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ABSTRACT 
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The research topic of this thesis is the structural engineering of a welded steel structure used 
as a part of a turret punch press sheet positioning system. The objective is to find out the 
appropriate dimensional proportions for the linear axis frame to withstand the forces caused 
by the accelerations of the sheet movement. Determining factor is the maximum deflection 
of the frame and the resulting error in the sheet position at the punching center. In the 
literature research are presented the structural engineering theorems, which concern the three 
types of strain to which the frame structure is induced to: bending, shear and torsion. 
Formulas gathered from these theorems are then used for the deflection calculations. 
Resulting sheet movement at the punching center is assessed by a coordinate system 
transformation, where the vector components collected from the structural analysis are 
shifted from a local reference frame to a global coordinate system. Based on analytical 
calculations one frame candidate is selected for further analysis in FEM, which is used as a 
comparative method to examine the structural behaviour of the frame and to find out how 
the additional structural features effect the frame deformation. Results show that with the 
given load case, bending deflection is the dominant factor in the sheet displacement at the 
punching center, although the transverse displacement at the point of load doesn’t translate 
as such in the positioning error: As the frame deflects, the cross-section also rotates 
according to the deflection curve, which causes the sheet to move in opposite direction to 
the load at the punching center, and therefore the positioning error is observed mainly in the 
longitudinal direction of the frame. The tested bracing methods increase mainly the torsional 
stiffness of the frame, and don’t therefore have much effect on the positioning accuracy. 
According to results from FEM, the distortion of the frame cross-section due to asymmetrical 
force distribution isn’t a major issue even in an unbraced construction as the transverse and 
torsional load partly cancel each other out. 
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TIIVISTELMÄ 
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Atte Anttila 

Levytyökeskuksessa käytettävän lineaariakseliston rungon rakenteellinen mitoitus 

Diplomityö 

2022 

76 sivua, 44 kuvaa ja 18 taulukkoa 

Tarkastajat: Professori Timo Björk  

   Diplomi-insinööri Jussi Kosola 

Avainsanat: lujuusoppi, statiikka, elementtimenetelmä, teräsrakenteet 

Tämän työn tutkimusaiheena on levytyöskeskuksen levynpaikoitusjärjestelmän osana 
toimivan hitsatun teräsrakenteen mitoitus. Tavoitteena on löytää lineaariakseliston rungolle 
sopivat mittasuhteet kantamaan levyn paikoituksesta aiheutuvat kiihtyvyydet. Määrittävänä 
tekijänä mitoituksessa on rungon joustamisesta aiheutuva levyn paikoitusvirhe 
lävistyskeskiössä. Kirjallisuustutkimuksessa käydään läpi lujuusopin lausekkeet, jotka 
koskevat kolmea kuormitustyyppiä, joille runko altistuu: taivutus, leikkaus ja vääntö. 
Rungon siirtymät määritetään sen jälkeen kyseisiä lausekkeita soveltaen. Rungon siirtymien 
aiheuttamaa levyn paikan muutosta lävistyskeskiössä arvioidaan koordinaatistomuunnoksen 
avulla, jossa siirtymälaskelmista kerätyt vektorikomponentit siirretään paikallisesta 
koordinaatistosta globaaliin koordinaatistoon. Analyyttisiin laskelmiin perustuen valitaan 
yksi runko vaihtoehto, joka viedään FEM-ohjelmistoon yksityiskohtaisempaa tutkimusta 
varten. FEMiä käytetään sekä analyyttisten tulosten vertailukohtana, että määritettäessä 
rakenteeseen lisättävien piirteiden vaikutusta rungon siirtymiin. Tulokset osoittavat, että 
tutkimuksen kuormitustapauksessa rungon taipumalla on suurin vaikutus levyn siirtymään 
lävistyskeskiössä, vaikkei siirtymä kuormituspisteessä toistu sellaisenaan paikoitusvirheenä: 
Rungon joustaessa, sen poikkileikkaus myös kiertyy taipumakäyrän mukaan, joka aiheuttaa 
levyn referenssipisteessä kuormitussuuntaan nähden vastakkaissuuntaisen siirtymän ja siten 
paikoitusvirhe lävistyskeskiössä koostuu pääasiassa rungon pituussuuntaisesta 
komponentista. Rakenteessa testatut jäykisteratkaisut kasvattavat lähinnä vääntöjäykkyyttä, 
eivätkä siten vaikuta merkittävästi paikoitustarkkuuteen. Epäsymmetrisestä kuormituksesta 
aiheutuva poikkileikkauksen vääristymä ei FEMin tulosten perusteella ole vaikutukseltaan 
kovin merkittävä edes jäykistämättömässä rakenteessa, koska poikittaisvoima ja vääntö 
kompensoivat toistensa vaikutuksen osittain. 
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SYMBOLS AND ABBREVIATIONS 

γ Shear strain [rad] 

ε Normal strain [ΔL/L0] 

ζ Shear correction factor 

κ Curvature [1/R] 

ν(x) Bending deflection [mm] 

σ Normal stress [N/mm2] 

φ Angle of twist [rad] 

τ Shear stress [N/mm2] 

  

a Torsional bending constant [mm] 

E Young’s modulus [N/mm2] 

F Force [N] 

G Shear modulus [N/mm2] 

I Second moment of area [mm4] 

Ip Polar moment of area [mm4] 

Iv Torsion modulus [mm4] 

Iw Warping constant [mm6] 

L Length [mm] 

M Bending moment [Nm] 

R Radius of neutral axis [mm] 

R Rotation matrix 

r Radius of cross-section [mm] 

S First moment or area [mm3] 

T Torque [Nm] 

w(x) Total deflection [mm] 

ws(x) Shear deflection [mm] 
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1 Introduction 

The research topic of this thesis is the structural engineering of a welded steel structure used 

as a part of a turret punch press sheet positioning system. The objective is to find out 

dimensional proportions for the frame structure to withstand the forces caused by the 

acceleration of the positioning system. Determining factor is the maximum deflection of the 

frame and the resulting error in the sheet position at the punching center. The dimensions 

and shape of the frame should be justified not only for minimum deflection, but also for 

efficient material usage. The scope of the thesis is defined to concern only the static analysis 

of the frame; dynamic analysis is limited out of the subject. The static analysis is further 

limited to concern only the deformation calculations of the frame, so the stress analysis isn’t 

addressed in the thesis. Due to the high stiffness requirement of the frame though, the stresses 

will be quite mild overall, so the stress aspect is likely already met in the deformation based 

dimensioning. 

Research questions of this thesis are: 

 How the cross-sectional dimensions of the frame should be selected to withstand the 

forces caused by the accelerations of the positioning system? 

o Which are the main guidelines to design a structure: 

 Against bending 

 Against shear 

 Against torsion? 

o How these different types of deformations appear in achieving the target of 

precision at the punching center? 

 How do the results obtained by FEM differ from the analytical ones, and does the 

FEM give some important information of the structure behaviour that an analytical 

approach doesn’t? 

To answer the questions, a literature research is first carried out to find out the basic concepts 

of the strength of materials to which the deflection calculations are based on. These concepts 

are then applied to form a proposal of the frame structure to best serve the load case. The 
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significance of the different types of deformations and the resulting error to the sheet position 

are assessed by a coordinate system transformation between local and global reference frame 

in 3D space. Finally, the FEM is used as a comparative method to determine the frame 

deflection and to get a more detailed results of the load case. 

A simplified drawing of the sheet positioning system in a turret punch press is presented in 

Figure 1: 

 
Figure 1. Turret punch press sheet positioning system 

In the picture is shown a punching unit, which in this case is of a closed type (O-) frame, and 

the positioning system, which moves the sheet in a 2D coordinate system (x, y). The longest 

movement (x-axis) is built onto a fixed frame and the y-axis onto a moving platform. In this 

thesis the structure under investigation is the fixed frame, which is the largest single 

assembly in the positioning system and lays the basis for the rest of the system. At the 

punching center is marked the global origin of the system to which the position error of the 

sheet is later measured. 

For structural analysis, a cantilever beam is selected as a boundary condition. The fixed 

frame is assumed to be rigidly supported by a perpendicular plane positioned to the axis of 

symmetry of the punching unit. Although the linear frame will be supported to the floor with 
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at least one foot per each side, they are left out of consideration to keep the focus only on 

the frame itself. The most critical load case is estimated to be the acceleration of the y-axis 

when the moving platform is driven to either end of the work area on the x-axis (frame free 

length at its maximum; 2150 mm). As the center of mass of the moving assembly is located 

some distance away from the fixed frame centroid, the acceleration will cause both 

transverse and torsion strain as shown in Figure 2 taken from the side:  

 
Figure 2. Side view of the positioning system 

In the picture is shown the moving y-axis and its center of mass, which exact location is to 

be further defined during the design process. The acceleration of the y-slide causes 

transverse force Fy and moment Tx to the fixed frame. The bending, shear and torsion 

deflection of the frame should be very limited so that the sheet movement at the punching 

center stays within specified boundaries. Gravity isn’t considered to have too significant role 

in the load case, so it is left out of consideration to focus only to the accelerations caused by 

the system itself. 
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2 Theoretical background for analytical methods 

In the following are presented the structural engineering theorems, which concern the three 

types of strain to which the frame structure will be induced to: bending, shear and torsion. 

Formulas gathered from these theorems are later used for the analytical calculations of the 

frame deflection. The resulting sheet movement at the punching center is assessed by 

coordinate transformation where the vector components collected from the structural 

calculations are shifted from local reference frame to local coordinate system; the required 

work steps for this are also presented in this chapter. 

2.1 Transversely loaded beam - Euler-Bernoulli beam theory 

In structural mechanics the behaviour of a structure under transverse load is often visualized 

by investigating a beam element, where the transverse force induces a bending moment to 

the beam. To calculate deflections in such beam, formulas based on Euler-Bernoulli beam 

theory are used. The theory is also known as a classic beam theory or engineer’s beam 

theory. It makes two simplifications to the problem: First assumption is that the beam is 

under pure bending so only the bending moment is considered and the cross-section planes 

of the beam will remain in plane during deflection, perpendicular to the beam axis. Second 

assumption is that the contours of the cross-section remain undeformed during bending. The 

first assumption neglects the effect of shear force, which in a beam subjected to a transverse 

load is also present in addition to the bending moment. The second assumption neglects the 

transverse shrinkage/swelling of the cross-section during bending. These two factors 

however, have typically very little impact on the magnitude of the total deformation on 

relatively long beams, yet involving them in the equations would make them much more 

complicated, so an assumption is made to leave them out of consideration in the theory. The 

Euler-Bernoulli assumptions enable straight forward geometric considerations of the 

problem as seen in Figure 3: (Outinen & Salmi 2004, p: 174 – 176.) 
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Figure 3. Euler-Bernoulli beam element (according to Parnes 2001, p. 245) 

In the picture is presented a square bar element under pure bending. The point O marks the 

center of curvature; R the radius of the deformed neutral axis; Δθ the angle between the 

element ends; and y the distance from the neutral axis. The element is subjected to a bending 

moment M, which is a constant along element length. Constant bending moment translates 

here to a constant bending radius. Since all the infinite thin cross-section slices, that build 

the square bar, are assumed to remain in plane also in deformed state, the resultant of the 

normal forces in the cross-section must be zero. In other words the normal forces above and 

below the neutral axis are equal but with opposite signs. This again means that the neutral 

axis must lie on the centroid of the cross-section as illustrated. These geometric assumptions 

lead to a situation, where the material “fibres” in the top surface must elongate and at the 

bottom surface compress when the element is bent downwards as illustrated. The normal 

strain εx at an arbitrary height y can be calculated from the geometry: (Parnes 2001, p. 245 – 

