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Recent years have seen the welding industry facing demands for improved productivity 

and efficiency together with simultaneous enhancement of the quality of welded 

structures. The welding industry has met these challenges by developing novel alloys, 

increasing the level of automation, and expanding the use of dissimilar welding. The 

utilization of materials with complicated chemical composition necessitates a detailed 

understanding of material behaviour and how the materials can be combined while 

ensuring structural integrity. Suitable joining methods for both thick and thin plates are 

required, as is effective control of joining processes and related technology. A key aspect 

of welding control is understanding of the dynamics and interactions of the various 

parameters associated with welding processes and procedures. 

Recent developments in artificial intelligence (AI) modelling tools have led to a vision of 

AI removing the element of human mechanical effort from welding operations. Various 

AI-based methods have been developed and applied with the aim of attaining good 

mechanical properties and improving weld quality. These approaches include design of 

experiment (DoE) techniques and algorithms, conventional regression analysis and the 

use of computational networks, including neural networks and fuzzy logic. In welding 

technology, these methods have primarily been used to optimise different welding 

parameters. Although researchers have found neural networks to be a better approach for 

optimisation than other available alternatives, it is, however, a black box approach. 

Consequently, it is difficult to ascertain how the algorithm arrives at a decision, which is 

knowledge of importance for human welders and future development of welding 

techniques and technology. The question then becomes: Can an AI model be developed 

that overcomes this deficiency?  

This PhD dissertation aims to contribute to the state-of-the-art in terms of knowledge of 

the applicability of AI in welding technology by developing an AI framework using an 

ANFIS and fuzzy deep neural network from which it is possible to ascertain the 

underlying decision-making logic as an alternative method to predict welding parameters 

for optimisation of the welding process.  

To meet the objective of the work, an in-depth understanding of different welding and 

optimisation processes is first required. Methodologically, a comprehensive literature 



review approach and experimental work are used as the basis for suggesting the proposed 

AI framework. The AI framework for welding technology was designed using a fuzzy 

deep neural network, which is a combination of fuzzy logic and a deep neural network. 

The fuzzy logic and deep neural network are incorporated into the framework with a 

Likert scaling strategy. In normal practice, AI decision-making tools using deep learning 

techniques require big data from which to learn. For welding applications, obtaining this 

big data is challenging, because of the laborious and costly nature of welding experiments, 

and limited experimental data is thus available. The added value of the work in this study 

is that the AI approach used overcomes the limitation of the big data requirement. Where 

big data is not available for the algorithm to learn from, the system can mathematically 

manipulate the small data using its inference engine and extract its own big data from the 

available small data using the technique of data augmentation.  

The AI framework was developed, validated and tested with the TIG welding process to 

predict weld bead geometry. The results showed a predictive accuracy of 92.59% when 

compared to results from a real experimental welding data set.  

It is expected in the future that this created model will help the welder to bypass trial and 

error during the selection of welding parameters when welding. This model can be part 

of the standard welding procedure document to help the welder when performing welding 

works. This tool will also be useful for industries in the welding sector and can be used 

for educational purposes.   

 

Keywords: TIG welding, artificial intelligence, deep neural network, structural Integrity, 

data augmentation 
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Nomenclature 

In the present work, variables and constants are denoted using slanted style, vectors are 

denoted using bold regular style, and abbreviations are denoted using regular style. 

Latin alphabet 

A area m2 

cp specific heat capacity at constant pressure J/(kgK) 

cv specific heat capacity at constant volume J/(kgK) 

d diameter m 

F force vector N 

f frequency Hz 

g acceleration due to gravity m/s2 

h heat transfer coefficient W/(m2K) 

h enthalpy J/kg 

j flux vector m/s 

L characteristic length m 

l length m 

M torque Nm 

m mass kg 

N number of particles – 

n unit normal vector – 

p pressure Pa 

r radius m 

T temperature K 

t time s 

qm mass flow kg/s 

V volume m3 

v velocity magnitude m/s 

v velocity vector m/s 

  

Greek alphabet 

α alfa 

β beta 

Γ capital gamma 

γ gamma 

Δ capital delta 

δ delta      

ε epsilon 

ϵ epsilon variant  

ζ zeta 

η eta 
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Θ capital theta 

θ theta 

ϑ theta variant 

ι iota 

κ kappa) 

λ lambda 

μ mu 

ξ xi 

π pi  π = 3.14159... 

Σ capital sigma     

σ sigma 

τ tau 

Φ capital phi 

ϕ  phi variant 

φ phi 

Ψ capital psi 

ψ psi 

Ω capital omega 

ω omega 

Abbreviations 

AC    Alternating Current 

AI Artificial Intelligence 

ANFIS Adaptive neuro fuuzy inference system 

ASME American Society of Mechanical Engineers 

ANN Artificial Neural Network 

BM  Base Metal 

CFD Computational fluid dynamics 

CMT  Cold Metal Transfer 

CTWD Contact Tip to Work Distance 

2D Two dimensional 

3D Three dimensional 

DC  Direct Current 
DCEN  Direct Current Electrode Negative 

DCEP Direct Current Electrode Positive 

DHAZ Depth of heat affected zone 

DoE Design of Experiment 

DNN Deep Neural Network 

DP Depth of Penetration 

FCAW Flux Cored Arc Welding 

FZ              Fusion Zone 

GBF           Grain Boundary Ferrite 

Gfr             Gas Flow Rate 

GMA         Gas Metal Arc Welding 



Nomenclature 15 

HAZ           Heat Affected Zone 

HD            Hydrogen Concentration 

HFDL Hybrid Fuzzy Deep learning 

HFDNN  Hybrid Fuzzy-Deep Neural Network 

LES    Large eddy simulation 

LTHW    Laser TIG Hybrid Welding 

MF    Membership Function 

MMA    Manuel Metal Arc Welding 

MIG    Metal Inert Gas Welding 

MLP     Multi- Layer Perception 

PDF    Probability density function 

TIG    Tungsten Inert Gas 

PA Flat (fillet weld) 

PB  Horizontal (fillet weld) 

UHSS Ultra High Strength Steel 

WHAZ         Width of Heat of Affected Zone 

WPS             Welding Procedure Specification 

Wfs               Wire Feed Speed 

Ws                Welding speed 

WZ     Weld Zone 
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1 Introduction 

This doctoral dissertation work presents findings of investigations at the Department of 

Mechanical Engineering of Lappeenranta-Lahti University of Technology LUT which 

formed a part of efforts to promote research on the applicability of artificial intelligence 

in welding technology with the long-term aim of using AI to improve welding outcomes.  

The goal of this introductory chapter is to present the research context and research 

problem that led to this doctoral study. The chapter is divided into two sections. The first 

part presents the research background, research problem, motivation for the research, 

research objectives and research questions. The second section consists of an overview 

of the work, the impact on society and the environment, the limitations of the work and 

an outline of the thesis. 

1.1 Background 

The demand to simultaneously improve productivity, efficiency and weld quality of 

welded structures has presented the welding industry with many challenges. Additionally, 

the many different production methods used and the many different materials with 

complicated chemical compositions have made it necessary to gain a proper 

understanding of how these materials can be joined while maintaining and enhancing 

structural integrity. Welding of both thick and thin plates is widely used in industry and 

has become an essential aspect of the modern world. Welding processes and procedures 

thus need to respond to the trend of new developments in welding technology, new metals 

and alloys, and new applications for welded structures. Quality welding is a challenging 

task because of the dynamics and interactions of the many factors involved. These 

challenges are usually encapsulated in the issue of how to control the various parameters 

associated with the welding process. 

Characteristically, a welding setup either allows the welder to choose the parameters, 

which places a significant burden on the welder to program the setup, or the setup is partly 

pre-programmed with the welder having limited access to the process parameters. Both 

approaches create challenges for the welder. In both cases, there is an assumption that the 

welder has sufficient knowledge about the physical science of welding to make necessary 

changes to welding parameters during welding to correct any unwanted situation; 

however, such knowledge cannot always be guaranteed. Moreover, systems that are easy 

to program generally do not provide the adaptability necessary to correct undesirable 

situations during welding (Smart, 1993). 
  

(Clark, 1985) investigated the effects of welding heat input per unit length on the 

weldability of low carbon steel geometry. In his findings he noted that heat input can be 

used as an independent variable for controlling the dimensions of the weld bead geometry. 

In addition, with the same value of heat input the weld has an identical cooling time and 

an identical microstructure of HAZ. However, other researchers (Chen S. Z., 2016) (Liu 
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Y. K., 2013) (Kiaee, 2014) are of the view that welding variables such as current, voltage 

and travel speed have a specific influence on output variables of the weld, namely HAZ 

dimensions, weld bead geometry and microstructure.  

Various methods have been tested and applied in the search for a solution to challenges 

related to the mechanical properties of welded joints and in efforts to achieve excellent 

mechanical properties. These approaches include Design of Experiment (DOE) 

techniques and algorithms, and the use of computational networks such as neural network 

and fuzzy logic. Design of Experiments is a technique that is used to generate the 

information required with a minimum amount of experimentation by applying 

experimental limits and specific experimental conditions and mathematical investigation 

to predict the response at any point (Harold, 2014).  

The primary aim of the various methods is optimisation of the different parameters in the 

welding process. For example, (Dutta, 2007), who carried out modelling of a Tungsten 

Inert Gas (TIG) welding process using conventional regression analysis and neural 

network-based approaches, concluded that the neural network approach is superior to 

conventional analysis since neural network-based approaches can carry out interpolation 

within a certain range. As mentioned earlier, the black box nature of neural networks has 

been a fundamental limitation. It was claimed that the cause of the better performance 

lies in the neural network-based approach being able to carry out interpolation within a 

certain range.  

However, the neural network approach has a significant limitation, in that it is a black 

box algorithm, and it is thus difficult to ascertain how it reaches a decision, which is 

important information for human welders. This problem can be overcome by using fuzzy 

deep learning (also known as fuzzy-deep neural networks). In fuzzy deep learning, fuzzy 

logic is incorporated into the learning process of multiple neural network algorithms to 

form what is called a Deep Neural Network (DNN) (Buah, 2020). 

Despite widespread awareness of the weaknesses of black box approaches, to the best of 

my knowledge, contributions in the field of welding have to date focused predominately 

on fuzzy logic, neural networks, neuro-fuzzy logic and deep neural networks. In research 

of these approaches, it has been found that neuro-fuzzy technology is able to address the 

interpretability-accuracy trade-off, but neuro-fuzzy systems are shallow networks and 

limited in terms of their ability to capture the complexities in a process, unlike current-

state-of-the-art deep neural network algorithms. It is in this regard that this doctoral study 

aims to contribute to advancing the state-of-the-art of AI techniques. The objective is to 

build an AI model based on Hybrid Fuzzy-Deep Neural Network (HFDNN) architecture. 

This hybridisation leads to an AI model that is not only accurate but inherently 

interpretable for human welders to aid them in carrying out their tasks efficiently and 

effectively. 
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1.2 Research problem  

In welding operations, the challenges encountered are usually related to improper control 

of various parameters associated with the welding process. Generally, a welder, based on 

experience gained over several years of welding, selects a set of parameters that could 

produce fairly good results. The trial and error inherent in this approach can be averted if 

an appropriate automation tool can be created that can predict the output from a set of 

defined parameters. Such a tool can help improve weld quality by improving the 

predictability of weld outcome and thus limiting defects in welded joints.  

In welding research, the aim when applying earlier mention methods is for optimisation 

of the different parameters. Scholars have attempted to solve the issue of the nature of 

black box by using neuro-fuzzy logic. This approach has its merits, but it is a shallow 

network, and evidence has shown that such networks can be improved by increasing their 

depth. However, when the problem becomes complex, the accuracy of neuro-fuzzy logic 

diminishes. An alternative method is to use a deep neural network, but the use of deep 

neural networks makes it difficult to explain how the algorithm reaches a decision, which 

is an important information for a human welder. Furthermore, the combination of welding 

processes (hybrid welding) to improve the welding process performance creates 

complexity as regards the process variables. The complexity of the combination creates 

more welding parameters. In view of these challenges, the research problem can be 

formed as a question of how the welding process can be improved by applying artificial 

intelligence to control welding parameters? 

1.3 Research objectives and motivation 

The objective of this dissertation started with the aim of investigating variants of TIG 

welding processes and the benefits they bring regarding the weldability of non-ferrous 

and ferrous metals and examining possible ways to increase the productivity and quality 

of TIG welding. The study then moved on to applying the findings experimentally in 

investigation of the viability of utilising AI in modelling of the structural integrity of 

welded joints. Finally, AI was used in building a model that can help a human welder 

predict welding parameters and produce good welding output.  

The motivation for this research came about due to recent developments in sensing 

systems for advanced welding technology and a desire to use AI to reduce the role of trial 

and error when welders select welding parameters. Accurate selection of welding 

parameters will go a long way to improving weld quality.  

1.4 Research questions 

The research objectives and motivations led to the formulation of the following research 

questions:  
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1. Why is there a need for different variants of the TIG welding process and what 

are their benefits as regards the weldability of non-ferrous metals? This question 

is reviewed and addressed in Publication I. The findings to this question led to the 

next question: 

2. Where can the Laser-TIG Hybrid Welding (LTHW) process best be used and 

why? After critical analysis and investigation into the use of LTHW, presented in 

Publication II, a need arose to look at the important issue of the structural integrity 

of welded structures in terms of weld quality, which led to the next research 

question:      

3. How can AI be used in welding modelling to predict the structural integrity of 

the welded structure? This topic is addressed in Publication III, and the findings 

led to the final question: 

4. How can an AI model based on Hybrid Fuzzy-Deep Neural Network (HFDNN) 

architecture help human welders avoid the use of trial and error during selection 

of welding parameters? This topic is addressed in Publication IV.          

1.5 Scope and limitations of study 

The scope of this dissertation can be considered as being in the area of the productivity 

benefits of different variants of the TIG welding process, their applicability in welding of 

ferrous and nonferrous metals, and the possibility of using AI approaches to enhance 

productivity and weld quality. Welding productivity can simply be defined as the ability 

to weld faster with more arc-on time and less welding. Given that it is a cost-effective 

manufacturing process, several factors can increase cost effectiveness and productivity in 

welding. Factors ranging from operational efficiency to the use of consumables may 

affect welding productivity. To reduce welding cost and increase productivity the 

following must be considered: employing automation, applying the right welding 

processes, arrange materials properly, prepare joints and gaps properly and control the 

use of consumables. Recent adaption of automation and enhancement of technology 

through autonomous systems that are powered by machine learning and data plays an 

important role in improving on welding productivity. The study is limited to the 

following: 

i. The literature review is limited to variants of the TIG welding process and 

their benefits; additionally, new developments and their applicability are 

discussed. 

ii. The study of hybrid welding is limited to the Laser-TIG Hybrid welding 

(LTHW) process and its usability.  

iii. The study on AI in modelling structural integrity is limited to robotic GMAW 

on UHSS fillet joints. 
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iv. The experimental simulation study on the applicability of AI in control 

parameters is limited to the effect of control parameters on predicting weld 

bead geometry using hybrid fuzzy deep neural networks. In addition, 

investigation into how adaptive neuro fuzzy systems can model and predict 

welding output is examined.  

v. Testing the algorithm to validate its effectiveness compared to real welding 

experimental data. 

1.6 Overview of the work 

Industries like the aerospace, shipping, construction, and oil and gas industries have in 

recent years been looking for new ways to maximise profit. One way is using lighter 

materials in their products, which enables energy savings, improved safety and enhanced 

performance. Consequently, industries are making more use of thin sheets (less than 

10mm) in their production, e.g., adoption of UHSS, greater use of dissimilar welding etc. 

however, producing welded structures from thin sheets is challenging. TIG welding is 

known to weld thin sheets with better results than for example GMAW, but one major 

challenge is low productivity. The relatively low productivity of the TIG welding process 

has led to the development of variants of the TIG welding process that attempt to address 

the issue.  

This study is divided into two main parts: Firstly, investigation of variants of the TIG 

welding process such as TIP TIG, TOPTIG and A-TIG, and secondly, the issue of 

productivity improvement, which is investigated by looking at methods such as control 

algorithms and optimisation of the process using artificial intelligence. Figure 1 illustrates 

the framework of the dissertation. The optimisation and control of parameters are 

investigated by applying a Hybrid Fuzzy-Deep Neural Network (HFDNN) that combines 

information from both fuzzy logic and neural networks. Knowledge gained from study of 

the two elements of TIG welding and optimisation with a HFDNN are fused together to 

generate the findings of the study. 

The principle of the TIP TIG welding process is that the preheated and oscillating filler 

wire are guided directly into the weld pool to optimize and control heat input and improve 

degasification. This drastically enhances weld quality and considerably increases welding 

speeds. The main advantage of the TIP TIG hotwire process compared to those using a 

fusible electrode lies in the fact that TIP TIG welding allows a managed separation of the 

quantity of arc energy and the quantity of filler material introduced into the welding pool. 

TOPTIG is a new TIG robotic welding process that combines the high weld quality of 

TIG process and the productivity of the MIG welding process. The defining characteristic 

of the process is the configuration of the torch: the weld wire which is fed directly into 

the arc zone at higher temperatures which ensures continuous liquid-flow transfer as well 

as high deposition rate. 
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The principal of the A-TIG welding process involves a method of increasing the 

penetration capability of the arc in TIG welding process (Lucas, 1996). This is achieved 

by depositing a thin coating of activating flux material on the workpiece surface before 

welding. The effect of flux is believed to constrict the arc which increases the current 

density at the anode and the arc force action on the weld pool and to generate a positive 

temperature gradient of surface tension which induces an inward surface flow of liquid 

metal and hence increases the depth of penetration (Touileb, 2020). 

The optimisation and control of parameters are investigated by applying a Hybrid Fuzzy-

Deep Neural Network (HFDNN) that combines information from both fuzzy logic and 

neural networks. Knowledge gained from study of the two elements of TIG welding and 

optimisation with a HFDNN are fused together to generate the findings of the study. 
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Figure 1.Illustrating Dissertation Framework. 
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1.7 Novelty value and scientific contribution 

The AI-based method in this work is designed to use fuzzy deep learning incorporating 

Likert scaling. In normal practice, AI decision-making tools using deep learning 

techniques require big data from which to learn. For welding applications, obtaining this 

big data is challenging, because of the laborious and costly nature of welding experiments, 

and limited experimental data is thus available. The added value of the work in this study 

is that the AI approach used overcomes the limitation of the big data requirement. Where 

big data is not available for the algorithm to learn from, the system can mathematically 

manipulate the small data using its inference engine and extract its own big data from the 

available small data. The flexibility of using both small and big data is built on the 

inspiration from technique of data augmentation. 

Additionally, the strength of the model used in this work is that it can explain its output. 

this therefore leads to an explainable AI system where the output of the decision is not 

only accurate but also interpretable. Hence, its application in the field of welding helps 

the welder to interpret how the algorithm arrived at a particular decision. 

Another contribution to the state of the art is that the developed method is not 

deterministic, unlike traditional neural network and regression methods commonly used 

in the field of welding. For example, in a traditional system where a human welder selects 

the control parameters, a specific output is given. The proposed novel technique goes 

beyond this by giving the control parameter a maximum and minimum range in which a 

specific output can be achieved, which is discussed in more detail in Publication IV.  

Also, the errors which occur as a result of applying the adaptive neuro fuzzy system 

(ANFIS) in the welding industry can be compensated for by applying ANFIS and DNN, 

which was tested in this study. Since ANFIS uses linear functions to generate the outputs, 

combining it with the DNN model helps to eradicate the issues of linearity functions, 

given that the welding industry uses non-linear parameters. 

The work serves as background information for further research into building an AI model 

using HFDNN architecture as an aid to weld parameter prediction. As a contribution to 

the field of science, the dissertation provides an overview and in-depth knowledge of TIG 

welding, and the benefits acquired from recent developments in different variants of TIG 

welding processes. An example is the TIP TIG welding process, which has shown to 

increase productivity and produce welds of high quality. In the area of artificial 

intelligence, the dissertation demonstrates that AI usage is no longer limited to the 

boundaries of computer science but can be applied to welding technology for the practical 

task of controlling welding process parameters to optimise the process. An additional 

benefit of the AI-based approach is that it can control the nonlinearity inherent in the 

multi- input and output nature of welding, which helps the welder to carry out their work 

efficiently and effectively. 
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1.8 Impact on society and the environment 

The benefits of scientific research are found in the knowledge it generates and the impact 

that this knowledge has on the world and society. A particular concern of current times is 

mitigating deleterious effects of modern technology and lifestyles on the environment and 

ensuring a sustainable future.  

In the field of welding, the efficiency of a welding process plays an important role in 

selection of the most appropriate welding process. The process selected obviously 

influences the weld quality and economics of the welding, but there are other secondary 

effects. For example, the TIG welding process is known to generate less fumes compared 

to manual metal arc welding (MMA), gas metal arc welding (GMAW) and flux-cored arc 

welding (FCAW). Regarding this study, improved understanding of the variants of the 

TIG welding process will increase the knowledge base and thereby extend the areas of 

application of welding. Greater usage of welding as a joining method will create 

employment opportunities. The work presented in this dissertation enables improved 

selection of the right welding consumables and welding parameters, which has an effect 

on management of heat input; appropriate heat input is key to weld quality.  

The structural integrity of welded structures is of enormous significance to society. 

Modelling of welding systems to guarantee structural integrity in welded materials can 

assist in understanding of associated phenomena, in addition to providing support for 

practical decision making. This study provides fundamental knowledge on the modelling 

of structural integrity that is beneficial to manufacturing industries.  

1.9 Thesis outline 

This dissertation consists of two parts: a summary of the research work and the papers 

published in conjunction with the investigation. The study includes experimental work 

and a literature review.  

Chapter 1 introduces the work and presents the background to the dissertation. The 

research problem, research objectives and motivation, research questions, novelty value 

and scientific contribution are briefly described. In addition, an overview of the work, its 

impact on society, and the limitations of the work are given, and a thesis outline provided. 

Chapter 2 presents the state of the art in the utilisation of AI in welding. Important aspects 

of AI in the welding process are also considered. Chapter 3 presents the methodology 

used in this study. The simulation of experimental data is also presented, as are the input 

parameters used in the algorithm. Chapter 4 gives an overview of the research articles 

published as a part of this investigation. These articles and their findings form the 

centrepiece of this study. The observations and inferences are discussed in Chapter 5. 

Chapter 6 gives concluding remarks, and Chapter 7 presents suggestions for further work 

in the area. 
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2 State of the art of Artificial intelligence in welding 

process  

The metal industry uses different methods to join metals together. The joint can be 

permanent or temporary, depending on the design and type of product. The area of 

application also influences the joining process. The welding process is usually used when 

it comes to permanent joints. In recent times, the systematic progress made in construction 

engineering, shipbuilding, petrochemical and oil processing companies and the drive for 

higher productivity and reduced costs in the welding industry has increased the demand 

for automation and robotisation (Anand, 2018). In addition, the increasing benefits derive 

from the use of automation such as safety concerns and the need to free welders from 

strenuous and repetitive conditions. Figure 2 illustrates the technical elements needed to 

configure a welding system that can help improve productivity and highly consistent weld 

quality (Ushio, 2009).  

 

  

 
 

Figure 2. Requirements for welding production technology permitting its integration to 

automatisation (Eguchi, 1999). 

 

To achieve high quality welds, it is important that one can choose and control the welding 

parameters correctly. Numerous attempts have been made by several authors to 

understand and evaluate the effect of welding parameters on optimal bead geometry. 

These comprise numerical analysis, empirical models, theoretical studies and AI 

technology for welding applications (Ibrahim, 2012) (Park, 2002) (Vitek, 2001) (Jeng, 

2000) (Kumar A., 2013; Anand, 2018) (Pashazadeh, 2016).  
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2.1 Hybrid welding Processes 

Hybrid is a Latin word which means anything made by putting two different things 

together. In a hybrid welding process, the laser beam is combined with an arc welding 

process, creating an interaction between the molten pool created by the first and the 

secondary heat source. In addition, the hybrid process creates an interaction between the 

two heat sources. It must be noted that both heat sources are incidents in a single weld 

pool (Mahrle, 2006) (Bagger, 2005).  

In the laser-arc hybrid welding process, since the laser beam usually has a high energy 

density, it therefore serves as the primary heat source, which enables deep penetration 

mode welding. On the other hand, the arc that acts as a secondary heat source improves 

on overall productivity, cost reduction and the versatility of the process, as well as the 

good quality of the resultant weld seam weld (Mahrle A., 2009). 

Practically, the beam from any welding laser source, such as a diode, Yb fibre, Yb: YAG 

disk, CO2 Nd:YAG, etc. can be combined with any arc process (GMAW, TIG, SAW, 

plasma) to form a hybrid process. However, the most common combinations of hybrid 

welding are the laser-TIG hybrid and laser-GMAW hybrid processes. 

The laser-arc hybrid welding process compensates for the disadvantages of the two 

combined processes. When these two processes are combined, it offers advantages such 

as high welding speed, reduced deformation, deeper welding penetration, the ability to 

bridge relatively large gaps, and a capability to handle highly reflective material (Bagger, 

2005) (Ishide, 2001). 

Although laser beams and electric arcs are quite different welding heat sources, both work 

under a gaseous shielding atmosphere at an ambient pressure that makes it possible to 

combine these heat sources with a unique welding technique. In the work of (Tan, 2013), 

a welding simulation was carried out to analyse the weldability of dissimilar and similar 

materials using the laser-TIG hybrid welding process.  

There are two basic configurations used in laser-arc hybrid welding: the laser leading 

hybrid process (the laser beam precedes the arc) (Rayes, 2004) (Uchiumi, 76-85) and the 

arc leading hybrid process (the arc precedes the laser beam) (Arias, 2005). Figure 3 

presents a schematic representation of laser-arc hybrid welding process. The 

arrangements of these two welding processes in the hybrid welding process are discussed 

in Publication II, which also reviews the usability of the laser-TIG welding process.  

In the work of (Vemanaboina, 2018), a three-dimensional finite element model was 

developed for butt joints for SS316L. The heat flux models of a double ellipsoidal surface 

heat flux in the TIG process and lateral heat to the thickness face in the laser process were 

used to model laser-TIG hybrid and were simulated. The results showed a uniform 

distortion along the weld with edge deformations. In addition, residual stresses were able 

to maintain structural integrity with a minimum safety factor of 1.3. 
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In Publication II, the investigation showed that a combination of two different processes 

that creates the hybrid process leads to a complex phenomenon, making it challenging to 

optimise the process. However, the application of AI and other simulation processes in 

recent times have proved to create an avenue to optimise welding parameters to improve 

on weld quality. 

 

Figure 3. Schematic representation of laser-arc hybrid welding (Laserline, accessed on 

3.8.2020). 

2.2 Welding control system 

Welding can be defined as a localised combination of weld pieces (metals or non-metals) 

produced by heating them to the welding temperature, either with or without the 

application of pressure, and filler metal can be added when needed. Figure 4 illustrates 

an open- and closed-loop control system. Figure 5 illustrates a schematic overview of 

different welding processes. In the control system a block diagram usually represents the 

various parts that come together to carry out an activity.  

 
Figure 4. Illustrating an open- and closed-loop control system. 
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When this concept is mimicked in arc welding, the object is taken to be the welding 

process. The input vector x comprises all the parameters of the welding process. The 

parameters are welding voltage, distance between the electrode and the weld piece, 

electrode geometry, weld piece thickness and composition, shielding gas flow and 

composition, and so on (Podržaj, 2019). 

Output vector y consists of the characteristics of the resultant weld, which is weld bead 

geometry, visual appearance, possible deformations, etc. The relationship between input 

and output can therefore be represented in theory by vector function f equation 1: 

y = f (x)          (1) 

 

Figure 5. Overview of different welding processes (Vendan, 2018). 

Although this function cannot be written, experience tells us that a proper combination of 

input parameters x usually results in an acceptable output y. The problem arises in 

situations where experience is limited or there are some signals that we cannot monitor 

or control due to disturbances, which are represented by d. Equation 2 can therefore be 

rewritten in the following format:  

y= f (x, d)          (2) 

In the closed-loop system, output y is measured, and the feedback is provided to the 

controller. The controller carries out a comparison test on the actual values y which are 

then transformed to the desired values ydes as illustrated in equation 3: 

X= g ( ydes- y)          (3) 
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In the domain of arc welding, the most used control systems algorithm is called the PID 

control algorithm (Henderson, 1993) (Chen, 2004) (Xu, 2012). In addition, fuzzy logic 

based on a control system is also used, such as neural networks (Zhao, 2001)  (Wu, 2000) 

and the sliding mode control (Paul, 2016) . 

