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Cash flow management is a crucial factor of construction project profitability and its negligence 
contributes a significant portion of contractor bankruptcies. This study proposes a novel cash 
outflow forecasting model. The model applies a machine learning method, support vector 
regression (SVR), on historical data of similar projects to forecast the current project’s cash 
outflow from the beginning to the end of construction. In the proposed model project key 
characteristics are identified via project k-means clustering and project cost composition before 
producing the cash outflow forecast. The model is tested and verified using actual data from 
33 projects of a Finnish general contractor. The forecasting model and its intermediate 
versions are benchmarked against the current state-of-the-art approaches found in the 
literature. 

A systematic literature review of the current cash outflow models in the construction industry 
is conducted. The review shows that cash outflow is forecasted indirectly by estimating a cost 
commitment curve with a linear logit model and applying a fixed timelag based on project cost 
composition. The issues with this approach is that it cannot fit non-linear relationships and 
assumes that different cost categories are incurring at a uniform rate which results to a 
systematic error. The proposed model addresses the identified issues by applying non-linear 
methodology to forecast cash outflow directly and utilizing project cost composition to estimate 
the cash outflow curve profile which makes it novel from the theoretical perspective. 

The results of the proposed model performance are promising. Forecasting cash outflow 
directly reduced the average error by 5.41% compared to the often used indirect approach. 
The use of SVR improved the model’s ability to fit an individual project and utilization of project 
cost composition had a similar effect in the pre-construction phase reducing the root mean 
squared error (RMSE) to 7.75% from 10.25% RMSE observed with the standard approach. 
Within the construction phase, the average error reduced from -2.33% pre-construction level 
to an average of -0.67%.   
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Avainsanat: Projektin kassavirran ennustaminen, tukivektoriregressio, rakentamisprojektien 
hallinta 

 

Kassavirran hallinta on ratkaiseva tekijä rakentamisprojektien kannattavuudessa ja sen 
laiminlyönti aiheuttaa merkittävän osan urakoitsijoiden konkursseista. Tutkimus ehdottaa 
uudenlaista kassavirran ennustemallia, jota voidaan käyttää ennen rakentamisen aloittamista 
sekä sen aikana. Malli soveltaa koneoppimismenetelmää (tukivektoriregressio) ennustamaan 
nykyisen projektin kassavirtaa rakentamisen alusta loppuun käyttäen vastaavien projektien 
historiallisia tietoja. Se tunnistaa projektin ominaisuudet projektien ryhmittelyn (k:n keskiarvon 
klusterointimenetelmä) ja kustannusrakenteiden avulla. Mallin toimivuus on testattu ja 
todennettu käyttäen toteumatietoa suomalaisen pääurakoitsijan 33:sta projektista. 
Ennustemallia ja sen väliversioita verrataan kirjallisuuden johtaviin lähestymistapoihin. 

Rakennusteollisuuden nykyisistä kassavirtamalleista tehdään systemaattinen 
kirjallisuuskatsaus, joka osoittaa, että kassavirta ennustetaan epäsuorasti arvioimalla 
kustannuskäyrä lineaarisella mallilla (logaritminen lineeariregressio) ja käyttämällä kiinteää 
aikaviivettä, joka perustuu projektin kustannusrakenteeseen. Lähestymistavan ongelmana on, 
että se ei sovellu mallintamaan epälineearisia suhteita ja se olettaa kustannuskategorioiden 
samantahtisen toteutumisen, mikä johtaa systemaattiseen virheeseen. Ehdotettu ennustemalli 
vastaa tunnistettuihin ongelmiin soveltamalla epälineaarista menetelmää kassavirran suoraan 
ennustamiseen ja arvioimalla kassavirtakäyrän muotoa projektin kustannusrakenteiden avulla. 
Tämä tekee mallista uuden teoreettisesta näkökulmasta. 

Ehdotetun mallin suorituskyvyn tulokset ovat lupaavia. Kassavirran ennustaminen suoraan 
pienensi keskimääräistä virhettä 5.41% verrattuna yleisesti käytettyyn epäsuoraan 
ennustamiseen. Tukivektoriregression käyttö paransi mallin kykyä ennustaa yksittäinen 
projekti sekä projektin kustannusrakenteen hyödyntämisellä oli samanlainen vaikutus 
rakentamista edeltävässä vaiheessa, jossa ne paransivat mallin keskineliövirheen neliöjuuren 
(RMSE) 7.75%:iin tavanomaisen lähestymistavan 10.25%:sta. Rakenamisvaiheessa 
keskimääräinen virhe pieneni rakentamisvaihetta edeltävästä -2.33%:sta -0.67%:iin.  
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1   Introduction 

Construction projects are identified as unique and they typically last long periods, 

especially when building new and large structures. Nam & Tatum (1988) list the main 

five characteristics of construction products that are immobility, complexity, durability, 

costliness, and a high degree of social responsibility. As a result of these qualities and 

their implications, construction has been classified as a high-risk industry. 

 

This study attempts to build a mathematical cash flow forecast model that can be used 

to control the financial risk involved in contracting. This is done by quantifying required 

financing for ongoing and future known projects. The proposed model concentrates on 

the cash outflow component as it can be predicted mathematically with a satisfactory 

error rate, whereas the inflow component is heavily correlated with contractual terms. 

In addition to the above-mentioned predictive abilities, it also benefits contractors as it 

demands only general data of the projects. Therefore, it requires a minimal amount of 

site-level interaction, thus reaching a high level of automation. 

 

1.1 Background 

Contractors are constantly bidding on new projects in their tender phase after which 

they move on to a planning phase that has a varying duration depending on the 

contract. This follows with the actual construction phase that ends in a project handover 

and guarantee phase. As construction companies have numerous contracts in various 

phases simultaneously, they must prepare their cash flow regardless of the project 

phase. The information that a bidding contractor has in a tender phase or even after 

winning the contract (planning phase) is very different compared to the construction 

phase when project plans are available. Therefore, the required forecasting model 

should be able to generate predictions for both the pre-construction (tender and 

planning) and construction phases. 

 

One of the risk-increasing factors in the construction industry is that typically 

contractors are competing for projects with an emphasis on the lowest price which has 
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resulted in low and unreliable profit margins (Sorrell, 2003; Teerajetgul et al., 2009). 

This has led to alternative ways of increasing profitability through efficient project cash 

flow management and cash farming. Increasing the amount of positive cash flow from 

a project raises profitability in two ways. First, the required amount of capital that a 

contractor invests into a project is smaller, hence the return on investment percentage 

is higher. Second, the positive cash flow that is generated at the beginning of the 

project via unbalancing of the contract is available for reinvestment. However, in the 

latter case seeing this money as a profit instead of trade credit has led to increased 

insolvencies in the industry. (Kenley, 1999) 

 

Boussabaine & Kaka (1998) and Hwee & Tiong (2002) state that the construction 

industry has proportionally higher number of bankruptcies than any other sector. For 

this reason, bank managers are often reluctant to grant loans to contractors with a 

liquidity problem, and even if they do, the cost of the loan will most certainly reflect the 

conceived risk with the loan (Navon, 1996). For the above-stated reasons, adequate 

financial management and accurate forecasting are essential in the construction 

industry to make sufficient provisions and guarantee the financing of the contracts that 

include periods of negative cash flow. 

 

Due to the distinct characteristics of the construction industry, its financial traits are of 

their own kind. Tserng et al. (2014) list some of these characteristics, such as, a need 

for large cash supply, short-term financing caused by running simultaneous projects, 

large inventories that are filled with in-progress construction and materials in addition 

to high book value inflated with valuable machines and equipment. The fact that the 

contractor’s capital is invested in illiquid assets while its operations require extensive 

amounts of cash makes the management of working capital and cash flow 

indispensable in the construction industry. Hwee & Tiong (2002) state that cash flow is 

the most important factor of profitability for in-progress construction projects. A 

questionnaire for construction contractors conducted by Shash & Qarra (2018) 

indicates that 40% of the respondents encounter financial failure in some of their 

contracts annually due to poor cash flow management.  Therefore, contractors cannot 

manage their financials only in terms of revenue and costs as they also need to 
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consider actual cash in and cash out which are, for later clarified reasons, two highly 

dissimilar concepts. 

 

Finance is in fact identified as the most important resource in the construction process 

(Mawdesley et al. 1997, cited in Odeyinka et al. 2008). Singh & Lokanathan (1992) 

state that more construction firms fail through lack of liquidity than by inadequately 

managing other resources, which makes cash the most important one. Similarly, Peer 

& Rosental (1982, cited in Navon 1996) find that lack of working capital causes more 

failures in construction companies than does their profitability. Overall, four out of five 

most common reasons, why construction businesses fail, are budgetary issues (Arditi 

et al. 2000). However, the provisions that are taken should be adequate to finance 

projects but not cause a permanent surplus of funds which is itself also an uneconomic 

state of affairs (Kaka, 1990). 

 

1.2 Motivation 

The motivation of this thesis is to offer an efficient cash flow forecasting model for a 

central organization of a construction company. The need for a mathematical cash flow 

forecasting model has been also noted in the literature. However, the previous 

research has its focus on modeling client-side cash flow and tender phase in addition 

to using conventional methodology that is based on linear relationships. A more 

sophisticated mathematical model is therefore needed to reduce the systematic error 

that is caused by the previous models. 

 

An alternative to mathematical forecasting would be compiling the forecast at the site 

level. Even though site engineers and project managers can compose accurate project 

cash flow predictions with very detailed site-level information of the project, this is often 

cumbersome work because of the complex linkage between cost items and project 

schedule. In addition, these undergo frequent changes during the project and taking 

the later specified cash flow affecting factors into account increases the complexity of 

cash flow forecasting. This is true especially for large projects. Altogether, an efficient 

cash flow forecasting method is not only needed in the tender phase as limited 
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resources and complex relationships that affect cash flow are still causing inaccuracies 

in manually derived the construction phase cash flow forecasts. 

 

Mathematical models, on the other hand, can offer close approximates and their errors 

are consolidated in a company-level cash flow forecast. Navon’s (1996) survey 

discloses that all of the surveyed construction companies prepare their cash flow at a 

company level. In addition, the majority of the contractors, that do project-level cash 

flow predictions in parallel, do them centrally (Navon, 1996). Similarly, Kaka (1993) 

describes that cash flow and working capital forecasts are usually done on an overall 

basis. This indicates that there is a need for a mathematical model that is efficient and 

able to provide sufficiently accurate forecasts with general data, instead of site-level 

information. 

 

The uniqueness of construction projects offers its own kind of difficulties in project 

forecasting. On top of the above-mentioned financial requirements, construction 

projects have numerous variables affecting their outcome and their relationships are 

often unclear. Kenley & Wilson (1986) argue that in addition to direct construction and 

contract-related factors, others such as economic, political, managerial, union and 

personality-related variables cause variation in project outcomes. Chan et al. (2009) 

also state that project duration and cost are reliant on many uncertain factors like 

productivity, resource availability and weather. When modeling project cash flow, 

Zayed & Liu (2009) identified 43 factors that affect it. In addition, construction 

managers have a control over none or just a few of these variables.  

 

The ambiguity related to project cash flow makes forecasting difficult for estimators or 

project managers. This makes a simple and fast cash flow forecasting technique 

important especially in the tender phase where detailed schedules are rarely planned 

because time is lacking and information is limited (Kaka & Price, 1993). There is also 

some evidence that statistical models with large training data can offer superior 

forecasts compared to contractor’s initial estimates (Mills & Tasaico, 2005). The results 

of Shash & Qarra (2018) also suggest using quantitative forecasting models in the 
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tender phase. They find that the vast majority of contractors do cash flow forecasting 

only before bidding with a focus on surviving throughout the contract instead of getting 

a measurable financial view on the project cash flow (Shash & Qarra, 2018). Without 

a quantitative and time-bound financial forecast, it is difficult if not impossible to get an 

accurate view of the contractor’s financial requirements which is why there is a need 

for a forecasting model in the tender phase of a project. 

 

Project forecasts are typically done by budgeting and deriving income from the project 

schedule. However, cash flow prediction is just a bit more tedious as different cost 

categories have distinct time lags concerning their cash disbursement and using the 

project schedule makes income forecasts particularly exposed to delays. Cui et al. 

