa on osoitettu sy-

väoppimisen mallien olevan parempia osakemarkkinoiden ennustamisessa, ja tässä tutkimuksessa 

otetaan kantaa aiheeseen tapaustutkimuksella OMX Helsinki 25 -indeksistä. LSTM ja SVM mallit 

opetetaan OMXH25 aineistolla, mutta samoja malleja käytetään ennustamaan seuraavia kolmea kes-

kenään korreloituneita indeksejä: OMXH25, S&P 500 ja FTSE 100. 

 

Tutkimusaineisto on ajanjaksolta 2009–2019. Aineistot sisältävät avaus-, korkeimman, alimman, 

päätös- ja oikaistun päätöskurssin indekseistä. Indeksien päivätuotot on laskettu oikaistusta päätös-

kurssista ja ne on muutettu binäärisiksi muuttujiksi, jotka viittaavat positiivisiin tai negatiivisiin tuot-

toihin. Tutkimuksen empiirisen osuuden datan käsittelyssä muuttajat muutetaan tuottoprosenteiksi ja 

standardisoidaan. OMXH25:n data on jaettu opetusdataan (80 %), validointidataan (10 %) ja testaus-

dataan (10 %). Molempien mallien parametrioptimoinnissa ennustetaan validointidataa, minkä tulok-

sien pohjalta valitaan paras yhdistelmä parametreista. Optimoiduilla malleilla ennustettiin jokaisen 

kolmen indeksin testausdataa. Ennustamistehokkuutta on arvioitu käyttämällä tarkkuutta, confusion 

matriiseja ja täsmällisyyttä. LSTM ja SVM mallien tuloksia verrataan myös satunnaisarvaukseen. 

 

LSTM malli suoriutui SVM mallia ja satunnaisarvausta paremmin ennustamaan OMXH25, S&P 500 

ja FTSE 100 indeksien testausdataa. LSTM mallin tulokset olivat lupaavimmat ja malli pystyy kas-

vattamaan ennustustarkkuutta viiteen prosenttiin asti yli satunnaisarvauksen. SVM mallin tarkkuudet 

olivat myös yli 50 %, mutta confusion matriisit paljastivat ennusteiden painottuvan positiivisiin joh-

tuen mallin ylisovittamisongelmasta. SVM malli suoriutui kuitenkin satunnaisarvausta paremmin. 

LSTM mallin tarkkuus oli korkein OMXH25:n dataa ennustettaessa. Tulokset osoittavat silti, että 

toisen samankaltaisen indeksin ennustettavuus ei merkitsevästi laske, vaikka malli on opetettu toisella 

indeksillä. 
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1 INTRODUCTION 

 

Stock market forecasting is a difficult task which many academics and practitioners have 

tried for decades (Kim, 2003; Atsalakis & Valavanis, 2009; Weng, Ahmed & Megahed, 

2017). Successful and reliable forecasting models would reduce the risk investors need to 

bear in their investment decisions (Baek & Kim, 2018). Stock price forecasting is also highly 

motivated by possible profits that can be gained from speculating (Kumar & Thenmozhi, 

2006; Tsantekidis, Passalis, Tefas, Kanniainen, Gabbouj & Iosifidis, 2017).  

 

1.1 Background and motivation 

 

Fama (1965) introduced the efficient market hypothesis (EMH), and according to this the-

ory, stock prices are random, and they are not predictable. Original EMH is categorized into 

three forms which are weak, semi-strong and strong (Fama, 1970). The literature about mar-

ket efficiency is vast, and many researchers have questioned market efficiency (Atsalakis & 

Valavanis, 2009; Bao, Yue & Rao, 2017). As a response to criticisms, Fama (1991) recon-

structed efficiency into three new forms. The first new form of efficiency means that returns 

cannot be predicted by using historical data, and the success of some contrary studies is due 

to measurement errors. Fama replaced semi-strong efficiency with event studies, and he ar-

gued that new information is reflected in prices quickly and efficiently. Inefficiency is found 

only from tests for private information, and there is evidence that corporate insiders have 

information that is not fully reflected in prices. (Fama, 1991) 

 

Despite EMH, stock price forecasting has gained a lot of interest, and according to Baek and 

Kim (2018), methods of forecasting stock prices have changed over time. Hellstörm and 

Holmströmm (1998) divided stock price prediction methodologies into three categories: 

technical analysis, time series forecasting, and machine learning and data mining. Forecast-

ing methods have developed during the last decades. Traditionally, autoregressive integrated 

moving average (ARIMA) and autoregressive moving average (ARMA) models have been 

primarily used in time series forecasting (Pai & Lin, 2005; Ballings, Van den Poel, Hespeels 

and Gryp, 2015). Also, vector autoregression models (VAR) have been used in time series 

prediction (Baek & Kim, 2018). Time series forecasting techniques have performed worse 

than machine learning techniques in the past because of the non-linearity of stock price 
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behavior  (Baek & Kim, 2018; Sezer, Gudelek & Ozbayoglu, 2020). Widely used machine 

learning methods have been artificial neural network (ANN) and support vector machine 

(SVM) (Baek & Kim, 2018). Recently, deep learning techniques have been the best-per-

formed techniques, and they have outperformed traditional machine learning models in the 

field of financial time series forecasting (Sezer et al., 2020).  

 

The challenge of forecasting stock returns is due to the complex characteristics of stock 

returns. Datasets of stock returns are noisy because of high volatility, and forecasting models 

need to capture non-linearity caused by different volatility periods. There might be periods 

of low volatility, which can turn to high volatility rapidly. Periods of recession and expansion 

have different kinds of characteristics that the models need to capture. (Huang, Nakamori & 

Wang, 2005; Atsalakis & Valavanis, 2009) Stock markets are also highly affected by irra-

tional human behavior, which mathematical models often fail to capture. Especially, deep 

learning models have been seen as an answer to overcome this problem. (Tsantekidis et al., 

2017) 

 

1.2 Research questions and the aim of the study 

 

There have been different conclusions about the predictability of stock returns in the litera-

ture (Henrique, Sobreiro & Kimura, 2019; Sezer et al., 2020). This study tests Fama’s effi-

cient market hypothesis and examines, is the stock market predictable or not. Therefore, the 

main research question is: 

 

“How to predict stock indices using machine learning and deep learning techniques?” 

 

It has been shown in the literature that deep learning models have outperformed machine 

learning techniques in financial time series forecasting. The first sub-question is motivated 

by that conclusion (Sezer et al., 2020), and it is:   

 

“How the performance of deep learning techniques and machine learning techniques differ 

in stock index prediction?” 
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Several studies show that the United States stock market and some developing markets such 

as China or Taiwan are predicted successfully (Henrique et al., 2019). The predictability of 

Nordic stock markets is relatively unknown; hence the second sub-question is as follows: 

 

“How do the selected methods perform with data of OMXH25 index in the period of 2009-

2019?” 

 

This study forecasts the daily movements of the OMXH25 index and, precisely, the direction 

of the index. The target of the study is to evaluate whether the Finnish stock market is pre-

dictable or not with two methods that have provided promising results in previous studies. 

This thesis will pursue to supplement the field of stock market prediction and unify the re-

sults of previous studies. If the models were tested only with the OMXH25 data, the relia-

bility of the results or the predictability would be low. Therefore, the data of the S&P 500 

and FTSE 100 are also tested for the models. Thus, also the generalization of those models 

will be evaluated. The last sub-question is: 

 

“How the models, fitted with OMXH25-dataset, generalize to correlated datasets of S&P 

500 and FTSE 100?”   

 

The prediction will be implemented with one machine learning and one deep learning model, 

which have performed well in previous studies. Support vector machine is selected as a ma-

chine learning method and long short-term memory as a deep learning method. The one 

target of this study is to evaluate differences between machine learning and deep learning 

models in their forecasting performance. (Atsalakis & Valavanis, 2009; Henrique et al., 

2019; Sezer et al., 2020)  

 

1.3 Limitations of the study 

 

The main object is to study the predictability of the OMXH25 index. The reliability of the 

study is increased by also predicting the S&P 500 and FTSE 100 by using the same model, 

which is trained for the OMXH25 data. All three indices belong to developed markets, so 

the predictability of developing markets will be left out of the scope in this study. Stock 

markets across the globe have different kinds of characteristics, thus the performance of 
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forecasting models may differ between the markets. Evidence shows that forecasting of 

stock markets of developing countries has been more challenging compared to developed 

ones. (Bao et al., 2017; Zhang, Yan & Aasma, 2020) The second limitation is that LSTM’s 

modifications are left out of the scope of this study. Modifications and extensions of LSTM 

will be discussed in Chapter 3 within the literature review. One of the study’s targets is to 

compare the forecasting performance of machine learning and deep learning. It is imple-

mented by choosing well-performed models in previous studies from both categories. The 

research data is collected from years between 2009 and 2019. The stock market was rela-

tively stable during the study’s time period, and major crises, such as financial crisis and 

stock market meltdown due to the Covid-19 crisis, are not included. Therefore, the predict-

ability of the Finnish stock market during highly volatile periods will not be evaluated in 

this study. 

 

1.4 Structure of the thesis 

 

The primary theory of the study will be discussed in the next chapter. Chapter 2 explains the 

most important machine learning and deep learning concepts from the point of view of this 

study. The most relevant and promising models according to the literature will be theoreti-

cally discussed. The third chapter consists of the literature review where previous stock mar-

ket studies with machine and deep learning methods will be discussed. The empirical part is 

presented in Chapter 4, and also the sample data, forecasting methods, and performance 

evaluation will be presented. Chapter 5 presents the results, and the last chapter is for con-

clusions and a summary of the study.  



 5 

2 THEORETICAL FRAMEWORK 

 

The name of Artificial intelligence (AI) was first introduced at a conference which was organized by 

John McCarthy in 1956. McCarthy’s definition of AI is as follows: “The goal of AI is to develop 

machines that behave as though they were intelligent.” Still, the roots of AI were founded earlier. 

(Ertel, 2011, 10) One of the most significant achievements was the Turing test, where the intelligence 

of machine was tested (Turing, 1950). Nobody has invented an inclusive definition for AI even up 

to this date, but Elaine Rich formulated a generic definition in 1983: “Artificial Intelligence is the 

study of how to make computers do things at which, at the moment, people are better.” (Ertel, 2011, 

2)  

 

As Figure 1 shows, machine learning is one of the subsets of AI, and it is used in many fields. It is 

used, for instance, in voice recognition, stock trading, advertising, and medicine. There have been 

suggested several definitions for machine learning. (Bell, 2020, 1-8) One of the earliest definitions 

for machine learning was introduced by Arthur Samuel (1959) that machine learning “gives comput-

ers the ability to learn without being explicitly programmed.” Deep learning is a subset of machine 

learning. Briefly explained, deep learning differs from normal neural networks because deep learning 

models have more than one hidden layer (Schmidhuber, 2015). Next, machine learning and deep 

learning and some of their relevant methods for this study are introduced.   

 

 

 

Figure 1. The theoretical framework of the study (Schmidhuber, 2015; Bell, 2020, 3) 
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2.1 Machine Learning 

 

Machine learning can be classified into three classes. Those classes are supervised learning, 

unsupervised learning, and reinforcement learning, as shown in Figure 2. Supervised learn-

ing requires that correct answers to the problem are known in the training phase. Once the 

model has learned patterns from the training data, the model can be used in regression or 

classification tasks. Methods concerning unsupervised learning learn new features or pat-

terns from the training data without having correct answers. Problems are often related to 

clustering and dimensionality reduction. Clustering and dimensionality reduction are both 

methods where the target is to group similar kinds of features. Reinforcement learning is 

based on trial and error, and an agent is trying to learn the most feasible solution to solve the 

given problem. (Dey, 2016) Because this study has applied support vector machine as a 

machine learning technique, only the path of support vector machine is presented in detail. 

Classification methods classify observations to the classes, and one observation has to be-

long only to one class (Bramer 2020, 21-22). Part of the widely used machine learning meth-

ods, such as SVM, random forest, and artificial neural network, is introduced in the follow-

ing sections (Henrique et al., 2019). 

 

 

 

Figure 2. The path from the concept of machine learning to support vector machine (Dey, 

2016) 
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2.1.1 Support Vector Machine 

 

Cortes and Vapnik (1995) published the seminal study of support vector machines (SVM). 

The main idea in SVM is to fit a separating hyperplane with the widest feasible margin to 

training data. The points which lie in the margin line are called support vectors, and they 

define boundaries to a binary class. (Cortes & Vapnik, 1995; Burges, 1998; Kim, 2003) The 

middle line of the hyperplane is called a linear discriminant (Provost & Fawcett 2013, 92-

94). The fitting process of SVM is the following: input vectors are mapped into high-dimen-

sional feature space, which is determined beforehand. The mapping process is performed 

with some nonlinear functions, called Kernel functions which are represented below shortly. 

Next, a linearly separable decision surface is constructed in the high-dimensional feature 

space, and this surface is the nonlinear decision boundary in the original feature space. The 

optimal separating hyperplane, which can also be called a maximum margin hyperplane, is 

constructed in the high-dimensional space. (Cortes & Vapnik, 1995; Kim, 2003; Huang et 

al., 2005) 

 

Narrow mathematical expressions of the linearly separable case are presented, and equations 

follow the notation of Kim (2003). Studies of Cortes and Vapnik (1995), Burges (1998), and 

Evgeniou, Pontil and Poggio (2000) illustrate more complex expressions of SVM. Equation 

(1) presents a hyperplane that separates three features in the binary classification task 

 

!	 = 	$! 	+ 	$"&" 	+ 	$#&# 	+ 	$$&$,																																																(1) 

 

where ! is the result, &% are the feature vectors and $% are corresponding weights that the 

SVM needs to learn.  The hyperplane is determined by $% parameters from equation (1) and 

equation (2) represent the maximum margin hyperplane concerning the support vectors: 

 

! = + +	,-% !%&(.) ∙ &,																																																							(2) 

 

where !% is the label of the trained observation and &(.) ∙ illustrates the dot product. The 

support vectors are &(.) and the vector & represents the testing observations. This time, 

parameters + and -% determine the hyperplane. Determining the parameters + and -% as well 
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as identification of support vectors corresponds to solving a linearly constrained quadratic 

programming problem. 

 

Equation (3) is a high-dimensional version of equation (2), and it is used to solve nonlinear 

decision boundaries for a separable case as follows: 

 

! = + +	,-% !%1(&(.), &).																																																							(3) 

 

Function 1(&(.), &) represents the Kernel function which is used to create high-dimensional 

feature space. Common kernels are: 

 

polynomial kernels (4), 

 

1(&, !) = (&! + 1)& 																																																					(4) 

 

radial basis functions kernels (5), 

 

1(&, !) = 5&6(−1/9#(& − !)#)																																									(5)  

 

and sigmoid functions (6) (Hochreiter & Schmidhuber, 1997) 

 

;(&) =
1

1 + 5&6(−&)
	.																																																							(6) 

 

 

In equation (4), = is the degree of the polynomial kernel and 9# is the bandwidth of the 

Gaussian radial basis function kernel in equation (5). (Kim, 2003) 

 

In a case where there is no perfect linear discriminant to classify all data points from the 

training data, Cortes and Vapnik (1995) introduced the soft margin hyperplane. In that case, 

SVM optimizes the trade-off between the training error and the width of the margin. As a 

result, the sum of training errors is minimized, and the margin for correctly classified obser-

vations is maximized in a unique solution. (Cortes & Vapnik, 1995; Kim, 2003) 
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The advantage of SVM is its capability always to find global optimum and avoiding the 

overfitting problem. Kim (2003) argues that the excellent generalization capability of SVM 

is due to the structural risk minimization principle. This principle means that the upper bound 

of generalization error is minimized rather than training error. SVM has only three 

parameters that need to be determined. The parameters are kernel function, kernel parameter 

9# and upper bound of the generalization error. This upper bound determines the trade-off 

between the width of the margin and the training error. (Tay & Cao, 2001; Kim, 2003)  

 

2.1.2 Artificial neural network 

 

Artificial neural networks (ANNs) mimic the structure of human brains in their training pro-

cesses (Sarle, 1994). Neural networks can be grouped into single-layer and multilayer neural 

networks. Single-layer networks have a single input layer and an output node, and this can 

be called a perceptron. The structure of a simple perceptron resembles classical linear re-

gression. The single-layer network has as many nodes (=) in the input layer as it has features 

or dependent variables. Predicted values in the case of a binary classification task are com-

puted as equation (7) shows (Aggarwal 2018, 1-2, 4-6):  

 

!> = ?.@A{CD ∗	FG + +} = ?.@A	{,$'&' + +
&

'("
},																																									(7) 

 

where CD  represents a set of weights and FG represents input values. A sign function is used 

to convert aggregated input values to class labels. In other words, the sign function is used 

as an activation function. Other classical activation functions are, for instance, sigmoid, tanh 

function, and rectified linear unit function or their derivatives. In equation (7), b represents 

a bias neuron, and it is used to map predicted values to the desired form. (Aggarwal 2018, 

5–17) 

 

Single FG instance is fed to the network in small batches or individually one by one in a 

training process to produce a prediction. Weights are iteratively updated based on some error 

term, for example, J(FG) = (! − !>).  However, in practice, the loss function needs to be 
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smoothed. Learning rate is controlled through parameter -. The algorithm loops all training 

observations, and weights are optimized until convergence is reached. Each data point can 

cycle through the system several times, and this cycle is called an epoch. (Aggarwal, 2018, 

7) Gradient descent or updating of weights CD  can be written (Aggarwal, 2018, 7): 

 

CD ⟸	CD + 	-J(FG)F	D .																																																																(8) 

 

Multilayer networks contain one or multiple distinct computational layers, which are called 

hidden layers. The structure of a simple ANN without bias term is illustrated in Figure 3. 

Data flows forward from inputs to hidden layer or layers where computation occurs and 

afterward moves to the output layer. This kind of structure is called a feed-forward network. 

In a standard structure, all neurons are connected to all neurons from the next layer. 

(Aggarwal 2018, 17–18) 

 

 

Figure 3. Structure of a simple ANN (Kara, Boyacioglu & Baykan, 2011) 

 

 

Multilayer networks are trained with a backpropagation algorithm, which can be divided 

into two phases. The first is the forward phase, where inputs are fed to the network, and 

training error and derivative of the loss function are calculated. The second is the backward 

phase, where learning starts from the output and proceeds backward to the input layer. The 

gradient of the loss function for the different weights is calculated using the chain rule of 

differential calculus. (Aggarwal, 2018, 21) Typically, ANN is said to perform very well in 

generalizing arbitrary functions, but they may get into problems in the training process. 
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Backpropagation may cause vanishing gradient or exploding gradient problems. (Dezsi & 

Nistor, 2016) The vanishing gradient problem refers to a situation where the biggest product 

decreases exponentially, causing the error to vanish, and thus nothing is learned. Exploding 

vanishing problem is the opposite, and the largest error increase exponentially, causing 

weights to oscillate, and learning becomes unstable. (Hochreiter & Schmidhuber, 1997) 

 

A neural network consists of several neurons that are connected processors in a single layer. 

