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Eye-related diseases like diabetic retinopathy can be visually diagnosed by medical ex-
perts. However, this is time-consuming work requires much effort. For solving this
problem, automated computer-aided solutions have been proposed based on retinal im-
age analysis methods. However, this kind of system generally requires lots of data an-
notated by experts for training the methods for getting relevant analysis results. For the
efficient utilization of expert’s time, active learning can be used to achieve good enough
image analysis results. The experimental part of the work studies active learning strategies
for the segmentation of retinal blood vessels, then compare the results to a benchmark.
Based on the experiments, most active learning strategies show better segmentation accu-
racy than random sampling as the benchmark. In addition, when the number of images
available for the training is increased, active learning performs well against the fully su-

pervised learning model.
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1 INTRODUCTION

1.1 Background

With the multiple health threats increasing worldwide, eye diseases, as one of them, have
gradually caught people’s attention. For instance, diabetic retinopathy, diabetic nephropa-
thy, and diabetic neuropathy are three major types of diabetic abnormalities [1]. Among
these diseases, medical experts can judge eye diseases like diabetic retinopathy from eye
fundus images. The retinal image analysis is generally used for making the diagnosis for

diabetic retinopathy.

The development of retinal image analysis methods has several stages. The first one
is early-stage retinal image analysis, which uses image processing algorithms to do de-
tection and segmentation for corresponding retinopathy lesions [2]. However, with the
tremendous success of the deep learning algorithms in the image classification field, more
researchers gradually adapt them to realize classification [3] and lesion detection [4] to
fundus images of diabetic retinopathy as well. Its performance exceeds that of the tradi-
tional diabetic retinopathy detection algorithm. In [5], there are three typical retinal image
analyses: retinopathy degree classification, retinal image blood vessel segmentation, and
red lesion detection. For getting the best image analysis results, the realization of these
methods can be done by training a Convolutional Neural Network (CNN) model using

supervised learning.

The performance of CNN is better than traditional image processing algorithms, espe-
cially on retinal lesion classification and retinal lesion detection [3,4]. It does not require
professional knowledge to design lesion features. However, based on the CNN model,
retinal image analysis methods still need many annotated trained samples made by ex-
perts, which will generate a high cost of making annotations and restrict the CNN appli-

cations.

For the problems mentioned above, Human in the loop is a feasible solution. It mainly
relies on human intelligence to help the machine to become more intelligent. Annotation
and Active learning (AL) are the cornerstones of Human-in-the-Loop Machine Learn-
ing [6]. AL is a subfield of machine learning, or more generally, artificial intelligence.
There are two important modules of the AL algorithm: learner and selection strategy. AL
uses the selection strategy, actively select some samples from the unlabeled sample set,

then provide them for experts in related fields to label, lastly add the labeled samples to



the training data set for the learning module to train. The program stops when the learn-
ing module meets the termination conditions. Otherwise, the above steps are repeated

continuously to obtain more labeled samples for training [7].

Some great work of active learning has shown up in the recent few years. In [8], authors
propose an algorithm based on Active Learning + Transfer Learning, Data Augmentation,
Majority Selection, Continuously Fine-Tuning, and other methods. Experimental results
have verified that active selection strategies (entropy + diversity) can reduce at least half
of the data labeling cost in three medical image sets. In [9], a combination of Generative
Adversarial Network (GAN) and Active Learning has been proposed for the first time. It
obtains a generator model by training the GAN, actively generates the most valuable sam-
ples for experts to mark. In [10], Konyushkova et al. proposed learning active learning
from data, which is fundamentally different from the traditional active selection strategy.
It overcomes the shortcomings of manual design selection strategy cross-domain general-
ization ability, learns by transforming active selection strategy into a regression problem.
The learned strategies have achieved significant effects on real data sets (Striatum, Mag-
netic Resonance Imaging (MRI), Credit Card, Splice, and Higgs) in many various fields.

1.2 Goals and delimitations

This thesis concentrates on designing an effective active learning algorithm to train reti-
nal image analysis methods, thereby selecting the most valuable samples from unlabeled
data for an expert to make annotations, thus improving the performance of retinal image

analysis methods at the minimal cost of making annotations.

More specifically, the research goals are as follows:

 Study retinal image content from the viewpoint of eye diseases and relevant litera-

ture on active learning for retinal image analysis.

* Study and implement one or more active learning approaches, then use them to
select the next image to be annotated, thus improving retinal image analysis perfor-

mance.

* Quantitatively evaluate the learning against a benchmark.
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1.3 Structure of the thesis

The whole thesis architecture is arranged as follows: Chapter 2 introduces background
knowledge related to the retinal image and its corresponding analysis methods. This
chapter also introduces the related research on active learning, including its scenarios,
selecting/querying strategies for unlabeled samples, and active learning applications on
efficiently training for retinal image analysis methods. In Chapter 3, one type of active
learning algorithm, based on the Deep Neural Network (DNN) model, is proposed to train
the retinal image analysis methods efficiently. Chapter 4 describes experimental results
after implementing the proposed algorithm, then evaluating the algorithm performance as
well. Chapter 5 discusses the shortage of the realized algorithm, thus discussing improve-
ments to the proposed algorithm. Finally, Chapter 6 gives one general conclusion to the

whole finished work.
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2 RETINAL IMAGES ANALYSIS AND ACTIVE LEARN-
ING

This chapter mainly introduces a basic understanding of the retina, common retinal ab-
normalities, image analysis methods, common databases of retinal images, and active
learning methods applied in the medical field to analyze the retinal image for medical
diagnosis.

2.1 Physiological structure of retina

2.1.1 Structure of eyeball and retina

The human eye is approximately spherical, and its main components include the iris,
pupil, ciliary muscle, lens, retina, and optic nerve [11]. The anatomical results are shown
in Figure 1 [12]. The structure of the human eye is an optical imaging system. The light
is transmitted to the inside of the eyeball through the pupil, forming the target’s influence
on the retina, then transmitting the visual information through the optic nerve to the next

signal processing station.

Sclera Choroid

T — Retina

Aqueous humor Fovea

Pupil Vitreous fluid

Ciliary

body nerve

Figure 1. Schematic diagram of eyeball anatomy results. [12]

The retina is the most complex part of the fundus structure, and it is composed of im-
portant structures such as the retina, fovea, and optic disk. The structure of the retinal is
presented in Figure 2 [11].
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Figure 2. Schematic diagram of eyeball anatomy results. [11]

Macula [13]: an elliptical bright spot with a diameter of about 1.5 mm, about 3.5 mm
from the temporal edge of the optic disk, 0.3 mm below the horizontal meridian. The
pigment content in the macula’s pigment epithelial cells is higher, so the color observed
under the mirror is darker. Many cone cells accumulate in the macula, accounting for
about 10% of the retina’s total number of cone cells. The visual acuity is the highest, and

the color sensitivity decreases when the distance from the macula is farther.

Fovea [13]: a small depression with a diameter of 0.1 m m in the center of the macula.
There are blood vessels and only very sharp cone cells. If the light reflection point is

observed at this place with the ophthalmoscope, it is the macula’s foveal light reflection.

Optic disk [13]: a light red area with a diameter of 1.5 m m, located about 3 m m on the
nasal side of the macula, has no photoreceptor cells and presents an inherent dark area in

the visual field, which is also called a physiological blind spot.

Besides, the retinal tissue is also distributed with capillaries that can be directly observed
in the human body’s organs. These vascular diseases can reflect the human body’s throm-

bosis, diabetes, hypertension, and other diseases [13].
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2.1.2 Common types of retinal abnormalities

Common types of retinopathy are shown in Figure 3 [14], Figure 3 [14] shows common
pathologies.These include Microaneurysms, Exudates, Hemorrhages, and New blood ves-

sel routes. The main features are as follows [14]:

1. Microaneurysms: generally, small red round spots appear on the retinal image of
the fundus, and their size is smaller than the diameter of blood vessels near the optic disk,
which can reflect the early changes of blood vessels to a certain extent, as shown in Figure
3 (a).

2. Exudate: due to the continuous expansion of retinal blood vessels, the rupture of
nutrients such as lipids and proteins appears on the retina. It appears bright white on the
color image of the retina at the fundus. The shape is generally plaques with different

sizes, as shown in Figure 3 (a).

3. Hemorrhages: the blood vessels in the retina rupture due to the continuous expansion
of blood vessels in the retina, and the color image of the retina at the fundus appears dark

red, as shown in Figure 3 (a).

4. Blood vessel routes: blood vessel occlusion leads to ischemia, causing the retina to

produce small disordered new blood vessels for scarce blood, as shown in Figure 3 (b).

(a) (b)

Figure 3. Common types of retinopathy: (a) Microaneurysms, Exudate and Hemorrhages; (b)
new blood vessel routes. [14]
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The grade of the retina’s disease can be divided according to different factors such as
the type and location of the disease. Taking diabetic retinopathy as an example, there
are different evaluation standards according to the actual application scenarios: two clas-
sifications (normal and abnormal), three classifications (normal, Nonproliferative Dia-
betic Retinopathy (NDPR), Proliferative Diabetic Retinopathy (PDR)), four classifica-
tions (normal, mild NDPR, severe NDPR, PDR), five categories (normal, mild NDPR,
moderate NDPR, severe NDPR, PDR). The Early Diabetic Retinal Diagnostic Society
(ETDRS) in 1991 proposed a worldwide uniform classification standard for diabetic retinopa-
thy [15], which was initiated by the American Academy of Ophthalmology (AOO) [16]
in 2001, and was more practical in February 2003 The global diabetic retina classification
standard. The specific manifestation of the standard is shown in Figure 4 [17].

Figure 4. Different degrees of diabetic retinopathy
(left to right: normal, mild, moderate, severe, PDR). [17]

2.2 Common datasets of fundus images

The data set of fundus image lesion analysis, as one of the hot research fields, is opened
to compare the pros and cons of various algorithms. Nine public fundus image datasets
are introduced below, which are popular and have a significant role in promoting this field

development.

