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The aim of the thesis was to study properties of Fourier transform and its applicability in
noise reduction. Mathematical properties behind Fourier transform and white noise was first
explained. Three Fourier transform based noise reduction techniques were then considered
and validated using two synthetic data sets and applied to IBM stock data to remove effects
of stochastic perturbations.

Based on visual observations, all three method were produced credible results. Amplitude
thresholding method effective noise reduction method with trigonometric background pro-
cess. Two low-pass filters produced weaker results on synthetic data but all three methods
gave convincing results on stock data. To further improve results, bigger sampling frequency
could have been chosen which had produced more data points to base the transform on.
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Työn tarkoituksena oli perehtyä Fourier-muunnokseen ja tarkastella sen soveltuvuutta ko-
hinan poistoon. Ensin työssä käsiteltiin Fourier-muunnoksen ja valkoisen kohinan teoriaa
ja ominaisuuksia. Kolmea Fourier-muunnosta hyödyntävää menetelmää testattiin kahdelle
kohinaiselle synteettiselle datalle sekä IBM:n osakedatalle stokastisten häiriöiden poistami-
seksi osakkeen hinnasta.

Visuaalisen tarkastelun pohjalta kaikki kolme menetelmää poistivat kohinaa datasta onnis-
tuneesti. Taajuuskomponenttien rajaaminen amplitudin perusteella osoittautui kaikista toi-
mivimmaksi menetelmäksi trigonometrisen taustaprosessin approksimointiin. Kaksi muuta
testattua alipäästösuodatinta tuottivat heikompia tuloksia synteettiselle datalle, mutta kaikki
kolme menetelmää antoivat hyvän approksimaation osakedatalle. Tulosten parantamiseksi
datan näytteenottotaajuutta voitaisiin lisätä.
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1 INTRODUCTION

1.1 Overview

Fourier transform is one the of the most widely used techniques in applied mathematics
such as in the fields of signal processing and data compression. In brief, Fourier transform
is based on the idea that functions of suitable properties can be represented with a linear
combinations of trigonometric functions. This decomposition using trigonometric functions
can be seen as extracting frequency-domain information from a time-domain signal, allowing
for alternative or more efficient ways of investigating or modifying a signal.

Initial work on the Fourier transform and the use of trigonometric functions in analysis traces
back to works of mathematicians Leonhard Euler (1707-1783), Alexis-CLaude Clairaut
(1713-1765), and Joseph Louis Lagrange (1736-1813). Euler was the first one to give a for-
mula for coefficients of the Fourier series. Based on Euler’s studies, Clairaut published what
we currently know as the first formula for the discrete Fourier transform (DFT) in 1754. In
1805 Carl Friendrich Gauss (1777-1855) published formula for DFT that was not dependent
on interpolating using only odd or even periodic functions. In 1822, Joseph Fourier (1768-
1830) published work on heat flow which provides the foundation for the Fourier transform
and origin for its name. [1]

DFT is applicable to finite sequency of equally-spaced samples. While effective, DFT suffers
from a cubic computational complexity. This was amended by the invention of the fast
Fourier transform (FFT) algorithm by James Cooley and John Tukey in 1965 which has
enabled a wide range of numerical applications in the digital age [1]. These applications
include JPEG data compression, analysis of crystal structures, solving partial differential
equations, and handling noisy signals [1, 2].

This thesis focuses introducing theoretical properties behind chosen Fourier transform based
noise reduction techniques and their numerical implementation. Two sets of synthetic data
sets are used to validate the applicability of the noise reduction techniques by comparing the
obtained results to the underlying smooth functions used to generate the data sets. Lastly, the
techniques are applied to International Business Machines Corporation (IBM) stock data to
estimate a smooth mean function of the stochastic stock prices. In this thesis, measurement
errors are modelled as Gaussian white noise.
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1.2 Noisy data

Analysing measured data has its own challenges involving unpredictable conditions and sys-
tematic measurement errors. These factors introduce noise into the data, thereby complicat-
ing analysis and possibly causing biased or incorrect conclusions. For many application, it
can be considered useful to find a function to model the background process instead of using
noisy measurements themselves. In mathematics and engineering, white noise is a widely
used tool used to model effects of stochastic processes in measured data [3].

