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Abstract 

This paper introduces an innovative social process model addressing population-wide measures 

of voter preferences that was tested on data from the 2016 US presidential election. Population-

wide, “macroscopic” parameters are needed when privacy, ethics or regulatory constraints block 

“big data” techniques (e.g., in political contexts to counter “micro-targeting”). Confidence will 

be eroded if existing trend models and other macroscopic approaches frequently fail to predict 

outcomes, however campaign data reveal mathematical features that suggest a different possible 

approach. Given that the populations modelled exhibit self-organisation and memory when 

transmitting viewpoints, our model is based on mathematical representations of such processes. 

Its validation indicates the applicability and potential generalisability of this theoretical approach. 

In order to design a stochastic dynamics model of changing voter preferences, we evaluated 

probability models for transitions between possible system states (magnitudes of voter 

preferences), formulated the boundary task for probability density functions and derived a 

second-order non-linear differential equation incorporating self-organisation and memory. We 

find consistent dependencies between influences on the system and its reaction, and it is 

congruent with empirical data. The ability to use researchable global parameters indicates the 

potential for modelling electoral processes and wider applicability for complex social processes, 

avoiding dependence on “internal” variables.  

 

Keywords: social process modelling; stochastic dynamics; self-organization; memory; 

probability density oscillations; electoral processes. 

 

 

mailto:zhukov_do@mirea.ru
mailto:zaltcman@mirea.ru
mailto:c.millar@utwente.nl


Beyond big data – new techniques for forecasting elections 

2 

 

1. Introduction 

Although “big data” opens rich new seams of investigation and analysis, there are areas where 

its deployment may be constrained, despite confidence in reliable forecasting being crucial for both 

political and economic action. Forecasting electoral outcomes is a classic case, and the challenge is 

to improve forecasting using macroscopic techniques, i.e., working with global totals rather than 

being dependent on the analysis of big data. When these global techniques 1.are complemented by 

more fine-grained approaches, much can be learned, but for many practical purposes – including 

campaign management, political risk assessment and investment strategy – having forecasts based on 

the progression of global totals is a priority. Such forecasts can also provide a template for evaluating 

big data results: if the big data analysis fails to match the observed global trend, then questions 

naturally arise about the quality of the datasets and/or the algorithms. If a reliable global forecasting 

method exists and its results match those of the “big data” approach, this can provide users with initial 

confidence in the power of the latter.  

The 2016 US presidential election may be an example of this: uncertainty arose regarding the 

impact of fake accounts that were created on social networks to organise information attacks on users 

with the aim of influencing their electoral preferences. Such activities and the difficulty of detecting 

and assessing them at a micro-level may undermine confidence in democratic electoral institutions 

and may ultimately have a negative influence on the economy. In the long run, investor behaviour is 

influenced by possible political risks connected with the victory of a particular candidate or party as 

this may lead to changes in the tax regime, customs duties, various support programmes, etc. State 

authorities, investors and business people require reliable forecasts of electoral processes to be able 

to make long-term investments and returns. It is vital that these parties know that there are no political 

risks connected with illegal influence on electoral processes, which can lead to unpredictable 

consequences. Developing innovative technological models that address the need to forecast election 

results, even in the presence of part-trackable or unrecognised micro-targeting and influence, is 

therefore very important in order to provide confidence in the system and ensure the stability of 

economic processes. 

Electoral processes have very particular characteristics because they occur within complex 

social systems, and this should be taken into account when analysing and modelling them. At any 

moment of time, there are numerous explicit and hidden social and economic factors influencing the 

dynamics of voters’ preferences. These factors are often conflicting, and may strengthen or weaken 

one another. The net effect is that at the micro level, everyone makes their own decisions based on 

their individual goals and expectations. However, history (personal, group and society-wide) and 

interaction with others are recognised by political analysts as crucial to understanding the 

development of swings in electoral preference. Powerful as “big data” tracking may be, there are 

limits to the acceptability of tracking an individual’s political stance and the content of discussions 

they may have with others during a campaign. 

That is why, in the authors’ view, considering electoral dynamics at a statistical level, i.e., not 

considering one person, but millions and tens of millions of people, means that we can describe these 

dynamics using the language of “big data in probability theory”. Adding multiple divergent 

“movements” of people forms a flow that can define the direction of the electoral process. The action 

of one individual can be considered random, but the sum of these movements as a whole becomes a 

trend. We emphasise again that if we do not look at the process on a “big numbers” level, then it is 

clear that the “movement” of each individual is caused by certain circumstances. The divergent 

directions of these “movements” nonetheless lead to statistical averaging on the macro level.  

On the macro level, the state of the complex social system in which the electoral process takes 

place is expressed as the proportion of voters ready to endorse a particular candidate or party at a 

certain moment in time. On the micro level, voters can change their preferences when influenced by 

obvious or hidden social and economic factors. Revealing those factors is a sophisticated, and time-

consuming, sociological task that involves preparing surveys, building a representative sample, 

analysing results, etc. The various respondents may be influenced by different factors that are difficult 

to capture when preparing a sociological survey, but – for psephological purposes – the macro 
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phenomenon of changes in the proportion of voters in the respective “camps” is the dependent 

variable and predicting it is the criterion of success in discovering relevant factors. This necessitates 

a sociological approach, although it should be noted that any attempt to provide valuable insights and 

explanations may find that additional – unresearched – factors are needed to offer a complete 

explanation.  

At the same time, on the macro level, changes in electoral preferences are reflected through 

measures such as opinion polls that can be followed in real time. The resulting time series can be 

analysed and used to model behaviour. This offers an obvious practical technological advantage 

compared to sociological survey approaches. The task in hand can be compared to modelling the 

behaviour of stock and raw material markets in which multiple divergent factors operate, and where 

their totality defines the direction of changes. 

In the authors’ view, developing new models designed to forecast the dynamics of electoral 

processes based on statistical macro approaches and probability theory methods could be useful for 

the wider circle of economics and sociology scientists.  

In our paper, we consider statistical data relating to the 2016 US presidential election 

campaign. It is important to note that this dataset was selected because it is publicly available and of 

high quality. Using this data as a validation set, we attempted to develop a generalised model that 

accounts for self-organisation within the system and memory with respect to its previous states. The 

model is potentially universal and applicable to any electoral process.  

Social systems are very different from technical ones due to the active influence of the human 

factor. The human factor introduces uncertainty regarding the effects of ongoing influences on 

systems, which in turn creates stochastic behaviour and can also be reflected in self-organising effects 

in systems. We also need to take into account the potential for memory regarding previous states of 

the system, and the previous influences it has been exposed to. As a result, the dynamics of processes 

are significantly non-linear in nature. 

To model the dynamics of self-organising social systems with memory, we need to apply the 

methods and resources of theoretical computer science and cybernetics, in particular the science of 

controlling both technical and biological (social) systems as defined by Norbert Wiener (1914, 1954). 

Using the common principles and methods of theoretical computer science to model technical and 

informational systems will arguably enable us to obtain high-quality results for modelling social, 

economic and socio-technical systems.  