(2010) list several reasons that make revenue and expenses differ significantly from 

actual cash flows. Some of these reasons are investing (for example in equipment) 

and depreciations related to it, front-end loading techniques which include unbalanced 

pricing and overbilling,  accrual accounts (for example prepaid expenses, receivables 

and inventories), payment lags, retainage, deferring payments for subcontractors or 

using pay-when-paid clause with suppliers (Cui et al., 2010). Park (2004) criticizes the 

traditional approaches as they often do not consider these factors, especially after the 

planning stage, but they rather use cost and earned value directly in forecasting cash 

flow.  

 

Park et al. (2005) find that models, that use monthly cost and earned value forecasts 

as cash flow prediction basis, entail a possibility of inaccurate predictions if the used 

forecasts are imprecise. This can often be the case as keeping the monthly financial 

forecasts up to date is time-consuming and may not be the highest priority in a 

construction site. Park (2004) finds that during the construction phase the relative 

portion of different cost categories is fluctuating from the original project budget. 

However, in practice, this is often not reflected in cash flow forecasts which should be 

done by adjusting cost categories’ relative weights with respect to the actuals (Park, 

2004). This causes that the time lag related to the remaining costs is distorted and the 

cash flow forecast is incorrect. Therefore, it is highly beneficial that the used 

mathematical cash flow forecasting model can be also used in the construction phase. 
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1.3 Research objectives 

This study aims to contribute to the literature by applying machine learning together 

with the (moving) cost category weights approach. This is something that has not been 

suggested previously in the literature to the author’s knowledge. This approach 

benefits the industry as it offers a mathematical model that is better able to capture 

complex relationships by applying a more sophisticated algorithm compared to the 

traditional approach. It requires only general data (for example estimated total cost and 

weights of cost categories in terms of financial data) which are often available in an 

applicable form as opposed to project schedule, monthly budgets or earned-value 

planning data. The proposed model can be used to predict project cash outflow from 

the tender phase to the end of the construction and it is tested with a comprehensive, 

heterogeneous dataset that is required to study the model’s ability to capture individual 

project’s uniqueness.  

 

There has been a slow trend towards artificial intelligence (AI) and machine learning 

(ML) in the construction management literature, but Hua (2008) points out that in 

construction economics and project budget and cash flow area, conventional methods 

are generally applied more often than in other construction management topics.  

 

Figure 1 illustrates, how this study combines three research areas in construction 

management and economics. It does not only insert a new machine learning method 

into an old model, but it also complements the traditional approach by exposing it to 

some previously less researched data and suggests a new forecasting model. In a 

similar manner, the study does not only remain in the management area which is often 

focused on analyzing causal relations in construction data by machine learning, but it 

offers a usable, quantitative model for production use. Last but not least, the proposed 

model offers a higher level of automation compared to site-level models via machine 

learning as it does not require site-level interaction apart from categorized project end 

forecasts which should be accessible also for the central organization.  
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Figure 1. The combination of research areas in construction management and economics 

involved in this study 

 

 

1.4 Research questions 

The study aims to answer two questions: 

1) According to the literature, how cash flow forecasting of construction projects is 

performed and what are the central issues? 

• How will direct forecasting of the cash outflow curve perform compared 

to forecasting the cost curve and applying a fixed time lag? 

• How will cost categorized project end forecasts affect the accuracy of 

cash outflow predictions in different phases of a construction project? 

 

2) How to improve the current support vector regression based cash flow models? 

• How is support vector regression currently applied? 

• Can support vector regression be used and how to better capture the 

relationships between cash outflow and other financial data compared to 

the standard approach?  
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To answer the first research question, this study seizes two of its sub-questions that 

revolve around identified issues in current cash flow forecasting models and proposed 

solutions to them. The intuition behind these questions is that different cost categories 

have different time lags regarding their cash disbursement and their relative size is 

therefore affecting project cash flow profile. In an extreme case at the end of 

construction, the weight of guarantee provisions might take up most of the remaining 

cost budget and this category is usually not cashed out in the construction phase, if at 

all. Combined with an observation made by Park (2004), that different cost categories 

are not occurring at a uniform rate, the hypothesis for the first sub-question is that 

applying fixed time lag to the cost curve will introduce systematic error to the cash flow 

model. Therefore, the hypothesis for the first sub-question is that forecasting the cash 

outflow curve directly will outperform the traditional approach.  

 

Similarly, for the second sub-question, the hypothesis is that cash outflow predictions 

should improve when weights of budgeted cost categories are known. To answer this 

question, tender phase data is enriched with weights of different costs in project end 

forecast that are later modified with respect to actuals and forecast changes in the 

construction phase. Therefore, the second sub-question can be divided into two:  

a. How will budgeted cost category distribution affect tender phase predictions? 

b. What is the effect of adjusting cost category weights in the construction phase 

predictions?  

 

As the standard approach of generating an S-curve with a logit model by Kaka & Price 

(1991) is not suitable for multiple variables, this study explores the possibility of using 

support vector regression to generate it. S-curve is used as a graphical representation 

that shows the project’s cumulative progress against time. Additionally, the numerous 

variables affect project cash flow with complex relationships. Therefore, linear 

regression and one independent variable (time) might not be the best basis for 

mathematical forecasts. Sapankevych & Sankar (2009) observe that support vector 

regression is not dependent on linear and stationary processes. Therefore, the 
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hypothesis is that the suggested approach using support vector regression can make 

better predictions than the logit model, which is based on one independent variable, 

log transformation and linear regression. 

 

Simultaneously, the research must critically assess the model’s ability to capture the 

uniqueness of individual projects by analyzing the benefits that are gained by clustering 

the projects. This is because projects are fundamentally unique and average curves 

will certainly lead to systematic error which can be reduced only by accurate project 

grouping (Kenley & Wilson, 1986; Kaka & Price, 1993). 

 

1.5 Limitations 

In terms of financial data, the study uses only categorized project actuals and project 

end forecasts which limits some special characteristics in the project schedule outside 

of the model. Because of this, the results cannot be directly compared with models that 

use monthly budgets and earned-value forecasts or cost-schedule-integrated models.  

 

Even though the research studies project cash flow, it focuses only on the cash outflow 

component. This is justified by the findings of Kaka & Price (1993) and Evans & Kaka 

(1998), who conclude that a standard value curve cannot be fitted even for a specific 

group of projects because value curves are uniquely distorted by unbalancing and 

over-measure. Therefore, if the proposed model needs to be expanded into a net cash 

flow model, cash inflow should be derived from the project schedule because 

contractual terms are giving too much weight on the profile of the value curve. 

 

Another limitation considers the source of data. The study uses heterogeneous data in 

terms of project classifications as it contains infrastructure and building projects in 

multiple segments. The data is retrieved from a general contractor with a long history 

and well-defined processes which makes different projects’ data comparable. 

However, as the data is collected from only one contractor, it cannot assess whether 

the model can find similarities and differences between distinct contractors’ projects. 



10 
 

1.6 Structure of the study 

The second chapter goes through the methodologies used in this study. The third 

chapter reviews the relevant literature after which the data collection process and the 

proposed model are described in the fourth chapter. In the fifth chapter, empirical 

results of the model are presented and followed by results analysis. Finally, 

conclusions are represented in the sixth chapter. 
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2   Methodology 

This chapter goes through the key methodologies that are used in this study which are 

K-means clustering, support vector regression, kernel functions and hyperparameter 

optimization. 

 

2.1   K-means clustering 

To capture the uniqueness of projects while maintaining predictive abilities, projects 

need to be clustered based on their attributes. Cheng et al. (2009) use k-means 

clustering to identify similar projects. K-means clustering separates dataset {𝑋1, … , 𝑋𝑁} 

with N observations of random D-dimensional Euclidean variable x into K number of 

clusters. The goal of the algorithm is to set {𝜇1, … , 𝜇𝐾} D-dimensional vectors as cluster 

centers and assign data points to the nearest cluster center in a way that the sum of 

squares of the distances between each datapoint and its respective cluster is 

minimum. The assignment of each datapoint can be indicated with a binary variable 

𝑟𝑛𝑘 ∈ {0,1}, where                                                 k =  1, … , K  represents cluster k which 

datapoint 𝑥𝑛 is assigned to, so that  𝑟𝑛𝑘 = 1 and 𝑟𝑛𝑗 = 0 for 𝑗 ≠ 𝑘. The objective function 

is defined by: 

𝐽 =  ∑ ∑ 𝑟𝑛𝑘‖𝑥𝑛 − 𝜇𝑘‖2𝐾
𝑘=1

𝑁
𝑛=1       (1) 

which represents the sum of squares of the distance between each datapoint and its 

assigned cluster center 𝜇𝑘. The objective is to minimize J by finding optimal values for 

{𝑟𝑛𝑘} and 𝜇𝑘. This can be achieved iteratively by first assigning initial values for 𝜇𝑘 and 

minimizing J with respect to 𝑟𝑛𝑘 while keeping 𝜇𝑘 fixed. Second, J is minimized with 

respect to 𝜇𝑘 while keeping 𝑟𝑛𝑘 fixed. This process is looped until convergence. The 

first step and second step are described by Equations 2 and 3, respectively: 

𝑟𝑛𝑘 =  { 1   𝑖𝑓 𝑘 = arg 𝑚𝑖𝑛𝑗‖𝑥𝑛 − 𝜇𝑗‖
2

 0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                               
    (2) 

which illustrates that each datapoint can be optimized separately by choosing k which 

gives the minimum of  ‖𝑥𝑛 − 𝜇𝑘‖2. 

 



12 
 

𝜇𝑘 =
∑ 𝑟𝑛𝑘𝑥𝑛𝑛

∑ 𝑟𝑛𝑘𝑛
        (3) 

which describes that the vector 𝜇𝑘 can be assigned to be the mean of all points 

assigned to the cluster. The process is stopped after there are no changes in 

assignments. The risk of the k-means clustering is that the solution may converge to a 

local instead of global minimum, J. (Bishop, 2006)  

 

The k-means clustering algorithm is not evaluating the number of appropriate clusters. 

Therefore in order to perform k-means clustering, the required number of clusters (K) 

is needed. This can be determined using the Elbow Method. Liu & Deng (2020) 

describe the core idea of Elbow Methods as computing the objective function (Equation 

1) for an increasing number of clusters until the benefit of an additional cluster is 

sharply reduced. If K is smaller than the number of required clusters, an additional 

cluster will significantly decrease J. After reaching the true number of clusters, 

increasing K will reduce J just slightly. Therefore, plotting J and K will form a shape of 

an elbow where the K value of the elbow will be the required number of clusters. 

 

2.2   Support vector regression  

Support vector regression (SVR) is an application of support vector machines that 

focuses on regression analysis applications. Some of the advantages of SVR are that 

it is guaranteed to converge to the optimal solution as opposed to artificial neural 

networks and it is not dependent on linear and stationary processes. Because 

optimization is often needed to enhance the performance of the model, it is also 

beneficial that it has a small number of free parameters left to optimize. (Sapankevych 

& Sankar, 2009) 

 

When using regression analysis for non-linear regression applications, a function 𝑓(𝑥) 

can be formed so that its outputs are equal to the predicted value: 

𝑓(𝑥) = (𝑤 ∙ 𝜙(𝑥)) + 𝑏       (4) 



13 
 

where time-series data 𝑥(𝑡) is mapped to higher dimensional feature space via kernel 

function 𝜙(𝑥) after which linear regression can be performed with weights w and 

threshold b. Performing linear regression in high dimensional feature space 

corresponds to non-linear regression in low dimensional input space. (Müller et al. 

1997)  

 

The objective is finding optimal weights for w and threshold b in addition to defining 

criteria for finding an optimal set of weights. Those can be found by, first, minimizing 

the flatness of weights that can be ensured by minimizing the Euclidean norm (i.e. 

