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Capacitors are among the three fundamental passive electrical components alongside in-
ductors and resistors. They are found in nearly every electronic circuit, with the function
of storing electrical energy and filtering out unwanted components within electric sig-
nals or currents. In recent years, the usage of electronics devices has seen an exponential
growth, even to a degree that has led to component shortages. The increasing reliance on
electronics across industrial and automotive electronics, residential sectors, and consumer
devices places an emphasis on the reliability of electrical devices, in which capacitors play
a key role. In an electronic device, a failing capacitor can cause unexpected behavior or
result in a total failure of the device, which can result in a costly or dangerous situation,
especially if the said device happens to play a crucial role, e.g., in an industrial plant or
an airliner.
The multilayer ceramic capacitor (MLCC) is the most widely used capacitor type across
the electronics industry, with several trillions of units produced annually. The MLCC has
become a preferred choice both in consumer and power electronics owing to its favorable
electrical characteristics and a small yet efficient form factor. However, the design of
the MLCC has its downsides, most notably a brittle structure that is prone to mechanical
damage, such as cracks. For failures in electrical devices, capacitors have been estimated
to be the culprit in 30% of the cases, and for MLCCs over half of the failures result from
hidden cracks that are left undetected on the production line, but cause a sudden failure in
the field.
Although new MLCCs can be electrically tested before being installed onto the circuit
board, a majority of hidden damage is caused by subsequent tasks on the assembly line.
Excess thermal or physical stress from soldering or improper handling of circuit board
assemblies can cause cracks or delamination, which may not affect the electrical operation
of the component at first, but can cause premature failure in the field. Thus, such types of
damage are very challenging to be detected, especially after the electrical device has been
assembled.
This doctoral dissertation proposes a new, nondestructive technique for identifying latent
damage, such as cracks in MLCCs at the end of the assembly line. The method takes
advantage of the piezoelectric effect inherent to most MLCC designs: under electrical
excitation, the body of the MLCC starts to vibrate. By measuring the vibrational char-
acteristics of the component by using a contact sensor, hidden structural faults can be
detected. Experimental acoustic measurements are performed on hundreds of intact and
damaged MLCCs, and signal processing techniques are developed for the acoustic data.
Furthermore, the applicability of the method to assembly line use is considered by de-
veloping a machine learning classification system that can reliably discriminate faulty
components from intact ones. Methods are developed that allow the classifier system to
be trained solely on intact samples, making the method applicable in a production envi-
ronment.
Keywords: ceramic capacitors, nondestructive testing, acoustic measurements, machine
learning, one-class learning
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1 Introduction
The ongoing energy transition has resulted in an exponential growth in the market for elec-
trical and electronic devices. On the global scale of energy generation and consumption,
the role of electricity is expected to increase from the current 21% to over 50% by 2050
(IRENA, 2021). This change is reflected especially in the market for power electronics.
The purpose of power electronics is to supply the load (e.g., an electric motor) with an op-
timal flow of electrical energy (Mohan et al., 2003). This is achieved by using devices that
perform conversions between alternating current (AC) and direct current (DC), i.e., power
electronic converters. Power electronics are becoming more prominent in renewable en-
ergy production (Randoll et al., 2016) and are used for a wide range of applications across
residential, commercial, industrial, transportation, and other sectors (Mohan et al., 2003).
Power electronic converters have largely superseded older technologies based on linear
electronics, such as transformers, owing to improvements in efficiency, size, weight, and
cost (Mohan et al., 2003). Today, approximately 80% of all electricity passes through
power electronic devices, and this number is expected to ultimately reach 100% (Kumar
et al., 2020).
As modern society becomes increasingly dependent on electronics, the reliability of the
technology becomes more crucial. Abrupt failures of electronics, power electronics in
particular, cause costly repairs, downtime, and in worst cases, even life-threatening situa-
tions. For example, on-premises power failures have been listed as the leading cause for
data center outages (Lawrence and Ascierto, 2018), the cost of which can exceed $ 500
000 per hour (Ponemon Institute, 2016). On the other hand, the average failure rate for
consumer electronics has been estimated to be approximately 15% by the fourth year of
operation (Consumer Reports, 2006), with computers and laptops exceeding 30% (Con-
sumer Reports, 2011).
While an electronic device can fail for countless reasons, it has been estimated that ap-
proximately 30% of failures can be traced back to capacitors (Sood, 2013). Capacitors
are one of the three fundamental passive electronic components along with resistors and
inductors. Their function is to store electric energy in the form of an electric field, and
they are often used as fast energy storages or for filtering out unwanted components in
electric signals.
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A failing capacitor can cause damage to other components within the electronic device,
which may result in abnormal or degraded performance, or even a total failure of the
device. One way of preventing such failures is to screen the capacitors of the device
on the production line, revealing defective components before the device enters the field.
Unfortunately, not every type of fault can be detected by using the current testing methods,
which results in unexpected and costly field failures. As more and more capacitors are
being deployed in electronic systems, new quality assurance methods are needed.
In the focus of this dissertation is a type of capacitor known as the multilayer ceramic
capacitor (MLCC) and challenges associated with it, especially stress-related mechanical
damage during assembly. Such types of latent damage are especially problematic, because
often they do not initially affect the electrical properties of the capacitor, thus passing
conventional electrical quality assurance tests undetected. However, when the device is
taken to field use, the size of the fault within the capacitor can grow, resulting in an abrupt
failure of the component. As a solution, a new nondestructive quality assurance testing
method for MLCCs is introduced, capable of revealing types of latent damage that could
evade conventional electrical tests.
1.1 Multilayer Ceramic Capacitors
Multilayer ceramic capacitor (MLCC) is the most widely used capacitor type in the elec-
tronics industry, with more than 1012 units produced annually (Ho et al., 2010). The
demand for MLCCs has seen a dramatic increase over the last decade leading to short-
ages of components, with miniature capacitors being used in consumer electronics and
automotive industry, and larger ones being deployed in industrial applications and power
electronics (Zogbi, 2018; Carbone, 2018; James, 2018).
The popularity of the MLCC is due to its high capacitance per volume and favorable high-
frequency characteristics (Ko et al., 2014), combined with a monolithic, surface-mount
design. These properties are achieved by the structure of the MLCC, which consists of
stacked electrodes with a ceramic dielectric in between as shown in Fig. 1.1. The stacked
structure facilitates a high electrode surface area per volume, and the high permittivity
of the ceramic dielectric material allows for a very thin dielectric layer between the elec-
trodes, with the thickness below one micrometer (Hahn et al., 2007).
MLCCs are commonly divided into three classes based on the type of the ceramic di-
electric material (Kemet Electronics Corporation, 2020). Class I MLCCs use mainly
calcium zirconate, which gives these capacitors stable capacitance across a wide tem-
perature range, albeit with a relatively low capacitance. On the other hand, the dielectrics
in class II and the rarely used class III MLCCs are based on barium titanate (BaTiO3),
which gives the capacitors high permittivity and capacitance, but the capacitance is more
strongly dependent on temperature than in class I MLCCs. Thus, class I MLCCs are
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Figure 1.1. Schematic of the structure of an MLCC.
typically found in applications that require high temperature stability, whereas class II
MLCCs are more common for smoothing, bypass, coupling, and decoupling applications
(IEC 60384-1:2016). This doctoral dissertation focuses on class II capacitors, which of-
ten play a vital role in power electronic systems. For example, if an MLCC being used as
a bypass capacitor fails in the open circuit mode, the quality of the input voltage for the
system declines. On the other hand, a failure in the short-circuit mode results in a total
loss of input voltage.
While the use of ceramic BaTiO3 as the material for the body of class II MLCCs facilitates
high permittivity and capacitance per volume, it also makes the components vulnerable
to mechanical damage, as the brittle ceramic material can fracture under external force.
Cracks have been identified as the most prevalent failure mode in MLCCs (Teverovsky,
2018), e.g., from physical mishandling of PCB assemblies on the production line. Certain
applications also require manual soldering of MLCCs, which increases the risk of fracture
as a result of uneven thermal expansion (Teverovsky, 2018). In particular, MLCCs with
larger case sizes (1812 and up) have been shown to be vulnerable to bending-related
cracks (Keimasi et al., 2008), and material or manufacturing defects are also likely to
elevate the risk of mechanical damage (Teverovsky, 2018).
Excess thermal or mechanical stresses often result in cracks within the dielectric material,
propagating from the end terminations toward the ceramic body of the component. An-
other example of stress-induced damage is delamination between the internal electrodes
and the dielectric material, or between the capacitor body and its end terminations or
solder joints (Ahmar and Wiese, 2015). Cracks in the ceramic body can be observed in
electrical tests as a reduced capacitance, if the crack cuts off some of the internal elec-
trodes. On the other hand, smaller cracks or delaminations residing in the ceramic body
itself are more difficult to detect, because the component may display normal character-
istics in the electrical testing. However, when the device is taken to operational use, such
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faults can grow over time because of thermal and electrical stresses. This can result in a
decrease in capacitance or an open circuit if the crack cuts through all the electrodes. Fur-
thermore, in humid environments, water penetrating the capacitor body through a crack
can deteriorate the dielectric material (Wang et al., 2003). Metal migration from the end
terminations by dendritic growth can also cause the capacitor to short-circuit (Teverovsky,
2018). Similarly, oxygen vacancy migration has been observed to deteriorate the dielec-
tric material in high electrode density MLCCs, although this phenomenon is related to
the high temperature associated with the manufacturing process of the capacitor instead
of mechanical stress (Brown, 2018). Such faults can eventually lead to a malfunction or
a premature failure of the electronic device, depending on the role of the malfunctioning
capacitor.
Although the probability of a field failure of a single MLCC is extremely small, they do
frequently occur because of the sheer number of capacitors in use. As a recent example,
MLCC thermal cracking was found to be the root cause for field failures for a series of
pacemakers manufactured between 2017 and 2019. With a calculated rate of occurrence
of only 0.006%, nine failures were reported, one of which contributed to a patient death
(Medtronic, 2019). MLCCs have also been identified as the root cause of early-life failure
in applications where mechanical forces, vibration, or extreme temperature changes are
common, such as automotive electronics (Jacob, 2016), oil industry (Bescup, 2016), and
computer hardware (Wallossek, 2020).
1.2 MLCC screening methods
Screening for faulty components at the production line level is an effective way of avoid-
ing early failures of electronic devices (U.S. Department of Defense, 1988). Common
production line screening methods on MLCCs include electrical tests for capacitance and
insulation resistance, performed on procurement lots before assembly (Teverovsky, 2012).
However, over 50% of cracks in MLCCs can be traced back to the PCB assembly process
(Lambert, 2014), which will occur after the electrical tests have taken place. Moreover,
latent damage, such as cracks in the passive region of the dielectric material, can evade
conventional electrical tests, as the fault does not extend to the active area of the capacitor
body. Thus, there is a need for a nondestructive testing (NDT) method for the detection
of such latent damage in MLCCs.
Latent damage in MLCCs is a well-known problem that has been a subject of study
since the 1970s (Teverovsky, 2018). While there are common quality assurance meth-
ods, such as electrical testing, optical inspection, and noncontact ultrasound imaging,
these techniques are typically used to screen out manufacturing defects within the com-
ponents, rather than using them for assembled devices at the end of the production line
(Teverovsky, 2018). Moreover, the ability of these methods to detect internal damage
such as cracks and delamination is limited: optical inspection only reaches the surface of
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the capacitor, and the resolution of C-scan ultrasound imaging has only allowed the detec-
tion of vertically spanning faults (Teverovsky, 2018). In addition to the aforementioned
screening techniques, various approaches based on optical and acoustic measurements
have been proposed.
1.2.1 Optical methods
Different optical imaging techniques have been widely studied for MLCC quality assur-
ance purposes. For instance, Chan et al. (1995, 2000) developed a method based on laser
speckle measurement, which detects the deformation of the capacitor body caused by
Joule heating under DC tests. However, it is unclear whether the method is applicable to
defects strictly in the passive region of the component. More conventional X-ray imaging
techniques have also gained interest recently, as the accuracy of the 2D and 3D imaging
methods has increased enough to facilitate the detection of cracks (Andersson et al., 2016)
and breakdown defects within the dielectric (Ingman et al., 2019). Other methods, such
as neutron radiography (Kieran, 1981), have also been proposed in the past.
1.2.2 Acoustic methods
In addition to electrical testing and optical imaging, various acoustic techniques have been
studied for the screening task, likely the most widely used one being ultrasound imag-
ing. While this technique has traditionally been limited to larger, horizontal damages, a
newer ultrasonic microscopy technique capable of detecting vertically spanning cracks
has been developed (Adams, 2009). However, it is infeasible for production line use as
the method requires submerging the component in water, and thus, it is mainly used in
research and development. Moreover, ultrasound methods are limited to regions not cov-
ered by the metal end terminations (Teverovsky, 2018), where the cracks often originate
from. In addition to acoustic imaging, methods based on observing the mechanical and
resonance characteristics of the MLCC body have been proposed. For instance, Kahn and
Checkaneck (1983) placed MLCCs under a mechanical ram equipped with an ultrasound
transducer to observe the acoustic emissions from the cracking of the dielectric. Later,
the laser-induced vibration testing technique by Erdahl and Ume (2004, 2005) was able
to detect flex cracks in MLCCs of sizes 0603 and 0805. However, the applicability to
larger case sizes, which are more prone to flex cracks, is unknown.
Some of the screening methods proposed in the past have taken advantage of the piezo-
electric properties of BaTiO3, the dielectric material used in class II MLCCs. For exam-
ple, Bechou et al. (1996) used radio-frequency tone bursts to excite DC-biased MLCCs to
vibration and observed the subsequent decay by using electrical measurements. The me-
chanical resonance modes of the ceramic body of the capacitor could be observed as peaks
within the impedance curve of the component. Johnson et al. (2014, 2017) subjected ca-
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pacitors to AC voltage at radio frequencies and observed changes in the amplitude and
phase of the capacitor body by using an ultrasound transducer. The piezoelectric proper-
ties of BaTiO3 are also the basis of the screening method proposed in this dissertation.
1.3 Scope of the dissertation
The objective of this dissertation was to investigate whether acoustic measurement tech-
niques could be employed in screening MLCCs for structural damage in a nondestructive
manner. As a result, this dissertation presents a new, nondestructive method for screening
out latent mechanical damages in class II MLCCs. The method can be applied to soldered
capacitors at the end of a production line, where the risk of damage caused by mechanical
impacts and stress is high.
The main scientific contribution of this dissertation is the introduction of an acoustic mea-
surement technique for MLCCs, along with the development of computational methods
for identifying damaged capacitors based on acoustic emission data. Noise and artifacts
contained within the acoustic signals are identified as major challenges to the acoustic
screening technique. To this end, filtering and preprocessing techniques are developed for
acoustic measurement data. Furthermore, in order to achieve reliable, automated identi-
fication of damaged MLCCs, classification methods for acoustic data are required. As a
solution, a data pipeline consisting of feature extraction methods and a machine learning
classifier is presented. An optimization algorithm is developed for the classifier, facil-
itating training of the machine learning model using only dozens of intact MLCCs as
examples. Based on experimental data, the proposed approach is capable of identifying at
least two-thirds of damaged components, while maintaining a low 3% rate of false alarms
on intact capacitors.
In Publication I, the concept of measuring acoustic emissions from MLCCs under AC
voltage excitation with a point-contact sensor is presented. Acoustic measurements are
performed on two intact test circuit boards populated with MLCCs of various case sizes
and capacitance values. The test boards are then subjected to controlled bending to in-
flict mechanical damage to the MLCCs, and the acoustic measurements are then repeated.
The capacitor samples are inspected using X-ray imaging and cross-section microscopy
to reveal which components had suffered cracks or delamination from the bending. Cor-
relation between changes in acoustic signatures and the occurrence of damage within the
MLCCs is observed at the population level.
Publication II introduces a new method for processing the acoustic data from MLCCs.
Filtering techniques are applied to the measured acoustic waveforms to remove noise
caused by electromagnetic interference from the mesurement setup. Characteristic reso-
nance amplitudes and frequencies are then extracted as feature vectors from the denoised
waveforms, and correlation between the features and the types of damage is observed.
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A binary support vector machine is then fitted to data from damaged and bent-but-not-
damaged MLCCs to demonstrate algorithmic detection of mechanical damage in the com-
ponents.
In Publication III, the data preprocessing pipeline is improved by extracting the phase
information from the acoustic waveforms, and new numerical features are extracted from
the amplitude and phase responses. The identification of damaged MLCCs is approached
as a one-class learning problem, and the classification task is performed using the one-
class support vector machine. A new algorithm for optimizing the hyperparameters of the
OSVM is presented, and the effectiveness of the algorithm is evaluated on several com-
monly used benchmark datasets. Lastly, detection of damaged MLCCs is demonstrated
using the combination of the OSVM and the proposed optimization algorithm, and the
role of the features extracted from the acoustic data is evaluated.
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2 Research methods
The starting point of this study was to investigate the use of acoustic testing methods
for detecting latent mechanical damage in MLCC-type ceramic capacitors. The research
started as a spin-off of an ABB quality assurance project called Beyond Burn-in, which
was set to investigate cracking problems observed in large MLCCs found in power elec-
tronics applications. While the capacitors can contain manufacturing defects, cracks are
often caused later on the assembly line, where the circuit board may be subjected to ther-
mal and mechanical stresses. Because existing methods, namely X-ray imaging, were
unsuitable for screening large quantities of components at the production line level, the
aim of this study was to find a simpler, alternative method that could be applied to assem-
bly line screening.
2.1 Acoustic emission testing
Acoustic emission testing has seen a wide use in many fields of engineering for applica-
tions like structural health monitoring (SHM) and nondestructive testing (NDT). Because
MLCCs are capable of generating acoustic emissions with no other external excitation
than AC voltage, it was hypothesized that the acoustic emissions generated by the capac-
itors could be used in detecting changes in the structural condition of components. Con-
sequently, the research focused on acoustic emission measurements at the early stages of
the study.
2.1.1 Acoustic emissions in MLCCs
Acoustic emissions related to class II MLCCs are well-documented in the literature.
When subjected to alternating voltage, mechanical vibrations arise within an MLCC body
as a result of the piezoelectric properties of the ceramic dielectric material, BaTiO3. Be-
low the Curie point, the atoms of a BaTiO3 molecule are arranged in a tetragonal shape,
which results in an electric dipole that can be polarized. The BaTiO3 molecules form
a crystalline structure consisting of grains under a micrometer in size (Lee and Aksay,
2001). The grains are further divided into domains where the grains share a common
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spontaneous polarization P, which relates to the dielectric constant ε of the medium as
(Lee and Aksay, 2001)
ε ≈ P
ε0+E
. (2.1)
Applying voltage over an MLCC introduces an external electric field within the dielec-
tric, causing the net polarization over the grain domains (Yang, 2005) to reverse, thereby
yielding a higher capacitance according to (2.1) (Skelly and Waugh, 2009). This also
causes displacement within the BaTiO3 molecules, resulting in deformation of the dielec-
tric, a phenomenon known as the inverse piezoelectric effect (Ousten et al., 1998). The
piezoelectric behavior of class II MLCCs is a well-known phenomenon, and capacitors
with a type X7R dielectric have even been studied for their micro-actuating properties for
applications such as scanning probe microscopes (Chen and Feng, 2014). Under AC volt-
age, the oscillatory deformation of the capacitor body can cause the circuit board under
the component to resonate at audible frequencies, producing a buzzing noise (Ahmar and
Wiese, 2015; Ko et al., 2014). However, the mechanical resonance frequencies of MLCC
bodies are far above the human hearing range, typically within hundreds of kilohertz to
over a megahertz (Levikari et al., 2018; Ko et al., 2014).
The amplitude and frequency of the mechanical resonances exhibited by an MLCC are
affected by the structural and material properties of the capacitor body. In addition, the
resonant characteristics of an MLCC body can be altered as a result of physical damage,
such as cracks or delamination. Thus, the acoustic emissions arising from the piezo-
electric properties of type II MLCCs can also convey information about the structural
condition of the capacitor. This mechanism is also the basic principle behind the acoustic
emissions testing method introduced in this dissertation.
2.2 Overview of the research methods
The research methods and results presented in this dissertation are based on acoustic
emission data empirically collected from MLCCs. As the objective was to develop an
NDT method that could be applied on an assembly line, acoustic experiments were con-
ducted on a large sample of MLCCs, comprising both pristine and damaged components
of various case sizes and capacitance values.
The acoustic experiments were conducted on capacitors soldered onto custom-built test
PCBs. The design and layout of the PCBAs facilitated simultaneous electrical monitoring
of 120 MLCCs per PCB assembly, and the PCB itself was designed such that it could be
subjected to an industry-standard bending procedure for inflicting damage to the compo-
nent samples. This design feature facilitated the collection of acoustic data from the same
individual component samples before and after subjecting the PCB to mechanical stress.
First, preliminary acoustic experiments were conducted on a small number of intact and
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damaged MLCC samples to find a suitable configuration for the measurement setup for
data acquisition in a larger scale. During these tests, it was concluded that the acous-
tic emissions from an MLCC could be obtained by placing a piezoelectric point contact
sensor directly on top of the component. A visual inspection of acoustic waveforms also
revealed dissimilarities between data from intact and damaged MLCC samples. The de-
veloped acoustic characterization process was thus deemed a suitable method for collect-
ing acoustic data from MLCCs.
Next, the study entered the full-scale data acquisition phase, during which acoustic data
were collected from hundreds of MLCC samples. The acoustic characterization process
was fully performed on several test PCB assemblies. After the characterization, two of
the PCBs were subjected to controlled bending, after which they were recharacterized.
Finally, the MLCC samples on the bent PCBs were X-ray imaged and cross-sectioned
to reveal which of the components samples had actually suffered physical damage from
the bending. The results from the X-ray and cross-section analysis were later used as
ground-truth labels for the analysis of acoustic data.
With all the data collected, the study moved on to the analysis phase. First, a population-
level study was conducted in order to reveal whether or not damaged MLCCs would sys-
tematically exhibit acoustic responses dissimilar to pristine ones. The results of the study,
also included in Publication I, confirmed that mechanical damage alters the acoustic sig-
nature of the MLCCs. Next, the relationship between different features of the acoustic
waveforms and types of damage were inspected in Publication II, and a simple machine-
based classification between damaged and undamaged MLCC samples was successfully
demonstrated. As a result, machine-learning-based classification was chosen as the pri-
mary approach for the rest of the development of the acoustic NDT method.
Based on the results from Publications I and II, two major challenges concerning the
acoustic NDT method were identified: noise in the acoustic data and the accuracy of the
ground truth labels assigned to the MLCC samples based on the results from the X-ray and
cross-section analyses. The noise in the acoustic data was found out to be electromagnetic
interference originating from the measurement setup itself. Many of the signatures in
acoustic data related to mechanical faults were of a significantly lower amplitude than the
noise component. On the other hand, labeling of the MLCC samples on the bent PCB
assemblies proved to be a challenging task, resulting in inaccuracies in the ground truth
labels.
To overcome the challenges related to measurement noise, signal preprocessing was a
key priority when analyzing the acoustic data. Various filtering techniques were devel-
oped and evaluated, with the results reported in Publication II. Another task, critical for
machine-learning-based classification, was feature engineering, i.e., extracting informa-
tion from the acoustic data so that the extracted features were relevant for the classifi-
cation task and robust to measurement noise. After evaluating several feature extraction
techniques, a functional feature set was developed and reported in Publication III.
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However, the challenges related to acquiring labeled samples for training the machine
learning classifier remained an open problem. Although the classifier was trained using
data from intact and damaged MLCCs in Publication II, the process of producing anno-
tated samples of acoustic data from damaged MLCCs was labor-intensive and inaccurate.
As a solution, the use of outlier detection methods and one-class machine learning clas-
sifiers was inspected. Although the research eventually focused on the use of one-class
machine learning models, optimizing the hyperparameters of such models to the specific
task of identifying damaged MLCCs proved challenging. After a review of various opti-
mization techniques found in the literature, a new optimization algorithm was eventually
developed and tested on publicly available data sets. The optimization algorithm was
introduced in Publication III, along with the test results on common benchmark data
sets.
Finally, the concept of acoustic-emission-based nondestructive testing was demonstrated
using a combination of techniques developed during the research project, comprising the
acoustic measurement process itself, signal denoising, feature extraction, hyperparameter
optimization, and model training. The classification results obtained using the combi-
nation of hyperparameter optimization and one-class classification were compared with
those obtained using conventional two-class machine learning models, showing perfor-
mance on a par with the conventional methods.
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3 Measurements and data preprocessing
3.1 Acoustic measurements
The results and analyses presented in Publications I, II, and III were all based on the
same experimental data, collected during the writing of the author’s Master’s thesis. The
experiments were conducted on soldered MLCCs of four case sizes and capacitance val-
ues. Publication I presents the first observations on the effects of mechanical damage on
MLCCs of different case sizes, whereas Publications II and III focus on the capacitors
with the largest case size of 2220.
The capacitors inspected in the study were from three different manufacturers and repre-
sented four different case sizes between imperial 1206 and 2220, as commonly found in
power electronics systems. Developing an NDT method for such physically large ML-
CCs is particularly relevant, as they have been shown to be significantly more prone to
bending-related damage than their smaller counterparts (Keimasi et al., 2008). A total of
360 capacitors were soldered onto three test PCBs, one labeled as type A and the other
two labeled as type B (see Tables 3.1 and 3.2), with an identical setup of MLCCs on each
PCB type. The design of the test PCBs facilitated subjecting the boards to an industry-
standard bending procedure for inflicting stress-related damage to the MLCCs (see Table
PCB 1 (intact)
PCB 2 (intact)
PCB 1 PCB 1 (bent)
Raw 
Acoustic 
Data
Pre-
processing Analysis
Figure 3.1. Overview of the acoustic measurements. Both PCBs 1 and 2 were test boards of type
B, containing MLCCs of larger case sizes than those on the type A PBCs. Capacitors from both
PCB types were included in the initial analysis, but the components on type B PCBs were chosen
for further study.
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3.3 for details). The acoustic measurements were performed twice on selected PCBs,
both before and after subjecting the test boards to the bending procedure, after which the
acoustic data were preprocessed for further analysis (see Fig. 3.1). By performing the
measurements on the same exact components before and after bending, it was ensured
that no mechanical differences between batches of capacitors or individual components
would bias the results of further analysis.
The component samples on type A PCBs were labeled as C1 through C120, and the
samples on type B PCBs were labeled as C121—C240. The capacitors were assembled
as columns of ten samples each so that the MLCCs in a given column shared an identical
capacitance, case size, voltage rating, manufacturer, orientation and termination type.