This paper describes the results of our research into the stochastic dynamics of self-organising 

systems with memory, based on the example of describing electoral campaigns. The goals of the 

research are: a) to conduct statistical analyses of electoral processes and reveal the role of self-

organisation and memory in the mechanisms of electoral shifts, and b) by analysing electoral 

campaigns, to create a quantitative model that describes the essentially non-linear dependency 

between the campaign’s impact on voters and shifts in their preferences. 

We adopted the following approach in our study. We examined accurate data for a social 

process (the development of voter preferences during an electoral campaign), which we then 

processed to obtain histograms and statistical characteristics of the parameters of observed shifts and 

their dependencies. Based on this analysis, and accounting for these specific characteristics, we then 

developed a dynamic model for the social process observed. By studying the dynamics of the electoral 

process as a social process, we address both statistical analysis and the modelling of stochastic 

processes. 

Forecasting electoral campaign results is very important in terms of overcoming social 

uncertainty, which has a significant influence on the economy. The proposed model develops an 

algorithm for electoral campaign forecasting and decision-making. The algorithm is described in 

Section 6, “An algorithm for forecasting electoral campaign results and decision-making”. Election 

forecasts can influence numerous important economic processes. First, forecasting a candidate’s 

victory allows investors to make long-term decisions about investing in various sectors of the 

economy based on the political and economic views of the candidates or parties participating in the 

elections. Secondly, if the victory (or defeat) of a candidate or party no longer carries a risk of 
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surprise, this will have a positive effect on stock index dynamics (there will be no sharp jumps in 

prices, no sudden defaults, etc). Thirdly, forecasting political trends will have a positive effect on 

countries’ opportunities to issue bonds and attract financing at lower interest rates.  

To clarify our research scope, we note that this paper does not attempt to explore social 

behaviour or the reasons behind voting intention. It instead provides a framework for systematically 

representing (modelling) the development of voting intention. 

We demonstrate the superiority of our approach, taking into account memory and self-

organisation, when choosing a mathematical representation of how an electoral process develops. A 

trivial representation, for example, would be a “straight line” from the initial level of support to the 

final level. More sophisticated representations arise when non-linearity is observed in polls during a 

campaign. The mathematical techniques for representing the transition from one level to the next 

assume that this transition is not a series of straight-line jumps from one value to the next, i.e., it is 

not a jagged line. Instead, they assume that there is a process of development that is best shown by a 

curvilinear representation. Theoretically, there are many mathematical representations that might 

match the fluctuation patterns observed. The choice of model has, in the past, been guided by an 

interpretation that considers the fluctuations to be the result of influences working discretely on each 

individual, and possibly by simple transmission from individual to individual. Such approaches 

succeed in producing mathematical representations in which the transition from one observed level 

to the next is a smooth curve. However, they are far from successful in representing the whole series 

of observations throughout a campaign. The starting point of our work is the insight that problems 

with existing mathematical formulations arise – at least in part – because there is more at work in an 

electorate than simple discrete influences and one-off transmissions from one individual to another. 

We therefore focus on a mathematical approach that is appropriate to self-organising networks with 

memory, and investigate whether it provides a better tool for representing the non-linear nature of 

preference development in an electorate. Since the representation is intended to have general 

application and to retain its congruence with more general network modelling, we do not seek to 

explore or explain the nature of the influences that are at work. We do, however, demonstrate that this 

modelling approach can be used to achieve a mapping onto real-life data that is superior to the results 

generated using other methods, and that this mapping allows the influences on voter sentiment to be 

represented by parameters. The factors that play a role in social situations are by nature complex and 

varied, so we accept that representing them in the form of single positive and negative parameters is 

a simplification. All modelling, however, is a process of simplification, and models can only be useful 

and understandable if they show what is modelled in terms of some independently derived formula, 

pattern or process.  

We hope that this paper provides people studying electoral processes with a mathematical 

formulation that allows them to look at data differently and highlight where to seek causes and how 

to track the evolution of voting intentions. 

We start with an overview of existing research into the analysis and modelling of social 

processes and electoral processes in particular (Section 2). In Section 3, we present the data selected 

for our modelling (data on the 2016 US presidential election campaign) and describe the algorithm 

that will be used to analyse the data. In Section 4, we analyse the data, laying the foundations for our 

new model on the dynamics of electoral processes. Our proposed model of the stochastic dynamics 

of states in a self-organising social system with the potential for memory is discussed in detail in 

Section 5. First, we develop probabilistic difference schemas of transitions between states (Section 

5.1); secondly, after formulating and solving the boundary value problem, we obtain the primary 

equation of the model (Section 5.2); finally, in Section 5.3, we present the modelling results and 

explain our new model of voter preference shifts, taking into account self-organisation and memory. 

In Section 6, we propose an algorithm for forecasting electoral campaign results that can be used to 

assist decision-making. The paper closes with our conclusions. 
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2. An overview of existing research on the analysis and modelling of social processes 

Social processes are characterised by complex mechanisms and stochastic behaviour, where 

multiple, different states depend on the effects of participants interacting with one another (Easley et 

al., 2010; Karsai et al., 2014; Centola and Macy, 2007; Andrianova et al., 2020). The theoretical 

approach used to describe such social systems has a lot in common with the kinetic description of 

physical systems (Barrat et al., 2008; Watts, 2002; Gleeson and Cahalane, 2007), which helps greatly 

in understanding their behaviour. For example, kinetic models using threshold mechanisms primarily 

consider cascade or chain phenomena. These models consider a social system or a network (nodes) 

in which a macroscopic share of users who have the same specific status emerges rapidly from a 

specific microscopic state through the capture of many new nodes. This approach was created in early 

theories (Granovetter and Soong, 1983) and is described in detail in the global cascades model (Watts, 

2002). The significance of this model is indisputable (Watts, 2002; Gleeson, 2013; Gleeson, 2011; 

Yağan and Gligor, 2012; Nematzadeh et al., 2014; Singh et al., 2013; Piedrahita et al., 2013), however 

observations of real processes in social networks show its limitations. In particular, the model focuses 

on instantaneous global cascades initiated by single local disturbances, despite the fact that threshold 

mechanisms in social systems may actually be more significant in some cases. Furthermore, the state 

of nodes may depend on external impulses coming from mass media or advertisements (Kocsis and 

Kun, 2011) and on the stochastic component of processes. 

In some cases, in order to describe processes in social networks, stochastic approaches are 

used to consider the dependencies of states on time (Airoldi et al., 2008; Zhukov et al., 2017; 

Khvatova et al., 2017; Zhukov et al., 2020). For example, Airoldi et al. (2008) discuss the mixed-

membership model in stochastically formed groups. Their model aims to explain pairwise changes 

such as the presence or absence of links among pairs of objects. The analysis of probabilistic changes 

among the pairs of objects requires special assumptions such as independence and the variability of 

the link (of mixed membership in stochastically formed groups). The model makes specific 

assumptions in order to track the dynamics of changes in the number of members in the emerging 

groups and the clustering of members by groups. 

