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The research topic of this thesis is the structural engineering of a welded steel structure used 
as a part of a turret punch press sheet positioning system. The objective is to find out the 
appropriate dimensional proportions for the linear axis frame to withstand the forces caused 
by the accelerations of the sheet movement. Determining factor is the maximum deflection 
of the frame and the resulting error in the sheet position at the punching center. In the 
literature research are presented the structural engineering theorems, which concern the three 
types of strain to which the frame structure is induced to: bending, shear and torsion. 
Formulas gathered from these theorems are then used for the deflection calculations. 
Resulting sheet movement at the punching center is assessed by a coordinate system 
transformation, where the vector components collected from the structural analysis are 
shifted from a local reference frame to a global coordinate system. Based on analytical 
calculations one frame candidate is selected for further analysis in FEM, which is used as a 
comparative method to examine the structural behaviour of the frame and to find out how 
the additional structural features effect the frame deformation. Results show that with the 
given load case, bending deflection is the dominant factor in the sheet displacement at the 
punching center, although the transverse displacement at the point of load doesn’t translate 
as such in the positioning error: As the frame deflects, the cross-section also rotates 
according to the deflection curve, which causes the sheet to move in opposite direction to 
the load at the punching center, and therefore the positioning error is observed mainly in the 
longitudinal direction of the frame. The tested bracing methods increase mainly the torsional 
stiffness of the frame, and don’t therefore have much effect on the positioning accuracy. 
According to results from FEM, the distortion of the frame cross-section due to asymmetrical 
force distribution isn’t a major issue even in an unbraced construction as the transverse and 
torsional load partly cancel each other out. 
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Diplomityö 
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76 sivua, 44 kuvaa ja 18 taulukkoa 
Tarkastajat: Professori Timo Björk  
   Diplomi-insinööri Jussi Kosola 
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Tämän työn tutkimusaiheena on levytyöskeskuksen levynpaikoitusjärjestelmän osana 
toimivan hitsatun teräsrakenteen mitoitus. Tavoitteena on löytää lineaariakseliston rungolle 
sopivat mittasuhteet kantamaan levyn paikoituksesta aiheutuvat kiihtyvyydet. Määrittävänä 
tekijänä mitoituksessa on rungon joustamisesta aiheutuva levyn paikoitusvirhe 
lävistyskeskiössä. Kirjallisuustutkimuksessa käydään läpi lujuusopin lausekkeet, jotka 
koskevat kolmea kuormitustyyppiä, joille runko altistuu: taivutus, leikkaus ja vääntö. 
Rungon siirtymät määritetään sen jälkeen kyseisiä lausekkeita soveltaen. Rungon siirtymien 
aiheuttamaa levyn paikan muutosta lävistyskeskiössä arvioidaan koordinaatistomuunnoksen 
avulla, jossa siirtymälaskelmista kerätyt vektorikomponentit siirretään paikallisesta 
koordinaatistosta globaaliin koordinaatistoon. Analyyttisiin laskelmiin perustuen valitaan 
yksi runko vaihtoehto, joka viedään FEM-ohjelmistoon yksityiskohtaisempaa tutkimusta 
varten. FEMiä käytetään sekä analyyttisten tulosten vertailukohtana, että määritettäessä 
rakenteeseen lisättävien piirteiden vaikutusta rungon siirtymiin. Tulokset osoittavat, että 
tutkimuksen kuormitustapauksessa rungon taipumalla on suurin vaikutus levyn siirtymään 
lävistyskeskiössä, vaikkei siirtymä kuormituspisteessä toistu sellaisenaan paikoitusvirheenä: 
Rungon joustaessa, sen poikkileikkaus myös kiertyy taipumakäyrän mukaan, joka aiheuttaa 
levyn referenssipisteessä kuormitussuuntaan nähden vastakkaissuuntaisen siirtymän ja siten 
paikoitusvirhe lävistyskeskiössä koostuu pääasiassa rungon pituussuuntaisesta 
komponentista. Rakenteessa testatut jäykisteratkaisut kasvattavat lähinnä vääntöjäykkyyttä, 
eivätkä siten vaikuta merkittävästi paikoitustarkkuuteen. Epäsymmetrisestä kuormituksesta 
aiheutuva poikkileikkauksen vääristymä ei FEMin tulosten perusteella ole vaikutukseltaan 
kovin merkittävä edes jäykistämättömässä rakenteessa, koska poikittaisvoima ja vääntö 
kompensoivat toistensa vaikutuksen osittain. 
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SYMBOLS AND ABBREVIATIONS 
γ Shear strain [rad] 
ε Normal strain [ΔL/L0] 
ζ Shear correction factor 
κ Curvature [1/R] 
ν(x) Bending deflection [mm] 
σ Normal stress [N/mm2] 
φ Angle of twist [rad] 
τ Shear stress [N/mm2] 
  