The set of test capacitors included both MLCC with normal terminations and capacitors
with flex terminations, which, according to the manufacturers, are more resilient against
bending damage. Because the components do not experience uniform stress during the
bending process, the components were assembled in three different orientations (0◦, 45◦,
and 90◦) relative to the direction of bending. A summary of the test components is given
in Table 3.4. The test PCBs and components were provided by ABB Ltd, and the PCBs
were originally assembled for the “Beyond Burn-in” project.
The first acoustic characterization was performed on intact test PCBs at Lappeenranta
University of Technology. The PCBs were then carefully packaged and mailed to ABB
Schweiz Ltd, Turgi, Switzerland, where mechanical damage was inflicted to the com-
ponents by subjecting the test PCBs to controlled bending using an industry-standard
Zwick/Roell Z010 four-point bending setup. The test circuit boards were subjected to a
bending displacement of 18 mm, while continuously monitoring the capacitors for short-
circuits. The bending strain was measured using strain gauges attached to the centerline
of the board, with strain values ranging from 5800µStr to 8000µStr, with an average
strain level of 6000µStr. Both PCBs underwent a single bending procedure, after which
the boards were removed and the components were inspected using X-ray for flex cracks
using a Phoenix Nanomex machine.
After the bending procedure and X-ray inspection, the PCBs were mailed back to Finland,
where the acoustic characterization process was repeated using the same exact measure-
ment setup as during the first characterization run. Preliminary comparisons of acoustic
data from before and after the bending procedure were performed at this point by com-
paring the envelopes of the acoustic responses (discussed in greater detail in Chapter 5).
However, based on the acoustic data, more components seemed to be affected by the
bending than what the X-ray images suggested. In particular, MLCCs of case size 2220
seemed to exhibit changes that were not explained by the X-ray inspection. This was
attributed at least partially to the limitations of X-ray imaging. To gain confirmation of
which of the components were actually damaged during the bending process, the 2220-
sized MLCCs were cross-sectioned to verify which component samples were damaged.
Although the first analysis in Publication I included each MLCC type featured on the
test PCBs (see Table 3.4), the further analysis in Publications II and III focused specif-
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Table 3.1. Details about the MLCCs on test PCB type A
MLCC nr col Size Orientation Type Producer C
C1-C10 a 1206 0◦ Normal TDK 4.7 µF
C11-C20 b 1206 0◦ Flex Kemet 4.7 µF
C21-C30 c 1206 45◦ Normal TDK 4.7 µF
C31-C40 d 1206 45◦ Flex Kemet 4.7 µF
C41-C50 e 1206 90◦ Normal TDK 4.7 µF
C51-C60 f 1206 90◦ Flex Kemet 4.7 µF
C61-C70 g 1210 0◦ Normal TDK 10 µF
C71-C80 h 1210 0◦ Flex Kemet 10 µF
C81-C90 i 1210 45◦ Normal TDK 10 µF
C91-C100 j 1210 45◦ Flex Kemet 10 µF
C101-C110 k 1210 90◦ Normal TDK 10 µF
C111-C120 l 1210 90◦ Flex Kemet 10 µF
Table 3.2. Details about the MLCCs on test PCB type B
MLCC nr col Size Orientation Type Producer C
C121-C130 a 1812 0◦ Normal TDK 22 µF
C131-C140 b 1210 0◦ Flex AVX 10 µF
C141-C150 c 1812 45◦ Normal TDK 22 µF
C151-C160 d 1210 45◦ Flex AVX 10 µF
C161-C170 e 1812 90◦ Normal TDK 22 µF
C171-C180 f 1210 90◦ Flex AVX 10 µF
C181-C190 g 2220 0◦ Normal TDK 22 µF
C191-C200 h 2220 0◦ Flex Kemet 22 µF
C201-C210 i 2220 45◦ Normal TDK 22 µF
C211-C220 j 2220 45◦ Flex Kemet 22 µF
C221-C230 k 2220 90◦ Normal TDK 22 µF
C231-C240 l 2220 90◦ Flex Kemet 22 µF
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Table 3.3. Test board specifications
Material FR-4
Dimensions 39.0cm by 30.4cm
Thickness 1.55mm
Copper layers 2
Coatings None
Solder SAC: 96.5Sn-3.0Ag-0.5Cu
Table 3.4. Overview of the MLCCs assembled on the test boards
Size Type Producer Code number Series V rating C
1206 Normal TDK C2316X7R1E475K160AC C-series 24 V 4.7 µF
1206 Flex Kemet C1206X475K3RACAUTO FT caps 24 V 4.7 µF
1210 Normal TDK C3225X7R1E106M250AC C-series 24 V 10 µF
1210 Flex AVX 12103C106M4Z2A Flexiterm 24 V 10 µF
1210 Flex Kemet C1210X106M3RACTU FT caps 24 V 10 µF
1812 Normal TDK C5432X7R1E226M250KC C-series 24 V 22 µF
2220 Normal TDK C5750X7R1E226M250KA C-series 24 V 22 µF
2220 Flex Kemet C2220X226K3RACAUTO FT caps 24 V 22 µF
ically on 2220-sized MLCCs. The shift in the focus of the research was due to several
reasons, the most prominent one being that smaller case sizes are less likely to get dam-
aged by PCB bending (Keimasi et al., 2008). Similar observations were also made during
the acoustic experiments. After subjecting the test PCBs to 6000µStr bending strain,
the X-ray analysis revealed cracks in only one out of 60 MLCCs of the 1206 case size.
The 1210-sized components were also resilient to bending strain, with the X-ray showing
damage in two out of 90 component samples, and the subsequent cross-sectioning reveal-
ing six additional damaged samples. On the other hand, the 1812-sized components were
damaged in greater numbers, with clearly observable flex cracks present during the X-ray
analysis in 20 out of 30 component samples. The cracks also caused notable changes
to the acoustic response of the components. While only five out of 60 samples of the
2220 size showed cracks in the X-ray inspection, the subsequent cross-section inspection
revealed additional 32 damaged samples.
3.2 Acoustic characterization process and instrumenta-
tion
The acoustic measurements, which formed the basis of Publications I, II, and III, were
conducted on MLCC samples soldered onto test PCBs, which were attached to a custom-
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Table 3.5. Equipment used for Acoustic Emission measurements
Device Make and model
Signal generator Agilent 33250A
Point contact sensor KRN Services KRNBB-PC
Preamplifier KRN Services AMP-1BB-J
Oscilloscope Keysight InfiniiVision MSO-X 4104A
built fixture. The measurements were performed by applying electrical excitation to the
component under test, and resulting acoustic waveforms were measured using a piezo-
electric point contact sensor. The sensor was housed in a 3D-printed fixture, and addi-
tional weights were attached to the sensor in order to provide repeatable sensor placement
and downward force. The test setup (see Fig. 3.2) was assembled in an anechoic chamber
to minimize the effect of any external sounds or other mechanical vibrations. A circuit
diagram of the measurement setup is shown in Fig. 3.3, with the measurement equipment
listed in Table 3.5.
Figure 3.2. Acoustic measurement setup.
The MLCC samples were acoustically characterized one by one. During the acoustic
characterization process, the component under test was subjected to a pulsed voltage
waveform with a linearly increasing frequency, causing the MLCC body to vibrate me-
chanically. The vibrations were captured using a point contact sensor, and the resulting
waveforms were recorded using an oscilloscope for further analysis.
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Signal generator
-10...10 Vp-p
100 Hz – 2MHz
Pulsed waveform
50 Ω
2m Coaxial cable
C1
C2
C120
Point contact
sensor
Mechanical coupling
Preamplifier Oscilloscope
Figure 3.3. Circuit diagram of the measurement setup.
Signal generator
During the acoustic characterization, each MLCC was subjected to a voltage chirp of 100
ms in duration to excite the component to vibration. An Agilent 33250A signal generator
was used as the source of the excitation signal. Each capacitor was subjected to a voltage
of -10 V to 10 V using a pulsed waveform with a 80% duty cycle. The asymmetrical
waveform was observed to yield a higher acoustic emission amplitude than the sine wave
of the same voltage, likely because of the higher signal energy associated with the pulsed
waveform. The high duty cycle may also result in a higher amplitude because of the
polarization of the dielectric, as discussed in section 1.1. The frequency of the excitation
signal was increased linearly from 100 Hz to 2 MHz to cover the usable frequency range
of the point contact sensor, maximizing the information about the acoustic properties of
the component. The duration of the chirp was set to 100 ms, as chirps of longer durations
would have required reducing the sampling rate of the oscilloscope because of memory
limitations. On the other hand, chirps shorter than 100 ms were observed to result in a
waveform with wider, less defined resonance peaks.
Point contact sensor
The resonance frequencies of the ceramic body of an MLCC range from hundreds of kilo-
hertz to over a megahertz (Ko et al., 2014), depending on the dimensions of the ceramic
body. In order to measure the acoustic behavior of the component and capture the reso-
nant frequencies, a vibration sensor with a wide frequency range was required. A KRN
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Services KRNBB-PC Broadband point-contact sensor was chosen for the task, as the sen-
sor has a sensitivity of 15mV/nm ± 4dB over a frequency range of 20 kHz–1 MHz, with
a maximum frequency of 2.5 MHz (KRN Services, 2015). The outer body of the sensor
was equipped with M14 threads, to which four hex nuts were attached to provide addi-
tional weight when placing the sensor on a capacitor. The nickel-coated tip of the sensor
was covered with a piece of Kapton tape to prevent the sensor from short-circuiting the
exposed terminations of the capacitor.
Preamplifier
The point contact sensor was connected to a KRN Services AMP-1BB-J single channel
broadband preamplifier with a coaxial cable. The amplifier has a -3 dB bandwidth over a
frequency range of 18.2 kHz–2 MHz, with a gain of 28.1 dB at 300 kHz (KRN Services,
2014).
Oscilloscope
A Keysight InfiniiVision MSO-X 4104A oscilloscope was chosen for recording the raw
waveforms from the preamplifier, because the oscilloscope was capable of capturing the
acoustic waveform data at a sampling rate of 20 MHz over a duration of 100 ms, enough
to cover the acoustic response of the component under test in a sampling rate ten times
higher than the highest excitation frequency. The preamplifier was connected to one of
the inputs of the oscilloscope by using a coaxial cable.
3.3 MLCC sample inspection and labeling
In order to verify which MLCC samples on the bent PCBs were damaged during the
bending process, all the samples on the bent PCBs were X-ray inspected using a Phoenix
Nanomex machine. The 2D X-ray images were inspected visually for flex cracks, and
each component sample was assigned a label according to whether any cracks could be
observed. Cracks observed during the inspection were typically located near the bottom
edges of the ceramic body, close to the end terminations where the stress caused by PCB
bending was highest. Some of the samples contained cracks only at one corner, or span-
ning partially alongside the edge of the ceramic body (see Fig. 3.4a), whereas some other
samples contained cracks spanning across the edge of the component (see Fig. 3.4b).
With the MLCC samples labeled using the X-ray inspection, the acoustic waveforms were
initially analyzed by visually looking for differences between the waveforms of samples
labeled as damaged and undamaged. It was observed that the acoustic data from the bent
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(a) Flex crack extending partially across the end termination of a capacitor
(b) Flex crack extending fully across the end termination of a capacitor
Figure 3.4. X-ray images of two MLCC samples with cracks of different severity. The endpoints
of each crack are indicated by black arrows.
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MLCCs suggested a presence of a higher number of damaged components than what
could be observed in the X-ray images, especially for 2220-sized MLCCs. This was
suspected to be due to the limitations of the X-ray imaging method, because in order to
reveal cracks within the dielectric material, the imaging had to be performed at the angle
of the crack. Thus, it was possible that some of the cracks were missed because of the
wrong imaging angle. It was also acknowledged that delamination within an MLCC could
not typically be observed in the X-ray inspection. To confirm the inspection results, the
PCBs were carefully packed and sent back to Switzerland, where each of the 2220-sized
MLCC samples was cross-sectioned.
The cross-sectioning was performed by cutting the MLCCs off of the PCB and casting the
components in clear two-phase epoxy. The samples were then ground to a desired depth
using a Struers Rotopol-11, after which the sample surfaces were polished for optical
microscopy. Next, the samples were imaged using a Leica M205C optical microscope
to reveal cracks or delaminations within the components. As with the X-ray images,
the cross-section images were each inspected by eye, and the component samples were
assigned a label according to whether the sample was undamaged or it contained a crack,
delamination, or both.
While cross-sectioning can be used for determining different types of mechanical damage
in the ceramic body of an MLCC, it only provides information at the specific depth to
which the sample has been ground. Moreover, recognizing delaminations from the cross-
section images proved to be a challenging task, because small cracks (see Fig. 3.5c) in
cross-section images could be mistaken for scratches in the surface of the sample, and
vice versa. In some cases, the material interfaces within the sample (see Fig. 3.5a) could
also be mistaken for delamination (see Fig. 3.5b). The gaps resulting from the bending
would also at least partially close up as the bending stress was relieved, making the faults
harder to identify. Therefore, although being an accurate method, the cross-sectioning
is not a definite method for identifying damaged MLCCs, and the labels assigned to the
component samples were considered not to be fully reliable. The MLCC samples on
the PCBs that did not undergo the bending procedure were directly labeled as undam-
aged without further inspection, because the packaging and handling of the boards was
performed carefully in order not to inflict damage onto the components.
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(a) MLCC sample with no cracks or delamination visible
(b) MLCC sample showing delamination under the right-hand-side termi-
nation
(c) MLCC sample showing cracks in the passive area near the right-hand-
side termination
Figure 3.5. Cross-section image examples from three different MLCCs. The MLCCs were all of
the 2220 case size and had undergone the bending procedure. The damaged locations are indicated
by arrows.
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3.4 Signal preprocessing
Acoustic data from MLCCs were preliminarily analyzed by visually inspecting the wave-
forms from selected MLCC samples. When comparing the raw waveforms from known-
pristine samples with those from samples with notable cracks visible in the X-ray, it was
observed that the cracked samples exhibited more resonance peaks and increased reso-
nance amplitudes compared with the undamaged ones, as shown in Fig. 3.6. Each capaci-
tor case size also exhibited a fundamental resonance at a certain frequency, the amplitude
of which was observed to be dependent on the case size of the component. Details about
the observed fundamental frequencies are shown in Table 3.6.
(a) Before bending (b) After bending
Figure 3.6. Raw acoustic data from a 1812-sized MLCC before and after inflicting physical dam-
age to the component. An increase in the number of resonance peaks can be observed after dam-
aging the body of the component.
The raw acoustic emission waveforms contained significant amounts of noise. While the
acoustic resonances of the 1812-sized samples (such as in Fig. 3.6) were clearly ob-
servable from raw waveforms, the resonance amplitude of the larger 2220-sized MLCCs
was significantly lower, comparable with the amplitude of the noise. 2220-sized compo-
nents were also the primary focus of the study because of their vulnerability to bending
damage. Therefore, to perform further analysis on the experimental data, developing de-
noising methods for the acoustic data without losing characteristics related to mechanical
damage was critical.
Raw acoustic signals were investigated using the spectrograms in Publication I, which
reveal that the majority of resonance peaks seen in the raw waveforms are actually from
the same resonance mode (see Fig. 3.7). As the component samples were subjected to a
frequency-swept excitation signal, the resonances were induced multiple times by the har-
monic content of the pulsed waveform. These resonances were considered redundant for
further analysis and needed to be removed, because they could obscure actual resonances
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Table 3.6. Observed fundamental resonance modes, as measured from intact MLCCs
Case size Amplitude (mean ± STD) (mV) Frequency (mean ± STD) (kHz)
1206 77±22 908±251
1210 142±39 706±43
1812 106±20 700±3.4
2220 21±6 595±360
occurring at the same time during the electrical excitation.
In addition to the resonances caused by the harmonics, a significant amount of electro-
magnetic interference was present in the acoustic signals. Some of the EMI noise was
unavoidable because of the design of the test PCB: the traces from the connectors to the
MLCC samples were dozens of centimeters in length, and each sample was connected via
two traces instead of a common ground plane. This resulted in loops up to ∼ 100cm2,
which were a likely origin of the EMI noise, because the MLCC samples were excited
with voltage signals up to 2MHz. Because the frequency of the excitation signal also
matched the observed frequency of the acoustic response of the component, the EMI
component could not be removed just by applying a lowpass filter to the acoustic signals.
In addition to noise removal, the size of the acoustic data had to be reduced because of the
memory requirements, because each acoustic waveform contained 2 ·106 datapoints. With
the harmonics and EMI-related noise removed from the signals, the frequency content of
the signals was considered expendable. Because each component sample was electrically
excited throughout the same frequency range, and the mechanical vibration frequency
of the MLCC matched that of the excitation signal, the instantaneous frequency of the
mechanical vibration could be directly calculated knowing the time since the excitation
signal started. Thus, the memory footprint of the data was reduced by calculating an am-
plitude envelope for each acoustic signal, preserving the overall shape of the signal while
reducing the number of datapoints by a factor of 200. In addition to amplitude informa-
tion, instantaneous phase was also calculated for each acoustic signal, and downsampled
alike.
To clean EMI-related noise from the raw acoustic data, the acoustic signal of each MLCC
was first filtered using an automated interval-dependent wavelet denoising algorithm, be-
cause this was observed to remove some of the noise within the signals. A second-order
biorthogonal wavelet with eight vanishing moments was chosen for decomposing the sig-
nal, as it was observed to result in accurate approximation of the original signal and a
smooth reconstructed waveform. The parameters for the wavelet denoising were experi-
mentally selected by inspecting the raw acoustic waveforms. After wavelet denoising, the
acoustic signals were highpass filtered in order to remove the high-amplitude burst at the
beginning of the excitation chirp (see Figs. 3.7a and 3.7b). A fourth-order Butterworth
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Figure 3.7. Signal envelopes and the corresponding spectrograms for a 1812-sized capacitor before
and after inflicting damage to the component. The spectrograms show that the three highest peaks
(1) observed in the envelope are the harmonics of a single resonance mode. Physical damage (flex
cracks) in the component causes an increase in the amplitude of the resonance peak (1) and the
emergence of three new resonance peaks (2).
filter with a cutoff frequency of 150 kHz was used as the highpass filter. After highpass
filtering the signals, the harmonics were removed from the acoustic data by overlap-add-
decomposition combined with lowpass filtering. First, each signal was divided into 64
blocks with a 50% overlap. The signal content of each block was windowed using the
von Hann window function to remove abrupt transients at the endpoint of the block. The
content of each block was then lowpass filtered using a second-order Butterworth filter,
with a cutoff frequency 1.3 times the excitation signal frequency at the endpoint of the
block.
After denoising the data and removing harmonics, the amplitude envelope e(t) was cal-
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culated for each MLCC using the real part of the Hilbert transformation Re(H (·)) as
e(t) = DS
{
lpf
[√(
u(t)
)2
+Re
{
H
(
u(t)
)}2]}
, (3.1)
i.e., the resulting Hilbert-transformed signal was lowpass filtered (lpf) using a fourth-order
Butterworth lowpass filter with a cutoff frequency of 75 kHz to remove ringing, and the
resulting signal was then downsampled (DS) to 10 000 datapoints per signal for dimen-
sionality reduction and a smaller memory footprint. The resulting amplitude envelope,
with the harmonics removed, can be viewed as an estimate of the mechanical amplitude
response of the capacitor body. The envelope signals (3.1) were used as the basis of
analysis in Publication II, where the resonance peaks observed in the signal envelopes
were correlated with the types of damage found in the MLCC samples. In addition to
the amplitude response estimates, the phase response estimates were constructed from
each measured signal, because physical damage was expected to change also the phase
response of the ceramic body. Because the excitation signals were not measured during
the acoustic measurements, the phase of the acoustic response relative to the excitation
could not be calculated directly. Instead, the phase response was estimated by comparing
the acoustic signal with an idealized representation c(t) of the excitation chirp signal
c(t) = sin
(
2pi
(
f0t+
k
2
t2
))
, (3.2)
where k = (2 ·106 s−1−100s−1)/0.1s is the chirp rate of the excitation signal, and f0 =
100s−1 is the starting frequency of the chirp. The mechanical phase response of the
capacitor body was then calculated using the idealized chirp signal c(t) as
φ(t) = DS
{
lpf
[
∠H
(
u(t)
c(t)
)]}
, (3.3)
where lpf denotes a fourth-order Butterworth filter with a cutoff frequency of 1 kHz, and
DS denotes downsampling to 10 000 data points, using the same downsampling rate as in
(3.1).
With the amplitude (3.1) and phase (3.3) data calculated, an acoustic data set was con-
structed by extracting a set of numerical features from the amplitude and phase response
of each MLCC sample on two test PCBs. The first PCB was acoustically characterized
only once without bending, whereas the other one was characterized both before and af-
ter bending the board. The feature extraction process is discussed in depth in Chapter 4.
The data set was then used as a basis for constructing machine learning models in Publi-
cations II and III, which were used for identifying damaged MLCCs based on acoustic
data. The machine learning methods are discussed in greater detail in Chapter 5.
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4 Feature extraction
After conducting the acoustic measurements and preprocessing the measurement data, the
aim was to develop a machine-learning-based classification technique for discriminating
between damaged and nondamaged MLCC samples based on acoustic data. In order to do
so, the acoustic data had to be processed so that it could be used as an input for a machine
learning classifier.
A typical machine learning classifier works by mapping a number of predictor variables,
or features, into an output value, which represents the quantity or quality of interest
(Mehta et al., 2019). For the case of detecting damage in MLCCs, the output value was
chosen to represent the predicted state of the component, with the integer 0 meaning “no
damage” and 1 meaning “damage found.” The features, on the other hand, are variables
that should carry some relevant information about the structural condition of the MLCC
sample.
A naïve way of extracting features from the acoustic data would have been to use each data
point in a signal envelope as a feature. However, this approach was abandoned because
only the resonance frequencies within the envelope were considered relevant, and thus,
the majority of the data points would just represent noise. Moreover, each MLCC sample
would have been represented by a feature vector with a dimensionality very high
(
R104
)
compared with the total number of component samples (approximately 100). This leads
to a situation that is challenging from the machine learning perspective, also known as the
curse of dimensionality (Russell and Norvig, 2009). Thus, it is often preferred to limit the
number of feature variables (Dougherty, 2013).
Several feature extraction approaches for acoustic envelope data were evaluated. For
instance, the acoustic envelopes were approached as time series data, and long short-term
memory recurrent neural networks (LSTM) were trained to classify an acoustic envelope
as “damaged” or “intact.” Another experiment involved the use of a one-dimensional
convolutional neural network (CNN) for the same task. However, neither of the methods
yielded significantly better results than 50/50 guessing, probably because of the limited
number of training instances versus the number of data points.
During the preliminary analysis of the acoustic data, it was also observed that there were
systematic differences in the EMI noise levels between acoustic measurements performed
44 Feature extraction
on different occasions. While the exact reason for this remained unknown, slight changes
to the geometry of the measurement setup and electrical machinery in a laboratory nearby
were identified as the most likely causes. Although minor, these differences were carried
over to the acoustic envelopes, with the potential of biasing classification results based
on raw envelope data. For the same reason, deep learning techniques, such as CNNs and
autoencoders, were ruled out as the feature extraction approach, since such models would
be likely to learn to model such systematic differences between sets of measurements.
Given the relatively small sample size of MLCCs and the possible biasing effect from
external factors such as EMI, a more simplistic approach was taken by employing man-
ual feature extraction. By constructing and selecting the feature variables manually, the
effect of external biasing factors could be eliminated, while simultaneously allowing for
evaluating the effectiveness of various physical quantities, such as amplitude and phase,
for the classification task.
4.1 Amplitude and frequency
Based on the initial observations of the acoustic measurement data, it was assumed that
any mechanical damage within an MLCC body would manifest itself as changes in the
amplitude (resonances) or phase characteristics within acoustic data. Thus, a few hand-
selected feature variables representing these characteristics of an acoustic signal could be
used in the classification task. This approach was successfully demonstrated in Publica-
tion II, where a simple machine learning classifier was trained to distinguish undamaged
MLCCs from damaged ones on a bent PCB. Each MLCC sample was represented by two
feature variables, A1 and A2, which were defined as the amplitude of the highest reso-
nance peaks above and below 700 kHz. These peaks were chosen because the 2220-sized
MLCCs, which the experiments were performed on, exhibited strong resonance at ap-
proximately 500 kHz. Moreover, damaged component samples were observed to exhibit
new resonances in frequencies typically above 1 MHz.
For Publication III, the feature set was expanded from the two resonance amplitudes.
The objective was to construct a set of features that would provide useful information
about the structural condition of the component, while being robust to external influ-
ences, such as EMI and variations within the contact between the piezoelectric sensor and
the capacitor being measured. As the maximum resonance peak amplitudes (denoted A1
and A2) below and above 700 kHz were proven to be useful features in Publication II,
they were also used as part of the new feature set. In addition to the amplitude values, the
resonance frequencies of these peaks, denoted as f1 and f2, were introduced as feature
variables, as another study by Johnson et al. (2017) had associated shifts in the resonant
frequencies of a capacitor body with mechanical damage. Moreover, Publications I and
II showed that cracks and delaminations often result in the emergence of new resonance
peaks at various different frequencies. To take such peaks into account, the median am-
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plitude mA and frequency m f of ten of the highest resonance peaks within the envelope
were used as feature variables.
4.2 Phase
In addition to the resonance-based features, the mechanical phase response (3.3) of the
capacitors was considered. Two features were drawn from the phase estimate: the total
phase change ∆φ over the duration t of the signal sweep
∆φ =
∫
t
∣∣∣∣dφ(t)dt
∣∣∣∣dt (4.1)
and the mean Group Delay Ripple value (GDR). The group delay ripple values were
calculated from the phase response estimates by spanning a line between each adjacent
minimum and maximum within the phase curve and calculating the maximum distance
between the phase and the line. The final value for the GDR variable was calculated as the
mean of the group delay ripple values associated with ten of the highest maxima within
the phase graph, as described in Algorithm 1. A visual depiction of the filtering and
feature extraction process is shown in Fig. 4.1, and a summary of the extracted feature
variables is given in Table 4.1.