Each one of the neurons produces a sequence of real-valued activations. Input neurons are 

activated when the environment adds inputs to the model, and weighted connections from 

previously activated neurons activate other neurons. (Schmidhuber, 2015) 

 

2.1.3 Random forest 

 

Random forests (RF), which were first introduced in a study by Breiman (2001), are ensem-

ble models because they are constructed from several decision trees. Individual decision 

trees are built by using only a random subset of independent variables to make classifica-

tions. These random subsets are the reason why RF can handle very well data, where are a 

vast number of features. Each decision tree is used to give the final class label in a training 

process. (Murty & Devi, 2015 144-145) Breiman (2001) showed that random forests are 

beneficial to use in classification and regression problems, and they also provide information 

of variable importance. One benefit of RF is that due to the law of large numbers, they will 

always converge, so the overfitting problem is avoided with low generalization error. 

Broader descriptions and mathematical details can be found from references. (Breiman, 

2001) 

 

2.2 Deep learning 

 

Deep learning refers to a neural network with multiple processing layers, and therefore it 

models data with a high level of abstraction. Deep learning models extract beneficial features 

and complex functions of input data automatically using a general-purpose learning proce-

dure which is the main reason for their superiority. Deep learning models are used in many 

fields to solve complex problems like image recognition, speech recognition, drug discov-

ery, and genetics. Deep learning models typically require large amounts of data. The basic 
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version of the deep learning model is a deep multilayer perceptron (DMLP) which is nothing 

more than a typical ANN introduced earlier, with more than one hidden layer (Figure 4). 

Recurrent neural networks and convolutional networks and their modifications are presented 

next. (Lecun, Bengio & Hinton, 2015; Sezer et al., 2020)  

 

 

Figure 4. Example of deep learning model (Lecun et al., 2015) 

 
2.2.1 Recurrent neural network 

 

A recurrent neural network (RNN) uses sequential data such as speech or time series (Sezer 

et al., 2020). RNN models include a state vector in their hidden units, and this state vector 

consists of information about earlier elements of a sequence. In their training process, every 

input sequence is processed by one element at a time. (Lecun et al., 2015) The main differ-

ence between a fully connected neural network (FNN) and RNN is that RNN processes ear-

lier and current inputs simultaneously. RNN uses internal memory in input processing, 

which is another difference between those models. (Sezer et al., 2020)  

 

The computing process of RNN is the following: hidden units which are grouped under node 

s and have values ?) given time t, get inputs from previous time steps. This feedback and 

one-time step delay are presented with a black square in Figure 5. This feedback is how RNN 

maps elements of the input sequence &) into elements of the output sequence M). Every M) is 

dependent on all the previous &′) when O′ ≤ O. The same parameters, which are matrices U, 

V, W, are used for every time step.  
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Figure 5. Forward computation of RNN and unfolding in time (Lecun et al., 2015) 

 
The backpropagation can be used to calculate the total error of derivative for all the states ?) 

and each parameter in a computational graph of the unfolded network. The unfolded network 

is presented on the right side of Figure 5. (Lecun et al., 2015) The major problem in the 

training process of RNN is that backpropagated gradients grow or get smaller, and when this 

iterates for many time steps, it causes gradients to explode or vanish (Bengio, Simard & 

Frasconi, 1994).  

 
2.2.2 Long-Short Term Memory 

 

Hochreiter and Schmidhuber (1997) first introduced long-short term memory (LSTM), and 

it is one version of RNN. Both models use sequential data, such as time series data or speech. 

As stated earlier, the main difference between a standard neural network and RNN is that 

RNN unit uses current and previous inputs simultaneously, and recurrent networks are built 

to model long-term dependencies. (Sezer et al., 2020) 

 

LSTM models have an input layer, several hidden layers, and an output layer. The number 

of neurons in the input layer corresponds to the number of independent variables, and the 

output layer has two neurons in the case of the binary classification task. (Fischer & Krauss, 

2018) Vanishing and exploding gradient problems cause problems in the training phase of 

vanilla RNN. However, the standard LSTM can overcome these problems by constant error 

flow through constant error carousels. (Hochreiter & Schmidhuber, 1997; Sak, Senior & 
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Beaufays, 2014) This improvement is gained by adding more complex units, which are 

memory cells in a hidden layer, and those cells are the main reason for the success of LSTM 

to model long-term dependencies. As illustrated in Figure 6, a memory cell includes a forget 

gate (;)), an input gate (.)), and an output gate	(M)), and these gates are used to adjust a cell 

state (?)). Briefly said, the input gate controls the arrival of new information to the cell state, 

and the forget gate controls what information will be removed from the cell state. The output 

gate is used to decide what information is used as an output of the cell state. (Hochreiter & 

Schmidhuber, 1997; Fischer & Krauss, 2018) 

 

 

Figure 6. LSTM memory cell (Fischer & Krauss, 2018) 

 
Next, the memory cell of LSTM is discussed in more detail by using the study of Fischer 

and Krauss (2018). On the left side of Figure 6 is the cell state ?)*" and a vector of output 

ℎ)*" from the previous memory cell and an input vector &). First, on the left side is the forget 

gate, which was added to the first version of LSTM in a study by Gers, Schmidhuber and 

Cummins (2000). There activation values ;) are computed based on the input &) at timestep 

t and the outputs ℎ)*" from the previous time step t-1. Both values are scaled with a sigmoid 

function in equation (9):  

 

;) = 	?.@RM.=(C+,-&) +	C+,.ℎ)*" +	++).																																													(9) 
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Values are scaled from zero to one, and zero means that information is completely removed, 

and one means that information is fully retained in the previous cell state ?)*". W denotes 

weight matrices, and b stands for a bias vector. (Fischer & Krauss, 2018)  

 

The input gate, which is the middle part of Figure 6, is discussed next. The second step of 

the memory cell is twofold, where the input gate decides what information should be added 

to the cell state	?). First, candidate values ?̃), which could be added to the cell state, are 

calculated using tanh function in equation (10) (Fischer & Krauss, 2018): 

 

?̃) = 	OUAℎ(C/̃,-&) +	C/̃,-ℎ)*" +	+/̃).																																						(10)    

  

The second part is to calculate activation values .) which are updated. Activation values are 

calculated with equation (11) (Fischer & Krauss, 2018): 

 

.) = 	?.@RM.=(C%,-&) +	C%,.ℎ)*" +	+%).																																						(11)  

 

Calculations from previous steps are used to update the new cell state ?) in equation (12):  

 

?) =	;) ∘ ?)*" + .)	 ∘ ?̃) ,																																																												(12) 

 

where activation values ;) contain information which values are forgotten, ∘ denotes 

elementwise Hadamard product, activation values .)	contain information from values which 

will be updated and how much, and ?̃) denotes the candidate values. (Fischer & Krauss, 

2018) 

 

Finally, on the right side of Figure 6, the output of the memory cell ℎ) is calculated by using 

equations (13 and 14):  

 

M) = 	?.@RM.=(C2,-&) +	C2,.ℎ)*" +	+2),																																										(13) 

 

ℎ) =	M) ∘ OUAℎ(?)).																																																												(14) 
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Equation (14) is used to determine which parts from a cell state ?) will be outputted. Then 

these values are multiplied with cell state ?) which are first scaled to the interval (-1,1) with 

the tanh function. (Fischer & Krauss, 2018) 

 

2.2.3 Convolutional neural network 

 

A convolutional neural network (CNN) is constructed from convolutional layers based on 

the convolutional operation. CNN is a widely used model in classification tasks that include 

image or object processing. (Sezer et al., 2020) CNN takes input data in the form of multiple 

arrays.  

 

CNN structure is based on four ideas, and the structure of CNN can be divided into several 

stages. One stack of layers comprises a convolutional layer, some nonlinear activation func-

tion, and a pooling layer. There can be many of these stacks in consecutive form. (Lecun et 

al., 2015) 

 

The first idea is local connections in the first stage, which include a convolutional layer. This 

layer notices local similarities of features from the previous layer. Typically, pooling layers 

follow convolutional layers, and feature maps from the convolutional layer pass filtered in-

formation to the next layer and reduce dimensionality. Pooling is the second main idea in a 

CNN structure, and the object of pooling layers is to group similar features. In the case of 

array data, there are often local values that form a distinctive group, and these values are 

commonly highly correlated. The third key idea of CNN architecture is shared weights, 

which stems from the idea that the distinctive groups can appear in any part of the array, 

hence units in different parts of the array should have the same weights. The fourth idea 

comes from using multiple layers. CNN can be trained with backpropagation, just like a 

vanilla neural network. (Lecun et al., 2015) 
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3 LITERATURE REVIEW 

 

Many literature reviews as Atsalakis and Valavanis (2009), Henrique et al. (2019), and Sezer 

et al. (2020) have discussed the prediction of stock prices. Authors of literature reviews have 

categorized research papers in many ways. The most important factors to classify papers 

have been the target variable (stock index or individual stocks) and is it forecasted price or 

direction of price. Also, the forecasting method, input data, and the forecasting period have 

been the classifiers. Multiple stock exchanges are predicted in previous studies, and abbre-

viations of the exchanges are explained in Table1. According to the literature, several dif-

ferent forecasting methods have been developed, and deep learning models have increased 

their popularity in the last years. In the following sections, the previous literature about fore-

casting the stock price is discussed. (Atsalakis & Valavanis, 2009)  

 

Table 1. Abbreviations of stock exchanges 
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The three most used machine learning techniques are SVM, ANN, and RF, so chapter 3.1 

focuses on those methods (Henrique et al., 2019). Chapter 3.2 will discuss studies where 

mainly deep learning models are used in stock market prediction. LSTM and different vari-

ations have been implemented as a primary method in many of the discussed papers. All of 

the cited studies are summarized in Table 2. The studies of literature review have been cho-

sen by following studies of Atsalakis and Valavanis (2009), Henrique et al. (2019), and Sezer 

et al. (2020). The set of discussed studies is also complemented by selecting articles that are 

often referred in other studies which were selected initially. 
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Table 2. Summary of the cited articles 
Reference Year Data Forecasting Variables Method The best performed Performance measures Frequency Period

object methods
Althelaya et al. 2018 S&P 500 price closing prices BLSTM, SLSTM, LSTM, MLP 1. BLSTM 2. SLSTM MAE, RMSE, R^2 daily data 2010-2017

3. LSTM 4. MLP
Baek 2018 10 stocks of S&P 500, price closing prices LSTM, modified LSTM, 1. Modified LSTM 2. LSTM MAPE, MAE, MSE daily data 2000-2017
Kim 10 stocks of KOSPI200 RNN, DNN 3. RNN 4. DNN
Ballings et al. 2015 5767 stocks from direction 81 financial indicators RF, AB, KF, SVM, ANN, 1. RF 2. SVM AUC yearly data 2009-2014

European market and economic variables LOG, KNN
Bao et al. 2017 CSI 300, Nifty 50, HSI, price OHCL, 12 technical indicators, WSAEs-LSTM, WLSTM, LSTM, 1.WSAEs-LSTM 2. WLSTM MAPE, R, Theil U daily data 2008-2016

N225, S&P 500, DJIA 2 macroeconomic variables RNN, buy-and-hold method 3. LSTM 4. RNN
Chen et al. 2003 TWSE direction several economic variables PNN, GMM, random walk PNN accuracy returns monthly data 1982-1992

and index closing price
Chen et al. 2015 SSE, SZSE 7 return OHLCV LSTM LSTM Accuracy daily data 1990-2015

categories
Chong et al. 2017 38 stock returns of KOSPI returns stock returns DNN, AR DNN NMSE, RMSE, 5 minute data 2010-2014

MAE, MI
Dezsi 2016 BRD stock from Romania return OHLC in logarithmic returns LSTM, TARCH 1. TARCH 2. LSTM RMSE, MAE daily data 2001-2016
Nistor
Enke 2005 constituents of S&P 500 direction financial and economic DNN, GRNN, PNN, DNN for classification RMSE, COR, monthly data 1976-1999
Thawornwong and level variables linear regression sign of returns
Fischer 2018 constituents of S&P 500 direction total return indices LSTM, RF, DNN, LOG LSTM accuracy, return (%), daily data 1992-2015
Krauss of closing prices STD, Sharpe ratio
Hiransha et al. 2018 3 stocks from NSE, price closing prices MLP, RNN, LSTM, CNN, ARIMA 1. CNN 2. LSTM MAPE daily data 1996-2017

2 stocks from NYSE
Kara et al. 2011 ISE direction 10 technical indicators ANN, SVM 1. ANN 2.SVM Accuracy daily data 1997-2007
Kim 2003 KOSPI direction 12 technical indicators SVM, ANN, CBR SVM Accuracy daily data 1989-1998

Liu 2020 S&P 500, DJIA, return closing prices EWT-dpLSTM-PSO-ORELM and Hybrid framework MAE, MAPE, daily data 2010-2017
Long China Minsheng Bank stock its versions are used as a benchmark RMSE, SDE
Pai 2005 10 stocks from price closing prices ARIMA, SVM, Hybrid of ARIMA 1. Hybrid of ARIMA and SVM, MAE, MAPE, daily data 2002
Lin NYSE and Nasdaq and SVM 2. SVM, 3. ARIMA MSE, RMSE (3 months)
Samarawickrama 2017 3 stocks from CSE price two days lagged CHL prices LSTM, RNN, GRU, MLP 1. MLP 2. LSTM (most often MAD, MAPE daily data 2002-2013
Fernando the best) 3. RNN 4. GRU
Selvin et al. 2017 3 stocks from NSE price Minute wise stock price CNN, LSTM, RNN, ARIMA CNN RMSE Minute wise 2014-2015

data
Tay 2001 5 futures (S&P 500, CAC40, direction closing prices as 5 day SVM, DNN SVM NMSE, MAE, DS, daily data 1992-1999
Cao 3 government bonds) lagged percentage differences  WDS
Tsantekidis et al. 2017 5 stocks from OMXH direction high-frequency CNN, MLP, SVM CNN Kohen's kappa, recall, high-frequency 2 weeks

limit order book precision limit order book in 2010
Zhang et al. 2017 50 stocks from US direction opening prices SFM, LSTM, AR 1. SFM 2. LSTM 3. AR Average square error daily data 2007-2016

Zhang et al. 2020 SSE, SZSE, GEM, return closing prices CEEMD-PCA-LSTM and different 1. CEEMD-PCA-LSTM RMSE, MAE, daily data 2010-2018
S&P 500, DJIA, HSI versions of it, RNN, LSTM 2. LSTM 3. RNN NMSE, DS
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3.1 Stock market prediction with machine learning 
 

SVM technique is a broadly used method in stock prediction. A study by Kim (2003) is 

seminal research and the second-highest cited machine learning paper according to Henrique 

et al. (2019). Kim forecasted Korea composite stock price index with SVM, Case-Based 

Reasoning (CBR), and Back-propagation neural networks (BPN) methods. In CBR, Kim 

(2003) uses five nearest-neighbors based on Euclidean distance to retrieve relevant cases for 

the prediction. BPN is often referred to as ANN or MLP because, most often, they all are 

the same artificial neural networks that are trained with backpropagation (Atsalakis & 

Valavanis, 2009; Schmidhuber, 2015). The target variable is the change in price direction to 

up or down in the next day.  

 

Evidence shows that SVM outperforms compared methods in the study by Kim (2003), as 

also Tay and Cao (2001) stated in their study. Tay and Cao (2001) compared the forecasting 

ability of SVM and BPN with five different futures. According to their study, SVM exceeded 

BPN in every performance criteria, hence SVM forecasted price direction better than BPN. 

Tay and Cao (2001) argued success of SVM was due to four reasons. The first is that SVM 

minimizes an upper bound of the generalization error instead of training error, leading to 

better generalization than BPN. The other reason is that there are only three parameters in 

SVM which have to be determined, and they are a penalty parameter, gamma, and kernel 

function. BPN includes much more parameters. The third significant reason is that BPN is 

easily stuck in a local minimum in the training section whether SVM finds a global mini-

mum. The last reason is the tendency of BPN for overfitting. (Tay & Cao, 2001) 

 

Pai and Lin (2005) used a hybrid ARIMA and SVM model to predict ten different stocks 

and a forecasting period was always one day. A one-step forecasting period was used to 

avoid problems of the cumulative errors from the previous forecasts. The hybrid model per-

formed better than ARIMA or SVM models individually with all used performance 

measures. ARIMA model is data-oriented, and it adapts to the data structure by using lagged 

values and error terms. The hybrid model calculates a residual of ARIMA model, and SVM 

is used to estimate this residual, thus predictions of both models are merged. This study 

concluded that the hybrid models should be used instead of individual models allowing the 
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use of the best features of different models. In this case, those features were ARIMA’s ability 

to model linearity and SVM’s ability to model non-linearity. (Pai & Lin, 2005) 

 

In another study, the authors forecasted the price direction of the Istanbul Stock Exchange 

using ANN and SVM models and ten technical indicators. ANN was more accurate than 

SVM, but both models were better than earlier studies in Turkey’s stock market. A polyno-

mial function was better than a radial basis function in SVM. The authors also optimized the 

degree of the polynomial function, gamma constant of radial basis function, and the regular-

ization parameter. In the case of ANN, the authors optimized the number of neurons, value 

of learning rate, momentum constant, and the number of iterations. Although both models 

proved to be efficient in forecasting stock index, it is still possible to improve classification 

accuracy by enhancing choosing of parameters or including macro variables, according to 

the authors. (Kara et al., 2011) 

 

Chen, Leung and Daouk (2003) examined forecasting of stock index in developing markets. 

They forecasted the price direction of the Taiwan Stock Index. Chen et al. (2003) used a 

probabilistic neural network (PNN), a generalized method of moments (GMM) with a Kal-

man filter, and a random walk method. PNN’s main difference from ANN is that PNN uses 

probability density functions and a Bayesian decision rule. Kalman filter is an updating 

method that uses current estimates based on previous estimates. In other words, the current 

data is added to previous estimates. GMM is a parametric estimation method that handles 

heteroscedasticity and serial correlation better than ordinary least-squares (OLS) regression. 