1. STARE data set [18] has 20 pictures for blood vessel segmentation, ten of which
contain Lesions. Each picture resolution is 605*%700, and a Topcon TRV-50 color took
it with a 35-degree field of view. Usually, each picture is marked by two corresponding
markers. The first marker will mark the pictures with 32,000 pixels as blood vessels on
average, while the second marker will need to mark 46,100 pixels. The first marker is
better than the second marker on the edges of blood vessels and fine blood vessels, which

is usually used as a fundamental ground truth.

2. DRIVE data set [19] is used to segment blood vessels. The data comes from a screen-
ing project for diabetic retinopathy in the Netherlands in 2004. The entire database con-
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tains 40 pictures in jpg format, having a resolution of 768*584, seven of which contain
Lesions. Each picture contains fine markings of the location of blood vessels without
any abnormal structure markings. The training set and the test set each have 20 pictures.
There are two labeling results for the test set. The first labeling result contains 12.7%
of the vascular structure, and the second labeling result contains 12.3% of the vascular

structure.

3. Standard Diabetic Retinopathy Database [20,21] includes two sub-datasets, DI-
ARETDBO and DIARETDBI1, published in 2006 and 2007 respectively. DIARETDBO
has 130 pictures, 110 of which are lesion pictures, and 20 are normal pictures. The le-
sion’s specific information is only a text description, and there is no specific location
mark. DIARETDBI contains 89 pictures, of which only five are normal. The remaining
lesion pictures include pixel-level annotations for microaneurysms, hemorrhages, hard or

soft exudates. The resolution of the picture is usually 1500%1152.

4. Messidor data set [22] contains a total of 1200 pictures, taken with a Topcon TRC
NW6 color camera at a 45-degree angle. There are three scale pictures: 1440%960,
2240%*1488, 2304*1536. Usually, there are two markers for each picture in the database:
the lesion grade and the severity of macular edema. The lesion grade is divided according
to new blood vessel routes and the number of microaneurysms and hemorrhages. It is usu-
ally divided into four lesion grades, including the average category, and macular edema
is divided into three grades, according to the distance between the exudation location and

the macula.

5. REVIEW data set [23] contains a total of 16 mydriatic pictures, and each picture has
a blood vessel label. This data set is mainly used to estimate the width of the blood vessel

and the analysis of the structure of the blood vessel junction.

6. ROC data set [24] comes from a part of the online microaneurysm competition held
by the University of Northern Iowa in 2009. A total of 50 pixel-level annotated pictures
are released in this game, with a total of three scale sizes, namely 768*576, 1058*1061,
and 1389*1383.

7. HEI-MED data set [25] contains a total of 169 pictures, of which 7 pictures contain
microaneurysms, 54 pictures contain exudation, 73 pictures contain cotton patch, soft

exudation, and other lesions. Each picture contains pixel-level markers and its resolution
is 2196*1958.

8. e_optha data set [26] contains two data subsets, e_optha EX and e_optha MA. e_optha
EX contains 35 normal pictures and 47 pictures with oozing. There are four sorts of
pictures with different sizes, ranging from 1440*960 to 2544*1696. In the picture, there



16

are also normal structures such as reflections that significantly interfere with exudation
detection.e_optha MA contains 233 pictures without microaneurysms and 148 pictures
of microaneurysms with pixel-level markers. Both exudates and microaneurysms have

pixel-level markings.

9. "Diabetic Retinopathy Detection'' Competition Data Set in Kaggle [27] is com-
monly used for 5-class retinopathy classification, which contains 35,126 training pictures
and 53,576 test pictures. Each picture will have a grade label (From O to 4). The picture

data in this dataset comes from pictures taken by different fundus cameras.

10. CHASEDBI1 [28] includes 28 retinal images taken from the eyes of 14 school chil-
dren. Usually, the first 20 images are used for training, and the remaining eight images
are used for testing. The size of each image is 999x960, and the binary Field of View

(FOV) mask and segmentation ground truth are obtained by manual methods.

11. HRF [29] contains images of 15 healthy patients, 15 images of diabetic retinopathy
patients, and 15 images of glaucoma patients. Each image has a binary standard label
image of blood vessel segmentation. FOV is also provided for specific data sets. The
standard label data is generated by a team of experts in retinal image analysis and clini-

cians in cooperating ophthalmology clinics. The size of each image is 3504 x 2336.

2.3 Retinal image analysis methods

This section introduces retinal image analysis methods from two aspects: retinal blood

vessel segmentation and classification.

2.3.1 Retinopathy blood vessel segmentation

Retinal blood vessel segmentation is to train the corresponding model (e.g., CNN), which
uses the ground truth label information of the blood vessel pixel level. Thus the model
can achieve the effect of automatically segmenting the blood vessel of the input fundus
image. For example, a fundus image and its corresponding segmented binary graph is

shown in Figure 5 [30].

In general, the existing blood vessel segmentation algorithms can be divided into super-
vised learning and unsupervised learning. Supervised learning algorithms need to have

the vascular binary map labels marked by experts as samples, then extract each pixel’s
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Figure 5. Retinal blood vessel segmentation results
(left: fundus image right: corresponding segmentation results). [30]

features and labels to train the classifier. Common classifiers include Support Vector Ma-
chine (SVM) [31], Conditional Random Field (CRF) [32], and CNN [30, 33-35]. For
unsupervised learning, blood vessel label samples are unnecessary. However, for evalu-
ating the results of unsupervised segmentation, the Ground Truth (GT) is needed. Most
unsupervised learning algorithms are mainly based on matched filtering, mathematical

morphology, blood vessel tracking, and regional growth.

The essence of using supervised learning to perform blood vessel segmentation is to clas-
sify pixels. The main purpose is to segment blood vessels using the labels, marked by ex-
perts as training samples for model training. The most important step in supervised learn-
ing is to extract the feature vector, which distinguishes blood vessels from non-vessels
from the training data. Generally, the segmentation accuracy of supervised learning algo-

rithms is higher than that of unsupervised learning.

To improve the segmentation accuracy of diseased blood vessels, Strisciuglio et al. [36]
used a set of selective BCOSFIRE filters to extract different features of retinopathy images
through these filters, thus achieving the effect of segmenting blood vessels in retinopathy
images. Ganjee et al. [37] used a method, which is a combination of regional features

and multi-scale matched filtering, distinguishing lesion structures from blood vessels.

A blood vessel segmentation algorithm based on a decision tree classifier was proposed by
Fraz et al. [38]. The main principle is to train the decision number classifier by extracting

the line feature, direction feature, and the gradient vector field’s morphological feature.

Conditional Random Field was first introduced into blood vessel segmentation by Or-

lando et al. [32]. Through the support vector machine with structured output, the model
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parameters are continuously learned, thus achieving the purpose of training a fully con-
nected conditional random field (Full connected CRF) model, and finally solve the error

caused by the lack of prior knowledge of the slender structure of blood vessels.

With the successful application of deep learning algorithms in computer vision, CNN
has become the most successful medical image segmentation algorithm. In this context, a
blood vessel classification algorithm, which combines random forests classifier and CNN,
was proposed by Wang et al. [33]. After that, the algorithm of using the deep autoencoder
model, constructing the relationship between retinopathy images and blood vessels, was
proposed by Li et al. [30], which has a better segmentation effect for retinopathy images
and microvessels. Laskowski et al. [34] used a deep neural network based on image
blocks to segment blood vessels, which exceeded all previous algorithms in the blood
vessel segmentation of retinopathy images. Fu [35] regards the problem of blood vessel
segmentation as edge detection, first uses multi-level and multi-scale CNN to extract the
retinopathy image features, and then combines CNN and random conditions to segment

the retinal image blood vessels.

Unsupervised learning is rule-based learning without any prior knowledge and labeled
samples. The main blood vessel extraction algorithms mainly use model-based methods
and filter response methods. According to the different image processing methods, algo-
rithms can be subdivided into matched filtering methods, blood vessel tracking methods,

and model-based methods.

The matched filter uses a two-dimensional convolution kernel to convolve the retinopathy
image. When there are blood vessels, the matched filter has a high response. Kovacs et
al. [39] used a self-correcting algorithm based on contour reconstruction and template
matching for blood vessel segmentation. Azzopardi et al. [40] used a series of translation
filter response (COSFIRE) combinations to extract blood vessels. Although the matched
filtering algorithm has a better segmentation effect on healthy retina images, it has a higher

probability of false positives when used on fundus images with retinopathy.

The blood vessel tracking method [41] uses separating the blood vessel between two
points. That is, it relies on the seed point in the local area to detect the blood vessel. The
gray intensity and curvature degree determine the center of the blood vessel’s longitudinal
section. This method can effectively calculate the blood vessel’s accurate width, but if
seed point placement is not accurate, it will cause the blood vessel without the seed point
to be detected.

Model-based methods usually use explicit blood vessel models, such as blood vessel con-
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tour models and deformation models, to extract blood vessels in retinopathy images [42].
The gray value distribution of the blood vessel’s cross-section can be regarded as a Gaus-
sian model in the blood vessel contour. The second-order Gaussian derivative can improve
the segmentation accuracy of low-quality retinopathy images [43]. The blood vessel con-
tour model can be regarded as a synthesis of blood vessel intersections and branches.
More complex models, such as geometric deformation models and parametric deforma-

tion models, can also segment blood vessels [44].

2.3.2 Artery/Vein classification

Artery-Vein classification, a usable way of making retinopathy diagnosis in the early
stage, distinguishes blood vessels inside the fundus images as two types: arteries and
veins. As shown in Figure 6 [45] below, the left is the fundus image, and the right is the
corresponding Artery/Vein classification result. There are already some related results,
for example, The Arteriolar-to-Venular diameter Ratio (AVR) [46], as a discriminating
parameter, whose size could decide various types of illness such as diabetes and cardio-
vascular diseases. Under typical situations, the DRIVE dataset can be used to perform
blood vessel segmentation tasks. However, for the artery-vein classification task, this
dataset is no longer suitable. Therefore, more datasets have shown up. The DRIVE-
AV dataset [47], with more artery/vein labeling information at pixel level added inside,
contains twenty images respectively in the training and testing dataset. For the LES-AV
dataset [48], its labeling information is the same as in DRIVE-AV. Both are at pixel levels,
but the number of annotated images is 22. The INSIPRE-AVR dataset [49] and the private
IOSTAR dataset [50] respectively contain 40 and 24 images. The first one’s labeling info

is in the centerline level. Two experts annotate the second one’s data samples.