Commonly used methods for noise reduction with one-dimensional data signal include adap-
tive filtering, signal smoothing, and noise cancellation in frequency domain [4]. Adaptive
noise cancellator locates points where a signal is unpredictable and aims to adjust the value
of these points to fit rest of the data better. Smoothing algorithms reduce noise by smoothing
the curve using various techniques. One way this can be accomplished is by calculating mean
value of three consecutive points, thereby reducing noise by partly averaging out the noise.
Alternatively, one could consider smoothing or noise reduction in the frequency domain. As
previously mentioned, this can be achieved by the use of Fourier transforms.

Noise filtering via Fourier transforms has seen numerous applications. Examples of such
applications are canceling out electromagnetic conditions in radar measurements [5], echo
suppression in audio processing [6], and 2D noise filter in image processing [7]. In the above,
Fourier transform has proven to be functional and efficient tool for noise reduction.

1.3 Structure of thesis

Further down, the thesis is structured as follows. In Section 2, theory of the Fourier transform
and Gaussian white noise is covered and introduced. Models used to create the synthetic data
sets are presented in Section 3. In Section 4, results are presented and comparison between
different techniques is presented. Discussion on the results is given in Section 5.
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2 THEORY

2.1 Fourier transform

Fourier transforms decomposes a function into coefficients of a linear combination of trigono-
metric functions. Fourier transform for a function f (t) can be given as

f̂ (ω) :=
∫

∞

−∞

f (t)e−iωtdt, (1)

where f denotes an arbitrary function dependent on time t and the Fourier transform of f is
given as f̂ dependent on frequency ω. The corresponding inverse Fourier transform is

f (t) =
1

2π

∫
∞

−∞

f̂ (ω)eiωtdω. (2)

In practice, we only have finite sequences of discrete measurements. For finite evenly-spaced
sequences, we apply the discrete Fourier transform (DFT) given as

Yk =
N−1

∑
n=0

Xn · e
−2πi

N kn, (3)

where Yk denotes the k-th element in the discrete Fourier transform vector and Xn denotes the
n-th element in the original time sequence. N is the number of elements in the time series.
Similarly to Eq. (2), we have the inverse discrete Fourier transform (IDFT) defined as

Xn =
1
N

N

∑
k=1

Yk · e
2πi
N kn. (4)

Computation of the DFT and its inverse transform can be optimized significantly by pairing
up even and odd functions during computation. This pairing of even and odd functions is
called the fast Fourier transform (FFT) with corresponding inverse fast Fourier transform
(IFFT) which eases the computational complexity of the DFT from O(N2) to O(N logN).
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2.2 Fourier transforms of trigonometric functions

Trigonometric functions are commonly used in engineering and mathematics to model peri-
odical fluctuations. Fourier transforms of trigonometric functions can be given as

∫
∞

−∞

sin(Ωt)e−iωtdt = iπ[δ(ω+Ω)+ δ(ω−Ω)], (5)

and

∫
∞

−∞

cos(Ωt)e−iωtdt = π[δ(ω+Ω)− δ(ω−Ω)], (6)

where coefficient Ω is the frequency of trigonometric function and δ denotes the Dirac delta
function. As can be seen from Eqs. (5) and (6), the Fourier transforms of sines and cosines
consist of sharp spikes located at the frequencies of the original functions. An illustration of
this behaviour is shown in Figure 1.

Figure 1. Fourier transform of trigonometric functions. Frequency spikes at certain ω-values suggest
that the example function consists from three trigonometric components. Coefficients for these com-
ponents can be seen from y-axis values.
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2.3 Decay of the Fourier coefficients

Differentiable functions are ubiquitous in mathematics and engineering including common
functions such as polynomials and exponential functions amongst a plethora of others. Fourier
transforms of differentiable functions form decaying frequency spectrums depending on the
smoothness of the functions. Mathematically, this is described in Theorem 1.