The benefits of GMM stems from the Hansen-White variance-covariance matrix, which is 

estimated from residuals of OLS. The PNN had the best performance compared to other 

models. The authors argued that it is partially due to the PNN’s ability to handle outliers and 

noisy data. The trading performance was the best with the PNN forecasts, and it outper-

formed the buy-and-hold strategy. The authors used macro variables and technical analysis 

indicators as input variables. (Chen et al., 2003) 

 

Enke and Thawornwong (2005) predicted the S&P 500 index using different neural net-

works, and the aim was to examine that it is more beneficial to predict the price or the direc-

tion of price. The authors used an information gain data mining analysis to choose the correct 

variables for neural network models. According to data mining, they used 15 out of 31 
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economic and financial variables. Results imply that forecasting the S&P 500 index using 

classification methods was the most efficient way to predict; hence, price direction was the 

most accurate. It proved to be the most accurate predicting method with statistic measures, 

and it was also the most productive method in a trading simulation. The results were also 

compared to linear regression and the buy-and-hold strategy. The prediction ability of the 

linear model was the weakest of all models.  Also, the lack of calculating transaction cost 

needs to be noted, hence practical advantages remained unproven in the paper, although the 

superiority of neural networks was irrefutable. Still, the results indicated that even neural 

network models were not accurate in their predictions. (Enke & Thawornwong, 2005) 

 

Ballings et al. (2015) predicted the stock price direction for the one-year timestep of 5767 

stocks from the European market, and they compared ensemble methods with single classi-

fiers models. That study differs from the majority of papers because it concerns European 

stock markets, and besides, there are more benchmark models than usually. The study was 

also one of the first papers where several ensemble methods were compared. RF, AdaBoost 

(AB), and Kernel factory (KF) were used as ensemble methods, and SVM, Neural network 

(NN), logistic regression, and K-Nearest neighbors (KNN) were used as single classifier 

models. AB updates weights sequentially for training data in its training procedure, and in 

each iteration, more weight is assigned to misclassified observations. KF randomly divides 

the training data into partitions which are used to train a random forest. KNN is a classifica-

tion algorithm that uses k-nearest observations to predict the class of new observations. As 

the authors assumed, ensemble methods outperformed individual classification models be-

cause all three ensemble methods were ranked to the top four methods. RF was the best-

performed method, and the second-best was SVM. RF outperformed all the other models 

significantly except SVM. (Ballings et al., 2015)    

 

 

3.2 Stock market prediction with deep learning 
 

Deep learning models have proved to be better than traditional machine learning models in 

many papers about financial time series forecasting (Sezer et al., 2020). Fischer and Krauss 

(2018) forecasted the price trend of S&P 500 index constituents from 1992 until 2015. They 

used four different methods: LSTM, random forest, a standard deep neural net (DNN), and 
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logistic regression. LSTM and RF performed clearly better than the standard deep neural net 

and the logistic regression. LSTM outperformed all three memory-free classification meth-

ods. Only during the financial crisis, starting from 2008 until 2009, random forest outper-

formed LSTM. LSTM was able to produce significant daily returns, which were also statis-

tically significant before transaction costs.  After the costs, LSTM was still the most accurate 

forecasting model, and it generated positive returns. Nevertheless, the authors noticed that 

models’ forecasting ability decreased during the last years of the research period, starting 

from 2010. (Fischer & Krauss, 2018)  

 

Also, Baek and Kim (2018) predicted stock prices with LSTM, and the results were prom-

ising. Results improved further by using two LSTM modules. Another module was used to 

predict prices, and the other module was used to avoid overfitting.  They used ten stocks 

from the Korea composite stock price index (KOSPI200) and ten stocks from the S&P 500 

indices. (Baek & Kim, 2018) In 2018, Hiransha, Gopalakrishnan, Menon and Soman pre-

dicted stock prices of three stocks from the National stock exchange (NSE) of India and two 

stocks from the New York stock exchange (NYSE). The paper differs from other similar 

papers because deep learning models were trained with a single stock price data from NSE, 

and then the same model was used to predict other stock prices. Four of the applied deep 

learning models clearly outperformed ARIMA model. When deep learning models were 

compared, CNN was the most accurate model to predict stock prices, and it was only slightly 

more accurate than LSTM. (Hiransha et al., 2018) Selvin, Vinayakumar, Gopalakrishnan, 

Menon and Soman (2017) also used the data of one stock as training data and tested the 

model for all three stocks listed in NSE. Also, in that study, three deep learning models 

clearly outperformed ARIMA model, and of the used deep learning models, CNN was the 

best performer. CNN was able to adapt to changing trends in the time series, whereas RNN 

and LSTM used previous lags for prediction, hence the changes in the structure of the data 

could not be captured. (Selvin et al., 2017)  

 

Several expansions have been suggested to LSTM, like Stacked LSTM (SLSTM) and bidi-

rectional LSTM (BLSTM). SLSTM is an LSTM model where are stacked multiple LSTM 

layers. BLSTM differs from the other models in the way that it uses future and past values 

in its training procedure when vanilla LSTM uses only past values. In the study of Althelaya, 

El-Alfy and Mohammed (2018), more developed LSTM models evidenced that they were 
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the most accurate models when forecasted the development of the S&P 500 index with short- 

and long-term periods. According to the authors, all three LSTM models outperformed the 

single-layer MLP model, while BLSTM is the most accurate. (Althelaya et al., 2018)  

 

Liu and Long (2020) also extended vanilla LSTM but used only closing prices of three stock 

indices to predict a one-time step ahead. The authors introduced a complex hybrid model 

that consists of several parts: empirical wavelet transform (EWT), dpLSTM, particle swarm 

optimization (PSO), and outlier robust extreme learning machine (ORELM). EWT builds 

wavelets adaptively and is a signal processing technique. It is used to preprocess the input 

data for the LSTM layers. LSTM with dropout strategy is the main predictor of the model, 

and PSO is used to optimize LSTM parameters together with dropout strategy. ORELM 

corrects the forecasting errors of LSTM and enhances robustness and avoids overfitting 

problems. Errors of LSTM and corrections of ORELM are summed up and then the final 

prediction of the model is obtained. The hybrid model was called EWT-dpLSTM-PSO-

ORELM and the model outperformed all benchmark models. (Liu & Long, 2020)  

 

Results of Zhang et al. (2020) are consistent with the papers of Althelaya et al. (2018) and 

Liu and Long (2020) because the proposed hybrid model (CEEMD-PCA-LSTM) was the 

best model to predict the price trend of several stock indices. Standard LSTM was extended 

with complementary ensemble empirical mode decomposition (CEEMD) and principal com-

ponent analysis (PCA). CEEMD was used for sequence smoothing and it split fluctuations 

in trends to intrinsic mode functions (IMF), which denoises the complex signal. Then series 

of IMF are processed with PCA in order to reduce dimensionality and extract only relevant 

features. In the next module, high-level and abstract features are used as input to the LSTM 

model. Finally, the predictive synthesis module combines all the predicted values to provide 

the final prediction. Results showed that deep learning models were more accurate in pre-

dicting developed stock markets compared to developing markets. (Zhang et al., 2020) The 

difference in predicting accuracy is also noted in the study of Bao et al. (2017).  

 

In the literature of the stock price prediction, there also exist studies where the input data has 

included other features in addition to data of stock prices. Tsantekidis et al. (2017) used a 

high-frequency limit order book which consisted of 10 orders of bid and ask sides. Every 

observation consisted of bid or ask price and their volume. 4.5 million observations from 5 
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Finnish stocks were used to predict price movements to up, down, or stay in place. CNN was 

significantly and clearly the best model with every tested prediction horizon compared to 

linear SVM and single layer MLP. (Tsantekidis et al., 2017) Bao et al. (2017) forecasted six 

different stock indices and used technical indicators and macroeconomic variables in addi-

tion to the typical stock price data. They developed a novel deep learning model where 

wavelet transforms (WT), stacked autoencoders (SAEs), and LSTM were combined. WT is 

first used to decompose stock prices to eliminate noise. SAE is the central part of the model, 

and it generates deep high-level features which are afterward used in the LSTM model to 

make final predictions. According to results, novel WSAEs-LSTM outperformed wavelet 

LSTM (WLSTM), LSTM, RNN, and the buy-and-hold methods statistically significantly 

when measured with accuracy, error, and trading profits. The prediction performance of all 

the models was consistently better in developed markets compared to developing markets. 

(Bao et al., 2017) 

 

Some evidence is presented where deep learning models do not outperform traditional time 

series forecasting methods, as Dezsi and Nistor (2016) and Chong, Han and Park (2017) 

argued in their studies. In the study of Chong et al. (2017) only a minor advantage of deep 

neural network (DNN) over autoregressive model (AR) was found with testing data. Despite 

the weak performance of DNN, the authors highlighted that DNN is convenient to implement 

in practice because it does not require preprocessing of data nor earlier knowledge of inde-

pendent variables. (Chong et al., 2017) Either Chen, Zhou and Dai (2015) did not get supe-

rior results in their study where they predicted stock returns of Shanghai (SSE) and Shenzhen 

(SZSE) stock exchange. They categorized returns into seven classes, and the best accuracy 

that they achieved was 27.2 %, when the accuracy of random guess was 14.3 %. The accu-

racy increased due to adding features to the model, and the best results were obtained by 

using only stocks from SSE 180. (Chen et al., 2015) However, deep learning models have 

mostly outperformed traditional time series forecasting methods (Zhang, Aggarwal & Qi, 

2017). Zhang et al. (2017) predicted the trend of 50 stock prices with several frequencies 

using AR, LSTM and novel State frequency memory (SFM) which is an extension to LSTM. 

SFM differs from LSTM in a way that it includes the state-frequency component for multiple 

frequencies. Therefore, a joint state-frequency forget gate determines how much information 

is kept from different frequencies. Recurrent neural network models clearly outperformed 

AR model, and SFM was capable of capturing better multi-frequency patterns than LSTM. 
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Better performance of SFM was caused by the additional joint state-frequency memory 

states (Zhang et al., 2017).  

 

There are also recent studies where only different deep learning techniques have been ex-

amined. In 2017, three RNNs were used to predict the prices of three stocks in the Colombo 

stock exchange. Standard RNN, LSTM, and gated recurrent unit (GRU) were benchmarked 

with multilayer perceptron (MLP). The structure of GRU is close to LSTM, but GRU does 

not include an output gate. The results were conflicting with the results of prior studies where 

LSTM has often outperformed comparable models. MLP was the best performing model, 

and according to the authors, the reason for that was probably the use of only two days lags 

of stock prices as an input. The poor performance of GRU and remarkably high accuracies 

(about 99 %) of MLP and LSTM need to be noticed. (Samarawickrama & Fernando, 2018)
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4 METHODOLOGY AND DATA 
 

ANN, SVM, and RF have been widely used among machine learning techniques in financial 

time series forecasting (Henrique et al., 2019). SVM is used in this study because it has 

shown excellent predicting capability and has often been the best performing method among 

the previous studies. For instance, SVM outperformed ANN and CBR in a study by Kim 

(2003). Also, Tay and Cao (2001) showed that the results of SVM were better than DNN, 

and Pai and Lin (2005) proved that SVM outperformed ARIMA in their study. SVM always 

finds a global optimum, so avoiding the overfitting problem is one reason why SVM was 

chosen over ANN. (Cortes & Vapnik, 1995; Kim, 2003)  

 

LSTM is the chosen deep learning method in this study because LSTM has been argued to 

learn long-term dependencies of time series, and LSTM has provided promising results in 

previous studies (Sezer et al., 2020). LSTM, or some variations of it, has been the best per-

forming model in studies of Fischer and Krauss (2018), Dezsi and Nistor (2016), Baek and 

Kim (2018), and Althelaya et al. (2018), for instance. Proposed hybrid models in Zhang et 

al. (2020), Bao et al. (2017), and Liu and Long (2020) have outperformed single LSTM 

models, but the hybrid models are left outside of the scope in this study. Figure 7 illustrates 

how the empirical part of the study will proceed. After the raw data and statistics of it have 

been described, data preprocessing is introduced. Also, the implementation of the models is 

presented in the following subsections with the forecasting. Finally, the results of the models 

and a comparison of them are discussed. The preprocessing, model building, and forecasting 

are entirely conducted by using the Matlab programming language.  

 

 

Figure 7. Progress of the empirical part 
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4.1 Description of the data 
 

This study focuses on the stock index prediction, and the predicted indices are OMX Hel-

sinki 25, Standard & Poor’s 500, and Financial Times Stock Exchange 100. The data sets 

have been collected from Datastream. The OMXH25 index consists of 25 of the most traded 

shares on the Helsinki Stock Exchange. The maximum weight of individual stock can be 10 

%. The index is rebalanced four times per year, and the index constituents are updated twice 

a year. Seligson & Co. OMXH25 ETF can be used in practice to trade the OMXH25 index. 

(Nasdaq 2021) The S&P 500 index consists of the 500 large companies which are listed in 

the United States markets. The committee of S&P 500 has chosen those companies to the 

lists, and for example, the companies which have made operation losses for many years are 

removed from the index. (S&P Dow Jones Indices 2021) FTSE 100 is an index for blue-chip 

companies based in the United Kingdom. London Stock Exchange is used to trade all FTSE 

100 constituents. The index is market-capitalization weighted, and it measures the perfor-

mance of the 100 largest companies from the London Stock Exchange, which need to fulfill 

some size and liquidity constraints. (London Stock Exchange 2021) 

 

4.1.1 Data description of the OMXH25 index  

 

Used variables are open, high, low, close (OHLC) and adjusted close prices of the index. 

The data sample is collected from the period 01.01.2009-30.12.2019, and the dataset con-

tains 2759 observations after missing values are removed. Descriptive statistics of data have 

been presented in Table 3. Statistics of open, high, low and close prices are very close to 

each other, and hence they likely include similar information compared to themselves. A 

range between a minimum value and a maximum value in each variable is large. For in-

stance, the minimum of open prices has been 1189.40, and the maximum of open prices has 

been 4386.50 in the time period. Positive skewness means that the distributions of variables 

have longer right tails than in normal distribution. Also, the number of smaller values dom-

inates larger values in the case of positive skewness.  
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Table 3. Descriptive statistics of the OMXH25 (2009-2019) 

 

 

Adjusted closing price takes into account dividends and stock splits when opening, closing, 

low, and high prices do not do that. That can be noticed when compared statistics of those 

prices. For instance, this difference is visible in maximum values of variables, and adjusted 

closing is about 1000 points larger than the closing price. That is why the adjusted closing 

price can also be called as total return index. When Figure 8 is examined, it can be noted 

that trend of OMXH25 has been positive during the time period. There have been some 

drops, but the total return index has increased its value relatively steadily.  

 

 

 

 

Figure 8. Price development of the OMXH25 during 2009–2019 
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4.1.2 Data description of the S&P 500 index  

 

The S&P 500 data is collected from the same period as the OMXH25 data, and the data 

cleaning process is identical to what is previously explained. Variables are also the same as 

used with OMXH25 data. Descriptive statistics of the S&P 500 are presented in Table 4. 

The difference between the minimum and the maximum value of each variable is very large. 

The development of the S&P 500 has been strong during 2009-2019, and the primary trend 

has been positive, as can be seen from Figure 9. Statistics support visual inspection, and the 

maximum adjusted closing price is six times greater than the minimum value. The skewness 

of all variables is also positive. Statistics of open, high, low, and close are very close to each 

other, but the adjusted closing price differs from others. It takes into account dividends, and 

that is why it has much larger values. 

 

Table 4. Descriptive statistics of the S&P 500 (2009-2019) 

 

 

Figure 9 presents the development of close and adjusted close prices of the S&P 500. The 

slope of the adjusted close price seems to be steeper compared to OMXH25. There has been 

a bull market during the time period from 2009 to 2019, but the data still includes some 

plummets. S&P 500 and OMXH25 behave relatively similarly based on Figures 8 and 9. 

The Pearson correlation coefficient for the adjusted close price of S&P 500 and OMXH25 

is 0.98. It means that prices move almost linearly together. 

Min 25 % Mean Median 75 % Max Skewness Kurtosis Std

Open 679.28 1309.37 1868.98 1904.09 2366.08 3247.23 0.20 1.92 634.27

High 695.27 1316.16 1878.23 1918.40 2371.54 3247.93 0.20 1.92 635.17

Low 666.79 1302.42 1859.18 1885.58 2356.21 3234.37 0.20 1.92 632.94

Close 676.53 1309.66 1869.54 1903.82 2364.87 3240.02 0.20 1.92 634.07

Adj. close 1095.04 2221.12 3468.44 3497.11 4539.25 6571.03 0.31 1.96 1387.01
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Figure 9. Price development of the S&P 500 during 2009–2019 

 
4.1.3 Data description of the FTSE 100 index  

 

Descriptive statistics of the FTSE 100 are presented in Table 5. The data preprocessing is 

identical to what is explained before. Index values are negatively skewed and distributed 

slightly platykurtic. The form of FTSE 100 distribution differs from OMXH25 and S&P 500 

because those were more platykurtic, and the skewness was positive for those two. 

 

Table 5. Descriptive statistics of the FTSE 100 (2009-2019) 
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Min 25 % Mean Median 75 % Max Skewness Kurtosis Std

Open 3512.09 5747.91 6333.93 6486.19 7053.69 7877.45 -0.61 2.87 898.27

High 3564.75 5782.91 6372.34 6524.46 7097.17 7903.50 -0.61 2.87 892.73

Low 3460.71 5711.55 6295.63 6439.16 7021.19 7854.58 -0.61 2.88 903.82

Close 3512.09 5748.57 6335.09 6487.19 7053.97 7877.45 -0.61 2.88 897.75

Adj. close 2147.05 3866.81 4826.83 4859.15 5983.48 7075.77 -0.02 2.02 1191.95
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Figure 10 illustrates the price development of the FTSE 100. The adjusted closing price starts 

with a lower index value at the beginning of 2009 but almost reaches the closing price value 

at the end of 2019. Those two series move in the same direction, and the primary trend was 

also positive in FTSE 100 index during 2009-2019. There are some periods where the index 

has faced severe losses. In 2009, the index dropped due to the financial crisis, but the largest 

losses happened around 2016 during the Brexit voting.  

 

 

Figure 10. Price development of the FTSE 100 during 2009–2019 

 
Pearson correlation for S&P 500 and FTSE 100 is 0.98 and 0.97 for OMXH25 and FTSE 

100. Visual inspection says that the development of OMXH25 and S&P 500 are closer to 
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4.2 Data preprocessing, implementation and training phase 
 

The OMXH25 dataset includes 2759 observations of daily returns where 1295 returns of 

adjusted closing price have been negative and 1464 returns have been neutral or positive. 

Due to the large scale and trend of prices, the entire data is transformed into daily percentage 

returns. The statistics of variables in a return form are in Table 6. 25
th

 percentile of adjusted 

closing price returns (afterward returns) has been -0.66%, and the 75
th

 percentile of returns 

has been 0.78%, hence the majority of returns have been distributed close to zero. That can 

also be observed from the mean (0.06 %) and median (0.07 %). The minimum return has 

been -8.38% which is a large daily drop for an index. The maximum return has been 8.35%. 

Returns of OHLC have relatively similar statistics compared to adjusted closing returns. 

None of the statistics is still identical, and the standard deviation of variable high as meas-

ured in returns is smaller than that of others. The minimum and maximum of variable high 

are also smaller, respectively. Despite the similarity between statistics of returns, using them 

is justifiable because several other authors,  for example, Chen et al. (2015), Dezsi and Nistor 

(2016), Bao et al. (2017), and Samarawickrama and Fernando (2017), have used them suc-

cessfully.  

 

Table 6. Statistics of OMXH25 returns 

 

 

Next, statistics of the S&P 500 calculated as returns (Table 7) are presented. It is worth 

noting that returns are negatively skewed even though the trend has been mainly positive 

during the sample period. That is true also with the OMXH25 data, but negative skewness 

is larger for the S&P 500.  The excess kurtosis of the adjusted closing price is 5.06, which 

indicates how leptokurtic the return distribution is. Maximum and minimum values are enor-

mous for each variable, but values inside the range between the 25
th

 and 75
th

 percentile are 

close to zero. Large absolute values in minimum and maximum columns indicate only the 
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extreme events. Almost every minimum and maximum value of S&P 500 returns are smaller 

in absolute terms compared to OMXH25, respectively. The mean and median are above 

zero, which is not surprising because of the bull market during 2009-2019. 

 

Table 7. Statistics of S&P 500 returns 

 

 

Statistics of FTSE 100 returns are presented in Table 8. The minimum and maximum re-

turns are smaller in absolute terms compared to OMXH25 and S&P 500. The values are 

around 5% which is still a large value for a broad index. Standard deviations are under 1%, 

which is the smallest value from the examined indices. The excess kurtosis is again enor-

mous, and returns are negatively skewed. Statistically, the FTSE 100 data is relatively sim-

ilar compared to the OMXH25 and S&P 500 data. 

 

Table 8. Statistics of FTSE 100 returns 

 

 

In the case of OMXH25, daily returns of adjusted closing price are presented in Figure 11. 