2.3 Artificial Intelligence 

AI can be described as a set of techniques that attempt to mimic the biological intelligence 

of humans which apply mathematics, computer science and other related subjects to 

enable it to reach its decision. The functions it performs include learning, reasoning and 

problem solving. Various techniques, such as artificial neural networks, fuzzy logic, 

adaptive neuro fuzzy and expert systems can be used for a variety of applications such as 

signal processing, the selection of nominal parameters and dynamic control. In the TIG 

and GMAW processes, robotic systems that integrate AI could perform functions like 

those carried out by human welders. AI is being utilised in many industries, such as 

medical technology (Holmes, AIME 2015) (Lopez, 2017), and in the area of security 

applications (Aikenhead, 2003). Its application is not limited to these areas but in the 

welding manufacturing and production industries, these data modelling approaches are 

gaining significance with ANN systems being popular for robotic TIG and GMAW 

processes. In Publication III a comparison between common artificial intelligence 

systems were made, showing their strength and weakness. 

There has been an increase in the use of artificial neural network systems for the analysis 

and prediction of weld quality, as well as optimisation of welding parameters. The 

application of conventional adaptive control alone is not enough for the analysis and 

optimisation of welding parameters and quality of the welds. To improve on weld quality, 

various control constraints must be added for effective control of the welding process. 

The application of AI plays an important role in overcoming these constraints. 

Investigations have shown that AI can analyse data and predict the quality of welding. In 

the work carried out by (Hirai, 2001) on the detection of T-joint weld penetration using a 

hybrid neural network and fuzzy system, the results showed that the neural network 

system predicted the proper conditions for the weld geometry whilst the fuzzy model 

determined the proper welding conditions to avoid welding defects. 

In general, the quality of a weld is characterised by parameters such as dimensions of 

penetration and structure of the material in the welded region. The structure, chemical 

composition and the weld pool geometry and heat-affected zone (HAZ) have a huge 

influence on the mechanical properties of the welded joint. The challenges and 

applicability AI bring to welding technology are the focus of this study. 

2.4 Artificial neural network 

ANNs represent a special type of machine learning algorithms that are modelled on the 

human brain. This implies that they learn from the data by providing responses in the 
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form of predictions, just like the neurons in our nervous system can learn from the past 

data. 

This enables it to display a complex relationship between the inputs and outputs to 

discover a new pattern, as illustrated in Figure 6. The results at the output layer are 

achieved after rigorous computation by the middle layer. The output relates to the state 

of the neuron and its activation function (Yadav, 2015). The neuron behaves like a 

mapping function f (net) to produce an output y (either linear, sign, sigmoid or step 

function), which can be expressed as illustrated in equation 4. The use of the transfer 

function is for calculating the weighted sum of the inputs and the bias. One major 

advantage of ANNs is the fact that they can learn from the example data sets.  

 

 

Figure 6. Illustration of input and middle layer combined with a transfer function (Team, 2019). 

 

  𝑦 = 𝑓(𝑛𝑒𝑡) = 𝑓(∑ 𝑤𝑖𝑗𝑥𝑗 +𝑛
𝑗=1 𝜃) (4) 

 

where f represents the neuron activation function, θ represents the threshold value, xj 

represent the input, and wij the weight. With regards to nonlinear functions, the output y 

is usually expressed using a neuron transfer function, where input is mapped into values 

between +1 and 0 as illustrated in equation 5.  

𝑦 =
1

1+𝑒−𝑇𝑥                                                                                            (5) 

In the work by (Kim, 2004), it was proven that the adjustment of the weights and biases 

can be derived according to the transfer function expressed in equation 6. In addition, the 

Levenberg-Marquardt learning algorithm provides numerical solutions that reduce error 

when solving complex boundary value problems, since it provides faster convergence 
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(Yadav, 2015). This therefore makes it more adaptable where precise welding variables 

and parameters are needed. 

 ∆W = (JTJ + μI))−1JTe            (6) 

where J represents the Jacobian matrix of derivation of each error, μ represents the scalar, 

and e is error function.  

2.4.1 Back propagation  

To train the neural network, it is provided with examples of input and output data. The 

neural network is then trained and when it completes the training, it is tested without 

having been provided with the earlier data. The neural network then predicts the output 

and is evaluated to know which correct and various error functions are also identified. 

Finally, based on the result, the model adjusts its weight to optimise the system through 

the chain rule. 

2.4.2 Types of Artificial Neural Networks 

The two most important types of artificial neural networks are feedforward neural 

networks and feedback neural networks. In the feedforward ANNs, the flow of data 

moves in only one direction, which implies that the flow of information is from the input 

layer to the hidden layer and to the output. It should be noted that there are no feedback 

loops in the neural network. In the feedback ANNs, since the feedback loops form part of 

it, it helps create memory retention such as in the case of recurrent neural networks. These 

types of networks are more suitable for areas where the data is sequential or time-

dependent (Team, 2019).  

Other types of ANN, such as multi- layer perception (MLP), recurrent neural networks 

and radial basis neural networks, have also been applied in various fields. MLP, which 

combines the strength of feedforward neural networks and recurrent neural networks, is 

normally applied in the field of welding research. The MLP neural network is composed 

of many simple perceptron’s in an ordered structure, which forms a feedforward topology 

creating one or more hidden layers between the input and output layers. The application 

of MLP utilising a neural network with a 3-3-3 system is illustrated in Figure 12 in 

Publication III. When MLP is used in determining an optimised set of weights, it applies 

learning algorithms such as resilient propagation, back propagation (BP) and Levenberg-

Marquardt (Yadav, 2015).   

In order to know the viability of an ANN system in welding technology, depth of 

penetration and bead width characteristics were predicted in an activated TIG welding 

process (A-TIG). The results showed that ANN can accurately predict weld bead and 

depth of penetration (Chokkalingham, 2010). Additionally, in the work of (Kim, 2004), 

weld bead width characteristics were investigated as a function of key process parameters 

in robotic GMAW. To verify the accuracy of the results of the ANN, it was compared 
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with actual robotic welding experiments in Publication III in this study. The results 

obtained from the ANN using a Levenberg-Marquardt learning algorithm were close to 

the actual values obtained from the robotic GMAW process. 

2.5 Fuzzy logic 

Fuzzy logic originated from the work of (Zadeh, Fuzzy set. Information and Control, 

1965), which is based on the principles that there is uncertainty in small things in the 

world. These uncertainties are characterised by two traits, namely random and fuzzy. 

Zadeh came up with the term “fuzzy”, which refers to something which is vague, obscure 

and inexact to imitate the notion of non-measurable human understanding and logic. A 

fuzzy set can be defined as a lot of groups that cannot be explicitly identified (Vonglao, 

2017). This implies that fuzzy sets form a spine that creates more efficient and robust 

systems, which can resist all sorts of uncertainties and inaccuracies prevalent in the real 

world. The fuzzy sets are described by membership functions, fuzzy rules, fuzzification, 

inference system and defuzzification. Fuzzy set outputs are obtained in crisp form, as 

illustrated in Figure 7. The knowledge base is where the IF-THEN rules are set.  

 

Figure 7. Block Diagram of Fuzzy Logic Controller (Zakariah, 2005) 

 

Fuzzification: 

Fuzzification is the process that transforms numerical values into a class of membership 

of fuzzy sets. Fuzzification converts the input or output signals into several fuzzy values 
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or fuzzy sets. In this stage, experts consider details concerning input, output and results. 

Thus, to decide how mutually the condition of each rule suits that specific input case, the 

fuzzification block must suit the input data with the condition of the rule. Membership 

function values can be set depending on the application (Patcharaprakiti, 2005). 

Rule Base 

The rule base usually depends on the operator’s experience. In the case of welding 

technology, the rules are derived from the experience gained by trial and error during the 

welding process by the welder. As a result of the authorised relationship, both input and 

output changeable, based on membership function, are developed to count on that 

experience knowledge base. The structure of the control rule base is based on IF-THEN 

rules. 

Defuzzification 

The reverse of fuzzification is defuzzification. The transformation of fuzzified output into 

the normal crisp output is called defuzzification. This can be calculated as shown in 

equation 7 (Hon, 2013). 

𝑑𝑢 = (
∑ 𝐶(𝑘)∗𝑊𝑘

𝑚
𝑘=1

∑ 𝑊𝑘
𝑛
𝑘=1

)  (7) 

 

where du is the change in control output, c(k) is the peak value of each output and wk is 

the weight of rule k.  

The operation of a fuzzy system is based on a linguistic framework and its strength lies 

in its ability to handle linguistic information and perform approximate reasoning (Ross 

T. J., 2004) (Ross T. J., 2003). However, through the membership function it is possible 

to indicate the tendency of something to be a member of a set whose values range between 

0 and 1. A membership function can be defined as a fundamental curve that defines how 

each point in the input crisp space is mapped to a membership. A practical clarification 

of an example of membership function is given by considering the speed values of a car 

ranging from 20 mph to 130 mph, with 20 mph and 130 mph being the extreme 

possibilities. The wide range of speed values of the car can only be adjudged if the speed 

of the car is put in the context of a fuzzy set applying the linguistic terms slow, medium 

and fast, which represent the sub-ranges of the car’s speed (Mohammad, 2012). 

Fuzzy systems operate on linguistics inputs. Therefore, in designing a fuzzy system it is 

important to first obtain a set of fuzzified inputs that suit the system to be designed. 

It must be noted that when a membership value gets closer to 1, that can be termed high-

level membership. A membership value closer to 0 is called low-level membership. If one 
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takes X as not an empty set, then x is any of X and A is a fuzzy set whose membership 

function is µA, so the fuzzy set A can be written in equation 8 as follows: 

    𝐴 = {(𝑥, 𝜇𝐴(𝑥))𝑥 ∈ 𝑋}, 𝜇𝐴(𝑥): 𝑋 → [0,1]                  (8) 

To identify the membership level for x, a membership function is used. Membership 

functions are of different types, but the type used in identifying the membership level 

usually depends on the suitability and important information from the expert (Vonglao, 

2017). Membership functions can be categorised into different types, namely Gaussian 

trapezoidal, bell-shaped and triangular membership functions. 

In the field of welding, since most welding techniques depend on process parameters 

applying fuzzy logic, it can learn the dependency of interaction between the process 

variables of the welding input and the output variables. As mentioned previously, the 

theory of fuzzy sets is valuable in experimental data modelling involving uncertainties 

that arise between the relationships of the process variables of the welding inputs and the 

subsequent bead geometry output. 

2.6 Likert scaling 

Rensis Likert introduced Likert scaling in 1932, and since then it has been the most widely 

used psychometric scale in survey research. In applying Likert, respondents are normally 

asked to indicate their levels of agreement with a declarative statement. For example, 

when a five-point Likert scale is applied, different agreement levels could be used for 

each scale point: 1=strongly disagree (SD), 2=disagree(D), 3=neither agree nor disagree 

(NN), 4=agree(A) and 5=strongly agree (SA). The agreement level use usually depends 

on what is being measured (Cheryl Quing, 2010). Various researchers have used the 

Likert scale to measure observable attributes. (Ohlsson, 2005) applied the Likert scale to 

measure fondness in music education, while (Buncher, 2006) applied it in pharmaceutics 

and (Seal, 2007) in patient advocacy in hospital.  

The Likert scale is known to be easily constructed and modified. Additionally, the 

numerical measurement results acquired when Likert scales are used can be directly used 

for statistical inference. Lastly, the Likert scale has demonstrated a good reliability when 

it is used for carrying out measurements. Likert scaling can help researchers collect and 

analyse large quantities of data with less time and effort. Notwithstanding these 

advantages, Likert scales have several disadvantages (Qing, 2013). 

One major problem that has been subject to debate in recent times is whether the Likert 

scale is ordinal or interval (Jamieson, 2004). Likert assumed that it has an interval scale 

quality. Interval scale can be defined as the differences between any two consecutive 

points which reflect equal differences in the variable measured. Researchers such as (Pett, 

1997) (Hodge, 2003) considered that Likert scales are ordinal in nature. Challenges such 

as information loss or distortion, which occur as a result of the built-in limitations of the 

Likert method, have been recognised. In view of these challenges various researchers 
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have tried to solve these pitfalls. To solve the challenge with lost information, (Chang, 

1994) discovered that when more scale points are used it may increase the measurement 

error due to respondents being confused by too many response categories. Additionally, 

(Chang, 1994) also indicated that longer responses will increase “laziness” in responding 

to various questionnaires.  

(Albaum, 1997) also proposed a two-stage Likert scale in which the first stage measures 

the agreement that comprises the (agree/disagree) to a statement. On the other hand, the 

second stage measures the intensity of agreement, i.e., strong or weak. Even though a 

two-point Likert scale seems to capture more extreme positions than a traditional Likert 

scale, it has advantages in terms of design effectiveness, which reduces the central 

tendency effect. Nevertheless, it has not been proven how this method can collect more 

information between the extreme positions than the traditional method. 

In recent decades, a novel Likert scale based on fuzzy sets theory has been proposed. This 

offers psychometricians a new interpretive algebra. That is ‘‘a language that is half-

verbal-conceptual and half-mathematical-analytical” (Ragin, 2000). With this 

interpretive mathematical language, discrete ordinal variables can be transformed into a 

continuous variable that does not change its semantic meaning. This gives an advantage 

in capturing the interval details of ordinal variables in an open response format. This helps 

to reduce information loss and decreases information distortion during measurement.  

2.7 Fuzzy Likert scale 

As mentioned in the previous section, the Likert scale was incorporated into fuzzy logic 

to improve on it. The fuzzy Likert scale prevents information loss that occurs due to its 

ordinal nature and information distortion due to the closed response format.  

Fuzzification of input variables and defuzzification of output variables forms the basis of 

the fuzzy Likert scale and establishes the causal relations between the input and output 

variables. The fuzzy Likert scale then transforms the actual response values into fuzzy 

values so that the fuzzy inference rules can be obtained. 

The fuzzy Likert scale is design based on a set of membership functions that transforms 

the respondent’s ideas on their agreement choices on the Likert scale. In applying a fuzzy 

Likert scale, the fuzzy set theory membership functions are usually developed based on 

empirical or expert knowledge. 

In transforming the responses into fuzzy values, a set of isosceles triangular membership 

functions evenly distributed along the input continuum are adopted during the 

fuzzification procedure. A fuzzy Likert scale allows partial agreement to a scale point, 

and responses in this scale can be approximated to a decimal place. A fuzzy if-then rule 

is then applied to enable one to determine what fuzzy action to execute according to an 

input (Qing, 2013). 
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In Publication IV, a fuzzy Likert scale was applied in the field of welding technology to 

convert the incoming parameters into a fuzzy representation that is understood by the 

algorithm. Applying fuzzy logic-based technology enables the rescaling of the raw data 

from the human expert welder. This is then transformed into a fuzzy-driven feature as 

illustrated in Figure 6 in Publication IV. The advantage of applying this is that it can 

create the interval details that can be collected via data augmentation for training 

purposes. 

2.8 Data Augmentation 

Data augmentation is a commonly used method in deep learning to reduce the effect of 

overfitting, which helps to increase diversity in training data sets. Methods such generic 

data augmentation that includes flip, colour jittering, rotation, cropping and edge 

enhancement (Taylor, 2018) have been used for image classification tasks. In addition, 

complex data augmentation methods synthesise a new image from two training images 

(Inoue, 2018) or from Generative Adversarial Nets (GAN) (Antoniou, 2017).  

In text classification, augmentation methods such as random insertion, random swap, 

synonym replacement and random deletion have been applied (Wei, 2019) and achieved 

the same accuracy as normal in all training data, even though only half of the training 

data is available.  

During the application of data augmentation, value is added to the base data from the 

information derived from internal and external sources within the database. In addition, 

there is a reduction in the manual intervention required to help develop meaningful 

information and gain insight from the available data, as well as significantly enhancing 

data quality. this enables one to produce multiple copies of available data with slight 

variations. 

To train deep learning models, typically big data sets are required, usually from manual 

data collection or from existing databases. However, in some cases only a limited data set 

is available. Therefore, to expand the size of the data set, data augmentation can be 

employed. In Publication IV, data augmentation was applied to expand an existing data 

set using only the available data so that the learning algorithm can more effectively extract 

those features essential to the task.  

2.9 Adaptive Neuro-Fuzzy Inference System (ANFIS) 

In the year 1993 Jang introduced a learning method for the inference system (FIS) that 

utilizes a NN learning algorithm during the construction of a set of fuzzy applying the if-

then rules with suitable membership functions (MFs) from specified input–output pairs. 

Figure 8 illustrates the basic structure of ANFIS. ANFIS system can be described as a 

network structure consisting of several nodes which connects through directional links. 

Each node is categorized by a node function which includes an adjustable or fixed 
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parameter. In the Training phase of a NN the parameter values are determined in order to 

adequately fit the training data.  

 

Figure 8. Basic structure of the ANFIS 

 

In the ANFIs structure illustrated in Figure 8, x and y refer to inputs and f2 represents the 

output variable, respectively. The A and B terms denote the linguistic terms of the 

precondition part with MF. The ‘If’ part of the rule ‘x is A’ is called the premise, while 

the ‘Then’ part of the rule is called the consequent. The p, q, r indicates the consequent 

parameters (Sayed et al., 2003). 

Layer 1 Every node i in this layer is an adaptive node, including MFs generally described 

by generalized bell functions, e.g. 

    (9) 

where X is input to the node and a1, b1 and c1 are adaptable variables known as premise 

parameters. The membership values of the premise part constitute the outputs of this 

layer. 

Layer 2 This layer composes of the nodes which multiply incoming signals and sending 

the product out. This product represents the firing strength of a rule, as illustrated in 

Figure 8 

   (10) 
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Layer 3 In this layer, the nodes calculate the ratio of the ith rule’s firing strength to the 

sum of all rules firing strengths. 

   (11) 

Layer 4 The nodes of this layer are adaptive with node functions. 

   (12) 

where w1 is the output of Layer 3 and {pi,qi, ri} is the parameter set. This layer’s 

parameters are referred to as consequent parameters. 

Layer 5 Single fixed node in this layer computes the final output as the summation of all 

incoming signals 

     (13) 

During the application of ANFIS the inference operations used depends on the rules 

applied that is the ‘if-then rules. FISs can be classified into three types namely Mamdani’s 

system (Mamdani and Assilian 1975), Sugeno’s system (Takagi and Sugeno 1985) and 

Tsukamoto’s system (Tsukamoto 1979). Although Mamdani’s system is the most used 

Sugeno’s system is known to be compact and computationally efficient.  

To build-up a fuzzy system, firstly, the linguistic variables should have been provided in 

addition to numerical variables. Then, the system requires If/Then fuzzy rules to qualify 

simple relationships between fuzzy variables. A typical rule set with two fuzzy If/Then 

rules in first order Sugeno’s system, can be shown as: 

Rule 1: If x is A1 and y is B1; then f1= p1x + q1y + r1                            (14)               

Rule 2: If x is A2 and y is B2; then f2= p2x + q2y + r2     (15) 

2.10 Applicability of AI in welding 

ANNs have become important tools in the modelling of interrelationships between input 

and output variables in the field of welding technology. When ANN-controlled intelligent 

processes are applied in the field of welding technology, they gather information from the 

applied sensors to gain specific knowledge of welding conditions. To enable it to learn 

from the welding parameters for specific welding conditions, decision-making software 
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is used to evaluate the welding conditions. The decision-making tool then correlates the 

sensed welding condition into a trained knowledge bank to determine the optimal welding 

parameters. The main duty of an ANN control system is to link the relationship between 

the welding conditions and welding parameters.  

Recent developments of the neural networks and computational technology appear to 

create new ideas in building AI models for predicting bead geometry under a given set of 

welding conditions, which was reported by (Nagesh, 2002). (Vitek, 2001) carried out an 

investigation into the use of neural networks in predicting weld pool shape and they 

concluded that a neural network model is a feasible technique for predicting weld pool 

shape. (Eguchi, 1999) applied neural networks in their investigation and were able to 

achieve the good back-bead geometry. Additionally, the wire extension and the arc length 

were estimated by using measurements of both welding voltage and arc current.  (Kumar 

A., 2013), in their research work on the applicability of ANN on various welding 

techniques, found that artificial neural networks are beneficial when applied in the 

optimisation of welding process.  

In an AI expert system, a set of rules is used to train the system to learn human welding 

knowledge. It then applies IF-THEN rules derived from welding experts to support its 

decision-making (Tzafestas, 2009). 

 

Campus (2009) found that a neural network system can find patterns and relationships 

based on available data that would be difficult for a human being to analyse. Neural 

systems can then learn patterns by separating the data, building models and looking for 

relationships in the data. It must be noted that in applying a generic algorithm it is possible 

to find an optimal solution to a problem by exploring different number of solutions.  

2.11 Hybrid Fuzzy Deep learning (HFDL) 

HFDL is a much newer approach, having its first computer implementation in 2006. 

(Hinton, 2020) defined “Deep Learning as an algorithm which has no theoretical 

limitations of what it can learn”, that is, the more data you give and the more 

computational time you provide, the better it is. Other researchers have also defined DL 

as a set of machines learning algorithms that attempt to learn on multiple levels, 

corresponding to different levels of abstraction as illustrated in Figure 9. The levels 

correspond to distinct levels of ideas, where higher-level ideas are defined from lower-

level ones, and at the same time the lower-level concepts can help to define many higher-

level concepts (Sjarif, 2019). The first few layers of the deep network are used to perform 

feature extraction. There are unsupervised, supervised, and hybrid DL architectures. 

Supervised learning uses ground truth to learn a task, whereas unsupervised learning 

performs a machine learning task without labels (Berman, 2019). 

Since shallow neural networks have only one hidden layer, this makes it challenging to 

apply it to advanced feature extraction and they are unable to learn the higher-level ideas 

that deep neural networks are capable of learning. DL models can be trained 
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independently of each other. This implies that a large model with millions of parameters 

can be optimised in small, manageable chunks by DL. In Publication IV, a deep neural 

network was combined with a Likert scale to predict weld bead geometry. For further 

clarification on this, refer to Publication IV.  

 

 

 

 

 

 

Figure 9. Illustration of a deep neural network (DNN) (Hinton, 2020). 

2.12 Welding Optimization Using Artificial Intelligence Techniques 

In recent times, welding sequence optimisation (WSO), as illustrated in Figure 10, has 

been applied in a few works from the perspective of quality and for minimising 

deformation as well as residual stress (Fu, 2016). 

Despite this, welding automation has the tendency to increase efficiency in welding 

process, current trends in welding automation systems have major disadvantages. One 

major concern in automated welding is the failure to adapt effectively to changing 

welding conditions, which leads to inconsistent welding quality. Therefore, the more 

rigorous weld quality requirements of optimised structures that result from the use of 

thinner materials, high-strength steels and reduction of weld material are difficult to 

achieve (Gyasi, 2017) (Kah, 2015) (Åstrand, 2013). 

To achieve a more effective and cost-efficient way in terms of quality requirements in 

welding is to mimic manual welding behaviour, i.e. to sense the upcoming seam and 

optimise the welding parameters according to the welding conditions (Chen S. B., 2014) 
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(Liu F. W., 2015) (Kim J. L., 2008). Figure 9 illustrates a welding sequence optimisation 

procedure.  

(Benyounis, 2008) developed a reference guide where the works were classified basically 

into weld bead geometry prediction and mechanical properties. (Joshi, 2014) describes 

various statistical and soft computing optimisation techniques. 

 (Lindgren, 2007) discovered that simulation helps with the implementation of AI and 

ML techniques, due to the need “Do It Right First Time” and the demand for the industry 

to use virtual tools. 

 

Figure 10. Welding optimisation (Romero, 2016) 

 

In applying WSO, the usual approach is to select the best sequence based on the experience of 

the skilled welder, as illustrated in Figure 11. This applies a simplified DoE procedure; 

however, this does not usually offer the optimal sequence.  
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Figure 11. Conventional approach to selecting a sequence. 

 

In Publication IV, based on the experience of the skilled welder, data was gathered and applied 

in developing an AI-powered hybrid deep learning algorithm system to enable one to gain a 

range of data to select from when a result is desired to save time. Please refer to Publication IV 

for more clarification. 

2.13 Concluding remarks 

This chapter discussed the state of the art of AI in welding technology and sensing control. 

It can be concluded that when sensing devices and the control unit are utilized properly 

and effectively, they can contribute considerably to reducing the burden on welders, 

which can create a foundation for proper adaptability. Although AI is making inroads in 

welding technology, its application in hybrid welding technology is currently minimal. 

However, its utilisation in an individual welding processes has increased considerably, 

and many success stories have been reported. Hybrid Deep Learning, which combines 

fuzzy logic and deep learning, creates an avenue for an AI system that is explainable to a 

human welder. This means it is easier for the welder to understand the results and apply 

it when needed. 
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3 Research Methods  

The research method used in this study is discussed in this section. To achieve the 

objectives, a critical literature review of scientific publications and empirical experiments 

carried out in this field was performed, and the data collected was analysed to draw the 

research conclusions. Methodologically, an adaptive based neuro fuzzy inference system 

(ANFIS) and Fuzzy Deep learning incorporated with Likert scaling was applied in this 

study. The ANFIS system can be defined as a data-driven procedure which represents a 

neural network approach for the solution of function by approximation of problems.  For 

the purpose of this work, the fuzzy inference system under consideration has three inputs 

and four outputs, which is illustrated in Figure 12. The fuzzy inference system used is 

proposed by Takagi, Sugeno and Kang. It formalises a systematic approach to generating 

fuzzy rules from an input-output data set with a built-in Gaussian membership function 

to emulate a given training data set. In this work, a fuzzy logic system was developed to 

predict the bead width, depth of penetration, depth of HAZ and width of HAZ. This is 

based on three inputs, namely, welding current, arc length and welding speed. The fuzzy 

logic toolbox that defines the input and output variables is presented in Figure 12. 

 

Figure 12. Illustration of fuzzy logic toolbox defining the input and output variable applied in 

ANFIS 

 

After applying the ANFIS to predict the outputs, it was observed that due to limited 

experimental data and the shallow network nature of the ANFIS method the predictive 

accuracy was not so perfect. Therefore, a proposed AI framework indicated in Figure 13 

was tested by using it to predict the bead geometry in order to identify means to increase 

the predictive accuracy using HFDNN. The proposed method was designed using fuzzy 

deep learning incorporated with Likert scaling applied in this study.  
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Figure 13. Proposed artificial intelligence (AI) framework 

 

Deep machine learning can be described as a machine learning approach that simulates 

human intelligence by applying multiple neural networks called deep neural networks. 

The deep neural networks imitate the human brain’s function, which enables it to learn 

complex structures. The learning capabilities helps to create a relationship directly from 

data it collects with less human influence (LeCun, 2015) (Goodfellow, 2016). 

Despite these capabilities, the deep neural network model is deterministic and is a black 

box algorithm. Therefore, by incorporating fuzzy logic into the DNN capabilities, an 

explainable rule-based structure can be realised in DNN algorithms to develop a hybrid 

fuzzy deep neural network algorithm to alleviate the problems of strictly trading off 

interpretability for accuracy (Bonanno, 2017).  

In the work of (Zadeh, 1975), fuzzy logic was introduced to overcome weaknesses in Boolean 

logical thinking. A fuzzy system consists of three parts: fuzzification, rule-base and 

defuzzification. Fuzzification is used to transform the responses that are the input data into fuzzy 

values. In doing so, an isosceles triangular membership function is evenly distributed along the 

input continuum. Once these values are obtained, they cannot be interpreted unless they are 

defuzzified to real numbers. Mostly in fuzzy logic applications, defuzzification is operated on 

several fuzzy IF-THEN rules (Yen, 2004). It is important to note that the IF-THEN rule is used 
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to determine what fuzzy actions are needed to carry out the necessary action according to the 

input. Using these three systems, the fuzzy logic system provides a mathematical framework to 

compute with words based on “degrees of truth” rather than the usual “true or false” (1 or 0) 

Boolean logic on which the modern computer is based. Fuzzy logic includes 0 and 1 as extreme 

cases of truth, but it also includes the various states of truth in between. For example, the result 

of a comparison between two things could not be “tall” or “short” but “somehow tall”, and the 

height can be quantified using a mathematical curve called a Gaussian membership function 

(MF), which is illustrated in Figure 14. 

 

 

Figure 14.Illustration of Gaussian member ship function  

 

As illustrated in the AI framework in Figure 13, X1, X2 and X3 are the control parameters. 

These control parameters are used to predict the target area, such as weld bead, depth of 

HAZ and depth of penetration. After defining the parameter ranges, the next step is to 

learn about the control parameters and their theoretical association with the expected 

output from welding “experts”. To accomplish this, it was important to build “expert” 

linguistic rules to design the fuzzy logic-based Likert algorithm. Likert scaling, which 

was introduced by (Likert, 1932) is the most widely used psychometric scale to measure 

responses. However, challenges such as distortion and loss of information, which arise 

from the closed form of scaling and ordinal nature when Likert scaling is used, have been 

recognised. To overcome these challenges a novel fuzzy Likert scale was developed 

which combines fuzzy logic and a Likert scale measurement technique. 