Previous research (Khvatova et al., 2017; Khvatova et al., 2016; Zhukov et al., 2018; Zhukov 

et al., 2021) has explored group social processes using percolation theory, which takes the network 

structure into account. The authors consider the influence of the average number of links per node in 

a social network on its percolation threshold (network conductivity in general) and the dynamics of 

its development.  

The theory of multi-antenna systems can be used to model voter behaviour. Based on 

transition rules, agents take specific states, form a group of members who are linked by the properties 

of the group, and cooperate to solve tasks or reach a specific goal (Plikynas et al., 2015). In this 

model, the behaviour of agents, for example, or changes in voter preferences, can depend on 

dynamically changing conditions (Hay and Flynn, 2016). 

The theory of cellular automata (Sigov et al., 2017; Wang et al., 2014; Li et al., 2013) can be 

applied to describe electoral processes and voter preferences. In Wang et al. (2014), the behaviour of 

the social system depends on the properties of the external environment and behaviour structure as 

described by four parameters: diversity, coherence, mutual dependency and adaptability. When 

mutual dependency and adaptability are increased, agents’ behaviour becomes more organised and 

targeted. 

Li et al. (2013) use cellular automata to model the evolutionary dynamics of social networks, 

studying the stochastic characteristics of clustering processes (partition into poorly connected 

groups), such as the degree of partition. Three factors necessary for building a social network are 

explored: selfishness, mutuality and altruism. The effects of these factors on network growth are also 

analysed. 

It should be noted that most campaign research on social processes in elections is dedicated 

to important but very specific aspects (party manifestos, candidate performance, etc.). For example, 
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Bonica et al. (2014) describe the change in voter preferences (polarisation of views) among medical 

doctors in the US during the Federal Election campaigns from 1991 through to 2012, and how these 

physicians’ financial contributions to the Republicans and Democrats correlated with both their 

gender and medical specialisation. The general conclusion provided by the authors (Bonica et al., 

2014) was that between 1991 and 2012, the political preferences of American doctors shifted from 

Republican to Democrat. However, the reasons for this shift were not investigated. 

Another important strand of research relates to how the information space (TV, newspapers, 

internet, social networks, etc.) fundamentally affects electoral preferences. Mundim (2012), for 

example, studied the influence of the mass media on voter preferences during the 2002 and 2006 

Brazilian presidential elections. That research explored the following factors: the general party 

propaganda of each candidate, the time candidates spent making open public speeches and coverage 

of candidates’ activities by news outlets. Mundim concluded that party propaganda and candidate 

speeches had a greater impact on election results in Brazil than media coverage.  

An overview of voter preference models is presented in the works of Dewan and Shepsle 

(2011), in which two classes of models are discussed: a) models in which elections are analysed by 

aggregating preferences, and b) models in which elections are analysed using information aggregation 

mechanisms. The models in the first category (a) usually consider general changes in the share of 

voters with certain preferences over time (i.e., they are phenomenological and do not associate the 

shifts with the reasons behind them). The models in the second category (b) consider the influence of 

the information provided about the candidates and parties on the voters during the elections (i.e., they 

partly associate the shifts with the reasons behind them). Furthermore, Dewan and Shepsle argue that 

it is important to consider the role of information asymmetry: politicians are better informed about 

politics than voters, allowing them to conceal certain actions and issues.  

Based on the literature review, it can be concluded that there is scope for further research into 

voter behaviour during electoral campaigns, particularly to understand and model the trajectories of 

changes in voter preferences as campaign influences take hold and swing support from one candidate 

or party to another. 

Our paper considers electoral campaigns as a stochastic dynamic process of transition 

between possible system states over time. The change of states (the size of changes in voter 

preferences in this case) is defined in the model by randomly-arising shifts in voter preferences, 

together with potential self-organisation within the population (regarded as a system) and the 

influence of “memory” effects.  

In the next section, we calculate the statistical characteristics of shifts in voter preferences 

(expected value and variance), including their differences when analysed across various time 

intervals, before describing our new theoretical model and comparing its analytical results with the 

actual election data observed. 

3. Selecting data for analysing social processes and deriving histograms of their statistical 

distributions  

Many different social and socio-technical processes could have been chosen as a case study 

for analysing and modelling system dynamics. However, creating and verifying the model requires a 

significant volume of real data. Our search for an appropriately rich information source showed that 

the largest statistically reliable and publicly available database currently in existence relates to 

electoral processes, notably the following resource: http://www.realclearpolitics.com/. We therefore 

chose electoral processes to analyse and develop our model. 

A further reason why we chose electoral processes for our modelling is the huge interest in 

analysing the dynamics of changes in voter preferences during pre-election campaigns and in 

examining the prediction of results. The events of 2016, notably the Brexit vote and the US elections, 

revealed weaknesses in the contemporary models used in election predictions. Most research and 

survey services predicted a victory for Hillary Clinton and predicted that the UK would vote against 

leaving the EU. So, despite being based on high-quality statistical data, polls and surveys of voter 

preferences, most forecasts turned out to be wrong. This is partially due to the high volatility of data 

http://www.realclearpolitics.com/
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obtained in polls, but the unexpected outcomes – going beyond what would be expected from random 

fluctuations and sampling errors – underline the view that existing predictive approaches are based 

on models that are unsatisfactory. With hindsight, the unexpected outcomes in both cases are seen to 

be partly related to unorthodox campaign messages and campaign-influencing policies. The models 

should have signalled the effects of these practices based on fluctuations in earlier data, but they did 

not.  

Figure 1 below presents the polling data of electoral preferences. The polling was held in the 

US over 500 days, from 1 July 2015 to 7 November 2016, during the 2016 presidential election 

campaign (RealClearPolitics, 2016). To avoid any misunderstanding, it is important to note that the 

data in Figure 1 refers to two different scales. Data for Clinton and Trump are presented on the left 

vertical axis, while data for uncommitted voters are presented on the right vertical axis. The 

particularities of the US electoral system, where the final decision is made by the Electoral College, 

are beyond the scope of the present paper. It should be noted, however, that in absolute terms, Clinton 

received several million more votes than Trump. 

Analysis of the data collected is of particular interest both for explaining the outcomes of past 

elections and for identifying potential opportunities for forecasting future election campaign 

outcomes, especially when candidates obtain very close results in voter preference polls. 

 

Fig. 1: Electoral preferences of US voters during the 2016 Presidential campaign – Trump, 

Clinton and uncommitted (undefined) voters 

 

To create and analyse a model using the dynamics of electoral processes, it is necessary to 

process the observed data and describe the primary variables, which will then lay the foundations for 

the new model. In this case, the share or percentage of voters favouring a specific candidate (voter 

preference) is the key characteristic of the process studied.  

To process the observed data and determine the probability density functions of the size of 

voter preference changes, we used the following algorithm:  

1) Select all values of recorded voter preferences for a specific time range: day, week, month, 

etc.  

2) Calculate the sizes of changes in voter preferences for various time intervals: day, week, 

month, etc.  
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3) The sets of values obtained for each of the intervals measured must be sorted in ascending 

order (from negative to positive). For each calculation interval, build distribution density histograms 

for the various values. 