It is clearly visible that the sample period contains different volatility clusters. At the begin-

ning of the period, there was a high volatility period in 2009 following a financial crisis, 

some extreme returns in 2010, and a second high volatility period was in 2011-2012 during 

the euro crisis. Otherwise, volatility was smaller, excluding few periods in 2015-2016. Re-

turns seem to be heteroscedastic based on Figure 11. Heteroscedasticity means that the 

Min 25 % Mean Median 75 % Max Skewness Kurtosis Std

Open -6.53 % -0.34 % 0.05 % 0.08 % 0.51 % 6.63 % -0.28 7.78 0.97 %

High -3.76 % -0.29 % 0.05 % 0.05 % 0.43 % 4.37 % -0.16 6.52 0.78 %

Low -7.97 % -0.37 % 0.05 % 0.12 % 0.55 % 5.09 % -0.65 8.50 0.94 %

Close -6.66 % -0.35 % 0.05 % 0.07 % 0.54 % 7.08 % -0.23 8.06 1.03 %

Adj. close -6.65 % -0.34 % 0.06 % 0.07 % 0.54 % 7.10 % -0.23 8.06 1.03 %

Min 25 % Mean Median 75 % Max Skewness Kurtosis Std

Open -5.33 % -0.47 % 0.03 % 0.05 % 0.56 % 5.16 % -0.11 5.77 0.99 %

High -5.13 % -0.35 % 0.02 % 0.02 % 0.43 % 4.53 % -0.12 6.68 0.80 %

Low -7.55 % -0.43 % 0.02 % 0.09 % 0.49 % 4.32 % -0.67 8.18 0.93 %

Close -5.33 % -0.48 % 0.02 % 0.05 % 0.56 % 5.16 % -0.11 5.78 0.99 %

Adj. close -5.33 % -0.46 % 0.04 % 0.06 % 0.57 % 5.16 % -0.12 5.82 0.99 %
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variability of data variates during the period, which is typical for stock returns (Chen et al., 

2003). 

 

 

Figure 11. Daily returns of OMXH25 2009-2019 

 
Daily returns of the S&P 500 are presented in Figure 12. Returns have behaved relatively 

similarly compared to returns of OMXH25. High volatility clusters have occurred at the 

same time with OMXH25, but volatility has been clearly larger at the beginning of 2019 in 

the S&P 500. It seems like S&P 500 has been more volatile during the testing data period, 

which may influence results. S&P 500 returns also show signs of heteroscedasticity. 
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Figure 12. Daily returns of S&P 500 2009–2019 

 
Daily returns of FTSE 100 are presented in Figure 13. Different volatility clusters are easily 

visible from the data. High volatilities are present at the same time when OMXH25 and S&P 

500 faced high volatility periods. In other words, the dynamics of each index seem to be 

rather similar. The main difference between the returns of the S&P 500 and FTSE 100 is the 

magnitude of the returns. Around Brexit, the volatility of the FTSE 100 has been larger 

compared to other indices. The testing data also includes relatively large returns in absolute 

terms. 
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Figure 13. Daily returns of FTSE 100 2009-2019 

 

Return distribution of OMXH25 is leptokurtic, as Figure 14 shows. Most of the returns are 

distributed close to zero, causing the histogram to be higher than a normal distribution. The 

data of the OMXH25 index responds a typical stock market data where the prices oscillate, 

but in the long run, the trend is positive. Due to that, the returns are basically normally dis-

tributed but positively skewed. The excess kurtosis of returns is 3.13, which is in line with 

the graphical interpretation. Return distribution also has several outliers, as can be seen from 

long tails of the histogram, and observations of high volatility periods from Figure 11 sup-

port this finding.  
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Figure 14. Distribution of OMXH25 daily returns 2009-2019 

 
Returns of the S&P 500 are presented in Figure 15, and returns are much more leptokurtic 

compared to OMXH25. The excess kurtosis is 5.06, which proves the visual interpretation. 

Returns are heavily distributed around zero, but the tails are long. S&P 500 returns also 

include several extreme values or outliers equivalently to OMXH25. This is the first figure 

or statistic which shows a clear difference between the S&P 500 data and the OMXH25 data. 

 

 

Figure 15. Distribution of S&P 500 daily returns 2009-2019 
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FTSE 100 return distribution and corresponding normal distribution are presented in Figure 

16. Excess kurtosis is 2.82, which is the lowest of the three examined indices. Returns are 

leptokurtic, which is typical for stock returns, but the distribution of FTSE 100 returns is 

closest to the normal distribution. Most of the returns are close to zero, and in the long run, 

the distribution is almost normal, but the tails are heavier than in a normal distribution. 

 

 

Figure 16. Distribution of FTSE 100 daily returns 

 

Before the training phase, all datasets were standardized. The target is to transform the data 

to a mutual scale which makes the learning process more efficient. The input data is stand-

ardized by taking means and standard deviations from the variables and then by subtracting 

mean (") from returns ($!) and dividing the difference by standard deviation (%) as follows 

(Fischer & Krauss, 2018): 

 

$&! =	
$! − 	"
% 	.																																																																					(15) 

 

Following a study by Bao et al. (2017), the OMXH25 data is divided into three subsets. The 

first 80 % of data belongs to training data from the entire dataset, the next 10 % is assigned 

to validation data, and the last 10 % belongs to testing data. Both models are trained with 

the training data and different combinations of parameters are tested with a validation set. 
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Based on validation results, the optimal model is selected and tested with testing data. If the 

final model would only fit on the training data, part of the time series was left out from the 

whole data. That could lead to the situation where some features of the dataset were not 

trained for the model. To avoid that problem, the final model is fitted on the training and 

validation data.  

 

The training process is conducted only once in this study. The models are trained and opti-

mized using OMXH25, and the same models are used to predict S&P 500 and FTSE 100 

without any model manipulation between the predictions. OMXH25, S&P 500, and FTSE 

100 have developed quite similarly during the sample period. The Pearson correlations are 

close to one for all three indices, and descriptive statistics and the previously discussed fig-

ures support the similarity of the indices.  Therefore, the fitted models can be used to predict 

also S&P 500 and FTSE 100 testing sets. Some studies use the same idea to predict different 

assets with a model trained by using other data. That is done to provide more reliable and 

robust results. If the trained model can predict other stocks or indices accurately without 

retraining, it increases the trust in the model’s generalization capability. Hiransha et al. 

(2018) trained their LSTM model with one stock from NSE data and then used the same 

model to predict three other stocks from NSE and two from NYSE. Selvin et al. (2017) also 

used the same idea and forecasted different assets after the training was conducted by using 

only one stock. (Hiransha et al., 2018; Selvin et al., 2017) 

 

Parameter optimizations are explained in the following subsections. The predicted variable 

is a categorical binary variable that takes a value one if the daily return is equal or larger 

than zero. The negative return is marked with a zero. 

 

4.2.1 LSTM implementation 

 

After standardization, the input data is fed into sequences which are used as inputs for LSTM 

model.  In Table 9, a sequence length is 30 and every sequence includes 30 daily returns of 

every input variable. In an example of sequence length 30, sequence one is constructed from 

30 first returns of each variable, sequence two includes returns from days two to 31, and so 

on. Each sequence is then one input observation with 5 x 30 dimensions. In Matlab, the input 

data is formatted into a cell type variable. The predicted variable is a categorical binary 
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variable, as mentioned earlier. Therefore, the target variable is the 31
st
 daily return (1 or 0) 

for sequence one and 32nd for sequence two. 

 

Table 9. Input sequences when the sequence length is 30 

 

 

Parameter optimization is done by switching three different parameters: the number of hid-

den layers, sequence length, and the number of epochs. The initial LSTM-model parameters 

were based on previous studies like Bao et al. (2017), Baek and Kim (2018), Zhang et al. 

(2020), and MathWorks (2021b-d) documentation. Those parameters did not produce ade-

quate results because the model started to overfit the data. Training accuracy was often 

100%, but the model generalized poorly because validation accuracy was low. A too com-

plex model caused the overfitting. In order to train the model with better generalization ca-

pability, the size of parameters was reduced.  

 

Thus, the parameter optimization set included hidden units from 80 to 140. The number of 

hidden units was increased by 20 units in each trial. The range of sequence length was from 
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10 to 50 with an increment of 5. The number of epochs ranged from 10 to 30 with an incre-

ment of ten. With those parameters, the number of different combinations was 108, and those 

combinations and validation results are in Appendix 1. The best validation accuracy was 

achieved with the combination 55, where the number of hidden units was 120, the sequence 

length was 30, and the number of epochs was 20. The best-achieved validation accuracy was 

58.61%. The model predicted returns to be negative in 46.89% of days and positive 53.11% 

of days. Actual returns were 48.72% negative and 51.28% positive, so forecasts with vali-

dation data are almost correctly distributed. After the best parameters were found, those pa-

rameters are used to train the final model for predictions. As mentioned earlier, the final 

model is trained with a combined training and validation data, and the predictions are im-

plemented with testing data. Let us recall that the whole parameter optimization and training 

are conducted by using the OMXH25 data. 

 

4.2.2 SVM implementation 

 

Identical to how is proceeded with LSTM, model training on parameter optimized is exe-

cuted by using only OMXH25 data. Parameter optimization of SVM is executed by first 

testing three different Kernel functions with validation data. Those Kernel functions were 

linear, polynomial (from second to sixth degree), and Gaussian functions. Validation accu-

racies of those seven models are presented in Table 10. Without a closer examination, vali-

dation accuracy of a linear and polynomial (order of two, three, and six) functions yields 

better results than the Gaussian function.  

 

Table 10. The first stage of SVM optimization 
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Validation data includes 275 daily returns, 125 (45.45%) are negative, and 150 (54.55%) are 

positive. SVM with the Gaussian function is the only model that even moderately classifies 

returns to negative or positive classes. The Gaussian kernel predicts 35.14% of returns to be 

negative and 64.86% positive. Other models predict 94.75-100% of daily returns to be either 

positive or negative, which is far from reality. An overfitting or underfitting problem may 

cause that kind of unbalanced prediction distribution. Models 1 and 2 predict 100% of re-

turns to be positive and 0% of returns negative, so the model cannot predict correctly. Still, 

the validation accuracy for both models is 51.81% because there are 51.81% positive daily 

returns during the period. As a conclusion, the Gaussian kernel function was the best SVM 

model based on the validation data, and it is chosen to be used as a final SVM model. The 

results and classification distributions to negative and positive classes are illustrated in Table 

11. 

 

Table 11. Results of SVM parameter optimization with seven different kernel functions 

 

 

SVM with Gaussian kernel function was clearly the best performing model among the tested 

kernel functions. The next step was to optimize the rest of the parameters. The Gaussian 

kernel function has two parameters that can be optimized: a bandwidth of the kernel function 

or gamma (-") and a penalty term (C). This study follows a paper by Tay and Cao (2001), 

where those two parameters were also optimized. Tay and Cao (2001) argued that the opti-

mal bandwidth is in a range of 1 to 100, and the optimal penalty is in the range of 10 to 100. 

The range of values of the penalty term was extended in this study to get a better probability 

of finding a global optimum for the parameter. Combinations of bandwidths in this study are 
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in the range between 0.1 to 10. The experimented parameter value is increased with 0.1 units 

from 0.1 to 1 and 1 unit after parameter value 1. The penalty term ranges from 0.1 to 100 

with a 0.1 unit increment until the parameter value is 1. The increment is 5 units after the 

parameter value is 2. These yields in a total of 570 combinations and those are presented in 

Appendix 2 together with the validation accuracies. The best validation accuracy was 

achieved with the combination number 281. When the penalty term was 2, and the bandwidth 

was 1, the best validation accuracy (60.22%) was achieved. Therefore, those parameters are 

used for the final model to predict testing data. The model with the best parameters fore-

casted returns to be positive in 79.04% of days, which means that the model was not able to 

predict negative returns effectively. 

 

4.3 Model performance evaluation 
 

The primary performance measure in this study is accuracy. The accuracies have calculated 

by the following equation (16): 

 

.//01./2	 = 	304561	78	/7116/9	:16;</9<7=>	4.;6?79.@	=04561	78	:16;</9<7=>	4.;6 																																						(16) 

 

A poorly working model may give reasonable results if the model predicts all the observa-

tions to belong to one class. The prediction distribution is also examined to avoid misleading 

interpretation. A confusion matrix of the models is presented to justify the performance eval-

uation of the models better. The matrix, illustrated in Table 12, presents how the predictions 

are distributed to be true positive (TP), true negative (TN), false positive (FP), and false 

negative (FN). Each column in the confusion matrix represents actual classes, and rows pre-

dicted classes. (Provost & Fawcett 2013, 187-190)  
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Table 12. A confusion matrix (Provost & Fawcett 2013, 187-190) 

 

Table 13 presents complementary statistics, which are calculated for LSTM and SVM. For 

instance, a true positive rate measures how often the model gives the correct prediction when 

the actual value has been positive. A false negative rate is the percentage of wrong predic-

tions when the actual value has been positive. A true negative rate and a false positive rate 

are similar measures, but actual values have been negative in these cases. Precision tells how 

often the positive predictions were correct. (Provost & Fawcett 2013, 203-204)  

 

Table 13. Calculations of evaluation metrics 

 

 

Finally, the forecasting ability of LSTM and SVM is benchmarked with a random guess, 

following a study by Chen et al. (2015). Random guess of one-day price direction is imple-

mented by randomizing a number from a uniform distribution for each day for the testing 

data. This simulation is conducted 10 000 times, and results will be averaged. The mode of 

each day in testing data will be reported as a prediction in results. Reported accuracy is an 

averaged accuracy of each 10 000 simulations. First, in each simulation of 272 days, accu-

racy is calculated, and an average of 10 000 simulations is reported as accuracy for a random 

guess. 

positive negative
yes TP FP
no FN TN

predicted 
values

actual values
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5 RESULTS 
 

The results of LSTM and SVM models will be introduced in this chapter. Also, the compar-

ison of results is presented, and prediction performance is evaluated. Those models will also 

be compared with the random guess models. Parameters of the final LSTM and SVM models 

are also presented. 

 

5.1 Results of LSTM 
 

The self-determined parameters used in the LSTM model are presented in Table 14. The first 

three parameters are optimized, and the rest of the parameters are defined according to the 

Matlab documentations (MathWorks 2021b-d). The best validation accuracy was achieved 

when the maximum number of epochs was 20, the sequence length was 30, and the number 

of hidden units was 120 in the parameter optimization. Therefore, those parameters are also 

used in forecasting the testing data.  

 

Table 14. Used LSTM parameters in Matlab (MathWorks 2021b-d) 

 

 

 

MaxEpochs Maximum number of epochs 20

Sequence length Sequence length 30

Num Hidden units Number of hidden units 120

Solver name Solver for training network adam

Gradient threshold Gradient threshold 1

Initial learn rate Initial learning rate 0.005

Learn rate schedule Option for dropping the learning rate during training piecewise

Learn rate drop period Number of epochs for dropping the learning rate 125

Learn rate drop factor Factor for dropping the learning rate 0.2

Shuffle Option for data shuffling never

Verbose Indicator to display training progress information FALSE

Matlab function Description of Parameter Value of 
parameter
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Because the sequence length was 30, the predicted variable was the 31st day’s direction of 

daily return. Correspondingly, the second predicted variable was the 32nd day’s sign of the 

return and so on. 

 

5.1.1 LSTM predictions for the OMXH25 data 

 

 The model achieved 55.51% accuracy for the OMXH25 testing data predictions, which is 

moderately lower compared to the forecasting accuracy (58.61%) for the validation data. 

The predictions for negative and positive returns are distributed relatively correctly. The 

model predicted returns to be too often negative, and the distribution is presented in Table 

15. The generalization capability of the LSTM model is appropriate because the model’s 

performance with the testing data is close to the performance with validation data. Figures 8 

and 11 illustrate the price development and the magnitude of returns. It is clearly visible that 

the validation data has lower volatility compared to the testing data. There are two major 

drops in the index in late 2018 and the beginning of 2019. According to the results and 

despite the more considerable volatility, the LSTM model seems to perform with the unseen 

testing data. 

 

Table 15. Distribution of LSTM predictions for the OMXH25 data 

 

 

Predictions of the LSTM model and the actual daily returns are illustrated in Figure 17. The 

bars represent actual daily returns, and if the model predicted the daily direction correctly, 

the color of the bar is green. If the model predicted the direction of the return incorrectly, 

the color of the bar is red. There are no clear observable patterns in the incorrect and correct 

predictions. For example, the correctness of the prediction does not seem to depend on the 

absolute size of the returns. There are few periods where correct predictions follow each 

other, and incorrect predictions follow each other, but mostly there is no visible pattern. For 

instance, there seem to be many subsequent correct predictions before day 100. 

Negative % Positive %

Testing data predictions 116 42.65 % 156 57.35 %

Actual values of testing data 123 45.22 % 149 54.78 %
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Figure 17. LSTM predictions and actual values in the OMXH25 testing set 

 

 
5.1.2 LSTM predictions for the S&P 500 data 

 

The trained model had a 53.31% accuracy for the S&P 500 testing data, as shown in Table 

16. The testing dataset of S&P 500 includes 272 observations which are in line with other 

data sets used in this study. The period starts from the end of 2018 and lasts until the end of 

2019. The model overweighted negative returns of the S&P 500. Predictions were distrib-

uted with 53.31% to negatives and with 46.69% to positive ones. Actually, 58.09% of the 

returns were positive in the S&P 500 during the examined period. 53.31% accuracy indicates 

that the LSTM model performs with a similar type of market data. Also, the correlation 

between the indices can be seen as a contributing object to the prediction performance. 
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Table 16. Distribution of LSTM predictions for the S&P 500 data 

 

 

Figure 18 shows correct and incorrect predictions of S&P 500 returns direction. There seems 

to be no clear pattern of which days are predicted correctly or incorrectly. The model is 

capable of predicting correctly negative and positive returns. The size of the return in abso-

lute terms seems to be also irrelevant for the model’s performance because small and large 

returns are predicted relatively evenly correctly and incorrectly.  

 

 

Figure 18. LSTM predictions and actual values in the S&P 500 testing set 

 

Negative % Positive %

Testing data predictions 145 53.31 % 127 46.69 %

Actual values of testing data 114 41.91 % 158 58.09 %
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5.1.3 LSTM predictions for the FTSE 100 data 

 

The LSTM model achieved 54.41% accuracy for the FTSE 100. The distribution of predic-

tions and actual values are presented in Table 17. Testing data also includes 272 days, and 

returns were positive in 53.31% of days. The model predicted 52.57% of the daily direction 

of returns to be positive, so predictions were almost correctly distributed. The accuracy of 

54.41% is another indication that the LSTM can perform with different stock markets.  

 

Table 17. Distribution of LSTM predictions for the FTSE 100 data 

 

 

Figure 19 presents which predictions for the FTSE 100 were correct. Predictions for the 

FTSE 100 are in line with the previous two similar figures (17 and 18) because correct and 

incorrect predictions do not have a clear pattern. Large returns in absolute terms are evenly 

predicted correctly and incorrectly. The correct and incorrect predictions are not stacked 

together, even though there are some periods where predictions are correct a few times in a 

row. 

Negative % Positive %

Testing data predictions 129 47.43 % 143 52.57 %

Actual values of testing data 127 46.69 % 145 53.31 %
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Figure 19. LSTM predictions and actual values in the FTSE 100 testing set 

 
5.2 Results of SVM  

 

The procedure with the final model selection for the SVM is the same as explained for the 

LSTM. The final forecasting of testing data is executed with the optimal parameters, and 

those are presented in Table 18. Based on the parameter optimization, the kernel function is 

the Gaussian function, and the penalty term is 2, and the gamma is 1.  