Since the model architecture is a hybrid fuzzy–DNN model, it is paramount to have big 

data to build the model to prevent the problem of overfitting. Overfitting leads to poor 

generalisation and may contribute to inaccuracies (Shorten & Khoshgoftaar, 2019). 

To be able to have adequate data to train the deep neural network, the X values (control 

parameters) were passed through a classifier called fuzzy logic-based Likert inference, 

which is presented in Figure 15. The advantage of the fuzzy logic-based Likert algorithm 
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is that it helps to rescale the raw data X. This is transformed from the human expert on a 

psychometric scale using traditional Likert scaling, which is then transformed to its fuzzy-

driven feature denoted as 𝑋𝐹𝐿 as depicted in Figure 15. During this transformation, the 

human expert welder’s linguistic statement is quantified by a fuzzy mathematical curve 

called membership function (MF) as illustrated in Figure 14. 

This is the engine for transforming an input variable X to obtain its Fuzzy representations 

called fuzzy-driven Likert features, XFL. This transformation creates a data space with 

interval details so that additional data can be collected via data augmentation for training 

the fuzzy-driven DNN model, as shown in the AI framework illustrated in Figure 13. 

Computationally, the X to XFL transformation is performed using the fuzzy rules 

illustrated in Figure 15. As indicated in Figure 15, the 𝑋𝐹𝐿 is taken as the input data for a 

fuzzy driven neural network. The deep neural network learns the nonlinear relationship 

between the control features and the target. The final decision is computed in accordance 

with Figure 13 where Y is the target area (bead geometry (bead width and depth of 

penetration) and HAZ geometry (depth of HAZ and width of HAZ)).   

  

Figure 15. Fuzzy logic-based Likert inference 

In real life, the fuzzy driven deep neural network can be implemented using the Keras 

deep learning library with the Google TensorFlow backend using the Python language. 

After training and optimisation, and when a well-trained module has been selected, as 
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indicated in the framework it can be deployed to help the human welder select the right 

welding parameters.   

To evaluate this model a critical literature review was carried out on different welding 

processes to understand the control parameters and their usability. Because the general 

architecture was a hybrid system, in publication IV the hybrid architecture was tested to 

ascertain its viability. 

3.1 Welding process, training and testing of ANFIS network 

As illustrated in Figure 12, the ANFIS model was built and tested on TIG welding 

process. In TIG welding process, the arc is formed between the pointed tungsten electrode 

and the workpiece and an argon (Ar), helium (He) or a mixture of both can be used as 

shielding gas. The experimental setup of the TIG welding procedure was integrated with 

a linear variable displacement transformer (LVDT) which is illustrated in Figure 16. 

 

 
 

Figure 16. Experimental setup of TIG welding process 

 

Trial runs were undertaken for the bead-on-plate welds to set the levels on welding 

current, traverse speed and arc length. which are the input parameters. In all, 27 

experimental data on bead-on-plate welds were carried out and the results are illustrated 

in Table 1. 

In modelling the proposed system, the Sugeno-style fuzzy logic-based methodology was 

applied, and it was implemented using MATLAB Simulink® and Fuzzy Logic 

Toolbox™. To begin the modelling process, the data obtained from the experimental 

(input and output) was divided into training and test data. The training data set was 

utilised to find the initial premise parameters for the membership functions. The training 

of the algorithm was carried out using 40 Epoch and tuned (optimised) with hybrid 

optimisation, which is a combination of least squares estimation (LSE) and Gradient 

descent (GD), which enables it to identify the consequent parameters that define the 
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coefficient of each output equation with an error tolerance of zero. To generate the rules, 

a fuzzy subtractive clustering (SC) method was applied to generate the rules for the 

algorithm and automatically generated an ANFIS-SC model. It must be noted that the 

model is an extension of the mountain clustering method which was proposed by Yager 

and Filev (1994); in this method, each data point (not a grid point) is considered a centre 

for potential cluster (Chiu, 1994). The model was then trained severally in order to ensure 

that its predictive accuracy is improved. It must be noted that the algorithm was not built 

using a pre-trained model; it was trained from scratch. Table 1 illustrates the 21 datasets 

for training and 6 for validation. 
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Table 1. Illustration of experimental data for training and validation (Narang, Singh, Mahapatra, 

& Jha, 2011) 

S. N Current 

(A) 

Arc 

length 

(mm) 

Welding 

Speed 

(mm/s) 

Bead 

width 

(mm) 

Depth of 

penetration 

(mm) 

Depth 

of 

HAZ 

(mm) 

Width of 

HAZ (mm) 

1 55 2 15 5.46 1.59 1.73 1.83 

2 55 2 30 4.71 1.25 1.19 1.35 

3 55 2 45 4.16 1.04 1.02 1.13 

4 55 2.5 15 5.77 1.76 1.94 2.20 

5 55 2.5 30 4.93 1.38 1.33 1.63 

6 55 2.5 45 4.46 1.18 1.16 1.33 

7 55 3 15 6.09 1.91 2.13 2.45 

8 55 3 30 5.03 1,42 1.51 1.84 

9 55 3 45 4.55 1.23 1.23 1.46 

10 75 2 15 6.12 1.99 2.48 2.25 

11 75 2 30 5.13 1.39 1.46 1.72 

12 75 2 45 4.59 1.16 1.22 1.39 

13 75 2.5 15 6.59 2..06 2.65 2.41 

14 75 2.5 30 5.26 1.5 1.65 1.89 

15 75 2.5 45 4.85 1.32 1.34 1.57 

16 75 3 15 7.07 2.18 2.72 2.79 

17 75 3 30 5.45 1.65 1.86 2.02 

18 75 3 45 5.16 1.45 1.58 1.79 

19 95 2 15 6.65 2.17 3.04 2.71 
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20 95 2 30 5.38 1.51 1.81 1.94 

21 95 2 45 4.75 1.23 1.49 1.52 

22 95 2.5 15 7.19 2.23 3.3 2.89 

23 95 2.5 30 6.16 1.63 1.97 2.15 

24 95 2.5 45 5.2 1.32 1.56 1.75 

25 95 3 15 7.64 2.51 3.21 3.15 

26 95 3 30 6.31 1.74 2.15 2.70 

27 95 3 45 5.11 1.41 1.74 2.16 

 

The model employed 21 training datasets, 6 test data and 21 fuzzy rules to predict the 

four outputs after the training. The test data for depth of penetration and the depth of the 

heat-affected zone is illustrated in Tables 2 and 4. Figure 17 illustrates the welding 

process for fuzzy network and training process. 

 

 

Figure 17. Welding process for Fuzzy network and training process 
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3.2 Results analysis and possible advanced methods, ANFIS AND 

DNN 

This section discusses the results and possible advanced method of applying ANFIS and 

DNN to improve on the predictive accuracy of the model. 

 

Figure 18. Illustration of the simulation model of the ANFIS model  

 

The simulation model of the ANFIS model which shows the relationship between the 

input and the output variable in the applied methodology is illustrated in Figure 18 and 

the ANFIS model structure of the proposed approach is also illustrated in Figure 19. The 

ANFIS model structure shows the input, input membership function, the 21 rules, the 

output membership, and a single output. The membership function is generated from the 

ANFIS model on a fuzzy platform. Hybrid methods are applied for training ANFIS 

network, i.e., by using least square method to estimate the parameters in the output linear 

equations and by using back propagation method to train Gauss membership functions 

and rules. 
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Figure 19. Illustration of the ANFIS model structure 

 

The training data and output of ANFIS are illustrated in figures 20 ,21, 22 and 23. As   the 

root mean square error (RMSE) values of training results are very low, the deviation was 

so little and hence the blue and red datapoint overlap each other.  

 

o Training data(mm)      ⁎ Training results(mm) 

Figure 20. illustration of testing data vs test data for depth of prediction with RMSE (0.00004) 
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o Training data(mm)      ⁎ Training results (mm) 

Figure 21. Illustration of testing data vs training data for bead width showing with the RMSE 

(0.000012) 

 

 

o Training data(mm)      ⁎ Training results(mm) 

Figure 22. Illustration of testing data vs training data for depth of HAZ with RMSE (0.000001) 
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o Training data      ⁎ Training results 

Figure 23. Illustration of testing data vs training data for width of HAZ with the RMSE 

(0.00000279) 

 

After the training, the validating process was carried out with the remaining six (6) groups 

of data. The predictive accuracy of the adaptive neuro fuzzy system and the test values in 

Tables 2,3,4 and 5 (which represent real-life experimental data) are compared to the 

predicted value of ANFIS. As shown in the tables 2,3,4 and 5, the predicted values are 

very close to the real-life experimental data with little error.  

Table 2.Test data for depth of penetration 

S.N Measured DP 

(mm) 

Predicted DP 

(mm) 

Error Error2 

2 1.25 1.16 -0.09 0.0081 

5 1.39 1.37 -0,02 0,0004 

9 1.23 1.31 0.08 0,0064 

13 2.06 1.98 -0.08 0,0064 

17 1.65 1.66 0.01 0,0001 

22 2.23 2.08 -0.15 0,0225 

   RMSE 0.085244 
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Table 3.Test data for depth of bead width 

Measured BW 

(mm) 

Predicted BW 

(mm) 

Error Error2 

4.71 4.47 -0.24 0.06 

4.93 4.78 -0.15 0.0225 

4.55 4.73 0.18 0.0324 

6.59 6.45 -0.14 0.0196 

5.45 5.77 0.32 0.1024 

7.19 6.74 -0.45 0.2025 

  RMSE 0.269877 

 

 

Table 4. Test data for depth of depth and width of HAZ 

  

S.N Measured 

Depth of 

HAZ (mm) 

Predicted Depth 

of HAZ (mm) 

Error Error2 

2 1.19 1.28 0.09 0.0081 

5 1.33 1.46 0.13 0.0169 

9 1.23 1.37 0.14 0.0196 

13 2.65 2.34 -0.31 0.0961 

17 1.86 1.92 0.06 0.0036 

 

22 3.32 2.71 -0.61 0.3721 

 

 RMSE 0.293371 
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Table 5. Test data for width of HAZ 

 

Measured width 

of HAZ (mm) 

Predicted Width 

of HAZ (mm) 

Error Error2 

1.35 1.31 -0.04 0.0016 

1.63 1.59 -0.04 0.0016 

1.46 152 0.06 0.0036 

2.41 2.61 0.20 0.04 

2.02 2.26 0.24 0.0576 

2.89 2.82 -0.07 0.0049 

 RMSE 0,134969 

 

The graphs of observed data are plotted against the predicted value shown in Figures 24 

to Figure 27. It can be deduced from the graph shown in Figure 24 that the predicted value 

of depth of penetration against the real experimental data are very close to the results of 

the experimental data. Also, a plot of observed bead width vs. experimental bead width 

showed little variation when compared to each other as illustrated in Figure 25.  Similarly, 

Figures 26 and 27 illustrate the measured depth of HAZ vs the predicted one and the 

measured width of HAZ vs the predicted one indicates a close prediction. However, 

compared to the training RMSEs, the validated RMSE is larger than the real experimental 

data, therefore more training data will help to improve the accuracy of results of the 

ANFIS model. 
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Figure 24. Illustration of observed depth of penetration (DP) vs Predicted depth of depth 

penetration (mm) 

 

 

Figure 25. Illustration of observed bead width vs predicted bead width (mm) 
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Figure 26. illustration of observed Depth of HAZ vs predicted Depth of HAZ (mm) 

 

      

Figure 27. Illustration of observed width of HAZ vs predicted width of HAZ (mm) 

 

3.3 Reliability analysis of the research method 

Reliability and validity are important concepts used to evaluate the quality of a research 

method. Together, they can indicate the extent to which a method measures what it 

purports to measure. The two concepts work hand in hand with reliability dealing with 

the issue of consistency and validity being about accuracy. In the work of (Stenbacka, 
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2001), it is stated that “the concept of reliability is even misleading in qualitative 

research”.  However, (Patton, 2002) states that validity and reliability are two factors that 

should be considered by a qualitative researcher when designing a study, assessing its 

quality, and analysing the results to produce a finding. 

Sensitivity is a key concept in reliability and needs to be considered during reliability 

analysis. Sensitivity analysis determines how ‘‘sensitive’’ a model is to changes in the 

value of the parameters of the model and to changes in the structure of the model.  It must 

be noted that sensitivity coefficients usually describe the changes in the system’s outputs 

due to variations in the parameters that affect the system (Mohammad H. M., 2013). High 

sensitivity to a parameter indicates that the system’s performance can change drastically 

following small variation in a parameter. Similarly, low sensitivity suggests that small 

variations in a parameter result in only small changes in the performance of the system. 

To ascertain the reliability, validity and sensitivity of the research methodology used in 

this work, the model was tested and validated with a real-life experiment. Its predictive 

accuracy was tested to establish how close the values obtained with the model match 

reality (experimental data).  Following test simulation, the simulation results showed a 

predictive accuracy of 92.59%, which indicates 25 out of 27 experimental data used in 

predictions by the AI algorithm. After training, the model was applied with a different set 

of data to test its learning and predictive accuracy. It was found that the model had little 

sensitivity to changes in the data, which is positive for its reliability.  

3.4 Comparison analysis of methodology 

This section compares the result obtained from the application of ANN and ANFIS. The 

results showed a good predictive accuracy. However, it was observed that when less data 

is used for training of the algorithm overfitting occurs and hence this alters the predictive 

accuracy. Tables 6, 7,8,9,10 and 11 illustrate the comparative analysis of the ANFIS 

methodology and the other methods that is regression analysis and ANN applied in 

predicting the output parameters. To carry out the comparative analysis a real 

experimental data results used. The data was taken from three journal article that is 

Application of Artificial Neural Network in Predicting the Weld Quality of a Tungsten 

Inert Gas Welded Mild Steel Pipe Joint (Abhulimen, 2014), Optimization of Weld Bead 

Profile Parameters in TIG Welding Process for Inconel 718 Alloy Using RSM and 

Regression Analysis (Jose, 2016) and Application of artificial neural network for 

predicting weld quality in laser transmission welding of thermoplastics (Acherjeea, 

2011). In the first article artificial neural network was used to predict the welding 

parameters and compared to real experimental data. In the experiment a mild steel pipe 

of diameter 50.8mm, thickness of 4 mm was welded with a non -consumable filler 

material Filler material of mild steel ER70SG/2.4 applying TIG welding process. After 

the welding, the tensile strength and the yield strength were read directly from the 

Universal Testing Machine. In the second article optimisation of weld bead profile was 
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carried out using response surface methodology (RSM) and regression analysis. Finally, 

in the third article a coherent FAP-diode laser system with a 3-axes CNC worktable, 

coordinated with the motion system and computer interface was used in the experimental 

setup. The maximum optical power of the system applied in the experiment was 30W 

which has an output wavelength of 809.40 nm. The FAPSystem optical radiation is 

delivered via a SMA 905 connector, which mates to an 800-m diameter transport fiber. 

The imaging module attached to the digital end of SMA 905 connector consists of two 

lenses mounted in cylindrical stainless-steel housing. The first lens in the optical 

assembly collimates the output of the fiber end whereas the second lens re-images the 

fiber end (Acherjeea, 2011). 

To test the suitability of the systema generated regression ANOVA testing methodology 

was applied. The error from the real experiment value and the predicted value were 

calculated. The RMSE of the ANOVA (0.009) methodology was as compared to average 

error of the ANFIS (0.215). It can be concluded that the results of ANFIS methodology 

showed little variation to that of the ANOVA methodology. Secondly, the article that 

applied the ANN methodology in predicting weld width, weld depth and depth to width 

ratio was compared to that of the results obtained by the ANFIS. The average error 

obtained by the ANFIS (11.798 average error) compared to that of the ANN (15.17 

average error) showed a much better predictive accuracy by the ANFIS. In the last article 

the RMSE of the predicted lap shear strength of the ANN (2.7) and that of the predicted 

by ANFIS (0.707) which showed a better predictive accuracy than the ANN. On the other 

handed the prediction made by ANN for the weld seam width (0.138) as compared to 

(0.078) predicted by the ANFIS. 
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Table 6. illustrates the result obtained in applying ANN  (Abhulimen, 2014) and ANFIS to 

predict 1) tensile strength and 2) yield strength. 
1) Tensile strength comparison 

 

 

current Gas 

flow 

voltage Electrode 

Diameter 

Exp. 

data 

ANN Error ANFIS Error 

160 27.5 10.5 1 462.05 456.53 -5.52 

 

463.11 1.06 

160 25 13.5 0.5 438.94 455.06 16.12 

 

439.27 0.33 

180 30 13.5 0.5 462.046 455 -7.046 

 

462.41 0.364 

160 25 10.5 1 462.046 466.33 4.284  462.41 0.364 

130 27.5 11.5 1 346.535 401.84 55.305 

  

346.14 -0.125 

130 30 10.5 0.5 462.046 411.23 -50.816 

  

463.34 1.294 

160 27.5 13.5 1 462.046 460.76 -1.286 

  

463.11 1.064 

180 30 11.5 0.5 508.251 509.52 1.269 

  

501.41 -6.841 

160 25 10.5 0.5 485.148 482.53 -2.618 

  

476.29 -8.858 

160 27.5 13.5 0.5 462.046 455.02 -7.026 

  

462.15 0.104 

130 25 13.5 0.5 415.84 443.77 27.93 

  

431.27 15.43 

130 25 10.5 1 415.841 422.97 7.129 

  

414.15 -1.691 

180 25 13.5 0.5 462.046 456.80 -5.246 

  

462.33 0.284 

130 25 13.5 0.5 462.046 443.77 -8.276 

 

 

431.77 -30,276 

160 30 10.5 0.5 438.944 421.20 -17.744 
 

438.17 -0.774 

      RMSE 
22.45885
865 

 

 RMSE 
2.3925761
1 
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2) Yield strength comparison 

current Gas 

flow 

voltage Electrode 

Diameter 

Exp. 

data 
ANN Error ANFIS Error 

160 27.5 10.5 1 352.71 348.59 4.12 
 

353.43 0.72 

 
160 25 13.5 0.5 335.07 347.25 -12.18 

 

323.12 -11.95 

 
180 30 13.5 0.5 352.71 347.21 5.5 

 

353.17 0.46 

 
160 25 10.5 1 352.71 355.93 -3.22 

 

351.34 -1.37 

 
130 27.5 11.5 1 264.53 307.64 -43.11 

 

265.24 0.71 

 
130 30 10.5 0.5 352.71 314.67 38.04 

 

340.11 -12.6 

 
160 27.5 13.5 1 352.71 351.55 1.16 

 

335.33 -17.38 

 
180 30 11.5 0.5 387.98 388.27 -0.29 

 

388.44 0.46 

 
160 25 10.5 0.5 370.34 368.06 2.28 

 

348.15 -22.19 

 
160 27.5 13.5 0.5 352.71 347.22 5.49 

 

353.12 0.41 

 
130 25 13.5 0.5 317.44 338.75 -21.31 

 

317.24 -0.2 

 
130 25 10.5 1 317.44 323.46 -6.02 

 

320.43 2.99 

 
180 25 13.5 0.5 352.71 348.57 4.14 

 
 

353.12 0.41 

 

130 25 13.5 0.5 352.71 338.75 13.96 
 

317.32 -35.39 

 
160 30 10.5 0.5 335.07 322.14 0 

 

335.11 -0.06 

 
      RMSE 

16.83370587 
 

 RMSE 
12.54623 
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Table 7. Illustrates the result obtained in applying ANOVA  (Jose, 2016)  and ANFIS to predict 

tensile strength and yield strength. 

 
Exp. 

No 

Welding 

current 

Welding 

voltage 

Welding 

speed 

Shielding 

gas 

Weld 

depth 

(EXP.) 

ANOV

A 

ANFIS 

2 8 0.8 3 50 3.111 3.103 2.92 

3 8 0.8 1 50 3.052 3.058 2.87 

7 10 0.6 2 60 3.151 3.161 3.3 

9 10 1 2 40 2.954 2.944 2.79 

20 10 0.8 1 40 3.089 3.080 3 

10 8 0.8 2 40 2.968 2.978 2.58 

      RMSE 

0.089 

RMSE 0.215    

 

Table 8. Illustrates the result obtained in applying ANOVA  (Jose, 2016)  and ANFIS to predict 

tensile strength and yield strength. 

 
Exp. 

No 

WELD 

WIDTH 

EXP. 

ANOVA ERROR ANFIS ERROR 

2 6.911 6.966 -0.055 7.7 -0.789 

3 8.300 8.321 -0.021 6.690 1.61 

7 8.799 8.756 0.043 8.67 0.129 

9 6.101 6.141 -0.04 6.92 -0.819 

20 8.287 8.281 0.006 8.44 -0.153 

10 6.119 6.107 0.012 6.19 -0.071 

   RMSE 0.0343875  RMSE 0.809369 
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Table 9. Illustrates the result obtained in applying ANOVA  (Jose, 2016)  and ANFIS to predict 

tensile strength and yield strength. 

 
DEPTHOF 

WIDTH 

RATIO EXP. 

ANOVA ERROR ANFIS ERROR 

0.450 0.450 0 0.411 0.039 

0.368 0.374 -0.006 0.372 -0.004 

0.358 0.365 -0.007 0.373 -0.015 

0.484 0.476 0.008 0.358 0.126 

0.373 0.377 -0.004 0.412 -0.039 

0.485 0.483 0.002 0.387 0.098 

  RMSE 0.005307  RMSE 0.184842 

 

Table 10. comparison of actual and predicted outputs for lap shear strength by ANN  

(Acherjeea, 2011)   and ANFIS. 
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Table 11. comparison of actual and predicted outputs for weld seam width by ANN  (Acherjeea, 

2011)  and ANFIS. 

 

 

3.5 Application of the Algorithms 

One application is using optimisation of an algorithm to find parameters which can be 

applied in acquiring desired outputs. The importance of the algorithm demonstrated in 

this dissertation is to optimize the three (3) welding input parameters in order to obtain 

the desired four outputs namely bead width, depth of penetration, depth of heat affected 

zone and width of heat affected zone. These outputs are then used to evaluate the error 

function. The aim of the method is to help in achieving the desired outputs by using an 

optimisation algorithm to search through the inputs as illustrated in equation 16: 

objective function        min   ∑ (𝑌𝑑𝑘4

𝑘=1
−𝐴𝑁𝐹𝐼𝑆(𝐼, 𝐷. 𝑆)𝑘)2        (16) 

where  𝑌𝑑𝑘   is desired outputs, k =1,2,3,4; ANFIS (I, D, S) is the Fuzzy neural network 

model of welding, I is current, D is arc length and S is welding speed. 

The second application is using the ANFIS model as a digital twin of a welding process. 

During the welding process, it is difficult to measure the output online. However, after 

developing the ANFIS it can then be used to simulate and predict the welding outputs of 

the welding process. The method and the results obtain in this work can be used in 

predicting the outputs which in turn can be optimised in order to reduce the error 

significantly.  
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4 Overview of the publications and Findings 

This section presents an overview of the publications used in this dissertation and 

findings. A more detailed description of the individual work can be found in the articles, 

Publications I-IV. In Publications I and II, a literature review and the usability of the 

welding process was investigated. In Publication III the neural network part of 

architecture model was tested on modelling the structural integrity of the welding process 

and in publication IV, the hybrid architecture was tested.  

 This section further summarises the findings of Publications I, II, III and IV. 

Publication I: “Investigations into enhanced TIG welding processes” 

Article I (see Table 12) is a review article that discusses different variants of the TIG 

welding process. Existing articles on different variants of the TIG welding process were 

analysed to lay the foundations for Article II. It highlights the benefits of different variants 

and its area of applicability.    

Table 12. Summary of Article I 

Title of article Investigations into enhanced TIG welding processes 

Aims To conduct a review of articles 

Objectives The purpose of this research is to investigate on the 

various TIG variants and its applicability. Possible 

optimization for improving TIG welding productivity is 

also studied.  

Research question (s) Why is there a need for different variants of the TIG 

welding process and what are their benefits in the 

weldability of non-ferrous metals? 
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Main Findings and 

conclusions 

Research showed that studied variants like TIP TIG and 

TOPTIG, hybrid laser TIG welding improved the 

productivity challenges seen in traditional TIG welding 

processes. This finding provides a foundational 

understanding for journals 2,3 and 4. 

Additionally, the findings show that TIP TIG efficiently 

provides TIG welding at MIG welding speeds, which 

indicates that it is possible to combine the benefits of 

TIG welding, particularly the cleanliness of the weld, 

with the capability to weld at higher speeds. TIP TIG 

welding allows a managed separation of the quantity of 

arc energy and the quantity of filler material introduced 

into the welding pool. This gives an advantage in 

controlling the starting and finishing (down-slope) 

phases of welding cycle. Furthermore, it was noted that 

TOPTIG, as a spatter-free welding process, has 

advantages over MIG welding, whose application is 

limited because the weld current passes through the weld 

wire, causing unstable arc transfer. The defining 

characteristic of the process is the configuration of the 

torch: the weld wire which is fed directly into the arc 

zone at higher temperatures which ensures continuous 

liquid-flow transfer as well as high deposition rate. It 

also showed that combining the TIG welding process 

with another process, which creates the hybrid welding 

process, goes a long way to improve the productivity of 

the welding process. The novel welding process TIP 

TIG, which uses a continuously fed and sinusoidal 

stimulated preheated filler metal, improves the 

deposition rate very significantly. The findings also 

showed that TIP TIG technology can reduce costs by 

more than 60% depending on its application and 

increases productivity by 400%.   

Contribution This was the first review article to introduce and discuss 

different variants of TIG welding processes. This 

contributed by identifying various pitfalls that need to be 

avoided in order to enhance the welding processes in 

order to help increase its productivity. Different reasons 

associated with poor weld quality were ascertained. The 

various welding parameters were identified. The 

findings form the basis on which further research work 

in the study was based. 
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Publication II: “Usability of Laser-TIG Hybrid Welding Processes” 

Article II (see Table 13) deals with the usability Laser-TIG hybrid welding process. The 

article is based on research gaps concerning how to select proper welding parameters to 

improve on the weldability of laser-TIG hybrid process. Also, the complexity of the 

process variables when a hybrid welding process is created were investigated. This article 

was based on the findings in Article I. 

Table 13. Summary of Article II 

Title of article Usability of Laser-TIG Hybrid Welding Process 

Aims Higher TIG weld productive process was to be investigated. 

Laser- TIG hybrid welding was selected due to availability. 

the purpose is to investigate the range of application and the 

weld quality attainable in non - ferrous metals. 

Research question (s) Where can the Laser-TIG hybrid welding process best be 

used?  

Main findings and 

contribution 

Industrial application of the welding process was 

established, and the limitations were stated: the productivity 

and weld quality attained were identified. Weld undercut 

which is a weld defect common to laser hybrid welding of 

non-ferrous metal was observed in the study. the 

recommendation based on literature review of multiple 

scientific articles showed that the defect was controllable by 

optimizing the weld parameter. For example, weld air gap 

should not be more than 3% of material thickness for 

limiting weld undercut. This study provides additional 

knowledge to the limited available knowledge on the 

applicability of various hybrid laser - TIG welding systems 

for welding. Also, it is not possible to give a general rule on 

how various parameters in laser-TIG hybrid can be 

optimised due to the complexity of the phenomena 

involved. Finally, the findings show that there is the need to 

find other means to optimise welding parameters to improve 

weld quality. Therefore, the combination of two different 

processes which form a hybrid process is not the only 

solution in the enhancement of the various welding 

processes. Although it helps to overcome some challenges 

in the single process, it is paramount to investigate other 

means of optimising the welding processes. This article 
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formed the basis and the need to apply AI in welding and 

the role it can play in welding optimisation. 

 

Publication III: Modelling of an artificial intelligence system to predict structural 

integrity in robotic GMAW of UHSS fillet welded joints. 

In Article III (see Table 14) the purpose is to identify and define the relationships between 

nonlinear weldability factors to enable the creation of an artificial intelligence model. In 

addition, the possibility of employing an artificial neural network (ANN) to predict full 

penetration fillet weld characteristics is examined.  

Table 14. Summary of Article III 

Title of article Modelling of an artificial intelligence system to predict 

structural integrity in robotic GMAW of UHSS fillet welded 

joints 

Aims To present an understanding on the adoptability of artificial 

intelligence for welding. Welding involves nonlinear weld 

parameter that needs to be optimized for attaining acceptable 

quality welds. Modelling using AI system can help in 

attaining weld optimizations with limited material waste. 

The purpose therefore is to present the viability of using AI 

for optimizing weld parameters. 

Research question (s) How can AI be used in modelling in welding process to 

predict structural integrity of the welded structure? 