4) Calculate distribution moments using histograms for each of the time intervals (average 

value, expected value, variance, etc.).  

5) Develop dependencies – determine the relationship between the distribution moments of 

voter preference shifts and the various time intervals.  

The algorithm allows us to generate a time series characterising the dynamics of voter 

preferences. The histograms of the probability density of voter preference shifts in the 2016 US 

presidential election campaign are presented in Figure 2 for different time intervals. Histograms for 

undecided voters are not shown in Figure 2 and subsequent figures, since the total number of voters 

is 100% and their data are easily calculated if voter preferences for Trump and Clinton are known.  

In Figure 2, the various observed shifts (their probabilities) are indicated on the y-axis, while 

the x-axis indicates the centres of their specific numerical ranges.  
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Fig. 2. Histograms of probability density for different shifts in voter preferences in the 2016 US 

presidential election campaign 

 

4. An analysis of the histograms of observed statistical distributions  

The 2016 US presidential electoral campaign lasted for a total of 500 days. Assuming that the 

number of the analyzed points in the time series in the most minimal case is half of that in the initial 

series, the dependencies for expected values and variances were calculated from the 1st to the 250th 

day.  

Visual analysis of the data represented in Figure 2 shows that for small time intervals (one 

day), histograms of shifts in voter preferences have a big central peak near to the zero value. The 

probability of the shifts being small in magnitude is about 0.6, while large shifts are only observed 

with low probability. When the time interval for determining voter preference shifts increases, the 

central peak decreases, the distribution width increases and the spectrum shows oscillations (this is 

especially prominent for the amplitude calculated for a time interval of 10 days, see Figure 2). This 

indicates significant complexity in the processes observed.  

We now consider the behaviour of the statistical parameters of distributions for the processes 

observed. Figure 3 provides a dependency chart showing the relationship between the expected value 

of voter preference shifts and the time intervals for which they were calculated, using the observed 

data. 
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Fig. 3. Dependence of the expected value of the amplitudes of deviations in voter preferences 

in the 2016 US presidential election campaign 

The results obtained (see Figure 3) indicate that the distribution of voter preference shifts, in 

function of the time interval observed, differs significantly from the normal distribution. In a normal 

distribution, the expected value does not depend on the time interval (it is constant or zero). In this 

case, the processes analysed are thus not entirely random.  

We now consider the behaviour of the variance of preference shift values. Figure 4 presents 

a dependency chart showing the relationship between the variance of preference shift values and the 

time interval for which they were calculated, using the observed data. 

It should be noted that under a normal distribution, their variance would have a linear 

dependency on the calculation time interval, however this is not the case (see Figure 4), meaning 

that the nature of the distribution differs significantly from the normal rule.  

We also note that there is a small degree of asymmetry and oscillation on the amplitude 

distribution histograms for various time intervals (see Figure 2), which also indicates that the 

observed processes are complex and that their statistical characteristics do not correspond to the 

normal law of distribution. This suggests that self-organisation and memory, which cause non-

linearity, may have an effect on the dynamics of the processes.  
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Fig. 4. Dependence of the variance of voter preference shift values in the 2016 US presidential 

election campaign 

5. A stochastic dynamics model of forming states in a social system, considering self-organising 

processes and the potential for memory  

By statistically processing the observed data and developing histograms of probability density 

for voter preference shifts for the time interval for which they were calculated, we were able to 

develop a theoretical model and compare the results with the observed data.  

 

5.1. Developing probabilistic difference schemas of transition between states to obtain the 

primary equation of the model 

A multitude of possible voter preference shifts for any time interval 𝑡 (a rather high value) 

will be denoted as 𝑋. We assume that the time interval 𝑡 comprises smaller parts 𝜏. In this case, any 

value of time interval 𝑡 can be represented as 𝑡ℎ  =  ℎ 𝜏, where h is the step number τ (ℎ =
0, 1, 2, 3, . . . 𝑁). The value of ℎ can be construed as discrete time, the quantum of which equals 𝜏. The 

amplitude for the selected time interval 𝑡 is designated as 𝑥ℎ: (𝑥ℎ  𝑋). The analysis of observed 

values represented in Figure 2 shows that 𝑥ℎ can take any positive or negative value. The observation 

probability of high values is significantly lower than the probability of small values.  

We propose that the amplitude 𝑥ℎ, when changing discrete time ℎ per unit, can be increased 

for a specific small value  or decreased for a specific value 𝜉 (generally, 𝜀 ≠  𝜉 can be an increasing 

or decreasing trend). This enables amplitude 𝑥ℎ for the interval of discrete time ℎ to be represented 

as sets for various 𝜉 and 𝜀 (according to the sign). Furthermore, we can assume that neither value 

𝑥ℎcan be stationary; for example, it must change when ℎ changes per unit. This is due to the fact that 

𝑥ℎ must be changed by 𝜉 or 𝜀 when ℎ changes.  

    The value of parameters ε (we call ε a trend increasing voter loyalty) and ξ (we call ξ a trend 

decreasing voter loyalty) can be influenced by many different social, economic or other factors. An 

economic factor such as rising unemployment will reduce voter loyalty; and vice versa, falling 

unemployment will improve loyalty to the current president. Social factors such as rising crime rates 

or mounting interethnic tensions connected with increased migration will lower the current president’s 

ratings. Other factors can also be influential. It is probable that the Covid-SARS pandemic had a 

significant effect on the results of 2020 US presidential elections. Donald Trump denied its danger 

for a considerable period of time, allowing his opponents to blame him for the death of a significant 

number of Americans, and this may in turn have changed the impact of criticism in general – making 

it a more potent element of the mix of factors. Parameters ε and ξ have a complex social nature and 

cannot be defined by a single factor. They result from the interaction of many different reasons, 

explicit and implicit. Nonetheless, the progress of a campaign is tracked at a holistic level. Changes 

in overall voting intention are the basis for assessing the trajectory, and extrapolations based on this 

trajectory require a model. We therefore propose a model that takes into account parameters ε and ξ 

in a way that recognises memory and self-organisation. 

The current model can be used to analyse the processes observed at the initial stage of a 

campaign (for example, its first half) and can define the parameters ε and ξ for the further forecasting 
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of results. Employing these details and our probability formulae, our model does not need to represent 

in detail the nature of all the factors that can affect parameters ε and ξ.  

We will now calculate the probability 𝑃(𝑥, ℎ) that the amplitude of shifts in voter preferences 

for a specific interval of discrete time ℎ will be equal to 𝑥. We state that:  

- 𝑃 (𝑥– 𝜀, ℎ– 1) is the probability that the amplitude equals (𝑥– 𝜀) for some (ℎ– 1); 
- 𝑃 (𝑥 + 𝜉, ℎ– 1) is the probability that the amplitude equals (𝑥 + 𝜉) for some (ℎ– 1);  
- 𝑃 (𝑥, ℎ– 1) is the probability that the amplitude equals 𝑥 for some (ℎ– 1). 