Galdran et al. [45] propose that Artery/Vein (A/V) classification is a segmentation prob-
lem with four classes to be classified, which are artery, vein, background, and uncertain.
Without segmentation to the blood vessels first, they directly choose one network similar
to the U-Net to classify arteries and veins. Besides, Raj et al. [51] proposed one network
called AV-Net (Artery-Vein Net), using the Res-Net 50 as the principal network used for
training. Then using squeeze-and-excitation blocks to learn featural weights by the net-
work’s loss, thus making useful features maps’ weights large. Finally, differently scaled
feature maps are processed by upsampling first, then they are merged to the input image’s
size for getting the segmentation map. This network has some special needs for inputs,
which requires one segmented vasculature map. For the vessel segmentation and A/V

classification tasks, they can be performed inside one multitask network simultaneously,
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(a) (b)

Figure 6. Artery-Vein classification results: (a) Fundus image (b) Classification results. [45]

proposed by Ma et al. [52].

All in all, A/V classification is a research domain full of visions from all methods men-
tioned above. More general methods for this task are directly training the A/V classifica-
tion network. One separate vessel segment with arteries and veins, as a problem of A/V

classification, still exists from existed works.

2.4 Active learning approaches

For the retinal image analysis, The use of DNN and enough annotated images can make
sure that the training model can get good performance. However, the performance of a
DNN is not infinitely ascending with the increase of annotated data, and its performance
has corresponding bottlenecks. Getting a large number of annotated samples is infeasible

in practice due to the huge annotating cost by experts.

2.4.1 Introduction to active learning approaches

Therefore, supervised learning generates considerable annotation costs. AL is suitable for
solving this problem. Burr Settles [7] has introduced active learning in detail, one of the
machine learning subareas. In the field of optimal experimental statistics, it is also called
query learning. The learning and the selecting components are two necessary and impor-

tant active learning algorithms modules. From the unlabeled sample set, active learning
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uses selection strategies to choose some samples actively, then provides them with experts
in related fields to mark. The learning module receives labeled samples from the train-
ing dataset to train the learning model. When the learning module meets the termination
conditions, the program stops running. Otherwise, the program continuously repeats the
above steps for obtaining more labeled samples used for training. AL algorithms have an
important assumption: if the learning algorithm is allowed to learn the data it is interested

in. It will achieve good results through less training with less amount of data.

As shown in Figure 7 [7], the AL method is an iterative and interactive training process,
which is mainly composed of five core parts: unlabeled pool (denoted as U), select queries
(denoted as Q), human annotator (denoted as S), labeled training set (denoted as L), and
machine learning model (denoted as G). AL combines the above five parts into one pro-
cess, including updates the model performance, unlabeled sample pool, and labeled data
set in a continuous iterative training method. The sequence of AL is shown in Figure
7 [7], which lasts until the target model reaches the preset performance or no longer pro-
vides annotation data. Ideally, the number of labeled samples keeps increasing during
each iteration, and the model performance also improves. In practical applications, the
annotator’s accuracy should be ensured as much as possible, aiming to alleviate the model

learning error caused by incorrectly labeled samples in the early training stage [7].

machine learning
model

labeled
training set

unlabeled pool

u

Figure 7. The process of pool-based active learning cycle. [7]

oracle (e.g., human annotator)

2.4.2 Scenarios of active learning

AL mainly considers the following three scenarios, as shown in Figure 8 [7].
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membership query synthesis
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5"&.“’3.‘" i.nput instance S query or discard
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i pool-based active learning query is labeled
' by the oracle

_____ sample a large _____| model selects |
pool of instances u the best query

Figure 8. The process of pool-based active learning cycle. [7]

Membership Query Synthesis is the earliest active learning scenario proposed by Augluin
et al. [53]. Under this setting, the learner randomly selects specific query instances and
then gives them to an oracle for marking. Even the learner itself can generate samples to
be labeled. The method achieved good results at the time, but there are certain problems:
the query instance experts selected by the learner cannot be identified, and it does not

have a fixed semantics [54].

Stream-based Selective Sampling is proposed by Atlas et al. [55]. This scenario sup-
poses many unlabeled instances have already existed. Under this setting, all instances
are judged by the learner in turn, and the learner is responsible for judging whether these
instances are sent for labeling. The learner usually uses a real-valued function for mea-
surement when making judgments. Instances with higher scores will be sent for marking.
This method is also widely used in display, especially in classification algorithms, such

as speech tagging and sensor scheduling.

Pool-based sampling [56] usually has a large amount of available unlabeled data. Under
this setting, the unlabeled data set can be called a pool, and a real-valued function can
still be used to select a query instance each time. This method is most widely used in the
real world, such as text recognition, information extraction, and image video classifica-
tion [57].

2.4.3 Conventional and deep active learning query strategies

The selection strategy of the sample directly determines the degree to which the model

can save labeling costs. For example, using the uncertainty strategy can save more an-
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notation costs than the random sampling strategy [58,59]. Because the random sampling
strategy neither utilizes the model’s prediction information nor many unlabeled sample
pools’ structure information. Random sampling determines the samples to be labeled
first. The uncertainty strategy interacts with the model’s prediction information, prioritiz-
ing to select samples with the best value for the current model. There are several classic

screening strategies:

Random Sampling [58]: this strategy does not need to interact with the model’s predic-
tion results. It directly selects samples from the unlabeled sample pool through random
numbers, then lets experts label them. It is often regarded as a baseline method in active

learning.

Uncertainty Strategy [59]: this strategy assumes that the sample closest to the classifica-
tion hyperplane, which has a richer amount of information than the classifier. According
to the current model’s prediction value of the sample, the most uncertain sample is se-
lected. This strategy includes some basic measurement indicators:

1) Least Confidence (LC) uses the additive inverse of the maximum predicted probability
as the sample’s uncertainty score.

2) Margin Sampling (MS) thinks that the closer the sample is to the classification hyper-
plane, the higher the uncertainty. It is often combined with SVM and used to solve the
binary classification task, but it does not perform well on the multi-classification task.

3) Multi-Class Level Uncertainty (MCLU) is an extension of MS in multi-classification
problems. MCLU selects the two samples farthest from the classification interface and

uses their distance difference as the criterion.

Query By Committee (QBC): QBC [60] is a sampling strategy based on version space
reduction. Version space refers to a collection of a series of different types of benchmark
classifiers. The core idea is to select unlabeled samples that can minimize the version
space preferentially. QBC includes two basic steps:

1) Using multiple models to form a committee.

2) All committee models sequentially predict unlabeled samples and prioritize screening

out the most inconsistent samples for labeling.

Since QBC needs to train several models in the actual application process, it has high
computational complexity. To solve this issue, Entropy Query-by-Bagging (EQB) and
Adaptive Maximize Disagree (AMD) [61] are proposed for alleviating the problem of
computational complexity. EQB introduces the bagging inheritance method and bootstrap

sampling; AMD mainly focuses on high-dimensional data, dividing the feature space into
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a certain number of subsets and constructing committees.

Nowadays, with the boom of the Internet and the continuous improvement of data col-
lection technology, many fields can obtain a large amount of unlabeled data at a low
cost. Deep Learning shows its outstanding performance, mainly reflecting in processing
high-dimensional data and automatic feature extraction. As for active learning, its main
advantage mainly reflects in effectively reducing annotation cost. Therefore, the com-
bination of active learning and deep learning can complement their advantages to some
degree. The Deep Active Learning (DAL) method shows up to solve the labeling cost
problem in recent years. Next, the content introduces several query strategy optimization
methods in DAL further:

Batch Model Deep Active Learning (BMDAL) [62]. For traditional AL methods, their
way of querying samples is through one by one, which leads to the existing model’s
frequent training and little change to samples of the training dataset. If applying this way
to the DL model, the training of this model can be inefficient. Meanwhile, overfitting
can happen during the training process. In the BMDAL algorithm process, for each step
of acquiring samples, one candidate set B = {z1,x2,...,2,} C U and one deep model
fo(L) is used as inputs of the query function a. The outputs of the query function is a
batch of selected samples B* = {z7, =3, ..., z}} used for making annotations. The whole

BMDAL process mentioned above can be described by:

B* = arg maxapach (B, fo(L)) . (1)
BCU

Density-based Methods [62].This method takes advantage of one dataset called the core
set. The core set selects the most representative samples from the original dataset. In the
feature space, these selected samples can represent the original dataset’s distribution and

reducing the cost of AL annotations.

Uncertainty-based and hybrid query strategies [62]: As a popular query strategy of
AL, the approach based on uncertainty is simple to understand and requires low com-
putation complexity. Some machine learning models such as SVM [63] or K-Nearest
Neighbor (KNN) [64] can precisely obtain uncertainty like margin sampling, entropy,

and least confidence using uncertainty-based methods.

Many DAL [65-68] methods apply uncertainty in the query strategy for sample selec-
tion. However, as discussed in the BMDAL, this strategy leads to a deep learning model’s

insufficient training because it does not take corresponding knowledge related to data dis-
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tribution(e.g., diversity) account. Therefore, for taking factors of uncertainty and diversity
both into consideration, the hybrid strategy uses these two factors both to query a batch

of samples.