 

Table 18. Used SVM parameters in Matlab (MathWorks 2021a) 
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5.2.1 SVM predictions for the OMXH25 data 

 

The accuracy for the OMXH25 testing data is 53.68% which is lower compared to the fore-

casting accuracy (60.22%) of validation data. The distribution of the SVM predictions is 

presented in Table 19. The model does not seem to perform well with the testing data be-

cause 79.04% of predictions are positive. Based on the results, the trained SVM model may 

overweight the positive returns. Returns are positive in 54.78% of days, but SVM cannot 

capture negative returns as a properly working model should. The generalization capability 

of SVM is not desirable due to the remarkable difference between the testing and validation 

accuracy.  

 

Table 19. Distribution of SVM predictions in the OMXH25 testing set 

 

 

The testing data is identical to the data which was used to test the LSTM model. The SVM 

model’s training may have produced underfitting or overfitting because positive and mainly 

stable returns dominate the training data. If we recall that the final model was trained using 

combined training and validation data with optimized parameters, the primary data trend has 

been positive. Forecasting results support an argument that the trained SVM model predicts 

the trend of positive returns to remain positive. Therefore, the model is unable to predict 

accurately negative returns, as also Figure 20 shows. An only a small part of the bars is green 

in case of negative returns. Respectively, many positive returns are predicted correctly.  

 

Negative % Positive %

Testing data predictions 57 20.96 % 215 79.04 %

Actual values of testing data 123 45.22 % 149 54.78 %
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Figure 20. SVM predictions and actual values in the OMXH25 testing set 

 
Based on the sensitivity analysis of Tay and Cao (2001), the small penalty term may poten-

tially cause the model to underfit the data. The used penalty term (2) can be considered as a 

relatively small value because Tay and Cao (2001) argued that the penalty term should be in 

the range of 10 to 100. Small gamma should cause the opposite effect, and the gamma in the 

range of 0.1 to 1 may lead to overfitting. The appropriate choice should be in the range of 1 

to 100, so the used value (1) is at a smaller end of the appropriate range. (Tay & Cao, 2001) 

 

5.2.2 SVM predictions for the S&P 500 data 

 

SVM predicted the S&P 500 with an accuracy of 55.15%, which is higher than the achieved 

accuracy (52.36%) for OMXH25. Relatively high accuracy may give a misleading interpre-

tation about a well-performing model, but the predicting capability of SVM is rather weak. 

According to Table 20, SVM predicted S&P 500 returns to be negative only 22.06% of days 
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which deteriorates the predicting performance. Actual returns were 41.91% negative, so re-

turns were much often actually positive. Because the SVM model predicted too often posi-

tive signs for the returns, it caused the accuracy to be relatively high. 

 

Table 20. Distribution of SVM predictions in the S&P 500 testing set 

 

 

The same is visually identifiable from Figure 21. Most of the negative returns are marked 

with a red color, meaning incorrect prediction. The previously discussed possible overfitting 

problem is also true with S&P 500 data. The model seems to assume a positive trend to 

continue even when different stock market data is predicted. 

 

Negative % Positive %

Testing data predictions 60 22.06 % 212 77.94 %

Actual values of testing data 114 41.91 % 158 58.09 %
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Figure 21. SVM predictions and actual values in the S&P 500 testing set 

 

 

5.2.3 SVM predictions for the FTSE 100 data 

 

The SVM model was able to predict the FTSE 100 with 51.84% accuracy. Interpretation of 

SVM results for the FTSE 100 does not differ from what is previously discussed. The model 

predicted returns to be negative only 24.26% of days, much lower than the actual number 

(46.69%) of negative returns. Distributions are presented in Table 21. Predicting accuracy is 

still over 50%, but the reason is the large portion of positive returns in the FTSE 100 testing 

data.  
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Table 21. Distribution of SVM predictions in the FTSE 100 testing set 

 

 

Figure 22 shows the same pattern that is previously discussed about the predicting capability 

of SVM. The most often positive returns are predicted correctly because most predictions 

(75.74%) were positive. Still, especially at the beginning of the testing data, there are some 

negative returns correctly predicted. Despite the large number of positive predictions, there 

is no clear pattern of correct or incorrect predictions.  

 

 

Figure 22. SVM predictions and actual values in the FTSE 100 testing set 

 

 

 

Negative % Positive %

Testing data predictions 66 24.26 % 206 75.74 %

Actual values of testing data 127 46.69 % 145 53.31 %
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5.3 Comparison of results 
 

The actual values of the OMXH25 testing data, daily returns, and all of the predictions are 

presented in Appendix3. The first column shows the day of testing data (1-272), the column 

“returns” stands for the actual percentage returns, and “actual” means dependent binary var-

iable. The last three columns show the predictions of each model. The column “LSTM” 

refers to predictions made with the final LSTM model, and the column “SVM” presents 

predictions with the final SVM model. The column “random guess” shows the mode of ran-

dom guess calculated from 10 000 simulations. Correctly predicted target variables are pre-

sented with green color and false predictions with red, respectively. The same tables for S&P 

500 and FTSE 100 are presented in Appendix 4 and Appendix 5.  

 

5.3.1 OMXH25 predicting performance 

 

The LSTM model is the most accurate (55.51%) predictor for the OMXH25 based on the 

results, as shown in Table 22. The LSTM model outperforms the SVM model with three 

percentages measured by accuracy because the accuracy of SVM is 52.36%. Both LSTM 

and SVM still yield better accuracies than a random guess. The accuracy of random guess is 

50.01% which is almost identical to its expected value. When a sign of the next day’s return 

is randomized, one has a 50% chance of making a right guess. 

 

Table 22. Accuracies with the testing data of OMXH25 

 

 

The confusion matrices of LSTM and SVM are presented in Table 23. Numbers that are in 

parenthesis express values of TP, TN, FP, and FN. The percentages are the rates of them. 

For example, the LSTM model’s TN is 59, and the true negative rate is 47.97%. It is clearly 

visible that LSTM predictions are distributed more evenly compared to SVM. TP rate is 

61.74% for LSTM, meaning that the model predicted returns to be positive when they were 

Model Accuracy
LSTM 55.51 %
SVM 52.36 %
Random guess 50.01 %
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actually also positive. SVM has a higher TP rate because it predicted a larger portion of 

returns to be positive. Confusion matrices show that the LSTM model was much more effi-

cient in predicting negative returns correctly. FP rate for LSTM is 47.97% and 21.95% for 

SVM, respectively. FP rate is relatively low for both models, but the FN rate (78.05%) is 

high for SVM. Based on confusion matrices, LSTM predicted the next day’s price direction 

of OMXH25 more accurately and more evenly compared to SVM.  

 

Table 23. Confusion matrix for OMXH25 predictions 

 

 

Precision for the LSTM model indicates that when the model predicted a positive direction 

for the next day, 58.97% was actually correct. In the case of SVM, the precision was 55.35%. 

That led to the conclusion that the LSTM model forecasted the positive direction better than 

the SVM model. TP rate can give a misleading interpretation at first sight, but the precision 

can be seen as a more reliable measure in this case.    

 

5.3.2 S&P 500 predicting performance 

 

The SVM model is the most accurate (55.15%) predictor for the S&P 500 based on the 

accuracies, as shown in Table 24. The SVM model outperforms the LSTM model almost 

with two percentages measured by accuracy because the accuracy of LSTM is 53.31%. Both 

LSTM and SVM still yield better accuracies than a random guess. The accuracy of a random 

guess was 50.04% in this simulation, and it is almost identical to the expected value of a 

random guess.  

1 0
1 61.74% (92) 52.03% (64)

0 38.26% (57) 47.97% (59)

1 79.87% (119) 78.05% (96)

0 20.13% (30) 21.95% (27)

ACTUAL VALUES

LSTM PREDICTED 
VALUES

SVM PREDICTED 
VALUES
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Table 24. Accuracies with the testing data of S&P 500 

 

 

In this case, the accuracy is not serving as a good performance measure because the distri-

bution of SVM predictions was concentrated on positive predictions. Table 25 indicates the 

superiority of LSTM over SVM. When LSTM predicted a negative return, the accuracy or 

TN rate was 57.89%. SVM achieved only 22.81% TN rate, which can be considered as a 

poor performance. TP rate is higher for SVM (78.48%) due to before mentioned reasons. 

TP rate for LSTM is 50.00%, meaning that every second time prediction was correct in the 

case of the model predicted positive return for the next day.  

 

Table 25. Confusion matrix for S&P 500 predictions 

 

 

Precision is 62.20% for LSTM and 58.49% for SVM, respectively. In the same way, as dis-

cussed with OMXH25 results, precision is a more reliable measure than the TP rate. When 

LSTM (SVM) predicted that the next day's return is positive, it was correct in 62.2% 

(58.49%) cases. That is a clear signal about the superiority of LSTM over SVM. Even the 

accuracy of SVM was higher, LSTM outperforms SVM in its capability to predict the correct 

direction of S&P 500 return accurately one day ahead. 

 

 

 

Model Accuracy

LSTM 53.31 %

SVM 55.15 %

Random guess 50.04 %

1 0
1 50.00% (79) 42.11% (48)

0 50.00% (79) 57.89% (66)

1 78.48% (124) 77.19% (88)

0 21.52% (34) 22.81% (26)

ACTUAL VALUES

LSTM PREDICTED 
VALUES

SVM PREDICTED 
VALUES
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5.3.3 FTSE 100 predicting performance 

 

The LSTM model achieved the highest accuracy (54.41%) for the FTSE 100 testing data. 

Table 26 presents the accuracies for each model. SVM is also able to outperform the random 

guess but only with a small margin. The SVM model predicted 51.84% of returns correctly. 

In this specific simulation, the accuracy for the random guess was 49.98% which is slightly 

lower than its expected value. 

 

Table 26. Accuracies with the testing data of FTSE 100 

 

 

 

The confusion matrices of LSTM and SVM are presented in Table 27. Again, the accuracy 

does not give a correct interpretation of the predicting performance of the SVM. Predictions 

were heavily overweighted to positive returns, and the TP rate was high (75.86%). TN rate 

was 24.41% which is a low value. The confusion matrix of LSTM indicates the superiority 

of LSTM. TP rate is 56.55% and TN rate 51.97%, so the model is able to predict positive 

and negative returns evenly well. FP rate and FN rate are both under 50%, which means that 

over 50% of both negative and positive predictions have been correct. 

 

 

Table 27. Confusion matrix for FTSE 100 predictions 

  

 

Model Accuracy

LSTM 54.41 %

SVM 51.84 %

Random guess 49.98 %

1 0
1 56.55% (82) 48.03% (61)

0 43.45% (63) 51.97% (66)

1 75.86% (110) 75.59% (96)

0 24.14% (35) 24.41% (31)

ACTUAL VALUES

LSTM PREDICTED 
VALUES

SVM PREDICTED 
VALUES
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The precision of LSTM is 57.34%, and it is higher than the precision of SVM (53.40%). The 

LSTM models predict positive returns more accurately than the SVM model even though 

the SVM model outweighs positive returns in its predictions. Precision gives a more reliable 

performance measure for the FTSE 100 predictions because the SVM predicted the sign of 

the returns to be positive too often. 
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6 CONCLUSIONS AND DISCUSSION  
 

This study conducts stock market forecasting research using machine learning and deep 

learning techniques to predict a stock index's next day’s price direction. The predicted stock 

indices were OMXH25, S&P 500, and FTSE 100. OMXH25 consists of stocks listed in Fin-

land, S&P 500 is for US-based equities and FTSE 100 for stocks listed in the United King-

dom. The aim was to predict the direction of daily returns by using only historical price data 

as inputs. The used techniques were long short-term memory and support vector machine. 

Parameters for LSTM and SVM models were optimized in a validation phase before the 

final predictions, and the models were trained only for the OMXH25 data. Based on this 

study's results, LSTM can predict the direction of OMXH25, S&P 500, and FTSE 100 daily 

returns better than a random guess. LSTM demonstrated promising results and statistics 

about its predicting capability. SVM was not able to predict the direction of daily returns 

efficiently. Accuracies for SVM were relatively high, but the model overweighted positive 

returns. There were more positive daily returns in each testing set which caused the accuracy 

of the SVM model to be over 50%. The training data of OMXH25 was from a bull market 

where the market rose significantly. The training process of SVM faced most likely an over-

fitting problem, and the model predicted too often returns to be positive. Closer examination 

of confusion matrices revealed that the LSTM was clearly better than SVM in these three 

specific cases. Both models still yielded better results than a pure random guess. 

 

The study was extended to predict S&P 500 and FTSE 100 in addition to OMXH25. The 

motivation for this was to enhance the reliability of the results. If a model performed well in 

one specific dataset, it would leave a question about how the model performs with another 

dataset. It was noticed in this study that parameter optimization plays a significant role to 

train a properly working model. It is possible that the model does not perform well in another 

case. Still, the results of this study prove that the predicting performance of LSTM and SVM 

did not significantly differ even the predicted market was changed from the OMXH25 to the 

S&P 500 and FTSE 100. 
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6.1 Answers to the research questions 
 

Next, answers are provided to the research questions, and future research suggestions are 

discussed. The first and the main research question was: 

 

“How to predict stock indices using machine learning and deep learning techniques?” 

 

Based on the results, this study supports the evidence that machine learning and deep learn-

ing techniques provide better predictions than a random guess. Previous studies have intro-

duced several machine learning and deep learning models which can predict stock price or 

price direction. In this research, the next day’s price direction was predictable using LSTM 

and SVM, but the accuracy was lower than the best results introduced in previous studies 

(Zhang et al., 2020). Still, results of LSTM and SVM outperform the random guess. Based 

on this study, parameter optimization plays a significant role in achieving better results.  

 

The first sub-question was: 

 

“How the performance of deep learning techniques and machine learning techniques differ 

in stock index prediction?” 

 

LSTM was used as a deep learning model in this study, and SVM was used as a machine 

learning model. LSTM outperformed SVM in its predicting capability when tested on all 

three stock indices and measured with multiple evaluation metrics. The accuracies of the 

LSTM model were 55.51% for the OMXH25 testing set, 53.31% for the S&P 500 testing 

set, and 54.41% for the FTSE 100 testing set. The accuracies of the SVM model were 

52.36%, 55.15%, and 51.84%, respectively. The SVM model achieved higher accuracy for 

the S&P 500 testing set, but accuracies may give a misleading interpretation. The confusion 

matrices and the precisions indicate that the prediction performance of LSTM is better com-

pared to SVM. Results evince that the generalization capability of LSTM is higher, and sta-

tistics of confusion matrices support the finding that LSTM can predict both positive and 

negative returns. Predictions of the SVM model were mainly positive for all testing sets, and 

the model was not able to predict negative results accurately. Results are in line with the 

majority of earlier studies. 
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The second sub-question was the following one: 

 

“How do the selected methods perform with data of OMXH25 index in the period of 2009-

2019?”  

 

LSTM and SVM are able to provide more accurate predictions than a random guess, but the 

SVM model cannot predict the sign of the returns efficiently. LSTM was clearly a better 

model and proved to be efficient in predicting the OMXH25 testing set. The higher volatility 

may be the reason for the poor performance of the SVM model. The testing set of OMXH25 

did not include as stable positive trend than the training data. The LSTM model performed 

much better with the testing set. Selvin et al. (2017) argued that even the prediction capabil-

ity of LSTM decreases if there are changes in the structure of the data. Bao et al. (2017) and 

Zhang et al. (2020) pointed out that it is more convenient to predict developed stock markets 

compared to developing markets. This study supports the argument that developed stock 

markets are at least, to some extent, predictable.  

 

The last sub-question was: 

 

“How the models, fitted with OMXH25-dataset, generalize to correlated datasets of S&P 

500 and FTSE 100?”  

 

The predicting performance of the LSTM model did not significantly differ when the pre-

dictions were executed for the data of S&P 500 and FTSE 100. The LSTM model achieved 

the highest accuracy (55.51%) when the OMXH25 was predicted, but accuracies and preci-

sions were close to each other. The SVM model did not perform well with any of the datasets, 

but the results remained on the same level despite the predicting object. The SVM model 

achieved its highest accuracy for the S&P 500 because the testing set included 58.09% pos-

itive returns. 

 

This is the first study that compares optimized SVM and optimized LSTM in stock price 

direction forecasting based on the literature review. That is the main contribution of this 

study to stock price forecasting research. The results of this study have several similarities 

compared to previous research. In this study, the accuracy of LSTM is close to what Fischer 
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and Krauss (2018) reported in their study. The highest accuracy (54.3%) of Fischer and 

Krauss (2018) is lower compared to the accuracy of 55.51%. It needs to be noted that the 

authors forecasted individual stocks, which were constituents of the S&P 500 index. Selvin 

et al. (2017) and Hiransha et al. (2018) trained their models with one asset and used the same 

model to predict other assets successfully. This study used the same idea and provided an-

other evidence of the generalization capability of the LSTM model. 

 

In many studies like Baek and Kim (2018), Bao et al. (2017), Fischer and Krauss (2018), 

and Selvin et al. (2017), deep learning models showed superiority against machine learning 

models. This study makes no difference to earlier findings that state-of-the-art deep learning 

models outperform traditional machine learning models with nonlinear and noisy stock mar-

ket data. The accuracies of SVM and LSTM were highly dependent on parameter selection 

and optimization. Tay and Cao (2001) and Kim (2003) pointed out the importance of 

parameter tuning for SVM. Zhang et al. (2017) and Bao et al. (2017) also highlighted how 

crucial it is to select optimal parameters in the case of LSTM.  

 

6.2 Limitations and future research 

 

The main limitation of this study, as well as other similar type of studies, was the selection 

of the dataset. The year 2020 was not included in the sample data. A stock market crash 

could potentially have a significant negative effect on the predicting capability of LSTM and 

SVM models. There were major plummets in OMXH25 during 2009-2019, but none of them 

was as remarkable as a bear market due to Covid-19. This study is also limited to developed 

stock markets. Financial markets differ from each other, and it would be interesting to fore-

cast Nordic markets together with developing markets in the future (Bao et al., 2017).  