Main findings and 

contribution 

The study showed that a mathematical model can be used to 

predict weld output. Therefore, AI system model can be used 

to optimize weld process parameters and variables. As a 

result, better weld structural integrity is attainable. An 

understanding on the possibility of modelling parameters 

were established. This study showed that there is a large 

possibility for the use of AI in weld modelling. This adds to 

the body of knowledge on the use of AI in welding. This 

article forms the basis of developing a hybrid deep learning 

algorithm in predicting welding parameters. 
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Publication IV: Development of an Artificial Intelligence -Powered TIG Welding 

Algorithm for the Prediction of Bead Geometry for TIG Welding Processes using 

Hybrid Deep Learning. 

While Article III highlighted the application of ANN possibilities in welding processes, 

it founded the platform for creating the basis for developing a hybrid deep learning 

algorithm. Article IV (see Table 15) describes more precisely the role AI plays in 

predicting weld parameters. The proposed algorithm can assist human welders to select 

desirable end factors to achieve good weld quality in the welding process. As a result, 

Article IV addresses this research gap. 

Table 15. Summary of Article IV 

Title of article Development of an Artificial Intelligence Powered TIG 

Welding Algorithm for the Prediction of Bead Geometry for 

TIG Welding Processes using Hybrid Deep Learning 

Aims AI needs large data for learning and providing accurate 

prediction. Providing such large data for input into AI models 

is expensive and sometime not viable. The purpose of this 

study is to create a model that uses small weld data input to 

generate large data needed in AI prediction of weld outputs 

and to develop an AI welding algorithm that can assist human 

welders to select desirable end factors to achieve good weld 

quality in the welding process. 

Research question (s) How can an AI model based on hybrid Fuzzy-Deep Neural 

Network (DNN) architecture help the human welder avoid 

trial and error during the selection of welding parameters? 

Main findings and 

contribution 

24,000 weld parameter inputs were generated by data 

augmentation from 27 Weld samples of 3 parameters each. 

these 24,000-input data were used in the AI model for training 

and verification. The output showed high predictability of 

weld bead. The novelty therefore is that the model for 

predicting weld output designed in data size flexible. Both 

small and large data can be used on the model. The 

applicability of this work is that welders can also predict or 

determine weld parameter inputs based on desired output. It 

is important to state that the model can be further improved 

to take into consideration more weld parameters. The results 

show around 92.59 predictive accuracy when compared to the 

results from an experimental data set. In addition, it creates a 

platform which helps in data flexibility such that both small 

and big data can be applied. This is a major challenge in 
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welding technology in that it has less data, however, the 

findings show that small data can be applied in the hybrid 

fuzzy deep learning algorithms incorporated into the Likert 

scale. 

  

Remarks on this chapter  

In this chapter, the overview of the supporting articles and findings were discussed. This 

chapter discussed the contribution each article played in achieving the overall objective 

of the study. In a nutshell, Articles I and II were the main catalysts for the other two 

articles. It was in Articles I and II that the research gap as to how different methods 

regarding AI applicability in dealing with nonlinearity in welding processes to improve 

the welder’s performance during welding came to light. The AI hybrid deep learning 

algorithm framework was tested with a real-life welding data set, which was validated 

and had a very good predictive accuracy. Also, the applicability of AI and its prospects 

in the welding industries proved to be a novel approach regarding data argumentation. 

The contributions in Articles I, II, III and IV demonstrated the theoretical and practical 

relevance of this study in the field of welding and how this can go a long way to advance 

the cause of AI in the field of welding. The next section will describe the discussion, 

conclusions and suggestions for further studies. 
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5 Discussions  

This study investigates the applicability of AI in modern welding technology. The focus 

is on how an AI framework model can be developed to improve welding performance 

and remove operator trial and error during welding. Usually, the welding procedure is 

selected based on experience and sometimes based on a DoE when needed. However, it 

is practically unfeasible to run a full factorial design to find optimal values, since the 

number of experiments increases exponentially with the number of welding parameters 

(Jesus, 2016). 

This is composed of how different welding processes can be developed to improve quality 

and efficiency, and how simulation processes can be applied in welding technology. 

Recent developments in the quality and efficiency of welding operations have been the 

main drivers for competitiveness in the welding industry. Applying simulation to welding 

enables the implementation of AI techniques. The need to get items to the market quickly 

and the need to “do it right for the first time” are also pushing the industry towards greater 

use of virtual tools (Lindgren, 2007).  

In order to achieve the stated objective of this study, it was important to conduct a 

background study on the various welding processes to identify areas where AI can be 

applied. A brief explanation of different variants of TIG welding was provided and 

investigations examined how TIG welding can be combined with other processes (hybrid 

welding) to improve on productivity. During this work, it was realised that combining 

two processes, that is laser and arc welding, to form a single process zone creates 

numerous process parameters. The process parameters need to be carefully controlled to 

achieve good-quality welds. The various parameters and interactions that occur when 

these processes are combined, that is parameters related to the individual processes and 

those that occur because of the use of two processes, have been examined by various 

authors (Hyatt, 2001) (Sugino, 2005) (Kim I. S., 2003) (Petring, 2003) (Hayashi, 2004).  

To affirm the views of these authors, an investigation was carried out on the combination 

laser and TIG welding processes which produced some interesting findings. It was 

observed that laser-TIG hybrid welding can lead to improvements in penetration and 

generate cost savings for applications where filler wire is not needed. In addition, 

although the hybrid process can go a long way to help improve weld quality, the 

complexity of the process variables that arise because of the combination of the welding 

processes creates a requirement for other improvements. However, the investigations 

showed that it is not possible to propose an optimum weld process for all materials for 

different structures because the optimum weld process is case-specific and can be 

influenced by factors like joint design and joint accessibility.  

Study of the TIG welding process and its productivity showed that different variants of 

the TIG welding process have been developed in recent years in efforts to improve 

productivity. However, it was found that scientific investigation into the new variants is 
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minimal, especially with regard to TOPTIG, TIP TIG and TIG-MIG. An exception is the 

hybrid welding technique of using laser sources combined with a TIG welding process.  

Investigation of TIP TIG has shown that it is possible to achieve speeds equivalent to 

those of MIG welding. The advantages of this novel welding process help to counteract 

the main drawback of traditional TIG welding with regard to low welding speed. Another 

TIG variant, TOPTIG, which is a spatter-free welding process, has an advantage over 

MIG welding because in MIG welding the weld current passes through the weld wire and 

causes unstable arc transfer. From a welding efficiency perspective, the spatter-free 

nature of TOPTIG reduces the need for cleaning and polishing of welds and thus saves 

time and costs. In standard TIG welding, one major drawback is the need to direct the 

wire at an angle of approximately 90 with respect to the electrode and the wire must be 

parallel to the weld. However, the integrated wire system in TOPTIG, which is fed 

directly into the arc zone at a higher temperature, ensures continuous liquid flow and 

higher deposition rate. 

In view of the potential benefits, it seems likely that utilization of the different variants 

of TIG welding in welding of thin sheet metals will increase. The limitation of low 

productivity in the use of conventional TIG welding processes seems to be being 

overcome as a result of these novel developments in different variants of TIG welding.  

Most researchers are of the view that LTHW is mainly applicable to thin materials that 

are less than 5mm thick, which can be considered a major drawback for LTHW. However, 

observations have shown that LTHW is capable of welding plates with thicknesses of 

16mm and achieving good welds. In addition, the findings show that when used in 

welding, LTHW utilises laser energy more efficiently and improves energy coupling 

between the plasma and molten pool, which is advantageous in welding of thick materials.  

The Welding Institute (TWI) carried out an experiment on 304L austenitic stainless steel 

(10mm, butt welds and 16mm, melt runs) using CO2 and Yb fibre lasers, and found that 

it was possible to use LTHW on thick materials. The flexibility in being able to weld 

either with or without filler wire provides an advantage in terms of cost reduction, 

especially when the metal to be welded does not need the addition of filler wire.  

When examining the benefits of hybridisation in welding, the Institute of Welding and 

Joining Technology (ISF) at the Rheinisch Westfälische Technische Hochschule 

(RWTH), Aachen, used a 2 kW Nd: YAG laser combined with TIG welding and reported 

a price reduction of up to 50%, a reduction in necessary joint edge preparation, and higher 

efficiency. Undercuts, which have been reported as the most common weld defect with 

LTHW, could be eliminated by choosing suitable welding parameters. Results obtained 

from applying LTHW showed an improvement in weld quality and led to a reduction in 

pores and cracks when compared to using TIG welding.   

Hybridisation of the welding process creates numerous process parameters, hence one 

question that comes to mind is how suitable parameters can be selected during welding 



 77 

and how this selection can be done such that it eliminates defects and saves time by 

avoiding the need for trial and error by the human welder. One possible way to address 

or alleviate weldability challenges associated with nonlinear factors (welding parameters) 

is by deploying AI systems. Therefore, the AI framework used in this dissertation does 

not rely solely on human perspectives or theories.  

As mentioned earlier, the objective of this study was to apply AI to welding technology 

to predict weld parameters and avoid trial and error by the human welder. To assess the 

feasibility of using AI, an AI-powered TIG welding algorithm, based on the architecture 

of a hybrid fuzzy deep neural network algorithm was developed. The model was tested 

with experimental data from 27 welds. 

Current, arc length and welding speed were applied as control parameters in the test case. 

Using these control parameters, 24,012 training samples were used to train a fuzzy driven 

deep neural network implemented using Keras Library with a Google TensorFlow 

backend. The 24,012 samples were mathematically learnt from expert-level fuzzy rules 

using one of the subsystems of the proposed system called a Fuzzy Likert System (see 

methodological section). The system architecture used during the validation is 

presented in Publication IV. In brief, during the training, the algorithm automatically 

split the training data sets into training and validation data sets. In this data split, the 

algorithm used 14,407 training data sets for training and 9,593 for validation. It is 

important to note that the training and validation data can leak during optimisation and 

training. In machine learning, testing a data set is a post-validation strategy used to offer 

an objective evaluation of the algorithm beyond the validation data. Using this post-

validation strategy, independent data (out-of-sample test data) of 27 experimental data 

sets were used to further test the generalisability of the welding algorithm. The 

model’s generalisability is a measure of predictive accuracy. Predictive 

accuracy defines how closely the model performs to reality. Running the simulation, the 

results showed a predictive accuracy of 92.59%, which indicates that the AI algorithm 

made 25 out of 27 correct predictions. 

Additionally, the algorithm gives an indication of the maximum and minimum control 

range in which the human welder can obtain the desired output. The ability to predict the 

range introduces flexibility and enables the welder to select from a range of parameters 

while still being able to achieve quality welds. For example, the algorithm suggested that 

if the current is controlled within 51.00 to 67.00 A, the arc length is selected within 1.70 

to 3.00 mm, and the welding speed is set up to a maximum of 17.04 mm/s or less, a 

moderately high weld bead width of approximately 5.00 to 6.70 can be achieved. This 

prediction is in line with the real-life case in the experiment, where a weld bead of 5.50 

mm was recorded, which is within the predictive range of the algorithm. This performance 

demonstrates the feasibility of the method for supporting the human welder in automatic 

selection of control parameters to obtain the desired weld bead without going through a 

time-consuming trial-and-error approach.  
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The welding information presented together with the neural network schematic model 

shows that it is possible to accurately predict welding parameters and process outputs 

using learning algorithms. 

With lots of inspiration been drawn from recent automation system and machine learning 

it is expected that the welding industry will be able to increase its productivity by 

integrating its systems which includes monitoring system, the utilisation of advanced 

welding equipment and software applications. It is expected that adopting these systems 

will improve on the benefits derived from technological achievements and economic 

enhancement. The application of big data management in the welding industry will go a 

long way to improve on welding productivity by reducing the number of errors caused by 

the human welder. Additionally, rework in welding will reduce tremendously thereby 

helping to save cost as well increase in weld productivity. One major benefit the welding 

industry stands to gain by utilising aspects of automation and machine learning is that it 

gives the entire welding team and not just the welder access to data which enables one to 

confirm or reject a welded joint based on quality requirements. 

In summary, it can be concluded that advances in variants of the TIG welding process 

that improve its usability for welding of different materials and material thicknesses will 

lead to greater use of TIG welding throughout the welding industry. The drawback of low 

productivity due to low speed will become a thing of the past due to the emergence of 

hybrid welding processes that utilise the advantages of two processes. To ascertain the 

applicability of AI to welding and the ability of AI to handle the complexity inherent in 

welding processes, this study utilised a hybrid deep learning algorithm to predict weld 

bead parameters and observed that the algorithm could predict parameters with high 

accuracy. The research method was shown to be effective in dealing with the big data 

requirements when applying advanced AI method to welding technology. The novelty of 

the work in this study is that the AI approach used overcomes the limitation of the big 

data requirement. Where big data is not available for the algorithm to learn from, the 

system can mathematically manipulate the small data using its inference engine and 

extract its own big data from the available small data using the technique of data 

augmentation and reach a conclusion about the required range of welding parameters.  
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6 Conclusions 

In recent times, welding has emerged as the most used method to join different metals of 

varying strength. Welding quality can be achieved when quality requirements are met 

such as those related to bead geometry and porosity inclusions. During arc welding, the 

weldment goes through thermal cycles that are usually characterised by very fast heating 

and cooling. The weldment shape together with the shape of the HAZ are results of the 

welding process and define the overall integrity of the welded joint. Therefore, accurate 

prediction of the weld shape together with that of the HAZ can help avoid the need for 

costly and time-consuming experiments. The ability to control welding parameters using 

sensing devices either directly or indirectly can advance the cause of achieving quality in 

welding.  Moreover, it also improves the productivity of the welding process. One 

important task in automation of welding is to understand how welding parameters affect 

bead geometry so suitable models for predicting the desired outputs can be developed. In 

recent years, AI methods are being increasingly utilized in welding technology to predict 

process parameters and improve on the performance of welding process such as TIG, 

MIG and spot welding. 

To explore the feasibility of extending the use of AI in welding further, a comprehensive 

literature review on variants of TIG welding was carried out and experimental simulation 

performed AI technique in TIG welding.  

The first research question considered the welding process studied and was addressed 

with a systematic investigation into different variants of TIG and their application areas. 

One major characteristic of TIG arc welding is that it is not able to transfer a lot of filler 

metal when filler wire is used because part of the heat of the arc is used to melt the filler 

wire. The usage of filler wire in TIG welding is optional, which can bring cost savings. 

In view of the low productivity of conventional TIG welding, variants have been 

developed that try to overcome productivity issues, such as hot wire TIG, TIP TIG Hot 

Wire, Double Shielded TIG, TOPTIG, Laser-TIG hybrid and laser -MAG/MIG hybrid. 

These TIG welding process variants have helped mitigate problems related to low 

penetration and control of the starting and finishing phases of the welding cycle. They 

have further improved the weldability of different range of diameters and have improved 

stability. In addition, improvements in the weldability of thin sheets, improved 

metallurgical properties and reduction of weld width have been achieved. 

The second research question covered aspects of the usability of LTHW. Laser-TIG can 

be used to join both ferrous and non-ferrous metals and is suitable for aircraft, aerospace 

and automotive industry applications. The superior corrosion resistance, light weight and 

high strength-to-weight ratio of LTHW welds makes the process appropriate for most 

metals. The combination of a laser and TIG arc creates a complex process with a high 

number of variables. Consequently, it is a significant challenge to find a general rule for 

how the various parameters in LTHW can be optimised. Undercuts, which have been 
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found to be the most common weld defect during welding with LTHW and which occur 

due to deflection of the arc, can be eliminated by choosing suitable welding parameters. 

The third research question investigated how AI can be used in modelling of welding to 

predict the structural integrity of the welded structure. Structural integrity is a very 

important property for a welded structure because it determines if the structure is fit for 

the purpose for which it has been designed and can function under normal conditions. In 

addition, a safety margin needs to be included so that the structure is safe even beyond its 

original design purpose its original design purpose. Modelling to guarantee better 

structural integrity in lightweight-welded materials is particularly relevant in modern 

welding manufacturing and production because energy efficiency and environmental 

impact are major concerns. Being able to identify and define proper relationships between 

nonlinear weldability factors will enable the creation of an artificial intelligence model 

that can predict full penetration in fillet welded joints. It was noted that nonlinear 

variables associated with welding processes, such as heat input, CTWD and torch angle, 

which usually pose weldability difficulties, can be modelled by applying AI systems.  

The final research question deals with how an AI model based on HFDNN architecture 

can help the human welder avoid trial and error during selection of welding parameters. 

In view of the ongoing discussions, one of the major conclusions that can be drawn from 

this study regarding the applicability of AI in welding technology is about its learning 

capabilities and versatility. The AI method applied in this study was fuzzy deep learning 

incorporated with Likert scaling. Normally, AI decision-making tools use deep learning 

techniques, which require big data to learn from. In the field of welding, obtaining this 

big data is challenging because little experimental data is available. The added value of 

this work is that the method proposed helps overcome the limitation of a big data 

requirement. Where big data is not available for the algorithm to learn from, the system 

can mathematically adjust the small data by using its inference engine and extracting its 

own big data from the available small data using the technique of data augmentation. The 

findings of this research suggest that the artificial intelligence system used can effectively 

help the welder in avoiding trial and error when choosing welding parameters to help 

improve on weld quality. The results of the study showed that the hybrid fuzzy deep 

learning-based decision-making system could provide a consistent weld output in varying 

welding conditions. Even though, the test case carried out in this dissertation is regarding 

TIG welding process, the effect and the outcome proved that it is likely to have same 

effect when applied to other welding process such as MIG/MAG, SMAW, friction 

welding and Laser-arc hybrid welding processes. 
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7 Suggestions for further studies 

In future work, the aim should be to test the developed AI system with more experimental 

cases and expand its knowledge development to cover penetration depth and width of 

weld bead, depth and width of HAZ, cross-sectional area of weld bead and HAZ. The 

model should be tested on best practices in different domains of welding to improve the 

knowledge base of the proposed system and thus facilitate progress in the field. In the 

ANFIS methodology, a feed-forward neural network approach was applied and therefore, 

in the future, a combination of the ANFIS and a DNN model will be applied in order to 

create a fuzzy logic control system that can help predict a given input if the desired output 

is known - by applying back-propagation in order to reduce the error significantly. In 

addition, considering the aspects to increase productivity and quality in welding 

technology it is expected that more research will be carried out in areas such as big data, 

autonomous robots and how it can be used in welding technology to increase productivity. 

Finally, the revolution where robots are developed with humans returning to production 

process will be of immense benefit to welding industry if proper investigation is carried 

out in the future for proper integration of these various advancement.  The objectives and 

the contribution should be clearly stated, so that the success of the research work and the 

acceptability of the work as a dissertation can be measured. However, the Introduction 

should be concise and not go into too many details. 

A common approach for writing the introduction is to start from the background and then 

gradually introduce the scope and objectives of the work. Another approach is to first 

determine the objectives and contribution and then explain the background and how the 

objectives are reached in the work. As an example, this document applies the latter 

approach (see Introduction): the objective and the contribution were stated in the first 

sentences followed by short explanations of the background and the contents of the work. 
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Abstract 

Industries like the automobile, aeronautic, construction, shipping, and oil and gas industries are always seeking 

means to maximize profit in their firms. One way that these industries can reduce costs and improve profitability is 

through the use of lighter material in their products. Consequently, industrial use of thin sheets (less than 10 mm thick) 

has increased from 10% to 90% of total production. Recently, interest has grown, particularly in the oil and gas sector, 

in the prospects of using aluminum in drill pipes, casings, tubing and risers, due to benefits accruing from its advanta-

geous strength–to-weight ratio. However, producing welded constructions from non-ferrous metals like aluminum al-

loys is challenging compared to steel. This paper presents a literature review of TIPTIG, TOPTIG, Hot wire TIG, Laser-

TIG and MIG-TIG hybrid welding by examining their benefits and limitations and how they can effectively be used in 

the welding of non-ferrous metals. The review shows that TIPTIG efficiently provides TIG welding at MIG welding 

speeds, which implies that it is possible to combine the benefits of TIG welding, particularly the cleanliness of the weld, 

with the capability to weld at higher speeds. Furthermore, it is noted that TOPTIG, as a spatter free welding process, has 

advantages over MIG welding, whose application is limited because the weld current passes through the weld wire, 

causing unstable arc transfer.  
KEY WORDS: TOPTIG, TIPTIG, activated TIG, TIG arc, pulsed TIG, productivity, weld quality 

1. Introduction

Industries like the automobile, aeronautic, construction, shipping, and oil and gas industries are always seeking

means to maximize profit in their firms. One way that these industries can reduce costs and improve profitability is 

through the use of lighter material in their products. However, the welding of non-ferrous metals over the past years has 

been very challenging for technologist and designers, since properties such as high thermal conductivity, solidification 

shrinkage, oxide layer, high solubility of hydrogen make the welding of non-ferrous metals very difficult. Many re-

searchers have reported on further       problems occurring when dealing with heat-treatable alloys, because the heat 

produced can cause deterioration in the mechanical properties of the metals, which occurs due to phase transformation 

and the softening in the alloys[1, 2].  

TIG arc welding uses a non-consumable tungsten electrode and an inert gas which is used as a shielding gas, to 

fuse metals together. TIG arc welding is well-known technology and is commonly used for welding of hard-to-weld 

metals such as stainless steel and Al-Mg-alloys. In TIG arc welding, weld quality is strongly characterized by the weld 

pool geometry, because of the role it plays in determining the mechanical properties of the weld. It has been reported 

that during the welding of lighter materials having edge joints and flanges, welders usually exempt from the need to use 

of filler metals. TIG welding finds its greatest usage in the joining of thin materials in the manufacturing industries and 

it can augment weld quality. Several authors, for example, Fujii et al.[3] and Huang [4], have noted the limitations of 

TIG welding such as inferior joint penetration, poor tolerance on many material compositions, including cast-to-cast 

variations in the composition of certain impurities and its inability to weld thick materials in a single pass. Arias et 

al.[5] reported that TIG arc cannot transfer filler metal effectively because part of the heat of the arc is used to melt the 

wire.  

Due to the above mention limitations, the TIG welding process has become a subject of research interest, in an ef-

fort to make the process more productive, and in recent times various developments have occurred that have enhanced 

its capabilities. This paper therefore presents a literature review of TIPTIG, TOPTIG, Hot wire TIG, Laser-TIG and 

MIG-TIG hybrid welding examining their benefits and limitations and how they can effectively be used in the welding 

of non-ferrous metals. 

2. Enhanced TIG welding processes

Different types of TIG welding processes exist namely; alternating current and direct (AC/DC ) TIG,  dual shielded

TIG, TOPTIG, TIPTIG, MIX TIG, Pulsed TIG, micro –TIG, hot wire TIG, Narrow gap TIG and activated TIG . Fig. 1 

shows five different TIG welding process combinations. In the pre heated consumable, the filler wire is usually heated 

before usage whereas in the double shielding two gas mixtures are used. The automatic consumable electrode feeding 

combined with TIG is usually used in automatic welding process. The laser or pulsed combination can be used in hybrid 
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laser-TIG welding process. Finally the MIG/MAG welding process combined with TIG welding process will result in 

TIG-MIG/MAG hybrid welding process which was developed recently.  

 

 
 

FIG.1 shows different TIG welding process combinations 

 

In the following, different types of enhanced TIG welding processes will be presented. This will include a funda-

mental principle of dual shielded TIG, TIPTIG, TOPTIG, hot wire TIG, laser TIG hybrid, TIG-MIG hybrid, pulsed la-

ser-TIG and activated TIG. These processes where conceded in the review because of their potential in overcoming the 

limitation of low productive in the conventional TIG welding process. Finally, a discussion on reported improvements 

will be presented. 

 Double-shielded TIG was developed in order to improve on the low penetration which has been a major drawback 

for the use of conventional TIG welding on thick materials[6, 7]. In double shielded TIG welding process pure inert gas 

is passed through the inner pipeline to keep the arc stable as well as protecting the tungsten electrode, while a mixed gas 

which contains an active gas, passes through the outer pipeline to serve as an active element which dissolves in the weld 

pool so as to change the Marangoni convection and the weld pool shape [8]. Fig.2 illustrates the double-shielded TIG 

process. 

 

 
 

FIG.2 Double shielded TIG process [modified according to [8] 

 

TIPTIG hotwire welding is a rather new process that was invented by Ing.Siegfried Plasch and patented in 1999, af-

ter about 1.5 years of development[9]. The main advantage of the TIPTIG hotwire process compared to those using a 

fusible electrode lies in the fact that TIPTIG welding allows a managed separation of the quantity of arc energy and the 

quantity of filler material introduced into the welding pool. This gives an advantage in controlling the starting and fin-

ishing (down-slope) phases of welding cycle [10]. Consequently, it combines the benefits of TIG welding, particularly 

the cleanliness of the weld, with the capability to weld at higher speeds comparable to MIG. 

TOPTIG is a new TIG robotic welding process that combines the high weld quality of TIG process and the produc-

tivity of the MIG welding process. The defining characteristic of the process is the configuration of the torch: the weld 

wire which is fed directly into the arc zone at higher temperatures which ensures continuous liquid-flow transfer as well 

as high deposition rate [11, 12]. Fig. 3 illustrates the layout of TOPTIG welding torch. The benefits of TOPTIG can be 
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summarized as follows: absence of spatter (avoiding cleaning and polishing after welds), low distortion, high quality 

welds and productivity at reasonable cost. The excellent appearance of weld bead and better accessibility for welding 

complex structures are further benefits. 

 

 
 

 

FIG.3 Layout of TOP TIG welding torch [11] 

 

Hot wire TIG welding which has been in existence since 1960s but it has been underutilized. Using hot wire TIG 

welding, especially in the downward direction, it is possible to weld a larger diameter pipe with good quality. It has 

been reported that a high deposition rate comparable to that of MIG welding can be achieved with hot wire TIG weld-

ing. Fig. 4 shows the layout of hot wire TIG welding principle. Combining the hot wire TIG welding process with a 

narrow gap preparation makes it possible to make high productive welding without reducing the excellent quality gain 

from TIG processes [15]. However, hot wire TIG welding has some limitations; it is not normally used for manual 

welding and an additional equipment costs for the hot wire power supply.  

 

 
 

FIG.4 Shows the layout of hot wire TIG welding principle[13]  

 

Laser-TIG hybrid welding is the combination of the laser beam welding and TIG arc welding processes. Many ben-

efits have been realized from combining  laser welding with conventional welding methods: improvement in arc stabil-

ity, because of the absorption of the laser energy by the arc plasma, high efficiency and economy, high gap bridging 

capacities, increase in permissible tolerances, and greater weld speed [14]. One major advantage is the capability of 

adding filling material separately to the work piece, which enables independent determination of welding current and 

filler material feeding rate. As there is no transfer of metal across the arc, there are no molten droplets to contend with 

[15]. However to achieve the full benefits of laser-TIG it is important to ensure appropriate selection of welding param-

eters to enable the synergy of the two processes.  

TIG-MIG hybrid welding process combines the quality of conventional TIG welding process and the efficiency of 

MIG welding process. Stability is realized when MIG arc is combined with TIG arc even when pure argon is used as 

shielding gas, this occurs because the cathode spots of MIG arc do not act unstable in TIG MIG hybrid welding process 

[16] . Benefits such reduction in welding time for butt joints from about 17-44% compared to conventional TIG welding 

has been realized using TIG-MIG hybrid welding process [17]  

Pulsed Laser-TIG hybrid welding was developed in order to improve on the weldability of thin sheets[18]. The 

pulsed laser TIG process combines pulsed laser source and a pulsed TIG process in order to improve weld quality. Ben-
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efits such as reduction in interaction time, which restrains the growth of plasma, and deeper penetration, have been re-

ported. A major limitation is that more parameters have to be adjusted compared with continuous wave laser-TIG hy-

brid welding.  

Activated TIG welding process applies a thin coating flux on the surface of the material to be welded, a constricted 

arc is then applied to the material increasing the current density at the anode root and the force acting on the weld 

pool[19]. Benefits such good metallurgical properties, reduction of the weld width, stabilization and increase of the 

depth of penetration have been achieved with the use of Activated TIG-welding 

 

3. Current research 

 

 This section presents reported improvements on penetration, weld quality and high productivity of enhanced TIG 

welding processes over conventional TIG welding process. 

Various test carried on TIP TIG indicate that, it is possible to achieve over 20 per cent cost savings over pulsed 

MIG for every meter of weld, which makes adoption of the process cost effective with quick payback, in addition to 

improved weld quality [9]. Table 1 shows comparison of TIP TIG to other welding processes. As shown TIP TIG cold 

wire (CW) gives a good depositions rate which is equal to that of MIG pulsed. In addition, TIP TIG hot wire (HW) 

showed higher deposition rate compared to conventional TIG, MIG pulsed and TIP TIG (CW). 