Deep Bayesian Active Learning (DBAL) [62]. As is mentioned in the last paragraph,
most current classical AL algorithms are based on uncertainty to query valuable samples.
To change this situation, deep active learning using Bayesian inferencing shows up. The
DBAL can be described by:

p(Y | X, 0)p(0)
p(Y | X)

p(0 ] X,Y) = 2)
Assuming that there are two parameters: X and Y, X represents the input set, Y repre-
sents the output belonging to different classes. With this assumption, f(x;6) can express
the neural network based on probability. Besides, p(6) represents the prior of the Bayesian
model, generally existing inside the Gaussian parameter space ¢, softmax(f(x; #)) deter-
mines the likelihood p(y = ¢ | x,60). The purpose of DBAL is to gain the posterior
distribution related to 6. For a given data point x*, y, whose posterior distribution can be

predicted by:

(X X,Y) = / p(5 | %.0)p(0 | X V)dI=Egorr [ 0). )

Other mainstream active learning methods. Huang et al. [69] propose an active learn-
ing method for deep neural networks, which can transfer the trained deep model to differ-
ent tasks with fewer samples, thereby reducing the learning of deep neural networks cost.
Huang et al. [70] propose a method that combines active learning and matrix completion
technique, which can effectively use the label information when severe feature loss has
been suffered, thus saving the cost of feature extraction. Chu et al. [71] believe that
active learning strategies applied to different data sets have effective experiences. These
experiences can be transferred to other data sets to improve the performance of models
or strategies. The authors try to migrate the model to different data sets. The experiment
proves that most current strategies have effective experience, that experience can also be

transferred to different data sets, and improve feature learning tasks’ performance.
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Neural Architecture Search (NAS)+Deep Active Learning. In all the active learning
methods mentioned above, the task model is selected from existing models based on prior
knowledge, and the network structure of the model is fixed. There are the following

shortcomings:

* There are no ready-made models available in many fields, such as the medical image
field.

* In the early iteration process, the number of labeled samples is small, and the fixed

network structure model may fall into overfitting.

NAS [72] can effectively solve the shortcomings caused by the fixed network structure.
In the case of uncertain network and structure, a recurrent network is used as the con-
troller’s field to generate the network structure to construct the sub-neural network. The
accuracy rate after training the sub-network is used as the controller’s feedback signal,
and the controller is updated by calculating the gradient of the strategy, thus continuously
iterating the loop.In the next iteration, the controller will have a higher probability of
proposing a high-accuracy network structure. In short, as time goes by, the controller will

continuously learn to improve search results.

Geifman et al. [73] first tried to apply NAS to the active learning method. Thus the
network structure of the model can adapt to the newly added annotation data. The exper-
imental results indicate that the active learning method’s efficiency has been improved,

especially after joining NAS to the fixed network structure’s active learning method.

2.5 Active learning applications on the retinal image analysis

Some related works are combining active learning with retinal image analysis together in
recent years. These works mainly solve three retinal image analysis tasks: retinal image

classification, retinal image segmentation, and retinopathy prediction.

Ayerdi et al. [74] propose one active learning method based on uncertainty to solve the
blood vessel segmentation task. The random forest(RF) classifier is the model trained
during the whole learning process. As the input of this classifier, features are extracted by
simple statistical methods and undirected morphological operators. These operators are

mainly gained by computing the green component of the image.
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Mahapatra et al. [75] propose one active learning(AL) network to train one deep learn-
ing model, thus solving medical image classification and segmentation tasks. They use
the conditional generative adversarial networks Conditional Generative Adversarial Net-
works (CGANSs) to generate samples with various features, then use the Bayesian neural
network to select the most informative samples used for training. This method can achieve

good performance by only 35% of the whole lung X-ray image dataset.

To realize the retinal image’s retrieval and automatic annotation, Punithavathi et al. [76]
propose one method combining Support Vector Machine(SVM) and Active Learning(AL),
making annotations to the retinal image automatically. They also use Bray Curtis distance

as the similarity measurement to retrieve retinal images.

Hemelings et al. [77] try to combine transfer learning with active learning to solve the
glaucoma diagnosis task. They use the ResNet-50 as the Benchtrack model, training it and
making it capable of classifying two sorts of fundus images: the glaucomatous ones and
non-glaucomatous ones. The active learning strategy uses uncertainty as the standard to
select samples. Selected samples generally are heat maps generated by the deep learning

classifier, which can help experts assess their decisions.

Li et al. [78] propose one improved U-NET model. This model can accelerate the cal-
culation speed of getting blood vessel segmentation results by modifying the original U-
NET structure. Then they still adopt the uncertainty-based approach as the query strategy
of active learning. Experimental results indicate that this algorithm exceeds supervised

learning on the accuracy of blood vessel segmentation.

Some new query strategies have been proposed in recent years, for example, Ozdemir et
al. [79] propose one query strategy combining representativeness with uncertainty, aiming
for finding the most valuable samples to be annotated. Their representativeness measure-
ment is mainly based on Bayesian sampling. It has used autoencoders with the function
of maximizing information. Based on this improvement, their algorithm shows better
performance on medical image segmentation, especially when compared to traditional

representativeness measurement methods.
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2.6 Summary

This chapter mainly discusses contents around two aspects: retinal image analysis and
active learning. Related to the retinal image analysis methods, contents primarily focus
on retinal blood vessel segmentation and classification, discussing conventional image
processing performance and CNN methods on these two tasks. The method comparisons
show that CNNs generally are better than traditional methods on retinal image segmen-
tation and classification tasks. Next, scenarios, query strategies of active learning are
discussed. Finally, making comparisons upon the conventional and the deep active learn-
ing methods, results indicate that a combination of active and deep learning has better

performance on the retinal image analysis task.
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3 RETINAL BLOOD VESSEL SEGMENTATION WITH
ACTIVE LEARNING STRATEGIES

The study mainly adopts a U-net [80] architecture network as the model to accomplish
the blood vessel segmentation task. In the first place, model training starts using few
annotated data to get an initialized model with the essential accuracy, then selecting the
most valuable samples for experts to make annotations. The implemented active learning
strategies are based on uncertainty in blood vessel segmentation results. Samples anno-
tated by experts rejoin the original training samples to build one new training dataset, and
then the new dataset does fine-tuning to the existed model. All steps mentioned above are
an iterative process, which terminates when there are no unannotated samples anymore.
The following contents will introduce several aspects involved in the proposed algorithm:
data preprocessing and augmentation, U-net [80] architecture segmentation network, pre-

trained model, continuously fine-tuning, and active learning sampling strategies.

3.1 General framework of the proposed method

The main framework of the proposed method is displayed in Figure 8

For the blood vessel segmentation task, the DRIVE dataset can be used as an example.
This dataset gets 20 images included used for training, and another 20 images included

used for testing. The steps of the proposed method are:

Stepl: Randomly selecting N fundus images from the DRIVE training dataset, these
images and their corresponding ground truths are used as the annotated dataset used to

train the pre-trained model.

Step2: Performing image preprocessing for all fundus images in the annotated dataset,
preprocessing ways generally includes gray-scale transform, CLAHE, and other methods,
then applying the data augmentation to preprocessed images and their ground truths by
randomly cropping the full images into small patches, finally sending them inside the

network for training.

Step3: For the DRIVE dataset, using the remaining 20-N fundus images as the unanno-
tated dataset, still doing the same image processing operations as Step 2 does to each

unlabeled fundus image, then predicting all unlabeled samples to get valuable informa-
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tion like probability maps for sampling, then adopting active learning strategies like un-
certainty to identify which M (M<N) samples are about to be annotated next. Here the
algorithm uses the ground truths of unlabeled data as the human expert annotation results.
Finally, sending the annotated images and their annotated labels back to do the fine-tuning
for the pre-trained model. Step3 is an iterative process, which comes to an end when all

unlabeled data are annotated.

Everything introduced above is the main flow of the blood vessel segmentation algorithm

using active learning. The following chapters introduce the implementation in detail.

3.2 Data preprocessing and data augmentation

3.2.1 Data preprocessing

The first step of data preprocessing is to resize all images from datasets into a unified
format. For the convenience of input to the training network, some input pictures from
datasets are resized into equal width and height. Other input images with a larger resolu-
tion are reduced to a specific size. Meanwhile, the aspect ratio of all input images remains
unchanged.

Next, the algorithm uses four ways to preprocess the original images: gray-scale trans-
formation, normalization, Contrast Limited Adaptive Histogram Equalization (CLAHE),

and gamma transformation.

For the gray-scale transformation of the original images, the implementation uses the
simple addition of the R, G, and B components from images. The weighted sum of these

three components has specific coefficients. The way of making additions is:

I =0299 x R+0.587T x G+ 0.114 x B 4)

where R, G, B are values of three components from the RGB color space. [ offers the
intensity information by adding values of R, GG, B three channels. The coefficients 0.299,
0.587, and 0.114 of this formula are acquired by the human eye’s different perceptions
of color. By performing the same addition calculation to each pixel of one image, the

intensity values of all pixels can combine into a gray-scale image.
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The role of gray-scale transformation is to convert RGB images into gray-scale images.
Meanwhile, the transformation also eliminates image saturation information while retain-
ing brightness. The contrast effect of the gray-scale transformation on the fundus image

is shown in Figure 10.

(a) (b)

Figure 10. Gray transformation results: (a) Fundus image (b) Transformation results.

The normalization here generally refers to the Min-Max Normalization, also known as
dispersion standardization. It is a linear change to the original data, thereby making the
values of the result mapped between 0 and 1. The mathematical expression of the Min-

Max Normalization is:

A min(z) 5)

max(x) — min(z)

where 2/ is the normalized value, x is the original value, and generally, the x is a sequence
of data.

The Contrast Limited Adaptive Histogram Equalization (CLAHE) originates from His-
togram Equalization (HE), which is performed by using the gray-scale distribution map
to identify one projection line for gray-scale transform, aiming for improving the image
contrast. The projection line here refers to the Cumulative Distribution Function (CDF)
histogram. However, the HE is the global contrast adjustment method, which cannot ef-
ficiently improve the local contrast. The Adaptive Histogram Equalization (AHE) aims
to improve the local contrast of the image by dividing the whole picture into few small

patches, then doing HE processing to each patch respectively. A disadvantage of AHE



33

is that its improvement for local contrast is too significant, which will contribute to the
distortion of images. Therefore, CLAHE appears, the difference between CLAHE and an-
other two algorithms is that the former imposes the restriction on the local contrast, and it
adopts interpolation to accelerate the calculation. It can efficiently enhance or modify the
local image contrast to acquiring more related info about edges for better segmentation
results. Meanwhile, CLAHE can remedy the problem of amplifying in AHE algorithm.
After implementing the CLAHE algorithm to the gray-scale fundus image, the processed

results are shown in Figure 11.