a Torsional bending constant [mm] 
E Young’s modulus [N/mm2] 
F Force [N] 
G Shear modulus [N/mm2] 
I Second moment of area [mm4] 
Ip Polar moment of area [mm4] 
Iv Torsion modulus [mm4] 
Iw Warping constant [mm6] 
L Length [mm] 
M Bending moment [Nm] 
R Radius of neutral axis [mm] 
R Rotation matrix 
r Radius of cross-section [mm] 
S First moment or area [mm3] 
T Torque [Nm] 
w(x) Total deflection [mm] 
ws(x) Shear deflection [mm] 
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1 Introduction 
The research topic of this thesis is the structural engineering of a welded steel structure used 
as a part of a turret punch press sheet positioning system. The objective is to find out 
dimensional proportions for the frame structure to withstand the forces caused by the 
acceleration of the positioning system. Determining factor is the maximum deflection of the 
frame and the resulting error in the sheet position at the punching center. The dimensions 
and shape of the frame should be justified not only for minimum deflection, but also for 
efficient material usage. The scope of the thesis is defined to concern only the static analysis 
of the frame; dynamic analysis is limited out of the subject. The static analysis is further 
limited to concern only the deformation calculations of the frame, so the stress analysis isn’t 
addressed in the thesis. Due to the high stiffness requirement of the frame though, the stresses 
will be quite mild overall, so the stress aspect is likely already met in the deformation based 
dimensioning. 
Research questions of this thesis are: 
 How the cross-sectional dimensions of the frame should be selected to withstand the 
forces caused by the accelerations of the positioning system? 
o Which are the main guidelines to design a structure: 
 Against bending 
 Against shear 
 Against torsion? 
o How these different types of deformations appear in achieving the target of 
precision at the punching center? 
 How do the results obtained by FEM differ from the analytical ones, and does the 
FEM give some important information of the structure behaviour that an analytical 
approach doesn’t? 
To answer the questions, a literature research is first carried out to find out the basic concepts 
of the strength of materials to which the deflection calculations are based on. These concepts 
are then applied to form a proposal of the frame structure to best serve the load case. The 
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significance of the different types of deformations and the resulting error to the sheet position 
are assessed by a coordinate system transformation between local and global reference frame 
in 3D space. Finally, the FEM is used as a comparative method to determine the frame 
deflection and to get a more detailed results of the load case. 
A simplified drawing of the sheet positioning system in a turret punch press is presented in 
Figure 1: 
 
Figure 1. Turret punch press sheet positioning system 
In the picture is shown a punching unit, which in this case is of a closed type (O-) frame, and 
the positioning system, which moves the sheet in a 2D coordinate system (x, y). The longest 
movement (x-axis) is built onto a fixed frame and the y-axis onto a moving platform. In this 
thesis the structure under investigation is the fixed frame, which is the largest single 
assembly in the positioning system and lays the basis for the rest of the system. At the 
punching center is marked the global origin of the system to which the position error of the 
sheet is later measured. 
For structural analysis, a cantilever beam is selected as a boundary condition. The fixed 
frame is assumed to be rigidly supported by a perpendicular plane positioned to the axis of 
symmetry of the punching unit. Although the linear frame will be supported to the floor with 
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at least one foot per each side, they are left out of consideration to keep the focus only on 
the frame itself. The most critical load case is estimated to be the acceleration of the y-axis 
when the moving platform is driven to either end of the work area on the x-axis (frame free 
length at its maximum; 2150 mm). As the center of mass of the moving assembly is located 
some distance away from the fixed frame centroid, the acceleration will cause both 
transverse and torsion strain as shown in Figure 2 taken from the side:  
 
Figure 2. Side view of the positioning system 
In the picture is shown the moving y-axis and its center of mass, which exact location is to 
be further defined during the design process. The acceleration of the y-slide causes 
transverse force Fy and moment Tx to the fixed frame. The bending, shear and torsion 
deflection of the frame should be very limited so that the sheet movement at the punching 
center stays within specified boundaries. Gravity isn’t considered to have too significant role 
in the load case, so it is left out of consideration to focus only to the accelerations caused by 
the system itself. 
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2 Theoretical background for analytical methods 
In the following are presented the structural engineering theorems, which concern the three 
types of strain to which the frame structure will be induced to: bending, shear and torsion. 
Formulas gathered from these theorems are later used for the analytical calculations of the 
frame deflection. The resulting sheet movement at the punching center is assessed by 
coordinate transformation where the vector components collected from the structural 
calculations are shifted from local reference frame to local coordinate system; the required 
work steps for this are also presented in this chapter. 
2.1 Transversely loaded beam - Euler-Bernoulli beam theory 
In structural mechanics the behaviour of a structure under transverse load is often visualized 
by investigating a beam element, where the transverse force induces a bending moment to 
the beam. To calculate deflections in such beam, formulas based on Euler-Bernoulli beam 
theory are used. The theory is also known as a classic beam theory or engineer’s beam 
theory. It makes two simplifications to the problem: First assumption is that the beam is 
under pure bending so only the bending moment is considered and the cross-section planes 
of the beam will remain in plane during deflection, perpendicular to the beam axis. Second 
assumption is that the contours of the cross-section remain undeformed during bending. The 
first assumption neglects the effect of shear force, which in a beam subjected to a transverse 
load is also present in addition to the bending moment. The second assumption neglects the 
transverse shrinkage/swelling of the cross-section during bending. These two factors 
however, have typically very little impact on the magnitude of the total deformation on 
relatively long beams, yet involving them in the equations would make them much more 
complicated, so an assumption is made to leave them out of consideration in the theory. The 
Euler-Bernoulli assumptions enable straight forward geometric considerations of the 
problem as seen in Figure 3: (Outinen & Salmi 2004, p: 174 – 176.) 
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Figure 3. Euler-Bernoulli beam element (according to Parnes 2001, p. 245) 
In the picture is presented a square bar element under pure bending. The point O marks the 
center of curvature; R the radius of the deformed neutral axis; Δθ the angle between the 
element ends; and y the distance from the neutral axis. The element is subjected to a bending 
moment M, which is a constant along element length. Constant bending moment translates 
here to a constant bending radius. Since all the infinite thin cross-section slices, that build 
the square bar, are assumed to remain in plane also in deformed state, the resultant of the 
normal forces in the cross-section must be zero. In other words the normal forces above and 
below the neutral axis are equal but with opposite signs. This again means that the neutral 
axis must lie on the centroid of the cross-section as illustrated. These geometric assumptions 
lead to a situation, where the material “fibres” in the top surface must elongate and at the 
bottom surface compress when the element is bent downwards as illustrated. The normal 
strain εx at an arbitrary height y can be calculated from the geometry: (Parnes 2001, p. 245 – 
248.) 
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     ߝ௫ =
(ܴ + ݕ)∆ߠ − ܴ∆ߠ
ܴ∆ߠ
 