4.3 Feature exploration
To verify that the chosen feature variables actually conveyed information about the struc-
tural condition of the MLCC samples, the features were assessed by examining the
marginal distribution of each feature for different groups of MLCC samples. Because
the feature variables were selected heuristically based on what effects were thought to
manifest in the acoustic responses of the capacitors after suffering mechanical damage,
the distributions for these features were expected to be dissimilar. On the other hand,
the distribution of the features extracted from two sets of pristine MLCCs acoustically
characterized on different occasions should be similar, as the physical parameters of the
components should follow the same distribution. Fig. 4.2 shows that in general, the dis-
tributions for samples labeled as “damaged” differ from those of the undamaged ones,
although dissimilarities between the intact PCBs 1 and 2 can also be seen. Some of these
differences, such as those observable in the amplitude-related features, probably origi-
nate from the acoustic measurement event, whereas differences in the frequency-related
distributions are presumably related to the feature extraction process.
Another view into the effectiveness of the extracted feature variables was taken by per-
forming a permutation importance analysis on the acoustic data set using a binary classi-
fication algorithm known as the random forest (Ho, 1995). The method essentially trains
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Figure 4.1. Preprocessing steps for acoustic data, based on which the feature variables in Table
4.1 were extracted. An example of raw acoustic data is shown in A. The raw signal was filtered,
and the amplitude envelope of the signal was calculated (B), which was used for extracting the
amplitude and phase of the resonance peaks, indicated by red circles. The raw signal was also used
for calculating the phase response (C), from which the total phase shift was measured. Finally, the
phase response was analyzed for the group delay ripple (D).
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Figure 4.2. Raincloud plots showing the marginal distribution of each feature in the dataset. The
distributions in the left column contain the measurements from both damaged and undamaged
capacitors on the bent test board 1. The right column contains the measurements from test board
1 before bending, and the measurements from the nonbent reference board 2. Good features
should show a difference in the distribution between damaged and undamaged capacitors, whereas
capacitors on two intact boards should show no systematic difference.
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Algorithm 1 Group delay ripple
Require: Phase vector φ ∈ R104
#Calculate the first derivative of φ
Set dφ ← dφ(t)dt
#Omit the discontinuities within the phase graph where the change in φ exceeds 2pi
Set φ−← φ (dφ < 0)
#Locate 10 of the highest maxima in φ−
for i = 1 to 10 do
Set idxi← index of maximum i in φ−
end for
#Calculate the group delay ripple value for each descending block of φ
for i = 1 to 9 do
#Consider a section of φ between two adjacent maxima
Set φblock← φ− (idxi : idxi+1−1)
#Create a linearly-spaced line segment y between the endpoints of φblock
Set y← linspace(φblock(1),φblock(end))
#Calculate GDR value for the current block
Set GDRi←max |φblock− y|
end for
Set GDR← 19∑9i=1 GDRi
return GDR
the model and evaluates the baseline accuracy on a set of test data. After this, the test data
are corrupted one feature at a time by randomly permuting the data corresponding to the
feature and reevaluating the model with the one column of data shuffled. The decrease
in the classification performance with respect to the baseline value can be interpreted
as the relative importance of the permuted feature (Breiman, 2001). The random forest
algorithm is discussed in greater detail in Chapter 5. The results of the permutation impor-
tance analysis in Fig. 4.3 show that features related to phase and amplitude dominate over
those related to frequency. The importance of median frequency is negative, meaning that
randomly permuting this feature resulted in a slightly better classification performance.
In order to avoid false alarms on intact capacitors, the features extracted should be invari-
ant with respect to any variations between different PCB assemblies and measurement
occasions. To this end, the distribution of the eight-dimensional feature vectors was visu-
alized using the t-SNE, a nonlinear dimensionality reduction algorithm (van der Maaten
and Hinton, 2008). Fig. 4.4a shows that while the subset of damaged MLCC samples
is clearly separate from the intact samples, the data from intact test PCBs 1 and 2 are
homogeneously distributed, i.e., there are no clear differences between the two sets of
measurements from different PCB assemblies.
Finally, the extracted features were inspected for bias towards a particular termination
type. Because half of the 2220-sized MLCC samples had flexible terminations, their res-
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Table 4.1. Features extracted from the acoustic responses
A1 Amplitude of the highest peak below 700kHz,
typically found at approx. 500kHz
A2 Amplitude of the highest peak
above 700kHz
f1 Frequency of A1
f2 Frequency of A2
∆φ Total phase shift calculated according to (4.1)
mA Median amplitude of all resonance peaks
in the acoustic spectrum
m f Median frequency of all resonance peaks
in the acoustic spectrum
GDR Mean group delay ripple. For each descending
slope in the instantaneous phase curve, group delay
ripple was calculated as the maximum deviation from
the corresponding linear slope (see Fig. 4.1, bottom graph).
The feature GDR was composed as the mean of all
calculated group delay ripple values.
onance characteristics could differ from those with nonflexible terminations. However,
the t-SNE visualization of the eight-dimensional data in Fig. 4.4b revealed no clusters
with bias toward a particular termination type. Thus, even though the termination may
affect the acoustic response of the component, the feature extraction process appears in-
variant to the termination type.
4.4 Acoustic data set
In order to evaluate the performance of different machine learning classifiers on the acous-
tic data, an acoustic data set was composed by extracting the features in Table 4.1 from
180 acoustic characterization signals. Because the study focused on 2220-sized MLCCs,
capacitors of no other case sizes were included. The data set was composed of MLCC
samples from two different test boards (denoted PCB 1 and 2). The acoustic data from
PCB 1 both before and after bending the PCB were included to facilitate analysis on the
same exact components with and without mechanical damage. Measurements from an-
other, intact board (PCB 2) were included to provide more data for training the classifica-
tion algorithms. Within the data set, the acoustic response of each MLCC was represented
as a vector
xi =
(
A1,A2, f1, f2,∆φ ,mA,m f ,GDR
)
, (4.2)
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Figure 4.3. Permutation importance of the features extracted from the MLCC acoustic responses.
The importance of each feature was calculated by training a classifier on the feature set, then
randomly permuting the feature and comparing the classification accuracy with the nonpermuted
data. A Random Forest classifier with 1000 trees was used for the importance estimation.
and the data set X consists of pairs of the feature vector xi and the class label yi
X =
{
(xi,yi) |xi ∈ R8,yi ∈ {0,1}
}
, (4.3)
where i = 1 . . .180, y = 0 denotes nondamaged and y = 1 damaged MLCC. While the
components on the intact PCBs 1 and 2 were assumed to be pristine, the labels for the
components on PCB 1 after bending could not be guaranteed to be fully accurate, because
the labeling was performed by visually inspecting the X-ray and cross-section images as
described in section 3.3. A summary of the data set is given in Table 4.2, and an overview
of the workflow of constructing the data set is shown in Fig. 4.5. The machine learning
classifiers applied to the data set are discussed in Chapter 5.
Table 4.2. Summary of the MLCC acoustic data set
Total No damage Damage
samples (y=0) (y=1)
PCB 1 (before bending) 60 60 0
PCB 1 (after bending) 60 23 37
PCB 2 (no bending) 60 60 0
Total 180 143 37
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Figure 4.4. t-SNE visualization of the eight-dimensional acoustic data (4.2) in two dimensions. In
(a), the red and blue marks correspond to measurements from a bent PCB, whereas the marks in
gray indicate measurements from intact PCBs. Damaged MLCC samples clearly constitute a clus-
ter, which is separate from the other data points. In (b), the termination type of the aforementioned
data points is shown. Neither of the termination types forms a distinct cluster.
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Figure 4.5. Flowchart of the procedure for composing the acoustic data set (from top to bottom).
The data set was composed by processing the raw acoustic data and inspecting the cross-sectional
and X-ray images of a total of 180 MLCC samples from two test boards. The data set included 60
intact capacitors from PCBs 1 and 2 each and 60 capacitors from PCB 1 after a controlled bending
procedure. The extracted features and categorical labels were used as input and output variables
for the OSVM model.
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5 Analysis and classification methods
With the acoustic measurements completed, the research focused on developing algorith-
mic methods for discriminating between intact and damaged component samples. First,
a population-level study was conducted in order to verify that MLCC acoustic responses
between bent and intact PCBs were actually dissimilar. To facilitate the study, a metric for
comparing the dissimilarity of multiple MLCC acoustic responses was developed. After
obtaining positive results from the study, the focus of the research shifted to developing a
machine-learning based classifier that could identify damaged MLCC samples based on
acoustic data. Finally, one-class learning methods were developed to facilitate an NDT
method that could be scaled to a production line environment.
5.1 Distance-based comparison of acoustic signals
In Publication I, a preliminary study was conducted on acoustic data from bent and intact
MLCCs at a population level, with the aim of confirming whether or not the two showed
dissimilar acoustic responses. At the time of performing the analyses for the study, the
MLCC samples had not been cross-sectioned yet. In the absence of ground truth labels
on which ones of the component samples were damaged, the study was performed at a
population level by comparing the acoustic responses from the test PCBs before and after
subjecting the circuit boards to the bending procedure. The acoustic response of each
of the MLCCs was compared with a set of measurements from known-intact capacitors
with all the parameters, such as case size and manufacturer, equal to the component under
test. By comparing a single acoustic response with a set of several responses, the impact
of factors such as measurement noise, sensor-MLCC-contact, and mechanical variations
between components could be mitigated. To facilitate such a comparison, a metric named
LGLS was introduced.
In the LGLS metric, the acoustic response envelope e of a single capacitor was compared
with a reference envelope eref. The reference envelope was calculated as the pointwise
mean of intact MLCCs that shared the same electrical and mechanical parameters as the
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capacitor from which the envelope e was extracted:
ere f =
∑10n=1 en
10
(5.1)
As the component samples were arranged on the test PCBs in columns according to their
parameters, the set of reference capacitors comprised all ten components on a same col-
umn (a–l, referring to Tables 3.1 and 3.2) as the component under test. However, being
a first observations study, the calculations were performed on envelopes calculated from
raw acoustic data, without denoising or removing the harmonic resonances from the data.
Thus, the acoustic data contained EMI noise, which resulted in a DC offset in the en-
velopes. Furthermore, the amplitude of the noise was observed to be dependent on several
factors, such as the location of the component on the PCB and the date of the measure-
ment event itself, as the measurement took place on different occasions. To overcome
these variations, each envelope e was fitted to the corresponding reference envelope eref
using the method of generalized least squares (GLS)
e = erefθ + v, (5.2)
where the parameters θ were calculated as
θˆGLS =
(
eTrefWeref
)−1
eTrefWe. (5.3)
The weights on the diagonals of W in (5.3) were selected as the inverse variances σ−2i of
the reference envelope to reduce the effect of changes in the resonance peak amplitudes
between measurements:
W = diag
(
1
σ21
, · · · , 1
σ2N
)
. (5.4)
After calculating the parameter θ , the LGLS metric was constructed by calculating the
squared distances li between ei and eref,i, scaled with pointwise variances of the reference
envelope
li =
1
σ2ref,i
(ei− eˆi)2 , (5.5)
from which a sum over the N data points was calculated and scaled with the number of
data points. To take into account the variability between individual reference envelopes,
the result was also divided with the mean of fit difference sums µLGLS,ref over the reference
envelopes
LGLS =
∑Ni=1
1
σ2ref
(ei− eˆi)2
NµLGLS,ref
, (5.6)
where µLGLS,ref is
µLGLS,ref =
∑nrefk=1
(
∑Ni=1
1
σref,i(erefk ,i−eˆrefk ,i)
N
)
nref
. (5.7)
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In other words, the LGLS essentially measures the sum of squared pointwise distances
between e and eref, weighted by the inverses of the pointwise variance of eref. Thus, a
value of LGLS = 0 corresponds to the reference envelope itself, and the higher the value,
the more dissimilar e and eref are.
5.2 Machine learning classifiers
Although the LGLS metric was successfully employed in Publication I, demonstrating
differences between MLCC acoustic responses from bent and intact PCBs, two significant
shortcomings were identified in it. First, determining whether a single component was
damaged or not was challenging based on the LGLS value alone, because the distributions
of values from bent and intact PCBs overlapped. Secondly, the metric considered each
data point in an envelope, which reduced the sensitivity to individual resonance peaks
localized in a narrow frequency range.
To take into account these shortcomings, machine learning classifiers were taken into con-
sideration. This decision was also supported by the need to create an NDT method that
could be scaled to various types and sizes of MLCCs. Machine-learning-based classifi-
cation for MLCCs was demonstrated in Publication II, in which a classifier known as
the support vector machine was successfully trained to distinguish between damaged and
bent-but-not-damaged MLCC samples. While the demonstration was performed with a
small number of data using only two feature variables, the results showed that machine
learning was a viable approach for the classification task. Thus, further research focused
on developing machine-learning-based methods for MLCC acoustic data. For a broader
assessment of the applicability of machine learning methods, several commonly used su-
pervised classification algorithms were evaluated:
• Feedforward neural networks (FNN)
• Convolutional neural networks (CNN)
• Long-short term recurrent neural networks (LSTM)
• Support vector machines (SVM)
• Random forests (RF)
• k-nearest neighbor classifiers (k-NN)
k-NN The k-nearest neighbors algorithm is one of the simplest ones in machine learn-
ing. The k-NN works by comparing a new point in the feature space with its k
nearest neighbors, and it assigns the point to the same category as the majority
of the neighbors. The only adjustable parameters are the number of neighbors, k,
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and the choice of the distance function (Russell and Norvig, 2009). The k-NN is
a simple and intuitive method, but often does not work well with data that have a
high dimensionality (Dougherty, 2013). In this work, the Euclidean distance metric
with 12 nearest neighbors was found to result in accurate classification results while
avoiding overfitting.
SVM The support vector machine works by fitting a hyperplane into the feature space
so that it separates the data points in different categories by a largest possible mar-
gin (Cortes and Vapnik, 1995). However, the data are often not linearly separable,
leaving the standard SVM algorithm unable to categorize the data correctly. This
problem can be overcome by increasing the feature space dimensionality or by ap-
plying a kernel transformation to the input data. After this, a decision plane is fitted
into the data in the modified feature space (Boser et al., 1992). As the hyperplane
constructed by the SVM is a maximum margin separator, the method generalizes
well to data outside the training set (Russell and Norvig, 2009). The application of
machine learning classification to MLCC acoustic data was first demonstrated by
using an SVM classifier in Publication II, and further work in Publication III was
done by using a one-class support vector machine (OSVM), a variant of the SVM.
The operational principles of both SVM and OSVM are discussed in greater detail
in sections 5.2.1 and 5.2.2.
Artificial neural networks Artificial neural networks (ANN) are models that draw in-
spiration from biological neurons and can approximate any function given enough
synapses and layers (Schmidhuber, 2015). They are also used as the basis of mod-
ern deep learning algorithms, e.g., in the form of convolutional (CNN), or recurrent
neural networks, such as the LSTM. ANNs were chosen for this study as a refer-
ence algorithm because of their massive popularity in recent years. Neural networks
are typically trained by backpropagation (Rumelhart et al., 1988), an algorithm that
parallelizes very effectively. On the other hand, the complexity and training of an
ANN has to be regulated to avoid overfitting (Goodfellow et al., 2016). In this
work, a fully connected feedforward network (FNN) with a single hidden layer of
20 neurons was used, alongside various implementations of LSTM and CNN.
Random Forest The Random Forest algorithm is an ensemble method that combines the
output of several decision tree classifiers. Each tree is trained using a randomly
selected subset of the training data set, and each split in a tree is based on a ran-
domly selected subset of input features (Breiman, 2001). This approach makes the
algorithm more resilient to overfitting and imbalanced data, even though individual
classification trees are prone to overfitting (Ho, 1995). The Random Forest has been
shown to handle small, high-dimensional data sets well (Mellor et al., 2015). For
this work, a Random Forest with 1000 decision trees was used.
Additionally, an algorithm known as the t-SNE (t-distributed stochastic neighbor em-
bedding) was used for the analysis of MLCC acoustic data. While the t-SNE is not a
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classification method, it is well-suited for clustering and visualizing data distributions
(van der Maaten and Hinton, 2008). The t-SNE technique was applied to verify that the
component samples tagged by the classifiers as "damaged" actually corresponded to a
specific subset of samples in the 8-D representation. Furthermore, it was used to verify
the X-ray and cross-section inspection results, as well as to examine potential differences
between the acoustic responses of MLCCs of standard and flexible terminations. Other
similar approaches, such as principal component analysis (PCA) (Pearson, 1901) and self-
organizing maps (SOM) (Kohonen, 1982), were also evaluated, but t-SNE allowed for the
best class separation in the 2-D representation of the data.
Each of the classifiers tested was trained and evaluated using a method known as the
leave-one-out cross-validation (LOOCV) (Russell and Norvig, 2009). To make the clas-
sification task more tractable, preprocessing and feature extraction were performed on the
data as described in Chapter 4. As the number of MLCC samples was limited, the aim
of the classification task was also limited to identifying whether or not the component
is damaged, instead of determining the type and degree of damage. The data from both
damaged and undamaged capacitors were composed into one data set, and the models
were trained on all but one sample, which was reserved for testing the classification per-
formance of the model. This process was repeated for each sample in the data set, and the
arithmetic mean of the test results was reported as the performance figure for each model.
Upon evaluating the classifiers, the use of deep learning models was experimented by
testing CNN- and LSTM-based neural networks on raw acoustic data, downsampled to
1 ·103 data points per signal. However, both of these models suffered from severe overfit-
ting, as the dimensionality of the data was far greater than the number of MLCC samples
available. Thus, the CNN- and LSTM-based models were dropped out of the comparison,
and the study focused on the use of less complex classifiers (k-NN, SVM, ANN, and RF)
trained on manually engineered structured data (as in Table 4.1) instead of downsampled
time series data. The dataset, constructed as in (4.2) and (4.3), was then used to evaluate
the performance of the classifiers in two configurations: using all eight features in Table
4.1, and in a reduced version, in which the variables f1, f2, and fmedian were dropped
based on the importance analysis in Fig. 4.3. The classification results were also com-
pared with the distribution of the MLCC data points. This was achieved by visualizing
the eight-dimensional MLCC data in two dimensions using the t-distributed stochastic
neighborhood embedding (t-SNE) algorithm.
The evaluation of the classifiers revealed no significant differences between the suitability
of the models for the classification task (see Chapter 6). Although there were minor
differences between the performances of the classifiers, the most limiting factors to the
accuracy of the classification results were the small number of data points used for training
the models and the inaccuracy of the labels within the training data, especially in the case
of the component samples on the bent test PCB. As a solution, the research focused on
the use of one-class learning models, which could be trained on only one class of data,
i.e., the intact component samples. This approach would ensure that the labels for the
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training data were correct, although the accuracy metrics would still contain uncertainty
as the models were tested on data from samples that were visually inspected and labeled
using X-ray and cross-sectioning. Methods such as the isolation forest (Liu et al., 2008)
and one-class support vector machine were tested, out of which the one-class support
vector machine was chosen because the ordinary SVM had proven a viable classifier in
Publication II.
5.2.1 Support vector machine
In Publication II, automated discrimination between damaged and bent-but-not-damaged
MLCCs was demonstrated using a support vector machine (SVM). The SVM is a binary
classifier, i.e., a machine learning algorithm that works by fitting a hyperplane between
N points of D dimensions x ∈ RN×D from two different classes y ∈ {−1,1} so that the
margin between the points and the hyperplane is maximized (Cortes and Vapnik, 1995).
In case there exists w, b such that
w ·x−b = 0, (5.8)
the data set x = {(x1,y1), . . . ,(xN ,yN)}) is called linearly separable, i.e., the points from
different classes can be perfectly separated by a hyperplane described by the normal vec-
tor w. The hyperplane, also known as the decision plane, is defined based on the training
data x ∈ RN×D. However, not all instances of X are needed for constructing the hyper-
plane; instead, the optimal hyperplane w0 can be described as a linear combination of
points closest to the plane, i.e., support vectors xi ∈ SV (Cortes and Vapnik, 1995) as
w0 = ∑
i∈SV
αixi, (5.9)
where αi and b are the weights and the bias term that are computationally optimized,
i.e., the SVM model is trained on the examples x. A trained SVM model can be used to
classify new instances x of an unknown class by evaluation of the linear decision function
(Cortes and Vapnik, 1995)
I(x) = sgn
(
∑
i∈SV
〈αixi,x〉+b0
)
. (5.10)
However, the points from different classes are often not linearly separable, i.e., the classes
cannot be separated by a plane. While this problem can be alleviated by assigning a
penalty term to each point falling within the wrong side of the decision place (a soft-
margin SVM), a more common solution is to employ a technique known as the kernel
method (Boser et al., 1992). This approach facilitates the formulation of a nonlinear clas-
sifier by transforming each pair of data points (xi,x j)∈ x into a higher-dimensional space,
where the problem often becomes linearly separable. The transformation is achieved by
using a mapping Φ defined by a kernel function κ(xi,x j)
κ(xi,x j) =
〈
Φ(xi),Φ(x j)
〉
. (5.11)
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In the transformed feature space, the decision function corresponding to (5.10) becomes
I(x) = sgn
(
∑
i∈SV
yiαiκ(xi,x)+b
)
, (5.12)
i.e., the point x is evaluated with each support vector xi by using the kernel function κ
(Boser et al., 1992). A common choice for κ is the Gaussian radial basis function (RBF)
(Bounsiar and Madden, 2014)
(xi,x j) = e
−‖xi−x j‖
2
γ , (5.13)
where γ controls the bandwidth of the kernel function. Decreasing γ can be interpreted
as increasing the range of influence of the kernel function κ in the transformed feature
space, and in turn, reducing the complexity of the decision surface.
5.2.2 One-class support vector machine
The OSVM (Schölkopf et al., 2001) is a variant of the normal support vector machine
(SVM), which is used for modeling the distribution of data points from a single class.
In contrast to the normal SVM, which separates the two classes by a decision boundary,
the OSVM, instead, separates the data points from the origin, typically in a feature space
created by using a kernel transformation (5.11). The formulation of the OSVM is similar
to the regular SVM. Instead of constructing a hyperplane separating two classes as in
(5.9), the hyperplane w separates the points x from the origin. The hyperplane w is found
by solving a quadratic problem
min
1
2
‖w‖2+ 1
νN∑i
ξi−b (5.14)
subject to
(w ·Φ (xi))≥ b−ξi, ξi ≥ 0, (5.15)
where b is a bias term, and ξi are slack variables for each support vector (Schölkopf
et al., 2001). The first term in (5.14) is a regularizer that minimizes the complexity of the
decision plane by minimizing the squared norm ‖w‖2. The second term seeks to minimize
the number of misclassifications within the training data, i.e., the points that fall on the
wrong side of the decision plane. This trade-off between the complexity of the model
and the number of misclassifications allowed for the training data x is controlled by the
term ν ∈ (0,1] in (5.14). Akin to the ordinary SVM, the resulting decision function can
be expressed as (5.10). Applying the kernel transformation (5.11), the decision function
I for the OSVM becomes (Schölkopf et al., 2001)
I(x) = sgn
(
∑
i
αiκ(xi,x)−b
)
. (5.16)
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Although the expression (5.16) can be evaluated by using any function κ qualifying as
a kernel, it has been shown that the radial basis functions, such as the Gaussian kernel
(5.13), are typically the best-performing kernels and even the only viable choice for one-
class classification tasks (Bounsiar and Madden, 2014). Thus, OSVM-based anomaly
detection and classification applications typically use the Gaussian kernel (Anaissi et al.,
2018; Das et al., 2007; Mun et al., 2020; Yan et al., 2017).
5.2.3 OSVM hyperparameter optimization
The classification performance of any machine learning model is controlled by adjusting
the hyperparameters of the model, i.e., the parameters that are fixed before the process of
fitting the model into a set of data. Careful selection of the hyperparamters is crucial for
ensuring that the model can correctly classify previously unseen instances while avoiding
overfitting to the training data.
For one-class SVM, the classification performance is typically controlled by two hyper-
parameters. The parameter ν ∈ (0,1] adjusts the trade-off between the regularizer term
‖w‖ and the number of training points allowed on the wrong side of the decision plane
in (5.14). As such, the value of ν is equal to the fraction of outliers within the training
data (i.e., data points which fall outside the decision boundary), as well as the fraction of
support vectors within the training data (Schölkopf et al., 2001). Therefore, increasing
the value of ν results in a higher fraction of data points being assigned as support vectors,
which, in turn, leads to a more complex decision function (5.16).
On the other hand, the selection of the kernel κ can have a high impact on the performance
of the model. For the Gaussian RBF, the most widely used kernel for OSVMs, the shape
(or bandwidth) of the kernel is directly controlled by the term γ: increasing the value of γ
decreases the value of the kernel (5.13) at a given distance ‖xi−x j‖, effectively decreasing
“the range of influence” for individual support vectors. This, in turn, results in a tighter,
more complex decision surface.
Selecting the hyperparameters for one-class SVM is not a trivial task. Owing to the nature
of the one-class classification problem, data are often available only from a single class,
or the number of samples representing other classes is limited. If a sufficient number of
counterexamples are available, the hyperparameter selection can be performed by validat-
ing the performance of the model on both the target and outlier data by using conventional
methods such as grid search (Goodfellow et al., 2016). However, in the absence of outlier
examples, tuning the hyperparameters becomes more challenging because the sensitivity
of the model to outliers cannot be evaluated directly (Wang et al., 2018; Xiao et al., 2015).
Several approaches have been proposed for solving the hyperparameter selection problem
by using data only from the target class. These techniques are typically based on either
heuristics or synthetically generating outlier examples (Wang et al., 2018). However,
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many of the proposed approaches only optimize for the kernel parameter γ , requiring
prior knowledge for setting the parameter ν (Anaissi et al., 2018; Unnthorsson et al.,
2003; Xiao et al., 2015). For the case of detecting damaged MLCCs, such approaches
were deemed not viable because there was no a priori knowledge on how to set the value
for ν .
A recent, outlier-generation-based method known as the SDS has been shown to rival or
outperform many other techniques (Wang et al., 2018). The algorithm is based on detect-
ing the “edge patterns” within the training data, i.e., the samples that lie at the edge of the
training data. For each edge pattern, the algorithm generates a pair of synthetic outlier and
target points, which are then used for evaluating the performance of the OSVM classifier
by using the grid search technique. For Publication III, this algorithm was implemented
in MATLAB for detecting damaged MLCCs. However, the algorithm did not yield un-
ambiguous values for ν and γ; instead, the OSVM reached 100% accuracy on multiple
(ν ,γ) values. When testing the model on actual MLCC data, the classification perfor-
mance varied widely depending on the choice of ν and γ . This behavior was traced back
to the combination of a low number of MLCC data points and the high dimensionality of
the data, which resulted in nearly all data points being identified as edge patterns.