‖𝑤‖2 ). Second, the empirical risk, that is the error generated by the estimation, must 

be minimized. (Sapankevych & Sankar, 2009) Empirical risk is defined as: 

𝑅𝑒𝑚𝑝(𝑓) =  
1

𝑁
∑ 𝐿(𝑥(𝑖), 𝑦(𝑖), 𝑓(𝑥(𝑖), 𝑤)𝑁−1

𝑖=0     (5) 

where i is an index of discrete time-series 𝑡 = {0,1, … , 𝑁 − 1} and y(i) refers to training 

data of the predicted value. L(.) is the loss function. (Sapankevych & Sankar, 2009) 

 

However, minimizing empirical risk with no control will lead to overfitting and bad 

generalization performance. Therefore, a capacity control term ‖𝑤‖2 should be 

introduced. This will lead to regularized risk functional:  

𝑅𝑟𝑒𝑔(𝑓) =  𝑅𝑒𝑚𝑝(𝑓) +
𝜆

2
‖𝑤‖2      (6) 

where term 𝜆 is called regularization constant. (Smola & Schölkopf, 2004) 

 

To find optimal weights for w and minimize regularized risk, a quadratic programming 

problem can be formed using Vapnik’s ε – intensive loss function : 

minimize    
1

2
‖𝑤‖2 + 𝐶 ∑ 𝐿(𝑦(𝑖), 𝑓(𝑥(𝑖), 𝑤))𝑛

𝑖=1  

where 

𝐿(𝑦(𝑖), 𝑓(𝑥(𝑖), 𝑤)) 
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=  {
|𝑦(𝑖) − 𝑓(𝑥(𝑖), 𝑤)| − 𝜀      𝑖𝑓  |𝑦(𝑖) − 𝑓(𝑥(𝑖), 𝑤)|  ≥ 𝜀 

0                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (7) 

The constant C in the objective function includes a summation normalization factor 

1/𝑁 and the term ε refers to how accurately the function will be approximated. Equation 

7 assumes that function 𝑓(𝑥) exists and is feasible. However, in some cases to make 

the function feasible some errors may need to be accepted which is why some slack 

variables are introduced. Determining optimal weights and bias values is a problem to 

be solved with convex optimization which can be done using Lagrange multipliers and 

dual optimization problem: 

maximize    −
1

2
∑ (𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)〈𝑥(𝑖), 𝑥(𝑗)〉𝑁

𝑖,𝑗=1  

          −𝜀 ∑ (𝛼𝑖 − 𝛼𝑖
∗) + ∑ 𝑦(𝑖)(𝛼𝑖 − 𝛼𝑖

∗)𝑁
𝑖=1

𝑁
𝑖=1  

  subject to    ∑ (𝛼𝑖 − 𝛼𝑖
∗) = 0: 𝛼𝑖 , 𝛼𝑖

∗ ∈ [0, 𝐶]𝑁
𝑖−1             (8) 

Karush-Kuhn-Tucker conditions state that at the point of the optimal solution, the 

product between variables and constraints equals zero. The solution of the weights 

can be based on that. Therefore, function 𝑓(𝑥) can be approximated as the sum of 

optimal weights times the dot product between datapoints: 

𝑓(𝑥) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)〈𝑥, 𝑥(𝑖)〉 + 𝑏𝑁

𝑖=1      (9) 

The datapoints that lie on the limit or outside the ε range with non-zero Lagrange 

multipliers α are defined as Support Vectors. The optimal weights that are associated 

with non-zero Lagrange multipliers are usually not the entire dataset. Therefore, this 

provides sparseness as one does not need the entire dataset to define 𝑓(𝑥) which is 

a significant advantage of support vector regression. (Sapankevych & Sankar, 2009) 

 

As defined in Equation 4, in order to perform non-linear regression, the input space 

needs to be mapped to higher dimensional feature space using kernel function 𝜙(𝑥). 

Any symmetric kernel function k that satisfies Mercer’s condition corresponds to a dot 

product in some feature space (Müller et al. 1997). As the algorithm depends on dot 

products between patterns 𝑥(𝑖), it does not need to know 𝜙 explicitly as knowing that 

𝑘(𝑥, 𝑥′) =  〈𝜙(𝑥), 𝜙(𝑥′)〉  is sufficient (Smola & Schölkopf, 2004). This can be 
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substituted back into Equations 8 and 9 which result to Equations 10 and 11, 

respectively: 

maximize    −
1

2
∑ (𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)𝑘(𝑥𝑖 , 𝑥𝑗)𝑁

𝑖,𝑗=1  

          −𝜀 ∑ (𝛼𝑖 − 𝛼𝑖
∗) + ∑ 𝑦(𝑖)(𝛼𝑖 − 𝛼𝑖

∗)𝑁
𝑖=1

𝑁
𝑖=1  

  subject to    ∑ (𝛼𝑖 − 𝛼𝑖
∗) = 0: 𝛼𝑖 , 𝛼𝑖

∗ ∈ [0, 𝐶]𝑁
𝑖−1            (10) 

 

𝑓(𝑥) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑘(𝑥𝑖 , 𝑥) + 𝑏𝑁

𝑖=1      (11) 

 

2.3   Kernel selection and hyperparameter optimization 

As described in the earlier section, the key to non-linear regression is the kernel 

function. There are multiple kernel functions that satisfy Mercer’s condition, and the 

choice of appropriate kernel function is typically done by empirical analysis 

(Sapankevych & Sankar, 2009). Waters & Vanhoucke (2014) list some of the most 

commonly used non-linear kernel functions: 

𝑘(𝑥, 𝑥′) =  (𝛾〈𝑥, 𝑥′〉 + 𝑟)𝑑      (12) 

𝑘(𝑥, 𝑥′) =  𝑒−𝛾‖𝑥−𝑥′‖
2

       (13) 

𝑘(𝑥, 𝑥′) =  𝑡𝑎𝑛ℎ(𝛾〈𝑥, 𝑥′〉 + 𝑟)      (14) 

 

Equations 12, 13 and 14 represent polynomial, radial basis and sigmoidal functions, 

respectively. Depending on the function number of parameters needs to be optimized. 

All of the functions need to tune gamma 𝛾, sigmoidal and polynomial functions need 

to optimize the coefficient r. Additionally, when using a polynomial kernel, its degree d 

needs to be determined. 

 

This study has chosen to use the radial basis function (RBF) kernel for multiple 

reasons. First, Lin & Lin (2003) show that the sigmoid kernel resembles the RBF kernel 
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with certain parameters. Based on this and other unfavorable properties of the sigmoid 

kernel, they suggest not to use it and to use RBF as the first choice instead (Lin & Lin, 

2003). Second, the RBF kernel has only one hyperparameter whereas the polynomial 

kernel has three. Therefore, using RBF will significantly decrease model complexity. 

Third, the RBF kernel has fewer numerical difficulties (Bao et al. 2005; Cheng & Wu, 

2009; Wauters & Vanhoucke, 2014). 

 

There is little guidance on how to determine parameter values for the chosen kernel 

(Wauters & Vanhoucke, 2014). Similarly, Sapankevych & Sankar (2009) state based 

on their literature review that there is no optimal method for choosing free parameters 

of support vector regression. Hsu et al. (2003) suggest using grid-search and cross-

validation. This has also been the commonly applied approach in the literature as it 

does not make the algorithm overfit to training data, see for example, Espinoza et al. 

(2005), Bao et al. (2005), Sousa et al. (2014) and Wauters & Vanhoucke (2014). When 

using grid-search, Hsu et al. (2003), Bao et al. (2005) and Wauters & Vanhoucke 

(2014) suggest using exponentially growing sequences of C and 𝛾 to determine 

optimal parameters, for example, 𝐶 = 2−5, … , 215,   𝛾 = 2−15, … , 23.  

 

Cross-validation is implemented in a way where the k-fold cross-validation algorithm 

partitions the training dataset into k folds. After this, the model is trained using 𝑘 − 1 

folds as the training data and the resulting model is validated with the remaining fold. 

The same procedure is applied for each of the folds. Finally, the performance of k-fold 

cross-validation is measured by the average error in validation sets in the above-

described loop. This way the actual test set does not “leak” to the model, and it uses 

training data efficiently while maintaining generalization performance. The grid-search 

applies the k-fold cross-validation algorithm for all possible combinations of 𝐶 and 𝛾 

after which their optimal values can be determined based on the average error of k-

fold cross-validation.   
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3   Literature review 

The literature search process is illustrated in Figure 2. Webster & Watson (2002) 

suggest a systematic search for literature review in order to get a complete view on the 

subject especially because the field of information systems is quite an interdisciplinary 

field.  

 

 

Figure 2. The literature search process 
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The first step of the search was defining a keyword that would describe the construction 

project cash flow forecasting field thoroughly but restrict irrelevant articles from the 

search. The used keyword was “project AND cash AND flow AND (prediction OR 

forecast) AND (construction OR contractor)”. Cash and flow were used separately as 

some articles might focus on cash but use terms like cost or expenditure flow instead 

of cash flow. A database that was used for the search was SCOPUS that compiles 

literature from multiple fields. 

 

As the search results from the first step contained some irrelevant subject areas, such 

as medicine and chemistry, the second step of the process was to limit the search to 

relevant subject areas. However, the selected subject areas were still quite broad in 

order to get an interdisciplinary perspective. For example, engineering literature might 

help get a better understanding from site-level planning models whereas finance, 

accounting, business, management and economics areas could focus more on 

company-level forecasting. Finally, subject areas such as econometrics, computer 

science and mathematics were included in the search as they might contain some 

progressive models that are not applied in a broader scope in the industry. 

 

In the third step of the process, the remaining articles’ titles and abstracts were 

scanned. Only the articles, that were found to be useful in the study or as a connecting 

reference for other relevant literature, were saved. Some topics from the construction 

management area were excluded, such as management decision-making, 

optimization and risk management. However, if the articles on these subjects were also 

exploring causal relationships related to cash flow, they were included. Additionally, 

unavailable articles were removed. 

 

In the last step of the process, articles’ introduction, literature review or similar sections 

were skimmed through and relevant citations were added to the literature review 

material. Additionally, all the articles that were citing the previous step’s results were 

scanned and applicable ones were collected. Similar criteria as in the third step were 

used. 
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3.1 S-curve method 

S-curve is used as a graphical representation that shows the project’s cumulative 

progress against time. The cumulative progress can be measured, for example, in 

project value (value curve) or project cost (cost curve). Boussabaine et al. (1999) 

generalize the cost accrual of a construction project to three phases that form the S-

curve: 

1) In the first third of project duration, one-quarter of forecasted total costs incur in 

a parabolic pattern. 

2) In the second third of project duration, costs incur in a linear fashion so that 

three-quarters of forecasted total costs have accumulated. 

3) In the last third of the project duration, costs incur as a mirror image of the first 

third, so that all of the forecasted costs have accumulated. 

 

The initial nomothetical net cash flow model is proposed by Nazem (1968 cited in 

Kenley & Wilson, 1986) who uses historical project financial data to deduce a standard 

S-curve that is used to obtain predictions for all of the future projects. He argues that 

contractors have multiple projects going on simultaneously, and therefore their 

standard curve would yield capital requirements for the given company. Figure 3 

illustrates that the general idea of using a standard curve makes sense in project 

portfolio forecasting. Aggregating projects’ A, B, C and D cash flow together would 

produce the same result as multiplying the standard curve by four. It would be tempting 

to use the standard curve as a forecasting basis for future projects as it is easily 

accessible whereas forecasting the projects in a periodic manner would require a 

considerable amount of effort. 

 

This approach seems very ideal, especially for large contractors and clients (in terms 

of clients’ cash outflow). This is because small errors in individual projects would not 

cause significant variation in the total forecast. The intuition behind this idea is that the 

errors between individual project S-curves and a standard S-curve are random. The 

randomness of the errors would mean that they are eliminated in an aggregate 
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forecast.  Therefore, the ultimate goal of mathematical models is to get rid of systematic 

error so that the remaining error is random.  

 

 

Figure 3. Standard curve of projects A, B, C and D (nomothetical approach) 

 

3.2 Uniqueness of construction projects 

Kenley & Wilson (1986) argue that construction projects are unique, and the 

nomothetical approach has only been a temporary solution as the research has been 

trending towards an idiographic cash flow model the whole time. For example, 

Hudson’s and Maunick’s 1974 study tries to search patterns within groups and 

categories of projects and Berny’s and Howe’s 1982 model reflects a specific form of 

an individual project (cited in Kenley & Wilson, 1986). Similarly, Peterman’s 1970 and 

Allsop’s 1980 papers take an idiographic approach by pioneering planning data models 

by basing their value curves on bar charts of bill items and contract schedules, 

respectively (see, Kaka & Price 1991).  

 

Kenley & Wilson (1986) suggest that the variation in S-curves is caused by a multiplicity 

of factors in addition to direct construction and contract-related ones, such as 

economic and political climate, managerial structure and actions, union relations and 
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personality conflicts. After deriving a threshold value for acceptable standard deviation 

in estimates, Kenley & Wilson (1986) illustrate that a standard S-curve seems to be 

fitting a group of projects quite well in terms of how random the errors seem when 

looking at the whole portfolio of projects. However, only 20% of the projects fit the 

average model in terms of the determined threshold value. Therefore, this would 

suggest that using the nomothetical approach would leave significant systematic error 

in the model which can be removed only with the idiographic methodology that 

considers the uniqueness of each project. Kaka (1994) highlights that the accuracy of 

cash flow and working capital forecasts are usually dependent on how sustained the 

segments in the contractor’s project portfolio are compared to last year. Therefore, this 

is an important observation also for large contractors as their relative distribution of 

different kinds of projects is most likely not constant throughout the time which implies 

a risk of systematic errors when using the nomothetical approach.  

