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Abstract The simulation of mechanical systems often requires modeling of systems of
other physical nature, such as hydraulics. In such systems, the numerical stiffness intro-
duced by the hydraulics can become a significant aspect to consider in the modeling, as
it can negatively effect to the computational efficiency. The hydraulic system can be de-
scribed by using the lumped fluid theory. In this approach, a pressure can be integrated from
a differential equation in which effective bulk modulus is divided by a volume size. This
representation can lead to numerical stiffness as a consequence of which time integration
of a hydraulically driven system becomes cumbersome. In this regard, the used multibody
formulation plays an important role, as there are many different procedures for the con-
straint enforcement and different sets of coordinates to choose from. This paper introduces
the double-step semirecursive approach and compares it with a penalty-based semirecur-
sive approach in case of coupled multibody and hydraulic dynamics within the monolithic
framework. To this end, hydraulically actuated four-bar and quick-return mechanisms are
analyzed as case studies. The two approaches are compared in terms of the work cycle,
energy balance, constraint violation, and numerical efficiency of the mechanisms. It is con-
cluded that the penalty-based semirecursive approach has a number of advantages com-
pared with the double-step semirecursive approach, which is in accordance with the litera-
ture.
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1 Introduction

The computer simulation of dynamic systems has proven its value in product development,
from early prototyping phase to user training, and emerging digital twins and artificial intel-
ligence applications. In practice, the modeling of mechanisms can be carried out by using
multibody system dynamics in which equations of motion describe a force equilibrium for
the mechanical system under investigation. The use of multibody system dynamics also al-
lows describing actuator models such as hydraulics or electric drives.

The multibody methods can be, in general, categorized to two main groups according
to the selected coordinates [25]. Firstly, there is the group of formulations based on global
coordinates, where the absolute positions, velocities, and accelerations of each body are
used. In the second case, relative coordinates are employed. Should high computational ef-
ficiency be required, as is the case in real-time applications, such as those presented in [22,
23], the use of the relative coordinates is often considered to be an appropriate approach.
The selection of an approach is case-dependent, as demonstrated in [17]. The computa-
tional efficiency can be significantly effected by implementation details [18], and, among
others, the use of the automated differentiation tools [6], and sparse and parallelization tech-
niques [20].

Within the family of methods based on the relative coordinates, the semirecursive ap-
proach is often used. In the semirecursive approach, closed loops need to be handled by em-
ploying constraint equations. Constraint equations, in turn, can be accounted in the semire-
cursive approach in many different ways, such as by using the Lagrange multiplier method,
the penalty-based approach as proposed by Cuadrado et al. [10] or the double-step approach,
which is using a coordinate partitioning as proposed by Rodríguez et al. [33]. The latter two
approaches are originated from Featherstone’s articulated inertia method [13]. The penalty-
based approach utilizes the index-3 augmented Lagrangian formulation with projections [3,
9] to enforce the constraints. After their original introductions, both methods have also been
successfully used in practical applications, such as in real-time vehicle simulations [20,
29]. In this study, the double-step approach based on coordinate partitioning method [24,
33] is referred as the double-step semirecursive formulation, and the penalty-based aug-
mented Lagrangian approach [9, 10] is referred as the penalty-based semirecursive formu-
lation.

Regarding the solution of the multiphysics problem that system-level simulations re-
quire, two main approaches exist in the literature. A straightforward one is the monolithic
approach, or sometimes referred as unified scheme, where a single set of differential equa-
tions is formed and integrated forward in time as a whole. In an alternative approach, namely
cosimulation approach, in turn, the system is split into two or more subsystems that are each
integrated separately. In this approach, the required variables, such as the state variables,
are communicated in predetermined time intervals. Multiple instances of both approaches
can be found from the literature. Cosimulation, due to the discrete time information ex-
change and the resulting coupling error, has especially been under keen research interest in
recent years [16, 36]. The studies include important aspects, such as the multirate cosimu-
lation [18], cosimulation configuration [4, 30], and energy-based coupling error minimiza-
tion [4, 34, 35]. Monolithic schemes, in turn, have been under less active development since
the simple coupling requires less research effort. Nevertheless, in [12] a multiphysics model
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was derived for a semiactive car suspension. Naya et al. [28], in turn, presented a monolithic
method for a coupled multibody and hydraulic simulation based on the index-3 augmented
Lagrangian [3], followed later in [32] and [31], where the index-3 semirecursive formula-
tion [10] was used.

In the case of a coupled multibody and hydraulic dynamics, which is a common case
in mobile working machinery, one of the key aspects to consider is the numerical stiffness
introduced by the hydraulics. This problem can be alleviated by proper selection of a multi-
body approach. While these aspects have been discussed in some sources, such as in [32],
few comparisons between the available methods in this context exist in the literature. In
the context of the absolute nodal coordinate formulation, in turn, a study in this direction
has been done by Matikainen et al. [27], where coordinate partitioning, Lagrange multiplier
method with Baumgarte’s stabilization, and penalty formulation were used for constraint
enforcement. The results indicated best performance for the Lagrange multiplier method,
closely followed by the penalty-based approach, while less efficient solution was sought
with the coordinate partitioning method.

The objective of this paper is to introduce the double-step semirecursive formulation [24]
and compare it with the penalty-based semirecursive formulation [10, 32] in the framework
of hydraulically driven systems. A monolithic scheme for the coupled simulation of the
double-step semirecursive formulation and hydraulic systems is introduced in this study. As
explained earlier, the modeling of hydraulic actuators often leads to numerically stiff sys-
tems. In this study, the hydraulic system will be described by using the lumped fluid theory.
While variable-step integrators often provide more efficient solutions, especially with stiff
systems when compared with fixed step-size solutions, since the author’s interests lie within
the field of real-time simulation, only fixed step-sizes are considered in this work. The cou-
pled systems are referred after the name of the multibody formulations used, such as the
double-step semirecursive approach and the penalty-based semirecursive approach. As case
studies, hydraulically actuated four-bar and quick-return mechanisms are illustrated. Using
the numerical examples, the two approaches are compared based on the work cycle, energy
balance, constraint violation, and numerical efficiency of the mechanisms.