5.2.4 Cliffhanger algorithm
As a solution to the problem of choosing the hyperparameters for the OSVM, a novel
optimization algorithm was introduced in Publication III. The algorithm employs a sim-
ple heuristic approach for finding suitable values for ν and γ by performing a grid search
over a (ν ,γ) plane. As there are no outlier data available for the optimization process, the
algorithm only evaluates the target class accuracy for the OSVM at each grid point.
Certain (ν ,γ) values will result in a decision boundary that encloses the training data
with a wide margin. Such hyperparameters yield a high target class accuracy; however,
the model is insensitive to outliers. On the other hand, some (ν ,γ) values will yield
an overly complex decision boundary that encloses the training data with a very narrow
margin. Such a model is sensitive to outliers but also prone to false alarms.
Because the OSVM attempts to enclose all the training data points by the decision bound-
ary, the evaluation of the accuracy on the target class must be performed on samples not
included in the training data. To this end, the evaluation is performed using a method
known as the leave-one-out cross-validation (LOOCV): the model is trained on all but
one sample of data, and the performance is then tested on the left-out sample, repeating
the process for all samples in the training set. The key idea is to observe the performance
of the OSVM model with respect to the target class accuracy A by applying the LOOCV
process over a grid of (ν ,γ) values (see Fig. 5.2).
The intuition behind the algorithm is to select the values for ν and γ from the (ν ,γ) plane
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(c) ν = 0.05, γ = 5.
Accuracy 17%
(5/6 false alarms)
Figure 5.1. Effect of hyperparameters ν and γ on the decision boundary of an OSVM trained on
target data (blue points). The gray dots represent the test data, belonging to the same class as the
blue dots. The black line indicates the decision boundary, with support vectors being marked with
black circles. In (a), increasing ν and decreasing γ results in a crude decision boundary, which is
not efficient for detecting anomalies. On the other hand, decreasing ν and increasing γ too much
(c) will result in an overly complex model that will yield many false alarms. Optimal values for
ν and γ (b) can be determined by repeatedly leaving out a single point of training data, and using
them to evaluate the performance of the model. These figures were plotted using two-dimensional
data (features A1 and A2 on intact PCB 1) to illustrate the operation of the hyperparameter selection
algorithm and were not used for further analysis.
satisfying the following heuristic conditions:
1. The target class accuracy of the model should be high, i.e., the model correctly
classifies target class data most of the time.
2. The decision boundary should wrap tightly around the set of training points so
that even a small increase in the complexity of the decision surface results in a
significant decrease in target class accuracy.
To satisfy the aforementioned conditions, the algorithm seeks to locate a “critical point”
(νc,γc) within the (ν ,γ) plane where the Laplacian of the accuracy reaches its highest
negative value
(νc,γc) = argmin
ν ,γ
(
∇2A
)
, (5.17)
where ∇2 is the discrete version of the Laplace operator,
∇2A = ∇ ·∇A = ∂
2A
∂ν2
+
∂ 2A
∂γ2.
(5.18)
In other words, (5.17) locates the sharpest point within the accuracy surface A where A
reaches its highest downward curvature (see Fig. 5.2). The experiments in Publication
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Figure 5.2. In-class accuracy of an OSVM for different combinations of ν and γ , evaluated using
the leave-one-out cross-validation technique. Choosing the hyperparameters so that ν is close to 1
and γ is very small results in a high in-class accuracy, but the model will be insensitive to outliers.
The Cliffhanger algorithm locates the critical point (νc,γc) (the red dot), i.e., the global minimum
of the Laplacian of the in-class accuracy surface A. When the threshold condition (5.19) is applied,
the point closest to (νc,γc) in terms of grid coordinates, with the in-class accuracy exceeding the
threshold condition, is returned as the optimal combination of hyperparameters
(
νopt,γopt
)
.
III show that selecting the hyperparameters according to the critical point (5.17) typi-
cally yields classification results comparable with other proposed OSVM hyperparameter
optimization techniques.
The Cliffhanger algorithm was implemented in MATLAB for Publication III, and was
then used for detecting anomalous MLCC acoustic signatures. The first part of the algo-
rithm, Algorithm 2, performs a search over an ngrid-by-ngrid grid of (ν ,γ) values, evalu-
ating the target class accuracy A of the OSVM at each grid point by using the LOOCV
method. The second part of the Cliffhanger algorithm, Algorithm 3, locates the critical
point within A according to (5.17).
Because the target class accuracy may not reach 100% at (νc,γc), an additional condition
for selecting the hyperparameters was implemented in Algorithm 3. For classification
tasks where a high target class accuracy should be prioritized over sensitivity to outliers,
the hyperparameters can be chosen as a point in the (ν ,γ) grid closest to (νc,γc) that
satisfies a predetermined condition for target class accuracy. In Publication III, such a
condition T was chosen as
T = max(A) (5.19)
to maximize the resulting target class accuracy, at the cost of sensitivity to outliers.
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The Cliffhanger algorithm was tested on eight benchmark data sets from the UCI machine
learning repository (Dua and Graff, 2017), which also had previously been used for testing
other OSVM hyperparameter optimization algorithms (Anaissi et al., 2018; Xiao et al.,
2015). The results in Publication III show that applying the condition in (5.19) yields a
lower number of false alarms on MLCC data, even though omitting the threshold results in
a better overall performance across the benchmark data sets. The full list of the benchmark
test results can be found in the appendix of Publication III.
Algorithm 2 (ν ,γ) –performance surface mapping
Require: Input data matrix X = (x1 . . .xn)T ∈ RN×D (intact MLCCs)
#Set parameters for grid mapping
Set ngrid← 20
Set log-spaced range of ngrid points ν ←
{
10−2 . . .100
}
Set log-spaced range of ngrid points γ ←
{
10−3 . . .102
}
Preallocate accuracy matrix A =
(
ai, j
) ∈ Rngrid×ngrid
#Partition data for leave-one-out cross-validation
for n = 1 to N do
#Perform grid mapping over hyperparameter space using partitioned data
Set (Xtrain,Ytrain) =
(
X\{xn}, 0(N−1)×1
)
Set (Xtest, Ytest) = (xn, 0)
for i = 1 to ngrid do
for j = 1 to ngrid do
Train one-class SVM
(
νi,γ j
)
on (Xtrain,Ytrain)
Evaluate the SVM on (Xtest,Ytest)
Calculate evaluation accuracy accν ,γ
Update ai, j← ai, j +accν ,γ
end for
end for
end for
return (1/N) ·A
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Algorithm 3 Hyperparameter selection
Require: Accuracy matrix A =
(
ai, j
)
Require: Hyperparameter grid (ν ,γ)
Require: Threshold switch s ∈ {True,False}
Require: Threshold value T
Calculate discrete Laplacian ∇2A
Find grid coordinates (ic, jc)← argmin
i, j
(
∇2A
)
Set critical point (νc,γc) = (ν(ic),γ( jc))
if s = False or A(ic, jc)≥ T then
Set
(
νopt,γopt
)← (νc,γc)
else
Set
(
νopt,γopt
)← argmin
(i, j)∈argmaxA
‖(i, j)− (ic, jc)‖2
end if
return
(
(1−1/N)νopt,γopt
)
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5.3 Evaluation methods
Various classification techniques were applied to identify damaged MLCCs throughout
this dissertation. The task was approached as a binary classification problem: for a given
MLCC sample, the possible outcome is either negative (N) ("0", or no damage), or pos-
itive ("1", the component is damaged). During evaluation, the classifiers were presented
with feature vectors x derived from acoustic measurement data. For each MLCC sample
the models were tested for, the classification task had four possible outcomes y: True
Negative (TN, correctly classified as undamaged); False Negative (FN, classified as un-
damaged but actually damaged); True Positive (TP, correctly classified as damaged); and
False Positive (FP, classified as damaged although undamaged).
When tested on a set of Ntest samples X
X = {(xi,yi) | i = 1 . . .Ntest} , (5.20)
the classification outcomes can be represented as a confusion matrix
O
ut
pu
ts
0
1
(
TP FP
FN TN
)
, (5.21)
1 0
Targets
The accuracy of the model is defined as the ratio between correct classifications and all
instances within the testing set:
Accuracy =
TP+TN
TP+FP+FN+TN
. (5.22)
However, if the set is heavily imbalanced, i.e., one class of y outnumbers the other, high
accuracy values can be obtained even if the model is incapable of correctly classifying
any of the samples in the minority class. For such an imbalanced data set, a more infor-
mative indicator of the model performance is the Matthews correlation coefficient (MCC)
∈ [−1,1], defined as
MCC ∈ [−1,1] = TP ·TN−FP ·FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)
. (5.23)
Unlike accuracy, the Matthews correlation coefficient takes into account the imbalance
between classes, and is also invariant to swapping the classes (Chicco and Jurman, 2020).
Thus, MCC can be considered a more reliable indicator of performance for use cases
where a significant class imbalance can be expected.
While the confusion matrix, and its derived metrics, such as accuracy and MCC, can be
used to assess the classification performance of a model, they only represent the classifi-
cation results at a single classification threshold. For example, the decision function for
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the SVM (5.10) and the OSVM (5.16) place the classification threshold at zero: if the
value output by the classifier is greater than zero, the output is designated in one class,
and vice versa. A similar convention is used for other common classification models, such
as neural networks and random forests (Russell and Norvig, 2009). However, the output
values of such classifiers are typically continuous instead of discrete, and using a single
metric, such as accuracy or MCC, does not reveal by how great a margin the threshold
value is exceeded or not, nor can they be used for fine-tuning the output of the classifier.
The most common way of visualizing the output from a binary classifier without a clas-
sification threshold applied is the receiver operating characteristic (ROC) curve. In the
ROC, the outputs of the model are plotted in 2D coordinates, defined by the true posi-
tive rate (TPR, also known as sensitivity or recall) and false positive rate (FPR) of the
classifier:
TPR =
TP
TP+FN
(5.24)
FPR =
FP
FP+TN
(5.25)
Each of Ntest samples is plotted in the TPR–FPR plane by setting the output value corre-
sponding to the sample as the threshold value and calculating the corresponding TPR and
FPR values. On a balanced data set, an ideal classifier would attain a TPR of 1 without
false positives, whereas random guessing would result in an equal ratio between the TPR
and the FPR. The area under the ROC curve (AUC-ROC) is also commonly used to de-
scribe the overall performance of a classifier, with the AUC-ROC of 1 corresponding to an
ideal classifier and the AUC-ROC of 0.5 being equivalent to random guessing (Fawcett,
2004).
However, the ROC curve is not invariant to class imbalance. Specifically, if the negative
instances significantly outnumber the positive ones, a classifier incapable of correctly
detecting the majority of positive samples can still yield AUC-ROC values far greater
than 0.5. Another visualization technique similar to the ROC curve is the precision-recall
(PR) curve. In the PR curve, recall (TPR) values are plotted against precision, defined as
Precision =
TP
TP+FP
, (5.26)
which essentially describes how many of the positive classifications are relevant. As with
the ROC curve, the area under the PR curve (AUC-PR) can be used as a measure of the
performance of a classifier (Manning et al., 2012).
5.3.1 Confusion river graph
While the ROC and PR curves are widely employed for the evaluation of binary clas-
sification algorithms, they fail to visualize all four possible outcomes within the confu-
sion matrix (5.21). However, they can be used to interpret the classification performance
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across multiple classification thresholds, which the confusion matrix is incapable of. To
combine the classification threshold information in the ROC and PR curves with the com-
pleteness of the confusion matrix, a new visualization tecnique called the confusion river
is proposed.
Essentially, the confusion river visualizes the information contained in a 2-by-2 confu-
sion matrix as two vertically stacked area plots. Both areas correspond to the subsets of
samples within the two target classes. Akin to the ROC curve, the effect of varying the
discrimination threshold of the classifier is visualized along the horizontal axis as the ratio
of correct and incorrect classification outcomes. This approach facilitates the visualiza-
tion of the classifier output across the full range of the output values of the model, and can
be used to interpret the classification performance at various threshold levels. Moreover,
the surface area of the “river,” on a scale between 0 and 1, can be interpreted as an overall
measure for the performance of the classifier. The total area of the river (AUC-CR) can
be calculated by integrating over the range of threshold values T
AUC-CR =
1
2
(∫ maxT
minT
TPR(T )dT +
∫ maxT
minT
TNR(T )dT
)
=
1
2
(∫ maxT
minT
TP(T )
NP
dT +
∫ maxT
minT
TN(T )
NN
dT
)
, (5.27)
using the trapezoidal method. In (5.27), the range of threshold values T is scaled between
0 and 1, and NP and NN indicate the total number of positive and negative instances,
respectively. Thus, both integral terms range between 0 and 1, and the end result is mul-
tiplied by 1/2 to scale the AUC-CR value between 0 and 1.
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6 Results and discussion
Although various classification methods were evaluated for the task of identifying dam-
aged MLCCs, the research eventually settled on the application of the one-class support
vector machine (OSVM). The main motivation for choosing the one-class classifier was
that in a production line environment, data collection would have to be performed for
each specific kind of MLCCs that would be screened for faults. Collecting data from
intact component samples only is a process far easier than adding various examples of
damaged capacitors, because the components would have to be deliberately damaged,
and then, the presence of damage would have to be verified by other screening methods.
The performance of the OSVM was evaluated on the acoustic measurement data col-
lected as described in Chapter 2. Training, optimization, and testing of the model were
performed on the acoustic data set, which was constructed as discussed in Chapter 4.
6.1 OSVM test protocol
The evaluation of the OSVM was conducted in two stages. First, the model was opti-
mized on data from PCB 2, which was not subjected to the controlled bending procedure.
The Cliffhanger algorithm (see section 5.2.4) was used for finding the optimal hyperpa-
rameters for the OSVM by using only data from intact MLCCs. After optimizing the
parameters, the model was trained on the same data.
With the model optimized and trained, the performance of the model was tested on two
sets of data. First, the ability of the OSVM to discriminate between damaged and undam-
aged component samples was tested on data collected from PCB 1 after the board had
been subjected to the bending procedure (see Table 4.2). By using data from the capacitor
samples from a PCB another than the model was trained on, the generalizability of the
OSVM could be tested for possible intrinsic variations between the two sets of MLCCs.
After evaluating the OSVM on the MLCC samples from the bent PCB 1, the model was
tested on the data from the same test board before the bending procedure. The pristine
component samples thus served as a control population, with the purpose of ensuring that
the model would correctly generalize to data from another population without yielding
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false alarms.
The use of nonbent MLCCs from PCB 1 as a control population also served another
purpose. Because the samples on PCB 1 were labeled by visually inspecting the X-ray
and cross-section images after the bending procedure (see section 1.2), the accuracy of the
labels could not be guaranteed. In other words, samples labeled as "0" (undamaged) could
actually have been damaged, and vice versa. Thus, the test results on the known-intact
MLCC data were considered more reliable that the ones on the data collected after the
bending, as the accuracy of the ground truth labels did not depend on the visual inspection
process.
6.2 OSVM test results
The performance of the OSVM, as with any machine learning classifier, depends on the
feature variables supplied to the model. In Publication III, the model was tested on
various combinations of input features. The features were grouped according to the phys-
ical phenomenon they represented (amplitude, frequency, or phase), and the classifier
was evaluated on the following combinations of feature variables: amplitude; frequency;
phase; amplitude and frequency; amplitude and phase; frequency and phase; and finally,
using all eight feature variables.
6.2.1 Overview
The evaluation results in Table 6.1 show that for the component samples on the bent
PCB 1, the best classification results in terms on MCC and Recall scores were obtained
using all the eight feature variables. In other words, using all the feature variables led to
the model discovering the highest percentage of the damaged samples. However, when
tested on samples from PCB 1 before bending, using all the feature variables resulted in an
accuracy just over 51 %, i.e., half of the intact samples triggered a false alarm. However,
testing the model on a data set combined from the same MLCC samples from before and
after bending showed that the best classification results were obtained with the amplitude-
based features alone (MCC), or by combining the amplitude-based features with those
extracted from the phase responses (AUC-ROC). The reason for the higher performance
scores on the combined data set can be found in the classification results on the intact
MLCCs. Both amplitude and the combination of amplitude and phase yielded an accuracy
score of over 96 % on the intact PCB 1, a figure significantly higher than by using all the
eight feature variables. Moreover, using only the phase-related features yielded an even
higher score of over 98 %, with fairly good performance figures on the bent capacitor
samples. The classification results were also visualized by using the Receiver Operating
Characteristic (ROC) curve (Fig. 6.1), which reveals that the features based on amplitude
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Figure 6.1. ROC graphs depicting the performance of the OSVM using different sets of input
features. The performance of the OSVM is highly dependent on the choice of features, with the
best AUC score obtained on the combination of amplitude- and frequency-based features. The
performance of the classifier was evaluated on data collected from PCB 1 both before and after
bending, with the model trained on a separate set of intact MLCCs from PCB 2.
and/or phase result in a significantly better overall performance than any combination of
features with frequency-based variables included.
6.2.2 Further analysis
Continuing from the results published in Publication III, the effects of different feature
combinations on the OSVM performance were further studied by visualizing the raw
output values from the OSVM, i.e., without applying the signum function in (5.16). This
was achieved by using the confusion river visualization technique presented in section
5.3.1.
Figs. 6.3a–6.3g show confusion river visualizations for the OSVM classification results
on the combined data set constructed by merging acoustic data from PCB 1 before and
after subjecting the test PCB to bending. Fig. 6.3c shows that the phase-related features
are particularly resilient to false positives across a wide range of threshold values, sug-
gesting that the use of phase-based features results in a classifier with a lower parameter
sensitivity regarding the choice of the threshold value, at the cost of a higher number of
false negatives. On the other hand, features based on the amplitude result in a classifier are
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Table 6.1. Results from the evaluation of the OSVM classifier using various performance metrics.
The model was tested on data from the test PCB 2, collected both before and after subjecting the
circuit board to controlled bending. Hyperparameter optimization and model training were per-
formed on a separate set of acoustic data from another, intact test board (PCB 2). The process
of hyperparameter optimization, training, and testing was repeated separately using several com-
binations of input features, which were grouped according to the physical quantity (amplitude,
frequency, phase) they represent.
Input features (feat.#) PCB 1, before bending
Accuracy (%)
Amplitude (1,2,6) 96.67
Frequency (3,4,7) 30.00
Phase (5,8) 98.33
Amplitude + Freq (1,2,3,4,6,7) 43.33
Amplitude + Phase (1,2,5,6,8) 96.67
Freq + Phase (3,4,5,7,8) 23.33
All (1-8) 51.67
Input features (feat.#) PCB 1, after bending
Accuracy (%) Precision Recall MCC
Amplitude (1,2,6) 75.00 0.8235 0.7567 0.4865
Frequency (3,4,7) 43.33 0.8000 0.1081 0.1137
Phase (5,8) 68.33 0.7364 0.7568 0.3248
Amplitude + Freq (1,2,3,4,6,7) 78.33 0.8333 0.8108 0.5458
Amplitude + Phase (1,2,5,6,8) 73.33 0.7692 0.8108 0.4276
Freq + Phase (3,4,5,7,8) 61.67 0.7059 0.6487 0.2098
All (1-8) 80.00 0.8205 0.8649 0.5714
Input features (feat.#) PCB 1, before & after combined
Accuracy (%) Precision Recall MCC
Amplitude (1,2,6) 85.83 0.7778 0.7568 0.6655
Frequency (3,4,7) 36.67 0.0851 0.1081 -0.3879
Phase (5,8) 83.33 0.7180 0.7568 0.6155
Amplitude + Freq (1,2,3,4,6,7) 60.83 0.4286 0.8108 0.3081
Amplitude + Phase (1,2,5,6,8) 85.00 0.7317 0.8108 0.6605
Freq + Phase (3,4,5,7,8) 42.50 0.3000 0.6487 -0.0255
All (1-8) 65.83 0.4706 0.8649 0.4018
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Figure 6.2. Confusion matrices for OSVM test results. Top row: amplitude-based features only;
bottom row: amplitude- and phase-based features. The effect of the reinspection of the target
labels is also shown, although the non-reinspected results are reported as the final performance
values.
more effective in discovering true positives (see Fig. 6.3a) than those based on frequency
or phase.
Unlike with the ROC graph in Fig. 6.1, the best performance in terms of area-under-
confusion-river (AUC-CR) is obtained using phase-based features only, slightly exceed-
ing the AUC-CR yielded by the combination of features based on amplitude and phase.
While both the AUC-ROC and the AUC-CR consider the overall performance of the clas-
sifier across a range of threshold values rather than a single operating point, the AUC-CR
places an even weight on both positive and negative output classes, whereas the AUC-
ROC only considers positive classifier output values. Nevertheless, setting the threshold
value at 0, the results in Table 6.1 suggest that the use of amplitude-based features alone
yields a slightly better performance in terms of MCC than amplitude, phase, or the com-
bination of the two.
The majority of the results (Figs. 6.3a, 6.3c, 6.3d, 6.3e, and 6.3g) show a distinct plateau
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Figure 6.3. Confusion river visualizations depicting the performance of the OSVM using different
sets of input features. Although the highest scores in terms of MCC and AUC-ROC are obtained
using features based on amplitude, or amplitude and phase, using the phase-based features only
yields the highest AUC-CR score.
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Figure 6.3. (continued).
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for the true negative rate at threshold values above the maximum accuracy, whereas the
true positive rate decreases. In other words, raising the classification threshold causes the
model to miss increasing amounts of damaged component samples, without decreasing
the number of false alarms. A possible explanation is that there is a discrepancy between
the target labels and the distribution of data points, further suggesting that some of the
damaged component samples were misidentified as undamaged. Similar plateaus are also
observable in the true positive rates, suggesting that some undamaged MLCC samples
were erroneously labeled as damaged. As a result, it was decided that the X-ray and cross-
section images were to be reinspected for samples misclassified by the OSVM. Two out
of six samples labeled as negative showed small cracks, whereas only two out of seven
samples labeled as positive could be reliably confirmed. However, because the sample
reinspection was conducted based on the output of the OSVM, the reinspection results
are not taken into account when reporting the final performance metrics for the OSVM.
Fig. 6.2 shows the confusion matrices for the OSVM test results.
6.2.3 Comparison with binary classifiers
While some of the misclassifications by the OSVM were suspected to be due to misla-
beled component samples, there was no method to reliably confirm which labels were
false positives or false negatives. Instead, the OSVM was compared with four conven-
tional binary classifiers: artificial neural network, binary support vector machine, random
forest, and k nearest neighbor classifier (see section 5.2). The binary classifiers were
trained using acoustic data from PCB before and after bending, i.e., the training data
comprised damaged and undamaged examples. Although the same erroneously labeled
samples would also corrupt the training set for the binary classifiers, the performance of
the commonly used models could be used as a baseline for the OSVM. Because the binary
classifiers could not be trained on a separate set of intact-only MLCCs, the evaluation was
conducted using the leave-one-out cross-validation process.
As the one-class support vector machine was trained without any examples of acoustic
signatures from damaged MLCCs, it would be reasonable to expect that the classification
performance of the model would not match that of a binary classifier trained on both
damaged and undamaged component samples. However, the ROC graphs in Fig. 6.4
show that the OSVM achieves a comparable performance in terms of AUC scores when
using amplitude- and phase-based features. The binary classifiers were also trained using
the same features, although this resulted in only a marginally better performance than
using the full feature set.
The evaluation of the OSVM highlighted the importance of feature extraction and selec-
tion for obtaining the best possible performance. The results in Table 6.1 and Fig. 6.1
show that the role of feature selection is more pronounced than for the conventional bi-
nary classifiers, as discussed in section 5.2. Even though the sample size was limited, the
results clearly show that the best classification results are obtained by omitting frequency-
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Figure 6.4. ROC graphs depicting the performance of four binary classifiers versus the one-class
support vector machine. The classifiers were evaluated on data collected from PCB 1 both before
and after the controlled bending procedure. The binary classifiers were evaluated using the leave-
one-out cross-validation technique, whereas the OSVM was trained on a separate set of intact
MLCCs and tested on the evaluation data.
based features. There is a possibility that the frequency of the resonance peaks does not
carry significant amounts of information about small cracks or delaminations within the
body of an MLCC, or that the changes to the resonance frequencies are overshadowed by
intrinsic variations in resonance characteristics between components. Another explana-
tion is that the feature extraction method used for calculating f1, f2, and m f loses much
of the usable information contained within the frequency location of the resonance peaks,
e.g., as a result of inaccuracies in determining the exact resonance frequency of the ca-
pacitor under test.
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7 Conclusions and future research
Latent mechanical damage in MLCCs remains an open problem, especially if the electri-
cal operation of the component is initially unaffected. While there are imaging methods
such as ultrasound and X-ray capable of revealing cracks and delamination within the
ceramic body of an MLCC, none can be considered suitable for a full assembly line envi-
ronment because of their slow speed or other limitations.
This dissertation demonstrated a new nondestructive testing method for multilayer ce-
ramic capacitors. Based on the measurement of acoustic emissions from MLCCs under
electrical excitation, the method can be applied on soldered capacitors, making it a poten-
tial tool for quality assurance applications on an assembly line.
The main components, i.e., acoustic measurement technique, signal processing, and clas-
sification techniques were presented in Publications I–III, showing that the proposed
method can be used for discovering different types of latent mechanical damage in sol-
dered MLCCs. One-class-based classification of MLCC acoustic data was also presented,
making the NDT technique significantly more suitable for the assembly line usage.
The main advantages of the proposed NDT method are speed and capability of detect-
ing various types of mechanical damage. Conventional X-ray imaging can be used for
rapid screening of numerous components, but the images have to be interpreted, and the
ability of detecting cracks within the dielectric material depends heavily on the imaging
angle. Three-dimensional X-ray tomography can alleviate the latter challenge, but the
imaging can take dozens of minutes per component sample (Andersson et al., 2016), and
delamination between internal electrodes can be difficult to observe when the component
is not experiencing mechanical strain. On the other hand, ultrasound techniques such as
CSAM can fail in detecting cracks underneath the end terminations of an MLCC and re-
quire submerging the component in water, making the method unsuitable for assembly
line testing. The measurement hardware is also significantly less complex than, e.g., 3D
X-ray imaging equipment, and the piezoelectric transducer could probably be integrated
into an automatically actuated system, such as a pick-and-place machine.