248.) 
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௫ߝ      =
(ܴ + ߠ∆(ݕ − ߠ∆ܴ

ߠ∆ܴ
 

→ ௫ߝ =
ݕ
ܴ

 

This change in fibre length (strain) is a percentile value (ΔL/L0) and is proportional to the 

stress. According to Salmi & Pajunen (2010, p. 33) this stress-strain relation was first 

introduced by Jacob Bernoulli, and with ductile material like steel this relation is linear until 

the proportional limit of the material is reached. Until this limit the stress-strain curve 

follows equation knowns as Hooke’s law: 

௫ߪ  =   ௫ߝܧ

, where σ is the normal stress, E modulus of elasticity and ε strain. Parnes (2001, p. 134 – 

135) notes that by definition, the proportional limit σp and elastic limit σe (Young’s modulus) 

are different points but for steel and many other ductile materials, the difference between 

them is indistinguishable so that σp ≈ σE. The two points are illustrated in Figure 4 below: 

 
Figure 4. Stress-strain curve for low-carbon steel (according to Salmi & Pajunen 2010, p. 
35) 

(1) 

(2) 
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In the picture is shown a typical stress-strain curve for low-carbon steel. The elastic limit 

locates slightly higher than the proportional limit. By combining the Bernoulli strain 

equation (1) and Hooke’s law (2), the stress in arbitrary height in the cross-section can be 

obtained as: 

௫ߪ =
ݕܧ
ܴ

 

From the equation can be noted that the stress varies linearly with the perpendicular distance 

from the neutral axis: This follows the Euler-Bernoulli assumption that cross-sections will 

remain in plane. The stress σx is referred here as bending stress. The bending moment M can 

be considered as a sum of the normal forces acting on infinite small areas dA, dependent of 

the distance y so that: 

ܯ = ඵ  ܣ௫݀ߪݕ

by substituting → ௫ߪ =
ݕܧ
ܴ

 

ܯ = ඵ ݕ ൬
ݕܧ
ܴ ൰  ܣ݀

ܯ =
ܧ
ܴ

ඵ  ܣଶ݀ݕ

In the equation the double integral y2dA is the second moment of cross-sectional area about 

the neutral axis (z – z) and is commonly designated with I. Placing this to the equation, the 

moment-curvature relation is simplified to: 

ܯ  =
ܫܧ
ܴ

 

, which is known as the Euler-Bernoulli relation. The numerator EI is called flexural rigidity 

and depends on material stiffness E, and the second moment of cross-sectional area I, which 

is a geometric property. The equation can also be written in a form, which is later used to 

determine the curvature of the deformed beam: 

(3) 

(5) 

(4) 
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ܯ =  ߢܫܧ

, where κ is the curvature (1/R) of the deflection curve. (Parnes 2001, p. 247.) 

Although by definition, the Euler-Bernoulli relation concerns only beams in pure bending, 

it is also used to determine flexure of beams induced to transverse load acting in vertical 

plane, so that M is no longer constant but a linear function of distance x as in the picture 

below. In this situation, the plane sections of the beam don’t rigorously follow the Euler-

Bernoulli assumption, which is that the plane sections remain in plane also in deformed state. 

However, the warping effect is so small in relatively long beams that an assumption is made 

that even in these conditions the plane sections will remain in plane, perpendicular to the 

deformed neutral axis. This assumption is known as Navier’s hypothesis and equations used 

accordingly are known as engineering beam formulas, which provide very accurate solutions 

to a wide variety of engineering problems. (Parnes 2001, p. 255 – 256.) 

 
Figure 5. Beam under transverse load and the moment diagram (according to Valtanen 
2019, p. 316) 

In Figure 5 is shown an example of a transversely loaded beam and its moment diagram. To 

solve for the curvature κ of the deflection curve, an equation known from calculus is used, 

which gives the curvature of any curve lying in a 2-dimensional coordinate system when the 

necessary boundary conditions are known (Parnes 2001, p. 314): 

(6) 
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|(ݔ)ߢ| ≡
1

(ݔ)ܴ =
ተ

ተ ݀ଶ(ݔ)ݒ
ଶݔ݀

ቊ1 + ൤݀(ݔ)ݒ
ݔ݀ ൨

ଶ
ቋ

ଶ
ଷ ተ

ተ
 

, where v(x) is the deflection curve. By choosing positive curvature κ > 0 so that the point O 

(vertex point of the angle θ) will lie on positive y side, and substituting this to the Euler-

Bernoulli relation gives: 

(ݔ)ߢܫܧ ≡ ܫܧ−
ተ

ተ ݀ଶ(ݔ)ݒ
ଶݔ݀

ቊ1 + ൤݀(ݔ)ݒ
ݔ݀ ൨

ଶ
ቋ

ଶ
ଷ ተ

ተ
=  (ݔ)ܯ

⇒ ܫܧ
݀ଶ(ݔ)ݒ

ଶݔ݀ = − ൝1 + ቈ
(ݔ)ݒ݀

ݔ݀ ቉
ଶ

ൡ

ଶ
ଷ

 (ݔ)ܯ

By assuming that the beam has a relatively high flexural rigidity (i.e. deflection is small 

compared to the span length so that the slope of the deformed beam [dv(x)/dx] << 1), the 

equation can be reduced to: 

ܫܧ
݀ଶ(ݔ)ݒ

ଶݔ݀ =  (ݔ)ܯ−

With this equation, the deflection of the beam can be calculated by solving for the curve v(x). 

The solution of the problem requires integration of the equation and determination of the 

boundary conditions which depend on the beam supporting. These boundary conditions 

provide the two integration constants needed. (Parnes 2001, p. 315.) 

In the following the boundary conditions and the resulting formulas for deflection curve are 

determined for a cantilever beam (Salmi & Pajunen 2019, p. 209): 

(7) 

(8) 

(9) 
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Figure 6. Deflection curve of a cantilever beam (according to Salmi & Pajunen 2019, p. 
209) 

In Figure 6 is shown a cantilever beam with a tip load F acting on the free end. The 

continuous line marks the deflection curve v(x). To the fixed end is marked the two resulting 

boundary conditions: Both the magnitude of the deflection and the slope of the deflection 

curve have to be zero. In this case the origin (x = 0) is placed at the free end of the beam so 

that: 

ܫܧ
݀ଶ(ݔ)ݒ

ଶݔ݀ = (ݔ)ܯ− =  ݔܨ

By integrating the deflection equation twice, one first gets: 

ܫܧ
(ݔ)ݒ݀

ݔ݀
=

1
2

ଶݔܨ +  ଵܥ

and after second integration: 

(ݔ)ݒܫܧ =
1
6

ଷݔܨ + ݔଵܥ +  ଶܥ

, where C1 and C2 are integration constants. Their values can be obtained based on the 

boundary conditions. In this case the boundary conditions determine that the slope at the 

fixed end must be zero as in picture, so that: 

(10) 

(11) 
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(ܮ)ݒ݀
ݔ݀

= 0 

, which leads to: 

 ⇒  
1
2

ଶܮܨ + ଵܥ = 0 

 ⇒ ଵܥ  = 0 

Similarly, the magnitude of the deflection at the root must be zero: 

(ܮ)ݒ = 0 

⇒
1
6

ଷܮܨ + ܮଵܥ + ଶܥ = 0 

⇒ ଶܥ =
1
6

 ଷܮܨ

When these constants are placed on the deflection equations, the final result is obtained as 

(Salmi & Pajunen 2019, p. 209): 

(ݔ)ݒ =
ଷܮܨ

ܫܧ6
൤2 − 3

ݔ
ܮ

+ ቀ
ݔ
ܮ

ቁ
ଷ

൨ → (0)ݒ =
ଷܮܨ

ܫܧ3
 

(ݔ)ݒ݀
ݔ݀

=
ଶܮܨ

ܫܧ2
൤1 − ቀ

ݔ
ܮ

ቁ
ଶ

൨ →
(0)ݒ݀

ݔ݀
=

ଶܮܨ

ܫܧ2
 

These equations, among others, for selected problems of differently supported and loaded 

beams can be found in structural engineering literature, where they are listed in tables, like 

Valtanen (2019, p. 316 – 329). When examining the deflection equations not only for a 

cantilever beam, but for other transversely loaded beams as well, the magnitude of the 

deflection is found to be inversely proportional to the flexural stiffness, EI. This relation is 

found to be true for any beam governed by the Euler-Bernoulli relations (Parnes 2001, p. 

321). For great bending stiffness, either one or both of the mentioned values (E and I) should 

be maximized. As the E is a material property it is “locked in” after the material has been 

selected, but the second moment of cross-sectional area (I) can be greatly affected by design. 

To calculate the second moment of area of a cross-section, one may refer to the tables found 

in structural design handbooks, where formulas for a variety of different cross-sections are 

(12) 

(13) 
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presented. For example, the second moment of area for a solid rectangular section (Figure 7) 

is given as (Valtanen 2019, p. 305): 

 

௭ି௭ܫ =
ܾℎଷ

12
 

Figure 7. Second moment of area for a rectangular cross-section (according to Valtanen 
2019, p. 305) 

The formula above shows, that the height (h) of the section against the neutral axis is the 

dominant factor as it is raised to the third power. This is consistent with the previously 

presented bending theory, where the material furthest away from the neutral axis carries the 

most of the load as stated in eq. 3 (page 12). Material located near the neutral axis contributes 

very little to the load carrying capacity of the beam as the normal stress closes zero towards 

the neutral axis. For efficient design the material should be moved as far away as possible 

from the neutral axis to contribute the best to the bending stiffness. To calculate the second 

moment of area for an element placed some distance away from the neutral axis, a method 

called parallel axis theorem is used. The theorem is also known as Steiner’s theorem or 

Steiner’s rule. It adds the moment distance of the cross-sectional area to the equation (Salmi 

& Pajunen 2010, p. 424): 

௭ି௭ܫ = ௭ᇲି௭ᇲܫ +  ଶݕܣ

, where ܫ௭ᇲି௭ᇲ is the second moment of area of the cross-section around its own centroid axis, 

A is area of the cross-section and y is the distance from the neutral axis to the cross-section 

centroid. In the following is presented the significance of the distance from the neutral axis 

to the location where the material is placed: 

(14) 

(15) 
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Figure 8. Rectangular section and idealized section (according to Bauchau & Craig 2009, 
p. 195) 

In Figure 8 are shown two cross-sections both with the same cross-sectional area, but one 

being a solid rectangle placed concentrically with the neutral axis and the other one being an 

“idealized” section. The ratio of the bending stiffness between the two can be denoted as: 

(Bauchau & Craig 2009, p. 195) 

௜ௗ௘௔௟௜௭௘ௗܫ

௥௘௖௧௔௡௚௟௘ܫ
=

2 ൤ܾ(ℎ/2)ଷ

12 + ܾℎ
2 ଶ൨ݕ

ܾℎଷ

12

=
1
4

+ 12 ቀ
ݕ
ℎ

ቁ
ଶ
 

The result is the ratio of the second moment of areas between the two. It can be seen that the 

ratio rises exponentially in favour of idealized section, and already with ݕ/ℎ = 2 the 

idealized section has approximately 48 times greater bending stiffness. In practice the ideal 

section obviously needs a web to connect the two flanges together as is the case in an I-beam, 

but this shows that the rational design of a transversely loaded beam calls for maximum 

height. The limiting factor in the section height is the instability, which with extreme 

dimensions may become an issue in the form of lateral-torsional buckling tendency 

(Bauchau & Craig 2009, p. 196). 