 

Table 1.Comparison of different welding processes with TIP TIG [18] 

 

Process MIG PULSED TIG TIPTIG CW TIPTIG HW 

Metals  

 

Steel, stainless 

steel  

 

All weldable 

metals  

 

All weldable 

metals  

 

All weldable 

metals (except Al)  

Thickness  > 0,60 mm  

 

> 0,25 mm > 0,25 mm  

 

> 10,00 mm  

 

Relative Speeds  

 

Fast Slow Fast Fast 

Deposition Rates 

kg/h  

1.0-3.6  

 

0.6-0.7  

 

1.0-3.6  

 

1.4-5.4  

 

Relative Operating 

Cost (time& 

materials)  

Low  

 

High  

 

Low  

 

Low  

 

Weld Dressing 

needed 

High Low Low Low 

 

Lu et al. carried out an experiment on 0Cr13Ni5Mo martensite stainless plate [8] and reported that the weld 

depth in double-shielded TIG welding increases about two to three times as compared to conventional TIG. Fig. 5 

shows the weld shapes under different arc lengths and oxygen content in weld pool. The experiments showed that by 

adjusting the process parameters, the oxidation of the electrode tip can be completely avoided in the double shielded 

TIG welding.  

 

 

 
 

FIG. 5 Weld shapes under different arc lengths and oxygen content in weld pool (D/W ratio under      

different arc lengths) 

 

V. Birdeanu et al.[18] confirmed the increase in penetration for pulsed laser –TIG in the welding of 1.2 mm thick  304 

stainless steel plate and 1.5 mm thick coated  unalloyed steel think sheets. In regard to efficiency pulsed laser-TIG 
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showed increased in penetration as compared to using each of the welding process separately. Fig. 6 shows the obtained 

penetration depths using each of the process separately. 

 

 
 

FIG. 6 Maximum penetration depth using pulsed TIG process and pulsed laser process (same joint 

configuration, same laser process parameters and lower travel speed)[18] 

 

Kulikov F. R. [20] et al reported that during the welding of OT4 titanium alloy with Activated TIG welding pro-

cess, one is able to produce welds with the same depth of penetration as that of welding without flux; however a reduc-

tion in current intensity was realized. On the other hand, Gurevic S. V. et al [21] reported that an increase in weld pene-

tration and half the weld width can be achieved when alkali metals of about 80% are present in the flux used when 

welding of titanium grade BT alloy as compared with the situation in which flux does not contain those compounds. 

Fig. 7 shows the shape of butt joint in a 4mm thick titanium plate welded with activated TIG. As shown, the width of 

the weld heat affected zone (HAZ) is minimal with deep penetration. 

 

 
   

FIG.7 Shape of butt joint in a 4mm thick titanium alloy plate welded with Activated TIG. 

 

4. Conclusion 

 

In conclusion, there have been various developments of TIG arc welding process in recent years. However, scien-

tific investigation on them is minimal, especially as regards TOPTIG, TIPTIG and TIG-MIG. An exception is the hy-

brid welding technique of using laser sources combined with TIG arc. It has been reported that laser-TIG hybrid can 

lead to improvements in penetration and cost savings for applications where filler wire is not needed. With regard to 

TIPTIG, speeds equivalent to those of MIG welding has been realized.  Furthermore, it is important to mention that 

TOPTIG, as a spatter free welding process, has an advantage over MIG welding, whose application is limited because 

the weld current passes through the weld wire, causing unstable arc transfer. These benefits seem likely to increase the 

usage of enhanced TIG welding processes in the welding of thin sheet metals. Enhanced TIG welding processes seem to 

be overcoming the limitation of low productivity found with conventional TIG welding process. 
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ABSTRACT 

Laser-TIG hybrid welding is an important joining technique for ferrous 

and non-ferrous metals, with the latter finding increasing application in 

the aerospace, aircraft, automotive, electronics and other industries due 

to advantageous properties such as superior corrosion resistance, light 

weight and high strength-to-weight ratio. However, the welding of non-

ferrous metals has certain limitations. This paper presents a review of 

laser-TIG hybrid welding by examining the benefits and limitations of 

the process, relevant industrial applications, and optimization of 

parameters. A comprehensive literature review approach is used as a 

basis for suggestions of possible future areas of improvement. The 

review shows that laser-TIG hybrid welding has potential to become a 

versatile welding process and its industrial usage will likely increase 

due to its numerous benefits, such as porosity reduction, improved arc 

stability and increased welding speed, and the development of new TIG 

arcs that enhance the capabilities of the hybrid process. The main 

limitation found was undercut. However, research shows that this can 

be eliminated by selecting correct welding parameters. Finally, the 

paper suggests areas for further studies to improve understanding and 

utilization of laser-TIG hybrid welding processes. The findings are 

useful for industries that work with metal welding processes and as an 

educational tool. 

KEY WORDS:  Laser-TIG hybrid welding, TIG arc welding, low 

power laser technology, pulsed –TIG, ferrous and non-ferrous metals 

INTRODUCTION 

Laser welding technology has become an integral part of modern 

welding due to the unique fabrication opportunities it offers. Although 

its invention dates to the 1970s, practical application of the technology 

is still relatively new and the use of laser welding has only increased 

significantly following the development of high efficiency lasers. 

Limitations to the technology, such as the negative effect of high 

metallic surface reflection, depth penetration restrictions (≤ 25mm) and 

strict tolerances for groove preparation, have led to the development of 

modified welding processes, e.g. hybrid laser welding, which aim to 

combine the benefits of both laser welding and arc welding.  

In a hybrid laser welding process the laser beam interacts in the molten 

pool created by a secondary heat source, i.e., both heat sources are 

incident on a single weld pool (Mahrle and Beyer, 2006 and Bagger 

and Olsen, 2005). Hybrid laser-arc welding compensates for the 

limitations of the individual processes and thus offers advantages such 

as deeper welding penetration, high welding speed, reduced 

deformation, the ability to bridge relatively large gaps and a capability 

to handle highly reflective material (Bagger and Olsen, 2005 and Ishide 

et al. 2001). These advantages have meant that hybrid laser-arc welding 

has received significant attention in welding research.  

The hybrid laser-arc welding process that is of interest in this work is 

laser-TIG hybrid welding (LTHW). LTHW was first investigated in the 

late seventies of the last century by Professor Steen and coworkers at 

Liverpool University. In their experiments, they combined a CO2 laser 

and TIG arc and reported that the electric arc is rooted to the point 

where the laser interacts (Steen, 1979). In more modern research, 

benefits such as an improvement in heat efficiency and an increase in 

penetration and arc stability when welding Al alloys have been reported 

(Hu et al.  1993 and Diebold, 1998). Additionally, the possibility of 

determination of penetration sensitivity as a function of laser power 

using neural network modeling has been reported (Vitek, 1998). In 

addition to these findings, Gao et al. (2009) proved that a LTHW 

welding process can be applied effectively in the welding of ultra-fine 

grained steel and that the process permits the use of higher welding 

speed while obtaining sound welds with good mechanical performance. 

In recent times, the development of different laser sources such as disc, 

fiber and fiber-delivered high-power diode lasers and heat sources has 

further stimulated interest in hybrid welding and has led investigation 

of LTHW to become more immediately relevant – particularly since the 

last decade has seen the development of a variety of different TIG 

process (TIPTIG, TOPTIG, hot wire TIG). In view of the changed 

technological context, the importance of welding in industrial 

processes, and the possible benefits from combining laser and TIG arc 

heat sources, there is a considerable interest in the prospects of LTHW. 

However, despite considerable research interest, there is limited 

information on LTHW that provides in-depth knowledge of the process 

and surveys the technology from an industrial application viewpoint. 

This paper presents an overview of laser-TIG hybrid (LTHW) welding 

processes by examining the benefits and limitations of the process, 

relevant industrial applications and optimization of parameters. 

Suggestions for possible future areas of improvement are made based 

on analysis of the literature reviewed.  
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PRINCIPLES OF THE LASER-TIG HYBRID WELDING 

PROCESS 

Two basic configurations are used in LTHW; namely, the laser leading 

hybrid process (the laser beam precedes the arc) (Rayes et al. 2004 and 

Uchiumi et al. 2004) and the arc leading hybrid process (the arc 

precedes the laser beam) (Nielsen et al. 2006), illustrated in Fig. 1. The 

laser leading position is often used in the welding of aluminum since 

this arrangement removes the oxide layer prior to arc welding, resulting 

in a significantly more stable process (Uchiumi et al. 2004) 

Fig.1.Schematic illustration of hybrid welding with leading arc (left) 

and leading laser (Uchiumi et al. 2004). 

Improvement in the bead appearance and deeper penetration are some 

of the advantages realized in the use of a laser leading arc 

configuration (Abe and Hayashi, 2002 and Katayama, 2009). About 

bead appearance the laser leading process was found to be superior 

because the assist gas flow does not affect the molten pool created by 

the arc, however in the leading arc arrangement the shape of the bead 

surface is disrupted by the assist gas blowing into the molten pool. 

Contrary, it was reported that the arc leading arrangement gives a 

more stable arc (Dilthey, 1999). This is achieved within a relatively 

wide range of process distances. The leading arc process gives deeper 

penetration, probably due to the fact that the laser beam impinges the 

hot weld pool with better absorption than a solid surface and the 

energy losses from laser through heat conduction is reduced (Dilthey 

and Wieschemann, 2009 and Abe and Hayashi 2002 and Katayama, 

2009) 

Plasma characteristics (laser beam and arc interaction) 

In LTHW, understanding of the physical phenomena is important. As 

stated previously, the configuration is either laser leading, e.g. hybrid 

laser-TIG, or arc leading, e.g. TIG –YAG, and the key hole is 

generally formed in the molten pool. Subsequently, a plume, vapors, 

fumes and spatters are also formed. A schematic illustration of a 

LTHW process is given in Fig. 2 (Uchiumi et al. 2004 and Baito et al. 

2004). In the example in Fig. 2, the laser beam is focused on the 

workpiece and the TIG torch is at an angle of 20o and follows the laser 

beam. A keyhole is formed by the melt flow in the molten pool and 

the plume moves toward the incident laser beam.  

Fig.2 Schematic illustration of laser –TIG hybrid ((Uchiumi et al. 2004) 

The arc plasma formed during TIG welding and hybrid TIG-YAG laser 

welding for a leading TIG torch are shown in Fig. 3 (Naito, 2005 and 

Naito, 2006). As illustrated in Fig. 3, an increase in arc voltage is 

released and is directly proportional to the YAG laser power. In 

addition, the plume affects the arc column making it brighter and 

longer, leading to an increase in the arc voltage.It has been reported by 

several authors that the arc is stabilized by the presence of the laser 

induced plasma (Kutsuna, 2002 and Biffin, 1994) Rooting and 

narrowing of the arc at the laser-generated hot spot and an increase in 

electrical conductivity and consequent reduction in the arc gap causes 

an increase in arc efficiency (Steen, 1981 and Gornyi and Redozobov, 

1990). Fig.4 shows how evident this narrowing is when only 200 W of 

laser irradiation is used (Ireland, 1997). It can be seen in Fig. 3 that the 

arc is fixed at the beam irradiation spot, perhaps because an anode is 

generated, or the plume is dissociated by the laser beam. 

Fig.3.Observation results of arc behavior of Type 304 steel during (a) 

TIG and (b) hybrid TIG–YAG laser welding (Naito, 2005 and Naito, 

2006) 

Factors like the arc current, the distance between the electrode and 

plate, the distance between the laser-irradiation spot and electrode 

target on the plate, the inclination of the electrode, and the type of laser 

and shielding gas affect the interaction between the arc and the laser-

induced plume. 
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FIG.4. Shape of TIG arc with laser impinging in dark shading and 

without laser in gray shading (Ireland, 1997). 

It has been reported that absorption of the laser light does not occur in 

Nd:YAG/TIG hybrid welding with a 10 kW laser (Ishide et al. 2002). 

However, it is unclear whether this is true of all metals. During Nd: 

YAG/TIG welding, the TIG arc voltage has been found to drop due to 

shortening of the arc, possibly as a result of the arc flowing along the 

laser plume. In a study of Nd: YAG/TIG hybrid welding using high 

speed photography (40 500 f/s), it has been observed that the arc moves 

more dynamically and rapidly around the outlet of the keyhole than in 

TIG arc welding alone. This behavior can be attributed to the instability 

in the direction of the ejected plume (Kutsuna, 2002). 

During LTHW welding, the electric arc dilutes the electron density of 

the laser plasma, which weakens the ability of the laser plasma to 

absorb and reflect the laser energy and therefore improves the heat 

efficiency of the laser beam (Hu et al. 1993). In investigation of the 

stabilizing effect of the laser beam arc, which is an important factor in 

LTHW, it was found that an increase of about 300% in welding speed 

can be obtained when the laser and TIG arc are on opposite sides of the 

workpiece. When the laser and TIG arc were on the same side of the 

workpiece, 100% increase in welding speed was achieved during 

welding of 0.8 mm thick titanium and 2 mm thick mild steel (Steen et 

al.1979). 

Dynamic behavior 

The arc and laser-induced plume exhibits dynamic behavior during 

LTHW. This behavior has been observed by high-speed video cameras 

in hybrid TIG-YAG laser welding and it was reported that the arc 

sometimes concentrates around the keyhole inlet near the TIG electrode 

(Naito, 2005 and Katayama, 2007 and Naito, 2006), from which 

evaporation occurs in addition to the laser-induced plume, as seen in 

Fig. 5. The images in Fig. 5 suggest that the arc barely enters the 

keyhole, although it is also possible that the arc enters the inside of the 

keyhole and thus improves melting efficiency (Beyer et al. 1994). This 

phenomenon explains why the generation of spatter is suppressed by a 

laser-induced plume, which leads to the formation of a molten pool that 

is wide enough to accommodate keyhole expansion (Olsen, 2009).  

FIG.5. Observation results of CCD and high-speed video of arc and 

plume behavior during hybrid TIG–YAG laser welding. In a, b, and c it 

can be seen that the arc is concentrated in the keyhole (Petring and 

Poprawe, 2003) 

Melt Dynamics 

The melt dynamics helps to determine the keyhole stability and melt 

flows in the molten pool during hybrid welding. Experimental 

investigation of the melt dynamics of hybrid TIG–YAG laser welding 

of Type 304 steel used a ZrO2 particle tracer and high speed video 

camera to study melt flows around the molten pool surface, as 

illustrated in Fig.6. At a current of 100A, the ZrO2 particles were first 

seen to move towards the keyhole, like the findings presented in Fig.5; 

however, the arc then immediately moved away from the keyhole inlet, 

probably due to the stream shear stress caused by the laser-induced 

plume ejected from the inlet. It must be noted that at a current of 200A 

a concave shape was formed on the surface of the molten pool due to 

high arc pressure. The arc pressure caused ZrO2 to move towards the 

keyhole inlet but it immediately moved away as also seen with the 

100A current (Naito, 2005 and Naito, 2006). 

FIG.6. Observation results of molten pool surface and ZrO2 particle 

tracer during hybrid TIG–YAG laser welding at 200 A in Ar gas and 

schematic melt flow patterns on the molten pool surface during hybrid 

TIG–YAG laser welding at 100 A and 200 A (Naito, 2005 and Naito, 

2006). 

LASER-TIG HYBRID PARAMETERS 

Process variables in LTHW have a similar effect on welding 

performance as in autogenous laser welding. However, the increase in 

the number of variables as compared to the single process is a 

disadvantage because it adds additional complications. Despite the 
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increase in the number of variables, LTHW offers a lot of flexibility in 

parameter selection, which therefore widens the possible areas of 

application. The following parameters have been found to affect the 

quality of welds when laser welding is combined with TIG: type of 

secondary heat source, electrode, order of configuration – laser or 

secondary heat source (arc) first, distance between laser beam focal 

plane and workpiece (defocusing value), and arc travel speed.  

Selection of secondary energy source for laser-TIG hybrid 

The LTHW process is mostly used for thin gauge materials (Beyer, 

1994). In selection of the secondary source, it is important that 

attention is paid to proper integration of the laser and secondary energy 

source. Graf and Staufer, 2003 has developed an integrated head that 

finds usage in the automobile industry. In addition, an advanced optical 

system with split lenses, which helps with proper control during hybrid 

welding, is also available. It has been reported that other integrated 

heads exist; however, they require retrofitting with a CNC controller. In 

this regard, the TIG power supply has to be isolated and placed in such 

a way that it does not create disturbing electromagnetic fields for the 

CNC controller during arc ignition; if not, the CNC control system may 

break down (Bagger, 2003). Table 1 presents the main process 

characteristics of LTHW. 

Table 1. Characteristics of Laser-TIG hybrid welding process 

Process characteristics LASER-TIG HYBRID WELDING 

Ideal thickness of material   Few mm 

Process stability 

 High RF ignition but process is stable 

Ability to close gap   Useful 

Change in ductility   Can improve 

Travel Speed 

Travel speed has influence on both weld width and penetration, but its 

effect on weld width is more significant. With an increase in the 

welding speed there is a decrease in both width and penetration, 

because the thermal input to the base metal decreases as the welding 

speed increases. However, it has been reported that in welding of 

magnesium alloys using low-power laser-TIG hybrid welding, the 

welding arc is stable even at high welding speeds in the range of 150-

200 mm/min (Song et al. 2006). FIG. 7 shows the arc stability at 

various speeds. As presented in Fig. 7, instability occurred during TIG 

arc welding for TIG current of 40- 60A. However, the arc is more 

stable when combined with a laser, possibility because the laser 

generated plasma, having greater electron density, leads to a reduction 

in arc resistance, causing the arc to root to the laser action point. 

Information on the formation of pores and the melt pool dynamics, 

which are also influenced by welding speed, has been reported by 

Jasnau et al. (2003) 

Fig.7.Stability of laser-TIG welding and TIG arc at various travel speed 

as a function of TIG current (Liming et al. 2004). 

Distance between laser beam and arc 

The distance between the laser beam and tungsten electrode (DLA) can 

be considered one of the most important control parameters in laser-

TIG hybrid welding. DLA influences the weld seam and the penetration. 

DLA depends on the energy supplied from the source as well as the 

secondary energy. Most researchers are of the view that a range of 1-

3mm is an ideal distance between the laser and the arc. It has been 

reported that weld penetration increases significantly with decrease in 

DLA. However, penetration decreases when DLA is set at 0.5 mm. The 

effect of electrode to laser beam distance has been investigated using a 

1.8 kW Nd: YAG laser coupled to a TIG torch (Kah et al. 2010) and the 

results are illustrated in Fig.8 For a laser-leading configuration with 

TIG arc (YAG/TIG) the penetration is deepest at 1 mm and is 

shallower at distances of 5- 9 mm. However, for leading TIG arc 

(TIG/YAG), the penetration is deeper and the bead width narrower at 

distances up to 5 mm (Petring et al. 2003). 

Fig.8.Effect of distance between the laser beam axis and TIG electrode 

on penetration depth in Nd: YAG laser-TIG hybrid welding (Kah et al. 

2010) 

Liu et al. 2012 carried out an experiment to investigate the effect on 

melting efficiency and penetration depth of the relative location of the 

laser beam and TIG arc (DLA) in different hybrid modes in the welding 

of magnesium alloy. They reached the following conclusions; the 

penetration depth decreases with increase in DLA in the laser-TIG 

mode; however, in the laser mode, penetration depth first increases and 

then decreases. In addition, they noted that the penetration depth can 

attain a maximum value of 4.1 mm at DLA of 4 mm in TIG-laser mode 

and a penetration depth of 2.5 mm was obtained at DLA of 1 mm. On 

the other hand, the penetration drops to <1 mm when DLA reaches 5 

mm, which is like that of a single TIG welding process.  
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Defocus value 

The defocus value characterizes the position of the laser focal plane in 

relation to the surface of the workpiece. In hybrid welding, the weld 

pool surface is concave, because of arc dynamic pressure, and the 

optimal focal plane position is thus shifted deeper into the material. As 

illustrated in Fig.9, welding penetration is deepest and the formation of 

the weld seam is best when the defocusing value is within the range -

0.8 mm ∼ 0.8 mm (Naito, 2006). Contrary to this, Investigations also 

show that no change in focal point position is needed for Nd:YAG/TIG 

hybrid welding compared to pure laser welding (Petring et al. 2007) 

Fig 9. Influence of focus value on the welding penetration (P = 400 W, 

fd = −0.8 mm, I = 100 A, h = 2 mm, DLA = 2.0 mm, V = 1200 mm/ 

min, argon 10 L / min) (Song et al. 2006) 

Shielding Gas 

Shielding gas is commonly used to stabilize the welding process, to 

improve the welded joint characteristics and to protect the welded seam 

from oxidation (Ready ,2001). Plasma absorption occurs when using 

CO2 lasers and consequently special measures must be adopted to 

mitigate this problem. Plasma reduction nozzles are used in order to 

obtain deep penetration welds at high power (Miyamoto, 1984), 

combined with low ionization gases such as helium or nitrogen. 

However, when solid-state lasers are used in hybrid welding, pure 

argon produces a stable synergistic effect between the laser and the arc, 

because solid-state lasers are not sensitive to the laser-induced plasma 

(Liming et al. 2004). Fujinaga et al. 2003 carried out experiments 

combining a YAG laser and TIG arc in welding of aluminum using 

pure argon as a shielding gas and found that the penetration depth of 

the hybrid weld (10 mm) was nearly twice that of the single laser weld, 

indicating an obvious enhanced laser–arc synergy effect. However, in 

pure argon shielded YAG laser–TIG hybrid welding of 304 stainless 

steel carried out by Natio et al. 2006 the penetration depth of the hybrid 

weld was only 0.5 mm deeper than that of the single laser weld, 5 mm, 

as noted earlier. The study also demonstrated that an increase in the gas 

ratio of O2 to argon shielding gas had an influence on the weld bead 

shape, especially at an arc current of 100 A.  

Hybrid YAG laser and double flux TIG welding with Ar+H2 center gas 

and Ar environmental shielding gas has been developed in recent years, 

to produce deeper penetration. Consequently, an experiment carried out 

with YAG–TIG hybrid welding using double flux TIG arc has been 

applied to cover plate welding for a superconductive coil of stainless 

steel (Asai et al. 2005 and Shiihara et al. 2007) and the result showed 

improvement in weld joint. 

In addition, investigation carried out on hybrid welding with a 5 kW 

CO2 laser and 300 A TIG on 3 mm thick 316L stainless steel plate, 

proved the importance of a stable process and efficient synergistic 

effects. Except for some CO2 laser–TIG hybrid welding where pure 

helium shielding gas has been applied, hybrid CO2 laser– arc welding 

usually employs a He–Ar binary mixed shielding gas (Uchiumi et al. 

2004 and Kutsuna, 2002) 

Bagger et al.2005 used pure N as a shielding gas in hybrid CO2 laser–

TIG welding of 4 mm X6Cr17 steel to 2 mm 316L austenitic stainless 

steel and obtained good results which fulfilled product demands. Apart 

from this, nitrogen and hydrogen are not often used in laser-arc hybrid 

welding. 

Workpiece parameters 

Workpiece parameters also play an important role in achieving quality 

welds in the LTHW process. Fig.10 shows workpiece parameters in 

LTHW. In LTHW, the use of filler material is optional, hence during 

LTHW of butt-joint configurations a square groove edge and zero air 

gap between the joint faces is preferred (Ready, 2001 and Steen, 2003). 

However, if the air gap exceeds 3 % of the material thickness of the 

thinner joint member, there is a possibility of under fill. 

Fig.10 Workpiece parameters in laser-TIG hybrid welding 

LASER TYPES USED IN LASER-TIG HYBRID WELDING 

A variety of different lasers are used in materials processing. The most 

common laser types used in welding are Nd: YAG, solid-state and CO2 

gaseous state lasers. Recently, Yb:YAG , disc and fiber lasers, which 

have high output power as well as high beam quality, are increasingly 

being used(Boisselier et al. 1998) 

WELD QUALITY IN LASER-TIG HYBRID WELDING 

Several improvements in weld quality have been realized by combining 

laser and TIG arc welding. These improvements consist primarily of 

improvements in ductility, pore reduction and susceptibility to 

cracking. 

Weld penetration 

Due to the higher amount of energy delivered to the workpiece during 

LTHW, there is deeper penetration as well as the possibility of 

increasing the welding speed compared to TIG arc welding.  

It has been reported that during LTHW, penetration increases and arc 

stability improves when welding an Al alloy, particularly using high 

rates of travel and low TIG current levels (Ueyama et al. 2004). 

Secondly, the heat efficiency of the laser is improved since the electric 

arc dilutes the electron density of the laser plasma, which weakens the 

ability of the laser plasma to absorb and reflect the laser energy (Niato 

et al. 2006). Coaxial gas shielding of the laser, which restrains growth 

of plasma, leads to increasing penetration (Ueyama et al 2005). 

Matsuda et al. 2006 reported on an increase in weld penetration of 1.3-

2 times for LTHW of 12 mm mild steel with a 5-kW laser and TIG arc 

welding. However, other authors have reported no improvements 
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(Nielsen et al and Nilsson and Kaplan, 2002). Fig.11 shows the overall 

performance of the Nd: YAG/TIG hybrid welding process at different 

welding speeds. For welding speed in the range 6 to 12 mm/min, the 

penetration of hybrid welds is deeper than that of YAG welds and TIG 

welds. As the speed increases, the difference in penetration between 

hybrid and laser welds becomes smaller (Naito and Matsunawa, 2002). 

An increase of welding speed from 5 to 8 m/min has been reported 

using YAG laser and TIG arc in the welding of 2 mm AlMg3 with 1.9 

k W laser power. 

FIG.11 Overall performance of the Nd:YAG/TIG hybrid welding 

process at different welding speeds (Naito et al. 2002). 

Liming et al. 2004, who conducted experiments on the welding of 

AZ31B, reported that the penetration of LTHW is double that of TIG 

arc welding and four times that of laser beam welding (LBW), and that 

this improvement is achieved due to the synergistic effects of the laser 

beam and TIG arc during the welding process.  

Weld stability 

To determine the weld stability, analysis is usually carried out on the 

welded structure after welding. The welding arc has a direct influence 

on the weld stability. It is reported that in LTHW welding, the arc 

stability is greater than when using TIG arc alone, especially at high 

welding speed. This stability is characterized by a linear bead with 

uniformity throughout the entire weld length, like the welding process 

using laser alone. Fig. 12 shows weld surfaces welded by laser beam 

welding, TIG arc welding and LTHW (Liming et al. 2004) 

Fig.12. Comparison of weld surface for three welding methods: Plaser= 

400 W; Iarc = 70 A; and v = 1100 mm/ min (Liming et al. 2004) 

It is reported that in laser-TIG double side welding (LTDSW) at low 

current (I= 40A) and 1 m/min welding speed, the anode spot is 

unstable, as illustrated in Fig 13a. However, when the laser beam acts 

on the opposite side to the TIG arc, a hot spot is generated on the 

workpiece and the arc burning becomes stable due to stabilization of 

the anode region of the thermal action caused by the hot spot, as shown 

in Fig.13b. 

Fig.13. Arc stability of TIG welding and LTDSW process (a. 

TIG welding and b. LTDSW) (Chen et al. 2008) 

Cracks and reduction 

During the welding of non-ferrous metals at high speed, porosity 

usually occurs, which results in a deterioration in mechanical 

properties. Two types of porosity are commonly found: pores with 

diameters larger than 0.2 mm, which can be observed by radiography 

and are known as macro pores; and pores with diameters of several 

micrometers, which can only be observed by optical microscopy and 

are known as micro pores (Liu et al. 2005). It has been reported that 

lack of shielding gas is the leading cause of macro porosity. Gao et al. 

(2009) reported on obtaining lower micro hardness, which resulted in 

higher toughness, in the welding of ultra-fine grained steel using laser-

TIG hybrid welding. In addition, with a low laser-to-arc energy ratio, it 

was found out that laser-TIG hybrid welding of ultra-fine grained steel 

had a softening zone in the heat affected zone (HAZ). On the other 

hand, with a high-energy ratio, the softening zone in the HAZ 

disappeared, probably due to the reduced heat input and narrow HAZ.  

Complete elimination of cracks has been reported in LTHW (3.5 kW 

YAG laser as the energy source) of an aluminum alloy (A6061) of 10 

mm thickness, with an effective penetration of 6–8 mm being realized 

(Fujinaga et al. 2003). 