→ ߝ௫ =
ݕ
ܴ
 
This change in fibre length (strain) is a percentile value (ΔL/L0) and is proportional to the 
stress. According to Salmi & Pajunen (2010, p. 33) this stress-strain relation was first 
introduced by Jacob Bernoulli, and with ductile material like steel this relation is linear until 
the proportional limit of the material is reached. Until this limit the stress-strain curve 
follows equation knowns as Hooke’s law: 
 ߪ௫ = ܧߝ௫  
, where σ is the normal stress, E modulus of elasticity and ε strain. Parnes (2001, p. 134 – 
135) notes that by definition, the proportional limit σp and elastic limit σe (Young’s modulus) 
are different points but for steel and many other ductile materials, the difference between 
them is indistinguishable so that σp ≈ σE. The two points are illustrated in Figure 4 below: 
 
Figure 4. Stress-strain curve for low-carbon steel (according to Salmi & Pajunen 2010, p. 
35) 
(1) 
(2) 
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In the picture is shown a typical stress-strain curve for low-carbon steel. The elastic limit 
locates slightly higher than the proportional limit. By combining the Bernoulli strain 
equation (1) and Hooke’s law (2), the stress in arbitrary height in the cross-section can be 
obtained as: 
ߪ௫ =
ܧݕ
ܴ
 
From the equation can be noted that the stress varies linearly with the perpendicular distance 
from the neutral axis: This follows the Euler-Bernoulli assumption that cross-sections will 
remain in plane. The stress σx is referred here as bending stress. The bending moment M can 
be considered as a sum of the normal forces acting on infinite small areas dA, dependent of 
the distance y so that: 
ܯ = ඵ ݕߪ௫݀ܣ 
by substituting → ߪ௫ =
ܧݕ
ܴ
 
ܯ = ඵ ݕ ൬
ܧݕ
ܴ
൰ ݀ܣ 
ܯ =
ܧ
ܴ
ඵ ݕଶ݀ܣ 
In the equation the double integral y2dA is the second moment of cross-sectional area about 
the neutral axis (z – z) and is commonly designated with I. Placing this to the equation, the 
moment-curvature relation is simplified to: 
 ܯ =
ܧܫ
ܴ
 
, which is known as the Euler-Bernoulli relation. The numerator EI is called flexural rigidity 
and depends on material stiffness E, and the second moment of cross-sectional area I, which 
is a geometric property. The equation can also be written in a form, which is later used to 
determine the curvature of the deformed beam: 
(3) 
(5) 
(4) 
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ܯ = ܧܫߢ 
, where κ is the curvature (1/R) of the deflection curve. (Parnes 2001, p. 247.) 
Although by definition, the Euler-Bernoulli relation concerns only beams in pure bending, 
it is also used to determine flexure of beams induced to transverse load acting in vertical 
plane, so that M is no longer constant but a linear function of distance x as in the picture 
below. In this situation, the plane sections of the beam don’t rigorously follow the Euler-
Bernoulli assumption, which is that the plane sections remain in plane also in deformed state. 
However, the warping effect is so small in relatively long beams that an assumption is made 
that even in these conditions the plane sections will remain in plane, perpendicular to the 
deformed neutral axis. This assumption is known as Navier’s hypothesis and equations used 
accordingly are known as engineering beam formulas, which provide very accurate solutions 
to a wide variety of engineering problems. (Parnes 2001, p. 255 – 256.) 
 
Figure 5. Beam under transverse load and the moment diagram (according to Valtanen 
2019, p. 316) 
In Figure 5 is shown an example of a transversely loaded beam and its moment diagram. To 
solve for the curvature κ of the deflection curve, an equation known from calculus is used, 
which gives the curvature of any curve lying in a 2-dimensional coordinate system when the 
necessary boundary conditions are known (Parnes 2001, p. 314): 
(6) 
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|ߢ(ݔ)| ≡
1
ܴ(ݔ)
=
ተ
ተ
݀ଶݒ(ݔ)
݀ݔଶ
ቊ1 + 
݀ݒ(ݔ)
݀ݔ ൨
ଶ
ቋ
ଶ
ଷ ተ
ተ
 