 

As the uniqueness of construction projects has solid evidence behind it, the problem 

at hand is, how to account for the individuality in project forecasts. The idiographic 

model suggested by Kenley & Wilson (1989) is only suitable for post-hoc analysis, as 

it fits a single S-curve for each project after its completion. In order to be able to 

forecast, the model applied should utilize historical data that is collected from past 

projects which leaves systematic error in the model, and at the same time, recognize 

uniqueness. As an alternative, the individuality of a project can be captured with 

detailed planning data, and therefore manual labor that is required to obtain it. This 

has caused a trade-off situation between the amount of manual work that is put into 

the forecasting and accepting systematic error that is caused by averaging projects.  

 

The models presented in Figure 4 have settled the trade-off in different points. The 

highest amount of work is required in cost-schedule integrated models, where each 

cost item in a bill of quantities is associated with a respective activity in the project 

schedule (Navon, 1995). Many authors suggest that this is an ideal approach, but at 

the same time acknowledge that it is practically very hard to maintain (Hwee & Tiong, 

2002; Banki & Esmaeili, 2009). The cost-schedule integrated approach also requires 

increased technical complexity in terms of systems integration, in addition to manual 
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work. This approach utilizes highly detailed information on each project but requires 

constant labor as project schedules tend to fluctuate and the bill of quantities is often 

not compatible with scheduled activities (Navon 1995). These obstacles have caused 

a significant gap between academic research and practice, as cost-schedule 

integrated models are rarely applied in the industry (Cho et al. 2020). 

 

 

Figure 4. The trade-off between required manual labor and averaging in different cash flow 

models. 

 

Navon (1996) categorizes used cash flow prediction models only into mathematical 

and cost-schedule integrated models, but later on, a third category has risen which is 

planned earned value and cost models. Compared to cost-schedule integrated models, 

Park’s (2004) model uses slightly less detailed data as he applies monthly earned 

value and cost forecasts separately and the costs are represented on category level 

instead of individual cost items. As the model still follows an individual project’s monthly 

forecast it is able to reflect a specific form of a project and it must average only in terms 

of cost categories.  

 

Park et al. (2005) recognize an issue in the planned earned value and cost models as 

they are dependent on the accuracy of monthly planning values which might result in 

inaccurate cash flow forecasts if the planned values are not accurate. In terms of 
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required manual labor, monthly forecasts are still very detailed level information and 

require constant maintenance because of changes in schedules and costs. 

Additionally, according to Kaka & Price (1993) and Shash’s & Qarra’s 2018 

questionnaire these models are unlikely to be used in the tender phase as detailed 

planning is rarely done prior to bidding. 

 

Mathematical models distinguish from cost-schedule integrated and planned earned 

value and cost models because they estimate the shape of the S-curve whereas the 

last two follow a proposed project plan. This is also what characterizes the research 

on idiographic and nomothetic approaches. The developments made on cost-schedule 

integrated and earned value and cost models are focusing on laws that relate to a 

specific project. For example, Chen et al. (2011) enhance the cost-schedule integrated 

model by developing a coordination mechanism that accounts for different payment 

conditions and payment irregularity. Mathematical modeling, on the other hand, has its 

focus on better estimation techniques and attempts to explore general laws that apply 

to construction projects.   

 

As a result of their focus, mathematical models require substantially less manual work 

as they only need general data. For example Kaka’s & Price’s (1993) cost commitment 

model needs only the type of the project, size of contract, company (if there are more 

than one), type of contract and project duration as an input. For the same reason, 

mathematical models can be applied in practice with fewer difficulties. On the other 

hand, the estimated shape of the S-curve is solely dependent on past projects. The 

model uses only project characteristics and project end forecasts and therefore does 

not reflect unique details in the project schedule. This weakness of mathematical 

models is substantially less prominent when forecasting cash flow for a project 

portfolio. For example, Kaka & Price (1993) suggest their model for evaluating 

company-level cash flow as individual project errors are then consolidated.  

 

Kaka & Price (1993) argue that poor project groupings are one of the key reasons why 

earlier research into mathematical models has failed to predict accurate S-curves. 
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Similarly, Boussabaine et al. (1999) claim that the accuracy of mathematical forecasts 

is dependent on whether the standard curve’s conditions represent a forecasted 

project. As a solution to this problem, Skitmore (1998) suggests utilizing an increased 

number of variables that represent the characteristics of a project.  

 

The findings of Kaka et al. (2003) highlight the importance of accurate project 

clustering, as they find that differences caused by averaging a group of projects is 

causing higher errors than differences arising from actual project planning. They claim 

that that cost profiles of construction projects are different because of project 

characteristics instead of people undertaking them. Therefore, in order to reduce the 

systematic error that is caused by averaging projects by using historical data, projects 

must be grouped together accurately based on project characteristics. Even if done so, 

the shapes of S-curves might still differ substantially because construction projects are 

fundamentally unique.  

 

A common approach has been to classify projects based on their attributes. For 

example, Kaka & Price (1993) and Evans & Kaka (1998) base their groups on project 

duration and type, and Chao & Chien (2009) use location and type of work. The 

findings of Banki & Esmaeeli (2008) indicate that using a homogenous project portfolio 

results in lower errors compared to earlier research. This supports the common 

understanding that accurate grouping of projects based on their characteristics is an 

important contributor in improving mathematical forecasts. This is also supported by 

findings of Kaka & Price (1993) who report that the difference in average curves of 

grouped projects is higher than the variability between individual projects within 

groups.  

 

There are some variables that are known to affect the shape of the S-curve, for 

example, Ross et al. (2013) find that type of construction, procurement route and type 

of work will affect the cash flow forecast directly. Skitmore (1992) suggests that a fitting 

model should use different parameter values for different types of construction and find 

that the most notable predictors for accurate groupings are contract value, project type 
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and duration. Similarly, Kaka & Price (1993) find that project duration and type are 

affecting S-curve shape on a statistically significant level. They provide a further 

explanation that in short contracts, the costs are piling in the beginning because the 

work is often started so that resources are already on the site. Similarly for a type of 

contract, in design-and-build projects, the costs are naturally higher at the start, and 

on the contrary, management contracts have slow starts since subcontractors are 

chosen only at the beginning of the project (Kaka & Price, 1993). 

 

3.3 Utilizing cost curve 

The S-curve approach has been widely adopted in the literature. Most of the research 

from the 1970s to the early 1990s has utilized it in a way where the cash in and outflow 

curves were composed separately from a value curve. The net cash flow would then 

be the difference between these curves. The use of the value curve was originating 

from investments in early research by construction clients who wanted to forecast their 

expenditure flow, and later this approach was applied in contractors’ net cash flow 

forecasting. (Kaka & Price, 1993)  However, Kaka & Price (1991) find that value curve 

models are not sensitive to the choice of value curve but the variability of net cash flow 

curves are a result of variability in systematic delays of cash-out and cash-in. 

Therefore, they suggest a model where cash-in and cash-out are separately deduced 

from value and cost curves, respectively.  

 

As opposed to the earlier approach that has used the value curve as the initial basis 

for the cash-out and cash-in curves, Kaka & Price (1991) use cost commitment data 

to obtain value and cost curves. They argue that the cost commitment curve could be 

estimated more accurately because contractors do different kinds of loading to 

unbalance the contract. These actions are taken in order to improve the contractor’s 

cash inflow and they include, for example, loading scheduled items that might have 

large variation and front-end loading the schedule. Similar measures are not taken at 

the same rate for the cost of items. (Kaka & Price, 1991) 
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The overall distortion of a value curve can be evidenced by comparing bills of quantities 

of several contractors for the same contract (Kaka & Price, 1993). In their research on 

the effects of project planning variability on cost commitment curves, Kaka et al. (2003) 

conclude that even though different planners’ construction programs vary significantly, 

it does not impact the profile of the cost curve considerably whereas their value curves 

are most likely different. The hypothesis, that the cost commitment model is more 

suitable for cash flow prediction than value curve models, is tested by Kaka & Price 

(1993) and Evans & Kaka (1998) who conclude that the value curve is causing higher 

errors in estimates and it cannot be fitted for even a specific group of projects, 

respectively. Altogether, the evidence gives a strong reason to exclude estimation of 

value curve outside of the mathematical models and focus on the cost curve, or 

alternatively, some income planning or contract data would be needed to obtain value 

curve. 

 

In an idiographic approach, in order to obtain cash-out from the cost curve, a respective 

time lag needs to be introduced as proposed by Kaka & Price (1991). Park (2004) 

notes that different cost categories generally have different time lags associated with 

their payment. He suggests that a common budget ratio for general contractors is 50-

70% of subcontract costs, 25-35% of material costs, 5-15% of labor costs, 10-25% of 

equipment costs and 5-15% of indirect costs. Additionally, the budgeted total cost 

might also include provisions. As the total budget is distributed in various cost 

categories with highly different time lags the used model should utilize cost categories 

separately instead of the total cost. For example, equipment costs might only include 

depreciations with no actual cash flow outflow, subcontractors may have pay-when-

paid clauses and employee salaries are booked at the same moment that they are 

paid.  

 

In the past research, only a few mathematical project cash flow forecasting models 

have utilized different cost categories (Kaka & Price, 1991; Kaka, 1996). Additionally, 

these models are distinct from traditional mathematical models as they use an 

overwhelming number of parameters, for example, Kaka (1996) uses over 50 

variables. Kaka & Price (1991) estimate the cost and value curve first and apply 
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systematic delays to them to obtain cash flow. However, this method has an 

assumption that project cost composition would be stable throughout the project which 

is not true as observed by Park (2004). Therefore, they introduce a systematic error 

into their model by assuming that different costs incur at a uniform rate. Dozens of 

suggested new mathematical models use only total cost, value or cash flow when it 

comes to financial data that is used for predictions or S-curve generation (Kaka & Price, 

1993; Boussabaine & Kaka, 1998; Boussabaine & Elhag, 1999; Chao & Chien, 2009; 

Chao & Chien, 2010; Cheng et al., 2011; Cheng & Roy, 2011; Cheng et al. 2012; Chiao 

et al., 2012; Cristóbal et al. 2015; Cheng et al. 2015; Cheng et al. 2020). Reflecting on 

his earlier model, Chao (2013) hypothesizes that the S-curve model could be improved 

if additional input variables would be introduced and they would reflect project 

conditions.  

 

On the contrary, the research on idiographic models (namely cost-schedule integrated 

and planning data models) has given significant attention to time lags related to 

different cost categories and payment conditions. For example, Park (2004), Chen et 

al. (2005) and Tabyang & Benjaoran (2013) conclude that payment lags are needed in 

order to predict cash flow accurately. Meanwhile, mathematical models have 

concentrated on finding more accurate ways to predict project cash flow, the used data 

has been quite consistent for the last 30 years in the literature, although advanced 

information technology has enabled recording and using more precise data. Even 

though nomothetical models are not suited for such sophisticated cost-payment 

coordination methods as idiographic ones, the research on adjacent subjects suggests 

that utilizing project cost composition may increase mathematical models’ ability to 

capture project cash outflow profiles more accurately. Therefore, this study looks into 

the possibility of forecasting the project cash flow curve directly. 