On the other hand, it has been reported that when welding stainless 

steel AISI 304 with Nd: YAG lasers of 1.3 kW and 1.7 kW coupled to 

TIG arc sources, the use of an argon shield resulted in either a complete 

elimination or clear reduction in the number of pores (Ishide et al. 2002 

and Naito and Matsunawa, 2002 and Dilthey and Wieschemann, 2002) 

INDUSTRIAL APPLICATIONS 

The industrial application of laser hybrid welding usually depends on 

the arc process used. Hence the combination of a TIG arc with lasers 

such as CO2, Nd: YAG and fiber lasers usually find use in thin sheet 

applications. In recent years, however, research has been carried out on 

laser-TIG hybrid welding of thick materials. Zhang et al. 2013, 

investigated the use of laser-TIG hybrid welding in the welding of high 

strength low alloy structural steel (10CrNiMnMoV) of 16 mm 

thickness. This type of steel is widely used in the nuclear power, 

electric power equipment and shipbuilding industries. Improved 

mechanical properties were noted. As part of efforts to improve fuel 

efficiency, the automobile industry has focused on weight reduction 
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using lighter materials such as aluminum and magnesium alloys. 

LTHW has good potential to weld these lighter materials with excellent 

results. In current weight reduction measures, parts like the engine 

hood, trunk cover, body panels and suspension components are often 

manufactured with aluminum (Funatani, 2000). In summary, it is 

evident that laser-TIG hybrid can find usage in manufacturing for road 

transport, shipbuilding, rail transport, oil and gas. 

SUGGESTIONS FOR FUTURE STUDIES 

Presently, the most proven laser systems for LTHW technology are 

CO2 and Nd: YAG lasers. Resent developments and improved 

commercial availability of fiber and disc laser systems mean that such 

systems should be considered as an attractive alternative to 

conventional laser beam source. It is an anticipated that the improved 

properties of these new laser beam source will lead to further 

development and improvement of LTHW. Another interesting area is 

investigation of LTHW with different shielding gas mixtures i.e. 

mixtures with active gas content. 

CONCLUSIONS 

This paper presented an overview of LTHW welding of ferrous and 

non-ferrous metals by examining the benefits, limitations, industrial 

applications and optimization possibilities, and suggested possible 

future areas of improvement.  

The combination of a laser and TIG arc creates a complex process with 

a high number of variables. It is not possible to give a general rule on 

how various parameters in laser-TIG hybrid can be optimized due to 

the complexity of the phenomena involved. The findings presented in 

the literature should be considered as evidence for specific applications 

only.  

Most researchers are of the view that LTHW welding is mainly 

applicable to thin gauge materials (< 5mm). However, investigations 

have also been carried out using LTHW on thick plate (16mm) of high 

strength lower alloy structural steel 10CrNiMnMoV with quality 

results. In addition, it has been reported that LTHW makes use of the 

laser energy more efficiently and improves energy coupling between 

the plasma and molten pool in welding of thick materials. To 

complement its capability of welding thick plates which has been a 

major drawback of LTHW, the Welding Institute (TWI) carried out and 

experiment on 304L austenitic stainless steel (10mm, butt welds) and 

(16mm, melt runs) using CO2 and Yb fiber lasers and found that it was 

possible to use LTHW on thick materials.  

The flexibility in either welding with filler wire or without filler wire 

gives an advantage in terms of cost reduction, especially when the 

metal to be welded does not need the addition of filler wire. The 

Institute of Welding and Joining Technology (ISF), Rheinisch-

Westfälische Technische Hochschule (RWTH), Aachen, reported a 

price reduction of up to 50 %, higher efficiency and a reduction in 

necessary joint edge preparation with the use of 2 kW Nd: YAG laser 

combined with 2 kW TIG. 

Undercut is the most common weld defect identified during welding 

with LTHW. Undercut occurs due to the direction of the arc, which is 

usually deflected aside. However, it can be eliminated by choosing 

suitable welding parameters. Various experiments have showed that 

smaller process separation would make it possible to increase the 

penetration. Based on various results obtained using LTHW it can be 

ascertained that LTHW improves weld quality and gives fewer pore 

and crack defects compared to using TIG arc welding alone.  

In conclusion, while LTHW finds usage mainly in the welding of thin 

gauge materials (<5mm), the excellent quality welds obtained in 

welding of thick plates (> 10mm) prove that LTHW has the capability 

of welding thicker materials. Although less experiments have been 

carried out to that effect it can be said that various synergies indicate 

that LTHW has good prospects for quality welding of thick materials. 
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Abstract The use of welded lightweight steels in structural
applications is increasing due to the greater design possibili-
ties offered by such materials and the lower costs compared to
conventional steels. Ultra-high-strength steels (UHSS) having
tensile strength of up to 1700 MPa with a high strength-to-
weight ratio offer a unique combination of qualities for diverse
industrial applications. For productivity and quality reasons,
gas metal arc welding (GMAW) is usually utilized for welding
of UHSS. However, for full penetration fillet welded joints,
the need for high heat input to gain acceptable weld penetra-
tion is problematic when welding UHSS. This is due to UHSS
sensitivity to heat input and possible heat-affected zone
(HAZ) softening. In this paper, an attempt is made, on the
basis of analysis of experimental reviews, to identify and de-
fine relationships between nonlinear weldability factors to en-
able creation of an artificial intelligence model to predict full
penetration in robotic GMAW fillet welded joints of UHSS
S960QC. Welding variables and parameters associated with
GMAW are first evaluated by reviewing scientific literature.
The possibility of employing an artificial neural network
(ANN) to predict full penetration fillet weld characteristics is
then examined. It is noted that nonlinear variables associated
with the GMAW process, such as heat input, contact tip to
work distance (CTWD), and torch angle, and their related
parameters, which pose weldability challenges, can be
modeled by applying artificial intelligence systems.
Ensuring full penetration in fillet welded joints of UHSS using

artificial intelligence is thus feasible. Further, an optimized
control system could potentially be developed by incorporat-
ing adaptive robotic GMAW with an artificial intelligence-
based system to guarantee sound structural integrity that con-
forms to EN ISO 5817. The paper increases awareness of
welding aspects of UHSS S960QC and presents an approach
for overcoming existing limits to GMAW via adaptive robotic
welding and artificial intelligence systems.

Keywords Ultra-high-strength steel (UHSS) . Robotic
GMAW .Artificial intelligence .Structural integrity .Artificial
neural network . Full penetration .Weld quality

1 Introduction

Nowadays, manufacturing industries are increasingly
employing lightweight steels of high tensile strength in
welded structural applications as a response to the need to
reduce structural weight and attain cost reductions in welding
manufacturing and production. These needs stem from de-
mands for increased energy efficiency, which has become crit-
ical from the environmental point of view. Ultra-high-strength
steel (UHSS) is one material choice for lightweight
manufacturing. UHSS has superior strength-to-weight ratio
and excellent physical, mechanical, and low-temperature
properties, which enable lower fuel consumption and lower
carbon emissions [1–4] than when using conventional steels.
Industries that produce and operate mobile structures such as
offshore platforms, floating production, storage, and
offloading (FPSO) units, heavy-duty vehicles for mining or
lifting purposes, and alternative energy industries operating in
the fields of solar power, wind power, and liquefied natural
gas (LNG) production stand to benefit from increased use of
UHSS.
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Amajor challenge facingmanufacturing industries is to guar-
antee that full penetration is achieved in fillet welded joints of
structural applications. Increased heat input is generally utilized
to ensure acceptable full weld penetration in fillet joints.

As a result of the alloying elements and production process
used in its manufacture, UHSS possesses a dual-phase micro-
structure consisting of bainite and martensite [1]. Its micro-
structure, similar to advanced high-strength steels (AHSS), is
sensitive to high heat input, and exposure to elevated temper-
ature can change its mechanical properties. More critical ef-
fects of heat input are heat-affected zone (HAZ) softening and
an increased propensity to fatigue failure, which affect the
toughness and strength of welded joints of UHSS [2, 3].

For productivity and quality reasons, fusion welding pro-
cesses, especially gas metal arc welding (GMAW), have been
favored for joining lightweight high tensile strength steels. A
number of studies have been presented where GMAW has
been employed for welding of UHSS S960QC [1–3].
Successful implementation of robotic GMAW in UHSS
welding would have a significant effect on the profitability
of manufacturing industry, where repeatability, precision, cost,
time, and quality are key drivers in manufacturing and pro-
duction. However, utilizing robotic GMAW in an uncon-
trolled manner poses weldability challenges for the structural
integrity of UHSS fillet welded joints. The outcome of the
GMAW process is dependent on a number of nonlinear vari-
ables, such as heat input, contact tip to work distance
(CTWD), and torch angle, and their related parameters, e.g.,
arc current, arc voltage, welding speed, gas flow rate, arc
efficiency, electrode stick out, wire feed speed, electrode di-
ameter, torch position, and torch travel angle.

Development in artificial intelligent system for robotic
welding shows that adaptive features such as sophistically
sensory, monitoring, and control systems could be incorporat-
ed in the entire robotic artificial intelligent welding system to
help the robot to adjust to its operating environment to enable
monitoring, detection, measurement, inspection, and record-
ing welding process parameters, and other features such as
joint geometry and weld pool geometry. A typical example
like infrared thermography-based sensors could be used in
adaptive robotic artificial intelligent system to measure ther-
mal profiles during welding to check susceptibility to heat
inputs and temperature variations to assure weld integrity.
However, for the robot to be capable to self-adjust to its func-
tions and operations, artificial intelligent systems such as arti-
ficial neural network (ANN), fuzzy logic system, neural-fuzzy
network (NFN), adaptive neuro-fuzzy inference system
(ANFIS), genetic algorithm (GA), or swam particle optimiza-
tion (SPO) need to be used as a data modeling tool. These
artificial intelligent systems not only adapt, aid prediction of
desired outcomes, and operate real time but are also capable to
learn new input and output relationships and previously un-
known situations and environments.

Therefore, development of a system able to account for and
control the nonlinear factors associated with GMAW would
alleviate weldability problems and guarantee sound structural
integrity and full penetration in fillet welded joints of UHSS,
enabling the joints to conform to the EN ISO 5817 standard,
and would be a valuable scientific contribution to welding
science, and manufacturing and production industries.

In this paper, an attempt is made, on the basis of analysis of
experimental reviews, to identify and define relationships be-
tween nonlinear weldability factors to enable creation of an
artificial intelligence (AI) model to predict full penetration in
robotic GMAW fillet welded joints of UHSS S960QC.
Figure 1 illustrates the concept of modeling an AI system for
robotic welding of UHSS. It is assumed that all required inputs
and the relationship between the inputs and the corresponding
output requirements must be identified and considered. In ad-
dition, it is anticipated that the AI system should be able to
predict desirable weld characteristics, such as weld bead pen-
etration depth and weld geometry, based on the input data and
expected outcomes.

A further requirement for the system is the ability to pre-
dict, during the welding process, possible weld flaws or errors
in data modeling, as outputs, on receiving input requirements
like welding parameters. In situations where undesirable out-
comes and defects are likely to occur, the intelligent system
should be able to capture, control, and correct the errors. This
important adaptive function requires an optimized control sys-
tem, whose discussion is beyond the scope of this work.

2 Material and welding considerations for welding
of UHSS S960QC

Experimental studies have shown that welding of UHSS is
challenging due to several nonlinear factors that affect
weldability [1]. For example, weldability problems can occur
as a result of inappropriate heat input and choice of filler
materials [2], and problems can arise from fatigue effects re-
lated to weld geometry/profiles [3]. Figure 2 presents and

Fig. 1 Schematic diagram ofmodeling of an artificial intelligence system
for a robotic GMAW process
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summarizes information regarding standard requirements,
material properties, and welding of UHSS S960QC. The sche-
matic data representation does not provide a complete welding
procedure specification (WPS) since items such as welding
position, type of polarity, size of filler material, need for pre-
heating or post-heating, and procedure sequence are missing.
Such information is case-specific to the particular structure
being welded, and it thus cannot be generalized but must be
validated for the specific welding procedure. Nevertheless, the
schematic data serves as relevant technical information when
considering UHSS S960QC for experimental study.

For fillet welded joints, higher levels of structural integrity
cannot be guaranteed due to susceptibility to a lack of full
penetration [5]. In most cases, extra material preparations such
as beveling have to be done, especially on the upright member
of the fillet joint profile. This requirement increases material
preparation costs and such pre-welding preparation cannot be
utilized in many applications. Tables 1 and 2 show quality
levels and critical imperfections in fillet welded joints accord-
ing to EN ISO 5817. The quality levels are designated by
symbols B, C, and D, where B corresponds to the highest
requirement on the finished weld. The load types evaluated

Fig. 2 Schematic representation of UHSS S960QC material data and robotic GMAW process fillet joint
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in definition of these quality levels include static load, thermal
load, corrosion load, and pressure load [6].

Tables 1 and 2 serve as a guide for the objective of creating
anAImodel to predict full penetration in robotic GMAW fillet
welded joints of UHSS S960QC. Surface imperfections such
as excessive convexity, incorrect weld toe, excessive asym-
metry of the fillet weld, insufficient throat thickness, and ex-
cessive throat thickness must fall within the acceptable quality
level range in accordance with the EN ISO 5817 standard for
material thickness greater than or equal to 0, 5, to 3 mm.
Similarly, in Table 2, the quality level range in accordance
with EN ISO 5817 standard for material thickness greater than
or equal to 0, 5, to 3 mm must be observed for internal, joint
geometry, and multi-imperfections.

2.1 Case study 1

Hemmilä et al. [1] investigated the weldability of Optim
960QC, which is the same as UHSS S960QC, for 3- and 6-
mm-thick plates. In order to establish a basis for comparison
of the effects of heat input, 3-mm-thick plates were prepared
for laser welding and MAG welding, and 6-mm-thick plates
were prepared for hybrid laser welding (CO2 laser and MAG
welding using shielding gas: 50% He + 45% Ar + 5% CO2)
and MAG welding using shielding gas: 80% Ar + 20% CO2.
Experimental data from the study is shown in Table 3. The
MAG welding equipment employed was ESAB LAH 630
from Ruukki Productions, nowaday a division of SSAB.
The laser and laser-hybrid welding equipment used were,

Table 1 Surface imperfections in fillet welded joints [6]

Int J Adv Manuf Technol



respectively, a Rofin-Sinar 6000 and ESAB ARISTO 2000
welding system.

In the laser-hybrid welding, the joints were tack welded
using the MAG process and the distance between tacks was
approximately 100 mm. In the other MAG welding, the 6 mm
plate was milled and a V-groove cut. The welding was carried
out without preheating using interpass temperatures of 25 °C
and arc energies of 0.5 and 0.8 kJ/mm.

Non-destructive visual andX-ray examination conforming to
EN ISO 15614-1 showed that class B (stringent) was generally
achieved in theMAG-welded joints, but classCdominated in the
laserand laser-hybridwelded joints.The lowerqualityclassof the
laser and laser-basedmethodswas due to higher porosity, incom-
plete filling of grooves and roots, and local lack of fusion.
Figures 3 and 4 showVickers hardness profiles across thewelds.

It was concluded that the HAZ showed a significant drop in
hardnessbelowthatof thebaseplate in theMAGweldingof the3-

mmplate, as can be seen inFig. 3. The narrow, shallow softHAZ
in the autogenous laser weld of the 3-mm plate did not lower the
tensile strengthof the joint compared to that of thebaseplate.The
useof laseror laser-hybridweldingcould thereforehelp to reduce
the width and depth of the HAZ softened zone.

Weld metal was even-matching in the case of the laser-based
methods, but slightly under-matching in the MAG weld of the 3-
mmplate.However,inboththe3-and6-mmplates,theMAGwelds
demonstratedcross-weld tensile strength thatwas lower than thatof
thebaseplate.Foraconstantheat input(0.5kJ/mm),thereductionin
tensile strength increased as the plate thickness decreased from6 to
3mm, as can be seen by comparison of Figs. 3 and 4.

A similar effect was obtained when increasing the arc en-
ergy in the case of the 6-mm-thick MAG-welded butt joints:
higher arc energy (0.8 kJ/mm) produced greater under-
matching. Cross-weld tensile strength decreased as arc energy
and cooling time increased.

Table 2 Surface imperfections in fillet welded joints [6]
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Laser-based welding processes gave the best combinations
of strength and toughness. The impact toughness of the HAZ
was better in the laser-hybrid welded joint than in the MAG-
welded joint. This improved impact toughness is a result of the
finer lath martensitic-bainitic microstructure found in the
HAZ of the laser-hybrid joint as a resultant effect of the higher
cooling rate. With the MAG weld, the toughness of the fusion
line (FL/HAZ) is the limiting factor, whereas in the laser-
hybrid weld, the weld metal toughness is the limiting factor.

The susceptibility to HAZ softening of S960QC when
MAG welded is a challenge. Although it has been stated that
welding of S960QC should be done with as low an arc energy
as possible, and that high hydrogen content filler materials
should be avoided to prevent hydrogen-induced cracking in
the weld metal [2], the precise factors involved and the rela-
tionships between the welding variables and parameters have
not been clearly established. Therefore, predicting and ensur-
ing toughness and hardness properties in the HAZ similar to

those of the base material and achieving even-matching prop-
erties of the weld metal to the base material when using
GMAW need further research. Welding variables and param-
eters pertaining to GMAW are discussed more thoroughly in
Section 3.

2.2 Case study 2

In another study, Björk, Toivonen, andNykänen [3] investigated
the ultimate load-bearing capacity of typical fillet welded joints
made of UHSS S960. Validations of current design rules
(Eurocode 3 Parts 1–12) covering steel grades up to S700 were
done for fillet welded joints fabricated from direct quenched
(un-tempered) UHSS S960. Throat thickness and other dimen-
sions for the fillet welds were validated through experimental
testing and nonlinear finite element analysis (FEA). The studied
joints were load-carrying (denoted by L-, T-, LT, and X-series)
and non-load-carrying (X0 series) joints. Several parameters
were considered for each joint type, such as filler metal, and

Table 3 Experimental data for different plate thicknesses and welding processes

Plate thickness Dimension Laser welding Hybrid laser welding MAG welding

3 mm 500 × 150 mm Laser type: CO2 laser Heat input—0.5 kJ/mm

Laser power—6 kW Wire type: matching

Shielding gas: helium Wire grade: PZ6149

Gas flow rate—25 l/min Shielding gas: 80% Ar + 20% CO2

Air gap—0 mm Root gap—1.5–2 mm

6 mm 500 × 150 mm Laser type: CO2 laser Heat input—0.5 kJ/mm

Laser power—6 kW Electrode type: matching

Shielding gas: 50% He + 45% Ar + 5% CO2 Electrode grade: OK Autod 13.31

Gas flow rate—30 l/min Shielding gas: 80% Ar + 20% CO2

Electrode grade: OK Autrod 13.31 Root gap—1.5–2 mm

Electrode stick out—15 mm Electrode stick out—15 mm

Electrode diameter—1.0 mm Electrode diameter—1.0 mm
Air gap—0.25 mm

Fig. 3 Hardness profiles across 3-mm-thick laser and MAG-welded butt
joints in Optim 960 QC (note that the distance scale is nonlinear) [1]

Fig. 4 Hardness profiles across 6-mm-thick laser and MAG-welded butt
joints in Optim 960 QC (note that the distance scale is nonlinear) [1]
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length and throat thickness of the welds. A fully mechanized
GMAWprocess (MAG)was used for joining the plates of 8mm
thicknesses. The test results showed that ductile rupture oc-
curred in all the joints when tested at room temperature.
Additionally, the optimal cooling rate was difficult to reach;
low heat input increased the risk of incomplete fusion. In the
X0 series, however, the failure and capacity of the non-load-
carrying joints seemed to depend on the heat input due to
welding. When heat input was low, the softening was local,
and it had no effect on the load-bearing capacity of the joint,
and the failure occurred outside the joint (typically at an angle of
30°) as shown in Fig. 5. When heat input was increased, the
softened width/plate thickness ratio increased and the critical
ratio, experimentally about 0.2, was exceeded. Consequently,
the failures occurred in the HAZ next to the weld.

It can be seen from Fig. 5 that heat input of 0.61 kJ/mm
generated low throat size of 4.5 mm and smaller HAZ than with
heat inputs of 0.77 and 0.94 kJ/mm. Based on measured ulti-
mate strength of the base material, strain hardening seems not to
compensate the softening effect. Therefore, in addition to ensur-
ing that the load-carrying capacity of the fillet weld agrees with
the design rules (Eurocode 3 Parts 1–12), heat input must be
considered due to the softening effect on the HAZ. S960 toler-
ates very high cooling rates and strength properties for the
welded joint are reached if the t8/5-time is less than 10 s.
Consequently, the strength properties of the HAZ will drop by
more than 10% of the strength of the base material when the
optimal cooling rate is not reached. In addition, for matched
filler materials, the weakest strength appears in the HAZ, but
for under-matched electrodes, the weakest strength appears in
theweld itself. However, utilizing under-matched filler materials
can improve the deformation capacity of fillet welds if critical
heat input limits are observed.

3 Robotic GMAW process parameters and variables

Development in industrial robotics has had a profound effect
on modern welding, and industrial welding geared towards

high quality and high productivity is nowadays often carried
out using state-of-the-art robots. The GMAW process is most
often used as the joining technique for robotic welding, main-
ly because of its flexibility and adaptability. Industrial GMAW
is commonly a semi-automatic welding process since it uti-
lizes an inert or active gas to shield a consumable and contin-
uously fed filler material.

The GMAWprocess is defined by the shielding gases used,
that is, metal inert gases in MIG welding, which are argon and
helium gases, and metal-active gases in MAG welding, gen-
erally argon and carbon dioxide.

A large number of welding experiments have been con-
ducted with the GMAWprocess. Table 4 presents key welding
variables and parameters and indicates studies in which they
were investigated. The defining welding parameters are heat
input, contact tip to work distance, and torch angle. The stud-
ies listed in the right-hand column of Table 4 are utilized for
the purposes of this work. In the studies, some welding pa-
rameters were assumed to be constants, for example arc
length. The listed welding variables and parameters affect
the weld geometry characteristics and properties of the weld
and are considered in more detail in the following sections.

3.1 Heat input

Heat input influences the way molten filler material is trans-
ferred to the workpiece, arc stability, generation of spatter,
weld bead profile formation, and weld quality. Most impor-
tantly, the terminology heat input is used because only part of
the welding energy as established from these welding param-
eters enters the workpiece [17]. The expression for heat input
is presented in Eq. (1) [18].

Heat input kJ=mmð Þ

¼ Arc voltage Eð Þ � Arc current Ið Þ � 60� Arc efficiency ηð Þ
Welding speed Vð Þ � 1000

ð1Þ

As can be seen from Eq. (1), the relationship between cur-
rent and voltage greatly influences the heat input value. Arc
characteristics under conditions of stable arc and uniform arc
length give synergetic control of voltage and current. Ohm’s
law therefore does not satisfy the current and voltage relation-
ship in welding, where increase in current results in voltage
increase [19].

In GMAW, it has been observed that the arc mode, and thus
the weld quality, is greatly influenced by the arc current [20]
as a heat input parameter. The depth of penetration is signifi-
cantly influenced by the arc current; depth of penetration in-
creases with increase in current [21]. However, increased joint
penetration also increases the possibility of burn-through and
solidification cracking. Experiments have shown that a higherFig. 5 Failure modes in non-load-carrying joints of UHSS S960 [3]
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current leads to a higher electromagnetic force, which causes
the droplet to detach from the electrode and transfer to the
weld pool. Furthermore, with a higher current, the size of
the molten droplet is smaller and there is a higher droplet
frequency.

Arc penetration depends also on electrode polarity.
The penetration characteristic of GMAW with direct
current electrode positive (DCEP), i.e., reverse polarity,
and direct current electrode negative (DCEN), i.e.,
straight polarity, are depicted in Fig. 6. DCEP is mostly
utilized because it produces good weld bead geometry
and depth of weld penetration, and generates only low
levels of spatter [20].

The current for a given GMAW solid or metal-cored
electrode will reach a maximum density level and once
this level is attained, no additional current can be car-
ried by the electrode; thus, the electrode has reached its
maximum current density [22]. Notably for a given heat
source, the extent to which energy is absorbed by the
workpiece depends on the rate of heat absorption of the
material, the type of heat source, and the parameters of
the welding process (voltage, current, and welding
speed) [17]. Thus, from the arc efficiency expression
shown in Eq. (2), it is imperative to determine the rate

of heat absorption of the material when considering the
relation between the current and voltage values.

η ¼ 1−
1−nð Þqpþmqw

EI
ð2Þ

where

η arc efficiency, expressed as a fraction, %
n proportion of the energy radiated and convected from the

arc column per unit of time and transferred to the
workpiece, expressed as a fraction, %

qp energy radiated and convected from the arc column per
unit of time, Btu/min (cal/s)

m proportion of heat radiated away from the workpiece,
expressed as a fraction, %

qw rate of heat absorbed by the workpiece, Btu/min (cal/s)
E voltage, V
I welding current, A

Experiments reveal that arc efficiency is higher for con-
sumable electrode processes than for non-consumable elec-
trode processes due to heat losses from the arc to the surround-
ings.With consumable electrodes, heat loss from the electrode
can often be ignored as the energy transferred to the electrode

Table 4 GMAW welding
variables and parameters used in
reviewed experiments

Welding variables Welding parameters References

Heat input Arc current [7–15]

Arc voltage [7–16]

Welding speed [7–16]

Gas flow rate [7, 8, 11, 13, 15, 16]

Contact tip to work distance (CTWD) Electrode extension [11, 15]

Arc length [7–15]

Wire feed speed [11, 15]

Wire diameter [7, 8, 10, 11, 13–16]

Torch angle Torch position [8]

Torch travel angle [11]

Fig. 6 Arc penetration
characteristics of GMAW with a
DCEN and b DCEP electrode
polarity
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is eventually absorbed by the workpiece. Arc efficiency in
GMAW falls within the range 66–85% [17, 23]. It has been
observed that gas tungsten arc welding (GTAW) loses sub-
stantially more heat from the arc to the surrounding environ-
ment than GMAW, shielded metal arc welding (SMAW), and
submerged arc welding (SAW). It must be noted that this
generalization can result in supplying too high or too low heat
input since specifications of material grade and strength are
not given [17]. This observation, though, gives an indication
of how to determine the rate of heat absorption of a material
when establishing welding heat inputs, as in the case of
UHSS. It should however be noted that the higher the heat
conductivity of a material, the lower the penetration [21].

FortheGMAWprocess,arcvoltageisproportionaltoarclength.
Welding with a high voltage produces a wide and flat weld bead
with possible undercuts, and welding with too low voltage pro-
duces a low-quality weld bead with high concave reinforcement
[24,25]anddecreaseddepthofpenetration[21].Arcvoltagecanbe
controlled by altering the arc length [26]. Too small arc lengthmay
give rise to poor penetration if the arc power is very low [21].

Gas flow rate and welding speed play major roles in deter-
mining heat input. The electric arc is stabilized by the arc
plasma as a result of ionization of the shielding gas. In addi-
tion, the mode of metal transfer from the consumable elec-
trode is determined by the arc type and also depends on the
gas flow rate. In GMAW, binary shielding gas blends (argon +
helium, argon + CO2, or argon + oxygen) or ternary shielding
gas blends (helium + argon + CO2, or argon + CO2 + oxygen)
are mostly utilized [22, 27]. Table 5 shows GMAWarc types,
descriptions, and material application.

The extent of convective loss depends on the nature of the
shielding gas, its flow rate, and its configuration system [17]. It
must be noted that the percentage mixture of CO2 in both binary
and ternary blends has an effect on heat input, and defining the
relationship between CO2 percentage and control of current and
voltage values is imperative. Extensive research on arc types has
shown that in many applications, greater benefit accrues from
spray and pulsed arcs than short and globular arc modes [27].
Moreover, enhanced arc processes such as controlled short arc,
heavy deposition rate arc, and controlled spray arc offer signif-
icant improvements in efficiency and usability [27].

Welding speed contributes to determining the cooling rate
during and after welding. The variation of temperature with
time as a function of the cooling rate, often referred to as the
thermal cycle, affects microstructures, residual stresses, and
the extent of distortions in weldments. On the surface of the
weld pool, the temperature distribution affects the loss of
alloying elements by evaporation as well as absorption and
desorption of hydrogen and other gases. The chemical com-
position of the weldment is affected correspondingly.

The cooling rate of a weldment is a function of the rate of
energy dissipation. Fast welding speed generates fast cooling
and vice versa. As weld penetration increases with decreasing T
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welding speed, the final metallurgical structure of the weld zone
canbedeterminedby thecooling rate fromthemaximum,orpeak
temperature achievedduring theweld cycle.Theaverage cooling
rate from 1472 to 932 °F (800 to 500 °C, t8/5) is particularly
significant when welding heat treatable steels, and especially in
the case of UHSS. The critical cooling rate for the formation of
martensite in these steels is often commensurate with t8/5 [17].

The boundary conditions derived from heat transfer equa-
tions, which are governed primarily by the time-dependent
transport of heat by conduction and convection, may specify
the temperature at various locations on the surface of the
workpiece. For a large workpiece, the surface temperatures
distant from the heat source can be taken as room temperature.
However, near the heat source, the surface temperatures are
much higher and are unknown in most situations [17].