2 Semirecursive multibody formulations

The dynamics of a constrained mechanical system can be described by using a multibody
system dynamics approach. In the semirecursive formulations, the dynamics of the open-
loop multibody systems are formulated in relative joint coordinates, which are independent.
In the case of closed-loop multibody systems, in turn, the relative joint coordinates are not
independent and cut-joint method is often used to open the loop. In this study, the cut-joint
constraints are incorporated by using the coordinate partitioning method [24, 33], referred
as the double-step semirecursive formulation, and by using the penalty-based augmented
Lagrangian method [2, 9], referred as the penalty-based semirecursive formulation. Since
the system is hydraulically actuated, the internal dynamics of the hydraulics are computed
and the resultant force, as well as the stroke and stroke velocity, is used to combine the
hydraulics to the multibody equations of motion. Therefore, in this study, the constraints are
assumed scleronomic. Should kinematic constraints be needed, both methods can easily be
extended to rheonomous systems, as shown in the literature [10, 24].
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Fig. 1 An example of an
open-loop system

2.1 Semirecursive formulation for an open-loop system

In the semirecursive formulation, a system is considered as an open-loop multibody sys-
tem with Nb bodies. The following Cartesian velocity Zj and acceleration Żj are used to
describe the absolute velocity and acceleration of each body [24]

Zj ≡
[

ṡj

ωj

]
, Żj ≡

[
s̈j

ω̇j

]
, (1)

where ṡj and s̈j are, respectively, the velocity and acceleration of the point of the body j ,
which at that particular time is coincident with the origin of the inertial reference frame, and
ωj and ω̇j are the angular velocity and angular acceleration, respectively, of the body j .
In this approach, the kinematics of the open-loop system is calculated in a recursive form,
either from the base to the leaves, as performed in this study, or from leaves to base, by
applying the classical kinematic relations as in [11]. Figure 1 shows an example of an open-
loop system. In general case, the position of the system can be described by using the relative
joint coordinates z = [

z1, z2, . . . , zNb

]T
.

The absolute velocity Zj and acceleration Żj for body j ∈ [1,Nb] can be recursively
expressed in terms of the previous bodies as [24]

Zj = Zj−1 + bj żj , (2)

Żj = Żj−1 + bj z̈j + dj , (3)

where the scalars żj and z̈j are the first and second time derivatives, respectively, of the
relative joint coordinate zj , and the vectors bj and dj depend on the type of joint [11] that
connects the bodies j − 1 and j . Note that the indexes j − 1 and j may not be successive,
as the system may branch.

The absolute velocities Z ∈ R
6Nb and accelerations Ż ∈ R

6Nb of the open-loop sys-

tem can respectively be expressed in the matrix forms as Z =
[
ZT

1 ,ZT
2 , . . . ,ZT

Nb

]T
and

Ż =
[
ŻT

1 , ŻT
2 , . . . , ŻT

Nb

]T
. A velocity transformation matrix R ∈ R

6Nb×Nb that maps the ab-

solute velocities into a set of relative joint velocities can be written as [11, 24]

Z = Rż = TRdż, (4)
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Ż = Rz̈ + Ṙż = TRdz̈ + TṘdż, (5)

where ż ∈ R
Nb is the vector of relative joint velocities, T ∈ R

6Nb×6Nb is the path matrix that
represents the topology of the open-loop system, and Rd ∈ R

6Nb×Nb is a diagonal matrix
whose elements are the vectors bj arranged in an ascending order. The path matrix T is a
lower block-triangular matrix [11] whose elements from diagonal to left are (6 × 6) identity
matrices I6, if the corresponding body is in between the considered body and the root of the
system. Note that the term Ṙż in Eq. (5) can be expressed in terms of the vectors dj by using
Eq. (3) [11].

The absolute velocity Yj and acceleration Ẏj of the center of mass of body j can be
written as

Yj =
[

ġj

ωj

]
=

[
I3 −̃gj

0 I3

][
ṡj

ωj

]
= Dj Zj , (6)

and

Ẏj =
[

g̈j

ω̇j

]
=

[
I3 −̃gj

0 I3

][
s̈j

ω̇j

]
+

[
ω̃j ω̃j gj

0

]
= Dj Żj + ej , (7)

where gj is the position vector of the center of mass of body j with respect to the inertial
reference frame, I3 is a (3 × 3) identity matrix, and ġj , g̈j , and g̃j , respectively, are the
first and second time derivative, and the skew-symmetric matrix of the position vector gj .
By using Eqs. (6) and (7), the virtual power of the inertia and external forces acting on the
open-loop system can be written as [24]

Nb∑
j=1

Y∗T
j

(
Mj Ẏj − Qj

) =
Nb∑
j=1

Z∗T
j

(
M̄j Żj − Q̄j

) = 0, (8)

where the virtual velocities are denoted with an asterisk (*), and the matrices Mj , M̄j , and
Q̄j can be written as

Mj =
[
mj I3 0

0 Jj

]
, M̄j =

[
mj I3 −mj g̃j

mj g̃j Jj − mj g̃j g̃j

]
, (9)

and

Q̄j =
[

fj − ω̃j

(
ω̃jmj gj

)
τj − ω̃j Jjωj + g̃j

(
fj − ω̃j

(
ω̃jmj gj

))
]
, (10)

where mj is the mass of body j and Jj is the inertia tensor of body j . The inertia tensor Jj

can be written as Jj = AT
j J̄j Aj , where J̄j is the constant inertia tensor in the body reference

frame of body j and Jj is expressed in the inertial reference frame. Note that both Jj and
J̄j are defined with respect to the center of mass of body j . In Eq. (10), fj is the vector
of external forces applied on body j and τj is the vector of external moments with respect
to the center of mass of body j . By substituting Eqs. (4) and (5) in Eq. (8), a set of ordi-
nary differential equations that describes the motion of the open-loop system can be written
as [24]