, where v(x) is the deflection curve. By choosing positive curvature κ > 0 so that the point O 
(vertex point of the angle θ) will lie on positive y side, and substituting this to the Euler-
Bernoulli relation gives: 
ܧܫߢ(ݔ) ≡ −ܧܫ
ተ
ተ
݀ଶݒ(ݔ)
݀ݔଶ
ቊ1 + 
݀ݒ(ݔ)
݀ݔ ൨
ଶ
ቋ
ଶ
ଷ ተ
ተ
= ܯ(ݔ) 
⇒ ܧܫ
݀ଶݒ(ݔ)
݀ݔଶ
= − ൝1 + ቈ
݀ݒ(ݔ)
݀ݔ

ଶ
ൡ
ଶ
ଷ
ܯ(ݔ) 
By assuming that the beam has a relatively high flexural rigidity (i.e. deflection is small 
compared to the span length so that the slope of the deformed beam [dv(x)/dx] << 1), the 
equation can be reduced to: 
ܧܫ
݀ଶݒ(ݔ)
݀ݔଶ
= −ܯ(ݔ) 
With this equation, the deflection of the beam can be calculated by solving for the curve v(x). 
The solution of the problem requires integration of the equation and determination of the 
boundary conditions which depend on the beam supporting. These boundary conditions 
provide the two integration constants needed. (Parnes 2001, p. 315.) 
In the following the boundary conditions and the resulting formulas for deflection curve are 
determined for a cantilever beam (Salmi & Pajunen 2019, p. 209): 
(7) 
(8) 
(9) 
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Figure 6. Deflection curve of a cantilever beam (according to Salmi & Pajunen 2019, p. 
209) 
In Figure 6 is shown a cantilever beam with a tip load F acting on the free end. The 
continuous line marks the deflection curve v(x). To the fixed end is marked the two resulting 
boundary conditions: Both the magnitude of the deflection and the slope of the deflection 
curve have to be zero. In this case the origin (x = 0) is placed at the free end of the beam so 
that: 
ܧܫ
݀ଶݒ(ݔ)
݀ݔଶ
= −ܯ(ݔ) = ܨݔ 
By integrating the deflection equation twice, one first gets: 
ܧܫ
݀ݒ(ݔ)
݀ݔ
=
1
2
ܨݔଶ + ܥଵ 
and after second integration: 
ܧܫݒ(ݔ) =
1
6
ܨݔଷ + ܥଵݔ + ܥଶ 
, where C1 and C2 are integration constants. Their values can be obtained based on the 
boundary conditions. In this case the boundary conditions determine that the slope at the 
fixed end must be zero as in picture, so that: 
(10) 
(11) 
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݀ݒ(ܮ)
݀ݔ
= 0 
, which leads to: 
 ⇒  
1
2
ܨܮଶ + ܥଵ = 0 
 ⇒  ܥଵ = 0 
Similarly, the magnitude of the deflection at the root must be zero: 
ݒ(ܮ) = 0 
⇒
1
6
ܨܮଷ + ܥଵܮ + ܥଶ = 0 
⇒ ܥଶ =
1
6
ܨܮଷ 
When these constants are placed on the deflection equations, the final result is obtained as 
(Salmi & Pajunen 2019, p. 209): 
ݒ(ݔ) =
ܨܮଷ
6ܧܫ
2 − 3
ݔ
ܮ
+ ቀ
ݔ
ܮ
ቁ
ଷ
൨ → ݒ(0) =
ܨܮଷ
3ܧܫ
 
݀ݒ(ݔ)
݀ݔ
=
ܨܮଶ
2ܧܫ
1 − ቀ
ݔ
ܮ
ቁ
ଶ
൨ →
݀ݒ(0)
݀ݔ
=
ܨܮଶ
2ܧܫ
 
These equations, among others, for selected problems of differently supported and loaded 
beams can be found in structural engineering literature, where they are listed in tables, like 
Valtanen (2019, p. 316 – 329). When examining the deflection equations not only for a 
cantilever beam, but for other transversely loaded beams as well, the magnitude of the 
deflection is found to be inversely proportional to the flexural stiffness, EI. This relation is 
found to be true for any beam governed by the Euler-Bernoulli relations (Parnes 2001, p. 
321). For great bending stiffness, either one or both of the mentioned values (E and I) should 
be maximized. As the E is a material property it is “locked in” after the material has been 
selected, but the second moment of cross-sectional area (I) can be greatly affected by design. 
To calculate the second moment of area of a cross-section, one may refer to the tables found 
in structural design handbooks, where formulas for a variety of different cross-sections are 
(12) 
(13) 
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presented. For example, the second moment of area for a solid rectangular section (Figure 7) 
is given as (Valtanen 2019, p. 305): 
 