The probability 𝑃(𝑥, ℎ) that the amplitude of shifts in voter preferences for the interval of 

discrete time ℎ will be 𝑥 (see Fig. 5) can be determined as follows: 

 
Fig. 5. Schema of transitions between the amplitudes in function of the change in the value of h 

per unit (Zhukov, Khvatova and Zaltcman, 2017; Zhukov et al., 2020) 

𝑃(𝑥, ℎ) = 𝑃(𝑥– 𝜀, ℎ– 1) + 𝑃(𝑥 + 𝜉, ℎ– 1)–𝑃(𝑥, ℎ– 1)       (1) 

The human factor introduces uncertainty into the effect on processes and creates stochastic 

behaviour. It also creates opportunities for self-organisation and defines the availability of memory 

of previous actions. The proposed model must therefore take this into account. In order to consider 

memory, we define probabilities 𝑃(𝑥– 𝜀, ℎ), 𝑃(𝑥 + 𝜉, ℎ) and 𝑃(𝑥, ℎ) based on the states in the 

previous step ℎ– 1. Diagrams of the respective transitions can be depicted in a similar way to the 

diagram presented in Figure 5. Knowing that  and  are constant values, we obtain the following 

algebraic equation for transition probability:  

𝑃(𝑥, ℎ + 2) = {𝑃(𝑥 − 2𝜀, ℎ) + 𝑃(𝑥 − 𝜀 + 𝜉, ℎ)–𝑃(𝑥 − 𝜀, ℎ)} + {𝑃(𝑥 + 𝜉 − 𝜀, ℎ) +  

+ 𝑃(𝑥 + 𝜉, ℎ) − 𝑃(𝑥 + 𝜉, ℎ)} − 𝑃(𝑥 − 𝜀, ℎ) − 𝑃(𝑥 + 𝜉, ℎ − 1) + 𝑃(𝑥, ℎ)  (2) 

Given that 𝑡 = ℎ · 𝜏, where t is the process time, ℎ is the step number and τ is the length of a 

single step, we move from h to t and then undertake respective dissolutions of the Taylor series to 

obtain the following: 
𝑑𝑃(𝑥,𝑡)

𝑑𝑡
= 𝑎

𝑑2𝑃(𝑥,𝑡)

𝑑𝑥2
− 𝑏

𝑑𝑃(𝑥,𝑡)

𝑑𝑥
− 𝑐

𝑑2𝑃(𝑥,𝑡)

𝑑𝑡2
 ,       (3) 

Where 𝑎 =
𝜀2−𝜀𝜉+𝜉2

τ
;  𝑏 =

𝜀−𝜉

τ
;  𝑐 = τ  

Equation factor 
dP(x,t)

dx
 describes an organised transition to the another state where voter loyalty 

is increased (𝜀 > 𝜉) or decreased (𝜀 < 𝜉) (voters’ activities not caused by random factors). Equation 

factor 
𝑑2𝑃(𝑥,𝑡)

𝑑𝑥2
 describes a random change of state (uncertainty of change). Equation factor 

𝑑𝑃(𝑥,𝑡)

𝑑𝑡
 can 

be defined as the speed of total change of the system state over time. Equation factor 
𝑑2𝑃(𝑥,𝑡)

𝑑𝑡2
 describes 

the process whereby states become sources of other states (self-organisation and acceleration of both 

organised (
𝑑𝑃(𝑥,𝑡)

𝑑𝑥
) and random (

𝑑2𝑃(𝑥,𝑡)

𝑑𝑥2
) processes).  

As discussed above, the dynamics of social processes (for example, elections) are very 

complex in nature and are influenced by numerous social and economic factors. In addition, there is 

always a possibility that other, essentially unpredictable, factors may evolve. For example, it would 

be possible to hypothesise that the Covid-SARS pandemic had a significant impact on the results of 

the 2020 US presidential election campaign. The result of a campaign ultimately depends on a 
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combination of factors, many of which are hidden and impossible to observe. It is therefore important 

to search for new approaches to analyse and model processes in complex social systems. The novelty 

of our model is seen in our innovative mathematical approach, which allows us to take into account 

memory and the potential for self-organisation while describing the processes occurring in complex 

social systems in a purely statistical manner. The newly developed model thus adds value to the 

development of the theory of analysing and modelling complex systems. It is important to note that 

this new model does not contradict pre-existing models. It instead enhances them by considering self-

organising processes and the memory of previous states.  

In our model, a “shock” appears because of self-organisation and the system’s memory of 

previous states. Such shocks are not shocks caused by economic, social and mass media influences. 

Our model instead provides a mathematically coherent picture of how shocks may arise in the 

progression an electorate’s views from one level to another – independently of any external 

influences. However, the approach we are using to describe complex processes also allows us to 

consider the “shocks” caused by economic, social and mass media factors. In particular, to account 

for the effect of the external influence of the news on electoral processes, Equation (3) needs to be 

enriched by one factor, in order to account for such an influence. This factor can be presented in the 

equation as follows: Σki•δ(t-ti)P(x,t), where δ(t-ti) are delta functions, taking a value of 1 at times ti 

when i-events begin to occur (and 0 at other times), and ki are certain numeric coefficients that are 

positive when an i-event creates a positive trend and negative otherwise. In the theoretical approaches 

described above, the appearance of a “shock” is not modelled by a probability distribution; whereas 

in the new model, a “shock” is considered to be one state of a complex system that can be caused by 

its potential for self-organisation and memory of previous states.  

 

5.2. Formulating and solving the boundary value problem – finding the distribution function 

for the amplitude of voter preference shifts 

If we consider the function 𝑃(𝑥, 𝑡) to be continuous, we can go from the probability 𝑃(𝑥, 𝑡) 

(Equation 5) to the probability density 𝜌(𝑥, 𝑡) =
𝑑𝑃(𝑥,𝑡)

𝑑𝑥
 and formulate the boundary value problem in 

order to find the distribution function for various amplitudes of voter preference shifts for an arbitrary 

time interval t.  

Boundary conditions for possible amplitudes of voter preference shifts are selected based on 

the following assumptions. Our analysis of the statistical data shows that the probabilities of 

observing high deviation amplitudes (several percent decrease or increase) in voter preferences are 

extremely small within the time intervals studied. We can therefore assume that the density function 

of the amplitude probability must rapidly decrease and become zero for high values, meaning that the 

limit conditions can be set as follows: 

𝜌(𝑥, 𝑡)𝑥=∞ = 0        (a) 

𝜌(𝑥, 𝑡)𝑥=−∞ = 0       (b) 

We set the first initial condition as a delta function based on the fact that for the time interval 

𝑡 = 0, the amplitude of 𝑥𝑜 = 0 is only possible when:  

𝜌(𝑥, 𝑡)|𝑡=0 = 𝛿(𝑥 − 0) = {
∫ 𝛿(𝑥 − 0)𝑑𝑥 = 1, 𝑥 = 0
0,                                 𝑥 ≠ 0

    (c) 

We must then set the second initial condition: 
𝜕𝜌(𝑥,𝑡)

𝜕𝑡
|
𝑡=0

. This is the condition that sets the 

change speed of probability density for any value of amplitude.  