(16) 
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2.2 Effect of shear in a transversely loaded beam 

With relatively long beams the magnitude of shear deformation compared to the deformation 

caused by the bending moment is so miniscule that it can usually be neglected, but as the 

length of the beam compared to its height gets really short, the influence of shear deformation 

may become so significant that it has to be taken into consideration. Figure 9 presents a 

simplified drawing of shear deformation on a cantilever beam: 

 
Figure 9. Deflection of a cantilever beam due to shear (according to Blodgett 1972, p. 2.6-
2) 

In the picture a beam with length L is loaded with a transverse force F, which causes shear 

stress τ and shear deflection w(x). The average shear strain γ is determined by dividing the 

shear force with shear modulus G and shear area A: 

௔௩௚ߛ =
ܨ

ܣܩ
 

The result is the angle γ in radians as shown in detail. The expression average shear strain 

is to be noted, as the distribution of shear stress and shear strain in reality varies strongly 

across the cross-section depending on the geometry. As the stress varies across the cross-

(17) 
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section, so will the cross-section planes warp (will not remain in plane) and the strain γ varies 

correspondingly across the height of the cross-section as shown on the right in Figure 10: 

 
Figure 10. Simplified and actual shear deformation (according to Bauchau & Craig 2009, 
p. 798) 

On the left is shown the average shear stress distribution and on the right the actual 

distribution on a rectangular cross-section. On the simplified model, the shear stress is a 

constant (ܣ/ܨ) even in free surfaces, which is incorrect as on free surface there can’t be any 

shear force present. In the actual distribution the shear stress on the free surfaces is zero  

(߬ = 0 → ߛ = 0) and the distribution along the cross-section height has a parabolic shape as 

shown in the picture. (Bauchau & Craig 2009, p. 798.) 

With more complex shapes the unevenness of the shear stress distribution is even more 

notable, like in an I-beam shown in Figure 11: 



21 

 

 
Figure 11. Shear stress distribution in an I-beam centroid plane (according to Singh 2021, 
p. 233) 

In an I-beam the vertical shear stress is carried almost entirely by the web plate as shown in 

the picture taken from the centroid plane. The shear stress distribution curve has a parabolic 

shape between break points and reaches its peak (߬୫ୟ୶) at the centroid. In order to calculate 

shear deflection at the neutral axis, one has first obtain the shear stress at this point by using 

the shear formula (Gere & Goodno 2012, p. 322): 

߬௠௔௫ =
ܵܨ
ݐܫ

 

, where S is the first moment of area above the point investigated, taken around the neutral 

axis, I the second moment of area of the entire cross-section (around the neutral axis) and 

t the thickness of the web plate. From here can be obtained a constant known as form factor, 

or shear correction factor, which is designated here with ζ. It is the ratio between the 

maximum shear stress and the average shear stress (Blodgett 1972, p. 2.6-2): 

ߞ =
߬௠௔௫

߬௔௩௚
=

ቀܵܨ
ݐܫ ቁ

ቀܨ
ቁܣ

=
ܵܣ
ݐܫ

 

The first moment of area can be denoted as (Gere & Goodno 2012, p. 328): 

(18) 

(19) 
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ܵ = න  ܣ݀ݕ

, which also has a form: 

ܵ = ෍  ௜ܣ௜ݕ

, where y is the distance measured from the centroid of an area to the neutral axis as shown 

in Figure 12: 

 
Figure 12. First moment of area above the neutral axis of an I-beam (according to Gere & 
Goodno 2012, p. 324) 

The corner fillets are neglected so the first moment of area for an I-beam can be calculated 

from the dimensions marked in the picture as (Gere & Goodno 2012, p. 324): 

ܵ =
1
8

൫ܾℎଶ − ܾℎଵ
ଶ + ℎଵݐ

ଶ൯ 

, where b is the width of the flange, h the overall height of the beam and h1 the height of the 

web. According to Blodgett (1972, p. 2.6-3) the formula can be used also for a box section 

as shown in Figure 13: 

(22) 

(21) 

(20) 
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Figure 13. Beam sections with identical first moment of area and shear correction factor (in 
vertical direction) (according to Blodgett 1972, p. 2.6-3) 

By applying the equation of the first moment of area S to the formula, the shear correction 

factor ζ can be denoted as: 

ߞ =
ܣ

ݐܫ8
൫ܾℎଶ − ܾℎଵ

ଶ + ℎଵݐ
ଶ൯ 

Resulting value is the factor with which the shear force F must be multiplied to obtain the 

shear strain at the centroid (Pennala 2002, p. 128): 

௠௔௫ߛ =
ߞܨ
ܣܩ

 

As the angle γ is very small, it can be written that the angle approximately equals with the 

slope of the deflection curve of the beam so that the actual shear deflection can finally be 

obtained by: 

ߛ ≅ ௦ݓ
ᇱ(ݔ) =

ߞܨ
ܣܩ

 

and after integration: 

→ (ݔ)௦ݓ =
ߞܨ
ܣܩ

ݔ +  ܥ

Applying the boundary conditions ws(L) = 0 leads to C = 0, and thus: 

(23) 

(24) 

(26) 

(25) 
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(ܮ)௦ݓ =
ߞܮܨ
ܣܩ

 

In some literature concerning the subject (e.g. Gross. et.al. 2011) a correction factor is used 

in the equation below the division sign as a factor for the shear area and has therefore inverse 

values. It is also a common practice to use an approximation value for the shear corrected 

area assuming that the web takes all the shear stress so that ܣ௦௛௘௔௥ =  ௪௘௕. With typicalܣ

proportions of a double flanged standard beams this is pretty accurate as the web carries 

90% to 98% of the total shear stress (Gere & Goodno 2012, p. 325). 

By combining the flexure due to the bending moment (Euler-Bernoulli beam) and the shear 

force, the total flexure of the beam can be obtained as (Gross et.al. 2011, p. 161 – 162): 

(ܮ)ݓ = ஻ݓ +  ௦ݓ

→ (ܮ)ݓ =
ଷܮܨ

ܫܧ3
+

ߞܮܨ
ܣܩ

 

, where the first term wB is the flexure according to the Euler-Bernoulli beam and wS the 

flexure due to shear. Evaluating the effect of shear in the total deformation, the equation may 

be arranged to the form (Gross et.al. 2011, p. 162): 

(ܮ)ݓ =
ଷܮܨ

ܫܧ3 ൬1 +
ߞܫܧ3
 ଶ൰ܮܣܩ

, where the term inside the brackets represents the influence of shear. From the equation can 

be observed that the geometric properties length (L) and the second moment of area (I) are 

placed on opposite sides of the division line between the two terms. This is consistent with 

the assumption, that the longer the beam gets compared to the flexural stiffness, the greater 

the proportion of bending deflection compared to shear deformation becomes. In Figure 14 

is shown an example of the shear and bending deformation ratio on a tip loaded IPE200 

cantilever beam: 

(27) 

(28) 

(29) 
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Figure 14. Ratio of shear and bending deformation on IPE200 cantilever with tip load 

From the graph can be seen the rapid change from shear to bending deflection with the 

increase of the length of the beam. For L/H = 7.5 the bending deformation accounts already 

close to 95% of the total deformation. Likewise, if the web thickness of the beam would be 

increased, the intersection of the two graphs would be located even more to the left, as the 

balance between shear stiffness vs. bending stiffness would change more in favour of shear 

stiffness (= smaller shear deformation). 

2.3 Structure under torsion 

Basic relations for torsion deflection can be deduced by investigating a cylindrical cantilever 

rod with a torque T acting on the free end (Figure 15): 
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Figure 15. Cylindrical rod under torsion (according to Da Silva 2006, p. 350) 

The torque causes the face of the rod to turn counter clockwise and this change in the angle 

of twist is marked with φ (radians) and it is a function of distance x. The shear strain caused 

by the torque is marked with γ (radians) and it is a function of radius r as it is established in 

the following equations. The polar coordinate P marks a position on the cylinder surface 

before the deformation and point P’ the location of the same point after the displacement. 

Point O is placed on the same polar coordinate as P, but to the fixed end, so it stays in place 

during deformation. In the case of small deformations, the distances ܱܲതതതത and ܱܲ′തതതതത may be 

considered as equal, so the distance ܲܲ′തതതതത can be expressed in two ways: (Da Silva 2006, p. 

350.) 

ܲܲᇱതതതതത = ߮݀ݎ ≅  ݔ݀ߛ

⇒ ߛ = ݎ
݀߮
ݔ݀

 

, where the term dφ/dx is the angle of twist per unit length. For simplification it may be 

marked with θ, so that: 

ߛ =  ߠݎ

(30) 

(31) 
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For linear elastic material the shearing stress is proportional to the strain (Hooke’s law): 

߬ = ߛܩ =  ߠݎܩ

As the shear stress is proportional to the radial distance from the axis of twist so must be the 

resisting moment in a cross-section be incremental but also equal to the applied torque T. 

The incremental moment about the axis of twist due to the shear stress acting on an element 

dA at a distance r can be defined as (Parnes 2001, p. 194):  

ܶ߂ =  ܣ݀߬ݎ

→ substituting ߬ =  ߠݎܩ 

ܶ߂ =  ܣ݀ߠଶݎܩ

Therefore, the total moment acting on a cross-section is given by: 

ܶ = ߠܩ ඵ  ܣଶ݀ݎ

The integral is recognised as the polar moment of area about the axis of twist and can be 

designated with Ip so that: 

ߠ =
ܶ

௣ܫܩ
 

Finally, the angular deflection for an element of length L is: 

߮߂ =
ܮܶ
௣ܫܩ

 

Being first derived by Charles Coulomb in 1784, the above is known as Coulomb torsion 

solution (Parnes 2001, p. 197). It gives the result for the angle of twist in radians and is valid 

only for members of a circular shape (rod or tube). For members of an arbitrary shaped cross-

section, the polar moment of area is replaced with a more common torsion modulus, Iv. The 

full derivation of the formulas used to calculate the torsion modulus for different kinds of 

cross-sections will not be covered here as some of them are quite complex yet they still are 

only approximations since there isn’t an easy, all-inclusive method to determine the shear 

stress distribution exactly for an arbitrary shaped cross-section. The research to which the 

(32) 

(33) 

(34) 
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formulas are based when determining the torsion modulus of a cross-section include Saint-

Venant 1855 (thick solid sections), Föppl 1921 (thin-walled open sections), Bredt 1896 

(thin-walled closed sections) and Prandtl 1903 (membrane analogy for the shear stress 

distribution) (Salmi & Pajunen 2010, p. 239 – 263). From the names mentioned, 

Saint-Venant torsion is commonly used term to designate the theory of pure torsion in a 

broad sense (Hughes et.al 2011, p. 7). 

As mentioned, the shear stress is proportional to the radial distance r from the axis of twist. 

With a circular member, the distribution is also linear and applies both to a solid and a hollow 

circular shaft, as shown in Figure 16 below: 

 
Figure 16. Shear stress distribution on a solid and a hollow circular shaft (according to 
Pennala 2002, p. 194 – 196) 

As seen in the picture, the magnitude of the shear stress (τ) varies linearly along the radial 

distance and closes zero towards the central region, which contribution to the overall 

torsional rigidity is very little compared to the outer region. Therefore, if material saving is 

important, a hollow shaft is preferred. With a hollow shaft it must be ensured though, that 

the wall thickness is sufficient enough to avoid stability issues (Parnes 2001, p. 205). In 

practical applications there is almost always other stress types present in addition to torsion. 

