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Eye diseases cause different retinal abnormalities that can be detected and diagnosed
by examining eye fundus images. Due to the rapidly growing amount of data, there
is a need for methods that are able to produce meaningful image representations and
analysis results helping medical doctors to make correct diagnoses. Recent advances
in deep learning have enabled very promising approaches for solving a variety of tasks
related to automatic fundus image analysis. However, there is growing concern about
the reliability of these methods and possible issues exist regarding their utilization in
risk-sensitive scenarios.
This study extends the current research by studying fundus image segmentation from
a deep Bayesian perspective that permits model parameters and their outputs to be
treated as random variables. The treatment makes it possible to estimate how uncertain
the model is about its predictions. The study focuses on subproblems including the
segmentation of the retinal vasculature, optic disc, macula and diabetic retinopathy
lesions. Considering the probabilistic nature of the chosen methods, validation procedures
need to be augmented in order to evaluate not only the segmentation results but also the
estimated uncertainties.
The experimental results show that the proposed Bayesian baselines for fundus image
segmentation yield a performance that is comparable to the existing state-of-the-art ap-
proaches. The produced uncertainty estimates provide meaningful information about
possible problems during the inference. However, the uncertainty validation results sug-
gest that predicting misclassifications using uncertainty in a straightforward manner is
limited. The results of additional experiments using weight averaging techniques and
spectral image data are provided. This work also discusses the problems encountered
when applying Bayesian methods to fundus image segmentation.
Keywords: Bayesian deep learning, fundus imaging, image segmentation, diabetic
retinopathy, lesion segmentation, vasculature, optic disc, macula
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Symbols and abbreviations
a a scalar
a a vector
A a matrix
D a dataset
N the number of samples in a dataset
x an input image
p a ground truth segmentation map
θ parameters of a model
pˆ estimated segmentation map
sigmoid sigmoid activation function
y a logit
exp(a) exponential function applied to a scalar
argmaxx g(x) argument x at which function g takes its maximum
p(a) probability density function of a
p(a | b) conditional probability density function of a given b
�n
i=m product over i from m to n
�
g(x)dx integral of function g with respect to x
log x natural logarithm of x
�n
i=m sum over i from m to n
argminx g(x) argument x at which function g takes its minimum
L a loss function
R a regularization term
N (µ,σ2) normal distribution with mean µ and variance σ2
D the number of parameters of a model
yˆ an estimated vector of logits
σ estimated standard deviations of logits
A⊙B element-wise (Hadamard) product of A and B
a ∼ pa a random variable a distributed according to pa
NA the number of aleatoric samples
I identity matrix
qθ approximated posterior distribution of θ
ω variational parameters
MD dropout mask
DKL Kullback-Leibler divergence
LVI variational minimization objective
RVI variational regularization term
NE the number of epistemic samples
θSWA parameters of a model estimated using stochastic weight averaging
ΣSWAG a covariance matrix of parameters of a model estimated using
stochastic weight averaging Gaussian
Vp a variance under distribution p
Ep an expectation under distribution p
UA aleatoric uncertainty
UE epistemic uncertainty
UT total uncertainty
SE sensitivity
TP true positives
FN false negatives
PPV positive predictive value
FP false positives
SP specificity
TN true negatives
IoU intersection over union
A ∪B union of sets A and B
A ∩B intersection of sets A and B
F1 F1 score
ECE expected calibration error
AUC area under the curve
AV artery-vein
AVR arteriole-to-venule ratio
BCE binary cross-entropy
BN batch normalization
CAM class activation map
CDR cup-to-disc ratio
DCB dense convolutional block
Dense-FCN dense fully-convolutional network
DiaRetDB1 DiaRetDB1 diabetic retinopathy database
DiaRetDB2 DiaRetDB2 diabetic retinopathy database
DRIONS-DB digital retinal images for optic nerve segmentation database
DRIVE digital retinal images for vessel extraction dataset
ECE expected calibration error
FCN fully-convolutional network
FOV field-of-view
HRF high resolution fundus image database
IDRiD Indian diabetic retinopathy image dataset
IoU intersection over union
MC-Dropout Monte-Carlo dropout
MCMC Monte-Carlo Markov chain
MESSIDOR methods to evaluate segmentation and indexing techniques in the field
of retinal ophthalmology
OCT optical coherence tomography
PPV positive predictive value
PR precision-recall characteristic
ReLU rectified linear units
RGB red, green, blue
RIM-ONE open retinal image database for optic nerve evaluation
RITE retinal images vessel tree extraction
RNFL retinal nerve fiber layer
ROC receiver operating characteristic
SE sensitivity
SGD stochastic gradient descent
SP specificity
STARE structured analysis of the retina
SWA stochastic weight averaging
SWAG stochastic weight averaging Gaussian
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Chapter I
Introduction
1.1 Background
Fundus photography is a useful tool offering possibilities for early screening of eye diseases
and abnormal medical conditions. However, the screening requires trained personnel to
perform the examination which can be time consuming and expensive especially due to
the amount of data growing. In this situation computer aided screening tools can help
to reduce the workload of the medical staff and to increase the efficiency of health care.
In the last two decades there has been a significant progress in automatic fundus image
analysis supported by the development of benchmarks and state-of-the-art machine vision
techniques [33, 36]. The majority of the modern approaches are based on deep neural
networks and it indicates that deep neural networks are more effective than the classical
methods [36].
Certain eye diseases can be diagnosed by solving a classification task where an input
image is mapped to a disease label or probability of a presence of the disease [17,53,58].
Most of the works published on the problem are based on traditional deep learning
approaches where uncertainties of the models and the outputs are not considered [36].
Taking uncertainties into account might be crucial for high-risk applications [32]. Leibig
et al. [35] evaluated Bayesian deep learning uncertainty measures and showed improved
decision making for the diagnostic performance of diabetic retinopathy. The uncertainty
measures were used to decide whether a patient needs a further examination. Filos et
al. [10] formalized the previous research as a benchmark for robustness of Bayesian deep
learning and compared different Bayesian deep learning approaches. They showed that
the new benchmark is more realistic compared to the previously used datasets as modern
Bayesian deep models fail to provide reliable uncertainty estimates.
The alternative approach to screening is to assign each pixel of the input image a label
describing a type of object to which the pixel belongs. The problem is called semantic
segmentation and it is an area of active research. The typical problems include the
segmentation of landmarks and different lesions [36]. The segmentation based approaches
15
16 1. Introduction
can be more interpretable as they explicitly highlight the types of objects detected.
Another advantage is that the segmentation based methods can better handle small
objects, since the fundus images typically have higher resolution and are downscaled
which causes an information loss. However, the scientific community has not sufficiently
addressed the problem of reliability of the fundus segmentation methods.
Figure 1.1 shows an abstract scheme of such a computer-aided diagnosis system. The
patient’s eye is imaged using a fundus camera. Next, the resulting fundus images are
processed by a Bayesian deep neural network which produces a probability distribution
over the segmentation maps given the fundus images. The inferred distribution can be
analyzed by a post-processing algorithm which produces an additional description of the
patient’s condition. The description can include the status or grades of certain diseases
or biomarkers which can be used as indicators of different diseases. The fundus images,
segmentation maps and patient’s condition are provided to a clinician who can decide
diagnosis and whether the patient’s treatment plan needs to be revised.
Actor
C NN PP
Patient
F
Actor
Fundus
Image
Segmentation
map
Patient's 
condition
Clinician
Figure 1.1: A scheme of a computer-aided diagnosis system: FC stands for a fun-
dus camera producing fundus images; NN is a segmentation neural network pro-
ducing a probability distribution of segmentation maps; PP is a post-processing
algorithm characterizing the segmentation maps yielding a patient’s condition.
1.2 Objectives
The goal of this work is to develop an uncertainty-aware Bayesian approach to the fun-
dus image segmentation including both landmarks and diabetic retinopathy lesions. The
considered landmarks are retinal arteries, veins, optic disc, and macula. The diabetic
retinopathy lesions considered are hard exudates, soft exudates, haemorrhages, and mi-
croaneurysms. One of the major issues with Bayesian deep neural networks is validating
the produced uncertainty estimates which is aimed to be solved in this work. Another
unexplored area is the calibration of deep neural networks in the application to the fundus
image segmentation.
Thus, the objectives are development of:
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1. a Bayesian baseline for retinal artery-vein segmentation using different uncertainty
quantification methods.
2. a Bayesian baseline for diabetic retinopathy retinal lesion segmentation and a val-
idation procedure for predicted uncertainties.
3. Bayesian methods for hyperspectral retinal landmarks segmentation and compara-
tive analysis with color fundus image segmentation.
To the best of the author’s knowledge, this work is the first study of the topics specified
in the list of the objectives above.
1.3 Outline
The rest of the thesis is structured as follows:
Chapter 2 introduces structure of the eye and fundus imaging. An overview of the used
datasets is provided. A brief literature review of machine vision methods for disease
screening is given.
Chapter 3 contains the theoretical background of Bayesian deep learning and semantic
segmentation as well as the segmentation validation metrics. The discussion of related
works as well as proposed methods is provided.
Chapter 4 concludes the thesis with the discussion of the results, major issues and limi-
tations together with the possible directions of future research.
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Chapter II
The eye, fundus imaging and computer-aided diagnosis
2.1 Structure and diseases of the eye
The human eye is an organ of sight which typically has a spherical shape and located
in an orbital cavity. The human eye has a complicated structure. The main object of
interest in this work is the eye fundus which is an interior surface of the eye opposite to
the lens [29].
The fundus examination can give many insights on the patient’s health. The examination
is often performed using fundus photography. The fundus photography provides fundus
images which contain different objects of interest such as anatomical landmarks or lesions.
The normal landmarks of the fundus are as follows [29]:
1. Retinal vasculature consists of arteries and veins. The arteries transport an oxy-
genated blood from the heart all over the body and the veins transports it back.
2. Optic disc is a circular disc which is formed by the nerve fibre layer. Since there
are no light-sensitive cells in the disc, it is also known as the blind spot. The
optic nerve is a nerve that extends from the optic disc and transfers the visual
information from the retina to the brain. The white circular area in the center of
the optic disc is called the optic cup.
3. Macula is in the posterior part of the retina which is a pigmented area that con-
sists of densely-packed photoreceptors (cones) enabling high visual acuity and color
vision. The darker region in the center of the macula is called fovea.
Various diseases can affect the fundus in different ways [29] by either affecting the land-
marks or causing different lesions.
Hypertensive retinopathy is a vascular disease caused by high blood pressure (hyperten-
sion). The risk factors for hypertension include obesity, alcohol abuse, tobacco use and
stress. A patient might experience headaches, pain in the eyes or blurred vision. The
19
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disease rarely causes visual loss but can be a sign of other vascular problems. Depending
on the severity of the condition, different changes to the vasculature can occur, such as
narrowing of the retinal arteries and changes in arteriovenous crossings. The arteriole-to-
venule ratio (AVR) is also an important biomarker characterizing the retinal vasculature.
The lower values of the ratio can indicate hypertension. The fundus photography can be
used to identity these changes or to infer the biomarker [29].
Glaucoma is a chronic optic neuropathy causing damage to optic disc and loss of vision.
Typically, glaucoma is caused by high intraocular pressure and the basis for the disease
is mostly genetic. The symptoms include photophobia, worsening vision, nausea, ocular
pain and eye redness. One way to detect glaucoma is to estimate the biomarker called
cup-to-disc ratio (CDR) which is a ratio of the size of the optic cup to the size of the
disc. The higher cup-to-disc ratio can provide evidence of the presence of the glaucoma.
The biomarker can be inferred from fundus images [29].
Age-related macular degeneration is a condition which leads to the worsening of central
vision and distorted and blurred vision. Apart from the advanced age, other risk factors
are smoking, obesity and hypertension. The disease is caused by degeneration of arteries
causing a lack of oxygen and other nutrients. Depending on the type of the disease,
different types of lesions can appear near the macular region [29].
Diabetic retinopathy (DR) is a complication of diabetes damaging the retina and it is
one of the leading causes of blindness. The disease affects the retinal vasculature by
narrowing the arteries or fusiform venous dilatation. It can also be recognized by the
appearance of different DR lesions depending on the grade of the disease. Depending
on the proximity of exudative lesions to the macula region, diabetic maculopathy may
be present. During the late stages of the disease retinal detachment appears leading to
further increasing risks of loss of vision [29].
Apart from the landmarks, the objects of interest in this work include DR lesions [29]:
• Microaneurysms are one of the earliest signs of DR and resemble red small dots.
Microaneurysms are caused by the damage to the retinal capillary walls.
• Haemorrhages are red lesions that appear after ruptured microaneurysms. Haem-
orrhages are bigger than microaneurysms and have unclear edges.
• Soft exudates which are also called cotton wool spots are exudates with blurred
edges and contrast. They are the result of obstructed arterioles.
• Hard exudates are yellow lesions with high contrast and clear edges. They are
accumulations of lipids under the retinal layer. These lipids leak from damaged
blood vessels.
Figure 2.1 illustrates a fundus image with annotations for the landmarks and lesions.
2.2 Color and spectral imaging of the eye fundus
Eye fundus photography is a common imaging technique allowing noninvasive examina-
tions of the fundus. The images of the fundus are acquired using fundus cameras which
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Figure 2.1: The structure of the fundus [46]. Reprinted from Medical Image
Analysis, Porwal, P., Pachade, S., Kokare, M., et al., IDRiD: Diabetic retinopa-
thy–segmentation and grading challenge, 101561, ©(2020) with permission from
Elsevier.
are based on low power microscopes. In the process of fundus photography, the light from
a light source is guided by the optical system to the eye of the patient. The reflected light
is then registered by an imaging detector. A complementary metal–oxide–semiconductor
or charge-coupled device (CCD) can be used as a detector. Based on these general
principles, different devices producing different images can be constructed:
• Color photography provides images with red, green, and blue (RGB) channels.
• Spectral photography provides images where each channel corresponds to a certain
wavelength or a limited band of the electromagnetic spectrum.
Color eye fundus photography is widely used for studying diabetic retinopathy, age-
related macular degeneration and cardiovascular diseases [2]. The image in Figure 2.1 is
an example of the RGB fundus image.
Whereas color fundus cameras provide RGB or grayscale images, spectral fundus imaging
systems result in hyperspectral images. In these images each channel corresponds to
particular spectral band, i.e., each pixel in the image contains information about the
reflectance spectrum of the sample. Different chemical substances in a sample have
different reflectance or absorbance spectra, thus, additional features are available for a
more refined quantitative analysis [61].
A hyperspectral imaging setup can be a modified fundus camera with a light source with
a broadband illumination, and a spectral device for selecting a spectral band. Fält et.
al. [12] adapted a Canon CR5-45NM fundus camera to the spectral fundus camera by
replacing the standard light source with a fibre optic illuminator consisting of a halogen
lamp with illumination spectrum from 380 to 780 nm and 30 interference filters with 10
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nm step are used for the wavelengths selection. As a detector, grayscale CCD camera
with array size 2048 × 2048 pixels and 2 × 2 binning was used. The imaging setup is
presented in Figure 2.2a.
(a) (b)
Figure 2.2: (a) The spectral fundus imaging setup; (b) An example of a spectral
retinal image. The image was normalized for the visualization purpose [33].
2.3 Fundus image datasets
Fundus image datasets allow benchmarking and analysis of different machine vision meth-
ods for fundus image analysis. Typically, these datasets contain pairs of input images
and corresponding ground truth data. Particular types of the input images and ground
truth data depend on the type of problems the study aims to solve. The problems include
the landmark segmentation, lesion segmentation, or disease grading.
The datasets used to benchmark the optic disc segmentation algorithms are:
1. Digital retinal images for optic nerve segmentation database (DRIONS-DB) [7]
contains 110 color fundus images with spatial resolution 600 × 400 pixels. The
ground truth is presented in the form of contours of the optic disc. The annotations
were produced by two medical experts.
2. Open retinal image database for optic nerve evaluation (RIM-ONE) [11] is com-
posed of 169 fundus images where 118 images are gathered from non-glaucomatous
patients and the remaining patients have signs of glaucoma of different stages. The
spatial resolution of the images is 2144 × 1424 pixels. The corresponding ground
truth data is presented in a form of binary segmentation masks.
The datasets used to benchmark the retinal vasculature segmentation algorithms are:
1. High resolution fundus image database (HRF) [6] contains 45 fundus images with
the corresponding binary segmentation masks for retinal blood vessels. The spatial
resolution of the images is 3504× 2336 pixels.
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2. Structured analysis of the retina (STARE) dataset [20] contains 40 images with
the corresponding binary segmentation masks for retinal blood vessels. The spatial
resolution of the images is 700× 605 pixels.
3. Retinal images vessel tree extraction (RITE) dataset [22] contains 40 images la-
belled for retinal arteries, veins and vessels segmentation. The spatial resolution
of the images is 768× 584 pixels. RITE dataset is an extension of Digital Retinal
Images for Vessel Extraction (DRIVE) dataset.