 

Some future research paths emerged based on this study. Since hybrid models were left out 

from this study, it could be beneficial to predict the price behavior of the Finnish stock mar-

ket by using the newest modifications of deep learning models. The accuracy of LSTM was 

only 5.5% higher than the random guess in the case of OMXH25. When predicting the S&P 

500 and FTSE 100, the improvements over the random guess were 3.27% and 4.43%. It 

would be beneficial to find a model which achieved even slightly better results than the basic 

version of LSTM. Liu and Long (2020) and Zhang et al. (2020) introduced complex hybrid 
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models that were superior compared to the vanilla version of LSTM. In studies of Hiransha 

et al. (2018) and Selvin et al. (2017), the convolutional neural network was more accurate 

than LSTM. It would be beneficial to compare the best-performing hybrid LSTM and hybrid 

CNN models by performing a case study using OMXH25 data. The last-mentioned future 

research target could be examining how larger input sets and more comprehensive parameter 

optimization influence predicting accuracy. Potential inputs could be technical indicators 

and macroeconomic variables. 
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APPENDICES 
 

Appendix 1. Results of LSTM parameter optimization 

 

 

 

 

 

combination hidden units
sequence 

length
number of 

epochs
validation 
accuracy

training 
accuracy

1 80 10 10 51.64 % 57.81 %
2 100 10 10 52.36 % 57.03 %
3 120 10 10 53.45 % 53.91 %
4 140 10 10 52.73 % 57.03 %
5 80 15 10 50.73 % 56.25 %
6 100 15 10 54.74 % 52.34 %
7 120 15 10 54.01 % 54.69 %
8 140 15 10 52.19 % 60.16 %
9 80 20 10 54.74 % 53.91 %

10 100 20 10 52.19 % 54.69 %
11 120 20 10 53.28 % 57.03 %
12 140 20 10 54.74 % 59.38 %
13 80 25 10 51.65 % 59.38 %
14 100 25 10 54.58 % 59.38 %
15 120 25 10 54.21 % 58.59 %
16 140 25 10 53.48 % 60.94 %
17 80 30 10 52.01 % 54.69 %
18 100 30 10 53.48 % 54.69 %
19 120 30 10 53.48 % 56.25 %
20 140 30 10 51.28 % 57.03 %
21 80 35 10 54.41 % 57.81 %
22 100 35 10 51.84 % 57.81 %
23 120 35 10 54.04 % 59.38 %
24 140 35 10 54.04 % 58.59 %
25 80 40 10 52.94 % 53.13 %
26 100 40 10 52.21 % 57.03 %
27 120 40 10 51.47 % 57.03 %
28 140 40 10 51.47 % 58.59 %
29 80 45 10 52.40 % 61.72 %
30 100 45 10 52.40 % 58.59 %
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31 120 45 10 54.24 % 53.91 %
32 140 45 10 54.61 % 58.59 %
33 80 50 10 50.92 % 52.34 %
34 100 50 10 52.40 % 58.59 %
35 120 50 10 52.03 % 57.81 %
36 140 50 10 54.24 % 60.94 %
37 80 10 20 53.09 % 60.94 %
38 100 10 20 48.73 % 56.25 %
39 120 10 20 50.18 % 56.25 %
40 140 10 20 48.00 % 52.34 %
41 80 15 20 53.65 % 57.81 %
42 100 15 20 51.82 % 56.25 %
43 120 15 20 51.46 % 59.38 %
44 140 15 20 54.01 % 58.59 %
45 80 20 20 47.81 % 58.59 %
46 100 20 20 50.36 % 60.94 %
47 120 20 20 56.20 % 57.81 %
48 140 20 20 53.65 % 58.59 %
49 80 25 20 50.92 % 62.50 %
50 100 25 20 53.85 % 59.38 %
51 120 25 20 53.11 % 61.72 %
52 140 25 20 52.75 % 62.50 %
53 80 30 20 53.85 % 59.38 %
54 100 30 20 54.21 % 55.47 %
55 120 30 20 58.61 % 53.91 %
56 140 30 20 53.11 % 60.16 %
57 80 35 20 50.74 % 61.72 %
58 100 35 20 52.94 % 53.91 %
59 120 35 20 50.37 % 57.81 %
60 140 35 20 51.10 % 57.81 %
61 80 40 20 52.94 % 54.69 %
62 100 40 20 54.04 % 53.91 %
63 120 40 20 53.68 % 60.94 %
64 140 40 20 55.15 % 63.28 %
65 80 45 20 53.14 % 61.72 %
66 100 45 20 53.51 % 60.94 %
67 120 45 20 50.55 % 53.13 %
68 140 45 20 54.24 % 60.16 %
69 80 50 20 53.14 % 55.47 %
70 100 50 20 54.98 % 58.59 %



 

 

 

 

 

71 120 50 20 54.24 % 58.59 %
72 140 50 20 54.98 % 60.94 %
73 80 10 30 53.09 % 61.72 %
74 100 10 30 50.18 % 68.75 %
75 120 10 30 45.82 % 66.41 %
76 140 10 30 51.27 % 67.97 %
77 80 15 30 48.91 % 64.06 %
78 100 15 30 50.00 % 67.97 %
79 120 15 30 57.66 % 67.19 %
80 140 15 30 53.28 % 69.53 %
81 80 20 30 45.26 % 71.09 %
82 100 20 30 52.55 % 68.75 %
83 120 20 30 48.91 % 68.75 %
84 140 20 30 50.73 % 74.22 %
85 80 25 30 50.18 % 67.19 %
86 100 25 30 48.72 % 65.63 %
87 120 25 30 51.28 % 63.28 %
88 140 25 30 49.82 % 77.34 %
89 80 30 30 49.08 % 62.50 %
90 100 30 30 50.55 % 70.31 %
91 120 30 30 52.38 % 60.94 %
92 140 30 30 51.65 % 64.84 %
93 80 35 30 51.10 % 62.50 %
94 100 35 30 56.25 % 60.94 %
95 120 35 30 51.10 % 61.72 %
96 140 35 30 48.90 % 67.97 %
97 80 40 30 50.37 % 65.63 %
98 100 40 30 50.37 % 66.41 %
99 120 40 30 51.84 % 66.41 %

100 140 40 30 52.57 % 57.03 %
101 80 45 30 50.55 % 55.47 %
102 100 45 30 51.66 % 69.53 %
103 120 45 30 55.35 % 66.41 %
104 140 45 30 47.60 % 67.97 %
105 80 50 30 49.45 % 64.06 %
106 100 50 30 54.98 % 59.38 %
107 120 50 30 54.98 % 61.72 %
108 140 50 30 52.77 % 67.19 %



 

Appendix 2. Results of SVM parameter optimization 

 

 

combination penalty 
term gamma validation 

accuracy combination penalty 
term gamma validation 

accuracy
1 0.1 0.1 51.61 % 51 52 0.2 47.31 %
2 0.2 0.1 51.61 % 52 57 0.2 48.03 %
3 0.3 0.1 51.61 % 53 62 0.2 48.39 %
4 0.4 0.1 51.61 % 54 67 0.2 47.67 %
5 0.5 0.1 51.61 % 55 72 0.2 47.67 %
6 0.6 0.1 50.90 % 56 77 0.2 47.67 %
7 0.7 0.1 50.18 % 57 82 0.2 47.67 %
8 0.8 0.1 49.10 % 58 87 0.2 47.67 %
9 0.9 0.1 48.75 % 59 92 0.2 48.03 %

10 1 0.1 49.82 % 60 97 0.2 48.03 %
11 2 0.1 51.25 % 61 0.1 0.3 51.61 %
12 7 0.1 51.25 % 62 0.2 0.3 51.97 %
13 12 0.1 51.25 % 63 0.3 0.3 49.10 %
14 17 0.1 51.25 % 64 0.4 0.3 48.75 %
15 22 0.1 51.25 % 65 0.5 0.3 47.67 %
16 27 0.1 51.25 % 66 0.6 0.3 48.39 %
17 32 0.1 51.25 % 67 0.7 0.3 48.39 %
18 37 0.1 51.25 % 68 0.8 0.3 49.10 %
19 42 0.1 51.25 % 69 0.9 0.3 48.03 %
20 47 0.1 51.25 % 70 1 0.3 49.46 %
21 52 0.1 51.25 % 71 2 0.3 49.10 %
22 57 0.1 51.25 % 72 7 0.3 46.24 %
23 62 0.1 51.25 % 73 12 0.3 47.67 %
24 67 0.1 51.25 % 74 17 0.3 48.39 %
25 72 0.1 51.25 % 75 22 0.3 46.95 %
26 77 0.1 51.25 % 76 27 0.3 47.67 %
27 82 0.1 51.25 % 77 32 0.3 47.31 %
28 87 0.1 51.25 % 78 37 0.3 48.03 %
29 92 0.1 51.25 % 79 42 0.3 48.75 %
30 97 0.1 51.25 % 80 47 0.3 47.31 %
31 0.1 0.2 51.61 % 81 52 0.3 47.67 %
32 0.2 0.2 51.61 % 82 57 0.3 47.67 %
33 0.3 0.2 51.61 % 83 62 0.3 47.31 %
34 0.4 0.2 49.82 % 84 67 0.3 46.24 %
35 0.5 0.2 49.10 % 85 72 0.3 45.16 %
36 0.6 0.2 47.67 % 86 77 0.3 44.80 %
37 0.7 0.2 47.67 % 87 82 0.3 45.16 %
38 0.8 0.2 48.03 % 88 87 0.3 46.24 %
39 0.9 0.2 49.10 % 89 92 0.3 45.88 %
40 1 0.2 50.54 % 90 97 0.3 45.88 %
41 2 0.2 48.75 % 91 0.1 0.4 51.61 %
42 7 0.2 48.03 % 92 0.2 0.4 51.61 %
43 12 0.2 48.75 % 93 0.3 0.4 49.46 %
44 17 0.2 48.75 % 94 0.4 0.4 49.10 %
45 22 0.2 48.03 % 95 0.5 0.4 52.33 %
46 27 0.2 48.03 % 96 0.6 0.4 50.54 %
47 32 0.2 48.03 % 97 0.7 0.4 50.54 %
48 37 0.2 47.67 % 98 0.8 0.4 49.46 %
49 42 0.2 47.31 % 99 0.9 0.4 49.46 %
50 47 0.2 47.31 % 100 1 0.4 48.75 %

RESULTSPARAMETER 
OPTIMIZATION RESULTS PARAMETER 

OPTIMIZATION



 

 

combination penalty 
term gamma validation 

accuracy combination penalty 
term gamma validation 

accuracy
101 2 0.4 48.03 % 151 0.1 0.6 51.61 %
102 7 0.4 47.31 % 152 0.2 0.6 53.05 %
103 12 0.4 45.88 % 153 0.3 0.6 55.20 %
104 17 0.4 45.52 % 154 0.4 0.6 55.91 %
105 22 0.4 45.88 % 155 0.5 0.6 56.99 %
106 27 0.4 46.59 % 156 0.6 0.6 57.35 %
107 32 0.4 46.95 % 157 0.7 0.6 56.63 %
108 37 0.4 47.67 % 158 0.8 0.6 56.63 %
109 42 0.4 46.95 % 159 0.9 0.6 55.56 %
110 47 0.4 48.39 % 160 1 0.6 54.84 %
111 52 0.4 47.67 % 161 2 0.6 54.12 %
112 57 0.4 47.31 % 162 7 0.6 50.54 %
113 62 0.4 48.03 % 163 12 0.6 46.59 %
114 67 0.4 48.03 % 164 17 0.6 47.31 %
115 72 0.4 48.39 % 165 22 0.6 45.52 %
116 77 0.4 48.75 % 166 27 0.6 46.24 %
117 82 0.4 48.39 % 167 32 0.6 45.88 %
118 87 0.4 48.75 % 168 37 0.6 45.16 %
119 92 0.4 48.39 % 169 42 0.6 46.24 %
120 97 0.4 48.39 % 170 47 0.6 45.52 %
121 0.1 0.5 51.61 % 171 52 0.6 45.16 %
122 0.2 0.5 51.25 % 172 57 0.6 45.16 %
123 0.3 0.5 51.97 % 173 62 0.6 45.16 %
124 0.4 0.5 52.69 % 174 67 0.6 44.80 %
125 0.5 0.5 55.20 % 175 72 0.6 45.52 %
126 0.6 0.5 54.12 % 176 77 0.6 46.24 %
127 0.7 0.5 52.33 % 177 82 0.6 46.24 %
128 0.8 0.5 52.69 % 178 87 0.6 46.59 %
129 0.9 0.5 52.33 % 179 92 0.6 46.95 %
130 1 0.5 53.41 % 180 97 0.6 46.95 %
131 2 0.5 50.18 % 181 0.1 0.7 51.61 %
132 7 0.5 46.24 % 182 0.2 0.7 53.41 %
133 12 0.5 43.37 % 183 0.3 0.7 55.56 %
134 17 0.5 44.80 % 184 0.4 0.7 57.35 %
135 22 0.5 44.80 % 185 0.5 0.7 57.71 %
136 27 0.5 45.88 % 186 0.6 0.7 56.63 %
137 32 0.5 47.67 % 187 0.7 0.7 58.78 %
138 37 0.5 46.59 % 188 0.8 0.7 58.06 %
139 42 0.5 47.31 % 189 0.9 0.7 58.06 %
140 47 0.5 46.95 % 190 1 0.7 58.78 %
141 52 0.5 47.67 % 191 2 0.7 56.99 %
142 57 0.5 47.31 % 192 7 0.7 52.33 %
143 62 0.5 46.95 % 193 12 0.7 51.97 %
144 67 0.5 47.67 % 194 17 0.7 50.54 %
145 72 0.5 46.95 % 195 22 0.7 50.18 %
146 77 0.5 46.95 % 196 27 0.7 48.03 %
147 82 0.5 46.59 % 197 32 0.7 48.03 %
148 87 0.5 46.59 % 198 37 0.7 47.67 %
149 92 0.5 46.24 % 199 42 0.7 46.24 %
150 97 0.5 46.59 % 200 47 0.7 46.95 %

RESULTSPARAMETER 
OPTIMIZATION RESULTS PARAMETER 

OPTIMIZATION



 

 

combination penalty 
term gamma validation 

accuracy combination penalty 
term gamma validation 

accuracy
201 52 0.7 47.67 % 251 2 0.9 59.50 %
202 57 0.7 47.31 % 252 7 0.9 58.06 %
203 62 0.7 46.59 % 253 12 0.9 57.71 %
204 67 0.7 48.03 % 254 17 0.9 58.42 %
205 72 0.7 46.95 % 255 22 0.9 59.14 %
206 77 0.7 46.59 % 256 27 0.9 59.50 %
207 82 0.7 46.59 % 257 32 0.9 58.42 %
208 87 0.7 46.59 % 258 37 0.9 58.42 %
209 92 0.7 47.31 % 259 42 0.9 57.35 %
210 97 0.7 46.95 % 260 47 0.9 56.27 %
211 0.1 0.8 52.33 % 261 52 0.9 56.63 %
212 0.2 0.8 54.12 % 262 57 0.9 56.27 %
213 0.3 0.8 56.27 % 263 62 0.9 56.63 %
214 0.4 0.8 56.63 % 264 67 0.9 56.27 %
215 0.5 0.8 56.27 % 265 72 0.9 55.91 %
216 0.6 0.8 57.71 % 266 77 0.9 55.20 %
217 0.7 0.8 57.71 % 267 82 0.9 55.56 %
218 0.8 0.8 58.78 % 268 87 0.9 54.48 %
219 0.9 0.8 59.50 % 269 92 0.9 54.12 %
220 1 0.8 59.86 % 270 97 0.9 53.41 %
221 2 0.8 58.78 % 271 0.1 1 51.97 %
222 7 0.8 55.56 % 272 0.2 1 54.12 %
223 12 0.8 55.91 % 273 0.3 1 55.91 %
224 17 0.8 55.56 % 274 0.4 1 56.99 %
225 22 0.8 54.12 % 275 0.5 1 55.91 %
226 27 0.8 54.84 % 276 0.6 1 55.91 %
227 32 0.8 55.20 % 277 0.7 1 56.99 %
228 37 0.8 54.84 % 278 0.8 1 57.35 %
229 42 0.8 52.33 % 279 0.9 1 57.35 %
230 47 0.8 51.25 % 280 1 1 56.63 %
231 52 0.8 50.90 % 281 2 1 60.22 %
232 57 0.8 50.18 % 282 7 1 58.42 %
233 62 0.8 49.10 % 283 12 1 56.99 %
234 67 0.8 50.18 % 284 17 1 56.99 %
235 72 0.8 49.82 % 285 22 1 57.71 %
236 77 0.8 48.75 % 286 27 1 58.42 %
237 82 0.8 49.10 % 287 32 1 57.71 %
238 87 0.8 48.75 % 288 37 1 56.99 %
239 92 0.8 48.75 % 289 42 1 56.27 %
240 97 0.8 48.75 % 290 47 1 56.99 %
241 0.1 0.9 51.61 % 291 52 1 58.06 %
242 0.2 0.9 53.76 % 292 57 1 58.06 %
243 0.3 0.9 55.91 % 293 62 1 58.06 %
244 0.4 0.9 56.27 % 294 67 1 57.35 %
245 0.5 0.9 56.27 % 295 72 1 57.35 %
246 0.6 0.9 56.63 % 296 77 1 56.63 %
247 0.7 0.9 56.99 % 297 82 1 56.27 %
248 0.8 0.9 56.63 % 298 87 1 56.63 %
249 0.9 0.9 57.35 % 299 92 1 56.63 %
250 1 0.9 58.78 % 300 97 1 56.99 %
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combination penalty 
term gamma validation 

accuracy combination penalty 
term gamma validation 

accuracy
301 0.1 2 52.33 % 351 52 3 55.91 %
302 0.2 2 53.41 % 352 57 3 55.91 %
303 0.3 2 54.12 % 353 62 3 55.91 %
304 0.4 2 54.48 % 354 67 3 55.91 %
305 0.5 2 55.20 % 355 72 3 55.91 %
306 0.6 2 55.56 % 356 77 3 56.27 %
307 0.7 2 55.20 % 357 82 3 56.63 %
308 0.8 2 55.20 % 358 87 3 56.63 %
309 0.9 2 55.20 % 359 92 3 56.63 %
310 1 2 55.56 % 360 97 3 56.63 %
311 2 2 55.91 % 361 0.1 4 51.61 %
312 7 2 56.63 % 362 0.2 4 51.61 %
313 12 2 56.27 % 363 0.3 4 52.33 %
314 17 2 56.63 % 364 0.4 4 52.69 %
315 22 2 56.63 % 365 0.5 4 52.33 %
316 27 2 58.06 % 366 0.6 4 52.33 %
317 32 2 58.42 % 367 0.7 4 52.33 %
318 37 2 59.14 % 368 0.8 4 52.33 %
319 42 2 59.14 % 369 0.9 4 52.69 %
320 47 2 59.14 % 370 1 4 52.33 %
321 52 2 59.14 % 371 2 4 53.05 %
322 57 2 59.14 % 372 7 4 52.69 %
323 62 2 59.50 % 373 12 4 54.12 %
324 67 2 59.14 % 374 17 4 54.12 %
325 72 2 59.14 % 375 22 4 54.84 %
326 77 2 59.14 % 376 27 4 55.56 %
327 82 2 59.86 % 377 32 4 55.56 %
328 87 2 60.22 % 378 37 4 55.56 %
329 92 2 60.22 % 379 42 4 55.20 %
330 97 2 59.86 % 380 47 4 54.84 %
331 0.1 3 51.61 % 381 52 4 54.84 %
332 0.2 3 52.33 % 382 57 4 54.84 %
333 0.3 3 53.05 % 383 62 4 54.84 %
334 0.4 3 53.05 % 384 67 4 55.20 %
335 0.5 3 52.69 % 385 72 4 55.20 %
336 0.6 3 52.69 % 386 77 4 55.20 %
337 0.7 3 52.69 % 387 82 4 55.20 %
338 0.8 3 52.69 % 388 87 4 55.56 %
339 0.9 3 51.97 % 389 92 4 55.91 %
340 1 3 52.33 % 390 97 4 55.91 %
341 2 3 54.84 % 391 0.1 5 51.61 %
342 7 3 55.20 % 392 0.2 5 51.61 %
343 12 3 55.91 % 393 0.3 5 51.61 %
344 17 3 56.27 % 394 0.4 5 51.97 %
345 22 3 55.91 % 395 0.5 5 51.97 %
346 27 3 56.63 % 396 0.6 5 51.97 %
347 32 3 56.63 % 397 0.7 5 51.97 %
348 37 3 56.27 % 398 0.8 5 51.97 %
349 42 3 56.27 % 399 0.9 5 52.33 %
350 47 3 56.27 % 400 1 5 52.33 %
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combination penalty 
term gamma validation 