For example, bending vibration is usually present to some degree in power transmission 
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applications and should therefore be considered when determining the minimum wall 

thickness (Karhunen et.al. 2012, p. 187 – 191). 

When designing a torsion resistant structure, Blodgett 1972 (p. 2.10-1) lists three basic rules 

to follow: 

1. Closed sections are used where possible 

2. Diagonal bracing (in built-up frames) 

3. Rigid end connections 

The influence of the first item on the list can be illustrated by comparing the torsional 

modulus of the two otherwise similar square hollow sections, but one being closed and the 

other one open (Figure 17): 

 
Figure 17. A closed and an open square hollow section 

The sections have uniform wall thickness and for the open section the gap is assumed to be 

infinite narrow to simplify the dimensions for the calculation. For the closed section, the 

formula derived from Bredt’s analysis can be used to determine the torsion modulus Iv (Salmi 

& Pajunen 2010, p. 257): 

௩ܫ =
ଶܣ4̅

∑ ቀݏ௜
௜ݐ

ቁ
 (35) 
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, where ̅ܣ is the area enclosed by the center line, s is the edge length and t is the wall thickness 

as illustrated. As the example sections have only walls of single thickness and length, the 

equation may be simplified to: 

௩ܫ =
ଶ(ଶݏ)4

ݏ4
ݐ

 

⇒ ௩ܫ =
ଷݏ

 ଵିݐ

The open section uses different formula to obtain the torsion modulus. According to Föppl’s 

formula (Karhunen et.al.2012, p. 217) the torsion modulus is: 

௩ܫ =
1
3

෍ ௜ݐ௜ݏ
ଷ 

, and for a section with square dimension and uniform wall thickness: 

⇒ ௩ܫ =
ଷݐݏ4

3
 

From here the impact between closed vs. open section to the torsional rigidity can be 

illustrated by looking at the ratio of the torsion modules between the two: 

௩೎೗೚ೞ೐೏ܫ

௩೚೛೐೙ܫ

=
൬ ଷݏ

ଵ൰ିݐ

൬4ݐݏଷ

3 ൰
=

ݐଷݏ
4
3 ଷݐݏ

=
ଶݏ

4
3 ଶݐ

 

With example dimensions of ݏ = 250 and ݐ = 20 the torsions modulus of a closed section 

is already 117 times better than in the open section. This is due to the significant difference 

in the shear stress distribution and the shear flow between the two. With closed section the 

shear flow can run on one direction around the circumference of the section whereas in open 

section it must run in two directions and the shear stress change to its opposite value across 

the thickness of the section (Salmi & Pajunen 2010, p. 262). 

(39) 

(37) 

(36) 

(38) 
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According to Karhunen et.al. 2012 (p. 218) Föppl’s formula usually gives a bit too small 

values for the torsion modulus. To increase precision, a correction factor can be used which 

is dependent of the cross-section type so that: 

௩ܫ =
ߟ
3

෍ ௜ݐ௜ݏ
ଷ 

, where η varies from around 1 to 1.3 between L-, C-, T-, I and H-beams accordingly. Values 

can be found from structural engineering literature; for example Valtanen 2019 (p. 362). 

However, using the correction factor has still very little improvement to the torsion modulus 

compared to a closed section, and Karhunen et.al. (2012, p. 215) mentions consequently, 

that by adding more bends to an open cross-section one won’t get a significant improvement 

on the torsional rigidity. 

The second item in the Blodgett’s list, diagonal bracing, is based on a knowledge that a 

member under torsional loading produces both transverse shear stresses and longitudinal 

shear stresses, and that these stresses combined produce a diagonal tensile and compressive 

stresses which are maximum at 45 degree angle; this is illustrated in Figure 18. (Blodgett 

1972, p. 2.10-17.) 

 
Figure 18. Double diagonal bracing on a built-up frame (according to Blodgett 1972, 
p. 2.10-17) 

(40) 
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In the picture is shown a built-up frame with double diagonal bracing. When torque is 

applied, the diagonal supports bare the tensile and compressive stresses caused by the 

torsion. As the transverse and longitudinal shear components cancel each other out, there is 

no twisting action on a diagonal member placed at 45 degree to the frame as shown. 

(Blodgett 1972, p. 2.10-17.) 

The last item in Blodgett’s list, rigid end connections, concerns the warping restriction of a 

cross-section under torsion (Blodgett 1972, p. 2.10-21). By restricting the torsional warping 

of a cross-section, it is possible to improve the torsional behaviour (decrease the angle of 

twist) especially in double flanged sections. In Figure 19 is shown an I-beam, which is prone 

to warping in unrestricted torsion: 

 
Figure 19. Free warping of an I-beam (according to Hughes et.al 2011, p. 8) 

In the picture an I-beam is loaded by a torsion couple as shown – no additional supporting 

is present. From the picture can be seen, that the cross-sections no longer remain in plane, 

perpendicular to the longitudinal axis, but that the upper and lower flanges rotate to their 

opposite directions as seen from the top view. This counter rotation, known as warping, is 

characteristic behaviour to open, double flanged sections such as I-beams (Hughes et.al. 

2011, p. 8). In the picture is also notable that the top and bottom flanges themselves stay 

relatively straight. 

Figure 20 shows the same beam, but now with a rigid connection at one end: 
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Figure 20. Restricted warping on an I-beam (according to Timoshenko 1940, p. 283) 

The counter rotation is now fully restrained at the fixed end, from where the counter rotation 

gradually increases towards the free end. Therefore the flanges must bend in lateral direction 

and the torque is carried partly by the shearing stresses due to the twisting of the beam (pure 

torsion) and partly by the shearing stresses due to the bending of the flanges. The bending 

of the flanges adds to the overall rigidity of the beam compared to unrestricted torsion and 

therefore decreases the angle of twist. The significance of the bending effect of the flanges 

to the angle of twist depends on the rigidity of the flanges and the geometric proportions of 

the beam. The effect of the phenomena is the strongest at the root from where is gradually 

decreases as the free length increases. (Timoshenko 1940, p. 282 – 286.) 

Figure 21 shows the restricted warping as seen from the free end of the beam. The picture 

also shows the relation between the angle of twist and the deflection of the flanges: 
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Figure 21. Restricted warping of an I-beam (according to Timoshenko 1940, p. 283) 

In the picture the undeformed model is shown in light purple. From the geometry the lateral 

deflection of the upper flange can be given as (Timoshenko 1940, p. 284): 

ݖ ≅
ℎ
2

߮ 

, where h is the distance between the centroids of the top and bottom flanges and φ the angle 

of twist. To obtain the shearing force due to bending of the flange requires differentiation of 

the equation to the third derivative to get the rate of change of curvature. The general 

equation for the torsional moment can be found as: (Hughes et.al. 2011, p. 14.) 

ܶ
௩ܫܩ

= ߮ᇱ − ܽଶ߮′′′ 

, where ߮ ᇱand ߮ ′′′ are the first and third derivatives of the angle of twist and ܽ  is the torsional 

bending constant (ܽ = ඥܫܧ௪/ܫܩ௩). It is a dimension of length and depends on the cross-

(41) 

(42) 
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section geometry. It is an indicator of how quickly the effect of warping dissipates and when 

compared to the overall length of the beam, it gives a perception of the influence that warping 

restriction has to the total torsional deflection. Term ܫ௪ inside the square root is the warping 

constant; a value of dimension to the 6th power. It describes the cross-section geometry 

resistance to the torsion induced bending of the flanges. (Hughes at.al. 2011, p. 9 – 14.) 

Formulas to determine ܫ௪ for different types of cross-sections can be found in Timoshenko 

& Gere (1963, p. 530), Valtanen 2019 (p. 364 – 365) or Rubin 2005 (p. 828 – 830). Hughes 

and Malik (2011, p. 13) list different cross-sections types according to their warping 

behaviour: With double flanged sections (I and H-beams) the warping effect is the most 

notable, but in closed rectangular hollow sections (with typical dimensions) the warping 

effect is usually negligible as it is also with angled sections such as L, T or X. For a square 

hollow section the primary warping function actually vanishes (returns zero) and therefore 

isn’t considered (Bauchau and Craig (2009, p. 375). The warping constant of a double 

symmetric rectangular hollow section (which concerns the structural analysis of this thesis) 

can be formulated from Rubin (2005, p. 828) as shown in figure 22: 

 

௪ܫ =
1

24
ܾଶℎଶ ൬

ℎݐଵ − ଶݐܾ

ℎݐଵ + ଶݐܾ
൰

ଶ

(ℎݐଵ +  (ଶݐܾ

Figure 22. Warping constant of a double symmetric rectangular cross-section (formulated 
from Rubin 2005, p. 828) 

(43) 
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From the equation can be seen that when ℎݐଵ and ܾݐଶ are equal, the warping function returns 

zero, which is the case in a square hollow section with uniform wall thickness. 

By solving the differential equation 41 (page 34) for the variation of the angle of twist at the 

distance ݔ along the beam, the solution has a form (Hughes et.al. 2011, p. 69): 

(ݔ)߮ = sinhܣ ቀ
ݔ
ܽ

ቁ + coshܤ ቀ
ݔ
ܽ

ቁ + ଷݔଵܥ + ଶݔଶܥ + ݔଷܥ +  ସܥ

, where C1…4 are integration constants, which depend on the boundary conditions of the 

beam. In the structural analysis of this thesis it is assumed that the section is rigidly supported 

at one end and free at the other. By applying these boundary conditions, the formula for the 

angle of twist can be found as (Hughes et.al. 2011, p. 74): 

(ݔ)߮ = ൬
ܶܽ
௩ܫܩ

൰ ൜݊ܽݐℎ ൬
ܮ
ܽ൰ ቂܿݏ݋ℎ ቀ

ݔ
ܽ

ቁ − 1ቃ − ℎ݊݅ݏ ቀ
ݔ
ܽ

ቁ +
ݔ
ܽ

ൠ 

, where ܶ is the applied moment and ݔ the distance from the fixed end. 

2.4 Distortion of a cross-section 

As a fourth strain type to consider in addition to bending, shear and torsion would be 

distortion of the cross-section. It is a phenomena caused by asymmetric load distribution and 

according to Kermani & Waldron (1993, p. 427 – 428) it is a characteristic behaviour for 

thin-walled sections and may be triggered even by a single point load, if it’s placed 

eccentrically in respect to the centroid plane. Distortion is additional to torsional warping 

and occurs where the cross-section is permitted to deform. In Figure 23 is shown an example 

how the distortion effect appears in a square box beam under eccentric point load: 

(44) 

(45) 
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Figure 23. Distortion of a cross-section (according to Zhu et.al. 2020, p. 2) 

On the left in the picture is shown a SHS cantilever beam loaded with an eccentric point 

load F. This load is first divided into symmetric transverse load and asymmetric torsion load. 