Electrical testing methods similar to the proposed NDT method have been proposed, such
as the radio frequency testing technique by Bechou et al. (1996). However, if other re-
active components are placed on the same current path as the MLCC-DUT, identifying
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damage within the capacitor may be difficult as the impedance behavior is altered. Mea-
suring multiple MLCCs placed in parallel would also be challenging, as each component
would return a signal response. On the other hand, the proposed NDT method could be
applied to MLCCs with other reactive components in series or parallel, given that the ex-
citation signal source can provide enough current throughout the frequency range during
the measurement. The feature extraction and machine learning related techniques devel-
oped for the proposed NDT method could also be applicable to the electromechanical
testing method proposed by Bechou et al. (1996).
The electrical excitation signal required to generate the acoustic signal is likely to limit
the proposed method to MLCCs with a voltage rating of 10 V or higher. Another ev-
ident limiting factor is the voltage handling ability of other components parallel to the
MLCC-DUT, which may exclude the use of the method to, e.g., power filter capacitors
for microcontrollers or other integrated circuits. Thus, in order to apply the proposed
method in assembly line testing, the PCB assembly being tested should be designed in a
way that allows to apply the excitation signal to the MLCCs. As an alternative, the use of
mechanical impedance analysis probes could be investigated.
The physical size of the component can also limit the applicability of the method, because
the fundamental resonant frequency of the ceramic body is inversely proportional to the
size of the component. However, past research suggests that flex cracking affects mainly
components with larger case sizes, such as 1812 and up (Keimasi et al., 2008). Damage
from uneven thermal expansion, caused by manual soldering, is also likely to affect case
sizes that are physically large enough to be soldered manually. All things considered,
the proposed method is probably best applied on power electronics devices containing
relatively large MLCCs, which are also more prone to mechanical damage.
7.1 Future work
Although the proposed NDT method was shown to be able to discover latent mechanical
damage within MLCCs, many aspects of the method can be improved. Starting from the
measurement hardware, the shielding of the piezoelectric transducer and data acquisition
equipment could be improved. The amount of EMI from the excitation signal source
could also be reduced by optimizing the shielding and wiring geometry. However, some
of the noise from the signal source is probably unavoidable, because the excitation signal
propagates via the PCB traces, which may not be designed for megahertz frequencies.
The point contact sensor used in this work was a common-purpose broadband transducer,
equipped with M14 threads for mounting. As such, the physical footprint of the sen-
sor was relatively large compared with the PCB layout. An assembly line environment
would require a sensor with slimmer housing, which would facilitate measurements on
PCBs with a tight component layout. As an alternative, the use of an acoustic waveguide
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mounted onto the transducer has been studied by Tarula (2017), which, however, was
observed to significantly distort the acoustic signal.
With better shielding, windowed lowpass filtering could suffice for denoising the acoustic
signals, making wavelet-based filtering redundant. However, the acoustic responses from
individual components will still very likely differ from each other because of slight vari-
ations within the structure of the components and the solder joints. Therefore, the feature
extraction techniques should be improved to better facilitate discrimination between dam-
aged and undamaged samples. For example, the full width at the half maximum of each
resonance peak could provide additional information about the condition of the compo-
nent, and the use of phase information could also be further investigated. With a larger set
of data, the use of deep learning approaches, such as convolutional neural networks, could
have an advantage over manual feature extraction, as they have been successfully applied
to similar problems (Fawaz et al., 2019). For example, convolutional autoencoders could
allow for constructing an improved feature set while remaining in the single-class classi-
fication domain.
While the use of the OSVM classifier was successfully demonstrated in conjunction with
the Cliffhanger algorithm, other methods such as binary classifiers yield an equally good
performance. The results indeed suggested that the classification performance was ul-
timately limited by the accuracy of the labeling process. While the use of a one-class
classifier circumvents this issue in terms of training data, testing and evaluation of any
classifier will require labeled examples of damaged MLCCs. However, by using a one-
class classifier such as the OSVM, the process of data collection becomes less laborious,
as damaged component samples are required only for evaluating the performance of the
classifier.
In addition to the aforementioned technical improvements, the proposed NDT method
needs more extensive testing before it can be applied to the assembly line use. While
there is no fundamental reason to believe that the method would not work on other case
sizes than the 2220 investigated in this dissertation, the method should still be evaluated
on other commonly used case sizes that are large enough to be vulnerable to, e.g., flex
cracking. Initial tests showed that the magnitude of the acoustic response varied signifi-
cantly between the four case sizes inspected, which might result in either better or worse
performance figures. Finally, the method should be field tested with actual production line
PCB assemblies, taking into account factors such as parallel components and restrictions
to the excitation signal placed by other components.
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Abstract—Multilayer Ceramic Capacitors are prone to
mechanical defects and damage because of the fragility
of the ceramic dielectric. Because these faults are often
not recognized by visual or electrical inspection, a non-
destructive, fast way of detecting these defects would be
very useful. Ceramic capacitors are known to generate
acoustic emissions, caused by mechanical vibration of
the capacitor body. Physical defects alter the mechani-
cal properties of the capacitor, which, in turn, affect the
acoustic signature of the capacitor. In this paper, acous-
tic information is acquired directly from both pristine and
damaged capacitors. An experiment was conducted where
capacitors were driven with a voltage chirp over a wide
range of frequencies, and subsequent acoustic emissions
were measured with a piezoelectric point contact sensor.
Test boards were bent to cause flex cracks to the sol-
dered capacitors, which were measured acoustically before
and after bending. A comparison of these measurements
showed that PCB bending causes characteristic changes
to the capacitor acoustic response, which can be correlated
with the resulted damage.
Index Terms—Acoustic emission, Ceramic capacitors,
Nondestructive testing
I. INTRODUCTION
MULTILAYER Ceramic Capacitors (MLCCs) are widelyused in the electronics industry because of their high
capacitance per volume and favorable electrical characteristics
[1]. The ceramic dielectric yields high permittivity, but also
makes the MLCCs prone to cracks.
Typical defects in MLCCs are voids and delaminations,
often related to thermal stresses during manufacturing [2],
[3]. Flex cracks [4] (see Fig. 1) are another typical defect,
often resulting from mechanical force exerted on the capacitor
during circuit board handling or assembly [5], [6]. A cracked
capacitor is often not recognized during the production or
assembly, as it may operate normally, and defects cannot
be detected by visual inspection. In the field, however, the
crack may shorten the lifespan of the capacitor, reduce the
capacitance, or cause a total failure of the component (an
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open or short contact) [7]. Hence, there is a need for detecting
these defects before the product is delivered to the customer.
Mechanical microsectioning [8] and chemical etching [9] are
destructive methods for accurate defect detection in MLCCs,
the former being the more usual method. Acoustic microscopy
[6] is a commonly used nondestructive method; other stud-
ied techniques include acoustic emission stimulation using
a mechanical ram [7], impedance analysis under DC bias
(measurement of electromechanical resonances) [10], phase
analysis using tone-burst excitation [11], leakage current mon-
itoring [12], laser speckle pattern analysis [13], opto-acoustic
microscopy [14], and neutron radiography [15]. Recently, an
X-ray imaging method with sufficient accuracy for reliable
detection of flex cracks was demonstrated [16]. Krieger et al.
used an audio range microphone to detect acoustic emissions
caused by an MLCC on a PCB, and observed differences
between the signatures of intact and cracked capacitors [12].
Ko et al. showed that the fundamental resonant frequencies of
a typical MLCC are in the order of 1 MHz [1], and hence,
cannot be observed directly using an audio-range microphone.
Erdahl and Ume used laser interferometry to detect changes in
the vibrations of an MLCC, observing an amplitude increase
in damaged capacitors [17], [18].
Later on, amplitude increases [19] and frequency shifts
[20] in MLCC acoustic resonances have been observed using
Resonant Ultrasound Spectroscopy. The interest in acoustic
methods is explained by the fact that they are quick to apply
and nondestructive for the capacitors. Therefore, they could
potentially be further refined into a production line screening
method. Other known methods, such as capacitance or leakage
current monitoring, are based on detecting anomalies in the
electrical operation of the capacitor; the acoustic method
does not need leakage current, as mechanical defects can be
detected even if the electrical operation of the capacitor is
normal. The earlier work on acoustic phenomena of other
electronic components, especially for the condition monitoring
of power semiconductor modules [21]–[24], has also yielded
important results on acoustic inspection and analysis methods.
Krieger et al. did their work on MLCCs that were sol-
dered on a printed circuit board [12]. The vibrations were
induced in the capacitors by an electrical frequency sweep
signal applied to them. The vibration measurements were not
carried out directly on the capacitors. Johnson et al. [19],
[20] conducted their measurements directly on the capacitors,
but the capacitors were not assembled on a circuit board. It
can be argued that the experimental setup of Krieger et al.
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Fig. 1. Structure of a typical Multilayer Ceramic Capacitor with a crack
in the dielectric material cutting a part of the inner electrodes. The
capacitor is depicted at a 0◦ orientation, relative to the circuit board
bending (dashed line).
has more resemblance to a production testing environment,
but the measurements performed by Johnson et al. provide a
better acoustic representation of the capacitor itself. In this
study, vibrations are measured directly from capacitors that
are soldered onto a PCB, and the vibrations are induced by
an electrical signal applied to the capacitor.
In the present study, MLCCs were driven with pulse wave
frequency sweeps to excite acoustic emissions, which were
measured directly from the component using a piezoelectric
point contact sensor. First, reference measurements were made
for intact capacitors, after which the PCBs were bent once to
induce flex cracks to the capacitors. The same capacitors were
then remeasured, and the acoustic signatures were compared
with the prebending data. The capacitors were also X-ray
imaged after bending to verify the presence or absence of
cracks. A portion of the capacitors was also cross-sectioned
and inspected with an optical microscope in order to detect
small cracks and delaminations.
The results show that bending the PCB and the subsequent
damage to the MLCC alters the acoustic response of the
capacitors. The changes in the acoustic behavior are more
significant in capacitors that are damaged than in those that
remain intact. The paper also presents conclusions on how the
acoustic research of MLCCs could be done in the future. New
experiments and research questions are proposed.
II. ACOUSTIC EMISSION GENERATION IN MLCCS
Acoustic emission generation in MLCCs is a well-known
phenomenon [1]. It is caused by piezoelectric behavior of
barium titanate (BaTiO3), which is a typical dielectric material
in type II MLCCs [25], [26]. When subjected to AC voltage,
an MLCC starts to vibrate, and the vibration amplitude is
greater near the resonance frequencies of the MLCC body.
Ko et al. performed a modal analysis for a typical MLCC, for
which the first four modes were found at 1.46, 1.47, 1.48, and
2.27MHz corresponding to out-of-plane, in-plane, torsional,
and compressional vibration. As the MLCC is small and lacks
audio range resonances, the capacitor itself cannot produce
significant audible noise, which is caused as the circuit board
starts to vibrate [1]. Therefore, acoustic emissions should be
Fig. 2. KRN point contact sensor inside a 3D-printed fixture placed on
top of an MLCC, with four hex nuts for additional weight.
measured directly from the component to bypass any effect
of PCB resonances and sound damping caused by air. PCB-
bending-related cracks, i.e. flex cracks, in the ceramic material
of an MLCC decrease the stiffness of the component body.
Thus, an amplitude increase in the resonance peaks can be
considered a sign of damage or defect in the capacitor [17],
[18].
III. THE EXPERIMENT
The goal of the measurements was to observe mechanical
vibrations and resonances of MLCCs directly from the compo-
nents themselves with a point contact sensor. The capacitors
were assembled on test boards, which were bent once to a
selected strain level to induce flex cracks in the capacitors. The
MLCCs were measured acoustically before and after bending,
and the measurement data were processed in order to find
bending-related differences.
A. MLCCs and test board setup
MLCCs from three different manufacturers were used for
the experiments. A total of 240 capacitors were tested, includ-
ing both normal (or standard) and flexible (or soft) termination
MLCCs, with case sizes 1206, 1210, 1812, and 2220. The
capacitors were assembled on two test boards with specifica-
tions shown in Table I. The capacitors were assembled in 12
columns per board. Each column comprised 10 MLCCs with
equivalent specifications as shown in Table II. The capacitor
orientation is defined in Fig. 1.
B. Measurement equipment
Acoustic emissions were measured from the top surface of
the MLCCs using a KRN Services KRNBB-PC piezoelectric
point contact sensor, which has a frequency range of up to
2.5MHz. The sensor was attached to a 3D-printed fixture
shown in Fig. 2, and the contact point was covered with
Kapton tape to prevent shorting out of the capacitor. The
sensor was connected to a Keysight InfiniiVision MSO-X
4104A oscilloscope through a KRN AMP-1BB-J preamplifier.
The measurement setup was assembled in an anechoic room
to minimize any external acoustic interference
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS
TABLE I
TEST BOARD SPECIFICATIONS
Material FR-4
Dimensions 39.0 cm by 30.4 cm
Thickness 1.55mm
Copper layers 2
Coatings None
Solder SAC: 96.5Sn-3.0Ag-0.5Cu
C. Experimental procedure
The MLCCs on the test boards were acoustically charac-
terized by driving the capacitors with pulse wave frequency
sweeps from 100Hz to 2MHz while measuring acoustic
emissions. A pulse wave with an amplitude of ±10Vpeak and
a duty cycle of 80% was used, as it yielded a higher acoustic
response than a sine or square wave. A high duty cycle causes
DC offset to the waveform, polarizing the ceramic dielectric
and facilitating acoustic emission generation in MLCCs [12].
The duration of the sweep was set to 100ms for a sufficiently
high oscilloscope sampling rate.
The test boards were bent using a Zwick/Roell Z010 four-
point bending setup, described in detail in [16]. The PCBs
were subjected to an 18mm bending displacement, corre-
sponding to an average strain level of 6000µStr, with values
ranging from 5800 to 8000µStr. The bending strain was
measured at four positions at the centerline of the board, and it
was higher at the edges of the board. After a single bending,
the test boards were removed from the bending setup, and
all the capacitors were examined by X-ray imaging to reveal
cracks. Both end terminations of each MLCC were imaged
at a 70◦ tilt angle using a Phoenix Nanomex X-ray machine.
The X-ray imaging procedure is described in [16]. The same
capacitors were then recharacterized acoustically without a
priori information about the X-ray inspection results. Later,
all the 120 capacitors on Test board 2 were cross-sectioned
and polished, and then imaged using an optical microscope.
For some of the MLCCs, the cross-sectioning was done to
multiple depths. Because cross-sectioning is very laborious
and therefore expensive, only one board was chosen for the
procedure.
D. Numerical comparison of acoustic signal envelopes
An algorithm for numerical comparison of MLCC acoustic
responses was developed. The algorithm was based on obtain-
ing an envelope curve of the measured acoustic signal. This
method provides a smooth curve, which neglects phase differ-
ences between measurements while maintaining the amplitude
information.
First, frequencies up to 40 kHz were cut off from the
measured signal, because a high-amplitude burst occurred in
this frequency range. The burst was caused by vibration of
the PCB, and showed large variation in amplitude between
measurements. The envelope e(t) was then calculated for each
measured signal u(t) as
e(t) = DownsampleNDS
{
lpf
[√(
u(t)
)2
+Re
{H(u(t))}2]}
(1)
TABLE II
DETAILS OF MLCCS ON TEST BOARDS
Column Case (Normal/Flex) C (µF) Orientation
Test a 1206 N 4.7 0◦
board 1 b 1206 F 4.7 0◦
c 1206 N 4.7 45◦
d 1206 F 4.7 45◦
e 1206 N 4.7 90◦
f 1206 F 4.7 90◦
g 1210 N 10 0◦
h 1210 F 10 0◦
i 1210 N 10 45◦
j 1210 F 10 45◦
k 1210 N 10 90◦
l 1210 F 10 90◦
Test a 1812 N 22 0◦
board 2 b 1210 F 10 0◦
c 1812 N 22 45◦
d 1210 F 10 45◦
e 1812 N 22 90◦
f 1210 F 10 90◦
g 2220 N 22 0◦
h 2220 F 22 0◦
i 2220 N 22 45◦
j 2220 F 22 45◦
k 2220 N 22 90◦
l 2220 F 22 90◦
All capacitors rated at 25 V.
where H(u(t)) is the Hilbert transform of the signal, lpf
is a 2nd-order Butterworth-type lowpass filter with a cutoff
frequency of 8 kHz, and NDS is a downsampling factor of 80.
Here, e and u are treated as vectors containing the discrete
data points of the signals.
It was assumed that all the intact capacitors with equivalent
specifications have a similar acoustic response, because the
resonant frequencies of a capacitor depend on its physical
dimensions and mechanical properties. Krieger et al. also
observed that the acoustic spectra of defect-free capacitors are
similar to each other [12], which supports our assumption.
Therefore, a reference envelope for each capacitor column
(Table II) was formed by calculating the mean and standard
deviation of the prebending envelopes e in the column. Such a
statistical approach was chosen because it minimizes the effect
of outliers and provides information on the variation within the
reference data.
It was observed that the amplitude of the envelope is
dependent on the contact and downward force of the sensor.
This dependence was modeled as
e = erefθ + v, (2)
where θ ∈ R+ depends on the mechanical contact between
the sensor and the MLCC, and v is a zero-mean error vector.
To reduce the variation caused by the mechanical contact,
the mean reference envelope was fitted into each envelope of
the examined MLCCs using the method of Generalized Least
Squares (GLS):
θˆGLS =
(
eTrefWeref
)−1
eTrefWe (3)
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Fig. 3. Typical acoustic response of a 1812-size MLCC before (a) and after (b) a single PCB bending. The amplitude of the highest resonant peaks
increases from 136 to 204 mV (+50%), and the peak shifts from 700.9 kHz to 696.4 kHz (-6.5%). The difference between 3a and 3b indicates that
the mechanical properties of the capacitor body have been affected by test board bending.
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Fig. 4. Spectrograms of the acoustic responses in Fig. 3 before and after a single PCB bending. It is seen that the peaks indicated by ”1” in Fig. 3
are different harmonics of one resonant mode, whereas peaks indicated by ”2” are all individual resonant modes.
where the inverse variances σ−2i of the reference envelope
were used as weights:
W = diag
(
1
σ21
, · · · , 1
σ2N
)
. (4)
The difference value between the envelope e of the examined
MLCC and the LS-fitted reference envelope eˆref = erefθˆ was
calculated as
LGLS =
∑N
i=1
1
σ2ref,i
(ei − eˆref,i)2
NµLGLS,ref
. (5)
The equation above has been scaled with the number of data
points N and the mean of LGLS values of the intact capacitors
in the column, µLGLS,ref.
Thus, the value of LGLS = 1 corresponds to the reference
envelope itself, and the LGLS values for intact capacitors repre-
sent the difference between an individual reference MLCC and
the mean of reference capacitors. Bending-related changes,
such as new resonant peaks, cause an increase in the LGLS
values.
IV. RESULTS
A. Effects of PCB bending on acoustic responses
A typical acoustic response of an intact capacitor is shown
in Fig. 3a, which depicts several peaks caused by the me-
chanical resonance of the capacitor body. Compared with the
response of the same MLCC after suffering flex cracks from
bending (Fig. 3b), two main features can be associated with
the induced cracks: an amplitude increase of resonant peaks
(indicated by ”1”) and emergence of new resonant peaks
(indicated by ”2”). Such features were typically not observed
in uncracked capacitors. Alongside the amplitude increase,
slight shift in acoustic resonant frequencies was also observed
in many capacitors (see Fig. 3). These findings are very similar
to those made by Johnson et al. [19], [20].
The harmonic components of the input signal cause resonant
peaks of the capacitor to appear several times during the
sweep. A prebending spectrogram in Fig. 4a shows that peaks
indicated by ”1” in Fig. 3a are caused by a single vibration
mode at 0.7MHz. The peaks indicated by ”2” in Fig. 3b,
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(a) Board 1 (b) Board 2
Fig. 5. From top to bottom: Calculated LGLS values before and after 6000 µStr bending, and X-ray-observed cracks (in gray) on Boards 1 and 2.
The LGLS values are proportional to the difference between the acoustic response of an individual capacitor and the average acoustic response of
that capacitor type. The color scales are different for Boards 1 and 2, as Board 2 yielded a wider range of LGLS values. Additionally, the bottom-right
figure shows the results of a cross-section analysis performed on Board 2: cracks are indicated by ”X” and delaminations by ”O”. The capacitors on
Board 1 were not cross-sectioned.
instead, are all individual vibration modes, as seen from the
corresponding spectrogram (Fig. 4b).
In the damaged capacitors, new resonant peaks typically
emerged at specific frequencies, similarly among capacitors of
the same case size. These vibration modes become observable
because cracks in the ceramic body reduce the stiffness of the
capacitor [17], [18].
B. Population-level observations
In order to evaluate if the changes in the signals are
statistically significant, acoustic data from 240 capacitors were
analyzed and compared before and after a single bending.
Changes in the acoustic response of an individual capacitor
were characterized by comparing the postbending acoustic
response with the prebending reference response using the
LGLS calculation in Eq. (5). The general increase in LGLS
values across both test boards (Fig. 5) indicates that bending
the PCB changes the capacitor acoustic responses at the
population level. Because this is an early-phase study, the
capacitor population comprises various MLCCs with distinct
acoustic responses. Therefore, no fixed LGLS limits were set
to categorize the capacitors either as damaged or intact.
To see how well the LGLS values correlate with damage,
the capacitors on both boards were inspected for cracks by
X-ray analysis. Significant acoustic changes were observed
in the majority of cracked MLCCs. However, changes were
also observed in a number of 2220-sized capacitors that
showed no damage in the X-ray. Therefore, all the MLCCs
on Board 2 were cross-sectioned, revealing several cracks that
were not identified by the X-ray inspection. A number of
delaminated capacitors were also observed, as delamination
cannot be detected by the X-ray method. The experimental
cumulative distribution in Fig. 6 shows that the LGLS values
for intact, damaged, and cracked groups differ in a statistically
significant way. Thus, it can be concluded that the damage
in the capacitors changes the acoustic behavior. The cracked
capacitors appear to form two distinct groups, although this
can probably be attributed to the relatively low number of
samples.
Remarkably, the postbending LGLS distribution for intact
capacitors differs from the prebending. This is partly due to the
fact that the reference envelope for a prebending measurement
contains data from the measured capacitor itself. However,
bending may actually change the acoustic behavior of a
capacitor without actual damage. Another explanation is that
some of the damages in the capacitors were left unidentified
in both X-ray analysis and cross-sectioning. It is also possible
that the bending of the PCB causes metal fatigue in the end
terminations, solder, or the circuit board, which may alter the
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Fig. 6. Experimental cumulative distribution of LGLS values for test
board 2 before and after bending. Postbending distribution comprises
capacitors that were delaminated and/or cracked, or remained intact.
After bending, over 90% of the intact capacitors yielded LGLS values
below 10, whereas only 50% of damaged capacitors showed values
below 10.
acoustic characteristics. Still, capacitors with actual observed
damage show clearly higher LGLS values than those where
none are observed.
The 1206-sized capacitors showed little change in the LGLS
values after bending (Fig. 5a, columns a–f). In the X-ray
analysis, cracks were found only in capacitor c1, which also
showed significantly increased LGLS values, meaning that the
damage was observed acoustically.
The 1210-sized capacitors showed very nonuniform acoustic
responses both before and after bending. The number and
size of resonance peaks varied between the MLCCs, with
typically either one or two large peaks found near 750 kHz
(Fig. 7). This behavior makes the numerical comparison of
envelopes fairly inaccurate, as the reference envelope eˆref in
Eq. (5) comprises dissimilar acoustic responses. As such, the
few damaged capacitors in Fig. 5a (columns f–l) and Fig. 5b
(columns d, b. and f) cannot be identified based on their LGLS
values. This nonuniform acoustic behavior should be taken
into account in future studies.
The highest proportion of cracks was found in the 1812-
sized capacitors, which also showed the best correspondence
between LGLS values and cracks (see Fig. 5b columns a, c,
and e). The orientation of these capacitors correlated with the
size of the cracks, and this correlation was also seen from
the acoustic changes. No cracks were found in the 0◦-oriented
capacitors, which also yielded the lowest LGLS values (column
a). Small cracks, covering the width of the ceramic body only
partially (see Fig. 8a), were found in column c (45◦). Larger,
full-width cracks (see Fig. 8b) were present in the 90◦-oriented
capacitors in column e; in some cases, the cracks also extended
into the solder joint. However, there were not enough solder
cracks to discuss them as a separate statistical population. The
corresponding LGLS values are higher for the capacitors with
larger cracks, suggesting that it might be possible to evaluate
the crack size acoustically.
Only five of the 2220-sized MLCCs showed cracks in
the X-ray, which contradicted the elevated LGLS values (Fig.
5b, columns g–l). Cross-sectioning revealed a number of
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Fig. 7. Differing prebending acoustic responses of MLCCs from Board
2, column b (1210 case, flexible termination). Similar behavior was also
observed in some 1210-sized MLCCs with normal terminations.
delaminated capacitors, plus additional cracks that were left
undetected in the X-ray. Because cross-sectioning only pro-
vides information about a capacitor at one depth, it could not
be used to quantify the damage. Furthermore, the inspection
was done by eye, and thus, misidentifications are possible.
However, the delaminations were largest and clearest in the
90◦-oriented MLCCs in columns k and l, where also the
highest LGLS values were found. This further supports the
finding that the degree of acoustic changes could correlate
with the size of damage inflicted on a capacitor.
C. Interference and uncertainty in acoustic measure-
ments
Because the capacitors were simultaneously electrically
excited and acoustically measured, the measurement data con-
tained electromagnetic interference. Moreover, any external
acoustic disturbances could cause artifacts in the acoustic
data, thereby skewing the numerical comparison. The effect of
external acoustic noise sources was minimized by performing
the measurements in an anechoic room. However, the circuit
board itself was observed to vibrate, causing a notable acoustic
burst at the beginning of each sweep. The PCB vibrations were
observable up to 40 kHz (see Fig. 9), and thus, frequencies
below this were cut off from the measured acoustic signals.
Above 40 kHz, the noise floor was dictated by the EMI from
the measurement setup. The signal-to-noise ratio (SNR) of the
acoustic signal was dependent on the capacitor size as the
surface displacement of an MLCC is affected by its electrical
and mechanical properties (see Table III). The 2220-sized
MLCCs yielded the lowest acoustic resonance peaks, reducing
the precision of the LGLS comparison.
Furthermore, the general amplitude of the acoustic signals
was affected by variations in the mechanical coupling between
the sensor and the capacitor. Specifically, the least-squares
fitting in Eq.(3) was chosen to counter this variation.