ܫ௭ି௭ =
ܾℎଷ
12
 
Figure 7. Second moment of area for a rectangular cross-section (according to Valtanen 
2019, p. 305) 
The formula above shows, that the height (h) of the section against the neutral axis is the 
dominant factor as it is raised to the third power. This is consistent with the previously 
presented bending theory, where the material furthest away from the neutral axis carries the 
most of the load as stated in eq. 3 (page 12). Material located near the neutral axis contributes 
very little to the load carrying capacity of the beam as the normal stress closes zero towards 
the neutral axis. For efficient design the material should be moved as far away as possible 
from the neutral axis to contribute the best to the bending stiffness. To calculate the second 
moment of area for an element placed some distance away from the neutral axis, a method 
called parallel axis theorem is used. The theorem is also known as Steiner’s theorem or 
Steiner’s rule. It adds the moment distance of the cross-sectional area to the equation (Salmi 
& Pajunen 2010, p. 424): 
ܫ௭ି௭ = ܫ௭ᇲି௭ᇲ + ܣݕ
ଶ 
, where ܫ௭ᇲି௭ᇲ is the second moment of area of the cross-section around its own centroid axis, 
A is area of the cross-section and y is the distance from the neutral axis to the cross-section 
centroid. In the following is presented the significance of the distance from the neutral axis 
to the location where the material is placed: 
(14) 
(15) 
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Figure 8. Rectangular section and idealized section (according to Bauchau & Craig 2009, 
p. 195) 
In Figure 8 are shown two cross-sections both with the same cross-sectional area, but one 
being a solid rectangle placed concentrically with the neutral axis and the other one being an 
“idealized” section. The ratio of the bending stiffness between the two can be denoted as: 
(Bauchau & Craig 2009, p. 195) 
ܫௗ௭ௗ
ܫ௧
=
2 
ܾ(ℎ/2)ଷ
12 +
ܾℎ
2 ݕ
ଶ൨
ܾℎଷ
12
=
1
4
+ 12 ቀ
ݕ
ℎ
ቁ
ଶ
 
The result is the ratio of the second moment of areas between the two. It can be seen that the 
ratio rises exponentially in favour of idealized section, and already with ݕ/ℎ = 2 the 
idealized section has approximately 48 times greater bending stiffness. In practice the ideal 
section obviously needs a web to connect the two flanges together as is the case in an I-beam, 
but this shows that the rational design of a transversely loaded beam calls for maximum 
height. The limiting factor in the section height is the instability, which with extreme 
dimensions may become an issue in the form of lateral-torsional buckling tendency 
(Bauchau & Craig 2009, p. 196). 
(16) 
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2.2 Effect of shear in a transversely loaded beam 
With relatively long beams the magnitude of shear deformation compared to the deformation 
caused by the bending moment is so miniscule that it can usually be neglected, but as the 
length of the beam compared to its height gets really short, the influence of shear deformation 
may become so significant that it has to be taken into consideration. Figure 9 presents a 
simplified drawing of shear deformation on a cantilever beam: 
 
Figure 9. Deflection of a cantilever beam due to shear (according to Blodgett 1972, p. 2.6-
2) 
In the picture a beam with length L is loaded with a transverse force F, which causes shear 
stress τ and shear deflection w(x). The average shear strain γ is determined by dividing the 
shear force with shear modulus G and shear area A: 
ߛ௩ =
ܨ
ܩܣ
 
The result is the angle γ in radians as shown in detail. The expression average shear strain 
is to be noted, as the distribution of shear stress and shear strain in reality varies strongly 
across the cross-section depending on the geometry. As the stress varies across the cross-
(17) 
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section, so will the cross-section planes warp (will not remain in plane) and the strain γ varies 
correspondingly across the height of the cross-section as shown on the right in Figure 10: 
 
Figure 10. Simplified and actual shear deformation (according to Bauchau & Craig 2009, 
p. 798) 
On the left is shown the average shear stress distribution and on the right the actual 
distribution on a rectangular cross-section. On the simplified model, the shear stress is a 
constant (ܨ/ܣ) even in free surfaces, which is incorrect as on free surface there can’t be any 
shear force present. In the actual distribution the shear stress on the free surfaces is zero  
(߬ = 0 → ߛ = 0) and the distribution along the cross-section height has a parabolic shape as 
shown in the picture. (Bauchau & Craig 2009, p. 798.) 
With more complex shapes the unevenness of the shear stress distribution is even more 
notable, like in an I-beam shown in Figure 11: 
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Figure 11. Shear stress distribution in an I-beam centroid plane (according to Singh 2021, 
p. 233) 
In an I-beam the vertical shear stress is carried almost entirely by the web plate as shown in 
the picture taken from the centroid plane. The shear stress distribution curve has a parabolic 
shape between break points and reaches its peak (߬୫ୟ୶) at the centroid. In order to calculate 
shear deflection at the neutral axis, one has first obtain the shear stress at this point by using 
the shear formula (Gere & Goodno 2012, p. 322): 
߬௫ =
ܨܵ
ܫݐ
 
, where S is the first moment of area above the point investigated, taken around the neutral 
axis, I the second moment of area of the entire cross-section (around the neutral axis) and 
t the thickness of the web plate. From here can be obtained a constant known as form factor, 
or shear correction factor, which is designated here with ζ. It is the ratio between the 
maximum shear stress and the average shear stress (Blodgett 1972, p. 2.6-2): 
ߞ =
߬௫
߬௩
=
ቀ
ܨܵ
ܫݐ ቁ
ቀ
ܨ
ܣቁ
=
ܣܵ
ܫݐ
 
The first moment of area can be denoted as (Gere & Goodno 2012, p. 328): 
(18) 
(19) 
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ܵ = න ݕ݀ܣ 
, which also has a form: 
ܵ =  ݕܣ 
, where y is the distance measured from the centroid of an area to the neutral axis as shown 
in Figure 12: 
 