RT
d TTM̄TRdz̈ = RT

d TT
(
Q̄ − M̄TṘdż

)
, (11)

where M̄ ∈ R
6Nb×6Nb is a diagonal matrix that consists of the mass matrices M̄j , and Q̄ ∈

R
6Nb is a column vector that consists of the force vectors Q̄j . Equation (11) can be rewritten
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Fig. 2 An example of a
closed-loop system

as

M′z̈ = Q′, (12)

where M′ = RT
d TTM̄TRd and Q′ = RT

d TT
(
Q̄ − M̄TṘdż

)
.

2.2 Double-step semirecursive formulation

In the double-step semirecursive formulation, the constraints are introduced by using the
coordinate partitioning method [24]. This method can be used in frameworks of the explicit
and implicit integrators. A set of m constraint equations � = 0 are used for the closure of
an open-loop. For the sake of simplicity, the constraint equations are assumed holonomic
and scleronomic. To account for rheonomic constraints, the reader is referred to [24]. The
constraint equations � = 0 can be expressed in terms of the relative joint coordinates as
� (z) = 0. Figure 2 shows an example of a closed-loop system.

By using the coordinate partitioning method, the dependent velocities can be written in
terms of the system’s degrees of freedom f as [25]

żd = − (
�d

z

)−1
�i

zżi, (13)

where �d
z ∈ R

m×m and �i
z ∈ R

m×f are, respectively, the dependent and independent columns
of Jacobian matrix �z, and żd ∈ R

m and żi ∈ R
f are, respectively, the dependent and inde-

pendent relative joint velocities. It is assumed that neither redundant constraints nor singu-
lar configurations exist, which guarantees that the inverse of �d

z can be found. A velocity
transformation matrix Rz ∈ R

Nb×f is introduced to transform the dependent relative joint
velocities into independent ones as [25]

[
żd

żi

]
=

[− (
�d

z

)−1
�i

z
I

]
żi ≡ Rzżi. (14)

Similarly, accelerations can be written as

z̈ = Rzz̈i + Ṙzżi, (15)

where z̈i ∈ R
f are the independent relative joint accelerations. In this study, the indepen-

dent relative joint coordinates are identified by using the Gaussian elimination with full
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pivoting to the Jacobian matrix �z. Note that Gaussian elimination with full pivoting is a
lower–upper (LU) matrix factorization technique, where the rows and columns of a ma-
trix are interchanged to use the largest element (in absolute value) in the matrix as the
pivot [21]. Accordingly, the (Nb − m) columns of the Jacobian matrix �z, where the m piv-
ots do not appear, determines the independent relative joint coordinates [15, 25]. Fisette and
Vaneghem utilized the same technique in the identification of dependent and independent
coordinates [14]. This can be considered as a relative drawback of the double-step semire-
cursive formulation because the penalty-based semirecursive formulation utilizes the full set
of coordinates. By substituting Eqs. (14) and (15) into Eq. (11), the dynamic equations of
the closed-loop system can be written as [7]

RT
z M′Rzz̈i = RT

z RT
d

(
TTQ̄ − TTM̄D

)
, (16)

where D ≡ TRd

[− (
�d

z

)−1 (
�̇zż

)
0

]
+ TṘdż are the absolute accelerations, when vector z̈ in

Eq. (5) is set to zero. Equation (16) can be expressed in a simplified form as

M′′z̈i = Q′′, (17)

where M′′ = RT
z M′Rz and Q′′ = RT

z RT
d

(
TTQ̄ − TTM̄D

)
. Note that the relation between Q′

and Q′′ can be written as Q′′ = RT
z Q′ − RT

z M′RzṘzżi.

2.3 Penalty-based semirecursive formulation

In the penalty-based semirecursive formulation, the constraints are introduced by using the
penalty-based augmented Lagrangian method [10]. In this formulation, the time integration
scheme is carried out by using the trapezoidal rule. The loop-closure constraints, a set of m

constraint equations � = 0, are introduced in Eq. (12) with a penalty method similar to the
index-3 augmented Lagrangian with projections to satisfy the constraints on velocity and
acceleration levels [3, 9]. The equations of motion for the closed-loop system can be written
as

M′z̈ + �T
z α� + �T

z λ = Q′, (18)

where �z is the Jacobian matrix of � (z) = 0, α is the penalty factor that can be set the same
for all constraints, and λ is the vector of iterated Lagrange multipliers. In this method, these
multipliers are obtained at each time-step k as

λ
(h+1)
k = λ

(h)
k + α�

(h+1)
k , (19)

where h is the iteration step. The value of λ
(0)
k is the final value of λk−1, calculated in

the previous time-step [10]. As mentioned earlier, the system is integrated by using an im-
plicit single-step trapezoidal scheme [10]. In this approach, the relative joint velocities ż
and accelerations z̈ are corrected by using the mass-damping-stiffness-orthogonal projec-
tions as [3, 9] [

W + �t2

4
�T

z α�z

]
ż = Wż′, (20)

[
W + �t2

4
�T

z α�z

]
z̈ = Wz̈′ − �t2

4
�T

z α
(
�̇zż

)
, (21)
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where ż′ and z̈′ are, respectively, the relative joint velocities and accelerations obtained from
the Newton–Raphson iteration, and W = M + �t

2 C + �t2

4 K, where C and K represent the
damping and stiffness contributions in the system. Note that in Eqs. (20) and (21), time-
dependent constraint terms are not incorporated because the constraints are assumed sclero-
nomic. To account for rheonomic constraints, the reader is referred to [10, 32].