The datasets used to study methods for detecting signs of diabetic retinopathy are:
1. Methods to evaluate segmentation and indexing techniques in the field of retinal
ophthalmology (MESSIDOR) dataset [8] contains 1200 images with different spatial
resolutions. The images are annotated with DR grades and risks of macular edema.
The grades are given based on the number and presence of different DR lesions.
2. DiaRetDB1 [31] is a dataset containing 89 images with the spatial resolution of
1500 × 1152 pixels. The ground truth segmentation masks are available for DR
lesions.
3. Indian diabetic retinopathy image dataset (IDRiD) [45] contains 81 image with the
spatial resolution of 4288× 2848 pixels. The ground truth information is presented
by the segmentation masks for DR lesions, DR grade and binary masks for the
optic disc segmentation.
The datasets used in this work were chosen based on the kind of ground truth data
presented and availability for open access. RITE dataset is an open access dataset
containing the ground truth data for both arteriovenous and vessels segmentation. IDRiD
dataset contains the pixel-accurate segmentation masks for DR lesions. These datasets
contain RGB fundus images. The exception is DiaRetDB2 dataset which contains 55
spectral images with the segmentation masks for retinal vasculature, optic disc, and
macula. The access to DiaRetDB2 dataset was provided by University of Eastern Finland
and University of Tampere.
2.3.1 DRIVE and RITE
Digital retinal images for vessel extraction (DRIVE) dataset [21] is a standard benchmark
for the retinal vasculature segmentation. The dataset consists of 20 test and 20 train
images with the corresponding ground truth segmentation masks for the blood vessels.
The ground truth was collected by two experts. The spatial resolution is 768 pixels.
Retinal images vessel tree extraction (RITE) dataset [22] is based on the DRIVE dataset
and augments it with the ground truth data for arteries and veins. Figure 2.3 illustrates
an example RITE image with the corresponding ground truth. Ground truth labels for
the arteries and veins contain labels for the arteries (red), veins (blue), branches (green),
and uncertain (white).
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(a) (b) (c)
Figure 2.3: The RITE data set: (a) An example test image; (b) corresponding
artery-vein reference standard; (c) is the ground truth mask for the blood vessels
[22].
2.3.2 IDRiD
Indian diabetic retinopathy image dataset (IDRiD) [45] is a database of fundus images
developed for diabetic retinopathy screening research. The dataset contains ground truth
data for the optic disc and fovea centers, diabetic retinopathy grade and pixel level seg-
mentation masks for hard exudates, soft exudates, haemorrhages, and microaneurysms.
There are 54 images for the train set and 27 images for the test set. The resolution of
the input images is 4288× 2848. An example image from the dataset is shown in Figure
2.4.
Due to different sizes of the lesions the dataset is very unbalanced. Figure 2.5 shows
bar graphs with the number of positive pixels for each lesions and healthy tissue (back-
ground).
2.3.3 DiaRetDB2
DiaRetDB2 is a dataset of images with the spatial resolution of 1024 × 1024 and with
the 30 channels where each channel corresponds to the specific wavelength. The dataset
contains manual ground truth segmentation masks for the vasculature, optic disc and
macula as well as field-of-view (FOV) masks which indicate informative image regions.
The segmentation masks for the optic disc and macula were collected by medical experts.
The blood vessel annotations were produced by the author during his Master studies. A
montage of the spectral bands is shown in Figure 2.2. An example of the sample with
the corresponding masks is shown in Figure 2.6.
2.4 Computer-aided diagnosis
The fundus imaging setups can be complemented with computer-aided diagnosis (CAD)
systems similar to the one illustrated in Figure 1.1. Such systems utilize computer vision
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(a)
(b) (c)
(d) (e)
Figure 2.4: (a) An example of IDRiD image with ground truth masks for (b)
hard exudates, (c) soft exudates, (d) haemorrhages, and (e) microaneurysms [46].
techniques to produce descriptions of images to help clinicians to make correct diagnoses.
Depending on the requirements of the system, the possible implementations are [36]:
1. End-to-end methods that map retinal images to a disease grade [17,35,48,58]. These
methods can be implemented as supervised machine learning algorithms trained on
input images and the corresponding disease grades. It is also possible to visualize
the image features that are relevant to the predicted grade [48,51].
2. Biomarker-based methods that are algorithms that map retinal images to biomark-
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Figure 2.5: Lesion statistics in IDRiD dataset. The number of positive pixels
per image for (a) hard exudates (EX), (b) soft exudates (SE), (c) haemorrhages
(HE), and (d) microaneurysms (MA). (e) The number of pixels for the lesions and
the background. (f) The number of positive pixels for each lesion for the whole
dataset.
ers such as the AVR [3, 44] or CDR [24]. The diagnostic decision can be inferred
from the predicted biomarkers.
3. Segmentation-based approaches that transform retinal images to segmentation maps
where each pixel represents semantic information about the image content. The
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(a) (b)
(c) (d) (e)
Figure 2.6: (a) An RGB image from the spectral retinal image dataset. (b) FOV
mask and the corresponding segmentation masks for the (c) vessels, (d) optic disc
and (e) macula.
diagnostic decision can be inferred from the segmentation maps depending on the
presence of specific lesions [62] or the state of the retinal landmarks [3].
It is worth to note that the described approaches are not mutually exclusive. It is possible
to build systems that utilize combinations of these approaches [3, 55,62].
Manikis et al. [40] proposed an image processing framework for detecting early signs
of hypertension. The framework includes retinal blood vessel segmentation, optic disc
detection and AVR estimation. The authors achieved an accuracy of 0.937 for blood
vessel segmentation on the DRIVE dataset. Agurto et al. [3] also relied on methods for
retinal vasculature segmentation together with AVR estimation and additional texture
feature extraction for the hypertension classification problem. The study was conducted
using a private dataset and the authors achieved an accuracy of 0.8 for hypertension
prediction. Triwijoyo et al. [58] trained a convolutional neural network in an end-to-end
manner to classify images as hypertensive and non-hypertensive. The method achieved
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an accuracy of 0.98 on the DRIVE dataset.
Medeiros et al. [41] proposed a deep neural network for retinal nerve fiber layer (RNFL)
thickness prediction. The study was conducted using a private dataset that consisted of
retinal color images, optical coherence tomography (OCT) scans and medical history for
each patient. The RNFL thicknesses were inferred from the OCT scans. The neural net-
work was trained end-to-end to solve the regression problem. Next the RNFL thickness
was used to differentiate between glaucomatous and healthy eyes. The authors achieved
an accuracy of 0.837 for the glaucoma classification problem. The authors also presented
visualizations of the image areas relevant for the network to make the prediction. For
this purpose, class activation maps (CAM) [51] were used and example visualizations are
presented in Figure 2.7. From the visualizations it is clear that the network focuses more
on the optic disc and cup, but can also capture certain areas outside of the optic disc.
(a)
(b)
Figure 2.7: (a) An RGB image and the corresponding CAM for a healthy eye;
(b) An RGB image and the corresponding CAM for a glaucomatous eye [41].
The red color denotes more relevant parts, whereas blue represents less relevant
parts. Reprinted from Ophthalmology, Vol. 126, Medeiros, F. A., Jammal, A.
A., and Thompson, A. C., From machine to machine: An OCT-Trained deep
learning algorithm for objective quantification of glaucomatous damage in fundus
photographs, 513-521, ©(2019) with permission from Elsevier.
Sreng et al. [55] proposed an algorithm for optic disc segmentation and glaucoma classifi-
cation. A schematic illustration of the proposed system is given in Figure 2.8. The system
uses a neural network for the optic disc segmentation, and another neural network for
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the glaucoma classification. The segmentation network is trained on a database of retinal
images with optic disc annotations. Further, the segmented images cropped around the
optic disc are reused to train the classification network. The authors achieved an accu-
racy of 0.997 for the optic disc segmentation and 0.973 for the glaucoma classification.
The presented results were achieved on RIM-ONE dataset.
Figure 2.8: A schematic illustration of the method proposed by Sreng et al. [55].
Numerous end-to-end methods for DR grading have been proposed [17, 48]. Typically,
they are trained to solve a classification task where the input is a color retinal image and
the output is a vector of probabilities for each DR grade. Pratt et al. [48] studied feature
visualization of convolutional neural networks for DR grading. Figure 2.9 presents CAMs
for different DR grades. The CAMs can highlight areas with DR lesions. However, they
are very coarse and it is possible that they highlight irrelevant parts of the images. The
evaluation metric used for DR grading is quadratic weighted Kappa on the test data for
the multi-class problem (larger values mean better performance). The authors achieved
a Kappa value of 0.81.
Wei et al. [62] proposed a method aiming to solve both lesion segmentation and DR grad-
ing problem. The proposed network is a DR classification network with a side-stream for
DR lesion segmentation and classification. Figure 2.10 presents a schematic representa-
tion of the proposed network. The authors achieved a state-of-the-art Kappa of 0.803
for DR grading and 0.801 for DR lesion classification. Figure 2.11 shows visualizations
of the results of DR lesion segmentation and classification. From the figure it can be
seen that the produced segmentation are more accurate than the CAM visualizations in
Figure 2.9.
Based on the above examples, fundus image segmentation plays an important role in
fundus image analysis. Fundus image segmentation can be used to help to assist in
diagnosing hypertension, diabetic retinopathy, and glaucoma.
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Figure 2.9: (Left) Fundus images from the Liverpool Diabetic Eye Screening
Program (LDESP). (Middle) Class activation maps (CAMs) from the trained
DenseNet multi-class DR model overlayed on the original image. (Right) Saliency
map from the trained DenseNet multi-class diabetic retinopathy (DR) model over-
layed on the original fundus image [48].
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Figure 2.10: A schematic illustration of the method proposed by Wei et al. [62]
(©2020 IEEE).
Figure 2.11: Qualitative results of lesion segmentation and classification. The
red font indicates false alarms. The results are given for the method proposed by
Wei et al. [62] (©2020 IEEE).
32 2. The eye, fundus imaging and computer-aided diagnosis
Chapter III
Fundus image segmentation
3.1 Methodology
3.1.1 Deep learning for semantic segmentation
Fundus image segmentation is a subproblem of semantic segmentation where pixels are
grouped based on their semantic similarity. This problem can be efficiently solved us-
ing supervised deep learning methods [36]. Let D = { (x,p)i}
N−1
i=0
be a dataset of N
input-output pairs where x is an input image and p is a corresponding ground truth
segmentation map. Then the training can be formulated as an inference problem of pa-
rameters θ of a model f that maps the input image to an estimate of the segmentation
map pˆ [13]:
pˆi = sigmoid (f (xi,θ)) , (3.1)
where sigmoid(y) = (1+ exp(−y))−1 is the sigmoid activation function mapping logits y
to label probabilities.
The most common way of estimating the parameters is finding a maximum a posterior
(MAP) estimate [13]
θˆ = argmax
θ
p (θ | D) , (3.2)
where θˆ is a MAP estimate of the parameters and p (θ | D) is the posterior probability
distribution of the parameters defined as [13]
p (θ | D) = p (D | θ) p (θ)
p (D)
, (3.3)
with the likelihood [13]
p (D | θ) =
N−1
�
i=0
p (pi | xi,θ) , (3.4)
the prior over the parameters p (θ), and the evidence p (D) =
�
p (D | θ) p (θ) dθ.
33
34 3. Fundus image segmentation
The problem (3.2) is typically reformulated as a minimization problem [13]:
θˆ = argmin
θ
− log p (θ | D)
= argmin
θ
−
�
N−1
�
i=0
log p (pi | xi,θ) + log p (θ)− log p (D)
�
= argmin
θ
N−1
�
i=0
L (pi | xi,θ) +R (θ) , (3.5)
where L is a negative log-likelihood which is responsible for the data fit also known as the
loss function. R is the negative log-prior of the parameters which acts as a regularization
term and the log-evidence p(D) is cancelled being a constant not depending on the
parameters.
In the case of image segmentation, it is natural to formulate the loss function as the
binary cross-entropy (BCE)
L (pi | xi,θ) = −pi log pˆi − (1− pi) log (1− pˆi) . (3.6)
In this work the prior distribution is modelled as a fully-factorized Gaussian distribution
p (θ) =
D−1
�
i=0
N (0,σ2θ), (3.7)
where D is the number of parameters and σθ controls the regularization strength.
The optimization problem (3.5) is typically solved using gradient descent based methods.
One of the basic examples of such techniques is the stochastic gradient descent algorithm
(SGD). The method differs from the standard gradient descent method in estimating the
gradient by using mini-batches of the data examples. This modification helps to save
computational resources while solving the problem. Nowadays, different modifications
that improve the convergence of SGD are used [50].
3.1.2 Bayesian deep learning
The approach described above produces only point estimates of the segmentation labels
and the model’s parameters. In order to better capture imperfect ground truth labelling
and imaging conditions, it is possible to define the model’s outputs and parameters
as random variables and infer distributions over them. The first approach takes into
account the aleatoric heteroscedastic uncertainty, while the latter models the epistemic
uncertainty [32].
Aleatoric uncertainty
The aleatoric uncertainty is a data induced uncertainty that can be caused by the imper-
fect imaging conditions. It can be included into the model (3.1) by predicting standard
deviations of the outputs together with the outputs themselves [32]:
[yˆi,σi] = f (xi,θ) , (3.8)
pˆi = sigmoid (yˆi + σi ⊙ ǫ) , (3.9)
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where yˆ is a vector of logits, ⊙ stands for the Hadamard product, and ǫ ∼ N (0, I) is a
normally distributed noise with the identity covariance matrix I.
Taking into account the modified model (3.8) it is possible to modify the loss function
to work with multiple aleatoric samples pˆij
LA (pi | xi,θ) =
NA−1
�
j=0
−pi log pˆij − (1− pi) log (1− pˆij) , (3.10)
where pˆij is a j-th sample inferred from the input image xi, and NA is the number of
aleatoric samples.
Epistemic uncertainty
The epistemic uncertainty captures the model’s ignorance about the underlying problem.
From (3.2) one can see that θ is a random variable which can be marginalized during the
inference [13]
p (p∗ | x∗,D) =
�
p (p∗ | x∗,θ) p (θ | D) dθ. (3.11)
Calculating the posterior predictive (3.11) is a difficult task, since it involves taking the
intractable integral. Different approximating techniques are used instead [1].
Gal et al. [14] reinterpreted dropout [56] as a stochastic variational inference technique,
where the complex posterior distribution (3.3) was replaced by a simpler variational
approximant qθ (ω) with parameters ω . This approach is called Monte-Carlo dropout
(MC-Dropout) The relationship between the true and approximate posteriors is given
by [14,56]
ω = θ ⊙MD, (3.12)
where MD is a random binary dropout mask. In this case, the training algorithm aims
to minimize the difference between the true posterior and approximant [14]:
LVI (ω) =
�
qθ (ω) log p (D |ω) dω −DKL(qθ (ω) k p (ω)), (3.13)
where DKL is the Kullback-Leibler divergence
DKL(qθ (ω) k p (ω)) =
�
qθ (ω) log
qθ (ω)
p (ω) dω. (3.14)
The formula (3.13) is similar to (3.5) in a sense that the second term penalizes the model
to be close to the prior and the first term is responsible for the data fit and it is typically
approximated using Monte-Carlo methods
LVI (ω) ≈
N−1
�
i=0
NE−1
�
j=0
1
NE
L (pi | xi,ωj) +RVI (ω) , (3.15)
where NE is the number of epistemic samples, and the variational regularization term is
RVI (ω) = DKL(qθ (ω) k p (ω)).
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Maddox et al. [39] proposed to model the posterior distribution of the parameters as a
fully-factorized Gaussian distribution
p (θ | D) = N (θSWA,ΣSWAG) , (3.16)
the parameters of which are estimated during training. This technique is called stochastic
weight averaging Gaussian (SWAG) and it is based on the stochastic weight averaging
(SWA) proposed in [25].
In more traditional approaches, Monte-Carlo Markov chain (MCMC) methods are typ-
ically used. For deep models, however, it is difficult to scale them properly due to the
high-dimensionality of the problem and costly likelihood evaluations. Ma et al. [38]
formalized stochastic gradient extensions of the classical MCMC algorithms, which can
work with subsets of the datasets to utilize stochastic gradient information to explore
the distributions, and can be used to quantify epistemic uncertainty [26].
The theory above describes general principles of the Bayesian deep learning approach
which can be applied to a variety of different architectures that formalize the model f in
(3.1).
3.1.3 Neural network architectures
The most of modern architectures for deep semantic segmentation are encoder-decoder
models. The encoder compresses the input images to a hidden representation. Then,
this representation is reconstructed by decoders into a feature map which is further
transformed to the segmentation map using a pixelwise classifier.
One of the basic examples of such architectures is SegNet [5]. The encoder is composed
of blocks of convolutional layers, batch normalization (BN) and rectified linear units
(ReLU) which are followed by max-pooling [16]. The decoder is a symmetric reflection
of the encoder with the pooling layers replaced by the upsampling layers using pooling
indices to recover feature maps. Figure 3.1 is a schematic illustration of the architecture.
Figure 3.1: SegNet architecture [5] (©2020 IEEE).