(@) (b)

Figure 11. CLAHE transformation results: (a) Gray-scale fundus image (b) Transformation
results.

Gamma correction performs nonlinear operations to gray-scale values of input images,
making the exponential relationship between gray-scale values of input images and output

images. The corresponding exponential relationship can be described by:

Vouw = AV, (6)

where the 7 is the index, V;, and V,, represent output image gray-scale value and input
image gray-scale value. A is a constant, and it usually takes 1. The primary function of
gamma correction is to perform image enhancement, improving the quality of details in
dark parts of the image. In short, through the nonlinear shift, the linear response of the im-
age from exposure intensity becomes closer to the one perceived by the human eye. That
is, this correction will correct the bleached (camera exposure) or too dark(underexposed)

images. The comparison of the before and after effects of gamma correction on images is
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shown in Figure 12.

(b)

Figure 12. GAMMA transformation results: (a) Fundus image processed by CLAHE (b)
Transformation results.

3.2.2 Data augmentation

For data augmentation, the fundus datasets used for training CNN model are small, gen-
erally only having dozens of pictures. The scale cannot satisfy the needs of the CNN
model requiring a vast amount of training samples. Therefore, it is necessary to expand
the original datasets by generating more training samples. Here, the data augmentation
aims to create more image patches of fundus images by random cropping, then feed them
to the CNN model for training.

The current project randomly extracts N patches for each fundus image to build the base-
line classifier. The N here should be greater than or equal to the number of splits, which
is the number of patches obtained by averaging the original image using a fixed patch
size. These N patches can be called Region of Interest (ROI). Their extraction adopts the
rectangle to indicate the ROI area, which can be described by a quaternion: [x, y, width,
height]. (x, y) here refers to the left upper coordinates of the ROI rectangle. For the
current project, its value can be any pixel coordinate of the whole fundus image. Width
and height are attributes information of the ROI rectangle. For the DRIVE dataset, 40
randomly selected training patches and their corresponding ground truths are shown in
Figure 13.
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Figure 13. Training samples from one fundus image: (a) Gray-scale image patches. (b)
Corresponding groundtruths.

3.3 U-net architecture segmentation network

For the blood vessel segmentation task, its implementation relies on a U-net architecture

like network, the architecture of which is shown in Figure 14.

The current network used in the study is shown in Figure 14. The digits between layers
represent the size of feature maps. For numbers under blocks, they represent the number
of filters of each layer. Compared with the U-net, the current network still adopts the
encoder-decoder structure, having two downsampling layers and two upsampling layers.
The left two layers are called the encoder, responsible for extracting simple convolutional
features from input data. The other two layers are called the decoder, which resumes
the image back to its original size by transposed convolution. Meanwhile, the acquired
feature maps from the encoder will be concatenated to their corresponding upsampling
layers. Therefore, the working process of this network is to use the encoder to perform
the feature extraction first, then utilize the decoder to resume the extracted feature maps
to their original sizes, finally proceed with the classification for each pixel of the input

image.

The current network shown in Figure 14 has two differences from the original U-net.
The first one is that multiple BatchNormalization layers are added to the network. The

goodness of the BatchNormalization has five points [81]:

* The convergence of the training network significantly speeds up.

* The network performance is improved due to the prevention of the overfit.
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* The adjustment of training parameters, such as learning rate, is simplified. The
training process of this network can apply a significant learning rate.

* The problem of vanishing gradients can be prevented by using the BatchNormal-

ization.
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Figure 14. The visual structure of U-net architecture segmentation network. (a) The left part of
the network. (b) The right part of the network.

Moreover, the output segmentation map of the modified network is also different from the
original U-net. For example, if the input size of the image is MxNx1 (width xheight x
channel), the size of the output segmentation map will be (1, MxN, 2). The output seg-
mentation map is the input image’s M xN pixels prediction probabilities. If it involves the
blood vessel segmentation task, every pixel of this image has two prediction probabilities
(about labels O and 1).

For the blood vessel segmentation task, the loss function used here is categorical crossen-
tropy. It is principally used for evaluating the difference of the probabilistic distributions

acquired from training and ground-truth data. It describes the distance between the actual
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output(probabilities) and the excepted output(probabilities), which means if the cross-
entropy is much smaller, the two probabilistic distributions are closer. The categorical

crossentropy is decided by:

loss = — Z Ui log yi1 + iz log yio + -+ + Yim 108 Yim (7)
i=1

where n is the number of samples, m is the number of classes. ¥;1, io, --..Ui2 1s the predic-
tion values(generally is probabilities), while ¥;1, ¥;2, ...4;2 are corresponding ground-truth

labels of ?)1‘1, gig, /gzg

3.4 Transfer learning + continuously fine-tuning

As introduced in Chapter 2, active learning generally has few annotated data used for
training. To fully utilize annotated data and guarantee the training model accuracy on the
new task (training on the unannotated data), a combination of transfer learning and fine-
tuning is used as the training strategy of the current project. The combination is involved
with the transferability of each layer in deep learning, which is discussed by Bengio et al.
in [82]. They performed the experiments as Figure 15 shows, using the ImageNet dataset
to train one CNN model in four different ways, thus realizing the image classification
task.

There are four CNN models acquired after the training process:

e The basic model baseA in domain A.
¢ The basic model baseB in domain B.

* In domain B, utilizing baseB parameter initialization on the first n layers of the
training model, making the remaining layers untrainable and doing fine-tuning to

them.

* In domain B, utilizing baseA parameter initialization on the first n layers of the
training model, making the remaining layers untrainable and doing fine-tuning to

them.
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Figure 15. Four of the experimental treatments and controls. [82]

The domain here comes from transfer learning. Transfer learning has two critical con-
cepts: domain and task. The first one refers to a specific field at a particular moment. For
example, interviews on books and TV series are two different domains. The task here
refers to the thing about to do. For instance, emotion analysis and instance recognition
are two various tasks. Therefore, the experiment presented above has two domains(A and
B) and one task(image classification). According to the conclusion drawn by the authors,
the extracted features from the first layer in the CNN model has little relationship with
the image dataset. In contrast, the network’s last layer is closely related to the selected
dataset and task goals. [82] respectively call features from the first and the final layer as

the general features and the specific features.

Therefore, according to the point of view in [82], the combination of pre-training and
fine-tuning can also be applied in the U-net architecture segmentation network. There
are few steps for its implementation. Firstly, using annotated data to train the model so
that it has essential accuracy. Then, freezing corresponding layers as described above,
which include two parts. The first part is in front of the second downsampling layer, re-
sponsible for general feature extraction. The second part is between the last upsampling
layer and the final activation layer, responsible for transforming features acquired from
the final feature fusion. Except for these two parts, other parts will not be frozen, which

are in charge of specific feature extraction (generally refers to deeper semantic features)
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and feature fusion. Making layers frozen here means making layers untrainable. Train-
able and untrainable components are shown in Figure 16. After making corresponding
layers untrainable, the next step is to select images for annotation by using active learning
strategies. Then the chosen images are divided into image patches and sent back to the
network for fine-tuning. The fine-tuning in the current project is a cyclic process, which

is terminated until all unlabeled samples are annotated.
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Figure 16. Trainable and untrainable parts of the segmentation network. (a) The left part of the
network. (b) The right part of the network.

3.5 Sampling strategies

The current project mainly uses four active learning sampling strategies. The first three
strategies are based on uncertainty, and the last strategy is a method based on density

weighting, which considers noise samples while considering uncertainty.

Uncertainty Sampling (US) is one of the most general sample querying strategies. The
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main goal is to return the most confusing or the most informative samples to experts,
thereby gaining the maximum gain. US generally includes three approaches: least confi-

dence, margin sampling, and information entropy.

For the least confidence method, its uncertainty confidence score is decided by:

ric = argmax, 1 — Py(y | z), ¢ = argmax, Py(y | v) (8)

where x is the unlabeled sample, g is the category with the z’s highest prediction proba-
bility coming from the training model, and x ;¢ represents the most uncertain samples for
the current training model. Therefore, this formula is used for identifying the instances

which have the minimum probability for their most confident category.

Even though the least confidence is straightforward, it only considers samples with the
highest model prediction probability but low confidence. For those samples with lower
prediction probability, they are not within the scope of consideration. Therefore, margin

sampling shows up, and it is given by:

xy = argming, Py (11 | ) — Py (92 | x) 9)

where x is the unannotated sample, ¢, ¢» are the first and second most probable class
labels of it. x7}, is the most uncertain sample, which is decided by the difference between

the first and second highest probability of z.

Maximum entropy can be another measurement method of uncertainty. It considers one
sample’s prediction probabilities of all categories. The entropy can describe the confusion
degree of one system. When the probabilities are the same, the entropy takes the max-
imum value. When all probabilities are concentrated, the entropy takes a smaller value.
Moreover, when the predicted probabilities are similar, the prediction of the current sam-
ple is useless, and its uncertainty is very high. The mathematical expression of maximum

entropy is given by:

T} = argmax — Z Py (yi | x)log Py (yi | =) (10)

)
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where z is the unannotated sample, Py (y; | ) is all prediction probabilities for sample
x. This method considers all prediction probabilities for one sample, using entropy to
describe the degree of confusion. The higher entropy brings this system with more even

probability distribution and higher uncertainty.

The last three strategies are to select samples with significant uncertainties to improve
the performance of the segmentation network. However, sometimes, samples with the
highest uncertainties may also be noisy samples, and they cannot improve the model’s
performance. Therefore, the active learning strategy can consider the overall distribution

of the samples more.