accuracy combination penalty 
term gamma validation 

accuracy
401 2 5 52.69 % 451 0.1 7 51.61 %
402 7 5 53.05 % 452 0.2 7 51.61 %
403 12 5 52.69 % 453 0.3 7 51.61 %
404 17 5 52.33 % 454 0.4 7 51.61 %
405 22 5 51.97 % 455 0.5 7 51.61 %
406 27 5 51.97 % 456 0.6 7 51.61 %
407 32 5 51.97 % 457 0.7 7 51.61 %
408 37 5 51.97 % 458 0.8 7 51.61 %
409 42 5 52.33 % 459 0.9 7 51.61 %
410 47 5 53.05 % 460 1 7 51.61 %
411 52 5 53.76 % 461 2 7 51.61 %
412 57 5 54.12 % 462 7 7 52.33 %
413 62 5 53.76 % 463 12 7 52.33 %
414 67 5 53.76 % 464 17 7 52.33 %
415 72 5 53.76 % 465 22 7 52.33 %
416 77 5 53.76 % 466 27 7 52.33 %
417 82 5 54.48 % 467 32 7 52.69 %
418 87 5 54.48 % 468 37 7 52.69 %
419 92 5 54.48 % 469 42 7 52.69 %
420 97 5 54.48 % 470 47 7 52.69 %
421 0.1 6 51.61 % 471 52 7 52.69 %
422 0.2 6 51.61 % 472 57 7 52.33 %
423 0.3 6 51.61 % 473 62 7 52.33 %
424 0.4 6 51.61 % 474 67 7 52.33 %
425 0.5 6 51.61 % 475 72 7 52.69 %
426 0.6 6 51.61 % 476 77 7 52.69 %
427 0.7 6 51.97 % 477 82 7 52.69 %
428 0.8 6 51.97 % 478 87 7 52.69 %
429 0.9 6 51.97 % 479 92 7 52.69 %
430 1 6 51.97 % 480 97 7 52.69 %
431 2 6 51.97 % 481 0.1 8 51.61 %
432 7 6 52.69 % 482 0.2 8 51.61 %
433 12 6 52.69 % 483 0.3 8 51.61 %
434 17 6 52.69 % 484 0.4 8 51.61 %
435 22 6 53.05 % 485 0.5 8 51.61 %
436 27 6 53.05 % 486 0.6 8 51.61 %
437 32 6 52.69 % 487 0.7 8 51.61 %
438 37 6 52.69 % 488 0.8 8 51.61 %
439 42 6 52.69 % 489 0.9 8 51.61 %
440 47 6 52.69 % 490 1 8 51.61 %
441 52 6 52.69 % 491 2 8 51.61 %
442 57 6 52.69 % 492 7 8 51.97 %
443 62 6 52.69 % 493 12 8 52.33 %
444 67 6 52.69 % 494 17 8 52.33 %
445 72 6 52.69 % 495 22 8 52.33 %
446 77 6 52.69 % 496 27 8 52.33 %
447 82 6 52.69 % 497 32 8 52.33 %
448 87 6 52.69 % 498 37 8 52.33 %
449 92 6 52.69 % 499 42 8 52.33 %
450 97 6 52.69 % 500 47 8 52.33 %
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combination penalty 
term gamma validation 

accuracy combination penalty 
term gamma validation 

accuracy
501 52 8 52.33 % 536 77 9 51.97 %
502 57 8 52.33 % 537 82 9 52.33 %
503 62 8 52.33 % 538 87 9 52.33 %
504 67 8 52.33 % 539 92 9 52.33 %
505 72 8 52.33 % 540 97 9 52.33 %
506 77 8 52.33 % 541 0.1 10 51.61 %
507 82 8 52.33 % 542 0.2 10 51.61 %
508 87 8 52.33 % 543 0.3 10 51.61 %
509 92 8 52.33 % 544 0.4 10 51.61 %
510 97 8 52.69 % 545 0.5 10 51.61 %
511 0.1 9 51.61 % 546 0.6 10 51.61 %
512 0.2 9 51.61 % 547 0.7 10 51.61 %
513 0.3 9 51.61 % 548 0.8 10 51.61 %
514 0.4 9 51.61 % 549 0.9 10 51.61 %
515 0.5 9 51.61 % 550 1 10 51.61 %
516 0.6 9 51.61 % 551 2 10 51.61 %
517 0.7 9 51.61 % 552 7 10 51.61 %
518 0.8 9 51.61 % 553 12 10 51.61 %
519 0.9 9 51.61 % 554 17 10 51.61 %
520 1 9 51.61 % 555 22 10 51.97 %
521 2 9 51.61 % 556 27 10 52.33 %
522 7 9 51.61 % 557 32 10 52.33 %
523 12 9 51.61 % 558 37 10 52.33 %
524 17 9 52.33 % 559 42 10 51.97 %
525 22 9 51.97 % 560 47 10 52.33 %
526 27 9 52.33 % 561 52 10 52.33 %
527 32 9 52.33 % 562 57 10 52.33 %
528 37 9 52.33 % 563 62 10 51.97 %
529 42 9 52.33 % 564 67 10 51.97 %
530 47 9 52.33 % 565 72 10 51.61 %
531 52 9 51.97 % 566 77 10 51.61 %
532 57 9 51.97 % 567 82 10 51.61 %
533 62 9 51.97 % 568 87 10 51.61 %
534 67 9 51.97 % 569 92 10 51.97 %
535 72 9 51.97 % 570 97 10 51.97 %
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Appendix 3. Comparison of predictions for the OMXH25 data 

 

 

1 0.21 % 1 0 0 1 41 -1.21 % 0 0 1 0
2 0.60 % 1 1 1 0 42 0.79 % 1 0 0 1
3 -0.95 % 0 1 0 0 43 -0.36 % 0 1 1 1
4 -0.07 % 0 1 0 0 44 -1.00 % 0 0 1 1
5 0.22 % 1 1 1 1 45 0.33 % 1 0 1 1
6 -0.49 % 0 0 1 0 46 0.56 % 1 1 1 0
7 2.39 % 1 1 1 1 47 1.43 % 1 1 1 1
8 -1.84 % 0 1 0 1 48 1.21 % 1 1 0 1
9 -0.86 % 0 0 0 1 49 -1.02 % 0 1 0 1

10 -1.32 % 0 1 1 1 50 -0.50 % 0 0 0 1
11 -1.68 % 0 1 1 1 51 0.76 % 1 0 1 1
12 1.73 % 1 1 1 0 52 -0.30 % 0 0 1 0
13 2.82 % 1 1 1 0 53 0.54 % 1 1 1 1
14 -0.76 % 0 1 1 1 54 -0.04 % 0 1 1 1
15 0.10 % 1 1 1 1 55 0.30 % 1 0 1 0
16 -0.80 % 0 0 1 1 56 0.57 % 1 0 1 0
17 -0.43 % 0 0 0 0 57 -1.06 % 0 0 1 0
18 1.00 % 1 0 1 0 58 0.44 % 1 0 0 0
19 -2.27 % 0 0 1 0 59 -1.14 % 0 1 1 0
20 -0.67 % 0 0 0 0 60 0.11 % 1 0 0 1
21 -1.33 % 0 1 1 0 61 0.73 % 1 1 1 1
22 1.22 % 1 0 1 1 62 0.67 % 1 0 1 0
23 0.79 % 1 1 1 0 63 -0.03 % 0 1 1 1
24 -0.66 % 0 1 1 1 64 -0.81 % 0 1 1 0
25 3.21 % 1 1 0 0 65 2.15 % 1 0 1 1
26 0.10 % 1 1 0 1 66 -0.09 % 0 0 0 0
27 1.41 % 1 1 1 0 67 -0.36 % 0 1 1 0
28 0.87 % 1 0 1 0 68 -0.55 % 0 1 1 0
29 0.06 % 1 0 1 1 69 -0.80 % 0 0 1 1
30 -0.26 % 0 1 1 0 70 -0.47 % 0 0 1 1
31 -0.45 % 0 0 1 0 71 1.25 % 1 1 1 1
32 0.52 % 1 1 1 1 72 0.33 % 1 1 0 1
33 1.22 % 1 0 0 1 73 -0.20 % 0 1 1 1
34 0.37 % 1 1 1 0 74 1.72 % 1 0 1 0
35 1.22 % 1 1 1 1 75 0.76 % 1 0 1 1
36 0.59 % 1 0 0 0 76 0.62 % 1 1 1 1
37 -0.42 % 0 0 1 0 77 0.81 % 1 1 1 1
38 -0.28 % 0 0 1 0 78 -1.25 % 0 0 1 1
39 0.64 % 1 0 1 0 79 -0.04 % 0 0 0 0
40 0.75 % 1 0 1 1 80 -2.25 % 0 1 1 0
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81 -0.70 % 0 1 0 0 121 -2.32 % 0 0 1 1
82 0.16 % 1 1 1 0 122 0.38 % 1 1 0 0
83 0.33 % 1 0 1 0 123 0.55 % 1 1 1 0
84 -0.98 % 0 1 1 0 124 -0.73 % 0 1 1 1
85 0.40 % 1 1 1 0 125 -1.51 % 0 0 1 1
86 2.37 % 1 1 0 1 126 -0.48 % 0 0 0 1
87 1.11 % 1 1 0 1 127 0.27 % 1 1 1 1
88 1.63 % 1 1 1 0 128 0.73 % 1 1 1 0
89 0.10 % 1 1 0 1 129 -0.48 % 0 1 0 1
90 0.83 % 1 1 1 0 130 -0.20 % 0 0 1 0
91 -0.71 % 0 0 1 0 131 1.17 % 1 1 1 1
92 -0.70 % 0 0 1 1 132 0.10 % 1 1 1 1
93 0.55 % 1 1 1 0 133 2.13 % 1 1 1 0
94 0.05 % 1 1 1 1 134 -0.65 % 0 1 0 1
95 0.34 % 1 1 1 1 135 0.51 % 1 1 0 0
96 -0.49 % 0 1 1 1 136 -0.89 % 0 0 1 1
97 -0.53 % 0 0 1 1 137 -0.72 % 0 0 0 1
98 -0.68 % 0 0 1 1 138 1.70 % 1 1 1 1
99 0.81 % 1 1 1 1 139 0.11 % 1 0 1 0

100 0.38 % 1 1 1 0 140 0.02 % 1 1 1 1
101 -0.67 % 0 1 1 1 141 -0.89 % 0 1 1 1
102 -0.09 % 0 0 1 0 142 0.31 % 1 0 0 0
103 -0.32 % 0 1 1 1 143 0.97 % 1 0 1 1
104 -0.74 % 0 0 0 0 144 -0.14 % 0 0 1 0
105 -1.36 % 0 1 1 1 145 0.11 % 1 1 1 1
106 -0.72 % 0 1 1 0 146 1.16 % 1 1 1 0
107 0.29 % 1 1 1 1 147 -0.20 % 0 0 1 0
108 -1.11 % 0 1 1 1 148 0.64 % 1 0 1 1
109 -1.02 % 0 1 1 1 149 0.44 % 1 1 1 0
110 -0.53 % 0 1 1 1 150 -0.48 % 0 0 0 0
111 -1.47 % 0 1 1 1 151 -0.49 % 0 1 1 1
112 1.10 % 1 1 0 0 152 -1.19 % 0 0 1 1
113 -2.24 % 0 1 1 1 153 -0.01 % 0 1 0 0
114 1.15 % 1 0 0 1 154 -0.02 % 0 1 1 1
115 0.14 % 1 1 1 0 155 0.41 % 1 1 1 1
116 2.05 % 1 1 1 0 156 0.63 % 1 1 1 1
117 0.35 % 1 1 0 0 157 0.44 % 1 1 1 1
118 -0.81 % 0 1 1 0 158 -0.99 % 0 1 1 0
119 1.36 % 1 1 1 1 159 -2.15 % 0 0 1 1
120 -0.11 % 0 0 1 1 160 0.66 % 1 0 1 1
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161 0.09 % 1 0 1 0 201 0.13 % 1 1 1 0
162 1.83 % 1 0 1 0 202 -0.70 % 0 1 1 1
163 0.15 % 1 1 1 0 203 -0.83 % 0 0 1 0
164 0.05 % 1 1 1 0 204 0.58 % 1 0 1 1
165 -0.72 % 0 0 0 1 205 0.02 % 1 1 1 1
166 -0.22 % 0 0 0 1 206 -1.10 % 0 0 1 1
167 -1.29 % 0 0 1 1 207 -0.44 % 0 0 0 1
168 0.18 % 1 1 0 1 208 -0.50 % 0 1 1 0
169 0.12 % 1 1 1 1 209 0.28 % 1 1 1 0
170 -1.32 % 0 1 1 1 210 1.18 % 1 1 1 0
171 -1.16 % 0 0 0 0 211 0.66 % 1 1 1 0
172 -0.06 % 0 1 1 0 212 -1.20 % 0 1 1 0
173 -0.39 % 0 1 1 0 213 -2.21 % 0 0 0 1
174 1.72 % 1 1 1 0 214 -1.08 % 0 0 1 1
175 0.09 % 1 1 0 1 215 0.70 % 1 1 0 1
176 -0.73 % 0 1 1 1 216 1.03 % 1 0 1 1
177 0.72 % 1 1 1 1 217 -0.59 % 0 1 1 1
178 -2.66 % 0 1 1 0 218 0.52 % 1 1 1 0
179 -0.35 % 0 0 0 0 219 1.03 % 1 1 1 1
180 1.54 % 1 1 1 0 220 1.93 % 1 0 1 0
181 1.49 % 1 0 0 1 221 -0.75 % 0 1 1 1
182 -1.57 % 0 1 0 0 222 0.92 % 1 1 0 0
183 1.10 % 1 0 0 0 223 0.08 % 1 1 1 1
184 -0.23 % 0 0 1 0 224 0.51 % 1 0 1 1
185 -1.26 % 0 0 1 1 225 0.07 % 1 0 0 1
186 -0.36 % 0 0 0 0 226 0.86 % 1 1 1 0
187 0.47 % 1 1 1 1 227 0.22 % 1 0 1 1
188 -1.10 % 0 0 1 1 228 0.62 % 1 0 1 1
189 1.78 % 1 0 0 1 229 -0.78 % 0 1 1 1
190 0.76 % 1 1 1 1 230 0.34 % 1 0 1 1
191 0.15 % 1 1 1 0 231 0.62 % 1 0 1 1
192 -0.96 % 0 0 1 0 232 -0.50 % 0 0 1 0
193 1.59 % 1 0 1 1 233 0.34 % 1 1 1 0
194 1.53 % 1 0 1 0 234 -1.00 % 0 1 1 1
195 0.68 % 1 0 1 1 235 0.52 % 1 0 1 1
196 0.69 % 1 1 1 1 236 1.30 % 1 1 1 0
197 0.44 % 1 1 1 1 237 0.08 % 1 0 1 0
198 0.00 % 1 0 1 1 238 -0.30 % 0 1 1 1
199 1.33 % 1 0 1 0 239 0.25 % 1 1 1 1
200 0.25 % 1 1 1 0 240 -0.23 % 0 0 1 0
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241 -0.15 % 0 0 1 0 257 -0.50 % 0 1 0 0
242 0.38 % 1 1 1 1 258 1.13 % 1 1 1 0
243 -0.85 % 0 1 1 1 259 -0.25 % 0 0 1 1
244 -1.06 % 0 0 1 1 260 0.55 % 1 1 1 0
245 0.81 % 1 0 0 1 261 -0.32 % 0 1 1 0
246 -0.45 % 0 1 1 0 262 0.11 % 1 0 1 0
247 -0.46 % 0 0 1 1 263 0.60 % 1 0 1 0
248 -0.09 % 0 1 1 0 264 0.86 % 1 0 1 1
249 -0.56 % 0 1 1 0 265 0.86 % 1 1 0 0
250 0.19 % 1 0 1 1 266 0.75 % 1 1 1 1
251 0.50 % 1 1 1 0 267 0.24 % 1 0 0 0
252 -0.09 % 0 1 1 0 268 0.50 % 1 0 1 1
253 0.03 % 1 1 1 0 269 0.96 % 1 0 1 0
254 -0.15 % 0 0 1 0 270 0.28 % 1 0 1 0
255 -0.43 % 0 1 1 0 271 0.17 % 1 1 1 1
256 -1.20 % 0 1 1 0 272 -0.79 % 0 1 1 0
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Appendix 4. Comparison of predictions for the S&P 500 data 

 

 

1 0.84 % 1 1 1 1 41 0.88 % 1 1 0 1
2 1.09 % 1 0 1 1 42 0.10 % 1 1 0 0
3 -3.23 % 0 0 1 1 43 0.68 % 1 0 1 1
4 -0.12 % 0 0 0 1 44 0.47 % 1 0 1 1
5 -2.32 % 0 1 1 1 45 -0.21 % 0 0 0 0
6 0.18 % 1 1 0 1 46 -0.92 % 0 1 1 1
7 -0.03 % 0 1 0 0 47 0.10 % 1 1 1 0
8 0.54 % 1 1 1 1 48 0.07 % 1 1 1 0
9 0.00 % 0 1 0 0 49 1.30 % 1 0 1 0

10 -1.90 % 0 0 1 1 50 0.31 % 1 1 0 0
11 -2.07 % 0 0 1 0 51 -0.23 % 0 1 1 0
12 0.02 % 1 1 0 1 52 1.10 % 1 0 1 1
13 -1.53 % 0 1 1 0 53 0.16 % 1 0 0 0
14 -1.57 % 0 1 1 1 54 0.20 % 1 0 1 0
15 -2.06 % 0 0 1 0 55 -0.34 % 0 1 1 0
16 -2.70 % 0 0 1 1 56 0.64 % 1 1 1 1
17 4.96 % 1 0 0 1 57 0.14 % 1 0 1 0
18 0.87 % 1 0 1 0 58 -0.08 % 0 0 1 0
19 -0.11 % 0 1 1 0 59 -0.04 % 0 1 1 1
20 0.86 % 1 1 1 1 60 -0.25 % 0 1 1 0
21 0.13 % 1 0 1 1 61 0.70 % 1 0 1 1
22 -2.45 % 0 0 1 1 62 -0.39 % 0 0 1 0
23 3.43 % 1 1 1 0 63 -0.11 % 0 0 0 0
24 0.70 % 1 1 1 0 64 -0.65 % 0 1 1 0
25 0.97 % 1 0 0 1 65 -0.79 % 0 0 1 0
26 0.44 % 1 0 0 1 66 -0.20 % 0 1 1 0
27 0.45 % 1 0 0 1 67 1.47 % 1 1 1 1
28 -0.01 % 0 0 1 0 68 0.30 % 1 0 1 0
29 -0.51 % 0 0 1 1 69 0.70 % 1 1 1 1
30 1.07 % 1 0 1 1 70 -0.05 % 0 1 1 0
31 0.22 % 1 0 1 0 71 0.50 % 1 0 1 0
32 0.77 % 1 0 1 1 72 0.37 % 1 0 1 0
33 1.32 % 1 0 1 0 73 -0.01 % 0 0 1 0
34 -1.41 % 0 0 1 0 74 -0.29 % 0 1 1 1
35 0.22 % 1 0 0 1 75 1.09 % 1 1 1 1
36 0.14 % 1 0 1 1 76 -1.89 % 0 0 1 0
37 0.85 % 1 0 1 0 77 -0.08 % 0 0 0 1
38 -0.78 % 0 0 0 1 78 0.72 % 1 1 1 0
39 -0.14 % 0 1 1 0 79 -0.46 % 0 0 0 1
40 1.57 % 1 1 1 0 80 0.37 % 1 1 1 1