Ronneberger et al. [49] proposed the U-Net architecture which follows similar principles
but also allows the data leakage from the encoder to the decoder so that the high res-
olution feature maps are cropped, copied and concatenated with the decoded feature
maps. This mechanism allows to preserve more information about border pixels and
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fine details. The architecture was developed specifically for medical image segmentation
problems and it is one of the most widely used architectures across a variety of different
domains [67]. Figure 3.2 shows the U-Net architecture.
Figure 3.2: UNet architecture [49]. Reprinted by permission from Springer Na-
ture Customer Service Centre GmbH, Springer Nature, Medical Image Computing
and Computer- Assisted Intervention – MICCAI 2015. U-Net: Convolutional net-
works for biomedical image segmentation, Ronneberger, O., Fischer, P., and Brox,
T., ©(2015).
In addition to reusing features from the encoder for the decoding purposes, it is also
possible to adapt a similar approach to the internal components of the encoders and
decoders. Gao et al. [23] proposed dense convolutional networks which connect outputs
of previous convolutional layers to subsequent convolutional layers which form dense
convolutional blocks (DCB). This approach helps to overcome the vanishing gradients
problem and to make networks deeper without significantly increasing the number of
parameters. Jégou et al. [27] adapted this approach to build dense fully-convolutional
neural networks (Dense-FCN) for the semantic segmentation purposes. The architecture
reuses features from different resolutions as well as features from different blocks of the
encoder and decoder. Figure 3.3 illustrates an example of Dense-FCN architecture.
3.1.4 Segmentation and uncertainty validation
A trained model needs to be tested on a validation set with the goal of estimating its
performance. Firstly, point estimates of the segmentation masks are obtained as average
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Figure 3.3: The Dense-FCN architecture: Dense stands for DCB; C is a tensor
concatenation; H is a block consisting of the batch normalization, rectified linear
unit and convolutional layer with growth rate g; Down is a transition-down block
with F output feature maps; Up is a transition up with F output feature maps
and 2× 2 stride; logits std denotes standard deviations of logits.
probabilities using Monte-Carlo sampling:
p¯i =
1
S
S−1
�
s=0
f (xi,ωs) , ωs ∼ qθ , (3.17)
where S = NE × NA is the total amount of samples produced by the model, and the
variational parameters ωs are sampled from the approximate probability distribution qθ .
The aleatoric UA and epistemic UE uncertainties can be estimated as
UA = Eq
�
Vp(p|x,ω) [p]
�
, (3.18)
UE = Vq
�
Ep(p|x,ω) [p]
�
, (3.19)
UT = UA + UE , (3.20)
where E and V denote expectation and variance, respectively, and UT is the total pre-
dictive uncertainty.
In order to evaluate the segmentation performance, the following classification metrics
are used:
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• Sensitivity (SE) is used to assess the ability of the model to discover lesions:
SE =
TP
TP + FN
, (3.21)
where TP and FN are the amounts of true positive and false negative pixels,
respectively.
• Positive predictive value (PPV) is used in addition to sensitivity but takes into
account false positives FP :
PPV =
TP
TP + FP
. (3.22)
• Specificity (SP) is used to assess to ability of the model to correctly segment healthy
pixels:
SP =
TN
TN + FP
, (3.23)
where TN is the amount of true negative pixels.
• Intersection over union (IoU)
IoU =
T ∩ P
T ∪ P , (3.24)
where T is a set of target pixels and P is a set of predicted pixels.
• F1 score
F1 =
TP
TP + 0.5(FP + FN )
. (3.25)
• The metrics above are calculated by thresholding the label probabilities (3.17). In
this work the threshold value is 0.5. ROC-AUC is an integral metric regardless of
the threshold value. ROC-AUC is calculated under the area of the curve plotted
as a true positive rate against false positive rate by varying the threshold.
• Area under the precision-recall curve (PR-AUC) is another integral metric regard-
less of the threshold value. PR-AUC more realistically represents the segmenta-
tion performance in comparison to the area under receiver operating characteristic
ROC-AUC [46].
• Expected calibration error (ECE) is used to assess a model’s calibration [18]:
ECE = Epˆ
�
|P
�
lˆ = l | pˆ = π
�
− π|
�
, π ∈ [0, 1] , (3.26)
where pˆ is a confidence estimate of the predicted class lˆ, l is a true label and π
is a true probability. Together with ECE, reliability diagrams can be presented.
These reliability diagrams are graphs showing the expected accuracy against classi-
fication confidence, thereby representing calibration quality. In the case of perfect
calibration, the graph is an identity function.
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Apart from evaluating the segmentation, it is also important to assess the estimated un-
certainty. In this work the uncertainty evaluation procedure is based on the assumptions
presented by Mobiny et al. [42] that the misclassified pixels must have higher uncertain-
ties. Thus, in this work the uncertainty validation procedure is formulated as a binary
classification problem where the estimated uncertainties are considered as predicted clas-
sification scores and the misclassifications are as ground truth labels. The uncertainty
validation metrics used in this work are similar to those used to validate the segmentation
results but with prefix U.
3.2 Retinal artery-vein segmentation
3.2.1 Background
The problem of the retinal artery-vein (AV) segmentation considered in this work is the
simultaneous segmentation of the vasculature and its classification into arteries and veins.
The problem can be solved by just applying regular frameworks for semantic segmentation
but the major issue of segmenting thin vessels remains. In order to overcome the problem
Girard et al. [15] proposed a post-processing technique which builds a vasculature tree
and uses a likelihood propagation score to update the segmentation maps based on the
connectivity patterns. Badawi et al. [4] aimed to solve the same problem by augmenting
the BCE loss with an additional segment-level loss which is defined through the mismatch
between the segments extracted from the vasculature tree. Zhang et al. [65] achieved
better performance by training a refined U-Net that minimized a multi-scale loss. The
utilized multi-scale loss was inspired by [37] and it sums loss values from different stages
of decoding and the downscaled ground truth segmentation. Zhang et al. also proposed
to use a cascade network which predicts the probabilities of the vessels labels and then
sequentially passes the results to subnetworks for arteries and veins, Figure 3.4 illustrates
this principle. More detailed review of artery-vein segmentation approaches is given
in [43].
3.2.2 Research findings
This section presents the results from Publication II and Publication III. In this work
the segmentation for the arteries and veins first produced p = [partery pvein] and then the
probabilities for the blood vessels are inferred:
pvessel = partery + pvein − parterypvein. (3.27)
The minimized loss function is a sum of three terms for each label:
θˆ = argmin
θ
[Lartery (θ) + Lvein (θ) + Lvessel (θ)] , (3.28)
where L denotes the BCE loss for each corresponding label. The epistemic uncertainty
was estimated using three different methods:
1. MC-Dropout is a baseline method;
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Figure 3.4: Cascade network for the artery-veins segmentation [65] (©2020
IEEE).
2. SWA-MC-Dropout is a method which used MC-Dropout but SWA was applied as
a part of the training;
3. SWAG is a method which estimates an approximation of the normal distribution
during SWA training stage.
The performance metrics for all three labels are given in Tables 3.1 – 3.31. Figure 3.5
shows an example of the resulting AV segmentation.
Table 3.1: Network performance in artery classification (the best accuracy and
calibration are presented in bold)
Method Accuracy Sensitivity Specificity ECE ROC-AUC
Baseline 0.970 0.642 0.990 0.0988 0.974
SWA 0.975 0.690 0.992 0.0943 0.981
SWAG 0.973 0.706 0.989 0.0871 0.966
The examples of the estimated aleatoric and epistemic uncertainties are shown in Figure
3.6. From the images one can notice changes in aleatoric uncertainties when the weight
averaging is applied. In the baseline case the aleatoric uncertainty is mostly higher near
the optic disc and edges of the vessels. If the weight averaging is applied the pattern is
similar but the uncertainties near optic disc are lower. It is also clear that just sampling
around the found optimum using SWAG yields lower epistemic uncertainty than sampling
1Due to an error in the code calculating the average of the calibration errors the ECE values in
Publication III are wrong. Here the corrected values are given.
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Table 3.2: Network performance in vein classification (the best accuracy and
calibration are in bold)
Method Accuracy Sensitivity Specificity ECE ROC-AUC
Baseline 0.971 0.655 0.994 0.169 0.980
SWA 0.974 0.742 0.991 0.120 0.991
SWAG 0.971 0.804 0.983 0.107 0.980
Table 3.3: Network performance in vessel classification (the best accuracy and
calibration are in bold)
Method Accuracy Sensitivity Specificity ECE ROC-AUC
Baseline 0.957 0.723 0.989 0.221 0.980
SWA 0.961 0.782 0.986 0.208 0.983
SWAG 0.961 0.836 0.978 0.338 0.984
using MC-Dropout. Table 3.4 presents the total estimated uncertainties which gives the
quantitative support to the claims above.
Table 3.4: Mean sums of estimated aleatoric and epistemic uncertainties per
image.
Method
Aleatoric Epistemic
Arteries Veins Vessels Arteries Veins Vessels
Baseline 1276.2 1159.5 1807.5 4853.6 4066.4 5069.7
SWA 3.3 3.5 5.3 4038.6 3882.3 4659.7
SWAG 31.1 38.9 57.3 997.8 1104.3 1396.1
The proposed methods yield performance comparable to the state of the art methods
without any additional preprocessing or multi-scale loss functions. Table 3.5 shows a
comparison of the performance of recent works and proposed methods.
3.3 Diabetic retinopathy lesion segmentation
3.3.1 Background
The IDRiD challenge [45, 46] is the common benchmark for diabetic retinopathy lesion
segmentation algorithms. The best performing algorithms in the challenge are presented
by deep learning based techniques. The authors experimented with different architectures
and custom loss functions such as combinations of BCE and dice loss or balanced BCE
[46]. The dataset is highly imbalanced and the custom loss functions were employed to
overcome these problems. The input images are very high-dimensional 4288× 2848 and
all the reported methods were trained on cropped patches.
Yan et al. [63] proposed an architecture which aims to solve the problem of high dimen-
sionality of the inputs and a lack of the global context when training only using the
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(a) (b)
(c) (d)
Figure 3.5: (a) The input image; (b) ground truth; (c) mean predicted AV
probabilities; (d) mean predicted vessel probabilities. The results are obtained
using stochastic weight averaging.
cropped images. The architecture consists of two U-Nets. The first network is the Glob-
alNet which processes a downscaled input image and produces a coarse segmentation
map. The second network is the LocalNet which processes cropped patches and concate-
nates corresponding cropped features with the features from GlobalNet and produces
the resulting segmentation map. The network is trained end to end using a combination
of local and global supervision. Figure 3.7 illustrates the architecture proposed by Yan
et al. The reported PR-AUC for hard exudates is 0.889, for soft exudates 0.697, for
haemorrhages 0.703, and for microaneurysms 0.525.
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(a) (b) (c)
(d) (e) (f)
Figure 3.6: Aleatoric uncertainties calculated using (a) the baseline, (b) stochas-
tic weight averaging, and (c) stochastic weight averaging Gaussian. Epistemic un-
certainties calculated using (d) the baseline, (e) stochastic weight averaging, and
(f) stochastic weight averaging Gaussian. The pseudo-colors represent different
labels. The red channel shows the artery segmentation uncertainty, and the blue
channel shows the vein segmentation uncertainty
Figure 3.7: Local-Global U-Nets for DR lesion segmentation [63] (©2020 IEEE).
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Table 3.5: Comparison of evaluation results (accuracies of each label). The
datasets are specified with splitting methods used by the authors.
Method Vessels Arteries Veins Dataset
Girard et al. [15] 0.948 N/A N/A CT-DRIVE
Badawi et al. [4] 0.960 N/A N/A DRIVE (standard)
Hemelings et al. [19] N/A 0.948 0.930 DRIVE (standard)
Zhang et al. [65] N/A 0.977 0.975 DRIVE (5-fold CV)
Baseline 0.957 0.970 0.971 DRIVE (standard)
SWA 0.961 0.975 0.974 DRIVE (standard)
SWAG 0.961 0.973 0.971 DRIVE (standard)
3.3.2 Research findings
This section presents the results from Publication IV. In this work the basic Bayesian
deep learning approach with Dense-FCN was used. The major challenge was to overcome
the class imbalance problem. The most efficient approach in this work appeared to be
oversampling. For the input batch positive and negative samples are selected with a
probability of 0.5. The probability of selecting a certain image is a logarithm of the
positive pixels in the image normalized to the total amount of positive pixels in the
dataset. The probability of sampling a certain patch is a logarithm of the number of
the positive pixels normalized to the total number of positive pixels in the image. The
network is trained on 224 patches and processes downsampled images 2144 × 1440 as a
whole. It was empirically found that a simple preprocessing based on gamma-correction
and contrast limited adaptive histogram equalization [66] improves the segmentation
performance.
Table 3.6 shows the performance metrics for the DR lesions segmentation using the
proposed Bayesian method. From the table one can see that the trained segmentation
models are very specific and the main issue is the sensitivity. The best achieved perfor-
mance is for the hard exudate segmentation, since the hard exudates have clear edges
and are relatively big. The soft exudates and haemorrhages typically have lower contrast
and blurred edges in comparison with hard exudates. The microaneurysms are the most
difficult to segment as they are the smallest lesions.
Table 3.6: Evaluation results of the baseline training scheme.
Label PR-AUC ROC-AUC Sensitivity PPV Specificity ECE
Hard exudates 0.842 0.995 0.767 0.753 0.997 0.090
Soft exudates 0.641 0.993 0.639 0.611 0.999 0.145
Haemorrhages 0.593 0.977 0.464 0.670 0.997 0.066
Microaneurysms 0.484 0.997 0.434 0.531 0.999 0.116
The examples of the resulted segmentations together with the visualizations of the mis-
classifications and uncertainties are given in Figures 3.8 – 3.11. From the images it
is clear that there are certain similarities between the misclassifications and epistemic
uncertainty visualizations. From Figure 3.9 it is clear that soft exudates can be eas-
ily confused with any yellow spots on the image, and from Figure 3.10 it can be noted
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that haemorrhages can be confused with the vasculature, since the model trained by DR
lesions segmentation did not learn anything about the retinal vasculature.
(a) (b) (c)
(d) (e) (f)
Figure 3.8: Inference results for hard exudates: (a) input image; (b) ground
truth mask; (c) misclassifications; (d) mean inferred probabilities; (e) aleatoric
uncertainties (standard deviations of probabilities); (f) epistemic uncertainties
(standard deviations of probabilities).
(a) (b) (c)
(d) (e) (f)
Figure 3.9: Inference results for soft exudates: (a) input image; (b) ground
truth mask; (c) misclassifications; (d) mean inferred probabilities; (e) aleatoric
uncertainties (standard deviations of probabilities); (f) epistemic uncertainties
(standard deviations of probabilities).
Table 3.7 shows the evaluation results for the estimated uncertainties. The uncertain-
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(a) (b) (c)
(d) (e) (f)
Figure 3.10: Inference results for haemorrhages: (a) input image; (b) ground
truth mask; (c) misclassifications; (d) mean inferred probabilities; (e) aleatoric
uncertainties (standard deviations of probabilities); (f) epistemic uncertainties
(standard deviations of probabilities).
(a) (b) (c)
(d) (e) (f)
Figure 3.11: Inference results for microaneurysms: (a) input image; (b) ground
truth mask; (c) misclassifications; (d) mean inferred probabilities; (e) aleatoric
uncertainties (standard deviations of probabilities); (f) epistemic uncertainties
(standard deviations of probabilities).
ties are very specific but the sensitivity is very low indicating that the uncertainty has
been underestimated. Laves et al. [34] reported similar problems in the context of deep
Bayesian regression. In this work different attempts to calibrate the uncertainty estimates
48 3. Fundus image segmentation
Table 3.7: Evaluation results for the estimated uncertainty maps.
Label U-PR-AUC U-SE U-PPV U-SP U-ECE
Hard exudates 0.336 0.031 0.566 0.999 0.104
Soft exudates 0.257 0.113 0.388 0.999 0.195
Haemorrhages 0.243 0.029 0.302 0.999 0.303
Microaneurysms 0.257 0.045 0.332 0.999 0.237
were maid but significantly better results were not achieved.
3.4 Hyperspectral image segmentation
3.4.1 Background
The architectures described in Section 3.1.3 have can be adapted to process HSI by
reducing dimensionality of the spectral features to appropriate dimensions suitable for
the pretrained networks. The pretrained networks were trained using RGB images that
have 3 channels, whereas HSI images contain 30 channels. The introduced dimensionality
reduction approach enables a possibility to employ transfer learning techniques to train
the segmentation models. The transfer learning can improve the models convergence
by utilizing neural networks which already were pretrained on big datasets [16]. Jiao et
al. [28] proposed an architecture fusing features from VGG16 encoder [54] and principal
component analysis and Yu et al. [64] showed that dimensionality reduction (DR) blocks
can be trained end-to-end in combination with the convolutional neural networks.