3 Hydraulic actuators

In this study, the hydraulic pressures within a hydraulic circuit is computed by using the
lumped fluid theory [37]. By using this approach, a hydraulic circuit is divided into dis-
crete volumes where pressures are assumed to be equally distributed. The effect of acoustic
waves is thus assumed to be insignificant. In a hydraulic volume Vk , the pressure pk can be
computed as

ṗk = Bek

Vk

nf∑
s=1

Qks, (22)

where Qks is the sum of incoming and outgoing flows associated with the volume Vk , nf is
the total number of volume flows going in or out of the volume Vk , and Bek

is the effective
bulk modulus associated to the volume Vk . The effective bulk modulus can be written as

Bek
=

(
1

Boil

+
nc∑

s=1

Vs

VkBs

)−1

, (23)

where Boil is the bulk modulus of oil, nc is the total number of subvolumes Vs that form the
volume Vk , and Bs is the corresponding bulk modulus of the volume Vs .

3.1 Valves

In this study, the valves are described by using a semiempirical modeling method [19].
By using the semiempirical modeling approach, the volume flow rate Qt through a simple
throttle valve can be written as

Qt = Cvt sgn(�p)
√| �p |, (24)

where �p is the pressure difference over the valve, sgn(�p) is the sign function that deter-
mines the sign of �p, and Cvt is the semiempirical flow rate coefficient of the throttle valve
that can be calculated as

Cvt = CdAt

√
2

ρ
, (25)

where Cd is the flow discharge coefficient, At is the area of the throttle valve, and ρ is the
density of the oil.

Similarly, the volume flow rate Qd through a directional control valve can be written as

Qd = Cvd
U sgn(�p)

√| �p |, (26)

where Cvd
is the semiempirical flow rate constant of the valve procured from the manufac-

turer catalogues, and U is the relative poppet/spool position. If the pressure difference is
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Fig. 3 Schematic figure of a hydraulic cylinder

less than 2 bar, the volume flow is assumed to be laminar, and Eqs. (24) and (26) are mod-
ified so that the volume flow and the pressure difference follows a linear relation. Equation
(26) is complemented by the following first order differential equation that describes a spool
position

U̇ = Uref − U

τ
, (27)

where Uref is the reference voltage signal for the reference spool position, and τ is the
time constant, which can be obtained from the Bode-diagram of the valve that describes the
dynamics of valve spool.

3.2 Cylinders

The volume flow produced due to the motion of a hydraulic cylinder (shown in Fig. 3) can
be written as

Qin = ẋA1, Qout = ẋA2, (28)

where Qin and Qout are, respectively, the volume flow rate going inside and coming out of
the cylinder, ẋ is the piston velocity, and A1 and A2 are, respectively, the areas on the piston
and piston-rod side of the cylinder. The force Fs produced by the cylinder can be written in
terms of its dimensions and chambers pressure as

Fs = p1A1 − p2A2 − Fμ, (29)

where p1 and p2 are, respectively, the pressure on the piston and piston-rod side that can be
calculated by using Eq. (22), and Fμ is the total friction force caused by sealing.

4 Coupling of multibody formulations and hydraulic actuators

In this section, the multibody formulations described in Sect. 2 are extended to incorpo-
rate the dynamics of the hydraulic actuators described in Sect. 3 in a monolithic approach.
The coupling of the double-step semirecursive formulation with the lumped fluid theory is
inspired from [28] and [32]. Whereas the coupling of the penalty-based semirecursive for-
mulation with the lumped fluid theory was already carried out in [32]. The force vector Q̄
in Eqs. (17) and (18) is incremented with the pressure variation equations, leading to the
combined system of equations as follows

M′′z̈i = Q′′ (z, ż,p)

ṗ = h (p, z, ż)

}
(double-step semirecursive approach), (30)
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M′z̈ + �T
z α� + �T

z λ = Q′ (z, ż,p)

λ(h+1) = λ(h) + α�(h+1)

ṗ = h (p, z, ż)

⎫⎪⎪⎬
⎪⎪⎭

(penalty-based semirecursive approach),

(31)
where p is a vector of the pressures in the hydraulic subsystem and h (p, z, ż) are the pressure
variation equations. It is assumed that the dependency of both Q′ and function h with respect
to z, ż, and p are known.

In this study, both the approaches are integrated by using an implicit single-step trape-
zoidal rule [26], which is second order and A-stable method. While the trapezoidal rule was
often used in structural dynamics, it was, however, seldom used in multibody system dy-
namics until the study by Bayo et al. [1]. In the study [1], it was agreed that the trapezoidal
rule will lead to poor convergence characteristics when applied to multibody system dynam-
ics in a similar way as other multistep integrators, that is, by considering the accelerations as
primary variables. However, Bayo et al. [1] and Cuadrado et al. [8–10] demonstrated that the
trapezoidal rule performs very satisfactorily when it is combined directly with the equations
of motion by taking the positions as the primary variables, as shown below. Similarly, for
the hydraulic subsystem, pressures are taken as the primary variables, as shown in [28, 32].
Note that this study is more inclined to use the above approaches for real-time applications,
such as [23], in future studies. Therefore, a single-step integration method is preferred that
can use the same computational cost in each integration step [1]. Furthermore, even though
the explicit, multistep integrators can be inexpensive and accurate, however, they do not
demonstrate good stability, which is a limiting factor for real-time integration [1], especially
for stiff systems. Thus, an implicit method is used. Moreover, A-stability is crucial for a
numerically stiff system [1], such as presented in this study.