The density-weighted method considers samples with the highest uncertainty and the
highest representativeness at the same time. Its mathematical expression can be described
by:

U B
1
T = arginaXCI)A(x) X (ﬁ ;sim (x, x(“))> (11)

where ® 4 () represents the information volume identified by some basic sampling strate-
gies(US, QBC), % 25:1 sim (x, x(“)) represents the average similarity between x and
each unlabeled sample z(*) in the set U. sim (%) is the similarity calculation function, the
higher value it takes, the more similar it will be. /3 is the control parameter. Here sim ()

can be defined by using Euclidean distance.

One thing that needs to be noted here is that the density-weighted strategy aims to select
samples with high uncertainty, which are also very similar to most unlabeled samples.
Therefore, two primary components: information volume ® 4(x) and similarity sim (x),
need to take the highest values. However, the higher value it takes for the Euclidean
distance, the less similar it will be. Some transform can be done to the Euclidean distance,

which is given by:

e (0,1]. (12)

[l

This formula normalizes the acquired Euclidean distance d (u;u;), making the range of
similarity restricted within (0, 1]. Compared with the range of Euclidean distance [0,

inf], the normalized result can better quantify the similarity value between vectors. At
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this time, the smaller Euclidean distance it takes, the more similarity it will be, and the

similarity between two samples wu;, u; will be higher.

Active learning strategies in the segmentation task mainly utilize information from proba-
bility maps. Just like mentioned above, one fundus image has two prediction probabilities
for each pixel (for categories 0 and 1). Therefore, one fundus image prediction results
include two probability maps: probability map of category 0 and probability map of cat-
egory 1. To get the uncertainty or other confidence of fundus images, the four strategies
mentioned above use these two probability maps to do the calculation. Uncertainty or
other confidence of one fundus image is one matrix. For convenience, the average of this

matrix is directly taken as the confidence score of the whole fundus image.
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4 EXPERIMENTS

This chapter introduces all details about the experiments of active learning strategies, in-
cluding the used datasets, evaluation criteria used to evaluate experimental results, specific

ways of carrying out experiments, and analysis for experimental results.

4.1 Data

Three fundus image datasets are used in the experiments of blood vessel segmentation,
and they are DRIVE, HRF, CHASEDB1. More information about these datasets is shown
in Table 2. Randomly drawing samples from three datasets mentioned above, fundus

images used for the blood vessel segmentation task are shown in Figure 17.

Table 2. Specific details of the three fundus databases. Resolution-resolution of fundus images,
the format is width xheight, Ng,,qus-the number of fundus images in each dataset, NVj,p1-the
number of annotated segmentation results in each dataset, Nexperts-the number of experts making
annotations for each dataset.

Database Resolution | Nyndus | Niabel | Nexperts
DRIVE 565x584 40 40 1
HRF 3504 <2336 25 45 1
CHASEDBI1 | 999x960 28 56 2

One sample fundus image and its corresponding labels are displayed in Figure 18. As seen
on the right side of Figure 18, the ground truth is two binary images that only contain two
kinds of pixels: white pixels and black pixels. White pixels represent blood vessels in the
retina, and their pixel value is 1. Black pixels represent all background areas except for

blood vessels in fundus images, and their pixel value is 0.
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(b) (©

Figure 17. Example images from different retinal databases: (a) DRIVE (b) CHASEDBI (c)
HRF.

(b)

Figure 18. One sample image from the CHASEDBI1 dataset: (a) True color fundus image. (b)
Annotation made by the first expert. (c) Annotation made by the second expert.

4.2 Evaluation criteria

The following indices are used to evaluate the algorithm’s performance for evaluation:
Specificity, Sensitivity, Pixel Accuracy, and F1-score [83]. More details are about to be

introduced in the following contents.

Blood vessel segmentation is a binary classification task. For each pixel, one predic-
tion label(1 or 0) is given as the prediction result, indicating that this pixel is the fore-
ground(blood vessel) or background. Therefore, the segmentation results for the entire
image generate two sorts of pixels. The categories are 1 and 0, which can be used as
positive and negative categories, respectively. The actual classification results have four

types, which are displayed in Table 3.
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Table 3. Prediction results for binary classification.

Predicted
1 0 Total
Actual True Positive(TP) False Negative(FN) Actual Positive(TP+FN)
False Positive(FP) True Negative(TN) Actual Negative(FP+TN)
Total Predicted Positive(TP+FP) | Predicted Negative(TP+TN) TP+FP+FN+TN

All evaluation indicators mentioned above can be drawn from this table, which can eval-
uate the segmentation performance, and the following contents will introduce these indi-

cators one by one.

True Positive Rate (TPR) describes the proportion of the identified positive samples to all

positive samples. It is calculated by:

TP

TPR= —
R=Tpsrn

(13)

where T'P and F'N represent the number of pixels belonging to the True Positive and

False Negative cases.

True Negative Rate (TNR) represents the proportion of identified negative samples to all

negative samples. Its calculation formula is:

TN

TNR=—"
=N+ rp

(14)

where T'N and F'P represent the number of pixels belonging to the True Negative and
False Positive cases. Moreover, TPR is also called sensitivity, and TNR is called speci-

ficity.

Pixel Accuracy (PA) is to calculate the ratio between the number of correctly classified

pixels and the number of total pixels. Its calculation formula is:

T b
= = %
> io ijo Dij

PA (15)

where k is the number of categories, which is £ + 1 if getting background included, p;;
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represents the pixels that are correctly classified. p;; represents the total number of pixels

whose real pixel category is i is predicted to be category j.

Fl-score is one measurement indicator of the classification performance. It is the har-
monic mean of precision and recall, the maximum is 1, and the minimum is 0. Its value

can be acquired by:

recision - recall
=22

16
precision + recall (16)

where precision and recall exactly are TNR(specificity) and TPR(sensitivity) mentioned

above.

4.3 Description of experiments

Multiple active learning strategies are implemented in this project. To check whether
the segmentation network performance is improved after applying these strategies. The
experiment uses the random sampling strategies as the baseline, designing different an-
notation situations in each retinal image dataset. The goal is to make comparisons among

various active sampling strategies under diverse annotation circumstances.

For the blood vessel segmentation task, the fundus images are adjusted to the specified
size first, and then they are divided into small image patches and sent to the network for
training. One thing that needs to note is that the image patch size is critically important,
which decides the receptive field of the training network. Too large or too small patches
will affect the segmentation accuracy acquired from the training model. The settings of

related experimental parameters in this process are shown in Table 4.

The parameter selection in Table 4 has several reasons. For resized resolution, its pa-
rameter selection depends on the original resolution’s width and height. If they are get-
ting close to each other, the original image can be resized into a square one (DRIVE,
CHASEDB1). Otherwise, the aspect ratio remains unchanged when resizing the original
image (HRF). Besides, the high-resolution image means high dimensionality of the data,
which costs more training time and slows down the convergence speed. Therefore, the
high-resolution image can be resized into the image with the aspect ratio remained and
not losing distortion. The patch size selection depends on the receptive field mentioned

above, the receptive field for blood vessels should have the proper size in human eyes,
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which cannot be too large or too small for the training model.

Table 4. The adjustment for the original fundus image size. Original Resolution-fundus image
resolution before size adjustments. Resized Resolution-fundus image resolution after size
adjustments. Patch Size-the size of image samples sent to the network for training.

Database Original Resolution | Resized Resolution | Patch Size
DRIVE 565x584 576x576 64 <64
HRF 3504 %2336 1440x960 9696
CHASEDBI1 999 %960 960x960 96 x96

During the training process, the whole training dataset is split into two parts: the annotated
and unannotated parts. Images from the annotated part are used for training the pre-trained
model. The specific task is to specify the specific number of patches generated from each
image, then taking advantage of random cropping to get patches from each image. Finally,
all acquired patches are used for training the pre-trained model. The initial small learning
rate is to make sure the training model incline to convergence. In comparison, the learning
rate for fine-tuning is lower than the initial learning rate. The weights acquired from the
pre-trained model are better than ones acquired randomly-initialized model, so the lower
learning rate can make sure the weights are not changed too much. Therefore, the learning
rate for generating the pre-trained model is 0.0005, and the learning rate for continuously
fine-tuning is 0.0001. The optimizer is the adam, and the loss function is the categorical
crossentropy. Moreover, the number of epochs for both training pre-trained model and
doing fine-tuning is 10. Related information such as the division of datasets, various

annotated situations is shown in Table 5.

Table S. The related parameters settings in the training process. Ngample-the number of fundus
image samples in each dataset. Ny ,in-the number of training image samples in each dataset.
Niest-the number of testing image samples in each dataset.

Database Nsample | Nirain | Niest | The data range of the annotated image
DRIVE 40 20 20 [2, 6, 10, 14, 18]
HRF 45 22 23 [2, 6,10, 14, 18, 20]
CHASEDBI 28 14 14 [2, 5,8, 11]

As it can be seen from Table 5, each dataset is divided into training and testing datasets.
All annotated samples are taken from the training datasets, and the annotation can be cat-
egorized into various situations, including different numbers of annotated images. Mul-
tiple models are acquired from annotation situations. Then these models can be used

to segment testing samples, thus receiving prediction results to get the values of evalua-
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tion criteria. Finally, these values are used for making the comparison between multiple

training-generated models.

The design of experiments mainly includes two parts. The first part is to observe the pixel
accuracy change with the increase of patches used for training. For each dataset, the spe-
cific task is to calculate the pixel accuracy during the training process, and the test dataset
is used for acquiring pixel accuracy. All accuracies are recorded only at two stages: after
pre-training and when the fine-tuning process is over. The second part is to perform one
comprehensive evaluation after the training process. There are many models generated
under various annotation situations. Then the research uses them to make predictions for
the testing dataset of each retinal image set. Finally, making comparisons over prediction
results, its goal is to observe the effects of increasing the number of training images on

the active learning strategies.

4.4 Experimental results

This section presents the experimental results on three datasets (DRIVE, HRF, CHASEDB1)
for blood vessel segmentation. More specifically, after implementing various active learn-

ing strategies, the section will compare their performance of blood vessel segmentation.