Theorem 1 (Fourier component decay). Let Fourier transform exist for f (k) when 0 ≤ k ≤ p

and that
∫

f (p)(t)dt < ∞. Then, we have that the Fourier transform of f bounded according

to | f (ω)|<C|ω|−p, where C is a constant independent of w.

Proof. According to the differentiation rule of Fourier transforms, we have

f (k)(t) =
dk

dtk

(
1

2π

∫
eiωt f̂ (ω)dω

)
=

1
2π

∫
(iω)keiωt f̂ (ω)dω. (7)

Taking inverse Fourier transform and choosing k = p gives expression

(iω)(p) f̂ (ω) =
∫

e−iωt f (p)(t)dt. (8)

Upper bound for the differentiated expression can be given as

|ω|(p)| f̂ (ω)| ≤
∫

| f (p)(t)|dt. (9)

With the integral having finite value, it can be assumed that there exist constant C giving
upper bound to Fourier coefficients as

| f̂ (ω)| ≤C|ω|−p. (10)

In simple terms, the number of derivatives corresponds to the smoothness of the function.
The larger the p and smoother the curve, the faster the decay of the Fourier transform. Upper
bound is visualised in Figure 2.
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Figure 2. Visualization of the upper limit of Fourier coefficients. Value of p has strong impact on
speed of decay.

2.4 Gaussian white noise

White noise is a conceptual model used to describe effects of multiple uncorrelated random
variables. Gaussian white noise is a specific white noise model where the noise is normally
distributed. A vector of measurement errors e = (e1, ..,eN) is Gaussian white noise where
each en ∼ N(0,σ2).

Decomposing a time series into frequency components gives a distribution of the spectral
density among different frequencies. These spectral density values form a power spectrum
for the time series. Power spectrum of band-limited Gaussian white noise is

P =

{
σ2, |ω|< B
0, otherwise,

(11)

where B denotes the band-limiting frequency and σ2 is the noise variance. From the theoret-
ical power spectrum, the total power of the noise PT can be calculated as

PT = 2Bσ2. (12)
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2.5 Distortion caused by noise

The distortion can be quantified as the total difference between the original noisy function
and the modified function after noise reduction,

ϵ2
T = || f (t)− fmod(t)||22 =

∫
∞

−∞

( f (t)− fmod(t)))2dt, (13)

where fmod denotes modified function. Using Plancherel’s identity, the difference can be
given in frequency domain as

ϵ2
T =

∫
∞

−∞

( f̂ (ω)− f̂mod(ω))
2dω, (14)

where f̂mod(ω) denotes Fourier transform of the modified function. To estimate effectiveness
of the noise reduction model ϵ2

T can be compared to theoretical power of the noise if the
variance in Eq. (12) is known. Optimal method should result in

ϵ2
T ≈ 2Bσ2. (15)

In practice however, the noise variance can be unknown and power of the noise can only
be estimated. An alternative way of computing effectiveness of the noise reduction is to
measure difference between modified Fourier transform and original function.

d = || fmod(t)− forig(t)||22 =
∫

∞

−∞

( f̂mod(ω)− f̂orig(ω))
2dω, (16)

where forig denotes the background function without the noise. With the discrete Fourier
transform, these integrals are calculated using summations.

2.6 Noise reduction methods

In the following Sections, we introduce three approaches for noise reduction which are justi-
fied by the properties discussed in Section 2. The methods are called amplitude thresholding,
frequency cut-off, and coefficient scaling. The latter two similar as they both are based on
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filtering out higher frequency fluctuations.

After using FFT to transfer the data to the frequency domain, the results are obtained by
suitable modification of the Fourier transform coefficients. Zero-padding the original data
with an equal amount of points. Figures 1 and 2 show that Fourier transforms of smooth and
periodical background functions have distinct properties which should be considered when
choosing the correct noise reduction method. Information on which components are vital
for the background process and which of them are caused by noise helps us determine the
properties of the original function ultimately giving us the approximation without the noise.