Then the asymmetric torsion load is further divided into symmetric torsion load and 

distortion (Zhu et.al. 2020, p. 2). The magnitudes of the force vectors are adjusted in each 

step so that the final sum equals with the initial point load F. In the example the distorting 

forces cause the cross-section to distort from a square shape into a parallelogram and the 

walls of the section to deform into S-shape as the picture shows. To restrict the distortion of 

the cross-section, a diaphragm plate may be used, which locks the two diagonals together 

and prevents the S-deformation of the walls of the section. Remarking the possible 

distortional behaviour of the cross-section is important not only from the displacement point 

of view, but also that it creates stress concentration at the corners of the cross-section, which 

should be considered especially if the load is fluctuating nature and the section is built as a 

welded assembly. (Björk et.al. 2020, p. 5 – 10.) 
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2.5 Estimating sheet transition at the punching center 

One way to estimate the sheet movement at the punching center during frame deflection is 

to use a coordinate system transformation. By choosing a global reference frame to the 

punching center and a local reference frame to the end of the frame, the movement of the 

sheet during the frame deflection can be tracked in respect to the punching center. The rough 

locations of the coordinate systems are shown in Figure 24 below: 

 
Figure 24. Transformation from local to global coordinate system 

In the picture the local coordinate system (xL, yL, zL) is attached to the axis of twist of the 

frame structure and vector VS marks the reference point p at the corner of the sheet, which 

before deflection was located at the global origin. Vector VL positions the origin of the local 

coordinate system during deflection. Angle ψ is the angle of twist due to torsion, and β the 

slope of the deflection curve. The rotation of a coordinate system is done by projecting the 
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vector VS components to the global system using sin and cosine functions repeatedly for 

each axis rotation. Commonly used order for the rotations is the roll-pitch-yaw (or Z-Y-X) 

sequence, where the orientation of the coordinate system is determined by rotating each axle 

once. Below are shown the rotation matrices for each sequence (Siciliano et.al. 2009, p. 42): 

[୸܀] = ൥
cos(ߚ) − sin(ߚ) 0
sin(ߚ) cos(ߚ) 0

0 0 1
 ൩ 

[୷܀] = ൥
cos (ߠ) 0 sin (ߠ)

0 1 0
−sin (ߠ) 0 cos (ߠ)

൩ 

[୶܀] = ൥
1 0 0
0 cos(߰) −sin (߰)
0 sin (߰) cos (߰)

 ൩ 

The complete rotation matrix [R] is a multiplication of the three (ܴ = ܴ௭ܴ௬ܴ௫). The angle θ 

around the y-axis would be zero in this particular coordinate transformation case and 

therefore with ߠ = 0 the matrix [Ry] would be reduced to identity making it unnecessary to 

include in the rotation matrix, but below is shown the rotation matrix in its complete form 

(all three rotations included): 

[܀] = [୸܀] × [୷܀] ×  [୶܀]

=  ቎
cos(ߚ) cos (ߠ) cos(ߚ) sin(ߠ) sin(߰) − sin(ߚ) cos (߰) cos(ߚ) sin(ߠ) cos(߰) + sin(ߚ) sin (߰)
sin(ߚ) cos (ߠ) sin(ߚ) sin(ߠ) sin(߰) + cos(ߚ) cos (߰) sin(ߚ) sin(ߠ) cos(߰) − cos(ߚ) sin (߰)

−sin (ߠ) cos(ߠ) sin (߰) cos(ߠ) cos (߰)
 ቏ 

From here the coordinates for the point p in the global coordinate system can be given as: 

[୮܄] = ቈ
ݔ
ݕ
ݖ

቉ = [୐܄] + [܀] ×  [ୗ܄]

For example, if the initial local origin of the frame structure where the sheet is attached is 

found at [2150, 1270, -480] (mm) measured from the punching center and then the frame 

would first deflect 0.05 mm in y-direction, the vector ܄୐ would be 

[2150; 1270.05; -480]T (mm). In addition to transverse deflection the frame would also be 

(46) 
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bent according to the deflection slope so that rotation around z-axis is -0.0001 and finally 

the torsion rotation around x-axis would be +0.0002 radians; The corresponding angles 

,ߚ] ,ߠ ߰] for rotation matrix are then [-0.0001; 0; 0.0002]. The vector ܄ୗ marking the 

reference point in the sheet at the punching center in a local coordinate system is the same 

as ܄୐but only to opposite direction: [-2150; -1270; 480]T(mm). Inserting the vectors and 

angles to the equation, the coordinates for point p are obtained as: 

[୮܄]  ≈ [−0.127; 0.169; −0.254]்(mm) and the total positioning error in x-y –plane would 

be: ඥ∆ݔଶ + ଶݕ∆ ≈ 0.211 mm. 
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3 Results from analytical calculations 

In the following are presented results obtained from analytical calculations. The maximum 

transverse and torsion deflection are calculated for a group of cross-sections according to the 

load caused by the system acceleration. The obtained results are then inserted into a 

coordinate system transformation which shows the theoretical movement of the sheet at the 

punching center due to the frame deflection. 

3.1 Model description 

Structural model used for the calculation is shown in Figure 25: 

 
Figure 25. Structural model for calculation 

In the picture the model is loaded by a lateral force F, placed at distance r from the centroid, 

which is also the center of twist in a double symmetric section. T1 and t2 are the wall 

thicknesses for the side plates and top/bottom plates. H and W mark the overall height and 

width taken from the free surfaces. L is the length of the section. The section is rigidly 

supported at the root. Calculation constants are listed in Table 1: 
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Table 1. Calculation constants 

F (N) L (mm) H (mm) r (mm) E (MPa) G (MPa) 
10000 2150 350 520 210000 80000 

Section width (W) and wall thicknesses t1 and t2 are chosen as variables. Width is set to vary 

from 400 mm to 1000 mm by 100 mm increments. Wall thicknesses range from 20 mm to 

30 mm by 5 mm increments uniformly for both t1 and t2; this makes a total of 21 different 

cross-sections for analytical calculations. 

3.2 Transverse deflection and slope of the deflection curve 

The second moment of area I needed for the calculation is deduced simply by subtracting 

the hollow zone of the cross-section from the value calculated by the outer dimensions: 

௭ି௭ܫ =
ଷܹܪ − ℎݓଷ

12
 

, where ℎ = ܪ − ݓ ଶ andݐ2 = ܹ −  ଵ. Bending deflection and slope of the flexure curveݐ2

are calculated by eq. 12 & 13 (page 16). For shear deflection, the formulas based on the first 

moment of area are used (eq. 23, 25 & 27, pages 23 – 24). Results are shown in the next 

page in a chart format (Figure 26): 

(47) 
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Figure 26. Transverse deflection 

The figure shows the magnitude of the bending and shear deflection as stacked columns. In 

the chart the cross-sections are divided into groups according to their width (400 mm  

1000 mm) and within each group there are three columns which mark the deflection with 

each wall thickness. Results show that as the width of the cross-section increases, the 

deflection decreases significantly. The flexure in the narrowest cross-section is about 8 times 

greater than in the widest one. The “slope” of the graph decreases towards the end as the 

proportional change in width from the previous section to the next one decreases. On the 

next page are shown the same results in a table format (Table 2): 
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Table 2. Transverse deflection and slope of the deflection curve 

W (mm) t1=t2 bending (mm) shear (mm) total (mm) slope (rad) 
400 20 0.2385 0.0201 0.2586 0.0001758 

  25 0.1985 0.0163 0.2148 0.0001460 
  30 0.1721 0.0137 0.1858 0.0001264 

500 20 0.1394 0.0163 0.1557 0.0001048 
  25 0.1153 0.0131 0.1285 0.0000866 
  30 0.0994 0.0111 0.1104 0.0000745 

600 20 0.0895 0.0137 0.1032 0.0000688 
  25 0.0737 0.0111 0.0848 0.0000566 
  30 0.0632 0.0093 0.0725 0.0000484 

700 20 0.0612 0.0119 0.0731 0.0000482 
  25 0.0503 0.0096 0.0598 0.0000395 
  30 0.0430 0.0080 0.0510 0.0000337 

800 20 0.0439 0.0105 0.0544 0.0000355 
  25 0.0360 0.0085 0.0444 0.0000290 
  30 0.0307 0.0071 0.0378 0.0000247 

900 20 0.0327 0.0094 0.0421 0.0000272 
  25 0.0267 0.0076 0.0343 0.0000222 
  30 0.0227 0.0064 0.0291 0.0000188 

1000 20 0.0250 0.0086 0.0336 0.0000214 
  25 0.0204 0.0069 0.0273 0.0000174 
  30 0.0173 0.0058 0.0231 0.0000148 

In the table are listed round values for bending and shear deflection, total transverse 

deflection and the slope of the deflection curve, measured at the end of the section. The 

portion of shear deformation of the total deflection ranges from 7.5% to 25.6%, the smallest 

value being found in the narrowest section with t = 30 mm. From there the share or shear 

deflection increases by the width of the cross-section and reaches the maximum of 25.6% in 

the 1000 mm wide section with 20 mm wall thickness. The slope of the deflection curve 

contains the combined action of bending and shear deformation: It is used as the rotation 

angle around z-axis when assessing the sheet displacement at the punching center. 

3.3 Deformation due to torsion 

Torsion deformation was calculated using both Saint-Venant (pure torsion) and warping 

torsion. For Saint-Venant torsion the torsion modulus Iv is calculated using Bredt’s formula 

(eq. 35 on page 29), which is then placed to equation 34 (page 27) in place of Ip. The 
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following graph (Figure 27) shows the results for Saint-Venant torsion caused by the 

moment Fr: 

 
Figure 27. Deformation due to Saint-Venant torsion  

The angle of twist ranges from 0.000158 to 0.000031 radians (calculated values) from the 

narrowest one (W = 400, t = 20 mm) to the widest one (W = 1000, t = 30). When sections 

with equal wall thicknesses are compared, the angle of twist in the widest section is around 

73% smaller than in the narrowest one. As the assessment o8) is shown the resulting lateral 

displacement at 480 mm height from the axis of twist; this is the height where the punching 

center is located in reference to the frame. 
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Figure 28. Saint-Venant torsion: Lateral displacement measured at 480 mm height from the 
axis of twist 

The displacements are within same order of magnitude as the flexural displacement 

(bending + transverse shear), but with the narrowest section (W = 400, t = 20 mm) the 

flexural displacement is clearly dominating being about 3.4 times more than the torsional 

displacement. As the width of the section increases, the gap narrows down, yet in the widest 

section (W = 1000 mm, t = 30 mm) the displacement from bending and shear deformation is 

still 1.5 times higher than the displacement caused by torsion. 

Corresponding graphs for warping torsion are not represented here as they follow very 

closely Saint-Venant solution, but they are included in Table 3 next, where is shown the 

percentage difference between Saint-Venant and warping torsion. Warping constant Iw and 

warping torsion are calculated here by equations 43 and 45. 
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Table 3. Saint-Venant torsion and warping torsion comparison 

W (mm) t1=t2 Saint-Venant 
torsion (rad) 

warping 
torsion (rad) 

difference 
(%) 

400 20 0.00015774 0.00015774 0.0 % 
  25 0.00013172 0.00013172 0.0 % 
  30 0.00011464 0.00011464 0.0 % 

500 20 0.00011279 0.00011279 0.0 % 
  25 0.00009382 0.00009382 0.0 % 
  30 0.00008135 0.00008135 0.0 % 

600 20 0.00008679 0.00008443 -2.7 % 
  25 0.00007203 0.00007007 -2.7 % 
  30 0.00006231 0.00006061 -2.7 % 

700 20 0.00007008 0.00006741 -3.8 %  
  25 0.00005808 0.00005587 -3.8 % 
  30 0.00005016 0.00004825 -3.8 % 

800 20 0.00005853 0.00005567 -4.9 % 
  25 0.00004846 0.00004609 -4.9 % 
  30 0.00004182 0.00003977 -4.9 %  

900 20 0.00005013 0.00004713 -6.0 % 
  25 0.00004147 0.00003899 -6.0 %  
  30 0.00003576 0.00003362 -6.0 % 

1000 20 0.00004376 0.00004067 -7.1 % 
  25 0.00003619 0.00003363 -7.1 %  
  30 0.00003119 0.00002898 -7.1 %  

The last row shows, how much smaller the angle of twist from the warping torsion is 

compared to Saint-Venant torsion. The more the aspect ratio of the section diverges from a 

square, the more significant the effect of warping torsion becomes. With 400 and 500 mm 

wide sections the error is practically zero. The maximum difference between Saint-Venant 

and warping torsion is 7.1% in the widest section. 