Monitoring temperature variations across theweldment is im-
portant in theweldingofUHSSduetoitssusceptibility toelevated
temperatures.

Welding dilution plays a major role when considering heat
input and its resultant effect on depth of penetration of the weld
metal through the melting and fusion of the filler material with
the base material. The selected filler material must be compati-
ble with the base material such that four major areas of require-
ments are met by welds produced within a range of acceptable
dilution rates: metallurgy compatibility, mechanical properties,
physical properties, and corrosion properties. The percentage of
dilution can be determined by the expression in Eq. (3).

%of dilution ¼ Area of penetration

Area of reinforcementþ Area of penetration
� 100

ð3Þ

Figure 7 illustrates a fillet weld bead geometry with HAZ
traces. In Fig. 7, (a1) is area of reinforcement, (a2 + a3) is area
of penetration, and (a) is the throat thickness. Based on EN

ISO 15609-1, throat thickness (a) is expressed as
0.5 * t − 0.7 * t, where t is the thickness of the base material.

In order to predict weld penetration, several factors must be
considered and related. The relationship between weld pene-
tration, arc voltage, arc current, and welding speed using a
welding technique performance factor (WTPF) is expressed
in Eq. (4) as follows:

WTPF ¼ I4S=F1 � VS
� �1=3 ð4Þ

where Is is arc-current in amperes, F1 is the arc-travel rate in
centimeters per minute, and Vs is the arc-voltage in volts [28].
Knowledge of the relationship between these and other vari-
ables and parameters such as contact tip to work distance and
the torch angle could lead to better prediction of depth of
penetration.

3.2 Contact tip to work distance

In GMAW, the output characteristics of the arc are controlled by
two main power sources: the constant current (CC) power
source and the constant voltage (CV) power source.
Considering these power sources, the CTWDgreatly influences
the arc length during welding. With constant current, the
CTWD determines the arc length. As the CTWD increases,
the arc length increases, and as the CTWD decreases, the arc
length decreases. The problem of maintaining a constant arc
length when using CC has been resolved by incorporating wire
feed speed control. Thus, as the CTWDdecreases, the wire feed
speed increases, and as the CTWD increases, the wire feed
speed decreases. The arc voltage is proportional to the arc
length. The arc voltage can therefore be controlled by changing
the arc length [22]. Hence, an increase in arc length will gener-
ate an increase in arc voltage [29].

With CV power source, however, the CTWD controls the
welding current as a function of the arc length. As the CTWD
increases, the welding current decreases, and as the CTWD
decreases, the welding current increases. Moreover, in the CV
scenario, the arc becomes a series circuit, and the CTWD
provides resistance to current. Therefore, voltage remains un-
changed and the arc length is unchanged despite changes to
wire extension dimensions, as shown in Fig. 8. Furthermore,
the relationship between CTWD and current, voltage, welding
speed, and gas flow rate influences arc penetration. From
Fig. 8, the arc penetration can be determined by identifying
the arc position, which is the sum of wire extension and arc
length [22].

Electrode extension ranges from 5 to 15 mm for dip transfer
and up to 25 mm in other transfer modes [24, 25]. Weld prop-
erties and geometry can be predicted based on relationships
between welding current, arc voltage, gas flow rate, wire feed
speed, and CTWD. Electrode diameter varying from 0.8 toFig. 7 Fillet weld bead geometry
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1.6 mm has effects on melting depending on heat input relation-
ships. As smaller diameter electrodes are used for thin materials
and vice versa, operational difficulties arise when electrodes are
selected wrongly, thus affecting weld joint quality [24, 25].

3.3 Torch angle

The torch angle has an influence on the quality of the weld
bead and the weld geometry. The torch angle is characterized
by its orientation (torch travel angle) and its linearity (torch
position). The deposition rate is lower when the torch angle is
off-set or not in correct alignment with the cross-section of a
groove. Generally, in fillet weld welding positions such as
horizontal down-hand (PB or 2F), it has been estimated that
the torch angle with respect to torch position should be 45–50°
and the torch travel angle should be 10–15° in the welding
direction as illustrated in Fig. 9.

Torch angle discrepancies result in undercut and insuffi-
cient fusion, mostly in the upright member of the fillet weld.
This phenomenon leads to quality problems and lack of pen-
etration between the upright member and the base member.
Investigation of the effect of torch position and torch angle on

welding quality and welding process stability in pulse-on-
pulse MIG welding–brazing of an aluminum alloy to stainless
steel in a lap configuration reaches a similar conclusion [30].
In the experiment, direct current with a positively charged
electrode (DCEP) was used to weld 6061 aluminum alloy
( 2 0 0 × 60 × 3 mm) a n d 3 0 4 s t a i n l e s s s t e e l
(200 × 60 × 2 mm). Images of the arc, electrical signals of
the welding current, and welding voltage were acquired in
synchronous modes by a high-speed camera and electrical
signal acquisition system, respectively. It was concluded that
arc shape, macrostructure, microstructure, and mechanical
properties are sensitive to torch travel angle and torch position
(work angle) for settings of 20° and 0°, respectively. A frac-
ture occurred in the HAZ as a result of the effect of uneven
heat distribution. However, when torch travel angle was 20°
and work angle was 20°, the effects of torch position with
respect to heat distribution were insignificant.

In robotic GMAW, the torch travel angle and torch position
can be altered bymanually controlling the manipulator and the
end effector attached to the welding torch. Incorporation of
adaptive features such as sophisticated sensory and monitor-
ing systems make robots adaptive to their operating environ-
ment and enable monitoring, detection, measurement, inspec-
tion, and recording of welding process parameters and other
features such as joint geometry and weld pool geometry [31].
The ability to maintain torch linearity and orientation, follow
the desired trajectory, as well as the ability to perform seam
tracking, which emulates the behavior of manual welders, is
achievable in robotic welding systems [32]. However, an ideal
sensor that combines all the aforementioned functionalities
with respect to seam finding, seam tracking, quality monitor-
ing, through-arc sensing, and control of welding parameters
does not yet exist [33].

Artificial intelligent systems provide possible alternative
solutions for adaptive robotic welding. For example, infrared

Fig. 8 Arc length representations
in GMAW process contact tip to
work distance. a 3/4″ (equivalent
to 19 mm). b 1″ (equivalent to
25 mm)

Fig. 9 GMAW torch angle (torch travel angle and torch position)
representation
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thermography-based sensors could be used in adaptive robotic
GMAW and incorporated with an artificial intelligent system
to measure thermal profiles when welding UHSS S960QC to
check heat input and temperature variations and assure full
penetration welds. In addition, motion control also creates a
need to incorporate artificial intelligent systems in adaptive
robotic welding for accurate trajectory planning as “teach
and play” technique used in robotic programming today has
repeatability and precision errors.

Figure 10 shows arc shape and arc characteristic based on
torch angle, work angle, and arc length. The arc characteristic
in Fig. 10 (y) indicates that adequate fusion and low suscep-
tibility to HAZ are achieved. The dumbbell shape of the arc in
Fig. 10 (y) indicates good arc characteristics in terms of its
stability. In contrast, Fig. 10 (x) suggests that uneven heat
distribution is likely to occur and thus high HAZ susceptibil-
ities in one sample than another.

4 Artificial intelligence system application in welding

Modeling of an artificial intelligence system for robotic
GMAW can be done usually by mathematical approaches.
AI systems such as artificial neural networks (ANN), fuzzy
logic systems, neural-fuzzy networks, adaptive neuro-fuzzy
inference systems (ANFIS), genetic algorithms, and swam
particle optimization (SPO) systems, which are mathematical-
ly based, can be used as data modeling tools to predict desired
outcomes. These mathematically based and well-known algo-
rithmic systems are gaining significance in the welding
manufacturing industries. In the field of welding, for example,
research work has considered the use of one or more artificial
intelligence systems to predict weld characteristics such as
weld bead strength, weld surface weld surface quality, weld
penetration, and weld size for GMAW [34–36]. Different
types of artificial intelligence systems to control arc welding
processes have been investigated in a recent study on adaptive
gas metal arc welding control and optimization of welding
parameter output [37]. The study identified the effects and
benefits of AI system predictions on metallurgical and

geometric qualities in T-joint welds. It was concluded that
the quality and properties of welded joints, weld deposition
rate, microstructure, and weld geometry can be improved
since welding parameters can be predicted by AI systems like
ANN [37]. Table 6, supported by references [37–39], provides
a comparison between frequently used AI systems in model-
ing and simulation of welding.

The computational abilities of AI systems, as shown in
Table 6, comprise decision-making and/or linguistic perfor-
mance. Depending on the type of AI system adopted and the
output requirement expected, modeling a robust artificial in-
telligent system for weld characteristic predictions in robotic
GMAW process should have enough input data. It should be
noted that the output requirement can be limited but the input
must have enough data to enable accuracy in predictions.
Figure 11 illustrates a framework of a schematic model of an
AI system for robotic GMAW. The model considers nonlinear
weldability factors associated with robotic GMAW in the
welding of UHSS S960QC.Welding variables and parameters
are denoted as the input requirements and the corresponding
desired output requirements are mapped to various AI
systems.

In addressing UHSS S960QC weldability challenges, it is
assumed that the output requirements given in Fig. 11 should
conform to EN ISO 5817 for fillet weld quality levels as de-
scribed in Table 1 and Table 2. The HAZ is expected to dem-
onstrate consistent microstructural properties equal to the base
material. If softening in the HAZ does occur, hardness should
not drop considerably below the hardness value of the base
material, and, additionally, toughness, ductility, and tensile
strength should not deteriorate. As moderate strength proper-
ties for welded joints are reached if the cooling rate (t8/5) is less
than 10%, then the strength properties of the HAZ should not
drop by more than 10% relative to the nominal strength prop-
erties of the base material [3]. Monitoring thermal cycles with
a thermal profile senor/scanner while welding the UHSS
S960QC material would be beneficial for cooling rate
evaluation.

It is claimed that an optimal cooling rate is difficult to
achieve when using GMAW (MAG) to weld 8-mm-thick

Fig. 10 Arc shape with different
torch positions: In image (x), the
torch angle is 20° and work angle
is 0° and the lengths are
(a) = −2 mm, (b) = −1 mm,
(c) = 0, (d) = 1 mm, and
(e) = 2mm; In image (y), the torch
angle is 20° and the work angle is
20° and the lengths are
(a) = 0 mm, (b) = 1 mm, and
(c) = 2 mm [30]
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plates of UHSS S960QC.Moreover, a high risk of incomplete
fusion is bound to occur when small heat input is employed
[3]. To alleviate HAZ softening and susceptibility to a lack of
fusion when welding UHSS S960QC, adaptive robotic
GMAW incorporating AI systems for real-time modeling pro-
vides an alternative and holistic approach.

Due to its operational functionalities and benefits, an ANN
system is selected as a case schematic model (Fig. 11). The
schematic model represents an ideal situation to serve as a
practical step to design a neural network system modeling
input/output data for a given set of parameters from input
and output requirements. It is assumed that the neural network
model when validated by comparing the predicted results with
actual practical results should agree with the results obtained
through real-time experiments on UHSS S960QC with a ro-
botic GMAW process.

4.1 Artificial neural network

Considering the schematic model for ANN modeling, the in-
put and output requirements can be represented as data func-
tions in the neural network system. In the model, there are
multiple input requirements and multiple output requirements
which are mapped in a multilayer perceptron (MLP) neural
network architecture as shown in Fig. 12.

The MLP neural network requires supervised learning.
Weight adjustments are made based on comparison with some
target output. A teaching signal feeds into the neural network
for the weight adjustments. These teaching signals are also
termed the training sample [40]. The MLP neural network
architecture is composed of many simple perceptrons in a
hierarchical structure forming a feed forward topology with
one or more hidden layers between the input and output
layers.

4.2 Multilayer perceptron learning algorithms

In determining an optimized set of weights, the MLP neural
network system uses learning algorithms such as back propa-
gation (BP), resilient propagation (RPROP), the Levenberg–
Marquardt algorithm, genetic algorithm (GA), or particle
swarm optimization (PSO) [40]. Generally, input data are
weighted through sum biasing and are then processed through
an activation function to produce the output. After each pro-
cess, the calculated output is matched to the desired output,
and the difference between the two gives an error signal. The
weight is adjusted by presenting the error back to the neural
network system in a manner that will decrease the error for
every iteration. The process aims to reduce the error value and
drive the neural network system model towards the desired
target. The learning algorithm adjusts the weights as the iter-
ation increases, thereby reducing the error and getting closer
to the desired target [41, 42].T

ab
le
6

A
rt
if
ic
ia
li
nt
el
lig

en
ts
ys
te
m
s
fo
r
ar
c
w
el
di
ng

A
rt
if
ic
ia
li
nt
el
lig

en
ce

sy
st
em

s
P
ri
nc
ip
le
s

A
dv
an
ta
ge
s

L
im

ita
tio

ns

A
rt
if
ic
ia
ln

eu
ra
ln

et
w
or
k
sy
st
em

s
-
O
pe
ra
te
s
on

fe
ed

fo
rw

ar
d
ba
ck

pr
op
ag
at
io
n

sy
st
em

-
R
ep
re
se
nt
s
in
te
rc
on
ne
ct
ed

gr
ou
ps

of
ar
tif
ic
ia
lv

is
ib
le
an
d
hi
dd
en

ne
ur
on
s

-
D
ev
el
op
s
m
od
el
s
th
at
de
pi
ct
in
te
rr
el
at
io
n

ch
ar
ac
te
ri
st
ic
s
be
tw
ee
n
in
pu
td

at
a
an
d

de
si
re
d
ou
tp
ut

da
ta

-
H
as

le
ar
ni
ng

an
d
tr
ai
ni
ng

ca
pa
bi
lit
ie
s
fo
r

no
nl
in
ea
r
sy
st
em

m
od
el
in
g

-
H
as

pa
tte
rn

re
co
gn
iti
on
,s
ig
na
lp

ro
ce
ss
in
g,

da
ta
pr
ed
ic
tio

n
an
d
co
nt
ro
l,
an
d
tim

e
se
ri
es

an
al
ys
is
ca
pa
bi
lit
ie
s

-
H
as

ad
ap
ta
bi
lit
y
ab
ili
tie
s
w
he
re

fr
ee

pa
ra
m
et
er
s

ca
n
be

ad
ap
te
d
to

ch
an
ge
s
in

su
rr
ou
nd
in
g

en
vi
ro
nm

en
t

-
H
as

kn
ow

le
dg
e
di
sc
ov
er
y
an
d
da
ta
m
in
in
g
ab
ili
tie
s

-
H
as

un
ce
rt
ai
nt
y
to
le
ra
nc
e
an
d
im

pr
ec
is
io
n
ab
ili
tie
s

-
L
ac
k
of

lin
gu
is
tic
/e
xp
la
na
to
ry

ab
ili
ty

-
L
ac
k
of

kn
ow

le
dg
e
re
pr
es
en
ta
tio

n
ab
ili
tie
s

Fu
zz
y
lo
gi
c
sy
st
em

s
-
O
pe
ra
te
s
on

a
se
to

f
lin

gu
is
tic

fu
zz
y
ru
le
s

-
R
el
ie
s
on

ru
le
-b
as
ed

sy
st
em

s
-
H
as

lin
gu
is
tic
/e
xp
la
na
to
ry

ab
ili
tie
s

-H
as

go
od

kn
ow

le
dg
e
re
pr
es
en
ta
tio

n
ab
ili
tie
s,
go
od

un
ce
rt
ai
nt
y
to
le
ra
nc
e
ab
ili
tie
s,
an
d
go
od

im
pr
ec
is
io
n

to
le
ra
nc
e

L
ac
k
of

se
lf
-l
ea
rn
in
g
ab
ili
tie
s;
la
ck

of
ad
ap
tiv

e
an
d

pa
tte
rn

re
co
gn
iti
on

ab
ili
tie
s,
an
d
ra
th
er

ba
d

kn
ow

le
dg
e
di
sc
ov
er
y
an
d
da
ta
m
in
in
g
ab
ili
tie
s

N
eu
ro
-f
uz
zy

sy
st
em

s
-
O
pe
ra
te
s
by

hy
br
id
iz
in
g
fu
zz
y
lo
gi
c
qu
al
ita
tiv

e
ap
pr
oa
ch

an
d
ad
ap
tiv

e
ne
ur
al
ne
tw
or
k
sy
st
em

ca
pa
bi
lit
ie
s

-
C
om

bi
ne
s
th
e
ad
va
nt
ag
es

of
bo
th

pa
ra
di
gm

s
an
d

co
nq
ue
r
th
ei
r
ow

n
sh
or
tc
om

in
gs

co
nc
ur
re
nt
ly

to
pr
od
uc
e
im

pr
ov
ed

in
te
lli
ge
nc
e
sy
st
em

-
It
is
ty
pi
ca
lf
or

M
am

da
ni

fu
zz
y
in
fe
re
nc
e
sy
st
em

w
ith

a
si
ng
le
ou
tp
ut

de
fu
zz
if
ic
at
io
n

A
da
pt
iv
e
ne
ur
o-
fu
zz
y
in
fe
re
nc
e
sy
st
em

s
-
U
se
s
a
hy
br
id

le
ar
ni
ng

al
go
ri
th
m

by
co
m
bi
ni
ng

le
as
ts
qu
ar
es

es
tim

at
or
s
an
d
th
e
gr
ad
ie
nt

de
sc
en
t

m
et
ho
d

-
B
ot
h
an
te
ce
de
nt

an
d
co
ns
eq
ue
nt

pa
ra
m
et
er
s
ar
e

op
tim

iz
ed
,h
as

th
e
ab
ili
ty

to
ge
ne
ra
liz
e
an
d

co
nv
er
ge

ra
pi
dl
y
pa
rt
ic
ul
ar
ly

in
on
lin

e
le
ar
ni
ng
,

an
d
ap
pl
ic
ab
le
in

ad
ap
tiv

e
co
nt
ro
l

-
It
is
ty
pi
ca
lf
or

Su
ge
no

sy
st
em

s,
i.e
.,
fo
r

co
ns
ta
nt

an
d
lin

ea
r
ou
tp
ut

m
em

be
rs
hi
p

fu
nc
tio

ns
an
d
si
ng
le
ou
tp
ut

de
fu
zz
if
ic
at
io
n

Int J Adv Manuf Technol



In an ANN system development study [34], weld bead
width characteristics were predicted as a function of key pro-
cess parameters in robotic GMAW. The accuracy of the neural
network model was verified by comparing the simulated data
obtained from the neural network model with values obtained
from actual robotic welding experiments. In the study, BV-
AH32 steel of 12 mm thickness was multi-pass welded with
GMAW.

The process parameters were the following: number of
passes—3; welding current—170, 220, and 270 A; arc volt-
age—23, 26, and 28 V; and welding speed—12–50 cm/min.
All other parameters were fixed. These process parameters
were considered as input data and the required weld bead
width was the output for the neural network system [34].

A back propagation learning algorithm and Levenberg–
Marquardt learning algorithm were employed to train the

neural network based on both the input and output data. A
training set of 500 cycles was employed for the training of
the network with an initial error of 1.0 × 106 [34].

The training was carried out using MATLAB. It was ob-
served that the Levenberg–Marquardt algorithm gave the low-
est root mean square (RMS) error of about 0.0000845 with
four neurons in hidden layers in 500 training cycles [34].
Figure 13 illustrates the performance of the back propagation
algorithm and the Levenberg–Marquardt approximation algo-
rithm for prediction of beadwidth [34]. From Fig. 13, it can be
seen that the points obtained from the Levenberg–Marquardt
predictions correlate with those of the actual experiment.

With back propagation, although the plotted points were
not that far from values from the actual experiment, the pre-
dictions were not as exact as those of the Levenberg–
Marquardt algorithm.

The Levenberg–Marquardt learning algorithm, also known
as the damped least squares method, provides numerical solu-
tions by reducing error when solving complicated boundary
value problems. In the ANN system study [34], adjustment of
the weights and biases was done according to the transfer
function expressed in Eq. (5):

ΔW ¼ JT J þ μI
� �−1

JTe ð5Þ

where J is the Jacobian matrix of derivation of each error, μ is
a scalar, and e is the error function. In other expressions, the
Levenberg–Marquardt algorithm could be derived by

Fig. 11 A schematic model of
artificial intelligence system for
robotic GMAW process

Fig. 12 A 3-3-3 multilayer perceptron neural network architecture
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considering the error E after a differential change in the neural
network weights from u0 to u according to the second-order
Taylor series expansion as shown in Eq. (6). Additionally, the
Jacobian matrix is used to define the Hessian for special case
of sum of squared error as expressed in Eq. (7) [40].

E uð Þ ¼ E u0ð Þ þ f T u−u0ð Þ þ 1

2
u−u0ð ÞTH u−u0ð Þ þ… ð6Þ

H ¼ 2 JT J þ 2
∂JT

∂u
F ð7Þ

Levenberg–Marquardt algorithm improved the overall ac-
curacy of the neural network systems since it could provide a
faster convergence. Therefore, for welding, where accurate
setting of welding variables and parameters are imperative,
the use of the Levenberg–Marquardt learning algorithm in
ANN systems could guarantee accurate predictions.

5 Discussions

UHSS is becoming more usable for structural applications
especially in mobile equipment industries. However, in appli-
cations where there is high fatigue loading on the structural
welded load-carrying member, UHSS may not satisfy service
performance requirements due to weldability challenges that
arise from welding heat input, causing HAZ softening effects,
lack of fusion, and susceptibility to cracking and fatigue fail-
ure. Previous study of structural integrity and the usability of
high-strength steels (HSS) has emphasized the need for risk
assessment when considering HSS and its variants such as
UHSS and AHSS, especially as regards weldability and ser-
vice performance following high heat input [43].

In this paper, UHSS S960QC material data presented in
Fig. 2 shows welding considerations that require risk assess-
ment. Adhering to heat input values and filler material

recommendations can ensure sound welded joint characteris-
tics. Nevertheless, weldability challenges clearly exist when
manufacturing full penetration fillet welded joints of UHSS
S960QC. Weldability challenges are increased where the
UHSS S960QC weldments need to conform to ISO 5817.

Previous studies of online welding process monitoring [43]
have shown the necessity of using sensing systems like infra-
red thermography in pre-process monitoring, in situ monitor-
ing, and post-process monitoring for adaptive robotic GMAW.
This sensory system will allow temperature differences to be
measured and enable the required amount of heat needed for
full penetration to be monitored. Despite the ability to acquire
this data, such sensory systems are unable to control temper-
ature variations dynamically in tandem with robotic GMAW
process variables and parameters. Thus, an AI system for data
modeling and process control should be embraced.

The AI model discussed and the welding information pre-
sented can provide a useful basis for real-time experimenta-
tion on UHSS S960QC. Actual experimentation data can then
be compared with data values predicted from different learn-
ing algorithms like back propagation (BP), resilient propaga-
tion (RPROP), Levenberg–Marquardt, genetic algorithm
(GA), and particle swarm optimization (PSO) to ascertain
the accuracy of predicted AI values against actual experimen-
tal values. As neural network systems can learn new associa-
tions, new functional dependencies, and new patterns based
on teaching and learning via input data and expected output,
accurate prediction of desired outcomes is feasible [44].

6 Conclusion

Modeling of welding systems to guarantee sound structural
integrity in lightweight-weldedmaterials is relevant tomodern
welding manufacturing and production. In the current eco-
nomic environment, structural weight must be reduced, stabil-
ity of the welded structure must be assured, manufacturing

Fig. 13 Performance of learning
algorithm prediction data against
actual weld bead width data [34]
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must be cost effective, and overall production must be profit-
able. Lightweight materials of high yield strength like UHSS
S960QC are a possible material choice for lightweight
manufacturing. UHSS S960QC has a superior strength-to-
weight ratio, and excellent physical, mechanical, and low-
temperature properties. From the environmental viewpoint,
welding usability of UHSS translates into improved energy
efficiency through low fuel consumption and low carbon
emissions, especially in welded mobile equipment and
structures.

In this paper, a schematic model of an AI system has been
created by considering identified nonlinear factors associated
with UHSS S960QC weldability and robotic GMAW. High
heat input, which can result in HAZ softening and greater
propensity to fatigue failure, thus affecting toughness and
strength properties, is the most critical weldability issue with
UHSS-welded joints. The multiple welding variables associ-
ated with robotic GMAW, such as heat input, CTWD, and
torch angle, and related parameters like arc current, arc volt-
age, welding speed, gas flow rate, arc efficiency; electrode
stick out, wire feed speed, electrode diameter, and torch posi-
tion and torch travel angle, make accurate prediction of weld
characteristics very challenging. Other nonlinear factors con-
nected with the robot manipulator and end effector trajectory
bring repeatability and precision errors, which further compli-
cates prediction of the outcome of robotic GMAW.

One possible way to address or alleviate weldability chal-
lenges associated with nonlinear factors is by deploying AI
systems. The welding information presented together with the
neural network schematic model show that it is possible to
accurately predict welding parameters and process outputs
using learning algorithms. The schematic case model can pro-
vide a basis for future experimental study of UHSS S960QC
welding in conformance with ISO 5817. Additionally, an op-
timized control system using infrared thermography-based
sensors can be developed, which would enable an adaptive
approach in robotic GMAW to be incorporated into the neural
network modeling and control system. This paper increases
awareness of the potential of UHSS S960QC and presents a
scenario for using an AI system to overcome current limits on
adaptive robotic GMAW.
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Abstract: Recent developments in artificial intelligence (AI) modeling tools allows for envisaging
that AI will remove elements of human mechanical effort from welding operations. This paper
contributes to this development by proposing an AI tungsten inert gas (TIG) welding algorithm
that can assist human welders to select desirable end factors to achieve good weld quality in the
welding process. To demonstrate its feasibility, the proposed model has been tested with data from
27 experiments using current, arc length and welding speed as control parameters to predict weld
bead width. A fuzzy deep neural network, which is a combination of fuzzy logic and deep neural
network approaches, is applied in the algorithm. Simulations were carried out on an experimental
test dataset with the AI TIG welding algorithm. The results showed 92.59% predictive accuracy
(25 out of 27 correct answers) as compared to the results from the experiment. The performance of the
algorithm at this nascent stage demonstrates the feasibility of the proposed method. This performance
shows that in future work, if its predictive accuracy is improved with human input and more data,
it could achieve the level of accuracy that could support the human welder in the field to enhance
efficiency in the welding process. The findings are useful for industries that are in the welding trade
and serve as an educational tool.

Keywords: TIG welding; artificial intelligence; deep neural network; automation

1. Introduction

Welding processes and procedures need to follow trends and adapt to changes in industry
such as increased usage of robots and mega structural construction. In addition, the application
of new materials in modern industries has increased the need for new developments in welding
processes. Thick and thin metal plates of increasingly diverse materials are used throughout industry
and effective and efficient joining technology is in urgent demand. During welding, problems are
usually encountered due to improper control of various parameters associated with the welding
process. Normally, a welder, based on experience gained over several years of welding, selects a set of
parameters that could produce fairly good results. The trial-and-error inherent in this approach can
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be averted if an appropriate automation tool can be created that can predict the output from a set of
defined parameters. Such a tool can help improve weld quality by improving the prediction of weld
outcome and limiting defects in welded joints.

To address this need, various methods have recently been applied to attain good mechanical
properties. These include designs of experiment (DoE) techniques and algorithms, and computational
networks including a neural network and fuzzy logic. Design of Experiments is a technique that
is used to generate the information required with the minimum amount of experimentation by
applying the following conditions: Experimental limits and specific experimental conditions [1]. It also
uses mathematical investigation to predict the response at any point within the experimental limits.
In welding research, the aim of these methods is the optimization of the different parameters used in
welding [2], for example, Parikshit [3], who carried out modeling of a tungsten inert gas (TIG) welding
process applying conventional regression analysis and neural network-based approaches and found
that the neural network approach is much better than conventional regression analysis. In the paper, it
was claimed that the neural network-based approach is better than conventional regression methods
since the neural network-based approach can carry out interpolation within a certain range.