Amplitude thresholding

Because of the power spectrum of white noise (11), we can choose an amplitude threshold
below which all noise components should remain under. Using information of the Fourier
transform of trigonometric functions, dominant components can be distinguished from the
noisy data. After filtering out weaker components we can compute IDFT of the remaining
coefficients resulting in a filtered signal in the time domain. The method should work excep-
tionally well on signals with signal consisting of trigonometric functions as shown in Figure
3.

Figure 3. Visualization of amplitude thresholding method. Threshold shown with red line on fre-
quency domain. Three trigonometric components can be distinguished from the transform.
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Frequency cut-off

Based on the decay of the Fourier coefficients (10), most of the information for smooth
background functions should be located in the low frequency values. Deficiency of this
method comes apparent if original data has high frequency variation. This method will
overlook any coefficients above chosen threshold and smooth out the curve as shown in
Figure 4.

Figure 4. Visualization of frequency cut-off method. Cut-off frequency shown with red line on
frequency domain.

Coefficient scaling

Decay of the Fourier transform (10) suggests that the Fourier transform of a continuous
function should follow a certain shape depending on smoothness of the function. With this,
it can be assumed that f̂ (ω)→ 0, when |ω| → ∞. We scale the Fourier transform coefficients
with a decaying function to smooth out high-frequency components. Cauchy distribution
was chosen for its resemblance to the polynomial form of the decay.

Density function of the chosen unnormalized Cauchy distribution can be given as

fC(x) =
γ2

x2 +γ2 , (17)

where γ is the shape parameter of the Cauchy distribution.
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3 DATA

3.1 Synthetic data

We apply the discussed noise reduction methods to two synthetic data sets and IBM stock
data. The first data set consists of two trigonometric functions, given by

forig(t) = A1 sin(2πω1t)+A2 cos(2πω2t), (18)

where ω1 and ω2 denote the frequencies of the trigonometric components with A1 and A2

being the corresponding amplitudes. Parameter values are detailed in Table 1. White noise
was generated with variance of σ2 = 1. Data points were generated using 1000 linearly
spaced points with t ∈ [0,1].

A1
1
3

A2
1
2

ω1 19
ω2 29

Table 1. Parameters used to produce the first data set.

Figure 5. In blue, the synthetic function forig(t) consisting of two trigonometric functions used to
generate the first data set.
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Figure 6. In blue, the data set consisting of two trigonometric functions corrupted with Gaussian
white noise. The underlying trigonometric functions are hardly distinguishable.
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Second data consists of a quartic polynomial, given by

forig(t) = a1t4 +a2t3 +a3t2 +a4t, (19)

where parameters a1, a2, a3, and a4 denoting coefficients for the variables. Parameter values
are detailed in Table 2. White noise was generated with variance of σ2 = 1. Data points were
generated using 1000 linearly spaced points with t ∈ [0,1].

a1 -70
a2 120
a3 -60
a4 12

Table 2. Parameters used to produce the second data set.

Figure 7. In blue, the polynomial forig(t) used to create the second data set. Parameters were chosen
so that curve would have some variation.
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Figure 8. In blue, the polynomial data set corrupted with Gaussian white noise. The original function
forig(t) can still be visually observed.
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3.2 IBM stock data

As a practical case, we apply the methods discussed in Section 2.6 to IBM stock price data.
Data for the year 2021 was downloaded using Yahoo Finance Python application program-
ming interface. The data consists of 1761 stock prices recorded with 1 hour interval during
the open hours of the Nasdaq stock market shown in Figure 9. Note that while the data set
is not contaminated by errors per se, the data is stochastic or, in other words, consists of
random fluctuations. We aim to apply the noise reduction techniques to estimate a smooth
mean function of the stochastic data, analogous to noise removal.

Figure 9. Recorded IBM stock prices from year 2021 shown in blue.
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4 RESULTS

4.1 Data set 1

First synthetic data set shown in Figures 5 and 6 was analysed using amplitude thresholding.
The threshold was set to | f̂ (ω)| > 0.2 which eliminates all but two dominant components
according to method shown in Figure 3. Approximation was created using IFFT on the
modified frequency spectrum.