During an electoral campaign, there are various types of voters whose behaviour will define 

some amplitude of change in preferences. Summing up the various types of voters can cause some 

amplitudes to strengthen while others weaken. This can be influenced by coherence (concordance) in 

the actions of the campaign candidates. Finally, this may cause periodicity for some amplitude values, 

e.g., waves. The value of 
𝜕𝜌(𝑥,𝑡)

𝜕𝑡
 is the speed of change of function 𝜌(𝑥, 𝑡) and can be stated as follows:  
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𝜕𝜌(𝑥, 𝑡)

𝜕𝑡
= lim

∆𝑡→𝜏

𝜌(𝑥 + ∆𝑥, 𝑡 + ∆𝑡) − 𝜌(𝑥, 𝑡)

∆𝑡
 

Given that ∆t→τ (according to the conditions of processes), we set the second initial condition as 

follows:  

𝜕𝜌(𝑥, 𝑡)

𝜕𝑡
|
𝑡=0

= lim
∆𝑡→𝜏

𝜌(𝑥 + ∆𝑥, 𝑡 + ∆𝑡) − 𝜌(𝑥, 𝑡)

∆𝑡
|
𝑡=0

=
𝜌(𝑥 + ∆𝑥, 0 + 𝜏) − 𝜌(𝑥, 0)

𝜏

=
𝜌(𝑥 + ∆𝑥, 0 + 𝜏) − 𝛿(𝑥 − 0)

𝜏
= 

=
1

𝜏
∙ 𝜓(𝑥) ∙ 𝛿(𝑥 − 𝑦), 

where 𝜓(𝑥) are periodic functions (for example 𝜓(𝑥) = {
𝑐𝑜𝑠 {2𝜋

𝑥

𝜆
}

𝑠𝑖𝑛 {2𝜋
𝑥

𝜆
}
) that can be defined when 

analysing the observed data and specifying the model. Function 𝛿(𝑥 − 𝑦) is related to the fact that 

the numerator of the fraction contains 𝛿(𝑥 − 0), while also considering that for each point 𝑥 there is 

an individual value 𝜓(𝑥) (𝑦 acts as the current value of 𝑥).  

Solving the boundary problem for equation (3) using conditions (a), (b), (c) and the periodic 

second initial condition (for 
𝜕𝜌(𝑥,𝑡)

𝜕𝑡
|
𝑡=0

) enables us to obtain the following dependency for the function 

of the density of voter preference probability deviation amplitude for the time interval:  

𝜌(𝑥, 𝑡) =
𝜏∙𝒰(𝑡−𝑘)∙𝑒

(𝜀−𝜉)𝑥

2(𝜀2−𝜀𝜉+𝜉2)∙𝑒
− 
𝑡
2𝜏

2√𝜀2−𝜀𝜉+𝜉2

{
 

 1
𝜏
{
1

2
+ 𝜓(𝑥)}∑

{𝜔2 {𝑡2−𝑘2}}
𝑛

4𝑛∙(𝑛!)2
∞
𝑛=0 +

+
𝑡

𝑡2−𝑘2
∑

2𝑛∙{𝜔2 {𝑡2−𝑘2}}
𝑛

4𝑛∙(𝑛!)2
∞
𝑛=0 }

 

 

    (4) 

where 𝜔 = √
𝜀𝜉

4𝜏2(𝜀2−𝜀𝜉+𝜉2)
; 𝑘 =

|𝑥|𝜏

√𝜀2−𝜀𝜉+𝜉2
; 𝜓(𝑥) = {

𝑐𝑜𝑠 {2𝜋
𝑥

𝜆
}

𝑠𝑖𝑛 {2𝜋
𝑥

𝜆
}
 – periodic functions; 𝒰(𝑡 − 𝑘) - 

Heaviside step function. 

𝒰(𝑡 − 𝑘) = {

0,   𝑖𝑓 𝑡 < 𝑘
1

2
,   𝑖𝑓 𝑡 = 𝑘

1,   𝑖𝑓 𝑡 > 𝑘

 

Value 𝜆 in the periodic function 𝜓(𝑥) expresses the wavelength of the oscillation process. 

When there are no oscillations, 𝜓(𝑥) = 0. Wavelength 𝜆 is linked to model parameters 𝜀 and 𝜉. 

Equation (4) belongs to wave-type equations describing wave processes. Using the properties of the 

Heaviside function 𝒰(𝑡 − 𝑘) for 𝑡˂𝑘, a conclusion can be drawn whereby 𝑘 =
|𝑥|𝜏

√𝜀2−𝜀𝜉+𝜉2
 means that 

the wave process propagation is delayed to the time 𝑘 (k is the delay time for the process) (𝑘 =
|𝑥|

𝑉0
, 

where 𝑉0 =
√𝜀2−𝜀𝜉+𝜉2

𝜏
=

𝜆

𝜏
 is the speed of wave process propagation; 𝜆 = √𝜀2 − 𝜀𝜉 + 𝜉2 is the wave 

length).  

When there are no oscillations, 𝜓(𝑥, 𝜆) = 0. This corresponds to the condition where there is 

zero speed of density change in the probability of any amplitude at the initial point in time.  

We note that the normalisation condition is fulfilled for the function of  
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𝜌(𝑥, 𝑡): ∫ 𝜌(𝑥, 𝑡)𝑑𝑥 = 1
+∞

−∞
.  

As mentioned earlier, we can account for social and economic factors, which can cause a sharp 

change in the trend of social process development (a “shock”), by describing the key media events 

that may influence those factors. First, we need to select the media events published on a date ti and 

enhance Equation (3) using the following factor: Σki•δ(t-ti)P(x,t). Next, we need to resolve the 

corresponding boundary value problem and obtain the corresponding probability density functions of 

transitioning from one state to another. Finally, the solution obtained should be analysed and matched 

to the real influence of news events on the processes observed.  

5.3. Analysis of the model considering the influence of self-organising processes and memory 

on the amplitude of vote preference shifts  

Figure 6 presents the modelling results obtained for the dependencies of the amplitude 

probability density deviations for the time interval considered for various sets of parameters 𝜀 and 𝜉 

using Equation (4).  

Where ε = ξ = 4,5; τ = 0.7; 

1: curve at t = 1.0; 

 2: curve at t = 4.0. 

 

 

Where ε = 4,0; ξ = 2,5; τ = 0.7;  

1: curve at t = 1.0; 

 2: curve at t = 5.00;  

3: curve at t = 15.0. 

Fig. 6. Dependencies of the amplitude probability densities on the time period of their 

calculation for the electoral preferences model, taking into account self-organisation, memory 

and oscillation 

When we increase the wavelength 𝜆 = √𝜀2 − 𝜀𝜉 + 𝜉2, the number of oscillations on charts of 

deviation for the amplitude probability density of voter preferences decreases, and when we decrease 

the wavelength, this number increases. With increasing time intervals, the width and number of 

oscillations grows, and the distribution height falls.  

For 𝜀 > 𝜉, the probability density maximum shifts to the right, and for 𝜀 ˂  𝜉 it shifts to the left. 