The following contents show the experimental results of the second designed part men-
tioned in Section 4.3: the change of pixel accuracy with the increasing number of training
images on the active learning strategies. After setting various annotation situations as
shown in Table 5, the performance of multiple active learning strategies on testing accu-

racy is displayed in Figure 19.

In the subfigure (a) of Figure 19 (DRIVE dataset), when the number of labeled data is 6,
10, 14, or 18, the pixel accuracy of all active learning strategies exceeds or is equal to the
benchmark random sampling. For the strategies density-weighted and least-confidence,
their pixel accuracy is lower than the random sampling when the number of labeled data is
2. However, with the increasing of labeled data, the pixel accuracy of these two strategies
gradually increases and exceeds the random sampling. For the strategy margin sampling,
its pixel accuracy is generally upward and exceeds the benchmark (random sampling).
However, except for when the number of labeled data is 2, in most cases (when the number
of labeled data is 6, 10, 14, or 18), the accuracy of margin sampling is lower than the least
confidence and density-weighted. For the strategy entropy sampling, the pixel accuracy

is generally upward. Its accuracy only exceeds other strategies in some cases (when the
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number of labeled data is 2, 10, or 14). In short, the least confidence shows the best

performance than other strategies in all annotation cases.

In the subfigure (b) of Figure 19 (HRF dataset), the strategy entropy sampling performs
worst. Its pixel accuracy is lower than the benchmark pixel accuracy in most cases (when
the number of labeled data is 2, 6, 14, or 20). For the density-weighted strategy, its
pixel accuracy exceeds the benchmark random sampling sometimes (when the number of
labeled data is 2, 6, or 18). However, at other stages (when the number of labeled data
is 10, 14, or 20), the pixel accuracy of the density-weighted strategy is lower than the
benchmark. For the margin sampling strategy, its pixel accuracy exceeds the benchmark
in most cases (when the number of labeled data is 2, 6, 10, or 20). The least confidence
strategy performs best compared with other strategies. Its pixel accuracy exceeds the

benchmark most times (when the number of labeled data is 2, 6, 10, 14, or 20).

For the CHASEDBI dataset, one fundus image has two corresponding labels made by
two experts, so the CHASEDB1 has two groups of pixel accuracy contrast results. In the
subfigure (c) of Figure 19, for the strategies entropy sampling and density-weighted, their
changing trends are almost the same, and their pixel accuracy is lower than the bench-
mark (random sampling) only when the number of labeled data is 8. For strategies least
confidence and margin sampling, their pixel accuracy consistently exceeds the benchmark
random sampling, the former pixel accuracy also consistently exceeds the latter. There-
fore, only the least confidence and margin sampling two strategies perform stably in the

current plot.

In the subfigure (d) of Figure 19, when the number of labeled data is 2 or 5, the pixel
accuracy of strategies least confidence and entropy sampling exceeds the benchmark ran-
dom sampling. After that, the pixel accuracy of these two strategies is lower than the
benchmark. Then only the strategy least confidence comes back to the level above the
benchmark. The strategies density-weighted and margin sampling, whose pixel accuracy
consistently exceeds the benchmark in all annotation situations, and the former’s pixel
accuracy is lower than the latter in most cases (when the number of labeled data is 5, 8,
or 11). According to the pixel accuracy comparison between various strategies, only the

least confidence and margin sampling two strategies perform stably in the current figure.

Compared with fully supervised learning, the pixel accuracy of active learning strategies
has an advantage over the former. For the plots of DRIVE, HRF, and CHASEDB1, when
the number of labeled data is equal to or exceeds 14, 18, and 11, the accuracy of active

learning strategies surpasses fully supervised learning (see Figure 19).
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Meanwhile, related segmentation evaluation indices are also acquired during experiments,
which are shown in Table 6, Table 7, Table 8 and Table 9. By reviewing the results in these
tables, it is hard to say which strategy performance is better than others on measurement
indices sensitivity and specificity. However, with the increase of the annotated images,
sensitivity and specificity values are mainly increasing. Even though sometimes their
values gradually come down after reaching the highest. For various fundus datasets, com-
paring sensitivity, F1-score in their tables with their corresponding plots in Figure 19, the
changing trend of these two parameters of various strategies is the same as the pixel ac-
curacy, which also explains the variation of some strategies in Figure 19 comes from the
sensitivity. Moreover, checking from the general trend of specificity and sensitivity, the
latter values are lower than the former. The sensitivity and the specificity commonly refer
to TPR and TNR, which represents the actual positive rate and actual negative rate. For
the blood vessel segmentation task, positive samples are blood vessel pixels (foreground),

negative samples are pixel areas that are not blood vessels (background).

As for the Fl-score, its overall trend is also gradually increasing with the number of
labeled samples. It shows that the segmentation model’s performance is related to the

amount of labeled data.

Table 6. Sensitivity, specificity and F1-score of models generated by different annotation
situations (DRIVE dataset).

Sampling
Number of strategies | Random Margin Least Entropy Density
annotated images | Evaluation Sampling | Sampling | Confident | Sampling | Weighted
index
SEN 0.6739 0.6981 0.6551 0.7033 0.7150
2 images SPE 0.9896 0.9874 0.9909 0.9876 0.9855
F1 0.7561 0.7634 0.7487 0.7679 0.7664
SEN 0.7282 0.7317 0.7218 0.7213 0.7344
6 images SPE 0.9857 0.9859 0.9869 0.9866 0.9856
F1 0.7759 0.7789 0.7770 0.7754 0.7794
SEN 0.7529 0.7510 0.7297 0.7280 0.7196
10 images SPE 0.9836 0.9839 0.9867 0.9864 0.9870
F1 0.7827 0.7827 0.7814 0.7790 0.7761
SEN 0.7226 0.7507 0.7330 0.7422 0.7541
14 images SPE 0.9878 0.9853 0.9872 0.9863 0.9852
F1 0.7815 0.7887 0.7857 0.7876 0.7904
SEN 0.7226 0.7520 0.7369 0.7301 0.7319
18 images SPE 0.9885 0.9860 0.9875 0.9878 0.9880
F1 0.7847 0.7924 0.7894 0.7865 0.7883
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Table 7. Sensitivity, specifictiy and F1-score of models generated by different annotation

situations (CHASEDBI1 dataset),whose labels are made by the first expert.

Sampling
Number of strategies | Random | Margin Least Entropy | Density
annotated images | Evaluation Sampling | Sampling | Confident | Sampling | Weighted
index
SEN 0.7183 0.7135 0.6748 0.6954 0.6710
2 images SPE 0.9794 0.9808 0.9845 0.9873 0.9862
F1 0.7201 0.7241 0.7167 0.7206 0.7229
SEN 0.7389 0.7111 0.6920 0.7012 0.7002
5 images SPE 0.9769 0.9824 0.9850 0.9838 0.9840
F1 0.7213 0.7304 0.7310 0.7310 0.7314
SEN 0.6852 0.6741 0.6998 0.7025 0.7167
8 images SPE 0.9859 0.9876 0.9858 0.9842 0.9833
F1 0.7313 0.7327 0.7402 0.7339 0.7384
SEN 0.7293 0.7015 0.6998 0.7007 0.7178
11 images SPE 0.9826 0.9858 0.9860 0.9867 0.9849
F1 0.7429 0.7415 0.7417 0.7458 0.7476

Table 8. Sensitivity, specifictiy and F1-score of models generated by different annotation

situations (CHASEDBI1 dataset),whose labels are made by the second expert.

Sampling
Number of strategies | Random | Margin Least Entropy | Density
annotated images | Evaluation Sampling | Sampling | Confident | Sampling | Weighted
index
SEN 0.7097 0.6769 0.6577 0.6186 0.6055
2 images SPE 0.9771 0.9826 0.9858 0.9887 0.9884
F1 0.7034 0.7085 0.7119 0.6989 0.6878
SEN 0.6913 0.6747 0.6524 0.6646 0.6608
5 images SPE 0.9826 0.9844 0.9864 0.9855 0.9849
F1 0.7185 0.7162 0.7111 0.7149 0.7094
SEN 0.7064 0.6727 0.6980 0.7144 0.6851
8 images SPE 0.9826 0.9854 0.9818 0.9814 0.9842
F1 0.7281 0.7203 0.7189 0.7277 0.7225
SEN 0.7206 0.6789 0.6929 0.7198 0.7078
11 images SPE 0.9826 0.9858 0.9854 0.9822 0.9836
F1 0.7373 0.7265 0.7338 0.7347 0.7341
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Table 9. Sensitivity, specifictiy and F1-score of models generated by different annotation
situations (HRF dataset).

Sampling
Number of strategies | Random Margin Least Entropy Density
annotated images | Evaluation Sampling | Sampling | Confident | Sampling | Weighted
index

SEN 0.7544 0.7313 0.7364 0.7701 0.7302

2 images SPE 0.9842 0.9862 0.9859 0.9819 0.9864
F1 0.7779 0.7725 0.7746 0.7770 0.7728

SEN 0.7348 0.7018 0.7165 0.7014 0.7290

6 images SPE 0.9863 0.9893 0.9881 0.9886 0.9872
F1 0.7756 0.7681 0.7720 0.7647 0.7760

SEN 0.7419 0.7392 0.7488 0.7133 0.7544

10 images SPE 0.9862 0.9867 0.9859 0.9889 0.9851
F1 0.7796 0.7803 0.7825 0.7741 0.7821

SEN 0.7261 0.7172 0.7162 0.7368 0.6948

14 images SPE 0.9881 0.9886 0.9892 0.9871 0.9903
F1 0.7784 0.7753 0.7774 0.7804 0.7683

SEN 0.7395 0.7305 0.7641 0.7424 0.7541

18 images SPE 0.9876 0.9883 0.9854 0.9873 0.9864
F1 0.7847 0.7821 0.7896 0.7852 0.7880

SEN 0.7211 0.7378 0.7305 0.7443 0.7443

20 images SPE 0.9891 0.9879 0.9884 0.9873 0.9870
F1 0.7804 0.7850 0.7829 0.7862 0.7849

Next, the experiment uses testing datasets of three fundus datasets as the validation dataset,
aiming to evaluate the model change in pixel accuracy during the training process. The
current study discusses the most typical case of less labeled data learning: only two fun-
dus images are labeled for each dataset. One thing needs to be explained here, the number

of patches is calculated by:

M, patch — M, patch_per_image N; image ( 1 7)

where Npach_per_image 18 the number of patches generated for each fundus image, which
comes from using specified patch size to average the resized image. Nim,ge 1s the number
of images from divided fundus datasets (see the Table 5). Related parameters setting

information about the current experiment are displayed in Table 10.