Figure 10. Absolute values of the Fourier transform coefficients for the trigonometric data set with
the chosen amplitude threshold. Absolute values of the Fourier coefficients are shown in blue and the
chosen amplitude threshold with red line. Two frequency spikes can easily be distinguished from the
noise.



21

Figure 11. Original data shown with blue line and data after noise reduction with red line.

Figure 12. Original function forig(t) shown in blue and function produced from noisy data shown in
red. Functions produce similar curve.
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Figure 13. Total difference between data after noise reduction and original function. Difference
function reaches the minimum value when ω ∈ [0.2,0.33].
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4.2 Data set 2

Second data set, shown in Figures 7 and 8, featured smooth curve which was analysed using
two low-pass filters. Fourier transform of the data set was modified with the frequency cut-
off and coefficient scaling techniques.

Figure 14. Fourier transform of the second data set. A fast decaying curve stands out from the
background noise close to origin.

To analyse the second data frequency cut-off method described in Section 2.6 was used. By
visual inspection, the best limit frequency was chosen to be ω= 7. The data was transformed
to the frequency domain using FFT and frequencies ω ∈ [8,500] were set to zero.
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Figure 15. The original data shown in blue and the resulting approximation result from filtering high
frequency components shown in red.

Figure 16. Original function used to create data shown with red line and approximation result in blue.
The approximation seems to visually fit well to the original function.
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Figure 17. Difference between the original function and the approximation calculated with different
cut-off frequencies. Minimal value of this function differs from the visually observed best-fitting
value for cut-off frequency.
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For the other low-pass filter, a parameter value of γ = 0.013 was chosen visually as the
best-fitting. The data was transformed to the frequency domain and a Cauchy distribution
was used to scale down coefficients to model the decay of the Fourier components. The
approximation was created using IFFT on the modified coefficients.

Figure 18. Original data shown in blue and approximated function in red.

Figure 19. Approximated function shown with blue line and the original function used to create the
data shown with red line.
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Figure 20. Difference between the original function and the approximation calculated with different
γ-values.

4.3 Method comparison

In addition to visually selecting the best-fitting parameters for the filters, d-values were cal-
culated with different parameter values. Parameters that produced the lowest difference were
chosen and compared to methods corresponding values. Tables 3 and 4 also include total
power of the reduced noise compared to the theoretical value.

DATA 1 d |e2
T −2Bσ2|

Amplitude thresholding 4.3 ·10−4 2.8 ·10−3

Frequency cut-off 0.078 0.020
Coefficient scaling 0.057 0.15

Table 3. First data set analysed using the three methods. Parameters for the filters were chosen as the
best-fitting to the original function.

DATA 2 d |e2
T −2Bσ2|

Amplitude thresholding 0.061 0.011
Frequency cut-off 0.039 2.5 ·10−3

Coefficient scaling 0.027 0.037

Table 4. Second data analysed using different methods. Parameters for the filters were chosen as the
best-fitting to the original function.

IBM stock data, shown in Figure 9, was analysed using all three noise reduction methods.
Parameters for the filters were chosen as the visually best-fitting.



28

Figure 21. Fourier transform of the IBM stock data. Coefficient for the constant component ω = 0 is
removed to better visualize decay.

Figure 22. Original stock data is shown in blue. The approximations obtained using amplitude
thresholding, frequency cut-off, and filtering are shown in red, green, and dark blue.
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5 DISCUSSION

Using synthetic data as testing data made it possible to calculate the accuracy of each approx-
imation and compare the noise removal approaches. Knowing the popularity and previous
successes of the Fourier transform in similar applications made the positive results to be ex-
pected. Methods were tested on the both synthetic data sets and results were documented
in Tables 3 and 4. All techniques used performed at the expected level and produced good
approximations for the background function.