In the double-step semirecursive approach, the trapezoidal rule can be written as

zi
k+1 = zi

k + �t

2

(
żi
k + żi

k+1

)

żi
k+1 = żi

k + �t

2

(
z̈i
k + z̈i

k+1

)

pk+1 = pk + �t

2
(ṗk + ṗk+1)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (32)

where �t is the time-step, zi
k are the independent relative joint coordinates, żi

k are the in-
dependent relative joint velocities, z̈i

k are the independent relative joint accelerations, and
pk and ṗk+1 are, respectively, the pressures and pressure derivatives. Equation (32) can be
rewritten by considering zi

k+1 and pk+1 as the primary variables and, respectively, solving
for żi

k+1, z̈i
k+1, and ṗk+1 at time-step (k + 1) as

żi
k+1 = 2

�t
zi
k+1 + ˆ̇zi

k

z̈i
k+1 = 4

�t2
zi
k+1 + ˆ̈zi

k

ṗk+1 = 2

�t
pk+1 + ˆ̇pk

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

, (33)
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where

ˆ̇zi

k = −
(

2

�t
zi
k + żi

k

)

ˆ̈zi

k = −
(

4

�t2
zi
k + 4

�t
żi
k + z̈i

k

)

ˆ̇pk = −
(

2

�t
pk + ṗk

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (34)

Note that in the double-step semirecursive approach, the rules zi
k+1 = zi

k + żi
k�t + 1

2 z̈i
k�t2

and pk+1 = pk + ṗk�t are applied to zi
k+1 and pk+1, respectively. In the double-step semire-

cursive approach, given zi
k+1, the dependent relative joint coordinates zd

k+1 are obtained by
iteratively solving the loop-closure constraint equations � (z) = 0, which are highly non-
linear [11]. In this study, the Newton–Raphson method is used to solve the loop-closure
position problem and convergence is achieved by providing a reliable estimate for zd

k+1 by
using information from the previous time-step as [15] zd

k+1 = zd
k + żd

k�t + 1
2 z̈d

k�t2. The de-
pendent relative joint velocities żd

k+1 and accelerations z̈d
k+1 are computed from Eqs. (14)

and (15), respectively. In the penalty-based semirecursive approach, the full set of relative
joint coordinates zk+1, velocities żk+1, and accelerations z̈k+1 are used in the above discus-
sion of Eqs. (32), (33), and (34), instead of zi

k+1, żi
k+1, and z̈i

k+1. The dynamic equilibrium,
established at time-step (k + 1), for both the approaches can be written as

M′′zi
k+1 − �t2

4
Q′′

k+1 + �t2

4
M′′ ˆ̈zi

k = 0

�t

2
pk+1 − �t2

4
hk+1 + �t2

4
ˆ̇pk = 0

⎫⎪⎪⎬
⎪⎪⎭

(double-step semirecursive approach), (35)

M′zk+1 + �t2

4
�T

zk+1
(α�k+1 + λk+1) − �t2

4
Q′

k+1 + �t2

4
M′ ˆ̈zk = 0

λ
(h+1)

k+1 = λ
(h)

k+1 + α�
(h+1)

k+1

�t

2
pk+1 − �t2

4
hk+1 + �t2

4
ˆ̇pk = 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(penalty-based semirecursive approach).

(36)

Equations (35) and (36) are a nonlinear system of equations that can be denoted as

f (xk+1) = 0, where x =
[(

zi
)T

,pT
]T

for the double-step semirecursive approach and x =[
zT,pT

]T
for the penalty-based semirecursive approach. Such a nonlinear system of equa-

tions can be iteratively solved by employing the Newton–Raphson method as

[
∂f (x)

∂x

](h)

k+1

�x(h)

k+1 = − [f (x)](h)

k+1 . (37)

The residual vector [f (x)](h)

k+1 can be written as

[f (x)](h)

k+1 = �t2

4

[
M′′z̈i − Q′′

ṗ − h

](h)

k+1

(double-step semirecursive approach), (38)
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[f (x)](h)

k+1 = �t2

4

[
M′z̈ + �T

z α� + �T
z λ − Q′

ṗ − h

](h)

k+1

(penalty-based semirecursive approach),

(39)

where λ is obtained as shown in Eq. (19). The approximated tangent matrix
[

∂f(x)

∂x

](h)

k+1
can

be obtained numerically by using the forward differentiation rule

df (x0)

dx
≈ f (x0 + ε) − f (x0)

ε
, (40)

where ε is the differentiation increment. To avoid ill-conditioning of the tangent matrix, ε is
computed as in [32], namely

ε = 1 × 10−8max
(
1 × 10−2, | x0 |) , (41)

where 1 × 10−2 limits the minimum value for the differentiation increment to 1 × 10−10.
Equation (41) is a modification of a method presented in [5]. In the penalty-based semire-
cursive approach, ż and z̈ are corrected by using the mass-damping-stiffness-orthogonal
projections [3, 9] as shown in Eqs. (20) and (21).

5 The case studies of hydraulically actuated four-bar and quick-return
mechanisms

In this study, a hydraulically actuated four-bar mechanism, as shown in Fig. 4, and a hy-
draulically actuated quick-return mechanism, as shown in Fig. 5, are used for a comparative
study between the two multibody formulations in a numerically stiff coupled environment.
The numerical stiffness in the coupled environment is introduced by the hydraulic subsys-
tem. The mechanisms are modeled, first by using the double-step semirecursive formulation,
and later by using the penalty-based semirecursive formulation, as explained in Sect. 2. For
the planar system in Fig. 4, three joint coordinates are used in the modeling of the structure
and two loop-closure constraints are used for a cut-joint (revolute joint) at point E. Whereas
for the planar system in Fig. 5, five joint coordinates are used in the modeling of the structure
and four loop-closure constraints are used for two cut-joints (translational joints) at points
J and M . Both the mechanisms have one degree of freedom.