 

3.4 Mathematical methods 

All the way to the late 1980s, most of the papers use polynomial regression in 

estimating the S-curve (Kaka & Price, 1993). Kenley & Wilson (1986) criticize this 

approach for violating regression model’s assumptions and using a large number of 

constants. As an alternative, they suggest a logit model that utilizes log transformation 
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and linear regression. Kaka & Price (1991) utilize the proposed logit model and cost 

commitment data in their cash flow forecasting model that is designed for tender phase 

predictions. They find a linear equation by logit transformation for dependent and 

independent variables: 

𝐿𝑜𝑔𝑖𝑡 = 𝐿𝑛 
𝑍

1−𝑍
      (15) 

where Logit is the transformation and Z is the variable to be transformed. They express 

logistic equation for cost commitment flows as: 

𝐿𝑛 
𝑐

1−𝑐
= 𝛼 + 𝛽 ✕ 𝐿𝑛 [𝑡/(1 − 𝑡)]     (16) 

where cost (c) is the dependent variable and time(t) is the independent variable. α and 

β are constants. Cost can be derived (expressed in percentages): 

𝑐 =
100 ✕ 𝐹

1+𝐹
   where  𝐹 =  𝑒𝛼✕ (

𝑡

100−𝑡
)𝛽   (17) 

The model suggests that cost values can be approximated using Equation 17. After all 

the values of t and c are transformed (to X and Y, respectively), the data should 

approximate a line described by Equation 18, from which parameters α and β which 

can be derived with linear regression: 

𝑌 =  𝛼 +  𝛽𝑋             (18) 

where 𝑌 = 𝐿𝑛 
𝑐

1−𝑐
  and  𝑋 = 𝐿𝑛 

𝑡

1−𝑡
 

 

The logit approach has been one of the most used and accurate models when 

comparing conventional methods (Skitmore, 1992; Navon, 1996). However, it cannot 

estimate progress from start to the end, and the common approach has been to 

exclude 10% from both ends. As it is designed for tender phase predictions, it is not 

meant to be updated during construction to reflect the actual progress. 

 

When forecasting with standard S-curves that are based on historical data, the results 

are dependent on how accurately the chosen curve represents an individual project. 

The problem is difficult especially because it is not clear which variable affects it and 
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to which degree. Chao & Chien (2009) illustrate this problem by demonstrating that 

linear correlations between quantitative input and optimized parameters of their model 

are very weak and therefore these are most likely nonlinear. Similarly, Odeyinka et al. 

(2012) find indication that the relationships of risk factors affecting cost flow forecasts 

might be strictly non-linear. Boussabaine & Kaka (1998) conclude that because the 

relationships are complex and often nonlinear, a regression model might not be the 

best solution. Hua (2008) suggests exploring AI approaches in quantitative analysis of 

construction economics as they offer a possibility to take the complexity into account. 

 

A few artificial neural network (ANN) models have been developed to solve this 

problem. Boussabaine & Kaka (1998) use ANN to predict cumulative costs. Their 

inputs begin from 10% of project completion until 50% and giving output for the 

remaining tenths of the project until 90% of completion. The model can be used for 

tender phase predictions only if the cumulative cost at 10% of completion is an 

estimated input. Boussabaine et al. (1999) reduce the output of their ANN model to 

only give three outputs for total cost at 70, 80 and 90% of project completion. Chao’s 

& Chien’s (2009) model uses a polynomial function in addition to neural networks to 

forecast project progress and is the only ANN-based model that is suitable for tender 

phase predictions.  

 

A similar short-term prediction trend has been consistent also for other methods that 

are used in mathematical models. All of the support vector machine (SVM) based 

models (Cheng et al. 2009; Cheng & Roy, 2011; Cheng et al. 2012; Cheng et al. 2013; 

Cheng et al. 2015), Grey prediction models (Cheng et al. 2011; Cristóbal et al. 2015) 

and deep learning models (Cheng et al. 2020) are focusing only on short-term 

predictions even though some of the models could be modified for slightly extended 

forecasting intervals. 

 

As these models have different prediction intervals it is difficult to compare their 

accuracy. Hongjiu et al. (2012) compare the performance of artificial intelligence based 

cash flow prediction methods and found that SVM’s performed the best and have the 
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strongest robustness with small samples. This is especially important in project cash 

flow prediction because project samples are relatively small. 

 

In their overview of the literature on project control and earned value management, 

Willems & Vanhoucke (2015) recognize only four papers on SVM. One was applied in 

forecasting project time and cost based on periodic earned value management data 

(Wauters & Vanhoucke, 2014) and two of them (Cheng et al. 2010; Cheng & Roy, 

2011) focus on short-interval cash outflow forecasting. Wauters & Vanhoucke (2014) 

conclude that the proposed support vector machine (SVM) method is superior to 

compared forecasting methods if the used training set resembles the test set. Similarly, 

Peško et al. (2017) compare artificial neural networks and SVM in estimating project 

cost and duration. They report that SVM models are more able to generalize input data 

and thus, providing more accurate estimations for both cost and duration. 

 

A comparison between different times series prediction methods by Sapankevych & 

Sankar (2009) suggests using ANN’s or SVM’s in project cash flow prediction as they 

are not dependent on linear, stationary processes. However, SVM’s differ from ANN’s 

as they are guaranteed to converge to the optimal solution (Sapankevych & Sankar, 

2009). Overall, SVM’s are less researched in construction management and 

economics area compared to ANN’s and none of the existing models utilize SVM for 

cash flow predictions for the whole project duration. Additionally, there is some 

evidence that SVM’s perform better in the project forecasting area compared to ANN’s. 

Therefore, the existing literature encourages to development of an SVM-based cash 

flow forecasting model for the whole project duration.  

 

3.5 Summary 

Figure 5 summarizes different kinds of cash flow models that are present in the 

literature. Project level cash flow forecasting divides into two sorts of models: 

mathematical and planning-based ones. Mathematical models only require general 

data of the projects and then estimate periodic forecasts with an S-curve based on 

historical data. Planning-based models on the other hand are dependent on project 
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schedules and financial forecasts that are generated by project personnel. Therefore, 

they require detailed level information of the project. This study takes advantage of 

mathematical models’ ability to generate predictions with only a little effort when it 

comes to the required manual work of the user.  

 

 

Figure 5. Project-level cash flow models used in the literature. 

 

Mathematical models can be roughly split into two groups: short-interval and pre-

construction forecasting models. Short-interval forecasting models have made great 

progress in terms of capability to map complex, non-linear relationships. However, they 

offer only a little help to contractors as they cannot be used to predict the whole project 

period. On the contrary, pre-construction models are highly important for construction 

organizations, but they mainly use logit transformation and linear regression. Chao’ & 

Chien’s (2009) progress prediction model makes an exception, but it is not yet applied 

to cash flow forecasting. Therefore, there is a significant gap in the literature as none 

of the existing research explores the possibility of forecasting the whole project period 

using methods that are studied in a short-interval forecasting context.  

 

This study aims to contribute to the literature by introducing a cash flow model that 

uses support vector regression to predict the whole project period. It can be also 

updated during construction as opposed to current pre-construction forecasting 

models. This is not only a nice-to-have feature as one construction project might take 
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years and contribute a significant proportion of the contractor’s revenue. Therefore, 

reflecting the changes of actuals and project end forecast to the cash flow predictions 

are also required. 

 

Whereas the research on mathematical forecasting has focused on advances in 

methodology and few concepts (mainly project grouping and differences in cost and 

value curves), planning-based models have focused on causal relationships. This has 

been possible because the used models are more data-intensive compared to 

mathematical cash flow models that have been stuck on one independent variable 

(time) in S-curve generation in the pre-construction forecasting area. Short-interval 

forecasting models have also used cumulative cost or value in addition to time. 

However, the findings of research on planning-based models suggest that the relative 

share of different cost categories is greatly affecting the S-curve profile. Additionally, 

the cash disbursements of different cost categories are not occurring at a uniform rate. 

Therefore, current state-of-the-art mathematical models that apply fixed time lag to a 

predicted total cost curve are introducing a systematic error in their predictions. This 

study aims to investigate the possibility of directly forecasting the cash outflow curve 

utilizing project cost composition for the above-stated reasons. 
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4   Data and proposed model 

The data is collected from a Finnish general contractor’s enterprise resource planning 

system. Overall, the obtained dataset consists of 33 projects of which 28 and 5 are 

building and infrastructure construction, respectively. The requirements for selected 

contracts were that they are valued over one million euros, have cost categorized 

project end forecasts and at least 80% completed when measuring with an estimated 

completion date. The earliest contract is started 4.1.2019 and the latest estimated 

completion date is 30.9.2021. 

 

Table 1. General statistics of collected projects 

 Minimum Mean Maximum 

Contract sum (€) 1 111 000 8 062 399 23 848 000 

Duration (days) 207 518 905 

Gross area (m2)* 1 927 7016 40 170 

* Reported only for building projects 

 

General quantitative variables of collected projects are presented in Table 1. The 

smallest contract value is 1.1M€ and the largest is 23.8M€ with the mean being 8.1M€. 

The shortest and longest contracts are 207 and 905 days long, respectively. The 

average duration of a contract is 518 days. The gross area is the sum of floor areas in 

a building, and it is reported only for building projects. The mean gross area is 518 

square meters while the minimum and maximum floor areas are 1 927 and 40 170, 

respectively. As it can be seen from Table 1, there are large variations in all of the 

variables which make project clustering necessary in order to get groups of similar 

projects. 

 

The financials of the projects are collected in monthly periods. Obtained data includes 

total cash outflow and categorized actual costs and current forecast. Examples of 

collected actuals and forecasts are presented in Tables 2 and 3, respectively. The first 
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collected period is the month when construction is estimated to begin. The initial period 

contains all of the actualized costs before the construction. The last collected month is 

the month of the estimated project handover date.  

 

Table 2. Example of collected projects actuals data 

 

 

The actualized costs consist of eight cost categories. These are labor, materials, 

subcontracting, other non-calculatory costs, additional works related costs, social 

costs, deferrals and provisions. The last three are strictly calculatory costs. The project 

end cost forecasts are reported in eleven different cost categories. Six of them are non-

calculatory: labor, materials, subcontracting, other non-calculatory costs, additional 

works related costs and financing. Five of them are calculatory: social costs, risk 

provision for a specified item, non-allocated risk provision, guarantee period provision 

and construction period provision.  

 

Table 3. Example of project end forecasts 
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In addition to the data that the proposed model needs, time lags for each non-

calculatory cost category are collected in order to test the logit model. As the earliest 

project starts at the beginning of 2019, payment times for cost categories are collected 

from years 2017 and 2018 to prevent information leak of time lags to the logit model.  

 

Payment times are represented in a similar monthly fashion as in Kaka & Price (1991) 

in Table 4. This is because project actuals are measured only at the end of each period. 

Now that both project cost composition and time lags are collected, an average time 

lag can be computed. As there are also calculatory costs in the forecasts, the total time 

lag percent is less than 100 as some costs are not cashed out. For the initial cost 

composition forecast in Table 3, the average time lag would be 7%, 80% and 7% for 

months 0,1 and 2, respectively. This is later used to obtain cash outflow from the 

forecasted cost curve. 

 

Table 4. Time lags for each non-calculatory cost category 
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4.1 Cash outflow model 

The fact, that numerous variables are affecting a project’s financial outcome with non-

linear and unknown relationships, would suggest that AI and ML would be more 

suitable to solve these kinds of problems. There are some successful models that 

outperform traditional approaches, for example, Cheng & Roy (2011). However, they 

only predict short intervals and are designed to be used only in the construction phase. 

In addition, they have only been tested with small and homogenous datasets. This 

problem is also observed by Kenley & Wilson (1986). They suggest an idiographic 

approach for project cash flow modeling and point out, that nomothetical models which 

have been providing good results usually use a narrow set of projects. 

 

Even though it has been noted in the research as early as in the 1970s that different 

cost categories have different time lags in respect to their cash disbursement (for 

example Ashley & Teicholz 1977, cited in Park 2004), a standard approach in the 

mathematical models has been to utilize total costs without categorizing. Chen et al. 

(2005) find out from their analysis of cost-schedule integrated cash flow models that 

using payment categories and time lags is necessary in order to obtain accurate cash 

outflow predictions. Park (2004) applies this idea successfully by introducing an 

idiographic cash flow model using moving weights of cost categories. However, his 

model requires monthly cost budget and earned value planning data which are often 

not available.  

 

Mathematical models can still use these observations to improve their accuracy. The 

most recognized cash flow model, developed by Kaka & Price (1991), makes an 

improvement to earlier models by utilizing cost categories and their time lags. 

However, the cash outflow is derived from a cost curve with fixed weights of cost 

categories and thus fixed time lag. The observations of Park (2004) and Park et al. 

(2005) clearly indicate that different cost categories are not incurring at a uniform rate. 

Therefore, the fixed cost category distribution is not justifiable as it applies the same 

time lag to incurred costs for the whole project period. This study suggests forecasting 

the cash outflow curve directly as a solution. This way project cost distribution’s 
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relationship with the rate of cash disbursements can be derived in a more accurate 

manner. 