Figure 12. First moment of area above the neutral axis of an I-beam (according to Gere & 
Goodno 2012, p. 324) 
The corner fillets are neglected so the first moment of area for an I-beam can be calculated 
from the dimensions marked in the picture as (Gere & Goodno 2012, p. 324): 
ܵ =
1
8
൫ܾℎଶ − ܾℎଵ
ଶ + ݐℎଵ
ଶ൯ 
, where b is the width of the flange, h the overall height of the beam and h1 the height of the 
web. According to Blodgett (1972, p. 2.6-3) the formula can be used also for a box section 
as shown in Figure 13: 
(22) 
(21) 
(20) 
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Figure 13. Beam sections with identical first moment of area and shear correction factor (in 
vertical direction) (according to Blodgett 1972, p. 2.6-3) 
By applying the equation of the first moment of area S to the formula, the shear correction 
factor ζ can be denoted as: 
ߞ =
ܣ
8ܫݐ
൫ܾℎଶ − ܾℎଵ
ଶ + ݐℎଵ
ଶ൯ 
Resulting value is the factor with which the shear force F must be multiplied to obtain the 
shear strain at the centroid (Pennala 2002, p. 128): 
ߛ௫ =
ܨߞ
ܩܣ
 
As the angle γ is very small, it can be written that the angle approximately equals with the 
slope of the deflection curve of the beam so that the actual shear deflection can finally be 
obtained by: 
ߛ ≅ ݓ௦
ᇱ(ݔ) =
ܨߞ
ܩܣ
 
and after integration: 
→ ݓ௦(ݔ) =
ܨߞ
ܩܣ
ݔ + ܥ 
Applying the boundary conditions ws(L) = 0 leads to C = 0, and thus: 
(23) 
(24) 
(26) 
(25) 
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ݓ௦(ܮ) =
ܨܮߞ
ܩܣ
 
In some literature concerning the subject (e.g. Gross. et.al. 2011) a correction factor is used 
in the equation below the division sign as a factor for the shear area and has therefore inverse 
values. It is also a common practice to use an approximation value for the shear corrected 
area assuming that the web takes all the shear stress so that ܣ௦ = ܣ௪. With typical 
proportions of a double flanged standard beams this is pretty accurate as the web carries 
90% to 98% of the total shear stress (Gere & Goodno 2012, p. 325). 
By combining the flexure due to the bending moment (Euler-Bernoulli beam) and the shear 
force, the total flexure of the beam can be obtained as (Gross et.al. 2011, p. 161 – 162): 
ݓ(ܮ) = ݓ + ݓ௦ 
→ ݓ(ܮ) =
ܨܮଷ
3ܧܫ
+
ܨܮߞ
ܩܣ
 
, where the first term wB is the flexure according to the Euler-Bernoulli beam and wS the 
flexure due to shear. Evaluating the effect of shear in the total deformation, the equation may 
be arranged to the form (Gross et.al. 2011, p. 162): 
ݓ(ܮ) =
ܨܮଷ
3ܧܫ
൬1 +
3ܧܫߞ
ܩܣܮଶ
൰ 
, where the term inside the brackets represents the influence of shear. From the equation can 
be observed that the geometric properties length (L) and the second moment of area (I) are 
placed on opposite sides of the division line between the two terms. This is consistent with 
the assumption, that the longer the beam gets compared to the flexural stiffness, the greater 
the proportion of bending deflection compared to shear deformation becomes. In Figure 14 
is shown an example of the shear and bending deformation ratio on a tip loaded IPE200 
cantilever beam: 
(27) 
(28) 
(29) 
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Figure 14. Ratio of shear and bending deformation on IPE200 cantilever with tip load 
From the graph can be seen the rapid change from shear to bending deflection with the 
increase of the length of the beam. For L/H = 7.5 the bending deformation accounts already 
close to 95% of the total deformation. Likewise, if the web thickness of the beam would be 
increased, the intersection of the two graphs would be located even more to the left, as the 
balance between shear stiffness vs. bending stiffness would change more in favour of shear 
stiffness (= smaller shear deformation). 
2.3 Structure under torsion 
Basic relations for torsion deflection can be deduced by investigating a cylindrical cantilever 
rod with a torque T acting on the free end (Figure 15): 
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Figure 15. Cylindrical rod under torsion (according to Da Silva 2006, p. 350) 
The torque causes the face of the rod to turn counter clockwise and this change in the angle 
of twist is marked with φ (radians) and it is a function of distance x. The shear strain caused 
by the torque is marked with γ (radians) and it is a function of radius r as it is established in 
the following equations. The polar coordinate P marks a position on the cylinder surface 
before the deformation and point P’ the location of the same point after the displacement. 
Point O is placed on the same polar coordinate as P, but to the fixed end, so it stays in place 
during deformation. In the case of small deformations, the distances ܱܲതതതത and ܱܲ′തതതതത may be 
considered as equal, so the distance ܲܲ′തതതതത can be expressed in two ways: (Da Silva 2006, p. 
350.) 
ܲܲᇱതതതതത = ݎ݀߮ ≅ ߛ݀ݔ 
⇒ ߛ = ݎ
݀߮
݀ݔ
 
, where the term dφ/dx is the angle of twist per unit length. For simplification it may be 
marked with θ, so that: 
ߛ = ݎߠ 
(30) 
(31) 
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For linear elastic material the shearing stress is proportional to the strain (Hooke’s law): 
߬ = ܩߛ = ܩݎߠ 
As the shear stress is proportional to the radial distance from the axis of twist so must be the 
resisting moment in a cross-section be incremental but also equal to the applied torque T. 
The incremental moment about the axis of twist due to the shear stress acting on an element 
dA at a distance r can be defined as (Parnes 2001, p. 194):  
߂ܶ = ݎ߬݀ܣ 
→ substituting ߬ =  ܩݎߠ 
߂ܶ = ܩݎଶߠ݀ܣ 
Therefore, the total moment acting on a cross-section is given by: 
ܶ = ܩߠ ඵ ݎଶ݀ܣ 
The integral is recognised as the polar moment of area about the axis of twist and can be 
designated with Ip so that: 
ߠ =
ܶ
ܩܫ
 