In Fig. 4, bodies 1, 2, and 3 are assumed as rectangular beams, whose lengths and masses
are L1 = 9 m, L2 = √

2 m, and L3 = 2 m, and m1 = 225 kg, m2 = 35 kg, and m3 = 50
kg, respectively. The locations of points E, G, and C in the inertial reference frame are

[0,−1,0]T m, [0,−2,0]T m, and
[

L1
3 ,0,0

]T
m, respectively. Point F is located at the cen-

ter of mass of body-3. In Fig. 4, the relative joint coordinates at points O , C, and D are
respectively represented by z1, z2 and z3 that define the orientation of the respective bodies
in the inertial reference frame, XYZ. Their initial values are considered as 0o, −135o, and
−45o, respectively. To avoid instabilities in the integration process, the initial values of the
relative joint velocities are considered 0o/s.

In Fig. 5, bodies 1, 2, and 4 are assumed as rectangular beams and bodies 3 and 5 are
assumed as cuboid, whose lengths and masses are L1 = 5 m, L2 = 1.2 m, L3 = 0.3 m,
L4 = 1 m, and L5 = 0.3 m, and m1 = 25 kg, m2 = 12 kg, m3 = 3 kg, m4 = 100 kg, and
m5 = 30 kg, respectively. The locations of points I , K, and Q in the inertial reference
frame are [0,5,0]T m, [0,3,0]T m, and [−0.96,3,0]T m, respectively. Points N and L are
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Fig. 4 A four-bar mechanism actuated by a double-acting hydraulic cylinder

Fig. 5 A quick-return mechanism actuated by a double-acting hydraulic cylinder

located at the center of mass of bodies 4 and 5, respectively. In Fig. 5, the relative joint
coordinates at points O , H , I , K , and L are respectively represented by z1, z2, z3, z4, and z5

that define the orientation of the respective bodies in the inertial reference frame, XYZ. Their
initial values are considered as 76.22o, 96.89o, 6.89o, 30.59o, and 45.63o, respectively. The
mass moment of inertia of a rectangular beam and a cuboid are considered as mL2

12 and mL2

6 ,
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respectively, where m is the mass and L is the length. The gravity is assumed to act in the
negative Y direction, whose value is g = 9.81 m/s2.

Both mechanisms are actuated by using the hydraulic actuators, as shown in Figs. 4
and 5. For simplicity, identical hydraulic actuators are used in both mechanisms. In this
study, a simple hydraulic circuit is accounted, which consists of a pump, with a constant
pressure source pP , a directional control valve, with a control signal U , a throttle valve,
a double-acting hydraulic cylinder, connecting hoses, and a tank, with a constant pressure
pT . The control volumes, V1, V2, and V3, used in the modeling of the hydraulic circuit are
marked in Fig. 4. The pressure in the respective control volumes are p1, p2, and p3; and their
respective effective bulk modulus are Be1, Be2, and Be3, that are calculated by using Eq. (23).
For simplicity, the hydraulic circuit is assumed ideal, that is, the leakage is neglected.

In the hydraulic subsystem, the control volumes V1, V2, and V3 are calculated as

V1 = Vh1

V2 = Vh2 + A2l2

V3 = Vh3 + A3l3

⎫⎪⎪⎬
⎪⎪⎭

, (42)

where Vh1 , Vh2 , and Vh3 are the volumes of the respective hoses; A2 and A3 are, respectively,
the areas of the piston side and the piston-rod side within a cylinder; and l2 and l3 are,
respectively, the lengths of the chambers of the cylinder, piston and piston-rod side. The
length of the hydraulic cylinder is l such that l2 + l3 = l; and the variable chamber lengths,
l2 and l3, are calculated as

l2 = l20 + s0 − | s |
l3 = l30 − s0 + | s |

}
, (43)

where | s | is the actuator length of the hydraulic cylinder (see Figs. 4 and 5); s0 is the
actuator length at t = 0; and l20 = s0 − l and l30 = l − l20 are, respectively, the length of the
piston and piston-rod side of the cylinder at t = 0. The differential equations of the pressures
p1, p2, and p3 are computed based on Eq. (22) as

ṗ1 = Be1

V1
(Qd1 − Qt)

ṗ2 = Be2

V2
(Qt − A2ṡ)

ṗ3 = Be3

V3
(A3ṡ − Q3d)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

, (44)

where the volume flow rates Qd1 and Q3d are calculated from Eq. (26), the volume flow
rate Qt is calculated from Eq. (24), and ṡ is the actuator velocity. The actuator length | s |
and actuator velocity ṡ of the hydraulic cylinder are computed as a function of the relative
joint coordinates. For example, in Fig. 4, the upper end of the hydraulic cylinder is attached
to body-3 at point F , while, the lower end is attached to ground at point G, such that rG =
[0,−2,0]T m. Therefore, s and ṡ for the four-bar mechanism can be computed as

s = rF − rG

ṡ = d| s |
dt

= ṡ · s
| s | = ṙF · s

| s |

⎫⎪⎬
⎪⎭ , (45)
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Table 1 Parameters of the hydraulic circuit

Parameter Symbol Value

Pressure of the pump pP 7.6 MPa

Pressure of the tank (atmospheric pressure) pT 0.1 MPa

Semiempirical flow rate constant of the directional control valve Cvd
2.138 ×10−8 m3/s

√
Pa

Volume of the hose (section-1) Vh1 4.71 ×10−5 m3

Volume of the hose (section-2) Vh2 3.14 ×10−5 m3

Volume of the hose (section-3) Vh3 7.85 ×10−5 m3

Area of the throttle valve At 2.83 ×10−5 m2

Flow discharge coefficient of the throttle valve Cd 0.8

Density of the oil ρ 850 kg/m3

Bulk modulus of the hoses Bh 550 MPa

Bulk modulus of the oil Boil 1500 MPa

Bulk modulus of the hydraulic cylinder Bc 31500 MPa

Efficiency of the cylinder η 0.88

Diameter of the piston d2 80 mm

Diameter of the piston-rod d3 35 mm

Length of the cylinder/piston l 1.1 m

Initial actuator length s0
√

2 m

where the position rF and velocity ṙF are calculated by applying the classical kinematic
relations as in [11, 22]. For simplicity, the force Fs produced by the hydraulic cylinder in