When the time intervals increase, the distribution height falls and the width and number of oscillations 

grow. Furthermore, distribution asymmetry is observed in relation to the maximum line.  

If 𝜓(𝑥, 𝜆) = 0, the oscillations disappear and other distribution behaviour characteristics 

continue their trend. If we select a different set of parameters 𝜉, 𝜀, 𝜏 and 𝑡, the behaviour of amplitude 

probability densities remains the same, despite the fact that numerical values and positions of 

maximums on the chart change. 

Our analysis of the distribution histograms (see Figure 2, higher values of time interval 

considered) shows oscillations and weak symmetry, and the maximum distribution density is slightly 

shifted from zero when the time interval is increased. Comparing these observations with the results of 

theoretical modelling (see Figure 6) indicates that the parameters of processes 𝜀 and 𝜉 can have close 

or equal values and that our model corresponds well with the observed data.  
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Figure 7 presents the theoretical dependency of the expected amplitude value on the time period 

considered and on the sets of parameters (𝜉 and 𝜀).  

The average values of deviation amplitude (expected value – 𝜇(𝑡)) and variance – 𝜎2(𝑡) are 

calculated using expression (4) as follows: 

𝜇(𝑡) = ∫ 𝑥 ∙ 𝜌(𝑥, 𝑡)𝑑𝑥
+∞

−∞
, 

 𝜎2(𝑡) = ∫ 𝑥2𝜌(𝑥, 𝑡)𝑑𝑥
+∞

−∞
. 

Figure 7 represents the dependencies of the expected value and variance of amplitude value on 

the time interval considered, obtained using the present model (for various sets of parameter values 𝜀 

and 𝜉). The calculations show that for 𝜀 > 𝜉, a rise in amplitudes is observed, and their values are 

within the positive area in Figure 7 (lines no. 2). For 𝜀 ˂ 𝜉, fall amplitudes are observed and their 

expected value lies within the negative area (both lines no. 1 in Figure 7). It should be noted that for 

sets of parameters with the inversion of 𝜀 and 𝜉: 𝜉 = 0.70; 𝜀 = 0.20 and 𝜏 = 0.10 and 𝜉 = 0.20; 𝜀 =
0.70 and 𝜏 = 0.10, the variance behaviour is of the same nature due to the fact that it is a squared 

quantity with no negative values.  

The position of maximums and other process characteristics depend on the selection of model 

parameter values. When the values of model parameters 𝜀 and 𝜉 are increased, the expected value of 

amplitudes decreases, and the maximum moves to the area of small-time intervals.  

For curve 1: ξ=0.70; ε=0.20 и τ=0.10 

For curve 2: ξ=0.20; ε=0.70 и τ=0.10 

For a set of parameters: ξ=0.70; ε=0.20 и 

τ=0.10 и ξ=0.20; ε=0.70 и τ=0.10

Fig. 7. Dependencies of the amplitude probability densities on the time of their calculation for 

the electoral preferences model, assuming self-organisation and memory 

The dependencies of the expected value and variance of the observed voter preference shifts on 

the time of their calculation, obtained from sociological data (see Figures 3 and 4), differ in type from 

the modelled results represented in Figure 7. However, by suggesting several processes to select voter 

preferences for each candidate with different weight coefficients α1, α2…. and several sets of 

parameters, we obtain the mathematical modelling results presented in Figure 8, which are a good 

match for the observed data. We note that the weight coefficients of each process can be different and 

vary between 0 and 1. The presence of several processes for voting preference dynamics for the same 

candidate can be caused by the existence of different groups of voters with various types of behaviour 

when selecting preferences. The values of weight coefficients for the processes discussed above can 

depend on the number of voters in each group. Such groups and the ratio of their elements (weight 

coefficients) can be defined through sociological polls.  

We consider the changes in voter preferences for Hillary Clinton as the sum of several processes 

taking place in parallel, each with its own set of parameters 𝜀 and 𝜉. For the I-th process (decrease): 

𝜉1 = 0.45; 𝜀1 = 0.15; 𝜏 = 0.1; 𝛼1 = 0.80. For the II-th process (decrease): 𝜉2 = 0.75; 𝜀2 = 0.20; 𝜏 =
0.1; 𝛼2 = 0.20. Similarly, we can represent the changes in voter preferences for Donald Trump as the 
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sum of several parallel processes. For the I-th process (increase): 𝜉1 = 0.15; 𝜀1 = 0.45; 𝜏 = 0.1; 𝛼1 =
0.65; for II-th process (increase): 𝜉2 = 0.20; 𝜀2 = 0.75; 𝜏 = 0.1; 𝛼2 = 0.15; for the III-th process 

(increase): 𝜉3 = 0.25; 𝜀3 = 0.95; 𝜏 = 0.1; 𝛼3 = 0.10; for the IV-th process (increase): 𝜉4 = 0.30; 

𝜀4 = 1.70; 𝜏 = 0.1; 𝛼4 = 0.10. Figure 8 presents the results of the theoretical modelling of the 

dependency of the expected value of voter preference shifts on the time interval observed, while Figure 

9 shows variance.  

We should note that if 𝜉 = 0.45 and 𝜀 = 0.15 in one of the processes for one of the candidates 

(or if 𝜀 and 𝜉 have other values), the values 𝜉 = 0.45 and 𝜀 = 0.15 will be inverted for the other 

candidate in the same process. This can be explained by the fact (without considering undecided voters) 

that the decrease in parameter values for one candidate will cause an increase in the parameters for the 

other (preference selection processes are related).  

Comparing our observational data (see Figures 3 and 4) with the theoretical modelling results 

(see Figures 8 and 9) shows that (with respect to modelling roughness) it is possible to select parameter 

values that produce a model that is highly compliant with the observational data.  

It is important to note that when considering two or more parallel processes of voter preference 

shifts for the same candidate, we can select sets of parameters 𝜉, 𝜀 and 𝜏 that will satisfy both the 

observed histogram of the distribution of voter preference shifts, and the dependencies of their expected 

value and variance over time. It is also possible to select numerical values for the weight coefficients 

of each process (0 to 1).  

The results obtained enable us to conclude that the model has a general capability for describing 

the dynamics as they have been observed in electoral processes and that it models characteristics of the 

systems involved in ways that can be used to provide better descriptions and possible avenues for 

predicting the results of electoral campaigns and to aid decision-making.  

 
 

 

Fig. 8. Results of theoretical modelling of the dependence of the expected value of 

voter preference shifts (for several processes with different sets of parameters) 
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Fig. 9. Results of theoretical modelling of the dependence of voter preference shifts (for 

several processes with different sets of parameters) 

 

 

6. An algorithm for forecasting electoral campaign results and decision-making 

Our proposed stochastic model of voter preference formation based on self-organising 

processes, memory and oscillations as described by Equation (4) is a significant addition to the 

modelling tools that can be used to predict results and aid decision-making and captures behaviour that 

is not well described in previous models.  