3.4 Sheet movement at the punching center 

For the calculation of sheet movement at the punching center, the wall thickness was selected 

25 mm to narrow down the number of candidates from 21 to 7. Based on the analytical 

results, the components for the vector VL, which marks the origin of the local reference frame 

placed at the centroid at the free end of the frame, are listed in Table 4: 
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Table 4. Components for the vector VL 

Section # x (mm) y (mm) z (mm) 

1 2150 1270.2148 -480 
2 2150 1270.1285 -480 
3 2150 1270.0848 -480 
4 2150 1270.0598 -480 
5 2150 1270.0444 -480 
6 2150 1270.0343 -480 
7 2150 1270.0273 -480 

Sections are numbered according to their width, where #1 section is 400 mm wide and #7 

1000 mm wide. Components for the vector VS in a local reference frame are 

[-2150; -1270; 480]T. Angles for the rotation matrix R are listed in Table 5: 

Table 5. Angles for the rotation matrix R 

Section # Ψ (rad) θ (rad) β (rad) 

1 -131.72E-6 0 146.04E-6 
2 -93.82E-6 0 86.58E-6 
3 -72.03E-6 0 56.56E-6 
4 -58.08E-6 0 39.52E-6 
5 -48.46E-6 0 29.03E-6 
6 -41.47E-6 0 22.15E-6 
7 -36.19E-6 0 17.44E-6 

The rows in the table are in the same order as were the vector VL components: rotations 

around x-, y-, and z-axis. Being a more conservative choice, values for the x-axis rotation 

are based on Saint-Venant torsion. By inserting the values into the rotation matrix, the x- 

and y-coordinates for the point P and the corresponding total displacement at the punching 

center are obtained as in Table 6: 
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Table 6. Displacement of the sheet at the punching center in x-y –plane 

Section # x (mm) y (mm) ඥ࢞૛ + ࢟૛ (mm) 
1 0.185491 -0.035991 0.188950 
2 0.109963 -0.012624 0.110686 
3 0.071834 -0.002267 0.071869 
4 0.050195 0.002749 0.050270 
5 0.036864 0.005282 0.037241 
6 0.028136 0.006562 0.028891 
7 0.022145 0.007170 0.023276 

Figure 29 below shows the same results placed in x-y –coordinate system grid: 

 
Figure 29. Displacement at the punching center 

Total displacement varies from 0.023 mm (section #7) to 0.189 mm (section #1). The major 

share of the displacement comes from the change in x-coordinate and this value also ranges 

more significantly between sections than the y-coordinate, which with all sections stays 

within 0.04 mm. From the results can be noticed the effect of the rotation of the vector VS 

according to the slope of the flexure curve: As the vector is being rotated, it compensates for 

the y-displacement, but at the same time the x-coordinate moves away from the initial zero 

position. With sections 1 – 3 the rotation actually overshoots the y-coordinate to the negative 

side, opposite to the force direction. 
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4 Results from FEM analysis 

On the following are presented the results from the FEM analysis. Cross-section dimensions 

of section #6 are chosen as a basis for the FEM simulation. To get comparative results, the 

model is first tested with a single load type at a time. Then the model is further defined to 

represent more closely the actual application. In FEM, the model is also tested for structural 

modifications that either increase the stiffness by adding material, or decrease stiffness by 

removing material from places that could be required in the final construction. Apart from 

one exception, a surface mesh is used for FEM simulations, since it enables gathering results 

for both translational displacement and rotational displacement. For load attachment, an end 

plate with equal wall thickness as the rest of the model is used at the free end of the frame 

to avoid heavy distortion due to the force distribution. Simulations are done in Solid Edge® 

2019 simulation environment. Meshing is done otherwise fully automatically except in some 

occasion the element quantity on an edge is assigned to an even number to position a node 

to the middle of the edge. On a scale 1 to 10 a value of 9 is used as the subjective mesh size. 

For Poisson’s ratio a value 0.3 is used. 

4.1 Deflection due to transverse force 

Result due to transverse force is shown in Figure 30: 
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Figure 30. Transverse load: Y-displacement (Solid Edge® 2019) 

The surface mesh model shown in the picture is made to the mid-planes of the solid model, 

so that the nodes at the free end are located at 2137.5 mm distance from the root 

(2150 mm – 0.5t). The load (10 000 N) is attached to the end face of the model. The 

maximum transverse deflection is 0.0328 mm, which is within 5% compared to the analytical 

result which was 0.0343 mm. The nodal rotation around z-axis due to the same transverse 

force is shown in Figure 31 below: 

 
Figure 31. Transverse load: Nodal rotation around z-axis (Solid Edge® 2019, modified) 
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The mesh gives a maximum value of 0.001275 degrees located two elements away from the 

corner, which is within 1% when compared to the slope of deflection curve from analytical 

calculations. At the node next to the centroid plane the angle of rotation is 0.001018 degrees 

as marked in the picture. The surface mesh consists of 1272 nodes. 

4.2 Deformation due to torsion 

Deformation due to torsion is shown in Figure 32: 

 
Figure 32. Torsion load: Nodal rotation around x-axis (Solid Edge® 2019) 

In the picture the torque is applied to the face of the free end and the torque axis is set to the 

centroid line. The rotation degree varies at the end surface from around 0.00201 degrees to 

0.00267 degrees. Angle of twist can be approximated also from the translational 

displacement at the side of the section (∆ݖ) by calculating the angle as ߖ =  ݖ∆ where ݎ/ݖ∆

is the deflection at distance r from the axis of twist. Vertical displacement was measured 

0.0183 mm in the node closest the centroid plane so therefore: 

ߖ = 0.0183 ݉݉/437.5 ݉݉ = ݀ܽݎ 0.00004183 ≈ 0.00240 ݀݁݃. 
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The result is 2% more when compared to Saint-Venant solution (0.00238 degrees) and 8% 

more than the result from warping torsion which was 0.00223 degrees. 

If the torque is applied without an end plate, the result is quite different. Figure 33 shows the 

vertical displacement of the same section under torsional loading, but the torque now applied 

to the cross-section without an end plate: 

 
Figure 33. Torsion load: Deformation in z-axis direction without an end plate (Solid Edge® 
2019) 

In the picture can be seen the distorting effect of the torsion load as it is distributed to the 

end face. The resulting vertical deformation is almost 6.5 times greater than in the model 

with an end plate. In this simulation a tetrahedral mesh of 44936 nodes was used to place the 

torque to the cross-section. 

4.3 Diagonal bracing against torsion 

In the chapter concerning structure under torsion, one design guideline was to use diagonal 

bracing. In Figure 34 is shown result for the angle of twist with single and double diagonal 

bracing: 
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Figure 34. Torsion load: Nodal rotation around x-axis with diagonal bracing (Solid Edge® 
2019, modified) 

The wall thickness of the diagonal plates is the same as the cross-section: 25 mm. With single 

diagonal bracing (upper picture) the maximum angle of nodal rotation is 0.00245 degrees 

and with double diagonal bracing 0.00227 degrees. Values are 8% and 15% less compared 

to the surface mesh model without bracing, which had maximum value of 0.00267 degrees. 

The model with single diagonal bracing is made of 1932 nodes and the model with double 

diagonal bracing of 3876 nodes. 
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4.4 Refining the FEM model 

In the following the FEM model is further refined to represent more closely the actual 

application. The effect of diagonal and diaphragm bracing is also tested. Similarly the effect 

of cut outs at the sides of the frame is investigated. In the defined model the load vectors are 

placed using split-surfaces in the top of the model. The dimensions of the simulation model 

are shown in Figure 35 below: 

 
Figure 35. Dimensions of the simulation model (Solid Edge® 2019, modified) 

The frame is still built as a mid-plane surface model, but the overall length is increased 

according to the application. To avoid force concentration only to few nodes, four 

independent rectangular segments of 150 x 50 mm are built to the top surface to represent 

the areas where the loads are assumed to go through. The segments are located symmetrically 

in respect to the 2150 mm x-coordinate, which was used as the beam length in the analytical 

calculations and which is the center of the moving mass. Numbers 1 – 6 refer to nodes from 

which the displacements are measured after each simulation. They are located at the outside 

edges of the mesh model. Nodes 1 – 2 and 5 – 6 are at the center of the load attachment 

surfaces and nodes 3 – 4 are the ones which are located closest to the center of the moving 

mass: With automated meshing the nodes were located roughly at 2130 mm from the origin. 
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When the sheet displacement at the punching center is later calculated, the rotation around 

x-axis and the y-displacement of the local reference frame VL is defined by nodes 3 – 4. The 

rotation around z-axis is calculated according no nodes 1 – 5. As the sheet displacement is 

calculated according to the nodal coordinates, only translational displacement (y or z) are 

reported in the following simulations. 

Figure 36 shows the simulation result for vertical displacement in a model without any 

additional bracing other than the end plate. The picture also shows the load placement: 

 
Figure 36. Vertical displacement without bracing and load attachment (Solid Edge® 2019, 
modified) 

In the simulation all loads are defined as distributed loads within each segment – the single 

load vectors are drawn only for reference. As the transverse force isn’t placed at the centroid 

plane anymore, it produces a moment which is subtracted from the additional torque 

requirement: 5200 ܰ݉ − 0.1625 ݉ × 10000 ܰ = 3575 ܰ݉. The axis of torque is set to 

the centroid line of the cross-section. The mesh consists of 6219 nodes. Vertical 

displacement at the nodes mentioned in the previous page are listed in the following (in 

millimetres): 
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1. 0.0139 

2. -0.0125 

3. 0.0188 

4. -0.0163 

5. 0.0223 

6. -0.0185 

The results show that the displacement on the left side of the frame is more than on the right 

side. Difference varies from 11% to 15% to 21% according to the distance from the root, the 

smallest percentage difference representing nodes 1 and 2. To assess the angle of twist, a 

straight line is placed through nodes 3 – 4 and the angle of the line is calculated from: 

߮ ≈ atan ൬
ଶݖ − ଵݖ

ଶݕ − ଵݕ
൰ 

Taking the values from the listed results and using +/- 437.5 mm for the y coordinate, the 

angle of twist is found to be 0.00004011 radians or 0.00230 degrees. Results is 3% more 

than the analytical result from the warping torsion and 4% less than the result calculated 

from the surface mesh model shown in figure 33. 