Amplitude thresholding was the most effective tool of the comparison. Figures 10 – 13 show
results of methods used on the first data set. A background process that can be described
using periodic trigonometric functions, the results show that the noise was eliminated ac-
curately without losing critical information. In real applications, hardly any process can
be described with perfect trigonometric functions which can make method more inaccurate.
Identifying frequency components is used widely in signal processing and is one of the main
applications of the Fourier transform. With a smooth background process, amplitude thresh-
olding was not as effective as other methods used in comparison.

With the synthetic data set consisting of trigonometric functions, the amplitude threshold-
ing method produced credible results with the obtained result being almost identical to the
original function. One of the benefits of using this method was that threshold can be chosen
without any knowledge of the background process. In Figure 10, two frequency component
clearly stand out from the white noise. Locations of these spikes in the ω-axis seems to
closely match to the frequency of trigonometric components. Amplitudes of these spikes
was also approximately equal to coefficients for these components. White noise affects all
coefficients in the frequency domain, including ones that are used to create the data resulting
in the approximations almost never being perfect.

Including only frequency components below chosen value proved to be an efficient method
for noise reduction for smooth functions. Figures 15 – 17 show results of the method used
on the second data set. The Fourier transform of the synthetic smooth function in Figure 14
followed principles of the Fourier component decay which suggest that the most consequen-
tial components are located at low frequencies. Using only a small number of components
resulted in an accurate approximation.

Other low-pass used in the comparison was also based on Fourier component decay (10).
Figures 18 - 20 show results of method used on the second data set. In paper, filter outper-
formed other methods used but results show the modified DFT had higher frequency compo-
nents that reduced the smoothness of the curve. The Idea of scaling the Fourier coefficient to
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remove effects of noise turned out to reduce the smoothness of the approximated curve and
resulted in losing some information on the background process. In the comparison, noise had
minimal effect on low-frequency components and simply removing high-frequency compo-
nents proved to be most efficient way to remove noise without losing vital information on
the background process and retaining the smoothness of the approximation.

Second data set was more challenging than the first one due to the absence of periodical
trigonometrical components. To improve the results given by these filters, the sampling
frequency could be increased to have more data points for the Fourier transform. White noise
would lose impact on frequency spectrum and coefficients of the original function would
have more impact on the result. Variance of the white noise was also significant compared to
variation of original function which can make analysis more imprecise. Larger padding also
increases the number of frequency components which can sharpen the approximation.

When selecting parameters for the filtering, visual observation gave better approximations
than choosing parameters based on difference. Using a minimal amount of frequency com-
ponents gives smoother curve without higher frequency variation. Visual selection of pa-
rameters was based on testing values that produced a reasonable result while using as few
coefficients as possible. Minimizing the difference between removed noise components and
the theoretical power of the noise gave similar results to visual selection.

Fourier transform of the IBM stock data suggests that the background process follows the
decay properties of smooth curve with background noise creating constant variation along the
power spectrum. Some of the variation in the data seemed periodical which justified usage of
the amplitude thresholding method. Approximated function produced by this method fitted
well to the periodic fluctuations in the data but some parts that appeared to be smoother in
the original data had some variation due to higher frequency components included in the
approximation.

Three methods used in the comparison were tested on the synthetic data in Figure 22. As
the amount of data points increases, the decay of Fourier components stands out more. Syn-
thetic data sets had larger amount of noise which made the low-pass filters more imprecise.
Reducing the amount of noise and decreasing the sampling frequency sharpens the approxi-
mation for low-pass filters. The frequency cut-off method produced smoother curve than the
method that was based on scaling down coefficients. The previously underperforming co-
efficient scaling method clearly produced the most accurate approximation for the process.
Approximation from the frequency cut-off method followed a similar overall shape but some
of the vital higher frequency components were not included and some information on the
original function was lost.
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6 SUMMARY

The noise reduction techniques were successfully implemented and the methods performed
as expected. Discussed theory was proven to be functional in light of the results for the
synthetic data sets and the mean function was, by visual inspection, successfully constructed.
For the data sets considered, amplitude thresholding proved to be most efficient tool for noise
reduction. Low-pass filters underperformed with lower sample sizes but with more frequent
sampling on stock data both filters improved their performance.
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