3.4.2 Research findings
This section presents the results from Publication I. In this work the approach similar
to [64] was used. A series of 1×1 convolutional layers followed by ReLU was used to reduce
the dimensionality of the spectral features. The architectures utilized in the experiments
are based on SegNet and Dense-FCN. The SegNet based architectures (DR-SegNet) use
the encoder pretrained on ImageNet [9], whereas the Dense-FCN based architectures
(DR-DenseFCN) were not pretrained which allows the dimensionality of the output of
the dimensionality reduction blocks to be tuned. The dimensionality reduction blocks in
the case of Dense-FCN are also built using the principles of dense convolutional block.
Additional experiments were performed without the dimensionality reduction blocks to
assess the need for the dimensionality reduction layers before the base architecture. MC-
Dropout was used to estimate epistemic uncertainty using NE = 100 forward passes.
The architectures were trained in two stages: patchwise pretraining and full resolution
fine-tuning. During the pretraining stage batches of three samples are sampled so that
each sample is selected for the particular class. The mining of positive samples was also
employed to handle the class imbalance related to the optic disc and macula segmentation
tasks. The patches for blood vessels were selected uniformly, whereas the patches for optic
disc and macula were selected so that they were centered around the mean of the true
labels coordinates.
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Table 3.8: Evaluation results. The best F1 scores are in bold.
Architecture
Vessels Optic Disc Macula
F1 IoU F1 IoU F1 IoU
DR-SegNet 0.8091 0.6802 0.8947 0.8356 0.6566 0.5291
RGB-SegNet 0.7925 0.6571 0.8802 0.8149 0.6033 0.4657
DR-2-Dense-FCN 0.8243 0.7019 0.7311 0.6257 0.3084 0.2414
HSI-Dense-FCN 0.7974 0.6647 0.7323 0.6202 0.2932 0.2282
RGB-Dense-FCN 0.8112 0.6840 0.7154 0.6153 0.1543 0.1070
Table 3.8 contains an evaluation of the performance of the proposed architectures. From
the table it is clear that the blood vessels segmentation is the easiest task and segment-
ing the macula accurately is more difficult which is due to the lack of clear edges of the
object. DR-SegNet architecture achieves the best performance for the optic disc and
macula, whereas DR-DenseFCN with the spectral features reduced to two dimensional
vectors achieves the best results for the vasculature segmentation task. Additionally, the
evaluation results for the architecture (HSI-Dense-FCN) not pretrained on any data and
without dimensionality reduction blocks are given. The results suggest that dimensional-
ity reduction blocks help to more efficiently utilize spectral information leading to better
segmentation performance.
The visualizations of the results are given in Figures 3.12 – 3.14. From the figures it
is clear that the additional spectral information can help to localize the macula more
accurately. It is also worth to note that the model trained using RGB images is more
uncertain in the areas where labels overlap and the macula segmentation results con-
tain artifacts where the macula and vasculature overlaps. The DR-SegNet shows less
segmentation artifacts.
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Figure 3.12: Top row: example segmentation results using DR-SegNet. Bottom
row: standard deviations of the activations.
Figure 3.13: Top row: example segmentation results using RGB-SegNet. Bot-
tom row: standard deviations of the activations.
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Figure 3.14: Top row: example segmentation results using DR-6-Dense-FCN.
Bottom row: the epistemic uncertainties presented as standard deviations of the
activations. Each column shows visualization for the tasks (from left to right):
blood vessels, optic disc, macula.
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Chapter IV
Discussion
4.1 Current results
This study focuses on the application of deep Bayesian approaches to the problem of
fundus image segmentation. The fundus segmentation problem was studied from different
perspectives including the landmark segmentation as well as DR lesion segmentation. In
addition to different considered objects of interest, two modalities were considered: RGB
and spectral images.
The proposed Bayesian baseline for artery-vein segmentation produced performance com-
parable to the previously published state-of-the-art results. The presented method uses
the multi-label segmentation model and two different uncertainty quantification meth-
ods: MC-Dropout and SWAG. In this work, it is shown that the utilization of the weight
averaging techniques can moderately improve the segmentation performance as well as
the calibration of the model. It is shown that the highest uncertainties are concentrated
near the optic disc, artery-vein crossings, and thin vessels. The high uncertainties near
the optic disc and crossings can be explained by overlapping labels. The uncertain thin
vessels are too far away from the optic disc and it is difficult to classify them into arteries
and veins. It is shown that the weight averaging techniques can lead to vanishing aleatoric
uncertainties. The utilization of aleatoric uncertainty inference can also be treated as a
learned loss attenuation [32] and it seems that this attenuation plays lesser role when
weight averaging is applied. The method proposed by Zhang et al. [65] still outperforms
the methods proposed in this work. Nevertheless, the Bayesian methods proposed in this
work keep the predictions more consistent, since the probabilities for blood vessels are
inferred from the predicted probabilities for the arteries and veins. Thus, the objective
of developing Bayesian baseline for retinal artery-vein segmentation using MC-Dropout
and SWAG for uncertainty quantification is achieved.
This work extended the recent research on DR lesion segmentation on the uncertainty
quantification of deep Bayesian models. The uncertainty validation procedure based on
the idea of predicted misclassifications using the uncertainty estimates was introduced.
The uncertainties estimated using Monte-Carlo dropout can clearly highlight problematic
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image areas for the DR lesion segmentation. Nevertheless, straightforward utilization
of the produced uncertainties to detect misclassifications has not provided satisfactory
results. Apart from the previously mentioned problems, the proposed method suffers from
the low sensitivity and significant miscalibration. The problem of low sensitivities is a
common problem also reported in the recent studies. Thus, the objective of developing
Bayesian baseline for diabetic retinopathy retinal lesion is achieved and the validation
procedure is proposed.
Spectral imaging allows to capture additional information about the eye which poten-
tially can improve the segmentation performance. In this work, it is shown that ad-
ditional spectral information helps to moderately improve the retinal vasculature, optic
disc and macula segmentation performance. The proposed method extended standard ar-
chitectures with the dimensionality reduction layers and MC-Dropout for the epistemic
uncertainty quantification. The utilization of the dimensionality reduction layers can
help to adapt the standard architectures for the retinal HSI segmentation without sig-
nificantly increasing the number of parameters of the models. The highest uncertainties
highlighted unclear label edges and the areas of the overlapping objects. Thus, the objec-
tive of developing deep Bayesian models for hyperspectral fundus landmark segmentation
is achieved. The comparison with RGB image segmentation is provided.
4.2 Future work
The low sensitivity is a common problem in many subproblems regarding retinal image
segmentation including those sub-problems considered in this work. The issue is primarily
due to the small size of the objects of interest such as microaneurysms or thin arteries and
veins. Other objects such as the macula or soft exudates do not have clear edges. Another
factor affecting the performance is related to unbalanced datasets where the objects
of interest are underrepresented in comparison to the background classes. In medical
image analysis and segmentation, the use of custom heuristic loss functions has become
commonplace [30]. Nevertheless, they typically have hyperparameters that are difficult
to tune. In this work, results outperforming the proposed baselines with cross-entropy
were not achieved and, thus, are not published. Further research focused on evaluating
these loss functions is needed before making any conclusions on their effectiveness. It is
also interesting what kind of effects the loss functions have on the produced uncertainty
estimates and model calibration.
In this work, the methods addressing the class imbalance problem are based on simple
heuristics involving sampling the image patches near the objects of interest. An alterna-
tive approach is to use adaptive active learning methods which can utilize the uncertainty
estimates to propose interesting patches. The future work can be focused on adapting
those methods in order to address the class imbalance problem.
Another issue shown in this study is model miscalibration. There are a number of meth-
ods that address this problem. The traditional approaches are based on post-processing
of training results to improve the calibration [18]. Thulasidasan et al. [57] showed that
the calibration can be improved by applying the mix-up augmentation which blends the
input samples. Seo et al. [52] modified the training procedure by adding an additional
term to the loss function which penalizes the model for too overconfident or undercon-
fident predictions. Seo et al. [52] also followed the Bayesian approach and used the
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produced uncertainty estimates to calculate the penalizing miscalibration term. The fu-
ture research can be focused on exploring the existing or new calibration methods to
improve the fundus image segmentation methods.
Monte-Carlo based methods utilized in this work are computationally costly and require
a number of forward passes to estimate the uncertainty of the outputs. Currently, meth-
ods for calculating the uncertainty using a single forward pass are being explored [60].
These methods could reduce the computation time for the inference. However, apply-
ing these methods to semantic segmentation in a straightforward manner can lead to a
number of issues leading to poor uncertainty estimates [47, 59]. Thus, more research is
needed to make the uncertainty estimation methods more practical for the fundus image
segmentation problems.
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Chapter V
Conclusion
In this work, the Bayesian multilabel baselines for the artery-vein segmentation are pro-
posed. The impacts of weight averaging techniques on the segmentation performance,
model calibration and produced uncertainties were assessed. The epistemic uncertainties
were estimated using Monte-Carlo dropout and SWAG. It is shown that the weight aver-
aging techniques can improve the overall performance but also lead to vanishing aleatoric
uncertainties. SWAG also yields significantly lower epistemic uncertainty which can po-
tentially lead to problems with the future risk analysis.
The deep Bayesian approach for diabetic retinopathy lesion segmentation is proposed.
The analysis of the epistemic and aleatoric uncertainties is provided, and the calibration
of the model is assessed. The extended lesion segmentation approach is presented which
takes into account both the segmentation performance and the quality of uncertainty
estimates. The proposed validation procedure suggests that the uncertainty estimates
produced by Monte-Carlo dropout cannot be straightforwardly used to reliably estimate
the misclassifications.
The spectral fundus image segmentation of retinal vasculature, optic disc and macula
were studied. The problem is formulated as a multi-label segmentation problem. The for-
mulation allows to form continuous segmentation maps for the retinal vasculature, optic
disc and macula even in the case of overlapping labels. The neural network architectures
for the segmentation of the landmarks are proposed. The proposed architectures are
straightforward modifications of the existing semantic segmentation architectures. The
modifications are formulated in a form of dimensionality reduction layers trained together
with the rest of the architecture end-to-end. Different configurations of dimensionality
reduction layers are analyzed and compared. It was shown that spectral information
may give additional benefits in the landmark segmentation moderately improving the
segmentation performance.
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Abstract—The most common approach for retinal imaging is
the eye fundus photography which usually results in RGB images.
Recent studies show that the additional spectral information
provides useful features for automatic retinal image analysis. The
current work extends recent research on the joint segmentation of
retinal vasculature, optic disc and macula which often appears in
different retinal image analysis tasks. Fully convolutional neural
networks are utilized to solve the segmentation problem. It is
shown that the network architectures can be effectively modified
for the spectral data and the utilization of spectral information
provides moderate improvements in retinal image segmentation.
I. INTRODUCTION
Retinal diseases like diabetic retinopathy, age-related mac-
ular degeneration and glaucoma are the leading causes of
blindness worldwide [1]. A diagnostic process to recognize the
signs of these diseases is traditionally based on retinal RGB
images. Recent developments in machine vision technologies
provide various methods for automatic RGB images analysis.
In [2], it has been shown that additional spectral features
introduced to machine learning methods may improve the
performance of lesions classification and enable new ways to
analyze the retinal tissue layers. Thus, spectral retinal imaging
can be treated as a useful alternative to traditional color fundus
imaging. This work studies the joint segmentation of retinal
vasculature, optic disc and macula for hyperspectral retinal
images.
Deep convolutional neural networks is a common trend
in both retinal and hyperspectral image analysis. Deep ar-
chitectures similar to U-Net are extensively used for the
vasculature [3], optic disc and cup segmentation [4] purposes.
Tan et al. [5] studied the segmentation of optic disc, fovea
and retinal vasculature using a single model trained on the
DRIVE dataset [6]. All the mentioned approaches have been
tested on RGB images. To the best of the authors’ knowledge,
this work is the first work which studies spectral retinal image
segmentation using deep fully-convolutional neural networks.
One way to build deep architectures for hyperspectral image
(HSI) segmentation is to combine dimensionality reduction
methods and convolutional neural networks. Jiao et al. [7]
proposed to use the feature fusion from VGG16 encoder [8]
and principal component analysis for HSI segmentation. Yu
et al. [9] showed that dimensionality reduction blocks can
be trained end-to-end altogether with the convolutional neural
networks. Other approaches are based on 3D convolutional
neural networks [10], [11] that can effectively extract both
spatial and spectral features. However, it is more difficult to
scale the 3D convolutions on high-resolution images. In this
paper, we followed ideas similar to Yu et al. [9] and Jiao et
al. [7], and adapted SegNet [12] and dense fully-convolutional
neural networks (Dense-FCNs) [13] for the spectral retinal seg-
mentation task. These architectures are trained and evaluated
by using a spectral image dataset with manual ground truth
for the vasculature, optic disc and macula.
II. SPECTRAL RETINAL IMAGE DATASET
Several spectral fundus imaging setups with different optical
principles have been proposed. A typical hyperspectral imag-
ing setup is an adapted fundus camera with a light source with
a broadband illumination, and a spectral device for selecting
a spectral band. Fa¨lt et al. [14] modified a Canon CR5-45NM
fundus camera to spectral fundus camera by replacing the
standard light source with a fibre optic illuminator including
a halogen lamp with the illumination spectrum from 380 to
780 nm and 30 interference filters with 10 nm interval were
used for the wavelength selection. As the detector, a grayscale
charge-coupled device (CCD) camera with the sensor array
size of 2048× 2048 pixels and 2× 2 binning was used.
The resulted dataset is a set of 1024 × 1024 images with
the 30 channels where each channel corresponds to the certain
wavelength. For each image in the dataset, the field-of-view
(FOV) mask is provided. The FOV masks are binary images
where the white areas correspond to regions of the fundus
of the eye. Manual segmentation masks for the vasculature,
optic disc and macula are available (Fig. 2). The dataset
consists of 55 spectral retinal images acquired from patients
with diabetic retinopathy: randomly selected 25 images are in
the training set, and the rest are used as the testing set. Thus,
the amount of data in the dataset is comparable to the amount
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Fig. 1. Visualization of the mean spectrum and 3σ range of (a) blood vessels, (b) optic disc and (c) macula
of labelled data in DRIVE [6] and STARE [15] datasets which
are typically used for blood vessel segmentation algorithms
benchmarking. Examples of the mean and variation of the
spectra are presented in Fig. 1.
(a) (b)
(c) (d)
(e) (f)
Fig. 2. (a) An RGB image from the spectral retinal image dataset. (b) Montage
of the channel images composing an example hyperspectral retinal image. The
image was normalized for the visualization purpose. (c) FOV mask and the
corresponding segmentation masks for the (d) vessels, (e) optic disc and (f)
macula.
III. SEMANTIC SEGMENTATION ARCHITECTURES
A. SegNet
SegNet is an encoder-decoder architecture for semantic
segmentation. In this work, we used basic-SegNet with small
modifications for the HSI segmentation. The modified archi-
tecture consists of a dimensionality reduction block, encoder
and decoder. The dimensionality reduction block is a sequence
of blocks consisting of 1× 1 convolutional layer and rectified
linear unit (ReLU) activation. As the encoder, VGG16 pre-
trained on ImageNet [16] was used. The decoder is a sequence
of transposed convolutions and convolutional layers followed
by batch normalization (BN), ReLU activation and dropout.
The scheme of the architecture is shown in Fig. 3.
DR-30 DR-30 DR-16 DR-3 VGG-16 
Dec-512 Dec-256Dec-128 Dec-64Dec-32 
Conv-3x1x1 + Sigmoid Segmentationmasks
HSI
DR-N – Conv Nx1x1 -  ReLU
Dec-N – Transposed Conv Nx3x3 stride=2x2 - BN - ReLU - Dropout (p=0.5) + Conv Nx3x3 = BN - ReLU - Dropout (p=0.5)
Fig. 3. DR-SegNet architecture.
B. Dense-FCN
It has been shown that Dense-FCNs have less parameters
and may outperform the SegNet architecture in a variety of
different segmentation tasks [13]. Here we adapted the Dense-
FCN architecture for the retinal HSI segmentation task.
The main building block of Dense-FCN is a dense con-
volutional block (DCB) where the input of each layer is a
concatenation of the outputs of previous layers. The block
consists of repeating BN, ReLU, convolution and dropout
p = 0.5 layers resulting in K feature maps (growth rate).
The main concept of Dense-FCN is similar to SegNet
in a sense that the input is first compressed to a hidden
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representation by the downsampling part, and then the seg-
mentation masks are recovered by an upsampling part. The
downsampling part consists of DCBs and downsampling tran-
sitions (DT) with skip connections to the upsampling part. The
upsampling part consists of DCBs and upsampling transitions
(UT). The scheme of the utilized architecture is given in Fig. 4.
DDRB(3, 6)
DCB(8, 2)
DCB(16, 4)
DCB(16, 16)
TD(16)
TD(64) TU(64)
Conv 30x1x1
C
C
DCB(16, 4)
TU(16)
C
DDRB(3, 6)
DCB(8, 2)
C
Conv 3x1x1 +
Sigmoid 
C C
DDRB(K, N)
C
– DCB with 1x1 kernels
– Dense Convolutional (3x3) Block 
K – growth rate 
N – depth of the block
DCB(K, N)
– Concatenation
TU(N)
TD(N)
– Transposed Conv Nx3x3 stride=2x2
– BN-ReLU-Conv Nx1x1 + 
Dropout (p=0.5) + 
Max-Pool 2x2 
HSI Segmentationmasks
Fig. 4. DR-6-Dense-FCN architecture.