Eq. (29) is expressed in the form of Eq. (10) as Fs =
[

sX
|s| Fs,

sY
|s| Fs,

sZ
|s|Fs

]T
, where sX, sY,

and sZ are the components of vector s along the axes of the inertial reference frame. The
initial value of the force Fs0 produced by the hydraulic cylinder is calculated from the static
configurations, as shown in Figs. 4 and 5. For example, in case of four-bar mechanism,
Fs0 = √

2g (3m1 + 2m2 + m3). In the static configuration, the initial value of pressure p1

is equal to the initial value of pressure p2, which can be calculated based on Eq. (29) as
p2 = (

Fs0 + p3A3
)
/A2. Note that the friction is neglected in static configuration and the

initial value of pressure p3 is assumed 3.5 MPa. The directional control valve, parameter U

in Eq. (27), controls the movement of the cylinder through volume flows and is actuated for
10 s by using the following reference voltage signal Uref as

(Four-bar mechanism) Uref =

⎧⎪⎨
⎪⎩

0, t < 1 s, 2.5 s ≤ t < 5 s, t ≤ 10,

10, 1 s ≤ t < 2.5 s,

−10, 5 s ≤ t < 8 s,

(46)

(Quick-return mechanism) Uref =

⎧⎪⎨
⎪⎩

0, t < 1 s, 4 s ≤ t < 6.5 s, t ≤ 10,

−10, 1 s ≤ t < 4 s,

10, 6.5 s ≤ t < 8 s,

(47)

where t is the simulation run time. The parameters of the hydraulic circuit are shown in
Table 1.
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Fig. 6 The positions of the mechanisms at every second during the simulation run

The set of variables used to solve the combined system of equations with the proposed
integration scheme (Sect. 4) are

x =
[(

zi
)T

, pT
]T

(double-step semirecursive approach)

x = [
zT, pT

]T
(penalty-based semirecursive approach)

⎫⎪⎬
⎪⎭ . (48)

Note that, in the double-step semirecursive approach (Eq. (48)), zi is identified by using the
Gaussian elimination with full pivoting to the Jacobian matrix �z. In this study, the error
tolerance is considered as 1 × 10−7 rad for positions and 1 × 10−2 Pa for pressures. The
voltage that corresponds to the spool position is integrated by using the trapezoidal rule and
its error tolerance is considered as 1 × 10−7 V. Furthermore, the penalty factor α in Eq. (18)
is considered as 1×1011. Note that in the penalty-based semirecursive approach, the penalty
term is analogous to a spring constant by considering that there is a spring attached to the cut-
joint location to fulfill the constraints. Due to the high numerical stiffness introduced by the
hydraulics, a high penalty term (spring constant) is used. In this study, both the approaches
are implemented in the Matlab environment.

6 Results and discussion

This section presents the simulation results of the hydraulically actuated four-bar and quick-
return mechanisms presented in the previous section. Figures 6a and 6b show the simulation
frames of the four-bar and quick-return mechanisms, respectively, presenting the position of
the bodies at different instants of time. Here, the two approaches, namely, the double-step
semirecursive approach and the penalty-based semirecursive approach, are compared based
on the simulation work cycle, energy balance, constraint violation, and numerical efficiency.

6.1 The work cycle

In the four-bar mechanism, the hydraulic cylinder lifts the structure between 1–2.5 s and
lowers it down between 5–8 s. Whereas in the quick-return mechanism, the hydraulic cylin-
der pulls the structure between 1–4 s and pushes it between 6.5–8 s. In the subsequent
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Fig. 7 The relative joint coordinates and pressures for the four-bar mechanism

Fig. 8 The relative joint coordinates and pressures for the quick-return mechanism

plots, the regions between the opening and closing of the directional control valve are high-
lighted in purple for the four-bar mechanism and in cyan for the quick-return mechanism.
For both the mechanisms, the relative joint coordinates showed a good agreement in the two
approaches, as shown in Figs. 7a and 8a. Thus, the solutions of both the approaches are ac-
curate with respect to each other. The pressures in the hydraulic control volumes are shown
in Figs. 7b and 8b, respectively, for the four-bar and quick-return mechanisms. Note that the
pressures are identical in both the approaches and the choice of the multibody formulation
does not affect the results of the hydraulics.

In the double-step approach, the independent joint coordinate is identified by using the
Gaussian elimination with full pivoting on the Jacobian matrix of the constraints. For the
presented work cycle, the independent coordinates are identified as z3 for the four-bar mech-
anism and as z4 for the quick-return mechanism, throughout the simulation. In the double-
step approach, if the independent and dependent coordinates are not identified adequately,
then it can lead to the numerical problems during the integration because of the poor con-
ditioned matrices. Therefore, the adequate identification of the independent and dependent
coordinates is considered a relative drawback of the double-step approach compared with
the penalty-based approach because the latter uses the full set of coordinates.
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Fig. 9 A comparison of energies for the four-bar mechanism with a time-step of 1 ms

Fig. 10 A comparison of energies for the quick-return mechanism with a time-step of 1 ms

6.2 Energy balance

The energy balances in both the approaches are compared by analyzing the kinetic energy,
potential energy, and work done by the actuator. The energy comparison of the four-bar
mechanism is shown in Fig. 9 and of the quick-return mechanism is shown in Fig. 10. The
energy balance in the double-step and penalty-based approaches showed a good agreement
with each other for both the mechanisms. The peak energy drift in case of the four-bar mech-
anism is 0.84 J, which is 0.09% of the maximum actuator work, 982.95 J, and it occurred
at the closing of the valve around 8 s. Whereas in case of the quick-return mechanism, the
peak energy drift is 0.23 J, that is, 0.06% of the maximum actuator work, 357.47 J, and it
also occurred at the closing of the valve around 8 s. An analogy can be drawn between the
hydraulic system and a stiff spring, which supports the structure of the mechanisms.
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Fig. 11 Magnitude of constraint violations for the four-bar mechanism with a time-step of 1 ms