V. DISCUSSION
The results show that MLCC acoustic behavior can be
characterized by using a piezoelectric sensor, and this behavior
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(a) Small crack (b) Large crack
Fig. 8. X-ray images of MLCC end terminations, showing flex cracks (endpoints indicated by arrows). The capacitor in (a) was oriented at a 45◦
angle relative to the bending direction, resulting in a narrower crack than in (b), oriented at 90◦. Capacitors with wider cracks also showed higher
acoustic changes. The damage seen in (a) is typical for capacitors in column c in Fig. 5b, whereas cracks like in (b) were found in column e
capacitors in Fig. 5b.
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Fig. 9. Acoustic emissions measured from PCB surface and above an
MLCC. The results show that vibration of the test board has very little
effect on the measured acoustic emissions above 40 kHz.
TABLE III
MEAN AND STANDARD DEVIATION OF ACOUSTIC EMISSION PEAK
VOLTAGES FOR INTACT MLCCS
Case size Mean
(
epeak
)
(V) Std
(
epeak
)
(V) Std (%)
1206 0.0874 0.0247 28
1210 0.1588 0.0447 28
1812 0.1230 0.0237 19
2220 0.0284 0.0052 18
is altered by circuit board bending. In individual capacitors,
the changes are seen as an increased amplitude of mechanical
resonance peaks, and introduction of new peaks. Furthermore,
when the typical acoustic behavior of a capacitor is known, a
single capacitor can be numerically compared with a reference
waveform of that particular type of capacitor.
Both cracks and delaminations produced changes in the
acoustic signatures of the capacitors. The magnitude of these
changes was observed to somewhat correlate with the size
of damage found in a capacitor, although quantifying the
damage was not feasible. The population-level increase in
the LGLS values of damaged capacitors shows that cracks
and delaminations can be identified acoustically. Machine
learning and more advanced feature extraction tools could be
implemented for more precise damage detection, although a
more exhaustive sample of MLCCs is also needed. It can be
assumed that cracks and delaminations affect the mechanical
properties in different ways. Thus, it might be possible to
acoustically differentiate between a cracked and a delaminated
capacitor; this is a subject for further research.
Because the EMI noise from the excitation signal occurs
at the same frequency with the acoustic emissions, simple
low-pass filtering is not feasible. A more advanced denoising
method (e.g. wavelet-based) could be applied to improve the
signal-to-noise ratio. Moreover, the measurement setup should
be improved for better EMI shielding and more consistent
sensor-capacitor contact. Because the frequency range of the
sensor used in this study is limited to 2.5MHz, a sensor with
a higher frequency range should be used if capacitors of a
smaller case size (e.g. 0603) were to be measured.
VI. CONCLUSION
Direct measurements of acoustic emissions from Multilayer
Ceramic Capacitors were demonstrated using a piezoelectric
point contact sensor. MLCCs were measured both pristine and
after damaging them by bending the test circuit boards once.
The acoustic measurements were then compared with X-ray
and cross-section images. The results show that mechanical
damage, such as flex cracks and delaminations, changes the
acoustic behavior of the MLCCs. The acoustic changes in
capacitors were characterized with a numerical algorithm,
showing that the circuit board bending affects the acoustic
response of the MLCCs at the population level in a statistically
significant way. Furthermore, it appears that the degree of
acoustic changes correlates with the level of physical damage
to the capacitor. In the light of these results, an acoustic
emission–based defect detection method for MLCCs could
be developed. Still, the precision and error sensitivity of the
acoustic measurements leave room for improvement. Addition-
ally, the relationship between the acoustic signatures and the
quality of damage in capacitors is a subject for further work.
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Abstract—Multilayer ceramic capacitors (MLCC) are the most
widely used capacitor type in the electronics industry. However,
the brittle ceramic dielectric makes MLCCs prone to mechanical
damage. Manufacturing defects or damage during board assembly
may cause a capacitor to prematurely fail during its operational
life. Here, we demonstrate the fast and non-destructive acoustic
screening of MLCCs. Soldered 2220-sized MLCCs were subjected
to ac voltage frequency sweeps, causing them to vibrate mechan-
ically. Acoustic responses of the capacitors were measured before
and after subjecting the test circuit board to severe bending. The
results show that the cracks and delaminations caused by bending
induce characteristic changes in the capacitors’ acoustic response.
A support vector machine classifier was trained to successfully
detect damaged capacitors based on their acoustic response.
Index Terms—Acoustic emission, ceramic capacitors, nonde-
structive testing.
I. INTRODUCTION
MULTILAYER ceramic capacitors (MLCCs) are com-monly used in the electronics industry [1]. The ceramic
dielectric gives MLCCs high capacitance per volume, but also
makes them prone to mechanical damage.
Voids and delaminations are typical manufacturing defects in
MLCCs, often related to thermal stresses [2], [3]. Mechanical
stress, such as improper printed circuit board (PCB) handling
during assembly, can lead to cracks or delamination in MLCCs
[4], [5]. Mechanical damage in MLCCs is often left unrec-
ognized during production or assembly, as the capacitor may
operate normally electrically. However, in the field, a crack or
delamination in an MLCC may grow in size, resulting in loss of
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capacitance, shortened lifespan, or an open or short contact [6].
Larger case size capacitors, used in, e.g., power electronics, have
shown to be more prone to damage from PCB bending than the
more commonly used cases in the 0402 to 1206 range [7]. Test-
ing the capacitors at the assembly line of the system would
prevent unexpected damage in the field. At this moment, how-
ever, a suitable quality assurance, or production testing method
does not exist.
Defects or damage in MLCCs can be detected by mechanical
microsectioning [8] and chemical etching [9], but these meth-
ods are destructive for the capacitor and are therefore unsuitable
for production testing. Recently, an X-ray imaging method with
sufficient accuracy for reliable crack detection has been pro-
posed [10]. Delamination defects, however, cannot be seen in
X-ray images. Other proposed nondestructive methods include
ultrasound imaging [5], acoustic emission counting using a me-
chanical ram [6], impedance analysis under dc bias [11], leak-
age current monitoring [12], laser speckle pattern analysis [13],
opto-acoustic microscopy [14], and neutron radiography [15].
In this paper, the quality assurance testing goal is approached
by measuring the acoustic phenomena of the MLCCs. When
under ac voltage, MLCCs generate acoustic emissions. Acoustic
emissions are physical vibrations caused by the piezoelectric
properties of the dielectric (BaTiO3) [16], [17]. Recently, it was
shown that a narrow-pulse frequency sweep signal can be used to
produce vibration in MLCCs, and that bending the circuit board
in order to produce cracks in the MLCCs changes the acoustic
emission characteristics of the capacitors [18]. Similar findings
have been made by Johnson et al. using resonant ultrasound
spectroscopy [19]–[21]. The acoustic approach is particularly
interesting, since there is a need in the industry for a method that
could identify damaged capacitors from an assembled board.
Acoustic monitoring has also been applied for other electronic
components, such as power semiconductor modules [22]–[24].
The term acoustic emission does not necessarily refer to au-
dible sounds in the human hearing range. Indeed in this context,
the authors use the term as a synonym for vibration occurring
in the capacitor, caused by the electromechanical phenomena
within the capacitor itself.
In this study, acoustic signals produced using the method
from [18] are measured using a point contact sensor. Acous-
tic measurements are conducted before and after bending the
circuit board. The measured waveforms are then analyzed and
correlated against bending-induced damage in the capacitors. In
order to determine the suitability of acoustic measurements for
0093-9994 © 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
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TABLE I
EXCITATION SWEEP SIGNAL FOR MLCCS
detection of physical damage, a support vector machine (SVM)
[25] is trained on the acoustic data to classify the MLCCs as
either damaged or undamaged. The key observation from the
data is that the changes in the acoustic emission correlate quite
well to delamination of the end termination in the capacitors,
better than to the existence of cracks. This suggests that it may
be possible to develop a delamination detection method based
on acoustic emission. Such a method would be very welcome,
because at the moment a non-destructive test method for finding
delamination in MLCCs does not exist. The acoustic measure-
ment may be useful in identifying cracked capacitors as well,
even though the correlation in the analyzed signals is not as
good as it is for delamination.
This paper has been improved from its original form, pub-
lished in the SDEMPED 2017 conference [26].
II. EXPERIMENT
The experiment was conducted on 60 2220-sized MLCC ca-
pacitors of 22 µF, assembled on a purpose-built PCB. Half of
the capacitors were flexible end termination capacitors, while
the others had “normal” end terminations.
The experimental procedure was as follows: first, the ca-
pacitors were characterized individually by driving them with
frequency-swept voltage while measuring their acoustic emis-
sions using a point contact sensor. The test board was then
subjected to a controlled bending to damage the MLCCs. After
bending, the capacitors were re-characterized acoustically. X-
ray imaging and cross-sectioning were used to obtain accurate
information on the actual condition of each capacitor.
After obtaining all the data described above, changes ob-
served in the acoustic data were compared to the damage ob-
served in each capacitor. In addition to 2220-sized MLCCs,
the effect of circuit board bending has also been acoustically
observed in case of sizes 1206, 1210, and 1812, all of which
yield stronger acoustic response than 2220 [27]. Because PCB
bending-caused flex cracks have been an issue especially with
larger case sizes, this study was performed on 2220-size capac-
itors. The acoustic data, alongside X-ray and cross-sectioning
results, are publicly available [28].
A. Acoustic Characterization
To obtain an acoustic response, the MLCCs were driven with
a pulse frequency sweep signal specified in Table I. A KRN
Services KRNBB-PC broadband point contact sensor was at-
tached to the capacitor being characterized (see Fig. 1). The
signal was amplified using a KRN AMP-1BB-J measurement
amplifier and then recorded using a Keysight MSO-X 4104A
Fig. 1. Point contact sensor placed on top of a capacitor. The sensor is within
a 3-D printed fixture on the test PCB, allowing the sensor to be in place without
holding it manually.
oscilloscope. The test was conducted in an anechoic room in
order to minimize any external acoustic disturbances.
The signal from the point contact sensor contains a significant
amount of electromagnetic interference (EMI). The harmonics
of the pulsed input signal also excite the resonant frequencies of
an MLCC to appear several times during a sweep [18]. More-
over, at frequencies below 50 kHz, a high-amplitude burst likely
related to PCB vibration occurred in most of the measurements.
To remove the harmonics and EMI, the signals were processed
using wavelet decomposition and low-pass filtering. After these
stages, the envelope curve of the signal was calculated. The en-
velope curve is treated as the acoustic response of the capacitor
because it is more convenient to compare envelopes than raw
acoustic responses.
The acoustic characterization process was conducted in an
identical manner before and after bending.
B. Inflicting Damage to the Capacitors
The test board was bent with a Zwick-Roell Z010 four-point
bending setup. Under 18-mm bending displacement, the PCB
was subjected to strain levels between 5800 and 8000 µStr
measured at the board centerline, with an average of 6000 µStr.
In reality, a PCB does not experience uniform bending in one
direction, especially directly aligned with the orientation of the
capacitor. To take this into account, capacitors were assembled
in three different angles relative to the direction of the bending.
This affects the type and location of damage within the capacitor.
C. X-Ray Imaging and Cross-Sectioning
After the test board bending, the capacitors were inspected
for cracks by X-ray imaging using a Phoenix Nanomex ma-
chine. The capacitors were also cross-sectioned to reveal any
delamination, which cannot be seen by X-ray. This was done
by casting the MLCCs in two-phase epoxy, grinding them with
a Struers Rotopol-11 to a desired depth, and then polishing the
surface for inspection with a Leica M205C optical microscope.
LEVIKARI et al.: ACOUSTIC DETECTION OF CRACKS AND DELAMINATION IN MULTILAYER CERAMIC CAPACITORS 1789
Cross-sectioning gives accurate information of the condition
in the depth that the capacitor has been ground to. If a crack or
delamination can be seen in this depth, the capacitor is classified
as being damaged. If no damage is seen, however, the existence
of damage cannot be ruled out, since a crack or delamination
can reside deeper in the capacitor. For this reason, capacitors
that showed no damage but exhibited slight changes in their
acoustic characteristics were imaged at three different depths to
get better understanding of the condition.
The authors would like to point out that cross-sectioning is a
very labor-intensive process. It is not feasible to do a complete
cross-sectioning of every capacitor at multiple depths. For this
reason, full-depth cross-sectioning was not performed for every
capacitor.
D. SVM Classification
Intuitive discrimination between damaged and undamaged
capacitors by inspecting the acoustic responses is difficult and
infeasible. Instead, the classification must be based directly on
features of the acoustic data. Because each capacitor will yield
different numeric features, reliable classification based on strict
conditional expressions would be impracticable. Therefore, the
machine learning approach is more suitable for the classifica-
tion task. SVM are machine learning based binary classifiers
that have been successfully utilized in signal classification tasks
[25], [29], [30]. In the basic SVM approach, the data consist of
samples (in this case, the MLCCs) belonging in either positive
(1) or negative (0) category. From each sample, n numerical
features are extracted. The samples are then mapped onto an n-
dimensional feature space, where each dimension corresponds
to a certain feature. The SVM classifier is then trained by fitting
a decision plane into the sample points such that it separates
the points in the positive and negative categories by the largest
possible margin. Often in real-world scenarios, the data are
not linearly separable, i.e., points in different categories over-
lap. In such a situation, the data points may be mapped into
a transformed feature space using a nonlinear kernel function.
Furthermore, a cost function is often employed: data points on
the wrong side of the decision surface correspond to a total cost,
which is minimized as a part of the decision plane fitting [25].
For the task of classifying capacitors, the SVM was trained by
extracting only two features from the raw data. This approach
kept the classifier model simple and helped in preventing over-
fitting. Additionally, two-dimensional feature data were con-
venient to visualize and use in conjunction with the statistical
analysis and visual inspection of acoustic responses.
III. RESULTS
All the acoustic emission envelopes contained a strong res-
onance peak at circa 500 kHz, related to the fundamental res-
onance modes of the capacitor body. The authors refer to this
peak as the main peak of the capacitor. As can be seen in Fig. 2,
the value of this peak is almost doubled between the measure-
ments for a capacitor with no damage. This change seems very
significant at first, but further results suggest that the doubled
value is still not very large. The increase in the peak value
may be explained by better sensor-to-capacitor contact during
the second measurement. Another probable explanation is that
the 6000 µStr bending actually caused some degree of physical
changes that were missed during the X-ray inspection and mi-
crosectioning, since cracks and delaminations can be difficult
to detect from the images. Some changes can be seen at fre-
quencies lower than that of the main peak, but they are not as
significant.
In a capacitor which showed significant delamination in the
cross-sectioning (see Fig. 3), the changes are much more pro-
nounced. The main peak value is increased to over four times that
of a typical value for a pre-bending measurement. Even though
not all delaminated capacitors exhibited values this high, no-
tably increased main peak values were observed in the majority
of them. On the other hand, most of the capacitors did not show
delamination as significant as in Fig. 3(b), where a clear gap can
be seen extending horizontally across the end termination.
At lower frequencies, the changes are comparable to those
of an undamaged capacitor. New resonance peaks appear at
frequencies higher than that of the main peak, but compared to
the main peak, their value is very low.
The main peak of a capacitor with cracks (see Fig. 4) exhibits
changes even smaller than the intact capacitor. The cracked
capacitor does, however, exhibit a new resonance peak at ca.
800 kHz. The emergence of such a peak was observed in multi-
ple cracked capacitors. The frequency of this peak varies from
capacitor to capacitor, and is likely to be affected by the size
and location of the crack. Nevertheless, the overall emergence
of this peak, referred to as the secondary peak, was observed
to correlate with the presence of damage. The crack shown in
Fig. 4(b) is approximately 500 µm in length and 5 mm in width,
extending across the capacitor end termination. Since this crack
causes noticeable changes in the capacitors acoustic response
[see Fig. 4(a)], it is very likely that also smaller cracks and
delaminations cause acoustically observable changes.
To study these peaks and the related damage statistically, the
main and secondary peak values were obtained programmati-
cally for every acoustic measurement. For this purpose, the main
peak value was defined as the highest peak value at frequencies
lower than 700 kHz. The secondary peak value, respectively,
was defined as the highest peak value at frequencies higher than
700 kHz. The cross section and X-ray images of every capacitor
were examined, and each capacitor was deemed to either have
or not have a crack, and to either have or not have delamination.
These results were then used to determine which peak indi-
cates which type of damage (see Fig. 5). It is evident that the
higher the main peak value, the more likely a capacitor is to have
delamination damage. The secondary peak value, on the other
hand, does not exhibit such a direct relation to the emergence of
delamination.
The main peak value seems to be a poor tool for identifying
cracked capacitors. Fig. 5 does not suggest a clear trend be-
tween the main peak value and the likelihood of a crack. On
the other hand, a weak trend can be observed between the sec-
ondary peak value and the emergence of cracks. However, high
secondary peak values are not unambiguously an indication of
cracks.
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Fig. 2. Typical example of an MLCC with no observed damage after the bending of the PCB. Slight main peak amplitude increase is seen in (a) at around
500 kHz, but no new resonant peaks are introduced.
Fig. 3. Typical example of a capacitor with delamination. The acoustic response in (a) shows significant increase in the main peak value, and several new peaks
at different frequencies are introduced above 0.6 MHz.
Fig. 4. Typical example of an MLCC with multiple cracks near the termination. Main peak amplitude increase and new resonant peaks around 800 kHz are seen
in (a).
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Fig. 5. Histograms describing the relationships amongst cracks, delamination, and acoustic emission peak values of 60 MLCCs. The bins are based on the peak
values, and the numbers indicate the total amount of MLCCs in each bin. The error bars depict the combined uncertainty of measurement and sampling errors
(see Appendix). Significant correlation between delamination and increased main peak value can be seen, whereas secondary peak values weakly correlate with
the occurrence of cracks. Both peak values are generally lower for undamaged capacitors.
Undamaged MLCCs appear to exhibit lower values than dam-
aged capacitors, both in terms of main and secondary peaks. This
suggests that an increase in either of the peak values is a possible
sign of damage.
A. Detecting Damaged Capacitors Using SVM Classifiers
In order to discriminate between damaged and undamaged
MLCCs, an SVM classifier was trained on data extracted from
the acoustic measurements. Each MLCC was mapped onto
a two-dimensional feature space, with the features being the
main and secondary peak values after the PCB bending. Each
MLCC was labeled either damaged or undamaged, depending
whether or not cracks and/or delamination were observed in
the cross-sectioning. The SVM classifier was then trained by
fitting a decision surface into the data set as shown in Fig. 6. A
Gaussian kernel function was chosen for the SVM model, since
it performed better than polynomial kernels. A linear SVM was
unable to separate the datapoints properly, whereas using poly-
nomial kernel functions caused the SVM model to overfit into
the data.
Because the data set consisted of only 60 MLCCs, dividing
it into separate training and validation sets would have had
significant negative effect on the performance of the classifier.
Instead, leave-one-out cross validation [31] was used to evaluate
the performance of the classifier: the SVM was trained on data
from all but one MLCC, and the performance of the classifier
was tested with the left-out MLCC. This procedure was repeated
for all 60 MLCCs, simulating the performance of the SVM on
data outside the training set.
In classifying undamaged capacitors, the SVM model
performed equally well for both in-sample (training) and
cross-validated data [see Fig. 7(a) and (b)]. In cross valida-
Fig. 6. SVM classifier fitted into observed MLCC features. The peak height
data were obtained from the acoustic measurements after bending the PCB. In
order to improve the classifier performance, the data were standardized to zero
mean and unit variance. Capacitors which showed either delamination and/or
cracks in the cross-sectioning are labeled as damaged.
tion, damaged MLCCs were missed by the classifier slightly
more often, while the SVM was still able to detect three out of
four damaged capacitors. The overall cross-validated accuracy
of the classifier was 78.3%, whereas the recall (how many of
the damaged capacitors were found) was 75.7%.
The operation of the classifier at different threshold values is
visualized by the receiver operating characteristic (ROC) [32]
curve in Fig. 8. With out-of-sample data, the SVM classifier
performs similarly as with data within the training set. The
area under ROC curve (AUROC) with out-of-sample data is
approximately 0.78, indicating a fairly good classifier despite
the small amount of training data. A perfect classifier would
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Fig. 7. SVM classifier confusion matrices for MLCCs in the training data set
and combined cross-validation results.
Fig. 8. ROC of the trained SVM classifier at different output threshold values.
AUROC measures the overall performance of the classifier: a perfect classifier
has an AUROC of 1.0, whereas pure guessing produces an AUROC of 0.5.
have an AUROC value of 1.0, whereas purely random guessing
would produce an AUROC of 0.5. The performance of the clas-
sifier could be improved by including more of the features in
the acoustic response, provided that the features actually carry
information about the condition of a capacitor.
The classification results presented here are for an SVM
trained to detect whether or not the capacitor had suffered
any kind of damage. Classifiers were also trained to detect
specifically either delamination or cracks. Delamination was de-
tected with only slightly lower performance than the combined
classifier. For cracks, however, the classifier output was neg-
ative for every single capacitor. Unlike in Fig. 6, the cracked
capacitors mapped onto the feature space formed no clear clus-
ter for the decision plane to separate from the rest of the data.
This suggests that while the main and secondary peak values are
enough to determine whether or not an MLCC is delaminated,
other features should be extracted if cracks were to be detected.
IV. DISCUSSION
The data obtained in this study suggest that main peak value
may turn out to be a valuable metric in identifying delaminated
capacitors, especially when used together with secondary peak
value information. However, neither of these peak values seem
to explicitly indicate the presence of cracks.
In the analysis presented in this paper, only two peak values
are taken into account. As it is mentioned in Section III, the
secondary peak frequency is not fixed, and varies from capacitor
to capacitor. Considering how simple the extracted features are
and how small a portion of the frequency response is used, the
SVM classifier performs remarkably well. However, capacitors
containing only cracks were left undetected.
The determination of delamination and cracks presented in
Figs. 5 and 6 is not guaranteed to be error free. The data were
obtained by looking at cross section images of the capacitors,
and in such a process misidentification is a possibility. Training
the SVM model with misidentified capacitors would decrease its
accuracy. Nevertheless, the performance of the SVM classifier
surpassed the initial expectations of the authors based on visual
and statistical observations.
It is likely that by extracting proper features, such as more
resonant peaks and their frequency information, the classifier
performance would improve both for crack and delamination
detection. More flexible classifiers, such as neural networks or
random forests could also yield better results; this is a matter for
further study. Moreover, the acoustic approach could be used as
a complementary method to X-ray analysis, which can identify
cracks accurately, but not delaminations.
The cracks and delaminations in this study were relatively
small, the vast majority of them residing in the passive region
of the capacitors. Nevertheless, even a small fault in a capacitor
can grow over time, and water can get inside the component
with harmful results. Even though the dimensions of a damaged
region cannot be accurately defined by cross section images,
damage at the capacitor termination less than 500 µm long can
cause changes in the acoustic signature.
Remarkably, the results were identical for flex and “normal”
termination capacitors. The authors expected that some differ-
ence would be seen between these capacitor types, but this
turned out not to be the case. From the production testing point
of view, this is a welcome result, as the test method would not
have to be redesigned for different termination types.
Even though the capacitors used in this study are physically
larger than those found in, e.g., consumer electronics, acous-
tic screening is applicable for case sizes of 1206 and below
[27]. It must also be noted that smaller capacitors are not as
prone to damage from bending [7]. Therefore, the most potential
applications of acoustic screening are in, e.g., power electron-
ics, where large case sizes and heavy circuit board assemblies
increase the risk of flex cracks and delamination.
The physical phenomena causing the changes in the acoustic
response has not been discussed yet. It seems likely that de-
lamination near the end terminations of an MLCC allows the
capacitor to vibrate more freely in a direction perpendicular to
the PCB surface. Because vibration in this direction creates the
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largest displacement for the point contact sensor, increase in
main peak values is observed. Resonance peaks observed in the
secondary peak region have lower amplitude, and thus are likely
related to other resonance modes of the capacitor body. A possi-
ble explanation for this is that cracks in the ceramic body allow
the MLCC to vibrate more freely along these modes, causing
secondary peaks to appear.
V. CONCLUSION
A set of MLCCs was investigated acoustically before and after
inflicting damage. The changes in the acoustic characteristics
were analyzed and compared against the damage observed in
each capacitor. The acoustic data were also used to train an SVM
classifier to detect damaged capacitors.
The main finding was that delamination of the capacitor
causes quite consistent changes in the acoustic response of a
capacitor. Cracks in the capacitor cause changes as well, but are
not as easy to detect as those caused by delamination.
The SVM classifier showed promising performance. Nev-
ertheless, further study on feature extraction and classifier al-
gorithms is required to develop a reliable capacitor screening
method based on acoustic emission.
APPENDIX
In order to calculate the error bars for Fig. 5, two major
sources of measurement uncertainty were identified: 1) the
misidentification of cracks and delaminations in the cross sec-
tion images, and 2) the sampling error caused by the relatively
low number of capacitors in many of the bins in Fig. 5.
Other sources of uncertainty, such as the uncertainty present
in the measurement instruments, do exist in this case. It was
estimated that their contribution to the total uncertainty of the
measurement was insignificant when compared to the uncer-
tainty of the identification of damage and the sampling error.
For the identification of cracks, it was estimated that the likeli-
hood of a false positive, i.e., an intact capacitor being incorrectly
determined as having a crack, was 1%. The likelihood of a false
negative, i.e., a cracked capacitor being incorrectly determined
as being intact, was estimated to be 5%. Similarly, for the iden-
tification of delamination, the false positive rate was estimated
as 5%, and the true positive rate as 10%.
Using these false identification rates, the maximum and mini-
mum bounds of the error a+ and a− were calculated. This yields
an asymmetrical distribution of error, which is difficult to han-
dle in the uncertainty estimation process. For this reason, these
bounds were converted into a single standard uncertainty value
u1 based on [33, Sec. 4.3.8] as
u21 =
a+ − a−
12
. (1)
To estimate the effect of sampling error, upper and lower
bounds were taken from the chart in [34, p. 494]. In this
case, the distribution is heavily skewed, especially in the bins
where the number of capacitors is low. The obtained up-
per and lower bounds were again used to obtain a single
standard uncertainty value
u22 =
a+ − a−
12
. (2)
The two standard uncertainty values were then merged into a
combined uncertainty
uc =
√
u21 + u
2
2 (3)
which was then multiplied with a coverage factor k = 1.960 to
expand the uncertainty to a confidence level of 95%. The bar
height in Fig. 5 is the observed percentage of capacitors p in
each bin, and the error bars cover the range p± kuc . The error
bars are cut at 100% and 0% because values outside these values
are not meaningful.