C. Image preprocessing
First, each channel of a spectral image is normalized to
values between 0 and 255. After the normalization step,
contrast limited adaptive histogram equalization [17] with
the clip limit of 2 and the grid size of 8 × 8 is applied
to each channel of the input. The described preprocessing
scheme was applied to both RGB and spectral images. The
preprocessing scheme was used to reduce the effects of uneven
illumination fields of the channel images and indirectly affect
the inter-person variation in the limited dataset. The scheme
was found to improve the convergence and performance of
the trained models. Examples of the preprocessed RGB and
spectral images are given in Fig. 5.
(a) (b)
Fig. 5. Preprocessed (a) RGB and (b) spectral images.
D. Training details
Dense-FCNs are pretrained for 50 epochs with 500 steps
per epoch on random patches 512 × 512 with the batch size
equal to 3. Each batch consists of examples for blood vessels,
optic disc, and macula. The vasculature examples are sampled
uniformly, whereas the patch centers of the examples of the
optic disc and macula are sampled from the normal distribution
the parameters of which are estimated as the sample mean and
covariance of true label coordinates.
The common training step for both architectures is fine-
tuning on full size images. The number of epochs used was
50 for Dense-FCN and 100 for SegNet.
In both cases, the weights were initialized using HeNor-
mal [18]. Binary cross-entropy was used as the loss function.
In addition to dropout, l2 regularization with the weight decay
factor 10−4 was used. As the optimizer, Adadelta [19] with
the learning rate l = 1 and the decay rate ρ = 0.95 was used
for the both pretraining and fine-tuning. The learning rate was
dropped by a factor of 10 if the training loss was not decreased
by 0.005 for 5 epochs. Data augmentation through flipping,
reflecting and rescaling (with scale rates 0.8 and 1.2) was
applied in both cases. The parameter values were determined
empirically based on initial experiments.
IV. EXPERIMENTS AND RESULTS
The trained networks were evaluated on the full size images
from the testing set using Monte Carlo dropout [20] in the
test phase with 100 forward passes. The standard F1 measure,
intersection over union (IoU) for each class and mean IoU over
the classes were used as the evaluation metrics and they are
presented in Table I. The evaluation metrics were calculated
only inside the FOV. In order to distinguish between the RGB
and spectral architectures, the DR prefix was added for the
architectures for spectral images and the RGB prefix for the
architectures for RGB images. The Dense-FCN architecture
was also tested for the hyperspectral images without the di-
mensionality reduction layers (HSI prefix) and with a different
number of output channels of the DR layers (DR-6 means 6
output channels).
From the table, it is clear that the vessel segmentation is
the easiest task for all the architectures, since F1 score is
comparable in all the cases, whereas the macular region is
the most difficult to segment. The latter can be explained by
the fact that there are normally no clearly defined structural
characteristic in the macula. Furthermore, there are numerous
images where the macula is only partly visible, and these
images happen to be present only in the test set, because of
what all the considered models were unable to generalize to a
partly visible macula. Another interesting fact is that the region
may have different shapes in different spectral channels.
The VGG encoder pretrained on ImageNet allows to signif-
icantly improve the performance on the optic disc and macula
segmentation tasks. In the case of Dense-FCNs, it is difficult
to achieve satisfactory performance for both the optic disc and
macula segmentation, and the performance depends on the
number of output channels of the dimensionality reduction
layers. The segmentation results for the image presented in
Fig. 5 are presented in Fig. 6 – 8.
Comparing the segmentation results for hyperspectral and
RGB images in Fig. 6 and Fig. 7 shows that in some cases the
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TABLE I
EVALUATION RESULTS. THE BEST F1 SCORES ARE IN BOLD.
Architecture
Vessels Optic Disc Macula
Mean IoU # Parameters
F1 IoU F1 IoU F1 IoU
DR-SegNet 0.8091 0.6802 0.8947 0.8356 0.6566 0.5291 0.6816 21795786
RGB-SegNet 0.7925 0.6571 0.8802 0.8149 0.6033 0.4657 0.6458 21793379
DR-1-Dense-FCN 0.8125 0.6853 0.7128 0.6122 0.3962 0.3223 0.5399 730028
DR-2-Dense-FCN 0.8243 0.7019 0.7311 0.6257 0.3084 0.2414 0.5230 730383
DR-3-Dense-FCN 0.8069 0.6776 0.6986 0.5947 0.2822 0.2120 0.4948 730738
DR-4-Dense-FCN 0.8200 0.6958 0.6880 0.5867 0.3389 0.2665 0.5163 731093
DR-5-Dense-FCN 0.8006 0.6772 0.6977 0.5949 0.3843 0.2954 0.5225 731448
DR-6-Dense-FCN 0.8021 0.6714 0.7427 0.6394 0.4244 0.3402 0.5503 731803
HSI-Dense-FCN 0.7974 0.6647 0.7323 0.6202 0.2932 0.2282 0.5043 745837
RGB-Dense-FCN 0.8112 0.6840 0.7154 0.6153 0.1543 0.1070 0.4688 729043
Fig. 6. Top row: example segmentation results with DR-SegNet. Bottom row:
standard deviations of the activations.
Fig. 7. Top row: example segmentation results with RGB-SegNet. Bottom
row: standard deviations of the activations.
models trained on RGB fail to localize the macula properly,
whereas the utilization of spectral information may help to
avoid such problems. It is worth to mention that in both cases
the segmentation artefacts are present in areas where the labels
overlap. This is mainly caused by the VGG encoder pretrained
on ImageNet, since there were no signs of such artefacts when
Fig. 8. Top row: example segmentation results with DR-6-Dense-FCN.
Bottom row: standard deviations of the activations.
it was not used or used without pretraining. It is also clear
that the results obtained with DR-SegNet show less artefacts
compared to RGB-SegNet.
The dimensionality reduction layers allowed to adapt stan-
dard convolutional architecures for the hyperspectral image
segmentation without significantly increasing the amount of
parameters of the model. In addition, the utilization of the
dimensionality reduction layers may slightly improve the
performance of vessels and macula segmentation. In Fig. 9,
the outputs of the dimensionality reduction layers for the both
spectral architectures are shown.
In Fig. 9 one can see that the models try to emphasize areas
where certain labels are most visible. For example, in the first
image of the bottom row the macula is clearly seen, whereas
in the second and third images the optic disc is visible more
clear compared to the first image. Nevertheless, training the
dimensionality reduction layers is a challenging task, and it is
not always possible to train them to extract useful features. In
the case of DR-SegNet, the pretrained VGG encoder makes
the training easier. However, if the network is trained from the
scratch, it is difficult to get results comparable to the results
obtained with a pretrained model. We also tried to add skip
connections to DR-SegNet in a manner similar to DR-Dense-
FCNs, but in the case of DR-SegNet, it just confuses the model
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Fig. 9. Visualization of dimensionality reduction layers. The top two rows
illustrate the results for DR-6-Dense-FCN and the bottom row for DR-SegNet.
more and the performance decreases, whereas in the case of
DR-Dense-FCNs, it boosts performance significantly.
Previously, Laaksonen [2] has shown that diabetic retinopa-
thy lesions classification algorithms trained on spectral data
outperform algorithms trained on RGB data. Furthermore,
spectral information can also be utilized for the histological
analysis of fundus images [2]. From the presented results, it
also clear that the utilization of additional spectral information
may also improve the segmentation results compared to RGB
images.
V. CONCLUSIONS
In this work, multilabel segmentation of retinal vasculature,
optic disc and macula for spectral retinal images was studied.
It was shown that spectral information may give additional
advantages in optic disc and macula segmentation moderately
improving the segmentation performance.
The results also show that it is necessary to study more the
dimensionality reduction layers to find a way to train them
effectively on small datasets. The future work will be con-
centrated on further improvements of training the Dense-FCN
architecture in order to achieve comparable performance with
the architectures pretrained on ImageNet. Another direction of
the future work is the development of a gold standard based
on label data from multiple experts.
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Abstract. Retinal imaging is a valuable tool in diagnosing many eye
diseases but offers opportunities to have a direct view to central nervous
system and its blood vessels. The accurate measurement of the charac-
teristics of retinal vessels allows not only analysis of retinal diseases but
also many systemic diseases like diabetes and other cardiovascular or
cerebrovascular diseases. This analysis benefits from precise blood ves-
sel characterization. Automatic machine learning methods are typically
trained in the supervised manner where a training set with ground truth
data is available. Due to difficulties in precise pixelwise labeling, the
question of the reliability of a trained model arises. This paper addresses
this question using Bayesian deep learning and extends recent research
on the uncertainty quantification of retinal vasculature and artery-vein
classification. It is shown that state-of-the-art results can be achieved by
using the trained model. An analysis of the predictions for cases where
the class labels are unavailable is given.
Keywords: Bayesian deep learning · Blood vessels segmentation ·
Artery-vein classification
1 Introduction
A number of eye and systemic diseases influence the vasculature of the retina
in different ways. The blood vessel characteristics in retinal images may provide
visible evidence about numerous diseases such as hypertensive retinopathy, dia-
betic retinopathy, as well as other cardio- and cerebrovascular diseases [12]. The
related characteristics include the shape and size of retinal vessels, arteriovenous
ratio and arteriovenous crossing [14]. These characteristics may be obtained by
using blood vessel segmentation masks produced by automatic machine learning
techniques [5].
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The topic of blood vessels segmentation is well studied by the community [1].
However, the artery-vein (AV) classification task remains challenging not only
for machines, but also for humans. Despite the fact that discriminative features
based on color and geometry are described, it is still difficult to distinguish
arteries from veins [14] due to imperfect imaging conditions and limited visibility
of the retinal blood vessels.
Recently, deep convolutional neural networks have become a common trend
for retinal vasculature segmentation and AV classification because of the abil-
ity to automatically learn meaningful features. Welikala et al. [16] proposed a
method based on a convolutional neural network (CNN) classifying arteries and
veins in a patch-wise manner. The authors considered the problem as a multi-
class classification task placing a softmax layer at the end of the network. The UK
Biobank database was used from which 100 images were labeled and classification
accuracy of 82.26% for arteries and veins was reported. Girard et al. [5] proposed
to use a modified U-Net [15] with likelihood score propagation in the minimum
spanning tree effectively utilizing information about the global vessel topology.
The approach was tested on the DRIVE data set [8] and it achieved 94.93% accu-
racy for the AV classification. Badawi et al. [2] proposed to train a CNN with
multiloss function consisting of pixelwise cross entropy loss and segment-level
loss to overcome training issues appearing because of inconsistent thickness of
blood vessels. The authors also created a new data set consisting of labeled sub-
sets of EPIC and MESSIDOR [3] data sets and classification accuracy of 96.5%
was reported. Hemelings et al. [7] applied the U-Net architecture for the task
of AV classification stating the problem as a multi-class classification problem
predicting labels for four classes (background, vein, artery, and unknown) with
classification accuracy of 94.42% and 94.11% for arteries and veins, respectively.
Zhang et al. [18] proposed cascade refined U-net which modifies the original
model with multi-scale loss training and includes sub-networks for simultaneous
AV and blood vessel segmentation. The authors achieved 97.27% arteriovenous
classification accuracy evaluated on the automatically detected vessels.
In this work, a multi-label classification approach is considered with the
uncertainty quantification experiments presented. Our approach is most simi-
lar to the method proposed by Zhang et al. [18] in a way how three-component
loss is used. The main difference is that in this work, classification of arteries
and veins are not conditioned on blood vessel predictions, but vessel labels are
conditioned on arteries and veins. Using the multi-label classification approach,
there is no need to separately model the AV crossings and background. To the
best of authors’ knowledge, this work is the first presenting uncertainty quantifi-
cation experiments for the of AV classification. For the experiments, the RITE
data set is utilized.
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2 Data and Methods
2.1 DRIVE and RITE Data Sets
The DRIVE database is a common benchmark for the retinal blood vessel seg-
mentation task [8]. It contains 20 train and 20 test images with two sets of
manual blood vessel segmentations. The RITE data set [9] extends DRIVE with
an AV reference standard containing four types of labels: arteries (red), veins
(blue), overlapping (green), and uncertain vessels (white). An example test image
is shown in Fig. 1.
2.2 AV Classification
Let f be a model with parameters θ that maps an input image x to a map of
logits with the same spatial dimensionality as the original image:
yˆ = f (x, θ) . (1)
Given predicted logits yˆ = [yˆartery yˆvein], probabilities of assigning labels to
arteries and veins can be calculated as follows:
partery = sigmoid (yˆartery) , (2)
pvein = sigmoid (yˆvein) . (3)
In the multi-label setup, the same pixel can be classified with both artery and
vein labels, which is meaningful in the case of AV crossings. A vessel probability
label can then be naturally inferred by a simple formula:
pvessel = partery + pvein − parterypvein. (4)
Since the data set contains the masks for both the AV classification and blood
vessel segmentation, it is possible to state the following optimization problem
θˆ = argminθ [Lartery (θ) + Lvein (θ) + Lvessel (θ)] , (5)
where L denotes the binary cross entropy loss for the corresponding labels. This
way even if the labels for arteries and veins are not given for uncertain vessel
labels, it is possible to enforce a model to predict correct labels for the blood
vessels.
2.3 Aleatoric and Epistemic Uncertainties
The approach described in the previous section gives only point estimates for the
label probabilities and the model parameters are considered to be deterministic.
In order to better capture imperfect data labeling and image noise, one can
consider the model outputs and the parameters to be random variables. The
first approach captures the heteroscedastic aleatoric uncertainty that depends
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(a) (b)
Fig. 1. The RITE data set: (a) An example test image and (b) corresponding artery-
vein reference standard. (Color figure online)
on the input data, whereas the second represents the epistemic uncertainty that
models a distribution of the learned parameters. More detailed explanations for
the uncertainties can be found in [13] and [4]. In this work, a brief explanation
for the AV classification task is given below.
Aleatoric uncertainty can be captured by modifying the original model to
predict the mean and standard deviations of logits:
[yˆ,σ] = f (x, θ) . (6)
In order to predict standard deviations, a second layer similar and parallel to
the one used for logits is added to the output of the network. In order to ensure
that the predicted standard deviations are positive, an additional absolute value
activation is added to the output of the layer. The probabilities of the labels can
then be calculated as follows:
pˆ = sigmoid (yˆ + σ ⊙ ǫ) , ǫ ∼ N (0, I) , (7)
where ⊙ stands for the Hadamard product and ǫ are sampled during inference.
The main inference scheme for AV remains the same with the exception that
instead of a point estimate, the model now yields NA samples that are then used
to calculate the loss (5). The final minimized loss is just an average over the
predicted losses for each sample.
Epistemic uncertainty can be captured by considering the model parameters
to be a random variable and considering the following posterior predictive:
p (y | x,D) =
∫
p (y | x, θ) p (θ | D) dθ, (8)
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where D denotes a data set of input-output pairs. Typically, the parameter’s
posterior p (θ | D) for complex models such as deep neural networks is intractable
and variational approximations are used. The posterior in (8) can be replaced by
a simpler distribution q (θ) and the training procedure can then be formulated as
the minimization of the Kullback-Leibler divergence between the true posterior
and the approximation.
In this work, the model f is parameterized as a dense fully-convolutional
network (Dense-FCN) and Monte-Carlo dropout [4] is used for the variational
approximation. The description of the utilized architecture is given below.
2.4 Architecture
The architecture utilized in this work is a Dense-FCN. It has been shown that
Dense-FCNs have less parameters and may outperform other fully-convolutional
network (FCN) architectures in a variety of different segmentation tasks [11].
Here we adapt the Dense-FCN architecture for the AV classification tasks.
The main building block of Dense-FCN is a dense convolutional block (DCB)
where the input of each layer is a concatenation of the outputs of the previous
layers. The block consists of repeating batch normalization (BN), ReLU, convo-
lution and dropout p = 0.5 layers resulting in g feature maps (growth rate).
The main concept of Dense-FCN is similar to other encoder-decoder archi-
tectures in the sense that the input is first compressed to a hidden representation
by the downsampling part, and then the segmentation masks are recovered by
an upsampling part. The downsampling part consists of DCBs and downsam-
pling transitions with skip connections to the upsampling part. The upsampling
part consists of DCBs and upsampling transitions. An example of two blocks
in downsampling and upsampling paths of a Dense-FCN is given in Fig. 2. The
architectural parameters used are given below:
– Growth rate for all DCBs: g = 16.
– Downsampling path consists of five DCBs with depths Ddown =
[4, 5, 7, 10, 12, 15].
– Upsampling also consists of five DCBs with depths Dup = [12, 10, 7, 5, 4].
– The first and last convolution layers are the same as in Fig. 2.
2.5 Image Preprocessing
It was noticed in the experimental part of the work that simple preprocessing
involving contrast enhancement and channel normalization improves the conver-
gence and performance of the trained models. First, contrast-limited adaptive
histogram equalization [19] with the clip limit of 2 and the grid size of 8× 8 is
applied and then each image channel is normalized to values between 0 and 255.