Finally, the angular deflection for an element of length L is: 
߂߮ =
ܶܮ
ܩܫ
 
Being first derived by Charles Coulomb in 1784, the above is known as Coulomb torsion 
solution (Parnes 2001, p. 197). It gives the result for the angle of twist in radians and is valid 
only for members of a circular shape (rod or tube). For members of an arbitrary shaped cross-
section, the polar moment of area is replaced with a more common torsion modulus, Iv. The 
full derivation of the formulas used to calculate the torsion modulus for different kinds of 
cross-sections will not be covered here as some of them are quite complex yet they still are 
only approximations since there isn’t an easy, all-inclusive method to determine the shear 
stress distribution exactly for an arbitrary shaped cross-section. The research to which the 
(32) 
(33) 
(34) 
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formulas are based when determining the torsion modulus of a cross-section include Saint-
Venant 1855 (thick solid sections), Föppl 1921 (thin-walled open sections), Bredt 1896 
(thin-walled closed sections) and Prandtl 1903 (membrane analogy for the shear stress 
distribution) (Salmi & Pajunen 2010, p. 239 – 263). From the names mentioned, 
Saint-Venant torsion is commonly used term to designate the theory of pure torsion in a 
broad sense (Hughes et.al 2011, p. 7). 
As mentioned, the shear stress is proportional to the radial distance r from the axis of twist. 
With a circular member, the distribution is also linear and applies both to a solid and a hollow 
circular shaft, as shown in Figure 16 below: 
 
Figure 16. Shear stress distribution on a solid and a hollow circular shaft (according to 
Pennala 2002, p. 194 – 196) 
As seen in the picture, the magnitude of the shear stress (τ) varies linearly along the radial 
distance and closes zero towards the central region, which contribution to the overall 
torsional rigidity is very little compared to the outer region. Therefore, if material saving is 
important, a hollow shaft is preferred. With a hollow shaft it must be ensured though, that 
the wall thickness is sufficient enough to avoid stability issues (Parnes 2001, p. 205). In 
practical applications there is almost always other stress types present in addition to torsion. 
For example, bending vibration is usually present to some degree in power transmission 
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applications and should therefore be considered when determining the minimum wall 
thickness (Karhunen et.al. 2012, p. 187 – 191). 
When designing a torsion resistant structure, Blodgett 1972 (p. 2.10-1) lists three basic rules 
to follow: 
1. Closed sections are used where possible 
2. Diagonal bracing (in built-up frames) 
3. Rigid end connections 
The influence of the first item on the list can be illustrated by comparing the torsional 
modulus of the two otherwise similar square hollow sections, but one being closed and the 
other one open (Figure 17): 
 
Figure 17. A closed and an open square hollow section 
The sections have uniform wall thickness and for the open section the gap is assumed to be 
infinite narrow to simplify the dimensions for the calculation. For the closed section, the 
formula derived from Bredt’s analysis can be used to determine the torsion modulus Iv (Salmi 
& Pajunen 2010, p. 257): 
ܫ௩ =
4̅ܣଶ
∑ ቀ
ݏ
ݐ
ቁ
 (35) 
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, where ̅ܣ is the area enclosed by the center line, s is the edge length and t is the wall thickness 
as illustrated. As the example sections have only walls of single thickness and length, the 
equation may be simplified to: 
ܫ௩ =
4(ݏଶ)ଶ
4ݏ
ݐ
 
⇒ ܫ௩ =
ݏଷ
ݐିଵ
 
The open section uses different formula to obtain the torsion modulus. According to Föppl’s 
formula (Karhunen et.al.2012, p. 217) the torsion modulus is: 
ܫ௩ =
1
3
 ݏݐ
ଷ 
, and for a section with square dimension and uniform wall thickness: 
⇒ ܫ௩ =
4ݏݐଷ
3
 
From here the impact between closed vs. open section to the torsional rigidity can be 
illustrated by looking at the ratio of the torsion modules between the two: 
ܫ௩ೞ
ܫ௩
=
൬
ݏଷ
ݐିଵ൰
൬
4ݏݐଷ
3 ൰
=
ݏଷݐ
4
3 ݏݐ
ଷ
=
ݏଶ
4
3 ݐ
ଶ
 
With example dimensions of ݏ = 250 and ݐ = 20 the torsions modulus of a closed section 
is already 117 times better than in the open section. This is due to the significant difference 
in the shear stress distribution and the shear flow between the two. With closed section the 
shear flow can run on one direction around the circumference of the section whereas in open 
section it must run in two directions and the shear stress change to its opposite value across 
the thickness of the section (Salmi & Pajunen 2010, p. 262). 
(39) 
(37) 
(36) 
(38) 
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According to Karhunen et.al. 2012 (p. 218) Föppl’s formula usually gives a bit too small 
values for the torsion modulus. To increase precision, a correction factor can be used which 
is dependent of the cross-section type so that: 
ܫ௩ =
ߟ
3
 ݏݐ
ଷ 
, where η varies from around 1 to 1.3 between L-, C-, T-, I and H-beams accordingly. Values 
can be found from structural engineering literature; for example Valtanen 2019 (p. 362). 
However, using the correction factor has still very little improvement to the torsion modulus 
compared to a closed section, and Karhunen et.al. (2012, p. 215) mentions consequently, 
that by adding more bends to an open cross-section one won’t get a significant improvement 
on the torsional rigidity. 
The second item in the Blodgett’s list, diagonal bracing, is based on a knowledge that a 
member under torsional loading produces both transverse shear stresses and longitudinal 
shear stresses, and that these stresses combined produce a diagonal tensile and compressive 
stresses which are maximum at 45 degree angle; this is illustrated in Figure 18. (Blodgett 
1972, p. 2.10-17.) 
 