Results for horizontal displacement are shown in Figure 37: 

 
Figure 37. Y-displacement without bracing (Solid Edge® 2019) 

(44) 
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A banded color bar is used to shown the inclined shape of the displacement variation across 

the height of the beam. Taking the exact values from the nodes 1 – 6, the horizontal 

displacements are (mm): 

1. 0.0268 

2. 0.0268 

3. 0.0450 

4. 0.0450 

5. 0.0677 

6. 0.0677 

Although results are not directly comparable with previous simulations anymore, the 

displacement in points 3 – 4 is found 37% bigger than in the model in figure 31. The rotation 

around the z-axis, which is needed to assess the theoretical sheet movement at the punching 

center, is approximated similarly as the angle of twist in the previous by placing a line 

between two measured nodes: in this case the nodes 1 – 5. Taking the y-coordinates from 

the results above and the x-coordinates from the dimension sketch (figure 37) the angle of 

the line is given as: 

߮ ≈ atan ൬
0.0268 ݉݉ − 0.0677 ݉݉

1420 ݉݉ − 2880 ݉݉ ൰ ≈  ݀ܽݎ 0.00002801

The result is 26% greater than the one obtained from analytical calculations. By inserting the 

gathered results (rotation around x- and z-axis and the coordinates of vector VL) to the 

coordinate system transformation matrices, the resulting sheet movement at the punching 

center is obtained as in Table 7: 

Table 7. Displacement at the punching center (no additional bracing) 

x (mm) y (mm) ඥ࢞૛ + ࢟૛ (mm) 
0.035578 0.004027 0.035805 

The result for the total displacement places between sections #6 (0.029 mm) and #5 

(0.037 mm) from the analytical calculations. 
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4.4.1 Diagonal bracing 

Results for vertical and horizontal deflection using diagonal bracing (single type) are shown 

in Figure 38 below. Model contains four 25 mm thick diagonal plates which are placed at 

45 degree angle, starting from the root. The mesh consists of 7115 nodes. 

 
Figure 38. Z- and y-displacement with single diagonal bracing (Solid Edge® 2019, 
modified) 

The exact results for the nodes are shown in Table 8, which contains also the percentage 

difference when compared to the model without bracing: 
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Table 8. Z- and y-displacement with single diagonal bracing and comparison to the model 
without bracing 

Node Δz (mm) % change Δy (mm) % change 
1 0.0115 -17.3 % 0.0263 -1.9 % 
2 -0.0100 -20.0 % 0.0263 -1.9 % 
3 0.0150 -20.2 % 0.0446 -0.9 % 
4 -0.0125 -23.3 % 0.0446 -0.9 % 
5 0.0189 -15.2 % 0.0666 -1.6 % 
6 -0.0145 -21.6 % 0.0666 -1.6 % 

The added torsional rigidity from the diagonal bracing improved the results for vertical 

displacement between 15 – 23%. The y-displacement, however, stayed within 2% compared 

to the model without bracing. The calculated sheet displacement at the punching center with 

diagonal bracing is shown in Table 9: 

Table 9. Displacement at the punching center (diagonal bracing) 

x (mm) y (mm) ඥ࢞૛ + ࢟૛ (mm) 
0.035056 0.000341 0.035058 

The improved in the total displacement compared to the model without bracing is under one 

thousand of a millimetre, so it has no practical effect on the accuracy. 

4.4.2 Diaphragm bracing 

In the next the model is tested with diaphragm bracing. Here two 25 mm thick plates are 

positioned in the middle of the load attachment surfaces perpendicularly by the centroid line. 

The simulation result is shown in Figure 39. The mesh consists of 6739 nodes. 
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Figure 39. Z- and y-displacement with diaphragm bracing (Solid Edge® 2019, modified) 

The maximum vertical displacement shown in the color bar is 2% more, and horizontal 

displacement 3% more than in the previous model with diagonal bracing. Measured values 

at the nodes are listed in Table 10 below: 

Table 10. Z- and y-displacement with diaphragm bracing and comparison to model without 
bracing 

Node Δz (mm) % change Δy (mm) % change 
1 0.0119 -14.4 % 0.0274 2.2 % 
2 -0.0105 -16.0 % 0.0274 2.2 % 
3 0.0158 -16.0 % 0.0461 2.4 % 
4 -0.0134 -17.8 % 0.0461 2.4 % 
5 0.0192 -13.9 % 0.0687 1.5 % 
6 -0.0155 -16.2 % 0.0687 1.5 % 

Similarly to diagonal bracing the biggest improvement is in vertical displacement, where the 

improvement varies between 14 – 18%. However, on horizontal displacement the values are 



62 

 

actually higher than without bracing, but the difference is within 2.4%. Similar increase in 

displacement wasn’t seen at the end of the frame though, so the increase in displacement 

seems to be local. The calculated sheet displacement at the punching center is shown in 

Table 11 below: 

Table 11. Displacement at punching center (diaphragm bracing) 

x (mm) y (mm) ඥ࢞૛ + ࢟૛ (mm) 
0.035923 0.001301 0.035950 

Again, there is no meaningful difference in the total displacement compared to the original 

model. The most notable effect of the diaphragm bracing can be seen when comparing the 

nodal rotation around x-axis side by side with the model without bracing (Figure 40): 

 
Figure 40. Nodal rotation around x-axis (Solid Edge® 2019, modified) 
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The model without bracing is shown in the upper picture, where there is a clearly defined 

blue – magenta zone in the middle of the top plate. Similar effect was also seen in the bottom 

plate, although in a more moderate fashion. Result indicates that the top and bottom plates 

distort into S-shape as in figure 32, page 53. With diaphragm bracing (bottom picture) the 

distortion is restrained at the diaphragm plates. One way to evaluate the magnitude of 

distortion is to calculate the difference of diagonals in a cross-section. Taken from nodes 3 

and 4 to the opposite corners of the section, the difference in the diagonals is calculated to 

be 0.00972 mm in the model without bracing. With diaphragm bracing the difference is 

0.00129 mm, which is 87% less than without bracing. The diagonals were also measured 

with the transverse force applied only: There the difference in diagonals was measured 

0.01834 mm in the model without bracing, which is almost 2 times more than in the final 

simulation, where the additional torque is also present. The phenomena is further discussed 

in chapter 5. 

4.4.3 Effect of cut outs 

In the final structure there might be a need for access to the inside of the frame to carry out 

installation of some accessory equipment. For this purpose two pieces of 200x100 mm cut 

outs are placed through the sides of the frame making four cuts outs total. Cut outs are placed 

so that the first one is midway from the root to the first load attachment surface, and the 

second one midway between the two load attachment surfaces. Figure 41 shows the result 

when the cut outs are applied to the frame without any additional bracing. The mesh consists 

of 11420 nodes. 
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Figure 41. Z- and y-displacement with cut outs and no bracing (Solid Edge® 2019, 
modified) 

In Table 12 below is shown the results for the displacement of the nodes: 

Table 12. Z- and y-displacement with cut outs and no bracing compared to the original 
model (no cut outs, no bracing) 

Node Δz (mm) % change Δy (mm) % change 
1 0.0157 12.9 % 0.0278 3.7 % 
2 -0.0143 14.4 % 0.0278 3.7 % 
3 0.0206 9.6 % 0.0471 4.7 % 
4 -0.0181 11.0 % 0.0471 4.7 % 
5 0.0245 9.9 % 0.0707 4.4 % 
6 -0.0207 11.9 % 0.0707 4.4 % 
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In the table the values are compared against the original model. The increase in vertical 

displacement is 10 – 14% and in horizontal 4 – 5%. The resulting sheet displacement at the 

punching center is found as in Table 13 below: 

Table 13. Displacement at punching center (cut outs and no bracing) 

x (mm) y (mm) ඥ࢞૛ + ࢟૛ (mm) 
0.037317 0.005157 0.037672 

The result for the total displacement is 5.2% more than in the model without cut outs. 

Same cut outs were also tested in the model with diaphragm bracing. There the decline in 

stiffness was the same order of magnitude as without bracing. Although torsional stiffness 

is reduced by the cut outs, the model with diaphragm bracing still remains stiffer against 

torsion compared to the one without bracing. The gap in the horizontal displacement, 

however, increased from the initial 2% to roughly 7% as Table 14 below shows: 

Table 14. Z- and y-displacement with cut outs and diaphragm bracing compared to the 
original model without cuts out or bracing 

Node Δz (mm) % change Δy (mm) % change 
1 0.0132 -5.0 % 0.0286 6.7 % 
2 -0.0117 -6.4 % 0.0286 6.7 % 
3 0.0171 -9.0 % 0.0485 7.8 % 
4 -0.0145 -11.0 % 0.0485 7.8 % 
5 0.0210 -5.8 % 0.0719 6.2 % 
6 -0.0172 -7.0 % 0.0719 6.2 % 

The resulting sheet displacement at punching center is shown in Table 15 below: 

Table 15. Displacement at punching center (with cut outs and diaphragm bracing) 

x (mm) y (mm) ඥ࢞૛ + ࢟૛ (mm) 
0.037666 0.002073 0.037722 

Compared to Table 13 (cuts outs and no bracing), diaphragm bracing didn’t make any 

noticeable improvement in the sheet displacement. 
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4.4.4 Increasing the side wall thickness 

Figure 42 shows results with the side wall thickness (t1) increased to from 25 to 30 mm. 

 
Figure 42. Z- and y-displacement with t1 = 30 mm (Solid Edge® 2019) 

The simulation model is here otherwise identical with the original model but the side wall 

thickness (t1) has been raised from 25 to 30 mm. Displacement at the nodes is shown in 

Table 16 below: 

Table 16. Z- and y-displacement with t1 = 30 mm and comparison to the original model 

Node Δz (mm) % change Δy (mm) % change 
1 0.0129 -7.2 % 0.0249 -7.1 % 
2 -0.0115 -8.0 % 0.0249 -7.1 % 
3 0.0177 -5.9 % 0.0416 -7.6 % 
4 -0.0152 -6.7 % 0.0416 -7.6 % 
5 0.0210 -5.8 % 0.0622 -8.1 % 
6 -0.0174 -5.9 % 0.0622 -8.1 % 
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Results show that from the tested models, this is the only one with notable improvement in 

the horizontal displacement. The resulting sheet displacement at the punching center is found 

as shown in Table 17: 

Table 17. Sheet displacement at the punching center (with t1 = 30 mm) 

x (mm) y (mm) ඥ࢞૛ + ࢟૛ (mm) 
0.032446 0.004721 0.032788 

The total displacement is 8.4% less than in the original model (Table 7). 
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5 Analysis of results 

In the analytical calculations the results for the transverse displacement are as anticipated: 

As the width increases, the bending stiffness increases rapidly. When the section width 

increases from 400 mm to 600 mm, the bending deflection is already reduced by 60%. At 

the same time the cross-sectional area (and therefore the weight) of the section is increased 

only 29%. The portion of shear deflection in the total transverse deflection grows by the 

section width as every increment in width has more powerful impact on bending stiffness 

compared to shear stiffness. In the 400 mm wide section the portion of shear deflection is 

7.5%, whereas in the widest section (w = 1000 mm) the portion of shear is almost 26% of 

the total transverse deflection. 

For torsion deflection both Saint-Venant and warping torsion were used. The maximum 

difference between the two methods was in the widest section, where warping torsion gave 

7.1% smaller result for the angle of twist. The difference can be considered relatively small 

when taking into account the somewhat extreme dimensional proportions of the frame. The 

small difference between two methods is a consequence of the use of a closed hollow section, 

where the warping effect is typically quite mild. In the literature research it was found that 

the formula for the warping constant for a RHS section isn’t often given at all as the warping 

phenomena is seen so negligible. When comparing the torsion induced movement at the 

reference height (480 mm from the centroid) to the transverse displacement caused by 

bending and shear, it was concluded that any increase in width of the section had more 

significant effect to the flexural stiffness than torsional stiffness as the share of torsion 

induced transverse displacement grew by each increment in the width of the cross-section. 