The preprocessing scheme was used to reduce the effects of uneven illumination
fields of the channel images (Fig. 3).
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Fig. 2. Dense-FCN architecture: Dense stands for a DCB; C is a tensor concatenation;
H is a block consisting of BN, ReLU and a convolutional layer with growth rate g; Down
is a transition down block with F output feature maps; Up is a transition up with F
output feature maps and 2 × 2 stride. logits std denotes standard deviations of logits.
2.6 Training Details
The Dense-FCN was pretrained for 200 epochs with 1000 steps per epoch on
random patches 224×224 with the batch size equal to 5. Then it was fine-tuned
for 50 epochs with 500 steps per epoch on full size images with the batch size
equal to 1.
The weights were initialized using HeNormal [6]. In addition to dropout, l2
regularization with the weight decay factor 10−4 was used. As the optimizer,
Adadelta [17] with the learning rate l = 1 and the decay rate ρ = 0.95 was used
for both the pretraining and fine-tuning. The learning rate was dropped by a
factor of 10 if the training loss was not decreased by 0.005 for 10 epochs. Data
augmentation by using flipping, reflecting and rescaling (with scale rates 0.8 and
1.2) was applied in both cases. During the fine-tuning stage, the images were
randomly padded to size 608× 608 so that the size is divisible by 32 and could
be properly compressed by the downsampling path. The parameter values were
determined empirically based on initial experiments with the RITE database.
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3 Experiments and Results
3.1 Training and Evaluation Strategies
Considering the given reference standard, the question arises of how to use the
uncertain class labels and its effect on the final training results. Possible ways
for utilizing this information are to consider these pixels to be arteries and veins
simultaneously including uncertain (IU), or to exclude them from the training
completely excluding uncertain (EU). In this work, a comparison of both training
strategies is provided. The crossing labels are considered to be veins and arteries
simultaneously. Both strategies are evaluated against the reference standard with
excluded uncertain labels, and the vessels classification metrics are given by
evaluating against the reference standard provided by the second expert.
(a) (b)
Fig. 3. Two examples of preprocessed RITE images.
Since the AV classification problem stated being multilabel, binary classi-
fication metrics were calculated for each class separately: area under receiver
operating characteristic curve (ROC-AUC), accuracy, sensitivity and specificity.
During the inference stage, the model parameters are sampled 100 times and
the number of inferred samples is NA = 50. The final posterior predictive mean
is calculated over all predicted samples, and the outputs aleatoric uncertainty
UA and epistemic uncertainty UE are calculated as in [10]:
UA = Eq
[
Vp(y | x,θ) [y]
]
, (9)
UE = Vq
[
Ep(y | x,θ) [y]
]
, (10)
where E and V denote expectation and variance, respectively.
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3.2 Experimental Results
The receiver operating characteristic (ROC) curves calculated after training with
both strategies are shown in Fig. 4. The corresponding performance metrics are
given in Tables 1 and 2. From the tables, it is clear that the AV classification
performances are high, not far from the vessel pixel classification performance.
Including uncertain labels into the training set leads to reduced classification
accuracy for arteries and veins, but it slightly improves the performance of vessel
classification. It is also clear that the Including uncertain strategy increases
classification sensitivity, since the training procedure now takes all labeled vessels
into account during the AV inference stage.
(a) (b)
Fig. 4. ROC curves for arteries (red), veins (blue) and vessels (orange): (a) Excluding
uncertain and (b) including uncertain strategies. (Color figure online)
Table 1. Evaluation results for the excluding uncertain strategy.
Label ROC-AUC Accuracy Sensitivity Specificity
Arteries 0.973 0.970 0.607 0.992
Veins 0.976 0.970 0.669 0.992
Vessels 0.980 0.960 0.749 0.989
The segmentation results for two example images from the test set are illus-
trated in Fig. 5. Comparing the results for the training strategies shows that the
network trained with the EU strategy tends to be more discriminative for arter-
ies and veins in the areas closer to the optic disc. The common issue for both
strategies is the learned bias about the thin vessels being arteries and incapacity
to capture connectivity patterns of the predicted segmentation masks inferring
vein branches to be arteries.
The aforementioned problems can also be visualized as predicted epistemic
and aleatoric uncertainties which are presented in Fig. 6 for the same images
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shown in Fig. 5. From the figure, it is clear that the epistemic uncertainty is
larger near the optic disc where blood vessels cross. Further away from the optic
disc it is concentrated mostly on the vessels’ edges with a pattern similar to the
one of the aleatoric uncertainty. Similar observations can be made from Fig. 7
where the uncertainties are compared for the two training strategies. The regions
of highest uncertainty include vessel crossings and thin vessels even in the case
correct classification.
3.3 Comparison with the State of the Art
The Table 3 shows a comparison of the proposed method with recently proposed
methods. It is troublesome to directly compare the methods, since the evaluation
methods and metrics used by different authors vary. The method proposed by
Zhang et al. [18] is clearly superior compared to all the other methods, including
the method studied in this work, but the authors use 5-fold cross-validation split,
meaning that they have at least 32 images in the training set, whereas in this
work the experiments were carried out using standard split with 20 images in the
training set. Nevertheless, the performance obtained in this work is comparable
with those recently published by Girard et al. [5] and Hemelings et al. [7].
Table 2. Evaluation results for the including uncertain strategy.
Label ROC-AUC Accuracy Sensitivity Specificity
Arteries 0.973 0.968 0.636 0.988
Veins 0.976 0.966 0.752 0.982
Vessels 0.981 0.961 0.797 0.984
Fig. 5. Visualization of inference result: from left to right, the original image, reference
standard, posterior predictive mean obtained with the excluding uncertain strategy
with the including uncertain strategy.
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Table 3. Comparison of evaluation results. The datasets are specified with splitting
methods used by authors.
Method Vessels
accuracy
Arteries
accuracy
Veins
accuracy
Dataset
Girard et al. [5] 0.948 N/A N/A CT-DRIVE
Badawi et al. [2] 0.960 N/A N/A DRIVE (standard)
Hemelings et al. [7] N/A 0.948 0.930 DRIVE (standard)
Zhang et al. [18] N/A 0.977 0.975 DRIVE (5-fold CV)
This work 0.960 0.970 0.970 DRIVE (standard)
Fig. 6. Visualization of estimated uncertainty: from left to right, targets with removed
uncertain labels and crossings, posterior predictive mean, epistemic uncertainty and
aleatoric uncertainty. The results are obtained using the excluding uncertain strategy.
Fig. 7. Visualization of estimated uncertainty: from left to right, targets with removed
uncertain labels and crossings, posterior predictive mean, epistemic uncertainty, and
aleatoric uncertainty. The results are obtained using the excluding uncertain (top row)
and including uncertain (bottom row) strategy.
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4 Conclusion
In this work, multilabel classification of arteries and veins using a Bayesian
fully-convolutional network was studied. It was shown that the misclassified
areas on the images can be visualized using uncertainty estimates. The proposed
approach is comparable with recent state-of-the-art approaches for blood vessel
segmentation and AV classification methods.
The main topics for the future research are how to reduce the epistemic
uncertainty and more careful study on the classification of uncertain labels in the
RITE database. Retinal vasculature segmentation and AV classification meth-
ods typically include preprocessing procedures that affect the data. One of the
opened questions, how different preprocessing techniques change the aleatoric
uncertainty estimates. Other possible directions include differentiable end-to-
end methods for modeling the connectivity and regularizations similar to [5]
and [2].
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Abstract. By examining the vessel structure of the eye through retinal
imaging, a variety of abnormalities can be identified. Owing to this, reti-
nal images have an important role in the diagnosis of ocular diseases. The
possibility of performing computer aided artery-vein segmentation has
been the focus of several studies during the recent years and deep neural
networks have become the most popular tool used in artery-vein segmen-
tation. In this work, a Bayesian deep neural network is used for artery-
vein segmentation. Two algorithms, that is, stochastic weight averaging
and stochastic weight averaging Gaussian are studied to improve the
performance of the neural network. The experiments, conducted on the
RITE and DRIVE data sets, and results are provided along side uncer-
tainty quantification analysis. Based on the experiments, weight averag-
ing techniques improve the performance of the network.
Keywords: Uncertainty quantification · Bayesian deep learning ·
Artery-vein segmentation · Blood vessel segmentation · Weight
averaging
1 Introduction
Eye diseases have become a rapidly increasing health threat worldwide. Retinal
images are a great tool for detecting some of the many ocular disease and dis-
eases such as diabetic retinopathy and glaucoma can be detected from retinal
images [12]. Ocular diseases are typically detected from retinal images by ana-
lyzing the vessel structure. The use of retinal images enables the diagnosis of
ocular diseases in their early stages. The task of analyzing the vessel structure
has been traditionally left to medical experts. The attention required by the
medical experts in this tasks is, however, great and the task is very consum-
ing and expensive. Studying the possibilities in making this process faster is for
that reason important, as it would enable wider screenings for ocular diseases
from retinal images. Automated image processing methods are a well-motivated
possibility in solving this problem [3].
The possibility to use computers in performing artery-vein segmenta-
tion has been the focus of a number of studies during the recent years.
c© Springer Nature Switzerland AG 2020
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However, artery-vein segmentation still remains a challenging tasks for both
humans and machines alike. Some of the difficulties in artery-vein segmentation
are related to the imaging conditions in which the retinal images are taken. The
images tend to suffer from low contrast and changing lighting conditions, both
of which make the segmentation process harder.
The deep convolutional neural network (DCNN) has recently become the
most common tool used in artery-vein segmentation of retinal images, due to
the DCNNs ability to automatically learn meaningful features from images. In
a paper by Welikala et al., a convolutional neural network (CNN) was used
in artery-vein segmentation. The CNN managed to achieve a 82.26% classifi-
cation rate using UK Biobanks’ retinal image database [13]. Hemelings et al.
proposed the usage of U-Net architecture for artery-vein classification [5]. In the
paper, Hemeling et al. considered the task as a multi-class classification problem
with the goal of labeling pixels into four classes: background, vein, artery and
unknown. The problem was solved using the retinal images found in DRIVE
data set [6] and it achieved classification rates of 94,42% and 94.11% for arter-
ies and veins. Girard et al. [3] modified the U-Net for artery-vein segmentation
and found out that using likelihood score in the minimum spanning tree it was
possible to improve the performance of the network in the case of smaller ves-
sels. The method was tested using DRIVE data set, achieving an accuracy of
94.93%. Zhang et al. proposed cascade refined U-net to be used in artery-vein
classification [14]. The cascade refined U-net consisted of three sub-networks.
The task of the first sub-net (A-net in their paper) was to detect all the vessels
from the input image, B-net segmented veins from the predicted vessels from the
A-net, and finally the C-net segmented the arterioles from the outputs of the
previous nets. In the paper, a classification rate of 97.27% was achieved using the
automatically detected vessels from the RITE data set. In a paper by Garifullin
et al., a dense fully convolutional neural network (Desne-FCN) was used in the
task of artery-vein classification [2]. Using the Dense-FCN architecture and the
RITE data the authors were able to achieve classification rates of 96%, 97% and
97% for vessels, arteries and veins respectively. In addition to that the authors
performed uncertainty quantification on the results obtained using Monte-Carlo
dropout [1] for variational approximation. In the aforementioned article, how-
ever, the authors did not illustrate the model calibration and the experiments
were conducted with one training setup for different labelling strategies. Thus,
the question of reliability of the shown uncertainty estimates arises.
This work illustrates how stochastic weight averaging affects the estimated
uncertainties. In addition, differences between two epistemic uncertainty esti-
mation techniques are illustrated. Both more traditional binary classification
metrics as well as uncertainty quantification metrics are used to evaluate the
algorithms.
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2 Data
The retinal image data set chosen to be used in this work was the DRIVE data
set [6]. The DRIVE data set contains 20 RGB images for testing and 20 for
training. The images are of size 584× 565.
The AV references standard used in this work is the RITE data set [7]. The
RITE data set extends the DRIVE data set with references for arteries, veins,
overlapping vessels and uncertain vessels. Red labels in the DRIVE data set
stand for arteries, blue labels for veins, green for overlapping vessels and white
ones for uncertain vessels. An example of a retinal image from the DRIVE data
set as well as the corresponding data labels from the RITE data set can be seen
in Fig. 1. During the training the labels for crossings were replaced by labels for
both arteries and veins simultaneously and the uncertain labels were omitted for
arteries and veins and left for the vessels.
Fig. 1. (a) Retinal image from the DRIVE data set. (b) Retinal image labels from
RITE dataset. (Color figure online)
3 Bayesian AV Classification
3.1 Baseline
Garifullin et al. followed a standard approach for deep Bayesian classifica-
tion. First, a neural network f is used to estimate the distribution of logits
parametrized through the estimate of the mean yˆ and variance σ of logits for
arteries and veins:
[yˆ,σ] = f (x, θ) . (1)
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The probability vector p = [partery pvein] of the labels can then be calculated as
follows:
pˆ = sigmoid (yˆ + σ ⊙ ǫ) , ǫ ∼ N (0, I) . (2)
Given the probability vector for arteries and veins the probability for the vessels
can be inferred based on the addition law of probability:
pvessel = partery + pvein − parterypvein. (3)
The resulting optimisation objective is a sum of binary cross-entropy functions
for all three labels over all produced aleatoric samples.
The formulae (1)–(3) take into account heteroscedastic aleatoric uncertainty
which is a type of uncertainty dependent on the data capturing imperfect imaging
conditions, labeling and image noise. The second kind of uncertainty is epistemic
uncertainty representing the model’s ignorance. By considering the parameters
of the model as a random variable with the posterior p (θ | D) the posterior
predictive distribution over logits can be calculated as follows:
p (y | x,D) =
∫
p (y | x, θ) p (θ | D) dθ. (4)
Typically, the integral (4) is intractable and stochastic approximations are
used in order to estimate the posterior predictive. One of the most common
techniques is to use stochastic variational approximation called MC-Dropout [1]
which employs dropout as a Monte Carlo sampling technique in order to obtain
samples from the model’s posterior. Another widely used method is stochastic
weight averaging Gaussian [11] where the model’s posterior is approximated by
a normal distribution the moments of which are estimated during the training
procedure.
3.2 Stochastic Weight Averaging
Izmailov et al. found out that the values traversed by SGD would be around
the flat regions of the loss surface, without actually reaching the center of this
area [9]. By equally averaging these points traversed by SGD, Izmailov et al.
found out that points that are inside this more desirable part of the loss surface
would be achieved. They named this method stochastic weight averaging (SWA)
and it was shown to improve the results and generalization of networks on a
variety of architectures and in multiple applications. Given initial pre-trained
weights SWA can be implemented as a running average of the weights calculated
while continuing training with an additional computation of batch normalization
statistics after (see [9] for more details).
3.3 Stochastic Weight Averaging Gaussian
SWAG was first introduced by Maddox et al. [11] for model averaging and uncer-
tainty estimation. The main idea behind is to use SWA to calculate the mean of
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the model’s parameters and at the same time to estimate a diagonal approxima-
tion of the covariance matrix. Thus, the approximated posterior of the model’s
parameters is a normal distribution:
p (θ | D) = N (θSWA,ΣSWAG) , (5)
where θSWA is a parameter vector estimated with SWA and ΣSWAG is a corre-
sponding diagonal covariance matrix.
4 Experiments and Results
4.1 Description of Experiments
The parameters and methodologies presented here were selected so that the
baseline model used in this work would be as similar as possible to [2]. The
utilized architecture is Dense-FCN-103 [10]. The baseline model was, however,
re-implemented and the experiments reproduced to some degree in this work.
In all the experiments, the network was first pre-trained on RITE dataset
with random patches of the input images of size 224× 224. The batch size used
in the pre-training was 5 and the network was pre-trained with 100 epochs and
1000 steps per epoch.
After the pre-training, the networks were fine-tuned with full-size images that
were padded to size of 608× 608 so that they could be properly compressed by
the downsampling part of the network. The main optimizer used in all of the
experiments was Adadelta with learning rate of 1 and decay rate of 0.95. The use
of either SWA or SWAG would start on a later epochs of full resolution training.
To increase the diversity of the data set data augmentation techniques were
used. The augmentation was performed by applying rotation, flipping, and scal-
ing to the input data. The rotation angles used were 90, 180 and 270 degrees
and the scaling rates were 0.8, 0.9, 1.0, 1.1 and 1.2.
The aleatoric and epistemic uncertainties were estimated using formulae from
[8]. The uncertainties are estimated as an average sum standard deviations per
image Sp =
∑
i
∑
j σj/Ntest, where i is an index of the image, j is an index of
the pixel, and Ntest is the total number of test images (Table 4).
Baseline. The fine-tuning of the network used as baseline was done using 50
epochs with 500 steps per epoch to match the hyperparameters used in [2]. The
batch size used in the fine-tuning of the baseline was selected to be 1. MC-
Dropout was used to quantify epistemic uncertainty.