Day Returns Actual LSTM SVM Random 
guess

Day Returns Actual LSTM SVM Random 
guess 



 

 

 

81 0.68 % 1 1 1 1 121 -0.84 % 0 1 0 0
82 1.16 % 1 0 1 0 122 -0.69 % 0 0 1 1
83 0.01 % 1 1 0 0 123 0.22 % 1 1 1 0
84 0.21 % 1 1 1 0 124 -1.30 % 0 1 1 0
85 0.23 % 1 1 1 1 125 -0.28 % 0 0 0 0
86 0.46 % 1 0 1 0 126 2.15 % 1 1 1 1
87 0.11 % 1 0 1 0 127 0.83 % 1 1 1 1
88 -0.58 % 0 1 1 0 128 0.64 % 1 1 1 1
89 0.36 % 1 1 1 0 129 1.06 % 1 1 0 1
90 0.01 % 1 1 1 0 130 0.47 % 1 0 0 1
91 0.67 % 1 0 1 1 131 -0.03 % 0 0 0 1
92 -0.06 % 0 0 1 0 132 -0.20 % 0 1 1 1
93 0.05 % 1 0 1 1 133 0.44 % 1 1 1 0
94 -0.22 % 0 0 1 1 134 -0.15 % 0 0 1 0
95 0.16 % 1 0 1 0 135 0.09 % 1 1 1 0
96 0.10 % 1 1 1 0 136 0.97 % 1 1 1 1
97 0.89 % 1 0 1 1 137 0.30 % 1 1 0 1
98 -0.22 % 0 1 1 1 138 0.96 % 1 1 1 1
99 -0.04 % 0 1 1 0 139 -0.12 % 0 0 0 0

100 0.47 % 1 1 1 0 140 -0.17 % 0 0 0 0
101 0.11 % 1 0 1 1 141 -0.95 % 0 0 1 1
102 0.10 % 1 0 0 0 142 -0.12 % 0 0 0 0
103 -0.75 % 0 1 1 0 143 0.40 % 1 1 1 1
104 -0.21 % 0 0 1 1 144 0.58 % 1 0 1 0
105 0.97 % 1 1 1 1 145 0.77 % 1 1 1 0
106 -0.44 % 0 0 0 0 146 0.30 % 1 1 0 1
107 -1.65 % 0 1 1 0 147 0.79 % 1 1 1 0
108 -0.16 % 0 0 1 0 148 -0.17 % 0 0 0 1
109 -0.27 % 0 1 1 1 149 -0.48 % 0 0 1 1
110 0.41 % 1 1 1 1 150 0.15 % 1 0 0 0
111 -2.41 % 0 1 1 0 151 0.45 % 1 1 1 1
112 0.81 % 1 0 1 1 152 0.23 % 1 0 0 0
113 0.60 % 1 1 1 1 153 0.47 % 1 1 1 0
114 0.92 % 1 1 1 1 154 0.02 % 1 1 1 1
115 -0.57 % 0 1 1 0 155 -0.34 % 0 0 1 0
116 -0.67 % 0 1 1 0 156 -0.65 % 0 0 1 0
117 0.85 % 1 1 0 1 157 0.37 % 1 0 1 0
118 -0.28 % 0 0 0 0 158 -0.61 % 0 1 1 0
119 -1.18 % 0 1 1 0 159 0.29 % 1 0 1 1
120 0.15 % 1 1 1 1 160 0.69 % 1 1 1 0
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161 0.47 % 1 1 1 1 201 0.01 % 1 1 1 0
162 -0.53 % 0 1 1 0 202 -0.48 % 0 0 0 0
163 0.74 % 1 0 1 1 203 -0.01 % 0 0 1 0
164 -0.16 % 0 0 1 0 204 -0.83 % 0 1 1 1
165 -0.25 % 0 0 1 1 205 0.62 % 1 0 0 0
166 -1.09 % 0 1 1 0 206 -0.24 % 0 1 1 0
167 -0.89 % 0 1 0 1 207 -0.52 % 0 0 1 0
168 -0.72 % 0 0 1 1 208 0.51 % 1 1 1 1
169 -2.97 % 0 1 1 1 209 -1.22 % 0 1 1 0
170 1.31 % 1 1 1 0 210 -1.79 % 0 0 0 1
171 0.08 % 1 0 1 1 211 0.82 % 1 1 1 0
172 1.90 % 1 1 1 0 212 1.42 % 1 1 1 0
173 -0.65 % 0 0 1 1 213 -0.45 % 0 0 1 1
174 -1.18 % 0 1 0 1 214 -1.55 % 0 1 0 1
175 1.48 % 1 0 0 0 215 0.94 % 1 0 1 0
176 -2.90 % 0 0 1 0 216 0.64 % 1 1 1 1
177 0.27 % 1 0 1 0 217 1.10 % 1 0 1 1
178 1.46 % 1 1 0 0 218 -0.14 % 0 1 1 1
179 1.22 % 1 0 1 1 219 1.00 % 1 1 0 0
180 -0.78 % 0 1 1 0 220 -0.19 % 0 1 1 0
181 0.83 % 1 1 0 0 221 0.28 % 1 0 1 0
182 -0.05 % 0 0 1 0 222 -0.39 % 0 0 1 0
183 -2.59 % 0 0 1 0 223 0.69 % 1 1 1 1
184 1.11 % 1 1 0 1 224 -0.35 % 0 0 1 0
185 -0.32 % 0 1 1 0 225 0.29 % 1 0 1 1
186 0.66 % 1 0 1 1 226 0.19 % 1 1 1 1
187 1.29 % 1 1 1 1 227 0.41 % 1 0 1 0
188 0.08 % 1 1 1 1 228 0.56 % 1 0 1 0
189 -0.68 % 0 1 1 1 229 -0.08 % 0 0 0 1
190 1.09 % 1 0 1 1 230 0.33 % 1 0 1 1
191 1.32 % 1 0 0 0 231 -0.30 % 0 0 1 0
192 0.09 % 1 0 1 1 232 0.98 % 1 0 1 1
193 0.00 % 0 0 1 0 233 0.37 % 1 0 0 1
194 0.04 % 1 1 1 0 234 -0.12 % 0 0 1 0
195 0.73 % 1 0 1 0 235 0.08 % 1 0 1 0
196 0.30 % 1 0 0 0 236 0.32 % 1 1 1 0
197 -0.04 % 0 0 0 1 237 0.27 % 1 0 0 0
198 -0.31 % 0 1 1 1 238 -0.20 % 0 1 1 0
199 0.26 % 1 0 1 0 239 0.16 % 1 1 1 0
200 0.03 % 1 0 1 0 240 0.07 % 1 0 1 0

Day Returns Actual LSTM SVM Random 
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Day Returns Actual LSTM SVM Random 
guess



 

 

  

241 0.11 % 1 1 1 1 257 -0.31 % 0 1 0 1
242 0.79 % 1 0 1 1 258 -0.11 % 0 0 1 0
243 0.05 % 1 0 0 0 259 0.29 % 1 0 1 1
244 -0.05 % 0 1 1 0 260 0.87 % 1 0 1 0
245 -0.36 % 0 0 1 1 261 0.02 % 1 1 1 1
246 -0.15 % 0 0 1 1 262 0.72 % 1 1 1 0
247 0.22 % 1 0 1 1 263 0.03 % 1 0 0 0
248 0.76 % 1 0 1 1 264 -0.03 % 0 0 1 0
249 0.22 % 1 1 1 1 265 0.45 % 1 0 1 0
250 0.43 % 1 1 1 1 266 0.50 % 1 1 1 0
251 -0.38 % 0 0 1 1 267 0.09 % 1 1 1 1
252 -0.86 % 0 0 1 0 268 -0.01 % 0 0 1 1
253 -0.66 % 0 0 0 0 269 0.52 % 1 0 1 0
254 0.64 % 1 1 0 1 270 0.00 % 1 0 1 1
255 0.18 % 1 0 0 1 271 -0.56 % 0 0 1 0
256 0.92 % 1 1 1 0 272 0.30 % 1 0 1 1
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Day Day Returns Actual LSTM SVMReturns Actual LSTM SVM Random 
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Appendix 5. Comparison of predictions for the FTSE 100 data  

 

 

 

1 1.18 % 1 0 0 0 41 0.39 % 1 1 1 1
2 -0.56 % 0 0 1 0 42 0.74 % 1 1 1 1
3 -1.44 % 0 1 0 1 43 0.20 % 1 0 1 0
4 -3.14 % 0 0 0 1 44 2.04 % 1 0 1 0
5 1.10 % 1 0 1 0 45 -0.06 % 0 0 0 1
6 -0.83 % 0 1 1 0 46 -1.10 % 0 1 1 1
7 1.27 % 1 0 0 1 47 -0.32 % 0 0 0 0
8 1.08 % 1 0 1 0 48 0.82 % 1 0 1 0
9 -0.02 % 0 1 0 1 49 0.06 % 1 0 1 0

10 -0.47 % 0 1 1 1 50 0.82 % 1 1 1 0
11 -1.05 % 0 0 1 0 51 0.35 % 1 1 1 0
12 -1.06 % 0 0 0 1 52 0.55 % 1 0 1 1
13 0.96 % 1 1 1 0 53 -0.24 % 0 0 1 0
14 -0.79 % 0 0 1 0 54 -0.56 % 0 0 1 1
15 0.14 % 1 1 0 0 55 0.69 % 1 0 1 1
16 -0.52 % 0 1 1 1 56 -0.57 % 0 1 1 0
17 -1.43 % 0 0 0 0 57 0.16 % 1 0 1 1
18 2.27 % 1 0 1 1 58 0.07 % 1 1 1 1
19 -0.09 % 0 1 1 0 59 -0.45 % 0 1 1 1
20 0.09 % 1 0 1 0 60 -0.61 % 0 1 1 0
21 -0.61 % 0 1 1 0 61 -0.26 % 0 1 1 1
22 2.16 % 1 0 0 1 62 0.45 % 1 1 1 0
23 -0.39 % 0 0 0 0 63 0.39 % 1 1 1 0
24 0.74 % 1 0 1 0 64 0.69 % 1 1 1 0
25 0.66 % 1 1 1 0 65 0.18 % 1 1 1 0
26 0.52 % 1 1 0 0 66 -0.35 % 0 1 1 0
27 -0.36 % 0 0 1 1 67 -0.74 % 0 1 1 0
28 -0.91 % 0 0 0 0 68 0.37 % 1 0 1 0
29 0.58 % 1 1 0 0 69 0.29 % 1 0 1 1
30 -0.47 % 0 1 1 0 70 0.11 % 1 1 1 1
31 -0.36 % 0 0 1 0 71 0.42 % 1 1 1 1
32 1.95 % 1 1 1 1 72 0.60 % 1 1 1 1
33 0.03 % 1 1 0 0 73 0.98 % 1 0 1 0
34 -0.99 % 0 1 1 1 74 0.34 % 1 1 1 1
35 -0.85 % 0 0 0 0 75 -0.45 % 0 1 0 1
36 -0.35 % 0 0 1 0 76 0.97 % 1 0 1 0
37 -0.14 % 0 0 1 1 77 -2.01 % 0 0 1 1
38 -0.91 % 0 0 1 0 78 -0.42 % 0 0 0 0
39 1.29 % 1 1 0 1 79 0.26 % 1 1 1 1
40 1.58 % 1 1 1 0 80 -0.03 % 0 0 1 0

Random 
guessDay Returns Actual LSTM SVM Random 

guess Day Returns Actual LSTM SVM



 

 

81 0.62 % 1 1 1 1 121 -1.15 % 0 0 1 1
82 0.62 % 1 1 1 0 122 0.53 % 1 0 1 1
83 0.52 % 1 1 1 0 123 -0.78 % 0 1 1 0
84 1.01 % 1 0 0 0 124 0.32 % 1 0 0 1
85 0.37 % 1 1 1 0 125 0.41 % 1 1 1 1
86 -0.08 % 0 1 1 1 126 0.08 % 1 1 0 0
87 0.61 % 1 1 1 0 127 0.65 % 1 1 0 0
88 0.07 % 1 0 1 0 128 0.99 % 1 1 1 1
89 -0.35 % 0 0 1 1 129 0.59 % 1 1 0 0
90 -0.05 % 0 1 1 0 130 0.31 % 1 1 0 0
91 0.05 % 1 1 1 1 131 -0.42 % 0 0 1 1
92 0.26 % 1 0 1 0 132 0.07 % 1 1 1 1
93 0.00 % 0 0 1 1 133 -0.31 % 0 0 1 0
94 0.44 % 1 1 1 0 134 0.16 % 1 1 1 0
95 0.02 % 1 1 1 1 135 1.17 % 1 1 1 0
96 -0.10 % 0 0 1 0 136 -0.53 % 0 1 1 1
97 0.85 % 1 0 1 0 137 0.31 % 1 0 0 0
98 -0.68 % 0 0 1 0 138 -0.23 % 0 0 1 1
99 -0.40 % 0 0 0 0 139 0.12 % 1 0 1 1

100 -0.08 % 0 1 1 1 140 0.08 % 1 1 1 1
101 0.17 % 1 0 1 1 141 -0.08 % 0 1 1 1
102 -0.30 % 0 0 1 1 142 -0.10 % 0 0 1 0
103 -0.44 % 0 1 1 1 143 0.31 % 1 1 1 1
104 -0.40 % 0 1 1 1 144 0.97 % 1 1 1 0
105 0.40 % 1 1 1 1 145 0.82 % 1 0 1 0
106 -1.63 % 0 1 1 0 146 0.66 % 1 1 0 1
107 0.15 % 1 0 0 1 147 -0.05 % 0 1 0 0
108 -0.75 % 0 1 0 1 148 -0.66 % 0 0 1 1
109 -0.06 % 0 0 1 0 149 -0.05 % 0 0 1 1
110 -0.55 % 0 1 1 1 150 -0.17 % 0 1 1 1
111 1.09 % 1 1 0 0 151 -0.08 % 0 1 1 1
112 0.76 % 1 1 1 0 152 -0.28 % 0 1 1 1
113 1.09 % 1 1 0 0 153 -0.05 % 0 1 1 0
114 -0.07 % 0 1 1 1 154 0.34 % 1 1 1 1
115 -0.51 % 0 1 1 0 155 0.60 % 1 1 1 1
116 0.25 % 1 0 1 1 156 -0.55 % 0 1 1 0
117 0.07 % 1 0 1 1 157 -0.56 % 0 0 1 0
118 -1.37 % 0 1 1 1 158 0.21 % 1 0 1 0
119 0.65 % 1 1 0 0 159 0.08 % 1 1 1 0
120 -0.12 % 0 1 1 0 160 0.56 % 1 1 1 0

Random 
guessDay Returns Actual LSTM SVM Random 
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161 -0.73 % 0 1 1 1 201 0.58 % 1 0 1 0
162 -0.13 % 0 0 0 0 202 -0.16 % 0 1 1 1
163 0.80 % 1 0 1 0 203 -0.26 % 0 1 1 0
164 1.82 % 1 0 1 1 204 -0.47 % 0 0 1 0
165 -0.52 % 0 1 1 0 205 -0.02 % 0 0 1 1
166 -0.78 % 0 1 1 1 206 0.85 % 1 1 1 0
167 -0.01 % 0 0 0 0 207 1.02 % 1 0 0 1
168 -2.34 % 0 0 1 1 208 -0.24 % 0 1 0 0
169 -2.47 % 0 1 0 0 209 -0.65 % 0 1 1 1
170 -0.72 % 0 1 1 1 210 -3.23 % 0 0 1 0
171 0.38 % 1 1 0 0 211 -0.52 % 0 0 0 0
172 1.71 % 1 0 1 1 212 1.10 % 1 1 1 0
173 -0.44 % 0 1 0 0 213 0.59 % 1 0 0 0
174 -0.37 % 0 1 0 1 214 -0.76 % 0 1 0 1
175 0.33 % 1 0 1 0 215 0.33 % 1 1 0 0
176 -1.42 % 0 0 1 0 216 0.40 % 1 1 1 1
177 -0.76 % 0 0 0 0 217 0.84 % 1 0 1 1
178 0.71 % 1 1 0 1 218 -0.46 % 0 0 1 1
179 1.02 % 1 0 1 0 219 -0.03 % 0 0 0 0
180 -0.90 % 0 1 0 0 220 -0.61 % 0 1 1 0
181 1.11 % 1 1 0 0 221 0.22 % 1 0 1 1
182 -0.97 % 0 1 1 1 222 -0.44 % 0 0 1 0
183 -0.47 % 0 0 0 0 223 0.18 % 1 0 0 0
184 -0.08 % 0 0 1 0 224 0.68 % 1 0 1 1
185 0.35 % 1 0 1 0 225 0.67 % 1 1 1 0
186 0.99 % 1 0 1 1 226 0.95 % 1 1 1 0
187 0.32 % 1 1 0 1 227 -0.05 % 0 0 0 1
188 1.04 % 1 1 0 0 228 0.09 % 1 0 1 1
189 -0.19 % 0 0 1 1 229 -0.34 % 0 0 1 1
190 0.59 % 1 0 1 0 230 0.34 % 1 0 1 1
191 -0.39 % 0 0 1 1 231 -1.10 % 0 1 1 1
192 0.15 % 1 0 1 1 232 0.75 % 1 0 0 1
193 -0.64 % 0 0 1 1 233 0.92 % 1 1 1 0
194 0.44 % 1 0 0 0 234 0.25 % 1 0 0 1
195 0.96 % 1 1 1 1 235 0.12 % 1 1 1 1
196 0.09 % 1 0 0 0 236 0.22 % 1 1 1 0
197 0.31 % 1 1 1 1 237 -0.64 % 0 0 0 1
198 -0.62 % 0 1 1 0 238 -0.42 % 0 0 1 0
199 -0.01 % 0 0 1 1 239 0.50 % 1 1 1 0
200 -0.09 % 0 0 1 1 240 -0.19 % 0 0 0 0

Random 
guessDay Returns Actual LSTM SVM Random 
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241 -0.59 % 0 1 1 0 257 1.43 % 1 0 1 0
242 0.14 % 1 0 1 1 258 -0.08 % 0 1 1 1
243 0.07 % 1 1 1 0 259 -0.28 % 0 1 1 0
244 0.22 % 1 0 1 1 260 0.03 % 1 1 1 1
245 -0.84 % 0 0 0 1 261 0.81 % 1 0 0 0
246 -0.28 % 0 0 1 0 262 1.10 % 1 0 1 0
247 1.22 % 1 1 1 1 263 2.25 % 1 1 1 1
248 0.95 % 1 0 1 1 264 0.08 % 1 1 1 1
249 0.09 % 1 1 0 1 265 0.21 % 1 1 1 0
250 0.36 % 1 1 1 0 266 0.45 % 1 0 1 1
251 -0.07 % 0 0 1 1 267 0.11 % 1 0 1 0
252 -0.94 % 0 0 1 0 268 0.54 % 1 1 1 0
253 -0.82 % 0 1 1 1 269 0.20 % 1 1 1 1
254 -1.75 % 0 1 1 0 270 0.17 % 1 1 1 0
255 0.42 % 1 1 1 1 271 -0.76 % 0 0 1 1
256 -0.70 % 0 1 1 1 272 -0.59 % 0 0 1 0
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