As an example of its utility, consider Figure 7. Analysis of the model shows that for the 

dependency of the expected value and variance of shifts during the time interval for which it is 

calculated, there is a section (designated as |0a| in Figure 7) where they equal zero. The length of the 

section |oa|, the quantity of extremums, their position (point b) and the situation of reaching the 

function of zero expected value (position of point c) depend on the values of parameters ξ; ε and τ. In 

the section |oa|, the expected value equals zero, meaning that with short time intervals, the electoral 

campaign is completely random and the expected quantity of preferences (with respect to the expected 

value of the shift) will remain the same as in the beginning of the section |oa|.  

After point c, the expected value also equals zero, and for long time intervals the electoral 

campaign can be also completely random. An example of the processes underpinning a trend of 

increasing dynamics in preferences is shown by curve 2 in Figure 7 for cases when growth amplitudes 

predominate. If fall amplitudes predominate, the average value of amplitudes is in the negative area 

(curve 1 in Figure 7). Determining extremum points is very important for the campaign progress and 

for decision-making, as it enables us to find the values of model parameters and predict campaign 

results through calculations. 

The overall modelling and prediction algorithm comprises the following steps:  

1) Using the data observed for a specific time period (for example, the first half of the electoral 

campaign), we can build histograms describing the dependency of voter preference shifts on the 

relevant time interval. We identify dependencies of expected value and variance.  

2) We use our model to find the values of parameters ξ and ε. For this purpose, we can use 

Equation (4) and the observed characteristics of processes (see Figures 3 and 4).  

3) The results obtained are used to calculate the values of voter preferences at the end of the 

electoral campaign. If the result does not indicate victory, we must influence the process and change 

its parameters. This can be achieved through the mass media, for example, by changing the value of 

parameter ε as desired (increasing our own value or decreasing the rival’s value). 

4) Repeat steps 1-3 to obtain the desired result.  

 

7. Conclusions  
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As stated above, our paper provides a framework for systematically representing (modelling) 

the development of levels of voting intention, a social group process. We analysed the dynamics of 

voter preferences during the 2016 US presidential election campaign and developed probability density 

diagrams for preference shifts vs. the time intervals observed. We also developed a model of stochastic 

dynamics of changing voter preferences using the real data. The model we developed takes into 

account self-organising processes and the presence of memory. It describes the main characteristics 

of the processes observed: oscillations and changes of distribution height and width when the time 

interval changes. When developing the model, we took into account probability schemes of transitions 

between possible states of social systems (the magnitude of voter preferences). We derived a second-

order non-linear differential equation, and formulated and solved the boundary task in order to identify 

the probability density function of voter preference shifts vs. the time intervals observed. The 

differential equation of the model contains a factor to take into account the self-organising potential 

and the role of memory. The potential for oscillations is determined by the initial condition.  

We trust that in time, and with further development, the model we introduce here could be used 

to analyse and forecast the evolution of election campaigns. One of the possible scenarios could, for 

example, be to use the model to analyse the first half of an election campaign and to forecast its final 

results – given a continuation of the ongoing influences. To do this, the campaign’s evolution would 

be modelled for various parameters. Then, based on the modelling results, the most favourable 

trajectory of the process could be chosen. The parameter values could be adjusted subsequently in light 

of further mass-media or electoral data. For instance, if the first half of a campaign appears to be 

heading in “the right direction” and a decision is needed whether to continue with the tactics used in 

the first half or to switch to something else, the model may give clues as to the non-linearity of the 

effects of the ongoing strategy. If the model predicts a rapid percolation effect, then sticking to the 

existing tactics may be justified even if a linear extrapolation does not lead to the desired goal. 

In the present paper, we did not examine the reasons for individual sharp shifts in electoral 

preferences. Instead, we investigated the trajectory of changes in preference levels as a result of the 

ongoing pattern of such shifts (regarded as a particular level of influence on voters), relating this to 

underlying mechanisms of social effects. We were looking to find consistent quantitative patterns and 

dependencies between the influences on the system and its reaction. Our model shows essential non-

linearity between the influence and the reaction, and most importantly, it incorporates the role of self-

organising processes and the presence of memory into the mechanisms of electoral shifts. 

We examined statistical data on the 2016 US presidential election campaign. We repeat that it 

is important to note that this dataset was selected as an example, the reason being that the data are 

publicly available and of high quality.  

It is important to note that there are other forecasting approaches that allow forecasting without 

sociological surveys specific to the event and without time series analysis. The Allan Lichtman 

“scoring model”, which was developed to forecast election results in the US (Lichtman and Keilis-

Borok, 1981), has demonstrated good results in predicting US elections. In the period 1984-2020, the 

model gave only one wrong forecast (the campaign of 2000, George Bush won). However, the model 

has rather limited applicability because it was developed based on the specific characteristics of the 

US context, and that context only. The model is based on a set of 13 political and macroeconomic 

factors: current state of the economy, charisma of candidates, their successes and failures in foreign 

policy, scandals, existence of a third candidate, absence of social unrest, etc. It was expressly developed 

for predicting the results of US election campaigns. Changes in the factors identified are clearly 

correlated with the results of elections in the United States, but without a link to an explanatory socio-

economic mechanism they cannot be considered as universally applicable to other socio-economic 

systems.  

For other social systems, a special set of criteria could no doubt be developed; however, these 

criteria can change rapidly over time, particularly in societies that are not as stable as the US. The US 

economy is characterised by stability in the sense that the victory of a certain candidate belonging to a 

certain political party does not normally provoke significant shocks. By contrast, the emerging markets 

(which are often the target of political risk assessments) frequently exhibit social systems in which 
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political dynamics are less stable and less “predictable”. We expect that our model could be used to 

work with less stress-resilient social systems, and it therefore presents a more universal instrument for 

analysing and forecasting election results.  

Our paper provides a framework for systematically representing (modelling) the development 

of levels of voting intention, and we can summarise our concluding remarks as follows: 

1. We analysed the dynamics of voter preference shifts during the 2016 US presidential election 

campaign. The data we obtained were used to build histograms of voter preference shifts calculated 

over a range of time periods.  

2. Our analysis enabled us to develop a model of stochastic dynamics of voter preference shifts 

that takes self-organising processes and the presence of “memory” into account, and that can 

accurately describe the characteristics of the processes observed (occurrence of oscillations, changes 

in distribution height and width when changing the time interval observed, etc.). In function of the 

parameters of the model and their interrelations, we showed that it is possible to describe various 

dynamics of voter preference shifts and their statistical characteristics. The model reflects the 

occurrence of oscillations and changes in distribution height and width, etc. when the time interval 

considered changes.  

3. We considered probabilistic schemes of transitions between possible states when developing 

the present model of stochastic dynamics of voter preferences. Using this approach, we derived a 

second-order non-linear differential equation and we formulated and solved the boundary value 

problem, generating probability density diagrams for voter preference shifts vs. the time intervals 

observed. The differential equation of the model contains a factor to take account of self-organisation 

and memory of previous states. The potential for oscillations is determined by the initial condition.  

4. Our stochastic model of the variance dynamics of voter preference shifts based on self-

organising processes, the presence of memory and oscillations can be developed to predict the results 

of electoral campaigns and to aid decision-making.  
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