From the results for the sheet displacement at the punching center can be noted, that the 

rotation of the cross-section according to the flexure curve compensates for the transverse 

displacement caused by bending, shear and torsion. In three most narrow frames the rotation 

actually overshoots the compensation so that the final position of the sheet is on the negative 

side of the y-axis. From the results can be also concluded that the change in the x-coordinate, 

which was dominant in the position error, depends not only on the stiffness or length of the 

frame, but also how the frame centroid is located in reference to the punching center: If its 



69 

 

origin would be located further away from the x-z –plane of the global coordinate system 

(punching center), the movement in x-direction per angle degree of β would be greater. This 

would be the case if the specification for the maximum sheet width would change to a next 

bigger one and the fixed frame location would therefore be shifted further away from the x-y 

–plane of the punching center. So, in a system with similar masses (= similar deflection) but 

a wider sheet, the error in x-direction would increase and correspondingly, the compensating 

movement in y-direction (opposite to the load) caused by the rotation would be slightly less. 

The described arrangement is illustrated in Figure 43 below: 

 

Figure 43. Effect of the reference frame position to the change in x- and y-coordinates during 
rotation 

In the picture is shown two sheets of equal length and equal rotation angle, but the left one 

being 1.5 meters and the right one 2 meters wide. The centroid of the fixed frame is here 

positioned according to the sheet size, so the rotation axis is located further away from the 

punching center x-y –plane, which effects to the ratio of x- and y-displacement per rotation 

angle. 

In the FEM analysis of the simplified model (L ~ 2150 mm) the result for transverse 

displacement (Figure 30, page 51) was within 3% compared to the analytical result. 

Although the slope of the deflection curve in the analytical calculations and the nodal 

rotation in FEM are different definitions and can’t be directly compared to each other, the 

maximum angle at the sides of the FEM model (Figure 31, page 51) matched almost exactly 

the slope of the deflection curve. The nodal rotation, however, decreased right after the side 

plates when moving towards the centroid of the section: This is consistent with Figure 10 
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(page 20) where the shear stress causes the cross-section to diverge from a perpendicular 

angle in respect of the deflection curve between the free surfaces. 

For the rotation due to torsion (Figure 32, p. 52) the FEM result was closer to Saint-Venant 

solution than warping torsion, when the angle of twist was calculated based on the vertical 

displacement at the sides of the section. There the angle of twist was calculated 0.00240 

degrees, which is 2% more than Saint-Venant torsion and 8% more than the result from 

warping torsion. With diagonal bracing (Figure 34, p. 54) the torsion deflection was reduced 

by 8% in a single diagonal and 15% in a double diagonal bracing. The improvement achieved 

with double diagonal bracing equals roughly the difference in torsional stiffness between 

900 mm and 1000 mm wide sections. 

In the model with increased definition (Figure 38, page 59) the use of single diagonal bracing 

improved torsional rigidity 15 – 23%, when the vertical movement of the selected nodes 

were compared to the model without bracing. The diaphragm bracing improved similar 

results by 14 – 18%. When comparing the weight added by the two bracing methods, the 

diaphragm bracing seems to be more effective in this particular simulation assignment as it 

raised the weight by approximately 5.3% (for 14 – 18% improvement), whereas single 

diagonal bracing increased the weight by 14.8% (for 15 – 23% improvement). However, it 

should be noted that the use of diagonal bracing was pictured in the referenced material 

(Blodgett 1972, p. 2.10-18) as a part of an open build-up frame without top and bottom plates 

(Figure 18, page 31). There the achieved effect was in a completely different scale and in 

favour to diagonal bracing. When used in a ladder type frame structure with open top/bottom, 

the diagonal bracing was reported to provide multiple times greater improvement in torsional 

rigidity per added weight than diaphragm bracing (Blodgett 1972, p. 2.10-18). 

The distortion of the cross-section was assessed by calculating the difference in diagonals 

taken from nodes 3 and 4 to the opposite corners. When compared to the model with 

diaphragm bracing there was some S-shape distortion visible in the model without bracing 

(Figure 40, page 62). The difference in diagonals was there calculated 0.00972 mm. 

However, when measured with the additional torque load removed, the difference in 

diagonals was 0.01834 mm, which is almost 2 times more than in the simulation with all the 
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loads present. The relative order of the diagonal lengths also changed between the 

simulations. The distortional behaviour of the section is shown in Figure 44: 

 
Figure 44. Distortion of a cross-section (Solid Edge® 2019, modified) 

On the left is shown the simulation where only the transverse force is applied. The 

asymmetric force distribution causes bottom plates to deform into S-shape and the section 

into a parallelogram. On the right is the same model but with the additional torque also 

applied. The torque acts against the initial distortion so that the final distortion has smaller 

magnitude and also opposite direction. It should be noted that the loads and boundary 

condition (cantilever beam) are here applied according to the application, so the picture 

includes also bending and torsion deformation in addition to distortion. 

When cut outs were added to the sides of the frame the vertical displacement at the reference 

nodes increased 10 – 14% and the horizontal displacement around 4 – 5%. By adding the 

diaphragm plates, the torsional stiffness could be restored so that results for vertical 

displacement were still better than in the original model (without cut outs), but the bracing 

didn’t improve the horizontal displacement: It actually grew slightly at the measured nodes. 

The reason to slight increase in nodal displacement could be related to the distortion of the 

unbraced section which effects the displacement of these specific nodes, but the issue wasn’t 

investigated more deeply as the difference is yet quite small and didn’t recur as such in the 

total displacement at the end of the frame. 

In order to assess the sheet displacement at the punching center according to the results from 

FEM, and to do it without modelling up the whole sheet positioning system, coordinates 

measured at specified nodes were used as a basis for the displacement calculations. The 

rotation around x-axis was defined by the slope of a line placed through nodes 3 – 4 which 
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were placed midway between the load points. Similarly, the rotation around z-axis was 

defined by a line through nodes 1 – 5 which represent the positions of linear carriages fixed 

beneath a sub frame which holds the sheet. The y-coordinate in the vector VL was calculated 

based on the transverse displacement in the nodes 3 – 4: The value in these nodes was 

selected being a more conservative choice rather than estimating the displacement at the 

centroid of the cross-section. The results for different models are gathered in Table 18 below: 

Table 18. Displacement at punching center 

  x (mm) y (mm) ඥ࢞૛ + ࢟૛ (mm) 
No bracing, no cut outs 0.0356 0.0040 0.0358 
Diaphragm bracing 0.0359 0.0013 0.0359 
Diagonal bracing 0.0351 0.0003 0.0351 
Cut outs, no bracing 0.0373 0.0052 0.0377 
Cut outs, diaphragm bracing 0.0377 0.0021 0.0377 
No bracing, t1=30 mm, t2=25 mm 0.0324 0.0048 0.0328 

From the results can be seen that in all sections the change in x-coordinate determines almost 

completely the total displacement as the change in y is an order of magnitude smaller.  The 

results also show that either one of the bracing methods (diaphragm or diagonal) didn’t have 

much effect on the displacement at the punching center as they both increase primarily the 

torsional stiffness, which affects mainly to the y-coordinate. Cut outs in the side plates 

increased the total displacement by 5%. In the last row is shown the model with increased 

side wall thickness (t1 = 30 mm) where the total displacement is 8.4% less compared to the 

original model. The 5 mm of added material in the side walls increased the total weight of 

the frame by 4.8%, which makes it the most effective choice in decreasing the sheet 

displacement at the punching center when compared to the two other bracing methods. 
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6 Conclusions 

In the structural analysis of this thesis it was found that with the dimensions used, the 

bending deformation is the dominant factor in achieving the best accuracy at the punching 

center. Design against bending deformation calls for the placement of material as far away 

as possible from the neutral axis. So, if the displacement at the punching center should be 

further decreased, it could be done either by increasing the width of the cross-section or if 

not possible, by increasing the wall thickness of the side plates. The shear deformation 

accounted up to 26% of the total transverse deflection in the widest section, so it was 

justifiable to include in the calculations. Contrary to bending stress, shear stress induced by 

a transverse load is carried also by the material at the centroid of a cross-section, where the 

shear stress actually reaches its peak. Correspondingly, the shear stress in the top and bottom 

flanges of a section is almost negligible compared to the shear stress in the web plate(s). The 

transverse displacement at the point of load didn’t translate as such at the punching center 

though: As the frame deflects, the cross-section also rotates according to the deflection 

curve, which causes the sheet to move in opposite direction to the load at the punching center. 

This compensates for the transverse displacement caused by bending, shear and torsion, so 

that the positioning error at the punching center was measured mainly in the longitudinal 

direction of the frame. 

In torsion deflection the maximum difference between Saint-Venant and warping torsion 

was found 7.1% in the widest section, so the assumption often found in the literature that the 

warping phenomena in a closed rectangular section is usually negligible seems justifiable as 

the widest section had already quite extreme proportions (2.2~ܪ/ܮ) yet the difference was 

still well under 10%. In the design against torsion, the most important guideline is to use a 

closed section whenever possible, which was done also here as the torsional stiffness it 

provides is in a whole different scale when compared to an open one with similar dimensions. 

When comparing the results from FEM and analytical calculations it was found that both 

gave almost identical values for the transverse deflection. The torsion deflection results from 

FEM and analytical calculations are a bit more challenging to compare against each other, 

but when estimating the angle of twist by the vertical moment at the sides of the FEM model, 
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the result matched almost exactly with Saint-Venant torsion. The positioning error calculated 

according to FEM was found 24% bigger than the analytical result. The difference can be 

considered yet admissible, as the results still positions before the next narrower section 

candidate. The main reason for the bigger result in FEM was the greater rotation angle 

around the z-axis, which was approximated by calculating the slope of a straight line placed 

between nodes which represented the linear carriage positions. 

The additional bracing methods tested in FEM improved mainly the torsional stiffness, so 

the reduced transverse displacement at the point of load due to smaller angle of twist had 

only negligible effect on the sheet displacement at the punching center. From the two bracing 

methods, the diaphragm bracing was found to be more effective to increase the torsional 

stiffness in this particular assignment than diagonal bracing. The diaphragm bracing also 

restricted the distortion of the cross-section, although it wasn’t found to be a major issue in 

the load case as the effect of the transverse load and torsional load partly cancelled each 

other out. The cut outs tested at the sides of the frame didn’t affect the sheet displacement 

too much, although they caused a local degradation of structural stiffness which could be 

mainly seen as a greater angle of twist. Examining the effect of these structural modifications 

are examples of research problems that could be assessed only by FEM. 

A cantilever beam was used as a boundary condition in both the FEM and analytical 

calculations to keep the focus only on the frame itself. Connection at the root plays a crucial 

role in the structural behavior of the system, so the next step in the design process could be 

the modelling of the fixing of the frame and examining how it performs under the strain. It 

would be equally important to investigate the complete force chain from the sheet to the 

punching center in order to find any possible weak links in the system; a weak connection 

element along the force chain could dilute the whole system making the rigidity of all other 

elements more or less redundant. A dynamic analysis could also come into question at some 

point. A time response analysis of the complete system would probably turn out to be quite 

challenging to perform, but examining even the natural frequencies and mode shapes of 

some individual parts or subassemblies could give some perception of the mass – stiffness 

ratio of the construction. 
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