 

The suggested cash outflow prediction model is presented in Figure 6. It can be used 

to obtain cash outflow predictions prior and during construction. It requires three or four 

descriptive variables for project clustering depending on the type of work. These are 

the type of work, contract value, contract duration and gross area. In terms of financial 

data, the model requires cost categorized project end forecast and project time interval. 

Project actuals that include initial-to-date cash outflow are needed for training the 

model and for the construction phase predictions.  

 

Project grouping is first performed in two phases. As K-means clustering is applicable 

only for interval or ratio scale variables, the first phase is to group projects based on 

different kinds of work. This is introduced as an addition to K-means clustering because 

multiple studies have found type of work to be a significant predictor of S-curve shape 

(Skitmore, 1992; Kaka & Price, 1993; Ross et al. 2013). After the initial grouping, K-

means clustering is performed for each group based on normalized contract value, 

contract duration and gross area. However, if the gross area is not reported for a given 

group, K-means clustering is performed only based on contract value and duration. 

Normalization is done in order to get all the variables to a common scale (0 to 1).  

 

Contract value and duration are also found to be accurate predictors of project 

grouping and are commonly used in the literature (Skitmore, 1992; Kaka & Price, 1993; 

Evans & Kaka, 1998). The gross area of a building project is added to describe the 

project and control for price differentiation of building in different parts of Finland. It 

gives further detail on project complexity that contract value and duration might not be 

able to describe. For example, two similar residential buildings in Southern and Eastern 

Finland may have highly different contract values because of price differentiation but 

their similarity can be captured by the gross area of the building.  
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Figure 6. Proposed cash outflow model using SVR and cost composition  
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After project grouping has been performed, input data is processed to be ready for 

SVR training. If construction has started, project actuals are deducted from project end 

forecasts so that only non-actualized costs are left of the forecast. Also, the cumulative 

cost and cash flow that has already been incurred are also added to the input data. 

The normalization of input data includes transforming cost categories of project end 

forecast and actuals to the relative share of total forecasted cost and modifying dates 

of project duration to a percentage of completion in time. 

 

Next, SVR is fitted ( 𝑛
𝑚

) times as optimal parameters of C and 𝛾 are explored via grid-

search where the model is inputted two lists of different hyperparameters (𝐶1 … 𝐶𝑛 and 

𝛾1 … 𝛾𝑚). Then k-fold cross-validation algorithm is performed for each fitted SVR with 

𝑘 = 5. After getting average errors of each k-fold cross-validation, the set of 

hyperparameters with the lowest error is chosen and the model is optimized to perform 

predictions.   
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5   Empirical results 

Applying the model begins by clustering the projects. First, the dataset is divided into 

building and infrastructure projects. Next, the input data for clustering is normalized to 

range from 0 to 1. As there are only four infrastructure projects, K-means clustering is 

not performed for their group. For building projects, the appropriate number of clusters 

is first estimated. A visualization of the Elbow Method can be found in Appendix 1. 

Based on the results from Elbow Method, the projects are clustered into three different 

groups based on contract value, duration and gross area. Table 5 represent cluster 

centers and the number of projects for each cluster. 

 

Table 5. Cluster centers for building and infrastructure projects. 

 

 

Two of the three clusters form sensible groups. The ten projects that are assigned to 

cluster 2 can be categorized as large based on all of their attributes, whereas the 

projects of cluster 1 are relatively small. However, one project is forming its own cluster. 

Its contract value and duration are close to cluster 2 but its gross area is tenfold. This 

indicates its unique project type and therefore it is left out of forecasting. Infrastructure 

projects form their own cluster. Its mean contract value is distinctively smaller 

compared to building projects and its average duration is the same with small building 

projects. 

 

In summary, after the two-phased project grouping, there are three separate groups to 

analyze: infrastructure projects, large building projects and small building projects that 

consist of 4, 10 and 18 projects, respectively. As the projects are now grouped, next 

follows the training of the prediction model. From each group, 80% of the projects are 

used for training and 20% for testing the optimized model. The projects are split into 
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training and test sets randomly. This results in 3, 8 and 14 training projects and 1, 2 

and 4 test projects for infrastructure, large building and small building projects, 

respectively. In total, there are 443 and 115 observations in the training and testing 

datasets. Next, the empirical section divides into two parts as does the model. First, 

pre-construction predictions are represented which follows with the construction phase 

predictions. 

 

5.1 Pre-construction forecasting  

As multiple changes are proposed compared to the logit cost commitment curve model, 

the transition to the introduced model is done in multiple phases. The suggested 

phases are: 

1) Forecasting standard cash outflow curve directly instead of obtaining it from cost 

commitment curve with time lags. 

2) Using support vector regression as opposed to logit transformation and linear 

regression.  

3) Free hyperparameters of support vector regression are optimized with grid 

search and k-fold cross-validation. 

4) As an alternative to obtaining a fixed time lag, project cost composition is used 

directly in S-curve prediction. 

First, the logit model is used to get baseline forecasts. This is done by forecasting 

standard cost commitment curves and then applying fixed time lag that is determined 

by the project’s cost composition and time lags presented in Table 4 (Logit_CCC).  

Second, to answer the first sub-question of research question one, logit transformation 

and linear regression are applied to forecast the cash outflow curve directly 

(Logit_COC). Data exclusion range is 10% from both ends for both of the logit models. 

This results that for logit models there are only 359 and 88 training and test 

observations. 

 

The cash outflow curve is then estimated with support vector regression with default 

and optimized hyperparameters, SVR and SVR_OPT, respectively. Used default 

parameters for SVR are 𝐶 = 1 and for gamma as in Equation 19. 
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𝛾 =
1

𝑛𝑓 𝜎2(𝑋)
         (19)  

where 𝑛𝑓 is the number of features and  𝜎2(𝑋) is the variance of predictive variables. 

Grid-search ranges for 𝐶 and 𝛾 are 2−5 … 215 and 2−15 … 25, respectively. After this, 

the input data is enriched with project cost composition and the cash outflow curve is 

predicted using SVR with default (SVR_CC) and optimized hyperparameters 

(SVR_CC_OPT). The error of different methodologies is measured with root mean 

squared error (RMSE) that is presented in Equation 20. 

 

  𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖−ŷ𝑖)2𝑛

𝑖=1

𝑛
      (20) 

where 𝑦𝑖 is the actual cash outflow, ŷ𝑖 is predicted value and n is the number of 

observations. 

 

The training results for different models are presented in Table 6 which contains RMSE 

for all the training projects, all data points in the given cluster and all data points in the 

entire training set. The standard deviation of errors (STD) is also presented for the last 

two. Unsurprisingly, the cost commitment curve logit model has the highest training 

RMSE of 10.6% for all predictions as it is not directly fitted to actual cash outflow. The 

cash outflow curve logit model proves this point as it lowers the training RMSE of all 

observations to 9.83%. However, SVR with default and optimized hyperparameters 

are better able to fit the training data with respective errors of 9.25% and 8.85%.  

 

After the training data has been enriched with project cost composition, SVR has a lot 

more variables to base its predictions on. This can be seen with significantly lower 

error rates with both default and optimized SVR. The most notable drop can be 

observed in infrastructure project predictions and in projects that could be considered 

as outliers, namely, projects 3, 7, 14 and 21. As the RMSE drops from 7.7% (SVR_CC) 

to 6.27% (SVR_CC_OPT) by optimizing, its effect is huge compared to SVR with the 

time as the only predictive variable (SVR and SVR_OPT). These observations can also 

indicate from overfitting.  
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Table 6. Pre-construction training RMSE and STD of different models. 

 

 

The standard deviation of errors is tightly following the RMSE value with all the other 

methodologies except for Logit_CCC as the standard deviations of Logit_COC, SVR, 

SVR_OPT, SVR_CC and SVR_CC_OPT are 9.7%, 9.14%, 8.86%, 7.66% and 6.27%, 
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respectively. For Logit_CCC standard deviation is significantly lower than RMSE in all 

the project clusters with a standard deviation of all errors being 8.56%. 

 

Table 7. Pre-construction test RMSE and STD of different models. 

 

 

The test results of different models are presented in Table 7 which contains RMSE for 

all the test projects, all data points in the given project cluster and all data points in the 

whole test set. The standard deviation of errors (STD) is also presented for the former 

two. Overall error rates of Logit_CCC, Logit_COC, SVR, SVR_OPT, SVR_CC and 

SVR_CC_OPT are 10.25%, 9.76%, 9.05%, 8.8%, 9.57% and 8.33%, respectively. 

Measuring with RMSE, the rank order of the models is the same as in the training set 

with the exception of SVR_CC that is defeated by SVR and SVR_OPT.  Therefore, 

SVR_CC_OPT and SVR_OPT models have the highest performance in the respective 

order.  
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Figure 7. Predictions of optimized support vector regression (SVR_OPT) and the actual cash 

flow for test projects in the pre-construction phase. 

 

The predicted cash outflow curves of SVR_OPT can be found in Figure 7. It is 

noteworthy that SVR_OPT is performing better with projects whose cash outflow curve 

is following a predictable pattern and therefore have low error rates across the different 

models. This can be seen in small and large building project groups which have lower 

RMSE values in both training and test sets compared to infrastructure projects. Even 

though SVR_OPT predictions have the lowest RMSE only for one of seven projects 
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(project 5), it stays consistently in low- and mid-level error rates. As an example of 

opposite behavior, Logit_CCC generates overwhelmingly best predictions for small 

building projects (RMSE 5.78%) but performs the worst in large building and 

infrastructure project categories (RMSEs 8.78% and 20.94%). This indicates that the 

model is able to forecast only the common and gentle S-curve pattern that resembles 

a linear line (projects 1,2,3, 4 and 6) but fails terribly with abrupt S-curves (projects 5 

and 7). Therefore, there is not enough steepness in the S-curves of Logit_CCC which 

is most likely caused by linear methodology. 

 

However, it can be seen from both the RMSE values and Figure 7 that a standard 

curve with one predictive variable does not conform very well to abnormal cash outflow 

curves of projects 1 and 7 even though the methodology is non-linear. As a matter of 

fact, SVR_OPT cannot find any predictable pattern in infrastructure projects and settles 

for predicting a linear line for project 7. The results imply that hyperparameter-

optimized SVR is able to predict a well-generalized cash flow curve. Interestingly, it 

generates nearly identical curves for both small and large building projects even 

though the optimized hyperparameters are different. 

 

The predicted cash outflow curves of SVR_CC_OPT are presented in Figure 8. As 

opposed to SVR_OPT, predicted curves are noticeably different between and within 

project groups. The benefit of using SVR_CC_OPT can be seen from the predictions 

of projects 1 and 7 where the other models have produced significantly less accurate 

predictions except logit models for project 1. However, the predictions generated by 

SVR_CC_OPT can be classified even as bad for projects 4 and 5 as their RMSEs are, 

respectively, 4.43% and 2.21% higher compared to SVR_OPT and generally higher 

than in other models. The results imply that SVR_CC_OPT is able to conform to 

different kinds of cash flow profiles but with a cost of lower performance with the 

common patterns. 

 

It can be seen from Figures 7 and 8 that some of the predictions are negative at the 

beginning of the project as optimized SVR has not been able to fit to the training data 
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without crossing the x-axis. This issue sticks out especially in SVR_CC_OPT’s 

prediction at the beginning of project 4, where the prediction is almost -24% of the 

forecasted total cost. As there is no reason to assume that there would be any credit 

memos or cost compensations cashed in without corresponding cost right at the 

beginning of the construction, it would be reasonable to limit the predictions to zero.  

 

 

Figure 8. Predictions of optimized support vector regression using project cost composition 

(SVR_CC_OPT) and the actual cash flow for test projects in the pre-construction phase. 
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With this adjustment, the overall RMSE of SVR_OPT and SVR_CC_OPT drop to 

8.78% and 7.75%, respectively. Therefore, there is only a minuscule improvement in 

SVR_OPT but the RMSE of SVR_CC_OPT improves by 0.58%, making the gap of 

over 1% to SVR_OPT. The predictions generated by SVR_CC_OPT with the 

abovementioned limitation are presented in Appendix 2 and RMSE values for small 

building, large building and infrastructure projects are 7.65%, 6.22% and 11.22%, 

respectively. 

 

Errors with the abovementioned limitation are presented in Figure 9 for all of the 

models. The mean errors for Logit_CCC. Logit_COC, SVR, SVR_OPT, SVR_CC and 

SVR_CC_OPT are 5.46%, 0.05%, -2.92%, -1.75%, -2.23% and -2.33%. The peaks of 

error distributions are around zero only for Logit_CCC, SVR_OPT and SVR_CC_OPT. 