However, a limitation of neural networks is that it is a blackbox. This makes it difficult to explain
how the algorithm reaches a decision, which is important for a human welder. This problem can be
overcome using fuzzy deep learning. Fuzzy deep learning, which is also called a fuzzy deep neural
network, is a hybridization of fuzzy logic and deep neural network. In fuzzy deep learning, fuzzy
logic is incorporated into the learning process of multiple neural networks algorithms as a deep neural
network (DNN) [4]. Figure 1 shows an example of a DNN algorithm, which uses multiple layers
unlike a shallow neural network, which uses a few hidden layers to construct its hypothesis. A DNN
constructs its hypothesis by building it out of artificial neurons to form a graph. A graph of these
hierarchies is many artificial neurons, which are connected layers as illustrated in Figure 1. In this
connection, an output of one artificial neuron automatically becomes a piece of input information to
another [4–8].
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Combining fuzzy logic and DNN allows for the development of an AI model that is not only
accurate in prediction but inherently interpretable and understandable to humans. Drawing inspiration
from this AI technique, this work presents the development of an AI TIG welding algorithm for
selecting control parameters to predict a desired weld bead width using fuzzy deep learning. The paper
is divided into four sections. In Section 2, a brief description of the TIG welding process is presented.
This is followed by a description of a simulation experiment in Section 3 where the development
process of the AI TIG Welding algorithm is explained. The result emerging from this experiment is
discussed in Section 4 followed by some concluding remarks.
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2. TIG Welding Process

The tungsten inert gas (TIG) welding process produces welds with a non-consumable tungsten
electrode. During direct current (DC) welding, the electrodes used are usually made of pure tungsten.
Thoriated tungsten which contains thorium oxide in the range of 1% to 4% is used to improve arc
ignition. Other additives such as lanthanum oxide and cerium oxide have been identified as giving
improved performance in terms of arc starting and lower electrode consumption. Because the welding
current has a relation with the electrode diameter and the tip angle, it is important to select this
parameter in relation to current and tip angle. Therefore, the lower the current, the smaller the electrode
diameter and tip angle. In alternating current (AC) welding, since the electrode operates at a much
higher temperature, tungsten with zirconia is added to reduce electrode erosion.

In the TIG welding process, the arc is formed between a pointed tungsten electrode and the
workpiece in an inert atmosphere of argon (Ar), helium (He) or an Ar–He mixture. The process uses a
power source, a shielding gas and a TIG torch. [10]. It is important to note, however, that although
the electrode, in theory, is not consumed, control must consider the deterioration of the sharpened tip
that occurs due to contamination when the tip comes into contact with the material during the arc
ignition. Additionally, small projections of the melted material impact on the tip, contaminating it and
influencing the weld quality. This process leads to consumption of the electrode, especially in the case
of welding of carbon steels. It is thus important to sharpen the electrode in this situation.

Depending on the required weld preparation and the workpiece thickness, it is possible to work
with or without filler. The filler can be introduced manually or automatically depending on the type of
process selected. The process itself can be manual, partly mechanized, fully mechanized or automatic.

Filler is used when welding together metals with high melting points to prevent cracking.
In addition, highly corrosive resistant alloys when welded to thicker wall material require a filler wire.
Finally, when dissimilar alloys are being joined a filler wire is needed. Metals with a thickness of more
than 6 mm require the use of filler wire during welding with TIG welding process.

The power is fed from the power source, down the contact tube and is delivered to a tungsten
electrode and an electric arc is then created between the tungsten electrode and the workpiece.
The tungsten and the welding zone are protected from the surrounding air by a shielding gas to prevent
oxidation or contamination from the atmosphere. The electric arc can produce temperatures up to
19,400 ◦C and this heat can be a much-focused local heat in the TIG welding process. The weld pool
can be used to join the base metal with or without filler material [11,12]. Figure 2 shows a schematic
diagram of the TIG welding process incorporated with the filler rod.
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Characteristics of Weld Bead Geometry

Quality is very vital in the welding process and it is important to note that the weld bead plays a
major role in achieving the desired quality. The quality of the weld bead geometry and configuration
are controlled by various welding process input parameters such as current, voltage and welding
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speed [13]. Liquid weld metal solidification during welding results in interfacial tensions that usually
determine the final bead geometry [14]. The mechanical properties of the weld, which are an important
factor in all welded structures, are also influenced by the weld bead geometry [15].

The main defects that occur in the bead geometry during welding are high heat-affected zone
(HAZ) width, high fusion width, excess bead height and lack of penetration. Lack of penetration
directly affects the strength and load-bearing capacity of the welded joint. Additionally, lack of
penetration increases the stress in the weld joint, thereby resulting in crack propagation which affects
the fatigue life of the weld joint [16].

Weld bead geometry is illustrated in Figure 3 showing the depth of fusion, which is the distance
that fusion extends into the base material and the bead width, which is the maximum width of the
deposited weld metal. Bead height or reinforcement height is the bead height above the surface of the
plate. The heat-affected zone is the non-melted area that experiences changes in material properties
due to exposure to the welding heat.
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3. Simulation Experiments

This section presents the process for simulation experiments using 27 sets of experimental data.
Hybrid fuzzy deep neural learning is applied in the simulation process. The section is divided into two
main subsections with further subsections. Section 3.1 presents the system modeling, its mathematical
logic and how the control variables and the expected output were measured using fuzzy mathematics.
Fuzzy mathematics is the area of mathematics that relates to fuzzy sets and fuzzy logic. Section 3.2
presents the objective evaluation of the proposed system using 27 experiments.

3.1. Building the AI TIG Welding Control Algorithm and Datasets

3.1.1. Feature Selection and Measurement using a Fuzzy Mathematical Technique

Methodologically, the proposed AI TIG welding algorithm is a hybrid deep learning AI technique.
It is based on a hybridization of the mathematics of fuzzy logic and the learning capability of deep
neural networks (DNN). In the pioneering work of Zadeh [17], fuzzy logic was introduced as an
attempt to overcome weaknesses in Boolean logical thinking. It provides a mathematical framework
to compute with words based on “degrees of truth” rather than the usual “true or false” (1 or 0)
Boolean logic on which the modern computer is based. Fuzzy logic includes 0 and 1 as extreme cases
of truth but it also includes the various states of truth in between so that, for example, the result of a
comparison between two things could not be “tall” or “short” but “somehow tall” and the height can
be quantified using a mathematical curve called a membership function (MF). Therefore, the fuzzy
inference processes allow the modeling engineer to generate rule-based control structures as illustrated
in Figure 4.



Metals 2020, 10, 451 5 of 14Metals 2020, 10, x FOR PEER REVIEW 5 of 14 

 

 

Figure 4. Illustration of the inference engine of a fuzzy controller. 

Using the welding process as a case, as shown in Figure 4, the fuzzy inference system consists 
of three subsystems: the fuzzifier, the rule inference engine and the defuzzifier. The task of the 
Fuzzifier is to take the expert natural language about the welding process and transform it into fuzzy 
values using an MF mathematical curve.  

Let us assume the following responses: “when the welding speed is very high…,” “when the 
welding speed is very low….,” “the bead width is narrow.” For us to know to what degree is the bead 
width narrow or the welding speed very low or very high, it is at the fuzzification process where the 
system assigns these quantitative weights to incoming data to determine its degree of truth within a 
universe of discourse (e.g., 0 to 100 mm/s) speed range) on a fuzzy scale using the mathematical 
curves as depicted in the illustration with “Data 1, Data 2 and Data n passing through the 
membership function curves.  

The task of the rule inference engine is to map a response argument to its expected reality 
(consequence) using IF...THEN logic. When a condition, for example, is met, the inference engine 
produces a result sent to the defuzzifier as an input. It is then transformed back to the human 
language which was initially taken into the system. In this way, both the welder and non-welders can 
understand the system behavior to influence the environment it observes.  

In summary, fuzzy logic is essentially a means to develop human-like capabilities for an AI 
algorithm that are closer to the way the human brain works. It provides a mathematical framework 
to model with words and sentences as humans do. In doing so, it helps humans to aggregate data 
and forms several partial truths which can be aggregated further into higher truths, which, in turn, 
when certain thresholds or conditions are exceeded, cause certain further results such as motor 
reaction. By incorporating this knowledge-based AI technique into DNN models, an explainable rule-
based structure can be realized in DNN algorithms to alleviate the problems of strictly trading off 
interpretability for accuracy during the system modeling [18]. 

In this work, the hybrid fuzzy-DNN technique is necessary for AI TIG Welding system modeling 
for two reasons. Firstly, because the goal of this work is to develop a system where a human welder 
can interpret the algorithm decision to make further decisions, and secondly, DNN is a deterministic 
algorithm that does not account for uncertainties, imprecision, vagueness and ambiguities in the data. 
The data we have at hand in modeling the system is human data (i.e., data extracted from a welder). 

Figure 4. Illustration of the inference engine of a fuzzy controller.

Using the welding process as a case, as shown in Figure 4, the fuzzy inference system consists of
three subsystems: the fuzzifier, the rule inference engine and the defuzzifier. The task of the Fuzzifier
is to take the expert natural language about the welding process and transform it into fuzzy values
using an MF mathematical curve.

Let us assume the following responses: “when the welding speed is very high . . . ,” “when the
welding speed is very low . . . .,” “the bead width is narrow.” For us to know to what degree is the
bead width narrow or the welding speed very low or very high, it is at the fuzzification process where
the system assigns these quantitative weights to incoming data to determine its degree of truth within
a universe of discourse (e.g., 0 to 100 mm/s) speed range) on a fuzzy scale using the mathematical
curves as depicted in the illustration with “Data 1, Data 2 and Data n passing through the membership
function curves.

The task of the rule inference engine is to map a response argument to its expected reality
(consequence) using IF...THEN logic. When a condition, for example, is met, the inference engine
produces a result sent to the defuzzifier as an input. It is then transformed back to the human language
which was initially taken into the system. In this way, both the welder and non-welders can understand
the system behavior to influence the environment it observes.

In summary, fuzzy logic is essentially a means to develop human-like capabilities for an AI
algorithm that are closer to the way the human brain works. It provides a mathematical framework
to model with words and sentences as humans do. In doing so, it helps humans to aggregate data
and forms several partial truths which can be aggregated further into higher truths, which, in turn,
when certain thresholds or conditions are exceeded, cause certain further results such as motor
reaction. By incorporating this knowledge-based AI technique into DNN models, an explainable
rule-based structure can be realized in DNN algorithms to alleviate the problems of strictly trading off

interpretability for accuracy during the system modeling [18].
In this work, the hybrid fuzzy-DNN technique is necessary for AI TIG Welding system modeling

for two reasons. Firstly, because the goal of this work is to develop a system where a human welder
can interpret the algorithm decision to make further decisions, and secondly, DNN is a deterministic
algorithm that does not account for uncertainties, imprecision, vagueness and ambiguities in the data.
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The data we have at hand in modeling the system is human data (i.e., data extracted from a welder).
This human data has inherent imprecisions, ambiguities and vagueness. The advantage of fuzzy logic
is that it has the capability to model this kind of data. Therefore, incorporating fuzzy logic into the
system modeling of a neural deep neural network algorithm helps to manage these imprecisions,
ambiguities, vagueness and fuzziness [18].

Buah, Linnanen and Wu [4] showed that when DNN, fuzzy logic and Likert scale measurement
techniques are combined, it can lead to an architecture called a fuzzy logic-based Likert Inference
engine that can create a high dimensional data space for big augmented data to be extracted to augment
small human linguistic statements. This data can be used to train a fuzzy-driven DNN algorithm to
achieve results closer to the state-of-the-accuracy in DNN. Building on this prior work, this hybrid
fuzzy-DNN architecture combined with Likert capability is the main technique that informed the
proposed AI TIG Welding algorithm as illustrated in the process model in Figure 5.
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Figure 5 illustrates the AI TIG welding algorithm that was built using three control features: X1 as
current (I), X2 as arc length and X3 as welding speed. The control parameters are used to predict weld
bead width. Table 1 shows the scale ranges used in the system modeling for each parameter.

Table 1. Psychometric and fuzzy scaling for the parameters.

Control Parameters Scale Range of Controlled Parameters,
X on Psychometric Scale (Likert) Corresponding Fuzzy Scale Range

Current 0 to 100 amps 0 to 1
Arc length 0 to 10 mm 0 to 1

Speed 0 to 100 mm/s 0 to 1
Bead width 0 to 10 mm 0 to 1

As illustrated in Figure 5, after defining the parameter ranges, the next step is learning about the
control parameters and their theoretical association with the expected output from welding “experts”.
To accomplish this, literature was reviewed, and 13 expert-level rules were extracted. The rules are
presented in Table 2.
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Table 2. Linguistic rules used in designing the fuzzy logic-based Likert algorithm.

Rules and
Variables IF . . . (Premise) THEN

(Conclusion)

Parameters Current Arc Length Speed Bead Width

Rule: 1 Low Decrease Very High Narrow
Rule: 2 Very High Decrease greatly Very High Wilder
Rule: 3 Low Increase greatly Very High Fairly Wide
Rule: 4 Medium High Decrease greatly Very High Narrow
Rule: 5 Very Low Decrease greatly Very High Narrower
Rule: 6 Very Low Increase greatly Very High Fairly Wide
Rule: 7 Very High Decrease greatly Very Low Fairly Wider
Rule: 8 Very High Increase greatly Very Low Wider
Rule: 9 Low Decrease Very High Fairly Wide

Rule: 10 Low Increase greatly Very High Fairly Wide
Rule: 11 Very High Increase greatly Low Wider
Rule: 12 Very High Decrease greatly Low Moderately Wide
Rule: 13 Low Decrease High Narrower

The model architecture is a hybrid fuzzy–DNN model, hence big data is needed to build the
model. The 13 expert-level rules are inadequate to train the deep neural network in the architecture.
To manage this problem, we built on the work of Buah et al. [4]. and the X values were passed through
a classifier called a fuzzy logic-based Likert algorithm as illustrated in Figure 6.
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The strength of the fuzzy logic-based Likert algorithm is that it helps to re-scale the raw data
X from the human expert on a psychometric scale using traditional Likert scaling, which is then
transformed into a fuzzy-driven feature denoted as XFL as depicted in Figure 6. This is the engine
for transforming an input variable X to obtain its fuzzy representations called fuzzy-driven Likert
features, XFL.
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This transformation creates a data space with interval details so that additional data can be
collected via data augmentation for training the fuzzy-driven DNN model as shown in Figure 5.

Mathematically, it is expressed as in Equation (1):

XFL = f (X) (1)

where XFL is the target and X is the predictor of the target. So, the goal is to find a function, f that
maps X and XFL using fuzzy logical rules. Using a 6-point Likert scale, six fuzzy rules were defined to
model the fuzzy Likert Inference engine. The extreme ends of the rule are as follows:

Rule 1: If X is Very Low THEN It is corresponding XFL is also Very Low;
Rule 2: If X is Low THEN It is corresponding XFL is also Low;
Rule 3: If X is Medium Low THEN It is corresponding XFL is also Medium Low;
Rule 4: If X is Medium High THEN It is corresponding XFL is Medium High;
Rule 5: If X is High THEN It is corresponding XFL is High;
Rule 6: If X is Very High THEN It is corresponding XFL is Very High.
Having defined the rule function f (X) that maps X and XFL, the fuzzy logic-based Likert algorithm

was built using the information in Table 3.

Table 3. Description of features (Control variables) and labels (Outcome), their Likert values and
corresponding fuzzy Likert crisp values for degree of truth.

Features and
Labels

Linguistic Terms
for Parameters

Fuzzy Likert
Range, Likert Value, X

Corresponding
Fuzzy Range of

Fuzzy Likert, XFL

Current (A)
0 to 100 A

Very Low 0 0 0–0.1704
Low 17.1–30.4 23.75 0.171–0.304

Medium Low 31.0–50.4 40.7 0.31–0.504
Medium High 51.0–67.04 59.02 0.51–0.6704

High 68.0–83.04 75.52 0.68–0.8304
Very High 84.0–100 100 0.84–1

Arc Length (mm)
0 to 10 mm

Decrease greatly 0–1.704 0 0–0.1704
Decrease 1.71–3.04 2.375 0.171–0.304

Slightly decrease 3.1–5.04 4.07 0.31–0.504
Slightly Increase 5.1–6.704 5.902 0.51–0.6704

Increase 6.8–8.304 7.552 0.68–0.8304
Increase Greatly 8.4–10 10 0.84–1

Speed (mm/s)
0 to 100 mm/s

Very Low 0 0 0–0.1704
Low 17.1–30.4 23.75 0.171–0.304

Medium Low 31.0–50.4 40.7 0.31–0.504
Medium High 51.0–67.04 59.02 0.51–0.6704

High 68.0–83.04 75.52 0.68–0.8304
Very High 84.0–100 100 0.84–1

Bead Width (mm)
0 to 10 mm

Narrower 0–1.704 0 0–0.1704
Narrow 1.71–3.04 2.375 0.171–0.304

Fairly Wide 3.1–5.04 4.07 0.31–0.504
Moderately Wide 5.1–6.704 5.902 0.51–0.6704

Fairly Wide 6.8–8.304 7.552 0.68–0.8304
Wider 8.4–10 10 0.84–1

As indicated in Table 3, X was modelled with a 6-point Likert scale and XFL was modelled with a
six-level fuzzy membership function.

The fuzzy logic-based Likert algorithm was then applied to the rules in Table 4 to estimate their
system boundaries (maximum and minimum data space). This technique helped re-write the experts
rule as shown with an example using Rule 1 in Table 4.



Metals 2020, 10, 451 9 of 14

Table 4. Modified expert rules using a fuzzy Likert algorithm.

Rules and
Variables If . . . (Premise) Then (Conclusion)

Parameters Current Arc Length Speed Bead Width

Rule:1→ X Low Decrease Very High Narrow
Rule:1→ XFL 17.1–30.4 1.71–3.04 84.0–100 Narrow (2.375)

Data augmentation was then carried between the data space of the control parameters. A big
experimental dataset amounting to 24,012 training datasets was then extracted to train a fuzzy-driven
DNN model as indicated in Figure 5. The idea of data augmentation is that many application domains
do not have access to big data as in this case. Therefore, in machine learning, data augmentation is a
form of data space solution to the problem of limited data. It encompasses a suite of techniques that
enhance the size and quality of training datasets such that better deep learning models can be built [19].
As indicated in Table 4, no data augmentation was performed on the target behavior (weld bead) but
rather the mean score of its system boundary is used as labels for the augmented features of the control
variables. This was done to mitigate the model vulnerability to the course of dimensionality. With this
understanding, the next section presents the training phase of the fuzzy-driven DNN model with the
XFL big data features extracted using the data augmentation technique.

3.1.2. Training, Validating and Testing the Fuzzy-Driven DNN Model

As shown in the AI TIG Welding process model in Figure 5, after the fuzzy-driven Likert features
XFL have been obtained for all the control variables and their corresponding labels, the next step is
training the fuzzy-driven DNN model. The DNN model was implemented using the Keras deep
learning library with Google TensorFlow backend using the Python language. Table 5 shows the
experimental setting and model architecture.

Table 5. Experimental setting of the proposed DNN-based TIG Welding algorithm.

Learner Type Neural Networks

Number of output nodes 3 classes with 6 sub-classes (see Figure 6 and Table 3)
Loss function Categorical cross-entropy

Hidden layer 8-layer network with 6 hidden layers
Total number of neurons: 188

Maximum number of training iterations Epochs: 176 and Batch size: 122
Activation function Rectified linear unit (ReLu)

Optimization algorithm Stochastic gradient descent
Early stopping rule Manual stopping by observation in loss in generality

Pre-training No pre-trained model. The models were trained from scratch

Regularization
Dropout

Dropout was applied to 6th and 7th layer with 0.05 and 0.55,
respectively

Dataset for training and validation
Training sample: 14,407
Validation sample: 9593

Data split rule: 60/40
Dataset for testing: objective evaluation 27 experiments

Learning rate 0.003

As indicated in the experimental setting in Table 5, the proposed AI TIG Welding algorithm was
built using neural networks and ReLU as an activation function. The expected output is theoretically
in three classes but to capture more detailed information about the class labels, it was mathematically
sub-divided into six subclasses using fuzzy mathematics, as shown in Figure 7, in line with Table 3.
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The model parameters were tuned (optimized) using stochastic gradient descent.
Dropout regularization technique was applied to the modeling to prevent the model from over-fitting
into the training data since over-fitting affects the model’s performance in generalizing to unseen cases.
As indicated in the experimental setting, the algorithm was not built using a pre-trained model; it was
trained from scratch. During the training, the model was monitored in addition to making necessary
manual stops and the model’s weights were recorded. In the experiment setting, the model was trained
and validated with 24,000 experimental big data using 60/40 rules. Using this data split rule, the
algorithm randomly used about 14,407 training datasets for training and 9593 for validation. Running
the simulation at 176 epochs with a batch size of 122, we obtained a validation accuracy of 95.30%.
To offer an objective evaluation of the model, we tested the model with independent data using a TIG
process for a real-life experiment shared by Narang [20]. The next section gives a brief description of
the experiment and reports the results that emerged when the model was applied to independent data.

3.2. Objective Evaluation of the AI TIG Welding Algorithm

Experiment: A structural steel specimen was welded with TIG welding processes using direct
current straight polarity (DCSP), which was integrated with an arc image magnifying system. The length,
width and thickness of the mild steel plates used for the experiments were 180 mm, 65 mm and 8 mm.
The structural steel plates were cleaned properly to avoid unwanted scaling that can cause weld defects.
During the welding process, shielding gas flow rate and diameter of the TIG electrode were kept
constant. The chemical composition of the structural steel is given in Table 6.

Table 6. Chemical composition of the structural steel.

C % Si % Mn % P % S % Ni % Cr % Fe %

0.16 0.178 0.45 0.18 0.07 0.13 0.016 98.84

The experimental setup of the TIG welding procedure integrated with a linear variable
displacement transformer (LVDT) is illustrated in Figure 8. The LVDT was used during the experiments
to set the gap between the electrode tip and workpiece. Trial runs were undertaken for the bead-on-plate
welds to set the levels of three welding inputs of the process: welding current, traverse speed and
arc length. In all, 27 test experiments of bead-on-plate welds were carried out and the results are
shown in Table 7. Figure 9 shows the polished and etched TIG weldment cross-sections with different
process parameters.
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Table 7. Test data for 27 test experiments of bead-on-plate welds.

Serial
Number

(S.N)

Current
(A)

Arc
Length
(mm)

Welding
Speed
(mm/s)

Bead
Width
(mm)

Depth of
Penetration

(mm)

Depth of
HAZ
(mm)

Width of
HAZ
(mm)

1 55 2 15 5.46 1.59 1.73 1.83
2 55 2 30 4.71 1.25 1.19 1.35
3 55 2 45 4.16 1.04 1.02 1.13
4 55 2.5 15 5.77 1.76 1.94 2.20
5 55 2.5 30 4.93 1.38 1.33 1.63
6 55 2.5 45 4.46 1.18 1.16 1.33
7 55 3 15 6.09 1.91 2.13 2.45
8 55 3 30 5.03 1.42 1.51 1.84
9 55 3 45 4.55 1.23 1.23 1.46

10 75 2 15 6.12 1.99 2.48 2.25
11 75 2 30 5.13 1.39 1.46 1.72
12 75 2.5 45 4.59 1.16 1.22 1.39
13 75 2.5 15 6.59 2.06 2.65 2.41
14 75 2.5 30 5.26 1.50 1.65 1.89
15 75 2.5 45 4.85 1.32 1.34 1.57
16 75 3 15 7.07 2.18 2.72 2.79
17 75 3 30 5.45 1.65 1.86 2.02
18 75 3 45 5.16 1.45 1.58 1.79
19 95 2 15 6.65 2.17 3.04 2.7
20 95 2 30 5.38 1.51 1.81 1.94
21 95 2 45 4.75 1.23 1.49 1.52
22 95 2.5 15 7.19 2.23 3.32 2.89
23 95 2.5 30 6.16 1.63 1.97 2.15
24 95 2.5 45 5.2 1.32 1.56 1.75
25 95 3 15 7.64 2.51 3.21 3.15
26 95 3 30 6.31 1.74 2.15 2.70
27 95 3 45 5.11 1.41 1.74 2.16
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parameters. Current, arc length and traverse speeds are: (a) 55 A, 2 mm, 15 mm/s; (b) 75 A, 2.5 mm
30 mm/s; and (c) 95 A, 3 mm, 45 mm/s, respectively [20].
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To obtain the same data structure used in modeling the AI TIG Welding algorithm, we pre-processed
the bead width with the fuzzy logic-based Likert Inference engine in Figure 6 to obtain fuzzy Likert
labels within the six classes in Table 3. The AI TIG Welding algorithm was then queried with the
27 unseen experiments. After approximately five seconds of running the simulation, the simulation
results presented in Table 8 were obtained.

Table 8. Simulation experiment results when the class labels of the predicted values were compared
with the observed values from the laboratory experiment.

S.N
Observed

Values of Bead
Width in LAB

Class Label of
Observed Value in

Fuzzy Likert
Terms

Fuzzy Linguistic
Terms for

Observed Values

Predicted Value of
Bead Width with

the AI TIG
Welding

Class Label of
Predicted Values
in Fuzzy Likert

Terms

1 5.46 5.1–6.704 Fairly wide 5.1–6.704 Fairly wide
2 4.71 3.1–5.04 Moderately wide 3.1–5.04 Moderately wide
3 4.16 3.1–5.04 Moderately wide 3.1–5.04 Moderately wide
4 5.77 5.1–6.704 Fairly wide 5.1–6.704 Fairly wide
5 4.93 3.1–5.04 Moderately wide 3.1–5.04 Moderately wide
6 4.46 3.1–5.04 Moderately wide 3.1–5.04 Moderately wide
7 6.09 5.1–6.704 Fairly wide 5.1–6.704 Fairly wide
8 5.03 3.1–5.04 Moderately wide 3.1–5.04 Moderately wide
9 4.55 3.1–5.04 Moderately wide 3.1–5.04 Moderately wide
10 6.12 5.1–6.704 Fairly wide 5.1–6.704 Fairly wide
11 5.13 5.1–6.704 Fairly wide 5.1–6.704 Fairly wide
12 4.59 3.1–5.04 Moderately wide 3.1–5.04 Moderately wide
13 6.59 5.1–6.704 Fairly wide 5.1–6.704 Fairly wide
14 5.26 5.1–6.704 Fairly wide 5.1–6.704 Fairly wide
15 4.85 3.1–5.04 Moderately wide 3.1–5.04 Moderately wide
16 7.07 6.8–8.304 Fairly wider 6.8–8.304 Fairly wider
17 5.45 5.1–6.704 Fairly wide 5.1–6.704 Fairly wide
18 5.16 5.1–6.705 Fairly wide 3.1–5.04 Moderately wide
19 6.65 5.1–6.706 Fairly wide 6.8–8.304 Fairly wider
20 5.38 5.1–6.704 Fairly wide 5.1–6.704 Fairly wide
21 4.75 3.1–5.04 Moderately wide 3.1–5.04 Moderately wide
22 7.19 6.8–8.304 Fairly wider 6.8–8.304 Fairly wider
23 6.16 5.1–6.704 Fairly wide 5.1–6.704 Fairly wide
24 5.2 5.1–6.704 Fairly wide 5.1–6.704 Fairly wide
25 7.64 6.8–8.304 Fairly wider 6.8–8.304 Fairly wider
26 6.31 5.1–6.704 Fairly wide 5.1–6.704 Fairly wide
27 5.11 5.1–6.704 Fairly wide 5.1–6.704 Fairly wide

4. Result and Discussion

In this paper, the objective was to design an artificial intelligence (AI) TIG Welding algorithm to
enhance the capability of the human welder to select appropriate input parameters to achieve good
welding quality in the welding process. Using current, arc length and welding speed as case features
(control variables), an AI-powered TIG Welding algorithm based on the architecture of a hybrid fuzzy
deep neural network algorithm was trained. To offer an objective evaluation of the model, it was tested
with experimental data from 27 welds. After training and validation, a validation accuracy of 95.30%
was obtained by the AI-powered TIG welding architecture. The model was then empirically tested
with new test data. Running the test simulation on the 27 real-life experimental data, we obtained the
results in Table 6. As shown in the experimental results, the AI TIG welding algorithm exhibited 92.59%
predictive accuracy. Out of 27 targets, it predicted 25 correctly with two mistakes (Experiments 18 and
19). As shown in the experimental results, the algorithm gave a hint on the maximum and minimum
control range in which the human welder can operate to obtain the desired output. For example, using
Experiment 1 as a case, in reference to Table 3, the algorithm suggested that if the current is regulated
within 51 to 67.04 A and the arc length is selected within 1.71 to 3.04 mm and the welding speed is set up
to a maximum of 17.04 mm/s or less, a moderately high weld bead width of approximately 5.1 to 6.704
can be achieved. This prediction is consistent with the real-life case in the experiment in Table 6, where
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a current of 55 A was applied, and 2 mm arc length and 15 mm/s welding speed were set as control
parameters. As indicated in the real-life case, a weld bead of 5.46 mm was recorded in the experiment,
which is within the predictive range of the algorithm. This performance demonstrates the feasibility of
our proposed method in supporting the human welder in automatic selection of control parameters to
obtain the desired weld bead without going through a time-consuming trial-and-error approach.

In future work, the aim is to test the system with more experimental cases and expand its
knowledge development to cover the depth of penetration, depth of the heat-affected zone (HAZ) and
the width of the HAZ. The model should be tested in different domains of welding on best practices to
improve the knowledge base of the proposed system to progress the field.
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