The authors would like to note that this analysis is heavily
simplified. The resulting uncertainty estimates are taken to be
good enough for an understanding of how well the results can
be generalized to another, similar capacitor population.
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ABSTRACT The energy transition and electrification across many industries place increasingly more
weight on the reliability of power electronics. A significant fraction of breakdowns in electronic devices
result from capacitor failures. Multilayer ceramic capacitors, the most common capacitor type, are especially
prone to mechanical damage, for instance, during the assembly of a printed circuit board. Such damage may
dramatically shorten the life span of the component, eventually resulting in failure of the entire electronic
device. Unfortunately, current electrical production line testing methods are often unable to reveal these
types of damage. While recent studies have shown that acoustic measurements can provide information
about the structural condition of a capacitor, reliable detection of damage from acoustic signals remains
difficult. Although supervised machine learning classifiers have been proposed as a solution, they require a
large training data set containing manually inspected damaged and intact capacitor samples. In this work,
acoustic identification of damaged capacitors is demonstrated without a manually labeled data set. Accurate
and robust classification is achieved by using a one-class support vector machine, a machine learning
model trained solely on intact capacitors. Furthermore, a new algorithm for optimizing the classification
performance of the model is presented. By the proposed approach, acoustic testing can be generalized to
various capacitor sizes, making it a potential tool for production line testing.
INDEX TERMS Ceramic capacitors, acoustic emission, nondestructive testing, support vector machines
I. INTRODUCTION
THE ONGOING ENERGY TRANSITION has resultedin exponential growth in the market for power electron-
ics, with applications such as inverters and drives gaining
ground in renewable energy production and the electrification
of transport [1]. This places more weight on the reliability
of power electronics devices, as their abrupt failure will
cause costly repairs, downtime, and in worst cases, even
life-threatening situations. It has been estimated that 30% of
failures in electronics are caused by capacitors [2], the most
widely used type of which is the multilayer ceramic capacitor
(MLCC) with more than 1012 units produced yearly [3].
Cracks are the most prevalent failure mode in ceramic
capacitors [4]. The reason for this can be traced back to the
structure of the MLCC, which consists of interleaved metal
electrodes with ceramic dielectric (typically barium titanate,
BaTiO3) in between. The ceramic material gives the capaci-
tors a high permittivity [5], but also makes them fragile. Thus,
MLCCs can be damaged during the assembly of the printed
circuit board (PCB), for example, as a result of thermal
stresses during soldering or mechanical mishandling of the
circuit board. Common examples of stress-induced damage
include cracks in the dielectric material and delamination
between internal electrodes or between the capacitor body
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and its end terminations or solder joints [6]. Defects related
to the manufacturing process of the component are also likely
to increase the probability of damage during assembly [4].
Large case sizes (1812 and up) in particular have been shown
to be prone to bending damage [7], and while the majority of
the MLCC demand is focused on smaller case sizes found in
consumer electronics and automotive industry [8], larger case
sizes remain common in industrial applications and power
electronics [9].
Detecting a faulty MLCC can be difficult, because the
damage may not be visible on the outside of the component.
If a crack occurs within the active area of the capacitor, for
example cutting through a portion of the internal electrodes,
the damage can be observed as a reduced capacitance. On the
other hand, if a crack or delamination resides in the passive
region of the MLCC or at the solder joints, the electrical
operation of the component is likely to remain unaffected
at first [10]. However, the damaged location may grow in
size over time, leading to a reduced capacitance, open- or
short-circuit [11], or deterioration of the dielectric material
as moisture gets inside the capacitor [12], [13]. While the
probability of failure for a single capacitor is very low,
capacitor failures contribute to a significant fraction of faults
in the field owing to the high number of components that are
used [4]. A fast and reliable postassembly MLCC screening
method would therefore be a highly valuable quality tool for
quality assurance.
A. DETECTING DAMAGE IN MLCCS
Various methods for detecting damaged MLCCs have been
proposed over the years, with a thorough survey on the
topic available for instance in [4]. As pointed out in the
survey, techniques commonly found in screening and quality
assurance applications include electrical, optical, and non-
contact ultrasound measurements. However, these methods
are mainly applied to detecting manufacturing defects instead
of damage caused later on in the production line. Moreover,
the crack detection capability of these methods is limited,
with electrical measurements often unable to detect cracks
and optical methods limited to the surface of the component.
C-scan ultrasonic microscopy has traditionally been capable
of detecting only horizontally spanning defects in MLCCs,
even though a newer technique capable of observing vertical
damage has also been developed. However, this method is
mainly used in R&D and pilot production [14] as it includes
submerging the component in water, and it is not able to
reveal damage in areas covered by end terminations [4].
For a more thorough inspection, a capacitor can be chem-
ically etched [15] or mechanically microsectioned [16] in
order to reveal damage in the ceramic body, but these meth-
ods are slow, laborious, and destructive to the component.
Recently, X-ray imaging methods with sufficient accuracy
for detecting cracks [16] and dielectric breakdown defects
[17] have been developed. However, these methods require
manual interpretation of the X-ray images. Moreover, delam-
ination between the ceramic body and the solder joints cannot
be seen by X-ray imaging, and cracks in the capacitor body
are only visible from certain angles.
B. ACOUSTIC EMISSIONS IN MLCCS
MLCCs are known to generate acoustic emissions when
subjected to alternating voltage. This phenomenon arises
from the piezoelectric properties of the ceramic dielectric,
making the capacitor body physically vibrate as the ceramic
material deforms under an AC field [18]. To date, there
are several studies about observing cracks in the ceramic
body of an MLCC by changes in its resonant behavior [19]–
[21]. These experiments are mainly based on ferroelectric
transduction, where a DC-biased MLCC is excited using
short radio frequency tone bursts, and the decay of the MLCC
“ringing" after the burst is observed.
A more recent method introduced by the authors is based
on electrically exciting the component to vibration, simul-
taneously measuring the vibrations using a point contact
sensor [22]. However, while the acoustic emissions carry
information about the structural condition of a capacitor,
the signs of damage can be hard to detect. The amplitudes
and frequencies of the mechanical resonances exhibited by
MLCCs show variation even between intact components, and
although mechanical damage often manifests as new resonant
peaks, such peaks do not always appear [23]. Moreover, fac-
tors such as electromagnetic interference and variations in the
mechanical contact between the sensor and the capacitor can
cause artifacts that could be misinterpreted as signs of dam-
age. Supervised machine learning algorithms were proposed
in [23] as a solution on a small number of damaged MLCCs,
yet the accuracy and applicability of the method remained
inconclusive. A major disadvantage of such an approach is
that a supervised machine learning model requires a large
annotated data set on which the model is trained. This, in
turn, requires acoustic measurements on a number capacitors,
which are then labeled as intact or damaged. The labeling
process itself has to be carried out manually for instance by
microsectioning, which itself is a laborious and error-prone
procedure.
In this study, the authors continue their prior work reported
in [22] and [23] by showing that MLCC acoustic emission
measurement can be used as a practical quality assurance
testing method without the need for a laborious and error-
prone labeling process. This is successfully demonstrated
by identifying damaged MLCCs using the one-class support
vector machine, a machine learning model trained only on
pristine capacitor samples. Furthermore, a new algorithm for
optimizing the hyperparameters of the model is introduced.
By combining the proposed algorithm with proper feature ex-
traction, the model can be made robust against error sources
in the measurement setup and intrinsic variations between
individual components.
II. METHODS AND RATIONALE
The task of acoustically detecting damaged MLCCs was
approached as a machine learning problem, because it is in-
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feasible to manually set the classification rules [23]. Machine
learning models commonly employ a supervised learning
strategy, in other words, the model is trained on a data set
of annotated samples. In the case of detecting faulty MLCCs,
a two-class classifier would be a natural solution, as the main
interest is to know whether a capacitor is damaged (class 1)
or not (class 0). To this end, the model would require a train-
ing data set consisting of MLCC acoustic signatures, each
associated with a class label, 0 or 1. However, the process
of constructing such a data set is work-intensive and prone
to error, as a sufficiently large number (dozens or hundreds)
of examples from both classes are needed for the training
process. While the acoustic characterization process itself is
relatively simple and fast, annotating the capacitor samples
for instance by microsectioning or X-ray is time consuming.
Visual interpretation of the results is also an error-prone pro-
cess, which leads to training data with mislabeled examples.
This degrades the performance of the classifier and makes
the evaluation of the model more difficult. Different failure
modes are also likely to induce different characteristics in the
acoustic response, and thus, dozens or hundreds of capacitors
with cracks and delaminations are needed. Moreover, the size
and internal structure of an MLCC affect both the acoustic
characteristics and the most prevalent failure modes of the
component. Thus, each MLCC size and capacitance should
preferably have a data set of its own.
To overcome these limitations, a one-class support vector
machine (OSVM), a machine learning model that learns from
only a single class of examples, is employed. The model is
used to determine whether a new acoustic signature is similar
to known pristine signatures or not, thereby eliminating the
need for annotated examples of damaged MLCCs. However,
the performance of the model strongly depends on its hy-
perparameters, which are set before the learning process.
Several methods for optimizing these parameters exist, but
they typically require either beforehand knowledge of the
classification problem, or counter examples, which in the
case of MLCCs are costly to obtain. To facilitate fully au-
tomated hyperparameter optimization with no counter exam-
ples or a priori knowledge of the problem, a new algorithm
is presented. The proposed approach can drastically reduce
the amount of work on constructing a labeled data set of
acoustic emissions, as only a few samples will be needed
for testing the performance of the model. While the use
of an OSVM in the context of screening MLCCs is novel,
it has previously been used in other damage detection and
condition monitoring applications, where data representing
anomalous instances are difficult or expensive to collect
[24]–[27].
The experimental section of this paper is organized as
follows: first, an acoustic data set is composed of measure-
ments performed by the authors in a prior study [23] on a
set of intact and mechanically damaged MLCCs. For each
capacitor, a set of numerical features are extracted from
the raw acoustic data. Each MLCC is then attached with a
label indicating whether the component is damaged or not.
TABLE 1. Equipment used for Acoustic Emission measurements
(refer to Fig. 2)
Device Make and model
Signal generator Agilent 33250A
Point contact sensor KRN Services KRNBB-PC
Preamplifier KRN Services AMP-1BB-J
Oscilloscope Keysight InfiniiVision MSO-X 4104A
For automated detection of damaged MLCCs, an OSVM
model is trained using data only from intact components.
To achieve a high detection rate with few false alarms, an
algorithm for optimizing the hyperparameters of the model
is introduced and tested on commonly used benchmark data
sets. Finally, the performance of the OSVM model is tested
against damaged and undamaged capacitors.
A. ACOUSTIC EMISSION MEASUREMENTS ON MLCCS
The raw data used in this study originate from measurements
performed by the authors in [22] and [23]. The measure-
ments were conducted by subjecting soldered MLCCs to
an excitation signal, simultaneously measuring the acoustic
response of the capacitor using a piezoelectric point contact
sensor placed on top of the component (see Fig. 1). An
AC voltage chirp with pulsed waveform (duty cycle 80%,
±10 Vpeak-to-peak) was used as the excitation signal, with
frequency linearly increasing from 100 Hz to 2 MHz over
a duration of 100 ms. This study was performed on 2220-
size MLCCs, as larger capacitors are more likely to be
affected by damage related to soldering and assembly. The
capacitors were from two manufacturers, all rated at 24 V
and 22µF, and soldered on the test PCBs in three differ-
ent azimuthal orientations (0◦, 45◦, and 90◦). The acoustic
emission measurement setup is depicted in Fig. 2 along with
other preprocessing and analysis steps, and the measurement
equipment is listed in Table 1.
The capacitors were soldered on two identical custom-
made test boards (PCB 1 and PCB 2) with 60 MLCCs each.
Each capacitor was acoustically characterized, after which
the capacitors on PCB 1 were mechanically damaged by
subjecting the board to a controlled four-point bending setup
with an average bending strain of 6000µStr. The capacitors
on PCB 1 were then recharacterized, cut from the PCB, and
inspected for damage using cross-sectioning. Both cracks and
delaminations were found during the inspection, with the
length of the delaminations ranging from 200 µm to 500 µm
and the smallest cracks being only 100 µm in size. A selected
set of the MLCCs were also inspected for cracks with X-ray
imaging because their acoustic signatures appeared slightly
anomalous. The cross-sectioning and X-ray imaging were
performed in the same study as the acoustic measurements;
more comprehensive descriptions of the methods are avail-
able in [22] and [23].
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FIGURE 1. Acoustic measurement setup [22] showing the point contact
sensor placed on top of an MLCC. The sensor itself is housed in a 3D-printed
fixture.
B. PREPROCESSING OF ACOUSTIC DATA
The raw acoustic waveforms (see Fig. 3A) were filtered
using interval-dependent wavelet denoising. A second-order
biorthogonal wavelet with eight vanishing moments was
chosen for accurate signal approximation and smooth re-
constructed waveform. After denoising, the waveforms were
high-pass filtered in order to remove the high-amplitude
burst below 150 kHz seen in Fig. 3A, likely related to PCB
resonances [28], using a fourth-order Butterworth filter with
a cutoff frequency of 150 kHz. After this, the harmonics
caused by the pulsed waveform of the excitation signal were
removed. To achieve this without losing the content of the
acoustic signal at the excitation frequency, the signal was
divided into 64 blocks with a 50% overlap. To facilitate an
accurate overlap-add decomposition [29], each block was
windowed using the von Hann function, and then low-
pass filtered using a fourth-order Butterworth filter with a
cutoff frequency of 1.3 times the excitation frequency at
the endpoint of the block to remove the frequency content
above the first harmonic. Finally, the filtered signal u(t) was
reconstructed from the filtered blocks using the overlap-add
method. The aforementioned steps were performed using
zero-phase forward-backward filtering to avoid distorting the
phase of the signal.
After filtering, the envelope e(t) (see Fig. 3B) was calcu-
lated from the filtered signal u(t) using the Hilbert transform
H as
e(t) = DS
{
lpf
[√(
u(t)
)2
+Re
{H(u(t))}2]}, (1)
where DS and lpf denote downsampling and low-pass filter-
ing, and Re denotes the real part of the Hilbert transform.
The envelope can be seen as the acoustic amplitude response
of the capacitor. In addition, the instantaneous phase response
(see Fig. 3C) was calculated for each MLCC as
φ(t) = DS
{
lpf
[
∠H
(
u(t)
C(t)
)]}
, (2)
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FIGURE 2. Flowchart of the procedure for composing the acoustic emission
(AE) data set (from top to bottom). Raw acoustic data, optical microscopy
images, and X-ray images originate from prior work of the authors [22], [23].
The data set used in this study was composed by processing the raw acoustic
data and inspecting the cross-sectional and X-ray images. A total of 180
MLCC samples from two test boards were included in the data set: 60 intact
capacitors from PCBs 1 and 2 each, and 60 capacitors from PCB 1 after a
controlled bending procedure. The extracted features and categorical labels
were used as input and output variables for the OSVM model.
where C is a linear sinusoidal chirp whose frequency sweep
corresponds to the acoustic excitation signal. Finally, the
resulting amplitude and phase responses were downsampled
to 10 000 points each for feature extraction. All parameters
related to signal processing were chosen empirically by ex-
amining acoustic data from both damaged and undamaged
capacitors.
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C. FEATURE EXTRACTION
Feature engineering is a critical part of constructing a ma-
chine learning model, as its purpose is to reduce the di-
mensionality of the data and provide the model with only
relevant information about the problem. To this end, a set of
numerical features were extracted for each capacitor sample
after preprocessing the raw acoustic waveforms.
While machine learning models using raw waveforms have
been developed [30], such models are usually trained on large
data sets with tens or hundreds of thousands of samples.
Training a model with plain acoustic waveforms is unfeasible
in this case, because the size of the data set is limited, and
only a small fraction of the points in a single waveform
are relevant. Moreover, the acoustic waveforms cannot be
downsampled to under 500 points without losing the charac-
teristics of the data, whereas most machine learning models
perform poorly when the dimensionality of the data is higher
than the number of samples [31].
Because the total number of capacitors was only 180, the
number of features had to be limited to a number much
smaller than the size of the data set. Furthermore, the features
themselves had to be robust so that no external factor, such
as EMI noise or variations in the sensor-capacitor contact,
would bias the classification results. Based on these con-
ditions, eight numerical features shown in Table 2 were
extracted for each MLCC. The resonant peak amplitudes A1
andA2 along with their corresponding resonance frequencies
f1 and f2 were chosen, as past studies [20], [21], [23]
have suggested that these resonance peaks might indicate
the presence of damage. However, especially A1 and A2
displayed notable systematic differences between two intact
PCBs, probably related to external factors such as the level
of ambient EMI, as the two boards were characterized on dif-
ferent occasions. Nevertheless, resonant peaks were assumed
to be a very likely indicator of physical damage, and thus,
the feature set was appended with the median amplitude mA
and frequency mf of ten of the highest resonant peaks below
700 kHz. Furthermore, it was assumed that mechanical dam-
age would cause distortions in the acoustic phase response
of a capacitor body. Therefore, the total phase shift ∆φ
was calculated for each capacitor. Finally, as an additional
indicator of phase distortions, the mean group delay ripple
GDR was calculated as the mean value of deviations from a
linear frequency slope, as shown in Fig. 3D.
Finally, an acoustic data set (see Table 3) was composed
by combining the extracted acoustic features with the micro-
sectioning and X-ray results. Thus, the acoustic response of
each MLCC is represented as a vector
xi = (A1, A2, f1, f2,∆φ,mA,mf , GDR) (3)
and the data set X consists of pairs of feature vector xi and
class label yi
X =
{
(xi, yi) |xi ∈ R8, yi ∈ {0, 1}
}
(4)
where i = 1 . . . 180, y = 0 denotes nondamaged and y = 1
damaged MLCC. All data in X were standardized to zero
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FIGURE 3. Numerical features (see Table 2) were extracted from raw acoustic
signatures (example shown in A). From the signal envelope (B), amplitudes
and frequencies of the highest peaks below and above 700 kHz (the dashed
red line) were used as features (marked with red circles). Additionally, the
median amplitude and frequency of all resonance peaks in B were chosen as
features. From the phase graph (shown in C), total phase shift and group delay
ripple (zoomed-in section D) were used as features.
TABLE 2. Features extracted from the acoustic responses
(1) A1 Amplitude of the highest peak below 700 kHz,
typically found at approx. 500 kHz
(2) A2 Amplitude of the highest peak
above 700 kHz
(3) f1 Frequency of A1
(4) f2 Frequency of A2
(5) ∆φ Total phase shift calculated from (2) as
∆φ =
∫
t |φ(t)|dt
(6) mA Median amplitude of all resonance peaks
in the acoustic spectrum
(7) mf Median frequency of all resonance peaks
in the acoustic spectrum
(8) GDR Mean group delay ripple. For each descending
slope in the instantaneous phase curve, group delay
ripple was calculated as the maximum deviation from
the corresponding linear slope (see Fig. 3, bottom
graph). The feature GDR was composed as the mean
of all calculated group delay ripple values.
mean and unit variance according to the mean and variance
of the data from PCB 2.
In order to avoid any external influences affecting the
outcome of the tests, the model was trained on data from the
intact PCB 2, and then tested on data from PCB 1 before and
after bending. This approach ensures that the model is trained
and tested on different individual components, which gives
more realistic results on the performance of the model. The
model was trained solely on data from pristine components
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(y = 0), in which case the target labels can be considered
accurate. However, the labels for the bent PCB 1 cannot
be guaranteed to be fully accurate as the image inspection
was done by eye, and small cracks and delaminations, in
particular, can be difficult to spot. The acoustic data and
target labels for PCB 2 (after bending) were also used as the
basis of the analysis in a prior publication [23].
TABLE 3. Summary of the MLCC acoustic data set. The MLCCs on PCB 2
were used for training the OSVM model and hyperparameter optimization
Total No damage Damage
samples (y=0) (y=1)
PCB 1 (before bending) 60 60 0
PCB 1 (after bending) 60 23 37
PCB 2 (no bending) 60 60 0
Total 180 143 37
D. ONE-CLASS SUPPORT VECTOR MACHINE
As the motivation of this work was to distinguish damaged
MLCCs based solely on intact examples, common supervised
machine learning classifiers were unsuitable for the task.
Instead, an outlier detection approach was employed using
the one-class support vector machine (OSVM), which uses
data from only a single class (intact capacitors) during the
learning phase. Thus, the one-class SVM has been regarded
as a semisupervised method [32], [33], even though the term
semisupervised commonly refers to methods that use both
labeled and unlabeled data [34], [35].
The OSVM [36] is a variant of the normal support vector
machine (SVM), which works by fitting a hyperplane into the
feature space so that it divides the data points into different
categories by a largest possible margin [37]. However, with
data available from only one class, the OSVM separates the
data points from the origin in a high-dimensional transformed
feature space constructed using a transformation φ. The
transformed data set is created from the original feature space
by a kernel mapping κ,
κ(xi, xj) = 〈φ(xi), φ(xj)〉 (5)
that is, the training data that the model receives are the inner
products of the samples in the original feature space [36]. For
this work, the widely used Radial Basis Function (Gaussian)
kernel
κ(xi, xj) = e
−‖xi−xj‖
2
γ (6)
was chosen, as it is typically the best-performing and even
the only viable kernel for one-class problems [38]. A trained
OSVM model is described by a plane in the transformed fea-
ture space, defined by the support vectors (boundary points)
of the training data set. A new data point is classified by
evaluating its kernel mapping with the support vectors, thus
defining onto which side of the plane the point falls.
E. OSVM HYPERPARAMETERS
The complexity of the OSVM decision surface is controlled
by two hyperparameters, ν and γ. The parameter ν ∈ ]0, 1]
sets both the lower limit for the fraction of the support vectors
out of all training samples and the upper limit for the fraction
of misclassifications allowed within the training data. On the
other hand, γ > 0 controls the kernel bandwidth in (6), that
is, the range of influence of the support vectors. In general,
increasing ν and γ result in a tighter, more complex decision
boundary surrounding the target class, whereas smaller val-
ues result in a decision boundary that encloses the training
data points with a wider margin.
In order to reliably detect damaged capacitors without
false alarms, the hyperparameters (ν, γ) need to be properly
tuned. When fitting the OSVM to data from intact MLCCs,
the resulting decision surface should enclose the data points
compactly enough to detect any anomalous instances. On the
other hand, any new data points from the target class should
fall within the decision boundary so as to avoid false alarms.
Grid search [39] is a common strategy for hyperparameter
optimization: a model is trained and validated over a grid
of (ν, γ) values, and the combination of parameters yielding
the best classification performance is selected. However, this
approach needs data from both classes, because both positive
and negative samples are needed to evaluate the performance
of the model. In the context of this study, this would translate
into using the intact and damaged MLCC samples both for
tuning the model parameters and evaluating the performance.
While this could be achieved by means of nested cross-
validation, this approach was not chosen as the sample size
was limited, and systematic differences between test boards
could be present, as discussed in section II-C.
Several methods have been proposed for optimizing the
OSVM hyperparameters using data from one class only.
Such methods typically apply heuristics-based rules to select
the parameters or generate synthetic outliers, which can
then be used to optimize the parameters using conventional
techniques such as grid search [40]. Many of the proposed
approaches, such as [24], [41], [42], optimize for kernel
parameter γ only and require determining the value for ν
beforehand. Some of the more recent approaches, such as
[40] and [42], rely on detecting edge patterns, that is, training
samples that lie on the edge of the group data points. One
such method, based on artificial outlier generation [40], was
implemented and tested on the MLCC data. Although the
algorithm rivals or outperforms most other algorithms on
benchmark data sets, it did not yield unambiguous values
for ν and γ in the case of the capacitor data set. Instead,
several (ν, γ) pairs with equal preference were discovered.
This was likely due to a high ratio of data dimensionality
and number of data points, which resulted in nearly all data
points being detected as edge patterns. Because the algorithm
generates one synthetic outlier per edge pattern, selecting all
training data as edge patterns essentially results in overfitting
the OSVM model to the training data.
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F. PROPOSED HYPERPARAMETER SELECTION
ALGORITHM
To optimize the hyperparameter of the OSVM using data
from the target class (intact MLCCs) only, a simple heuristic
hyperparameter optimization algorithm was designed. Essen-
tially, the algorithm performs a grid search across a plane of
(ν, γ) values, evaluating the performance of the OSVM at
each grid point to find the optimal hyperparameters. How-
ever, in the absence of outlier data (damaged MLCCs), the
model is evaluated on target class samples only. Because
the training data comprises only dozens of data points, the
evaluation is performed by leave-one-out cross-validation,
that is, training the model on all but one sample of data,
and evaluating the performance on the left-out sample. By
repeating this process over each sample in the data set, the
mean target class accuracy of the model can be estimated.
Fig. 4 illustrates how the cross-validated target class accuracy
depends on the choice of the parameters ν and γ, showing
a distinct “plateau” where the model reaches its maximum
target class accuracy.
As discussed in Section II-E, the choice of parameters
(ν, γ) affects the margin between the OSVM decision surface
and the training data points, as well as the complexity of the
decision surface. Selecting the points (ν, γ) from the middle
of the “plateau” in Fig. 4 will result in a decision surface
with a large margin for the training data, which translates
into a high target class accuracy. Such a model will rarely,
if ever, yield a false alarm on an intact component. However,
if the margin between the decision surface and the training
data is too large, the model will be insensitive to anomalous
instances, such as small signs of mechanical damage in an
acoustic signal. Conversely, selecting the hyperparameters
such that the target class accuracy is low will result in a model
that is oversensitive to outliers and often yields false alarms.
The fundamental premise of the proposed algorithm is
that the optimal hyperparameters (νopt, γopt) can be found
at the edge of the plateau in the hyperparameter space (see
Fig. 4). By selecting such a point, 1) the cross-validated
accuracy within the target class is close to 100%, and 2)
even a small increase in the complexity of the decision plane
results in a significant reduction in the target class accuracy.
Heuristically, condition 1 ensures that the model gives very
few false alarms on target class data, whereas the purpose of
condition 2 is to minimize the margin between the decision
boundary and the training samples, resulting in a classifier
sensitive to outliers.