6.3 Constraint violation

The basic difference between the double-step and penalty-based approaches is the way they
handle constraints in their multibody formulation. Thus, it is worth showing a comparison of
the constraint violations in both the approaches for the two mechanisms as shown in Figs. 11
and 12. Note that in the quick-return mechanism, two cut-joints are used in the modeling,
but for demonstration purposes, the results for only one of the cut-joint are presented. In
both the approaches, the constraints are fulfilled with good accuracy for both mechanisms.
Thus, the robustness of the multibody formulations, as explained in the literature [10, 24], is
preserved in the application of a monolithic simulation of coupled multibody and hydraulic
systems. Furthermore, the double-step approach fulfills constraints to the level of machine
precision, or the precision specified, and it maintains a good error control. Therefore, this
can be considered as the relative advantage of the double-step approach compared with
the penalty-based approach because the latter approach is relatively more relaxed on the
fulfillment of constraints.

In the double-step approach, for a possible mapping between independent and dependent
relative joint coordinates, there is an assumption that redundant constraints and singular
configurations do not exist. This assumption is a relative disadvantage of the double-step
approach compared with the penalty-based approach because the latter approach can handle
redundant constraints and can deliver accurate solutions in the vicinity of singular configu-
rations [15].

6.4 Numerical efficiency

The numerical efficiencies of both the approaches are compared in Figs. 13 and 14, for the
four-bar and quick-return mechanisms, respectively. In the four-bar mechanism, the average
and maximum iterations, and the total integration time for the double-step approach are 1.39,
3, and 27.45 s and for the penalty-based approach are 1.56, 4, 21.54 s. Whereas in the quick-
return mechanism, the average and maximum iterations, and the total integration time for the
double-step approach are 1.49, 3, and 29.03 s and for the penalty-based approach are 1.57, 6,
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Fig. 12 Magnitude of constraint violations for the quick-return mechanism with a time-step of 1 ms

Fig. 13 A comparison of numerical efficiencies for the four-bar mechanism with a time-step of 1 ms

Fig. 14 A comparison of numerical efficiencies for the quick-return mechanism with a time-step of 1 ms

and 28.47 s. The maximum number of iterations occurred during the opening and closing of
the directional control valve. Even though the number of iterations are lower in the double-
step approach, its integration time is greater compared with the penalty-based approach,
which is in accordance with the literature [15, 27]. The poor numerical efficiency of the
double-step approach is attributed to the iterative solution of the dependent joint coordinates
by using the Newton–Raphson method.
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Note that the examples are implemented in the Matlab environment and for this reason,
the result about the integration time may be unreliable because of the implementation de-
tails. However, both approaches are carefully implemented such that they have the same
number of function calls in each iteration. This was achieved by symbolic precomputation
and function generation of the matrix product, as in [32]. Furthermore, both approaches can
be potential candidates for real-time applications by implementing them in a lower level
language such as C++ or Fortran and by limiting the number of iterations to a lower value.

7 Conclusion

This study introduced the double-step semirecursive formulation and compared it with the
penalty-based semirecursive formulation, in a numerically stiff coupled environment. The
numerical stiffness was introduced by a hydraulic system. A monolithic scheme for the
coupled simulation of the double-step semirecursive formulation and hydraulic systems was
introduced in this study. To this end, the hydraulic system was described by using the lumped
fluid theory. As case studies, hydraulically actuated four-bar and quick return mechanisms
were modeled to compared the double-step semirecursive approach with the penalty-based
semirecursive approach. The two approaches were compared based on the work cycle, en-
ergy balance, constraint violation, and numerical efficiency of the mechanisms, and similar
results were obtained in both the mechanisms.

The relative joint coordinates and energy balances showed a good agreement in both
the approaches. In the double-step approach, the adequate identification of the independent
and dependent joint coordinates was carried out by using the Gaussian elimination with full
pivoting on the Jacobian matrix of the constraints. Its identification is considered a rela-
tive drawback compared with the penalty-based approach where the full set of coordinates
were used. In both the approaches, the constraints were fulfilled with good accuracy. How-
ever, the double-step approach had an advantage of fulfilling the constraints to the level of
machine precision, or the precision specified compared with the penalty-based approach.
Nevertheless, the double-step approach had an assumption that the redundant constraints
and singularity configuration do not exit. This is a relative disadvantage of the double-
step approach because the penalty-based approach can handle redundant constraints and
can provide accurate solutions in the vicinity of singular configurations. Furthermore, the
double-step approach suffered from poor numerical efficiency, which was attributed to the
iterative solution of the dependent joint coordinates by using the Newton–Raphson method.
To improve the numerical efficiency of the double-step approach, it would be of utmost im-
portance to enhance the iterative solution of dependent coordinates and this is left as a topic
for future studies. In conclusion, the penalty-based semirecursive approach has a number of
advantages over the double-step semirecursive approach, which is in accordance with the
literature [15, 27].

For future studies, alternate multibody formulations can be coupled with hydraulic sys-
tems to study on the optimal formulation for simulating coupled multibody and hydraulic
systems. Note that the selection of the integrator type is bound to have an effect on the
results. In this study, an implicit integrator is used, whereas the double-step semirecursive
formulation is usually integrated by using the fourth order Runge–Kutta method, that is, an
explicit integrator. Therefore, different integrators can be implemented to study on the opti-
mal integrator choice for such coupled systems. This study utilized the Matlab environment,
therefore, to make a firm conclusion on the numerical efficiency of the two approaches, a
large-scale, three-dimensional example needs to be investigated in programming languages,
such as C++ or Fortran.
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