However, the rest of the Logit_CCC distribution is located mostly at the positive side 

of the x-axis which explains the high RMSE and relatively low STD. This also results 

in an exceptionally high average error which implies a high systematic error. When the 

logit model is shifted to forecast cash outflow curve, the errors are quite balanced with 

an extremely low average error of Logit_COC. On the contrary to Logit_CCC, the error 

distributions of SVR, SVR_OPT, SVR_CC are SVR_CC_OPT positively skewed. 

When comparing the profile of the distributions, SVR_CC_OPT is the closest to the 

normal distribution and has a shorter right tail compared to other models.  

 

The abovementioned observations of error distributions imply that a lower standard 

deviation of errors is a positive trait at least for SVR_OPT and SVR_CC_OPT as their 

errors are distributed around zero. As presented in Table 7, the standard deviation of 

errors for SVR_CC_OPT is the lowest (8.17%). After restricting the predictions to be 

zero or above, the standard deviation of errors drops to 7.42% for SVR_CC_OPT and 

8.64% for SVR_OPT. For other models, there is no effect. These observations would 

suggest that SVR_CC_OPT can be considered the best performing model also in 

terms of error distribution as it has only a small disadvantage in mean error to 

SVR_OPT but is better in terms of other traits. This especially is important in the 

context of mathematical forecasting. 
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Figure 9. Test error distributions of different models in the pre-construction phase. 

 

Table 8 represents the actual payment times for non-calculatory cost categories from 

the observation period. When comparing these with the ones from Table 4, it can be 

noted that all except labor and finance have increased. For these two, labor has stayed 

the same and finance costs have been paid in the same month instead of 60% and 

40% in the second and third month, respectively. However, the financing costs are very 

marginal in the overall budget. On the other hand, the largest cost categories, materials 

and subcontracting, have had longer payment times compared to the used ones. In 

addition, other miscellaneous costs had longer payment lags.  

 

Reflecting the comparison between Tables 4 and 8 to the error distribution of 

Logit_CCC in Figure 9, the performance of Logit_CCC would have been worse if more 

accurate payment lags would have been used. This is because a majority of its errors 

are positive, meaning that the predictions have been smaller than the actual cash 

outflow. Simultaneously the actual payment lags have been longer when the 

differences of Tables 4 and 8 are weighted with the relative sizes of the cost categories. 
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Therefore, the applied delay to the cost commitment curve would have been even 

larger.  

 

Table 8. Actual payment times of non-calculatory cost categories in the observation period. 

 

 

 

5.2 The construction phase forecasting 

As the logit model is designed to be used with only one variable and not to be updated, 

this section observes only SVR, SVR_OPT, SVR_CC and SVR_CC_OPT models. All 

of them are extended with two variables: progress at the time of prediction and 

normalized total cash outflow that is actualized in the time of prediction. Also, project 

end forecast changes are updated to the construction phase data which will affect all 

of the models through the normalization denominator. The weights of different cost 

categories are also adjusted with respect to actualized costs for SVR_CC and 

SVR_CC_OPT models.  

 

As there may be plenty of periods before the period to be predicted, multiple instances 

of the same period are generated. These all have different values for progress and 

actualized cash flow at the time of prediction in addition to the remaining weights of 

cost categories for SVR_CC and SVR_CC_OPT. In the training data, there are as 

many instances of the same period as there are periods that have progress smaller or 

equal to 50% before it. This results that in total, there are 1154, 1608 and 244 training 

observations for small building, large building and infrastructure projects, respectively. 
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This is implemented in order to avoid the models from overfitting and give them better 

generalization abilities. 

 

Training and test results are presented with 10% increments in respect of progress in 

time from 10% to 50%. As the financials are collected monthly, the data is not available 

for these exact points of time. Because of this, the closest month before the given 

decimal is chosen. Forecasts are then generated for the rest of the project duration 

with this input.  

 

Results for training projects are presented in Table 9. At the end of the table, RMSE 

and standard deviation of errors are also presented for all the of the datapoints as the 

model is trained with all of them. When measuring with all the observations and RMSE, 

the order from the fittest to the worst fitting is SVR_CC_OPT, SVR_CC, SVR_OPT and 

SVR with respective RMSEs of 5,68%, 5,94%, 6,98, 7,15%. In relative means, the 

results are quite the same as in pre-construction training but the difference between 

SVR_CC and SVR_CC_OPT is not as large. Also, the overall difference in training 

RMSE between models is not as large which can be explained by increasing the 

predictive variables of SVR and SVR_OPT from one to three.  

 

The training RMSE for all the data points in the construction phase is smaller than in 

the pre-construction phase for all of the models. This can be explained by enriching 

the predictive variables with data on project progress. The difference of overall training 

RMSE between pre-construction and the construction phase is 2.1%, 1.87%, 1.83% 

and 0.59% for SVR, SVR_OPT, SVR_CC and SVR_CC_OPT, respectively. Therefore, 

there is a large difference between the latter three and SVR_CC_OPT in respect of 

improving the training RMSE.  

 

As mentioned above, the decrease in RMSE for SVR and SVR_OPT could be 

explained by increasing the predictive variables which will give them the ability to adjust 

for different kinds of cash flow profiles. However, the drop in RMSE for SVR_CC is 

almost at the same level even though it had this ability also in the pre-construction 
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phase. If the decrease would be caused by adjusted weights of cost categories, it 

would also drop the RMSE of SVR_CC_OPT with the same magnitude which is not 

the case. There are also large differences between the hyperparameters of SVR_CC 

and SVR_CC_OPT as their respective 𝐶’s and 𝛾’s for different project groups are 1 

and 1.633, 1 and 1.546, 1 and 1.23 for SVR_CC and 2.177 and 1.043, 27.779 and 

0.486, 11.888 and 0.176 for SVR_CC_OPT. This could indicate that a good training fit 

can be achieved with various hyperparameters as more detailed data from project 

progress is available but the k-fold cross-validation algorithm is toning down the 

overfitting of SVR_CC_OPT which keeps the training RMSE relatively high. This would 

mean that generalization of the construction phase cost category data is a more difficult 

task compared to the pre-construction phase. 

 

When looking at the RMSE of the models in different points of progress, there is a clear 

distinction between the models with and without project cost composition. SVR_CC 

and SVR_CC_OPT begin with 1.89-2.34% lower RMSE and they continue to improve 

till the progress is over 30%. However, after this both of their RMSE start rising rapidly 

so that when project progress is less than 50% their RMSE is higher than in the 

beginning. This could be caused by project cost composition not having such a large 

effect on the cash outflow profile after the construction is in full motion which is around 

the third of project duration. Training these models with all of the training data still 

appears to give them better generalization ability, because when experimenting with 

training data that has only the datapoints with prediction time right before 50% 

progress, test RMSE increases by 1.4%.  

 

On the contrary, SVR and SVR_OPT models begin with quite high training RMSE, but 

which is still lower than the pre-construction phase training error and they continue to 

improve training RMSE for the whole observed interval. This could indicate that SVR 

and SVR_OPT are utilizing their input more efficiently but they have less information 

to begin with it as they have a lower number of variables. However, as they have 

slightly higher training errors compared to SVR_CC and SVR_CC_OPT even when 

progress is under 40%, their overall RMSE is significantly higher. 
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Table 9. The construction phase training RMSE and STD of different models. 

 

 

Test results of different models are presented in 10% progress increments in Tables 

10 and 11. When comparing the overall RMSE in different levels of progress the best 

performing models are SVR, SVR_CC_OPT, SVR_OPT at 10%, 20-30% and 40-50% 

of progress, respectively. The best RMSE for each point of progress is 7.82%, 8.19%, 
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7.84%, 6.79% and 6.08%. SVR_CC sticks out from the other models as it has the worst 

performance in each point of progress.  

 

Combining predictions of all five periods, the RMSEs for SVR, SVR_OPT, SVR_CC 

and SVR_CC_OPT are 7.78%, 7.80%, 8.61% and 7.81%, respectively. Therefore, 

although SVR, SVR_OPT and SVR_CC_OPT are within a 0.03% range, SVR has 

overall the lowest RMSE. When comparing SVR to SVR_OPT, it is better when 

progress is in the 10-20% range after which SVR_OPT performs better. As there are 

more periods to predict at the beginning of a project, there are also more observations 

then, which weighs just enough that SVR has the lowest total RMSE. 

 

Distinctively, the pre-construction phase RMSE of 7.75% (when there is a lower bound 

of zero for predictions) of SVR_CC_OPT is outperformed only until the progress is at 

40%. When looking at the overall RMSE of all five prediction periods, none of the 

models beat the RMSE of SVR_CC_OPT in the pre-construction phase. However, 

after the threshold is exceeded at 40% all of the models surpass it by far as their total 

RMSE then ranges from 6.79% - 7.15%. When looking at the development of RMSE 

by the model, SVR and SVR_OPT both are decreasing their RMSE from pre-

construction to 50% of the project duration with the exception of higher errors when 

progress is 20%. Compared to the pre-construction phase, SVR_CC and 

SVR_CC_OPT, on the other hand, both start with higher RMSE’s at 10% of progress 

and they gradually lower their error until surpassing the pre-construction level at 30% 

and 40% of progress, respectively. 
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Table 10. RMSE and STD values for test projects with progress from <10% to <30%. 
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Table 11. RMSE and STD values for test projects with progress from <40% to <50%. 

 

 

Similar features of the models as in the pre-construction phase can be observed also 

in the construction phase as SVR_CC_OPT can generate better predictions for 

uncommon cash flow profiles. This can be seen from project 7 throughout the observed 

periods although SVR’s and SVR_OPT’s predictions are almost as accurate when 

progress is less than 10%. Also, SVR_CC_OPT and SVR_CC are able to reflect the 

delay in the beginning of project 1 in their forecasts when progress is less than 30% 
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whereas SVR and SVR_OPT catch up only when progress is smaller than 50%. 

However, SVR_CC_OPT is performing significantly worse in the common cash flow 

profiles of small and large building projects thorough the observed time frame. 

 

Comparing the test results to the ones from training, there are both differences and 

similarities. The most notable distinction is that the performance of SVR_CC and 

SVR_CC_OPT starts to deteriorate after 30% of progress in the training phase, but 

when testing the model, both of their RMSE is over 1% better at 50% compared to 30% 

of progress. Another noteworthy difference is that the generalization ability of 

SVR_CC_OPT is notably better than SVR_CC as the gap between their performance 

increase from 0.26% to 0.80% when moving from the training phase to the test phase. 

The similarity of the phases, on the other hand, can be seen from the incremental 

improvement of SVR and SVR_OPT. 

 

Standard deviations of the errors from all prediction periods are 7.77%, 7.80%, 8.60% 

and 7.79% for SVR, SVR_OPT, SVR_CC and SVR_CC_OPT, respectively. SVR, 

SVR_OPT and SVR_CC_OPT are again within a 0.03% range and there is only a 

0.01% difference between each of the four model’s RMSE and STD. Looking at the 

total STDs of each prediction period and model, there are not notable differences 

compared to the overall results. 

 

The distributions of errors are presented in Figure 10. The mean errors for SVR, 

SVR_OPT, SVR_CC and SVR_CC_OPT are 0.51%, 0.59%, 0.65% and -0.67%. 

Notably, the mean errors have decreased significantly from the pre-construction phase 

forecasting. Similar to distributions in the pre-construction phase, SVR_CC_OPT’s 

distribution has its peak near zero but for SVR_OPT it has moved more to the left side. 

Even though SVR, SVR_OPT and SVR_CC have longer right tails compared to 

SVR_CC_OPT, in the construction phase the difference is minuscule. Also, the 

positive skewness of SVR and SVR_OPT compliments their negative peaks of errors. 

On the other hand, the distribution of SVR_CC_OPT appears platykurtic and has the 

majority of its highest bars on the negative side. In addition, SVR_CC_OPT has a 
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higher density in its left tail compared to other models. This has also decreased the 

performance of SVR_CC_OPT the worst in terms of average error. 

 

 

Figure 10. Test error distributions of different models in the construction phase. 