The algorithm1 was implemented in two parts. Algorithm 1
constructs a 2D map (as in Fig. 4) of the target class accuracy
A ∈ Rngrid×ngrid for the OSVM by evaluating the model
over a log-spaced grid of hyperparameters ν and γ. The
evaluation is performed using the method of leave-one-out
1Note that in this study, damaged MLCC samples (outliers) were denoted
by the label 1, which is to be understood as a positive test result. However,
literature on OSVM algorithms commonly refers to the target class samples
as 1 and outliers as 0. The results for the benchmark data sets follow the
latter convention.
cross validation, which uses as much of the data for training
the model as possible. The second part, Algorithm 2, finds a
“critical” point (νc, γc) on the accuracy surface A where the
target class accuracy of the model starts falling most steeply,
that is, where the downward curvature of the surface reaches
its highest value. This point can be found where the Laplacian
of A reaches its highest negative value:
(νc, γc) = arg min
ν,γ
(∇2A) . (7)
In other words, the algorithm locates the sharpest part of the
“cliff” on the accuracy surface, as seen in Fig. 4. Hence, the
algorithm was named Cliffhanger.
In order to validate the basic principle of finding the
optimal hyperparameters according to (7), the algorithm was
tested on several benchmark data sets from the UCI ma-
chine learning repository. The test results indicate that such
a choice of hyperparameters indeed generally yields clas-
sification performance on a par with other hyperparameter
selection techniques, with a more in-depth analysis provided
in Appendix. However, the good overall performance of the
algorithm was achieved at the cost of a number of false
alarms because the target class accuracy of the model at
(νc, γc) did not not reach 100%. In some applications, such as
detecting damaged MLCCs, avoiding false alarms should be
prioritized. For such tasks, an optional threshold condition
was imposed on the selection of ν and γ. When using the
threshold, Algorithm 2 checks whether the cross-validated
accuracy at (νc, γc) is above a given threshold value T . If
the condition is not satisfied, the algorithm locates the point
(ν, γ) closest to (νc, γc) in terms of grid coordinates such that
the cross-validated accuracy at (ν, γ) is exceeded. For this
study, a strict threshold value of
T = max(A) (8)
was imposed. Such a condition was chosen because in the
case of detecting faulty components, false alarms can be
considered more costly than false negative results. If a false
alarm from a single component results in the rejection of the
entire device, the ratio of false alarms should be kept as low
as possible. It was also experimentally verified that by using
the threshold T instead of (νc, γc) yielded significantly less
false alarms on pristine MLCCs.
After finding the values for νopt and γopt, the output value
for νopt in Algorithm 2 is scaled by a factor of 1− 1/N . This
is done because the parameter ν sets the minimum fraction
of how many data points within the training set are used as
support vectors. As the cross-validation results in Algorithm
1 are obtained with training sets ofN−1 points each, the final
value for νopt must be rescaled for training data of N points.
After optimizing the hyperparameters using Algorithms 1
and 2, the final OSVM model is trained using the full data
set.
The functionality of the Cliffhanger algorithm was verified
against other OSVM hyperparameter optimization methods
on six commonly used data sets from the UCI machine
VOLUME 4, 2016 7
Levikari et al.: Nondestructive Acoustic Testing of Ceramic Capacitors using One-Class SVM with Automated Hyperparameter Selection
learning repository, with the results listed in Appendix.
The algorithm was evaluated both with the threshold (8)
(Cliffhanger-T), and without it (Cliffhanger). Based on the
results, Cliffhanger generally performs on a par with the ref-
erence methods, whereas Cliffhanger-T yields significantly
fewer false alarms at the cost of overall performance. How-
ever, Cliffhanger-T was selected for this study, as avoiding
false alarms is of high priority. While the proposed algo-
rithm has a high computational complexity owing to the
combination of grid search and cross-validation, the results
in Appendix indicate that it is suitable for situations where
the number of samples is low and the ratio D/N is high.
Algorithm 1 (ν, γ) –performance surface mapping
Require: Input data matrix X = (x1 . . .xn)
T ∈ RN×D
(intact MLCCs)
#Set parameters for grid mapping
Set ngrid ← 20
Set log-spaced range of ngrid points ν ←
{
10−2 . . . 100
}
Set log-spaced range of ngrid points γ ←
{
10−3 . . . 102
}
Preallocate accuracy matrix A = (ai,j) ∈ Rngrid×ngrid
#Partition data for leave-one-out cross-validation
for n = 1 to N do
#Perform grid mapping over hyperparameter space us-
ing partitioned data
Set (Xtrain,Ytrain) =
(
X \ {xn}, 0(N−1)×1
)
Set (Xtest, Ytest) = (xn, 0)
for i = 1 to ngrid do
for j = 1 to ngrid do
Train one-class SVM(νi, γj) on (Xtrain,Ytrain)
Evaluate the SVM on (Xtest,Ytest)
Calculate evaluation accuracy accν,γ
Update ai,j ← ai,j + accν,γ
end for
end for
end for
return (1/N) ·A
Algorithm 2 Hyperparameter selection
Require: Accuracy matrix A = (ai,j)
Require: Hyperparameter grid (ν,γ)
Require: Threshold switch s ∈ {True, False}
Require: Threshold value T
Calculate discrete Laplacian∇2A
Find grid coordinates (ic, jc)← arg min
i,j
(∇2A)
Set critical point (νc, γc) = (ν(ic),γ(jc))
if s = False orA (ic, jc) ≥ T then
Set (νopt, γopt)← (νc, γc)
else
Set (νopt, γopt)← arg min
(i,j)∈argmaxA
‖(i, j)− (ic, jc)‖2
end if
return ((1− 1/N)νopt, γopt)
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FIGURE 4. Hyperparameters were optimized by mapping the target class
accuracy of the OSVM model across a grid of points. At each point, the
in-class accuracy of the model was computed using leave-one-out
cross-validation. The red dot marks the critical point with the steepest
downward curvature in accuracy, defined as the minimum of the Laplacian of
the performance plane. The red cross indicates the point of optimal
hyperparameters, defined as the point closest to the critical point where the
mean accuracy reaches its maximum value, that is, no false alarms are
triggered within the training data.
G. EVALUATION METHODS
After optimizing the hyperparameters and training the
OSVM on intact capacitors from PCB 2, its classification
performance was tested on measurements from PCB 1 both
before and after bending. The performance of the model was
evaluated using a confusion matrix, which is a common tool
for visualizing the output of a classifier model as
O
ut
pu
ts
0
1
(
TP FP
FN TN
)
(9)
1 0
Targets
where TP = True Positive (damaged), FP = False Positive,
FN = False Negative, and TN = True Negative (intact). When
evaluating the model on intact components only, accuracy
(correct outputs/incorrect outputs) was used as the main
evaluation metric. When both damaged and nondamaged
components were present, precision, recall, and Matthews
Correlation Coefficient (MCC) were used as the indicators
of performance. In short, precision describes how many of
the positive outputs (alarms) are relevant, whereas recall tells
how many of the positive samples were discovered by the
model. MCC can be seen as a balanced performance score,
which accounts for the relative frequencies of each category
in the data. Precision, recall, and MCC can be calculated from
the data in the confusion matrix as
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Precision ∈ [0, 1] = TP
TP + FP
Recall ∈ [0, 1] = TP
TP + FN
MCC ∈ [−1, 1] = (10)
TP · TN − FP · FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)
In addition to the metrics derived from the confusion matrix,
the performance of the model was evaluated using the Re-
ceiver Operating Characteristic (ROC) graph, along with the
Area-Under-Curve value (AUC-ROC) [43].
III. RESULTS
After extracting the features in Table 2 and composing the
data set according to Table 3, the classification performance
of the OSVM was evaluated for two objectives: to discover
damaged MLCCs and to avoid false alarms on undamaged
capacitors. To this end, the data were divided into training
and testing sets based on how the components populated the
test PCBs. The data from intact PCB 2 were used for optimiz-
ing the hyperparameters using Cliffhanger (Algorithms 1 and
2), after which the OSVM was trained on the same data. The
model was then tested on two separate groups of data: intact
MLCCs from PCB 1 before the bending procedure, and the
same components after the PCB had undergone the bending.
This approach was chosen over more commonly used cross-
validation techniques, such as the k-fold cross-validation,
for two reasons. First, each PCB underwent the acoustic
measurements on different occasions, which might translate
into data bias even between two sets of intact capacitors,
as discussed in Section II-C. Secondly, because the data
originated from only two PCBs (PCB 1 was measured twice),
this approach allowed for conducting the training and evalua-
tion process for the damaged MLCCs on different individual
components, as opposed to using components from PCB 1
for both training and testing the model, potentially causing
data leakage.
Ideally, the model should not be able to distinguish the
pristine components on PCB 1 from those on PCB 2, whereas
components on PCB 1 damaged in the bending process
should be detected by their anomalous acoustic signatures.
Furthermore, in order to find out which features in the acous-
tic signal are reliable indicators of damage without being
sensitive to changes between intact components, the OSVM
was tested on several combinations of features, grouped
according to the physical quantity (amplitude, frequency,
phase) they represent.
Test results for components from PCB 1 before and after
bending are shown in Table 4. The results on intact MLCCs
(PCB 1, before bending) show that by using amplitude-
and frequency-related information, the model sees little dif-
ference between intact components on PCB 1 and those
within the training set (PCB 2). However, the inclusion of
frequency-related features consistently yielded a significant
number of false alarms, making them unfit for the fault
detection application using the current experimental setup.
However, this does not necessarily mean that the frequency-
related features do not carry information about the condition
of the component, as the result could be explained by how the
frequency-related features are extracted from the peaks in the
acoustic signal.
The results for MLCCs on PCB 1 after bending show that
the model is able to discover the majority of the damaged ca-
pacitors, except when using only frequency-related features.
The best classification performance in terms of accuracy,
recall, and MCC is obtained using the combination of all
eight features, which, however, results in a high error rate
on pristine MLCCs. For all feature combinations, the model
yields significantly more false alarms on data from PCB 1
after bending compared to pre-bending data, even though
the data originate from the same components. This might
result from failing to notice some signs of damage during
the optical inspection, while another explanation is that the
structure of some of the components was affected by the
bending procedure, while not resulting in actual damage.
To summarize the results, the model outputs for data be-
fore and after the bending procedure were combined. Using
MCC as the indicator of performance, the best results were
obtained by using amplitude-related features only. The com-
bination of amplitude and phase yielded a higher recall rate
than amplitude alone, while also giving more false alarms
on the bent PCB. The addition of phase information may
have actually led to discovering damaged capacitors on the
bent board, which were left undetected during the optical
inspection. As the goal would be to avoid false alarms as
much as possible while maintaining a decent recall rate, the
best feature combinations would thus be either amplitude
only, or amplitude combined with phase information. The
ROC graphs for the model in Fig. 5 also show that amplitude,
phase, and the combination of the two clearly dominate over
the rest of the feature combinations in terms of classification
performance, further confirmed by the AUC-ROC scores in
Table 4.
The results on amplitude-based features were selected
for futher analysis due to the highest MCC score on the
combined data and good precision on the bent PCB 1, even
though the combination of amplitude and phase reached
the highest AUC-ROC score. Confusion matrices based on
amplitude-based input features in Fig. 6 show that the model
fails to detect nine out of 37 damaged MLCCs, while yielding
six false alarms. However, only two false alarms are given
on the pre-bending data even though the same individual
components are in question.
In order to shed more light on the misclassified MLCC
samples, the data set was visualized using the t-distributed
Stochastic Neighborhood Embedding (t-SNE) algorithm
[44]. The algorithm embeds the original, high-dimensional
data in a 2-D presentation while attempting to retain the
structure of the data set such that the neighboring points
in the original space are also close to each other in the
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Input features (feat.#) PCB 1, before bending PCB 1, after bending Before & after combined
Accuracy (%) Accuracy (%) Precision Recall MCC MCC AUC-ROC
Amplitude (1,2,6) 96.67 75.00 0.8235 0.7567 0.4865 0.6655 0.8574
Frequency (3,4,7) 30.00 43.33 0.8000 0.1081 0.1137 -0.3879 0.2318
Phase (5,8) 98.33 68.33 0.7364 0.7568 0.3248 0.6155 0.8460
Amplitude + Freq (1,2,3,4,6,7) 43.33 78.33 0.8333 0.8108 0.5458 0.3081 0.6724
Amplitude + Phase (1,2,5,6,8) 96.67 73.33 0.7692 0.8108 0.4276 0.6605 0.9049
Freq + Phase (3,4,5,7,8) 23.33 61.67 0.7059 0.6487 0.2098 -0.0255 0.4865
All (1-8) 51.67 80.00 0.8205 0.8649 0.5714 0.4018 0.6923
TABLE 4. OSVM classification results using various performance metrics. Hyperparameter optimization and model training was performed on components from
another circuit board (PCB 2). The optimization-training-process was repeated separately on various combinations of input features, which were grouped according
to the physical quantity (amplitude, frequency, phase) they represent. The ROC graphs for the combined before/after data are shown in Fig. 5.
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FIGURE 5. ROC graph describing the performance of the OSVM model using
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FIGURE 6. Confusion matrices for PCB 1 before and after bending the circuit
board. The model was trained using only amplitude-related features, as this
feature set yielded the highest MCC score on the combination of pre- and
post-bending data. Class 1 = damaged component, class 0 = no damage.
2D embedding. The t-SNE visualization of the entire data
set is shown in Fig. 7 along with the OSVM classification
results from Fig. 6b. The majority of the capacitors labeled
as damaged constitute a cluster separate from the intact sam-
ples, suggesting that mechanical damage affects the acoustic
signature of an MLCC in a consistent manner. The way
in which the OSVM specifically classifies the capacitors in
this cluster as anomalous further supports this observation.
However, five or six samples within this cluster appear to be
false positives. In contrast, seven to ten out of 37 samples
labeled as "damaged" are misclassified by the OSVM, and
the majority of these samples appear to lie well within the
group of intact capacitor samples.
Given that the capacitors were manually labeled by visu-
ally inspecting the cross-sectional and X-ray images, it is
likely that some damage was left unseen. In contrast, artifacts
such as scratches in the epoxy may have led to labeling
of some undamaged MLCCs as damaged. To further verify
the inspection results, the cross-sectional images from the
six false positive and nine false negative samples in Fig. 6b
were reinspected. Two false positive samples indeed showed
a small crack in the lower corner of the capacitor body, and
two others showed potential signs of delamination between
the end termination and the solder joint. As for the false
negatives, only two out of seven definitely showed cracks,
and these findings were also confirmed by X-ray. Possible
small cracks were seen in three other samples, and the cracks
observed previously in the rest of the samples were probably
scratches in the epoxy surface of the cross-section samples.
Considering these reinspection results, there is a possibility
that four out of six false positives were actually true posi-
tives, and four out of nine false negatives were actually true
negatives. If the labels were to be corrected according to the
reinspection, the model would reach 88.3% accuracy, 86.5%
recall, and 94.1% precision on the bent PCB 1 according to
the confusion matrix in Fig. 8. However, the outcomes in the
original confusion matrix in Fig. 6b are reported as the final
results.
IV. DISCUSSION
Acoustic characterization is a promising method for non-
destructive testing of MLCCs, especially because it can be
performed on soldered components on assembled circuit
boards. However, in order to generalize the method to capac-
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itors of various sizes and capacitances, it should be possible
to detect damaged components based on pristine examples
only. The results of this study show that by using a one-
class SVM in conjunction with the proposed combination
of preprocessing, feature extraction, and hyperparameter op-
timization, 75–80% of damaged MLCCs can be detected,
while maintaining a false detection rate below 4% on pristine
components. However, the performance values on damaged
capacitors contain some uncertainty, as the reinspection of
the component samples revealed that eight out of fifteen
misclassified capacitors were actually mislabeled. Thus, the
method can be expected to reach a detection rate of over 90%
if a larger data set with more accurate labels is available.
Nevertheless, the classification results are in good agreement
with the way the data are clustered in the t-SNE visualization.
While the model should be sensitive enough to reveal
damaged components, a low ratio of false alarms should be
prioritized over a high ratio of true positives. As the number
of capacitors per device can be high, false alarms can become
very costly, whereas the occurrence of faulty components
in a real-life situation is much lower than in this study.
Given these requirements, the introduced Cliffhanger hyper-
parameter optimization algorithm performs successfully in
selecting the parameters of the OSVM. Even though the false
alarms rate of approx. 4% can still be considered too high
for production line screening, this number can be decreased
by introducing more intact samples in the training data. The
results of this study also highlight the importance of feature
extraction: while the best detection rate on the bent PCB was
achieved by using the full feature set, the misclassification
rate on the intact PCB was also over 50%. This result
can be explained by the way in which the feature values
are distributed: even though some acoustic features may be
strongly correlated with structural damage in MLCCs, intrin-
sic deviations in the physical parameters of the components
and environmental factors will cause feature values from
two difference populations of intact components to overlap.
By appropriate feature selection, a nonoverlapping region
between the two classes can be found.
This study built upon prior research [23], where the use
of resonant frequencies A1 and A2 was evaluated as input
features for an ordinary two-class SVM, reporting an accu-
racy of 78.3%. Because the study was only performed on
capacitors on a single bent PCB assembly (PCB 1), no infor-
mation of the performance on pristine capacitors is available
from the study. Nevertheless, the classification performance
of the one-class SVM on the bent PCB 1 is similar to that of
the binary SVM in [23], while the OSVM maintains a low
false alarm rate on the same exact components prior to PCB
bending. While these observations confirm that the proposed
feature extraction and hyperparameter optimization methods
are applicable for the task of detecting faulty MLCCs, they
also further suggest that the performance results may be at
least partially limited by the labeling process.
A comprehensive comparison with other proposed damage
detection approaches is difficult as there is only limited
information available on the accuracy of the other methods.
However, the insulation resistance measurement, a common
quality assurance tool, is typically capable of revealing only
a minority of cracks [4]. The electromechanical resonance
spectrum measurement [19] has been suggested to be an
accurate method for larger cracks, but less sensitive for
instance to small thermal cracks, and it is also affected by
the prehistory of the component [4]. Furthermore, the method
might be impractical for production PCB assemblies, as it
requires electrical measurements, which are easily affected
by other components on the assembly. In contrast, the acous-
tic method used in this study can be isolated to a single
capacitor even if there are parallel components on the path of
the excitation signal, given that the excitation voltage source
has a sufficiently low source impedance.
While the proposed method performs successfully in de-
tecting damaged MLCCs, the accuracy should be verified
and improved using a larger number of capacitors. Even
though this study was performed on capacitors of only a
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single case size, prior studies [22], [23], [28] have shown
that MLCCs of other case sizes exhibit similar changes in
acoustic behavior when mechanically damaged, suggesting
that the method should be applicable to other case sizes as
well. Moreover, the higher amplitude of acoustic emissions
observed in smaller case sizes [22] will likely result in a
better signal-to-noise ratio, making the acoustic identification
of damage easier for smaller MLCCs. However, validating
this method on MLCCs of other case sizes and capacitances
is a matter of further study. In addition, component sample
misclassifications should be reduced by incorporating other
labeling methods, such as the C-scan ultrasonic microscopy.
On the other hand, the performance may vary with different
capacitor sizes as well as types and degrees of physical
damage, and thus, further study is required. Nonetheless,
the proposed method performs well and could be a valuable
tool for end-of-line testing of PCB assemblies with large
MLCCs, which are especially prone to flex cracking. As the
experiments were performed on data from custom-built test
boards, the method should also be tested on a production PCB
assembly.
V. CONCLUSION
Cracks and delaminations in MLCCs related to soldering,
PCB assembly, and handling remain problematic, as there
are no commonly used tools for fast and reliable screen-
ing for these types of damage. In this work, an acoustic
nondestructive testing method for MLCCs was demonstrated
on assembled PCBs. For detecting damaged or anomalous
capacitors, the method employs a one-class support vector
machine, a machine learning model trained solely on pristine
capacitor examples. Furthermore, an algorithm for optimiz-
ing the hyperparameters of the model is presented.
First, acoustic measurement data from MLCCs was ob-
tained from a prior study. The data contained measurements
from 120 intact capacitors on two test PCBs, and another 60
measurements after one of the boards was subjected to con-
trolled bending. The measurement data were preprocessed
and composed into a data set, with each bent sample labeled
as damaged or nondamaged according to cross-sectional and
X-ray images. An OSVM model was then optimized and
trained on data from intact capacitors on one PCB, and the
classification accuracy was tested with MLCCs from another
PCB before and after bending. The results show that through
proper feature engineering and hyperparameter optimization,
the model is capable of successfully identifying damaged
MLCCs with dozens of intact capacitors as training data,
while maintaining a low rate of false alarms on pristine
capacitors.
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APPENDIX. TEST RESULTS ON UCI MACHINE
LEARNING DATA SETS
The proposed hyperparameter selection algorithm was tested
on eight commonly used data sets from the UCI machine
learning repository2: Breast Cancer Wisconsin (Diagnostic),
Heart Disease, Pima Indians Diabetes, Connectionist Bench
(Sonar, Mines vs. Rocks), Wine, Glass Identification, Stat-
log (Vehicle Silhouettes), and Connectionist Bench (Vowel
Recognition - Deterding Data). The data sets have previously
been used for testing one-class support vector machine hy-
perparameter optimization in [24] and [42], and a summary
of the data sets is shown in Table 5.
The performance of the proposed algorithm was com-
pared against other hyperparameter optimization algorithms,
following the procedure in [42]. The data sets were first
preprocessed by removing rows with missing values, as well
as removing all-constant columns. The feature variables were
then standardized to zero mean and unit variance. For each
data set, the target class was selected as in [42], and randomly
selected 80% of the target samples were used for hyperpa-
rameter optimization and training the model. The model was
then tested on the outlier instances, plus the remaining 20%
of the target data. As in [42], the evaluation process was
repeated 20 times, randomly partitioning the target data each
time. The performance of the model was evaluated using the
geometric mean (G-mean) of True Positive Rate (TPR, i.e.,
Recall) and True Negative Rate (TNR)
G-mean =
√
TPR · TNR (11)
The G-mean scores of the Cliffhanger algorithm were
compared against those of five other algorithms, as re-
ported in [42]: MIES [42], Min#SV+MaxL (MSML) [45],
SKEW [46], VM [47] and MD [48]. Two versions of the
Cliffhanger algorithm are compared with the reference meth-
ods: Cliffhanger, which selects the point (νc, γc) as the op-
timum hyperparameters; and Cliffhanger-T, the version used
for the MLCC data which imposes an additional condition
(ν, γ) ∈ arg maxA for the hyperparameters. The perfor-
mance of these algorithms in terms of the G-mean score,
2https://archive.ics.uci.edu/ml/datasets.php
VOLUME 4, 2016 13
Levikari et al.: Nondestructive Acoustic Testing of Ceramic Capacitors using One-Class SVM with Automated Hyperparameter Selection
Data set Dimensions Targets Outliers
Cancer 9 458 241
Heart 13 164 139
Diabetes 8 500 268
Sonar 60 111 97
Wine 13 48 130
Glass 9 70 144
Vehicle 18 199 647
Vowel 10 48 480
TABLE 5. UCI ML repository data sets
as reported in [42] is listed in Table 6. To highlight the
differences between Cliffhanger and the thresholded version,
Cliffhanger-T, the raw confusion matrix elements (refer to
(9)) are given in Table 7.
The results in Table 6 show that the performance of the
Cliffhanger algorithm is generally on a par with the reference
methods. In terms of G-mean scores, Cliffhanger yielded
better results than the reference methods on three out of
eight data sets. On the other hand, Cliffhanger-T, which
imposes a more strict requirement for the hyperparameters,
performs comparably with other methods only on Cancer,
Wine, Glass, and Wovel data sets. The raw confusion ma-
trix values for both variants of the Cliffhanger algorithm in
Table 7 shows that Cliffhanger-T has a significantly lower
rate of false alarms (FPR) that the non-thresholded version
of the algorithm, at the cost of the ability of discovering
positive instances. This makes the Cliffhanger-T better suited
for applications where some missed positive instances are
acceptable, but false alarms are very costly.
It must be noted that the performance of the Cliffhanger
algorithm ultimately depends on the given data: if the plateau
of maximal in-class accuracy is close to the point (νc, γc) (see
Fig. 4), the resulting model is more sensitive for detecting
outliers than if the plateau is further away from (νc, γc). For
MLCC data, the plateau extends close to (νc, γc), in which
case it is justifiable to impose stricter requirements for the
hyperparameters. All in all, the Cliffhanger algorithm per-
forms adequately when compared with the results reported
by [42]. However, the authors would like to stress that the
results for the reference methods in Table 6 were obtained
from another study. While the testing methodology of the
study was followed as precisely as possible, there might
still be differences between data preprocessing, splitting,
and selection. Therefore, these results should be viewed as
general indicators of the performance of Cliffhanger, and a
deeper analysis of the algorithm is a matter of further study.
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Data set Cliffhanger-T Cliffhanger MIES MSML SKEW VM MD
Cancer 0.791 0.875 0.880 0.634 0.693 0.570 0.845
Heart 0.259 0.622 0.661 0.697 0.655 0.694 0.684
Diabetes 0.129 0.613 0.707 0.722 0.724 0.716 0.414
Sonar 0.034 0.357 0.711 0.679 0.668 0.654 0.692
Wine 0.968 0.965 0.863 0.743 0.849 0.708 0.900
Glass 0.669 0.722 0.721 0.680 0.721 0.628 0.781
Vehicle 0.450 0.870 0.850 0.772 0.739 0.695 0.781
Vowel 0.890 0.943 0.614 0 0 0 0.530
TABLE 6. Test results on UCI ML data sets in terms of average G-mean scores across 20 trials. The results for MIES, MSML, SKEW, VM and MD were obtained
from [42].
Data set Metric Cliffhanger-T Cliffhanger
Cancer TPR 1.000 0.934
TNR 0.569 0.996
FPR 0.431 0.004
FNR 0.000 0.067
Heart TPR 0.969 0.844
TNR 0.102 0.460
FPR 0.898 0.540
FNR 0.03 0.156
Diabetes TPR 1.000 0.920
TNR 0.015 0.437
FPR 0.985 0.563
FNR 0.000 0.080
Sonar TPR 1.000 1.000
TNR 0.000 0.082
FPR 1.000 0.918
FNR 0.000 0.000
Wine TPR 1.000 0.900
TNR 0.962 1.000
FPR 0.038 0.000
FNR 0.000 0.100
Glass TPR 1.000 0.857
TNR 0.472 0.590
FPR 0.528 0.410
FNR 0.000 0.143
Vehicle TPR 1.000 0.800
TNR 0.192 0.862
FPR 0.808 0.138
FNR 0.000 0.200
Vowel TPR 0.700 1.000
TNR 0.629 1.000
FPR 0.371 0.000
FNR 0.300 0.000
TABLE 7. Confusion matrix elements (refer to (9)) for the proposed
Cliffhanger algorithm in terms of average values across 20 trials.
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