SWA. The SWA implementation also had 50 epochs with 500 steps in each
epoch in the full resolution training. Like in the baseline the batch size used was
1. The starting epoch for SWA was selected to be 10 and it was only used in the
fine-tuning of the network. The starting epoch was selected through empirical
experimentation. MC-Dropout was used to quantify epistemic uncertainty.
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SWAG. The hyperparameters used in the SWAG implementation were 500
epochs with 50 steps per epoch. This was done so that the Gaussian posteriori
approximation formed by SWAG would be generated from a higher number of
epochs. Like in the baseline the batch size used was 1. The SWAG starting epoch
was selected to be 100. The epistemic uncertainty was quantified by sampling
the model’s parameters from Gaussian distribution (5). Whereas the sampling is
performed from the posterior estimated with SWAG, dropout is still used during
the training phase.
4.2 Performance of the Networks
Due to the fact that artery-vein classification was considered a multilabel prob-
lem, the performance metrics used in were calculated for arteries, veins and
vessels separately. The selected classification metrics were accuracy, sensitiv-
ity, specificity, Area Under the Receiver Operating Characteristic Curve (ROC-
AUC) and Estimated Calibration Error (ECE) [4].
By examining the performance metrics presented in Tables 1, 2 and 3, it can
be seen that SWA improved the network performance overall compared to the
baseline and SWAG models including the model calibration.
Table 1. Network performance in artery classification (the best accuracy and calibra-
tion are in bold)
Method Accuracy Sensitivity Specificity ECE ROC-AUC
Baseline 0.970 0.642 0.990 0.00988 0.974
SWA 0.975 0.690 0.992 0.00943 0.981
SWAG 0.973 0.706 0.989 0.00871 0.966
Table 2. Network performance in vein classification (the best accuracy and calibration
are in bold)
Method Accuracy Sensitivity Specificity ECE ROC-AUC
Baseline 0.971 0.655 0.994 0.0169 0.980
SWA 0.974 0.742 0.991 0.0120 0.991
SWAG 0.971 0.804 0.983 0.0107 0.980
Table 3. Network performance in vessel classification (the best accuracy and calibra-
tion are in bold)
Method Accuracy Sensitivity Specificity ECE ROC-AUC
Baseline 0.957 0.723 0.989 0.0221 0.980
SWA 0.961 0.782 0.986 0.0208 0.983
SWAG 0.961 0.836 0.978 0.0338 0.984
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The example of the segmentation results for SWAG is given in Fig. 2. The
segmentation examples for the baseline and SWA look similar. The uncertainties
of the results were visualized and example figures can be seen in Fig. 3. In the
figure, the intensities of the colors describe the uncertainty in that region as
standard deviations of the predicted probabilities: the higher intensity the higher
the uncertainty.
Fig. 2. (a) The input image; (b) ground truth; (c) mean predicted AV probabilities;
(d) mean predicted vessels probabilities. The results are obtained using SWAG.
From the tables and figures, it can be concluded that the aleatoric uncer-
tainty of the baseline is much higher than those of SWA and SWAG. It can also
be concluded that sampling the network weights from the Gaussian posterior
generated by SWAG to create the variational approximation, rather than using
Monte-Carlo dropout, has a reducing effect on the levels of epistemic uncertainty
present in the predictions. This could probably be explained by the fact that the
variance is estimated only around a local optimum during the late stages of
the training, whereas MC-Dropout is enabled during the whole training process.
From the estimated performance metrics, however, it is difficult to conclude
whether it is a positive or negative effect. One noticeable pattern is the high
epistemic uncertainty near the optic disc when estimated with MC-Dropout. On
the other hand, sampling from Gaussian distribution leads to the high uncer-
tainties mostly near the end points of the blood vessels and the areas after the
crossings which is also present in the case of MC-Dropout.
At the same time one can see that aleatoric uncertainties change when SWA
or SWAG are utilized. Kendall et al. [1] describe the aleatoric uncertainty as a
loss attenuation mechanism allowing the model to adapt the loss dependent on
the data and labelling. While the aleatoric uncertainty is meant to be data depen-
dent, the changes to the training procedure affecting the model’s convergence
and the parameters of the layers predicting variances also affect the predicted
aleatoric uncertainties. For the baseline and SWAG, we can see a similar pattern
of the higher aleatoric uncertainty levels near the optic disc and borders of the
vasculature, whereas the aleatoric uncertainties almost vanish when estimated
using MC-Dropout trained with SWA.
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Table 4. Mean sums of estimated aleatoric and epistemic uncertainties per image.
Method Aleatoric Epistemic
Arteries Veins Vessels Arteries Veins Vessels
Baseline 1276.2 1159.5 1807.5 4853.6 4066.4 5069.7
SWA 3.3 3.5 5.3 4038.6 3882.3 4659.7
SWAG 31.1 38.9 57.3 997.8 1104.3 1396.1
Fig. 3. Aleatoric uncertainties calculated using (a) the baseline, (b) SWA, and (c)
SWAG. Epistemic uncertainties calculated using (d) the baseline, (e) SWA, and (f)
SWAG.
4.3 Conclusions
In this work, the focus was on blood vessel segmentation from retinal images and
on artery-vein classification by using a deep neural network. More specifically,
two algorithms were studied to improve the classification performance and help
in the model calibration. SWA and SWAG algorithms were implemented on top
of the baseline and experimented with the DRIVE and RITE data sets.
The use of SWA improved the performance of the deep neural network on
most of the binary classifications as well as the calibration metrics. SWAG
showed slight improvements in the vessels and artery classification tasks. The
weight averaging as a process significantly affecting the model’s convergence
seems to lead to diminishing aleatoric uncertainties and sampling from the nor-
mal distribution captures less epistemic uncertainty.
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A B S T R A C T
Early diagnosis of retinopathy is essential for preventing retinal complications and visual impairment due to 
diabetes. For the detection of retinopathy lesions from retinal images, several automatic approaches based on 
deep neural networks have been developed in the recent years. Most of the proposed methods produce point 
estimates of pixels belonging to the lesion areas and give no or little information on the uncertainty of method 
predictions. However, the latter can be essential in the examination of the medical condition of the patient when 
the goal is early detection of abnormalities. This work extends the recent research with a Bayesian framework by 
considering the parameters of a convolutional neural network as random variables and utilizing stochastic 
variational dropout based approximation for uncertainty quantification. The framework includes an extended 
validation procedure and it allows analyzing lesion segmentation distributions, model calibration and prediction 
uncertainties. Also the challenges related to the deep probabilistic model and uncertainty quantification are 
presented. The proposed method achieves area under precision-recall curve of 0.84 for hard exudates, 0.641 for 
soft exudates, 0.593 for haemorrhages, and 0.484 for microaneurysms on IDRiD dataset.   
1. Introduction 
Diabetic retinopathy (DR) is the most common complication of dia-betes mellitus and can lead to a vision loss if not treated properly [1]. Screening of the condition and early detection of retinal abnormalities is essential and consists of examining retinal images for diabetic lesions. In the early stages of the disease, these lesions are small, typically have low contrast and sometimes difficult to detect for humans. The core of the screening problem is, however, the amount of images that need to be analyzed. Thus, automatic retinal image analysis methods are required. One way to build an assisting system is to train an end-to-end classifier that processes an input image and yields a diabetic retinopathy grade [2]. These systems are often criticized for being black-boxes producing results that are difficult to interpret [3]. As an alternative, one can train a segmentation model that processes the input image and produces a segmentation map where each element represents the probability of being a lesion. This way the diagnosis can be inferred from the seg-mentation maps by counting the detected lesions. In recent years, the field of DR lesion segmentation has advanced with the introduction of new retinal image datasets making it possible to 
accelerate research in related computer vision methods [4]. One of the most widely used benchmarks is Indian diabetic retinopathy image dataset (IDRiD) dataset providing high-quality ground truth masks for hard exudates, soft exudates, haemorrhages and microaneurysms. Por-wal et al. [5] published the results of the IDRiD challenge held in 2018. The best performing algorithms were represented by deep convolutional architectures such as U-Net [6], dense fully-convolutional network (Dense-FCN) [7] and Mask-RCNN [8] or their variants. It should be noted that the data is very unbalanced and achieving high sensitivity was a challenge for many algorithms. To overcome this issue, the au-thors used balanced cross-entropy [9] and dice loss [10]. Due to the high resolution of the images, the models were trained in a patchwise manner. Guo et al. [11] proposed a multi-scale feature fusion method to handle issues with small lesion detection. Binary cross-entropy (BCE) loss with balancing coefficients was used to improve the sensitivity. The model was trained with full images resized to 1440 × 960 pixels without any further preprocessing. Yan et al. [12] proposed mutually local-global U-Net mitigating the problems of patchwise training which does not capture the global context. The proposed architecture consists 
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Fig. 1. (a) An example of IDRiD image with ground truth masks for (b) hard exudates, (c) soft exudates, (d) haemorrhages, and (e) microaneurysms.  
Fig. 2. Statistics of lesions in the train set. The number of positive pixels per image for (a) hard exudates (EX), (b) soft exudates (SE), (c) haemorrhages (HE), and (d) 
microaneurysms (MA). (e) The number of pixels for the lesions and the background. (f) The number of positive pixels for each lesion for the whole dataset. 
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of two U-Nets (global and local) that share the last layers of their de-coders. Both networks are jointly trained minimizing weighted cross-entropy loss to deal with the class imbalance. The aforementioned approaches consider only point estimates of the trained models and produced results. Thus, the question of reliability of a trained model arises. In this work, the problem is addressed by using Bayesian deep learning modeling a distribution over the learned pa-rameters of the model and produces the segmentation results in a form of posterior predictive distribution. Recently, Bayesian deep learning models have started finding their applications in the area of retinal image analysis. Leibig et al. [13] evaluated dropout based uncertainty measures and demonstrated improved diagnostic performance using 
uncertainty-informed decisions. Filos et al. [14] proposed a new benchmark for deep Bayesian models with application to DR diagnosis also assessing the robustness of the models to out-of-distribution ex-amples and distribution shift. This work extends the preceding research with Bayesian DR lesion segmentation. To the best of authors’ knowledge, this is the first work discussing the Bayesian approach for DR lesion segmentation. The aim is to establish a baseline that would inspire future research on the topic. The contributions of this work can be highlighted as follows: 
1. The introduction of a novel Bayesian baseline for DR lesion seg-mentation allowing the analysis of segmentation distributions. 
Fig. 3. Statistics of lesions in the test set. The number of positive pixels per image for (a) hard exudates (EX), (b) soft exudates (SE), (c) haemorrhages (HE), and (d) 
microaneurysms (MA). (e) The number of pixels for the lesions and the background. (f) The number of positive pixels for each lesion for the whole dataset. 
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2. An assessment and analysis of model calibration and prediction uncertainties.  3. The presentation of an extended validation procedure for DR lesion segmentation task beyond the point estimates. 
The rest of the paper is organized as follows: Section 2 describes the utilized dataset and gives the information about class imbalance and the statistics of labels, and Section 3 explains the Bayesian image segmen-tation setup, utilized data sampling approach and training details. Sec-tion 4 explains the evaluation protocol and presents the performance metrics together with the visualizations of the inferred results. Section 5 discusses faced issues and directions for future research. The results of the work are summarized in Section 6. 
2. IDRiD dataset 
The IDRiD dataset is a common benchmark for the diabetic reti-nopathy lesion segmentation [5]. It contains 54 train and 27 test images of resolution 4288× 2848 with segmentation masks aiming to be spatially accurate for four lesion types: hard exudates, soft exudates, haemorrhages, and microaneurysms. An example image from the data-set is shown in Fig. 1. The class imbalance can be visualized as a bar graph with the number of positive pixels for lesions for each image separately as well as for the whole dataset. The calculated statistics for the train and test sets are presented in Fig. 2 and Fig. 3. 
3. Bayesian lesion segmentation 
3.1. Background 
The classical approaches give only point estimates for the class label probabilities and the model parameters are considered to be determin-istic. In order to capture imperfect data labeling and image noise, the model outputs and learned parameters can be considered as random variables. The first approach captures the heteroscedastic aleatoric un-certainty that depends on the input data, whereas the second represents the epistemic uncertainty that models a distribution of the learned pa-rameters. Here, a brief explanation for the lesion segmentation task is given below. More detailed explanations for the uncertainties can be found in Refs. [15,16]. Let f be a model, with parameters θ, that maps an input image x to a 
map of logits ŷ, accompanied by a map standard deviations σ of the logits: 
[ŷ, σ] = f (x, θ). (1)  
Then, the probabilities of the class labels can be calculated as follows: 
p̂ = sigmoid(ŷ + σ ⊙ ε), ε ∼ 𝒩(0, I), (2)  
where ⊙ stands for the Hadamard product and ε are sampled during inference. Epistemic uncertainty can be captured by considering the model parameters to be a random variable and making use of the following posterior predictive: 
p(y|x,𝒟) =
∫
p(y|x, θ)p(θ|𝒟)dθ, (3)  
where 𝒟 denotes a dataset of input-output pairs. Typically, the parameter’s posterior p(θ|𝒟) for complex models such as deep neural networks is intractable and variational approximations are used [16]. The posterior in (3) can be replaced by a simpler distri-bution qθ(ω) with variational parameters ω. In this work, Monte-Carlo dropout [16] is used as a framework to perform stochastic variational inference. The relation between the true and approximate posteriors is 
given by 
ω = θ ⊙ MD, (4)  
where MD is a dropout mask that randomly sets the model weights to zero. The training procedure can then be formulated as the minimization of the Kullback-Leibler divergence DKL between the true posterior and the approximation. This is equivalent to minimizing the negative vari-ational lower bound [16]: 
L VI(ω)=
∫
qθ (ω) log p (Y|X, ω) dω − DKL(qθ(ω) ‖p(ω)), (5)  
where X,Y represent the inputs and outputs of the model, respectively, and p(ω) is the prior for the variational parameters ω. The expectation in the first part of (5) is typically approximated using Monte-Carlo inte-gration [16]. In this work, it is approximated using one sample from the variational distribution. Therefore, the optimization objective becomes 
ℒMCD(ω) =
∑N−1
i=0
ℒ(yi|xi,ω) + ℛ(ω), (6)  
where i is an index of the training example and N is the total number of samples in the training set. ℛ is a regularization term that depends on the form of a prior distribution over the parameters of the model. In this case, the prior is a normal distribution corresponding to L2 weight decay. The loss function chosen for this work is binary cross-entropy and it is summed over the aleatoric samples: 
ℒ(y|x,ω) =
∑N−1
i=0
∑NA−1
j=0
ℒBCE
(
yij|xi,ω
)
, (7)  
where NA is a number of aleatoric samples. The training scheme described above does not take into account class imbalance. In this work, a straightforward oversampling scheme based on class frequencies statistics is used and it is described in the next section. 
3.2. Oversampling 
One way to handle class imbalance is to perform oversampling of the underrepresented classes. Here, three-stage sampling is performed:  
1. Positive samples are selected with π+ probability and negative 
samples are selected with 1− π+ probability.  
2. An image of the selected class is sampled with the probability pimagei proportional to the logarithm of the pixel count of the given class, that is, 
p
image
i =
log max(N imagei , 1)∑
jlog max(N
image
j , 1)
, (8)  
where Nimagei is the number of positive pixels for the class of interest in the image with index i.  
3. The final step is to select an image patch containing pixels of the class of interest. In order to select such a patch, we follow a scheme similar to the previous stage. The image is divided into a set of overlapping patches and the patch is selected with probability 
p
patch
i =
log max(Mpatchi , 1)∑
jlog max(M
patch
j , 1)
, (9)  
where Mpatchi is the number of positive pixels for the class of interest in the patch with index i. The log scale here is used in order to increase the diversity of chosen 
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Fig. 4. The Dense-FCN architecture: Dense stands for a dense convolutional block; C is a tensor concatenation; H is a block consisting of batch normalization (BN), 
rectified linear unit (ReLU) and a convolutional layer with growth rate g; Down is a transition-down block with F output feature maps; Up is a transition up with F 
output feature maps and 2 × 2 stride; logits std denotes standard deviations of logits. 
Fig. 5. Two examples of the original (left column) and enhanced (right column) images.  
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samples. π+ is a tunable hyperparameter and should be chosen 
depending on the class imbalance in a particular case. In this work, π+ =0.5 is used as experimentally it has been found that this value provides the best results. 
3.3. Architecture 
The architecture utilized in this work is a Dense-FCN [17]. It has been shown that Dense-FCNs have less parameters and may outperform other fully-convolutional network (FCN) architectures in a variety of different segmentation tasks [17]. Here we adapt the Dense-FCN ar-chitecture for the lesion segmentation task. The main building block of Dense-FCNs is a dense convolutional block (DCB) where the input of each layer is a concatenation of the outputs of the previous layers. The block consists of repeating batch normalization (BN), rectified linear unit (ReLU), convolution and dropout p = 0.5 layers resulting in g feature maps (growth rate). The main concept of Dense-FCNs is similar to other encoder-decoder architectures in the sense that the input is first compressed to a hidden representation by the downsampling part. Thereafter the segmentation masks are recovered by an upsampling part. The downsampling part consists of DCBs and downsampling transitions with skip connections to the upsampling part. The upsampling part consists of DCBs and upsampling transitions. An example of two blocks in downsampling and upsampling paths of a Dense-FCN is shown in Fig. 4. The total number of trainable parameters is 9319778. The archi-tectural parameters used are are as follows:  
● The growth rate for all DCBs: g = 16.  