 

 

5.3 Results analysis 

As the literature review suggested that there are multiple unresolved issues in the 

mathematical forecasting models and that they are still in demand, the study presented 

a cash outflow model in chapter 4.1 that addresses all of the identified flaws in pre-

construction models. As multiple enhancements were proposed, the study examined 

various intermediate versions of the model to estimate the impact of each suggested 

change. The benchmark model (Logit_CCC) along with four intermediate models 

(Logit_COC, SVR, SVR_OPT and SVR_CC) and the final model (SVR_CC_OPT) are 

presented in Table 12 in ascending order with respect to their overall performance.  
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Table 12. Summary of the models and their performance in ascending order. 
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The most significant modification made in this study is forecasting the cash outflow 

curve directly instead of using the traditional approach of forecasting the cost curve 

and deriving the cash outflow by applying a fixed time lag. This is a major change 

because after the publication of the net cash flow model proposed by Kaka & Price 

(1991) all of the research on mathematical pre-construction forecasting has focused 

solely on forecasting the cost commitment curve. However, this model imposes a 

systematic error to the cash outflow forecast by assuming that different costs are 

incurring at a uniform rate. As there is no research available on forecasting the cash 

outflow for the whole project duration, the results of this study are novel.  

 

The impact of the proposed modification can be best evaluated by comparing the 

results of the logit model with cost commitment curve and fixed time lag (Logit_CCC) 

and logit model with cash outflow curve (Logit_COC) in the pre-construction phase 

forecasting. It must be noted that Logit_CCC suffers from more averaging compared 

to the approach of Kaka and Price (1991) as the used time lags are general instead of 

project-specific. However, it is difficult to assess the impact of this because some of 

the project-specific time lags may still be uncertain in the pre-construction phase which 

will cause errors in the project-specific approach. For example, subcontractor payment 

terms may be unknown because they are not hired yet. On the other hand, some of 

the time lags are fixed regardless of the project because the procurement is done at a 

company level. A comparison between Tables 4 and 8 actually suggests that the 

chosen methodology has supported the performance of Logit_CCC because the actual 

payment times have been longer than the used ones and the model has already 

underestimated the cash outflow. 

 

The respective overall RMSEs of Logit_CCC and Logit_COC for test projects are 

10.25% and 9.76%. Therefore, the difference is 0.49% to the advantage of Logit_COC. 

By project, Logit_COC has more accurate results for five of the seven projects. It can 

be seen from Figure 9 that most of the errors of Logit_CCC are on the right side of the 

y-axis which also explains the low standard deviation of the model. On the contrary, 

the errors of Logit_COC lay on both sides. This is an important quality as the main 

justification for using mathematical models is that the errors are canceled out in the 
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consolidated forecast of a project portfolio. The systematic error that Logit_CCC 

imposes on the cash outflow curve can be observed quantitatively by comparing its 

average error of 5.46% to the corresponding 0.05% of Logit_COC. The same effect 

can be also observed for all of the other models which is why it is listed as their 

advantage in Table 12. Therefore, it can be concluded that direct forecasting of the 

cash outflow curve will most likely yield better results especially in terms of lower 

systematic error.  

 

Another modification of the proposed model explores the possibility of using project 

cost composition in defining the cash outflow profile in different phases of a project and 

its impact on forecast accuracy. In order to be able to use project cost composition in 

the proposed manner, the logit model must be abandoned, as it is designed to be used 

with only one predictive variable. Choosing SVR also tackles the problem of using 

linear models in pre-construction forecasting. The proposed enhancement also 

addresses the issue of using only the total cash outflow in current short-interval SVR 

models.  

 

Comparing overall the pre-construction phase RMSE of, SVR, SVR_OPT and 

SVR_CC_OPT to the baseline of Logit_CCC and Logit_COC, there is no question of 

the superiority of SVR based model. Their differences in RMSEs compared to 

Logit_COC are 0.71%, 0.98% and 2.01%, respectively (when predictions are limited 

to zero or above). It also must be noted that while the logit model is able to forecast 

only 80% of the project duration, SVR is applied for the whole project duration. As 

Logit_COC still has the lowest mean error in the pre-construction phase, the advantage 

of using non-linear methodology is stemming from a better fitting ability instead of 

reducing systematic error before construction. However, there is a significant drop in 

the RMSE of SVR-based models in the construction phase. This indicates that the 

ability to be updated during construction is reducing systematic error. These two 

features are marked as an advantage to all of the SVR-based models in Table 12. 
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Applying project composition together with SVR in the pre-construction phase resulted 

in the best overall RMSE. However, some issues emerged as SVR_CC_OPT 

performed relatively worse with projects that have predictable cash outflow curves and 

generated negative predictions at the beginning of some projects. This effect is even 

worse for SVR_CC which has caused it to be performing worse than SVR and 

SVR_OPT even though it has more information available on the predicted projects. 

These overreactive traits of SVR_CC and SVR_CC_OPT indicate overfitting and giving 

too much weight to project cost composition.  

 

The results from the construction phase are more ambiguous as the overall RMSE of 

all prediction periods for SVR, SVR_OPT and SVR_CC_OPT are within a 0.03% 

range. It seems like SVR_CC_OPT’s reactivity to cost composition is still present and 

it proves to be useful in multiple instances during project 7 progress. This can be seen 

especially in the shift from 10% to 20% of progress where the predictions of SVR and 

SVR_OPT deteriorate to the all-time worst for this project but SVR_CC_OPT is still 

able to improve its accuracy. On the other hand, apart from this shift, SVR and 

SVR_OPT are able to improve their accuracy in each increment. In addition, they 

overwhelmingly beat SVR_CC_OPT in small and large building projects.  

 

The test results also show that SVR_CC_OPT is not only unable to predict the surge 

in cash outflow in the last third of project 4 but is also defeated by SVR and SVR_OPT 

that do not have the information of adjusted weights of cost categories. This is an 

important observation because project 4 has 91.5% of its remaining cost budget 

allocated to materials and subcontracting prior to 50% of progress. In comparison, the 

percentage is 75.2%, 78.4% and 78.5% for projects 1, 2 and 3, respectively. Despite 

this information, SVR_CC_OPT is predicting that the accumulation of cash 

disbursements is decelerating drastically faster for project 4 compared to projects 1, 2 

and 3. This, of course, is against common sense because over 90% of the remaining 

costs are allocated to the two largest categories of payables for project 4. The 

predictions of SVR_CC_OPT for projects 1-4 prior to 50% of progress are presented 

in Appendix 3. Overall, the construction phase results indicate that the utilization of 
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project cost composition does not seem to produce any improvements with the 

suggested methodology in the given phase. 

 

Multiple observations indicate that this is caused by increasing importance in the level 

of project progress which dilutes the influence of project cost composition. Firstly, the 

training results of SVR_CC and SVR_CC_OPT actually get worse in the construction 

phase after 30% of progress. Even though the effect is smaller in the test phase, the 

relative performance of SVR_CC_OPT gets weaker in 40-50% of progress compared 

to 20-30% progress. Secondly, the performance of SVR_CC_OPT gets worse when 

exposing it to progress data from 10-30% of  project duration compared to the pre-

construction phase.  

 

This follows with a question, that shouldn’t SVR_CC_OPT still have the best 

performance even though the importance of project cost composition is lower, as long 

as it provides meaningful information that is not exposed to SVR and SVR_OPT. The 

results indicate that learning from cost composition data is a much harder task 

compared to information on progress in time and cash outflow. This can be seen from 

the large benefit that is gained by optimization of SVR_CC and then observing the 

results of SVR and SVR_OPT that are around the same level. It may be that the model 

is not sophisticated enough to fit the data correctly. On the other hand, this may also 

be caused by too little training data.  

 

Along with the above observations, the decrease in the relative performance of 

SVR_CC_OPT when moving from pre-construction to the construction phase would 

suggest that this is an issue with the fitting of the model. This is because in the pre-

construction phase all of the projects are in a similar stage and the data is as 

comparable as it can be. However, in the construction phase, the stages of different 

projects may be highly dissimilar which causes more fluctuation in actualized cash 

outflow and weights of the remaining cost categories. Consequently, the model needs 

to be able to fit a higher number of scenarios that result from different situations in 

various parts of the project. 
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 6   Conclusions  

The study has proposed a new cash outflow forecasting model to adjust the current 

state-of-the-art pre-construction models’ weaknesses. The suggested improvements 

are supported by the literature on adjacent subjects of planning-based cash flow 

modeling and short-term interval forecasting. The key features of the model are 

mapping nonlinear and multivariate relationships, recognizing project uniqueness and 

minimizing systematic error. This is achieved by using support vector regression, 

clustering projects, utilizing project cost composition, updating the model during 

construction and forecasting cash outflow curve directly from historical data. The 

proposed model can be used to forecast a diverse project portfolio of ongoing and 

future known projects for the whole project duration. 

 

In order to answer research questions one and two, the study has identified the central 

issues in different construction project cash flow forecasting models and the usage of 

support vector regression in this context. In mathematical pre-construction forecasting 

models, the issues are using linear models, deriving cash flow from a cost curve with 

a fixed time lag and using models that cannot be updated during construction nor be 

used to forecast the whole project duration. Another sub-category of mathematical 

models is short-interval forecast modeling which does not entail the latter two issues 

of pre-construction models, but on the other hand, is not very beneficial to the industry 

as financial forecasting is usually done on a more extended time horizon. 

 

Short-interval forecasting is the only cash flow forecasting category where SVR is 

currently applied. It is also applied in other construction project control areas such as 

cost and time forecasting with earned value planning data in addition to cost and 

duration estimation. The results obtained from these studies have strongly favored 

SVR. On a comparison made outside of the construction industry, SVR outperformed 

other AI methods in forecasting financial time series and also proved to be the most 

robust with small samples. This also suggests that SVR is applicable to the 

construction industry as the project samples are often small. 
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On top of examining mathematical forecasting models, the study has also shortly 

explored planning-based cash flow models, namely planned earned value and cost-

based forecasting and cost-schedule integrated models. The common benefit of using 

these idiographic models is being able to forecast with much greater detail on each 

project which will naturally lead to more accurate predictions. However, this benefit 

comes with a cost of manual work that is required from the project personnel. This is a 

major issue as it has been addressed that cost-schedule models are rarely applied in 

the industry because of this and the compatibility issues of the approach. In addition, 

these models are prone to human errors as they are entirely dependent on the 

accuracy of project schedules and financial planning. 

 

The empirical results from the pre-construction phase suggest that the answer to the 

first sub-question of research question one is that direct forecasting of cash outflow 

curve reduces the systematic error that is caused by the standard practice of estimating 

cost commitment curve and applying a time lag that is based on project cost 

composition. There is also a slight improvement in individual project fit. The second 

sub-question of research question two can be answered positively as there are multiple 

improvements that are gained by applying support vector regression. The empirical 

results suggest that the largest advancement in improving individual project fit can be 

attributed to using support vector regression. It also allows the model to be expanded 

into a multivariate one. First, this way the model can be updated during construction 

which reduces the systematic error. Second, it allows project cost composition to be 

used directly in estimating cash outflow curve profile. 

 

This also allows answering the second sub-question of research question one. Cost 

category weights improve individual project fit in the pre-construction phase but there 

are no signs of reduced systematic error. In the construction phase, their importance 

decreases along with project progress and therefore does not improve forecasting 

results significantly. However, the results indicate that cost category weights can be 

used to predict uncommon cash flow profiles throughout the project duration and the 

major issue is with overfitting to cost composition. Therefore this may also be caused 
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by too small training sample and some improvements may be gained with a larger 

dataset.  

 

As one of the limitations of this study is using project data from only one contractor, 

further research with more construction companies could assess the above hypothesis 

along with testing whether the results can be generalized for more than one contractor. 

Another significant limitation of the study is focusing only on the cash outflow profile. 

Therefore, it cannot be used to forecast net cash flow. This could be achieved by 

conducting research on cash inflow curve estimation in a similar manner utilizing 

support vector regression that enables multivariate and non-linear modeling which has 

not been suggested before in the literature. The final limitation of the study considers 

the level of detail in the used data. As the model uses only general data and total 

budgets, construction companies should assess whether they have or should acquire 

more detailed data of the projects for practical applications. Comparative study 

between planning-based and mathematical models would make this assessment 

easier. 
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APPENDICES 

 

Appendix 1. Elbow Method using 1 to 10 clusters 
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Appendix 2. Predictions of optimized support vector regression using project cost composition 

(SVR_CC_OPT) and the actual cash flow for test projects in the pre-construction phase 

(predictions limited to zero). 
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Appendix 3. Predictions of optimized support vector regression using project cost composition 

(SVR_CC_OPT) and the actual cash flow for test projects 1-4 at <50% progress. 

 

 

 

 