Table 10. Related settings of experimental parameters when annotated number = 2 (DRIVE
dataset). Nctive-number of patches generated from annotated images in active learning.
Nyalig-number of patches generated from the validation dataset. Ng,pervised-number of patches
generated from annotated samples in fully-supervised learning.

Database Resized resolution | Patch size | Nyctive | Nvalid | Nsupervised
DRIVE 576x576 64x64 65 1620 1620
HRF 1440x960 96x96 240 3450 3300
CHASEDBI1 960x960 96x96 160 1400 1400
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Figure 20 describes the trend of testing accuracy with the increase of training image
patches for three fundus datasets. For the subfigures (a) and (b) of Figure 20, it can
be seen that the fully supervised learning pixel accuracy of DRIVE is lower than HRF,
that is because the training patches from the latter have better quality than the former.
These two figures also show one result: active learning strategies can use fewer image
patches and less time to get better accuracy in the HRF dataset. For the subfigures (c)
and (d) of Figure 20, their plotting results are from the training model using annotations
of two experts. Plotting results show that the pixel accuracy of all strategies is upward
with the increasing number of patches. However, it can only get close to the accuracy of
fully supervised learning. Comparing these two plots and the HRF plot, active learning

strategies spend more time and training patches to reach higher accuracy.
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Figure 20. Pixel accuracy as the function of the number of training image patches: (a) DRIVE
(b) HRF
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Figure 20. Pixel accuracy as the function of the number of training image patches: (c)

CHASEDBI (Annotations made by the first expert). (d) CHASEDBI1 (Annotations made by the

second expert).
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According to the pixel accuracy performance of various strategies in Figure 19, for each
fundus dataset, the current study selects the segmentation results of a strategy with a
stable pixel accuracy change for display. As seen in Figures 21, 22, 23, and 24, when
the number of annotated images reaches a certain level, the segmentation results of active
learning strategies are better than or get close to fully supervised learning. For these four
figures, the level values are 14, 18, 8, and 8 (corresponding to figures 21 (f), 22 (f), 23
(d), and 24 (d)), respectively. Besides, for the CHASEDBI1 dataset, active learning can
get better segmentation results of tiny vessels from the second expert annotations (see
Figures 23 and 24).

(b)

Figure 21. Density-weighted segmentation results(DRIVE dataset): (a) The image to be
segmented (b) The segmentation results when annotated number N = 2.
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Figure 21. Density-weighted segmentation results(DRIVE dataset): (c) The segmentation results
when annotated number N = 6 (d) The segmentation results when annotated number N = 10 (e)
The segmentation results when annotated number N = 14.
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(h)

Figure 21. Density-weighted segmentation results(DRIVE dataset): (f) The segmentation results
when annotated number N = 18. (g) The segmentation results from fully supervised learning (h)
The groundtruth of the current fundus image.
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Figure 22. Least confidence segmentation results(HRF dataset): (a) The image to be segmented
(b) The segmentation results when annotated number N = 2. (c) The segmentation results when
annotated number N = 6.
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Figure 22. Least confidence segmentation results(HRF dataset): (d) The segmentation results
when annotated number N = 10 (e) The segmentation results when annotated number N = 14 (f)
The segmentation results when annotated number N = 18.



62

Figure 22. Least confidence segmentation results(HRF dataset): (g) The segmentation results
when annotated number N = 20. (h) The segmentation results from fully supervised learning (i)
The groundtruth of the current fundus image.
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(b)

Figure 23. Margin sampling segmentation results (CHASEDB1 dataset, and its annotations
come from the first expert): (a) The image to be segmented (b) The segmentation results when
annotated number N = 2.
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Figure 23. Margin sampling segmentation results (CHASEDB1 dataset, and its annotations
come from the first expert): (c) The segmentation results when annotated number N = 5. (d) The
segmentation results when annotated number N = 8 (e) The segmentation results when annotated

number N = 11.
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€9)

Figure 23. Margin sampling segmentation results (CHASEDB1 dataset, and its annotations
come from the first expert): (f) The segmentation results from fully supervised learning (g) The
groundtruth of the current fundus image.
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(b)

Figure 24. Margin sampling segmentation results (CHASEDB1 dataset, and its annotations
come from the second expert): (a) The image to be segmented (b) The segmentation results when
annotated number N = 2.
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Figure 24. Margin sampling segmentation results (CHASEDB1 dataset, and its annotations
come from the second expert): (c) The segmentation results when annotated number N = 5 (d)
The segmentation results when annotated number N = 8 (e) The segmentation results when
annotated number N = 11.
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Figure 24. Margin sampling segmentation results (CHASEDB1 dataset, and its annotations
come from the second expert): (f) The segmentation results from fully supervised learning (g)
The groundtruth of the current fundus image.

Making a comparison between the GT and segmentation results in various datasets, the
active learning performs better for the segmentation of narrow vessels in DRIVE (see the
subfigure (e) of Figure 21). For the segmentation of narrow vessels in the HRF dataset,
active learning needs to use more (annotated number N = 18) labeled samples than DRIVE
to get the best results (see the subfigure (f) of Figure 22). For the segmentation results
of narrow vessels in the CHASEDBI1 dataset, active learning performs worse than the

previous two datasets (see the subfigures (d) of Figure 23).
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S DISCUSSION

In the absence of annotated data, the current research studies contributions of various
active learning strategies to the model performance, thereby obtaining the corresponding
conclusions. However, some aspects of the algorithm are still worth discussing. The
following content will discuss from two angles: the research significance of the algorithm

and places where the algorithm needs to be improved.

5.1 Results of the current study

According to the experimental results shown in Chapter 4, most proposed active learning
strategies behave well according to pixelwise accuracy. With the increasing number of
training image patches and annotated images, most strategy accuracies exceed the base-
line (random sampling) during the training and testing process in most cases (see Fig-
ure 19). When the amount of annotated data reaches a specific level, active learning’s
segmentation pixelwise accuracy is close or even higher than fully supervised learning
(see Figure 19). From these perspectives, active learning can improve segmentation per-

formance indeed.

For the current implemented algorithm, traditional image preprocessing helped to improve
the fundus image’s quality, especially the CLAHE algorithm, which makes blood vessels
more clear to identify after processing. Then it comes to the segmentation network. In
order to save time cost used for training, the author does not use the whole U-net as
the model architecture. To make the training of the blood vessel segmentation method
more efficient, the whole U-Net architecture was not used. Instead, two downsampling
layers and two upsampling layers are removed from the original network, adding enough
BatchNormalization layers to ensure that segmentation accuracy is not decreased, which
has caused the network not to learn deeper semantic information from images. Therefore,
some tiny vessels in the GT do not show up in segmentation results. Another improvement
of this algorithm is that it adopts the combination of pre-training and continuously fine-
tuning. This combination can improve the model performance significantly when getting
fewer data annotated, but it also causes that active learning benefits in the current study

are not very obvious.

Many challenges also happen in the process of implementation. For active learning strate-

gies, confidence generally needs the calculation to identify the next candidate. However,
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the confidence calculation is for each pixel of one image. In the thesis project, the entire
image confidence is acquired by taking the average of every pixel confidence. The author
analyzes that the average cannot represent the whole image confidence precisely. Besides,
the imbalance between the positive and negative samples also brings some issues. The
proportion of negative samples(background) is higher than the positive samples(blood
vessels), which causes the high training accuracy to show up from the start of training the

pre-trained model.

5.2 Future work

Given the problems raised above, the algorithm can be improved in the following aspects:
to begin with, for identifying more precise confidence of an image. Other active learn-
ing strategies like QBC, Excepted Model Change (EMC), and Excepted Error Reduction
(EER) can be taken into consideration. The next part that needs improvement is the im-
balance between the classes. One opinion is to utilize other loss functions (like Dice [84])

to suppress the negative samples.

Moreover, a more challenging task such as A/V classification could be used for further
study. When training a pre-trained pre-trained model of blood vessel segmentation, its
final training accuracy generally is very high. It is because the model must get plenty of
semantic information from the start. However, it might be different for the A/V classifica-
tion task. Features of arteries and veins generally are challenging to learn by the model.
Therefore, one multi-task network for solving both blood vessel segmentation and A/V
classification is worthy of implementation in the future, and there are at least two possible
solutions that could be used to make it a reality. The first one is proposed by Xu et al.
in [85], to realize A/V classification, they propose a loss function used for training, whose
cost is decided by assigning arteries and veins weights according to their proportion in
the image. Another one is proposed by Li et al. in [86]. They develop a two-step vessel
classification named as SeqNet, which is based on U-net. Its first step is to get the blood
vessel segmentation results, and the second step is to implement A/V classification based

on segmentation results from the first step.
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6 CONCLUSION

This thesis mainly studies the role of active learning strategies in training retinal image
analysis methods. With limited fundus images labeled for the blood vessel segmenta-
tion task, active learning strategies including margin sampling, least confidence, entropy
sampling, and density-weighted method are implemented to carry out unlabeled sample
selection. The experimental results show that the segmentation accuracy of the model
trained through the active learning strategy exceeds the benchmark, that is, random sam-
pling. When the annotated number of images reaches a certain level, the active learning
segmentation pixelwise accuracy gets close to or exceeds the fully supervised learning.

The former requires fewer samples for training in this situation.
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