● The downsampling path consists of DCBs with depths Ddown =
[4,5, 7,10, 12,15].  
● The upsampling also consists of five DCBs with depths Dup =
[12, 10,7, 5,4].  
● The first and last convolution layers are the same as in Fig. 4. 
3.4. Image preprocessing 
It was noticed in the experimental part of the work that simple preprocessing proposed in Ref. [18] improves the results. The pre-processing is implemented in two steps:  
1. Luminosity enhancement employs luminance gain matrix G that is applied in the red-green-blue (RGB) color space: 
x
′
= [G ⊙ r G ⊙ g G ⊙ b], (10)  
Gi =
V
′
i
max{ri, gi,bi}
, (11)  
where r, g and b are red, green and blue image channels respectively, x′
is an enhanced image, and V′i is an enhanced luminance value at pixel with index i. The enhanced luminance value is calculated by converting the image to hue-saturation-value (HSV) color space and enhancing the luminance V using gamma enhancement. Here, we choose Γ = 1/ 2.2 as in the original work [18].  
2. Contrast enhancement is performed using Contrast Limited Adaptive Histogram Equalization [19] algorithm with the clip limit 0.1 and the grid size 8× 8. 
In order to reduce requirements for computing resources, the images were resized to the resolution of 2144 × 1440 pixels. Two examples of the original and enhanced images are presented in Fig. 5. 
3.5. Training details 
The Dense-FCN was trained for 100 epochs with 500 steps per epoch on random patches 224× 224 with the batch size equal to 6. The patches were generated with the overlap 192× 192. Data augmentation by vertical and horizontal mirroring was applied. The parameter values were empirically tuned based on initial experiments with the IDRiD dataset. The weights were initialized using HeNormal [20]. In addition to dropout, L2 regularization with the weight decay factor 10−4 was used. As the optimizer, Adadelta [21] with the learning rate l = 1 and the decay rate ρ = 0.95 was used. The learning rate was adjusted according to the following schedule:  
1. if 0 <= epoch < 50, l = 1;  2. if 50 <= epoch < 70, l = 0.1;  3. if 70 <= epoch < 85, l = 0.01;  4. if 85 <= epoch < 100, l = 0.001. 
4. Experiments and results 
4.1. Evaluation protocol 
In [5], many authors processed images in a patchwise manner during the validation stage. In this work, it was noticed that with Bayesian neural networks this can lead to checkerboard artifacts that have a negative impact on the segmentation performance. Therefore, in the inference stage images are not divided into patches but are processed as full images. It is also worth to note that full-resolution processing is much faster and it takes approximately 14 min to process an image with 50 epistemic and 100 aleatoric samples. The input and output images have the resolution of 2144 × 1440 pixels. In order to evaluate the segmentation performance, the following classification metrics are used:  
● Sensitivity (SE) is used to assess the ability of the model to discover lesions: 
SE =
TP
TP + FN
, (12)  
where TP and FN are the amounts of true positive and false negative pixels, respectively.  
● Positive predictive value (PPV) is used in addition to sensitivity but taking into account false positives FP: 
PPV =
TP
TP + FP
. (13)    
● Specificity (SP) is used to assess to ability of the model to correctly segment healthy pixels: 
SP =
TN
TN + FP
, (14)  
where TN is the amount of true negative pixels.  
● Area under receiver-operating-characteristic curve (ROC-AUC) is an integral metric regardless of the thresholding value. ROC-AUC is calculated under the area of the curve plotted as a true positive rate against false positive rate by varying the threshold.  
● Area under precision-recall curve (PR-AUC) is another integral metric regardless of the thresholding value. PR-AUC more realisti-cally represents the segmentation performance in comparison to the area under receiver operating characteristic ROC-AUC. 
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● Expected calibration error (ECE) is used to assess a model’s cali-bration [22]: 
ECE = E
p̂
[|P(ŷ = y|p̂ = π)− π| ], π ∈ [0, 1], (15)  
where p̂ is a confidence estimate of the predicted class ŷ, y is a true label and π is a true probability. Together with ECE, reliability diagrams are also presented. These reliability diagrams are graphs showing the expected accuracy against classification confidence, thereby representing calibration quality. In the case of perfect calibration, the graph is an identity function. In the evaluation, sensitivity, specificity and positive predictive value are calculated by thresholding the output predictive mean with T = 0.5. In the inference, the model parameters are sampled 100 times and the number of inferred aleatoric samples is NA = 100. The final poste-rior predictive mean is calculated over all the predicted samples, and the aleatoric uncertainty UA and epistemic uncertainty UE of the outputs are calculated as in Ref. [23]: 
UA = Eq
[
Vp(y|x,θ)[y]
]
, (16)  
UE = Vq
[
Ep(y|x,θ)[y]
]
, (17)  
UT = UA + UE, (18)  
where E and V denote expectation and variance, respectively, and UT is the total predictive uncertainty. Apart from characterizing the total uncertainty, it is also important to evaluate the meaningfulness of the produced uncertainty maps. This is a more challenging task since only point estimates of ground truth labels are available. However, it is reasonable to assume that incorrectly segmented areas must have higher uncertainties. Mobiny et al. [24] 
proposed to use the uncertainty as a tool predict incorrect classification results by thresholding the output uncertainties. Camarasa et al. [25] analyzed different uncertainty measures for medical image segmenta-tion and concluded that the averaged variance and averaged entropy perform equally well and are better than other metrics. In this work, the standard deviation is used. We follow the same approach and use the following:  
1. Area under uncertainty precision-recall curve (PR-AUC) is used an integral metric to assess the quality of uncertainty estimates.  2. Uncertainty sensitivity (U-SE) is used to assess the ability of the uncertainty estimates to discover misclassifications.  3. Uncertainty specificity (U-SP) is used to assess the ability of the uncertainty estimates to correctly classify misclassifications. 4. Uncertainty expected calibration error (U-ECE) is also used to vali-date the uncertainty calibration. 
U-SE and U-SP are calculated using the threshold which is half of the maximum uncertainty value. To summarize, the extended validation approach consists of the analysis of the produced segmentation masks as well as comparison of the produced uncertainties and the misclassification maps. 
4.2. Evaluation of segmentation results 
The precision-recall (PR) and receiver operating characteristic (ROC) curves are shown in Fig. 6. It is clear that the ROC curves demonstrate close-to-optimal classification results due to large class imbalance. On the other hand, the PR curves represent the classification performance more realistically. The corresponding performance metrics are given in Table 1. Based on the figures and the table, it is clear that the easiest task is to segment the hard exudates, whereas the most difficult one is the 
Fig. 6. Precision-recall and receiver operating characteristic curves for (a), (e) hard exudates; (b), (f) soft exudates; (c), (g) haemorrhages; (d), (h) microaneurysms.  
Table 1 
Evaluation results of the baseline training scheme. The abbreviations of the evaluation metrics are explained in the text.  
Label PR-AUC ROC-AUC Sensitivity PPV Specificity ECE 
Hard exudates 0.842 0.995 0.767 0.753 0.997 0.090 
Soft exudates 0.641 0.993 0.639 0.611 0.999 0.145 
Haemorrhages 0.593 0.977 0.464 0.670 0.997 0.066 
Microaneurysms 0.484 0.997 0.434 0.531 0.999 0.116  
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Fig. 7. Reliability diagram for (a) hard exudates; (b) soft exudates; (c) haemorrhages; (d) microaneurysms.  
Fig. 8. Visualizations of inference results for input image 5b for lesions: (a), (b), (c) hard exudates; (d), (e), (f) soft exudates; (g), (h), (i) haemorrhages; (j), (k), (l) 
microaneurysms. The first column shows the ground truth masks, the second shows the mean inferred probabilities and the third shows epistemic uncertainty masks 
(standard deviations of probabilities). 
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segmentation of microaneurysms. Low sensitivies are a common prob-lem for the DR lesion segmentation task [5]. This can be explained by the relatively low contrast and size of lesions. Apart from the analysis of true positive classifications, it is also essential to have classifiers with high specificity. From Table 1 it is possible to see that specificities are very 
high for all types of lesions being close to one. Nevertheless, it can be easily achieved due to the class imbalance. PPVs, on the other hand, give more insights into the problem of false positive classifications comparing them to true positives. It is easy to notice that in the worst case scenario for microaneurysms there are almost as many falsely classified pixels of healthy tissues as correctly discovered pixels of microaneurysms. This fact gives additional motivation for analyzing the uncertainties. The reliability diagrams are given in Fig. 7. It can be seen that the trained models are miscalibrated and the one for haemorrhages repre-sents the best result. Guo et al. [22] have shown that deep neural net-works are typically poorly calibrated and the authors proposed methods decreasing the degree of miscalibration. Guo et al. claimed that the ECE of approximately 0.01 − 0.02 can be achieved for standard classification benchmark datasets and Dense architectures. In this work, no methods 
Fig. 9. Visualizations of inference results for input image 5d for lesions: (a), (b), (c) hard exudates; (d), (e), (f) soft exudates; (g), (h), (i) haemorrhages; (j), (j), (l) 
microaneurysms. The first column shows the ground truth masks, the second shows the mean inferred probabilities and the third shows epistemic uncertainty masks 
(standard deviations of probabilities). 
Table 2 
Evaluation results for the estimated uncertainty maps. The abbreviations of the 
evaluation metrics are explained in the text.  
Label U-PR-AUC U-SE U-PPV U-SP U-ECE 
Hard exudates 0.336 0.031 0.566 0.999 0.104 
Soft exudates 0.257 0.113 0.388 0.999 0.195 
Haemorrhages 0.243 0.029 0.302 0.999 0.303 
Microaneurysms 0.257 0.045 0.332 0.999 0.237  
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for improving the calibration were used and the reliability is assessed for the baseline model. The segmentation results for two example images from the test set (shown in Fig. 5) are illustrated in Fig. 8 and Fig. 9. From the images, it is possible to observe visual similarities between the ground truth and mean inferred probability maps. Higher uncertainties are concentrated around the areas with high predicted confidence and false positive segmented pixels. A more detailed discussion about the inference results and the estimated uncertainties is given in the next section. 
4.3. Uncertainty quantification 
The PR curves and reliability diagrams are shown in Fig. 6 and the evaluation metrics are given in Table 2. From the results, it is clear that normalized uncertainties are not efficient predictors of mis-classifications and have low sensitivities. It is worth to note that the evaluation procedure is straightforward and considers only soft un-certainties against hard misclassifications. Nevertheless, the un-certainties are not necessarily high only near the misclassification areas, but also near the areas of relatively low confidence as shown below. This can also explain the uncertainty miscalibrations. The uncertainty PR curves are given in Fig. 10 and the uncertainty reliability diagrams are presented in Fig. 11. From the reliability diagrams it is clear that the uncertainties are mostly underestimated, since the growing confidence values stop matching with the increasing accuracy values. Inference results for hard exudates of the magnified example image are shown in Fig. 12. It is clear that the misclassifications and epistemic uncertainties are mostly concentrated around the edges of the lesions. This can be explained by unclear boundaries of the lesions. The aleatoric uncertainties acting as a learned loss attenuation are also higher around the borders. The boundary uncertainties are a general pattern for 
segmentation models and can be observed within a wide variety of tasks. It is also possible to see small yellow lesions being incorrectly classified as background which highlights the problems of detecting small-scale lesions. It is worth noting that there is a soft exudate left to the hard exudates cluster and the model is certain for not classifying it as a hard exudate. Inference results for soft exudates of the magnified example image are shown in Fig. 13. The high boundary uncertainties are presented in this case as well. Soft exudates typically have low contrast, no texture, unclear edges and can be easily confused with the background. It is possible to see false positive detections of soft exudates in the lower left part of the image which is slightly more yellow comparing to the other background pixels. The soft exudate in the lower right part of the image has uneven contrast and the low-contrast part of the lesion is incorrectly classified as the background. In both cases, the model yielded non- maximum mean confidence and the incorrectly classified pixels also have high uncertainties. In Fig. 14, the inference results for the haemorrhages of the magni-fied example image are presented. The lesion is surrounded by blood vessels and a part of the macula is presented in the magnified input image. The part with blood vessels to the left is incorrectly classified as a haemorrhage. It is also possible to see the model’s confusion about the part with the macula. Epistemic uncertainty is in general higher near the areas with similar colors highlighting the surrounding blood vessels and macula.Inference results for microaneurysms of the magnified example image are given in Fig. 15. Microaneurysms are the smallest of all lesions and the epistemic uncertainty is high over the whole area of lesions. On the other hand, the aleatoric uncertainties are still higher near the edges. Being small-scale lesions with no textures, microaneurysms are confused with any red small spots, which is visible on the epistemic uncertainty maps. 
Fig. 10. Uncertainty precision-recall curves for (a) hard exudates; (b) soft exudates; (c) haemorrhages; (d) microaneurysms.  
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5. Discussion 
The approach presented in this work shows classification perfor-mance comparable to previously reported methods [5]. The uncertainty maps can be used for the visual inspection and analysis of the perfor-mance. The estimated uncertainties and the produced confidence maps 
provide more information about the model’s behaviour. Nevertheless, a few challenges remain and they are discussed in this section in addition to brief explanations of failed experiments. One of the main issues in lesion detection is low sensitivity of the segmentation model. This problem is present in the related previous works [4,26] and also in this study. In medical image analysis and 
Fig. 11. Uncertainty reliability diagrams for (a) hard exudates; (b) soft exudates; (c) haemorrhages; (d) microaneurysms.  
Fig. 12. Inference results for hard exudates with magnified input image 5b: (a) input image; (b) ground truth mask; (c) misclassifications; (d) mean inferred 
probabilities; (e) aleatoric uncertainties (standard deviations of probabilities); (f) epistemic uncertainties (standard deviations of probabilities). 
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segmentation, it is common to use custom heuristic loss functions [26] to improve sensitivity [27] or deal with lesion boundary issues [28]. We also experimented with other loss functions including focal loss [29], Tversky loss [27], generalized dice loss [28], and boundary loss [30]. Nevertheless, results outperforming the proposed baseline were not achieved. This negative outcome is likely due to omitting the tuning of loss functions’ hyperparameters. These objectives are typically synthetic in the sense that they are formulated already in the form of loss functions and not as log-likelihoods. This means that they are not derived from specific distributions encoding the information about class imbalance. On the other hand, binary cross-entropy is derived as a negative loga-rithm of the Bernoulli likelihood. To study the issue with low sensitivity, more focused research is required to evaluate modern loss functions for medical image segmentation in the context of Bayesian deep learning and model calibration. 
In this work, a straightforward scheme based on label statistics is used to balance the lesion and background data. A potentially more efficient approach would be to use Bayesian active learning [31] where uncertainty-based acquisition functions are used to select the training samples. Typically, these methods do not work well with unbalanced data which can be another topic for the future research. Model and uncertainty calibration metrics are also subjects for further improvements. Apart from the classical calibration methods described in Ref. [22], alternative ways of improving the calibration exist. Thulasidasan et al. [32] proposed to use mix-up augmentation to improve the model calibration. Seo et al. [33] proposed single-shot calibration by regularizing the model with the uncertainty of the out-puts. Laves et al. [34] considered the uncertainty calibration in the context of deep Bayesian regression and discovered that the predicted uncertainties are typically underestimated. The problem was solved 
Fig. 13. Inference results for soft exudates with magnified input image 5b: (a) input image; (b) ground truth mask; (c) misclassifications; (d) mean inferred 
probabilities; (e) aleatoric uncertainties (standard deviations of probabilities); (f) epistemic uncertainties (standard deviations of probabilities). 
Fig. 14. Inference results for haemorrhages with magnified input image 5b: (a) input image; (b) ground truth mask; (c) misclassifications; (d) mean inferred 
probabilities; (e) aleatoric uncertainties (standard deviations of probabilities); (f) epistemic uncertainties (standard deviations of probabilities). 
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using simple temperature scaling of aleatoric and epistemic uncertainty. During the development of this work, experiments with the uncertainty calibration using Platt scaling and isotonic regression were conducted. However, no improvements over the baseline were found. It is likely that a more systematic approach aiming to solve both calibration problems is required. 
6. Conclusion 
In this paper, a Bayesian baseline for the diabetic retinopathy lesion segmentation, allowing the analysis of segmentation distributions, model calibration and prediction uncertainties, is proposed. Also an extended validation approach consisting of the analysis of segmentation performance and the ability of uncertainty estimates to detect false classifications is provided. The presented results from the uncertainty quantification experiments show that the estimates are qualitatively similar to misclassification maps and can be used to assess issues in the lesion segmentation. Overall, the main challenges of the deep probabi-listic model are the small-scale lesions, areas with low contrast and unclear boundaries. The color information is also essential for successful segmentation and healthy tissues can be confused with lesions when being of a similar color. Further research and development is required to make the predicted lesion segmentation uncertainties suitable for numeric quantification. 
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