Figure 18. Double diagonal bracing on a built-up frame (according to Blodgett 1972, 
p. 2.10-17) 
(40) 
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In the picture is shown a built-up frame with double diagonal bracing. When torque is 
applied, the diagonal supports bare the tensile and compressive stresses caused by the 
torsion. As the transverse and longitudinal shear components cancel each other out, there is 
no twisting action on a diagonal member placed at 45 degree to the frame as shown. 
(Blodgett 1972, p. 2.10-17.) 
The last item in Blodgett’s list, rigid end connections, concerns the warping restriction of a 
cross-section under torsion (Blodgett 1972, p. 2.10-21). By restricting the torsional warping 
of a cross-section, it is possible to improve the torsional behaviour (decrease the angle of 
twist) especially in double flanged sections. In Figure 19 is shown an I-beam, which is prone 
to warping in unrestricted torsion: 
 
Figure 19. Free warping of an I-beam (according to Hughes et.al 2011, p. 8) 
In the picture an I-beam is loaded by a torsion couple as shown – no additional supporting 
is present. From the picture can be seen, that the cross-sections no longer remain in plane, 
perpendicular to the longitudinal axis, but that the upper and lower flanges rotate to their 
opposite directions as seen from the top view. This counter rotation, known as warping, is 
characteristic behaviour to open, double flanged sections such as I-beams (Hughes et.al. 
2011, p. 8). In the picture is also notable that the top and bottom flanges themselves stay 
relatively straight. 
Figure 20 shows the same beam, but now with a rigid connection at one end: 
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Figure 20. Restricted warping on an I-beam (according to Timoshenko 1940, p. 283) 
The counter rotation is now fully restrained at the fixed end, from where the counter rotation 
gradually increases towards the free end. Therefore the flanges must bend in lateral direction 
and the torque is carried partly by the shearing stresses due to the twisting of the beam (pure 
torsion) and partly by the shearing stresses due to the bending of the flanges. The bending 
of the flanges adds to the overall rigidity of the beam compared to unrestricted torsion and 
therefore decreases the angle of twist. The significance of the bending effect of the flanges 
to the angle of twist depends on the rigidity of the flanges and the geometric proportions of 
the beam. The effect of the phenomena is the strongest at the root from where is gradually 
decreases as the free length increases. (Timoshenko 1940, p. 282 – 286.) 
Figure 21 shows the restricted warping as seen from the free end of the beam. The picture 
also shows the relation between the angle of twist and the deflection of the flanges: 
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Figure 21. Restricted warping of an I-beam (according to Timoshenko 1940, p. 283) 
In the picture the undeformed model is shown in light purple. From the geometry the lateral 
deflection of the upper flange can be given as (Timoshenko 1940, p. 284): 
ݖ ≅
ℎ
2
߮ 
, where h is the distance between the centroids of the top and bottom flanges and φ the angle 
of twist. To obtain the shearing force due to bending of the flange requires differentiation of 
the equation to the third derivative to get the rate of change of curvature. The general 
equation for the torsional moment can be found as: (Hughes et.al. 2011, p. 14.) 
ܶ
ܩܫ௩
= ߮ᇱ − ܽଶ߮′′′ 
, where ߮ ᇱand ߮ ′′′ are the first and third derivatives of the angle of twist and ܽ  is the torsional 
bending constant (ܽ = ඥܧܫ௪/ܩܫ௩). It is a dimension of length and depends on the cross-
(41) 
(42) 
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section geometry. It is an indicator of how quickly the effect of warping dissipates and when 
compared to the overall length of the beam, it gives a perception of the influence that warping 
restriction has to the total torsional deflection. Term ܫ௪ inside the square root is the warping 
constant; a value of dimension to the 6th power. It describes the cross-section geometry 
resistance to the torsion induced bending of the flanges. (Hughes at.al. 2011, p. 9 – 14.) 
Formulas to determine ܫ௪ for different types of cross-sections can be found in Timoshenko 
& Gere (1963, p. 530), Valtanen 2019 (p. 364 – 365) or Rubin 2005 (p. 828 – 830). Hughes 
and Malik (2011, p. 13) list different cross-sections types according to their warping 
behaviour: With double flanged sections (I and H-beams) the warping effect is the most 
notable, but in closed rectangular hollow sections (with typical dimensions) the warping 
effect is usually negligible as it is also with angled sections such as L, T or X. For a square 
hollow section the primary warping function actually vanishes (returns zero) and therefore 
isn’t considered (Bauchau and Craig (2009, p. 375). The warping constant of a double 
symmetric rectangular hollow section (which concerns the structural analysis of this thesis) 
can be formulated from Rubin (2005, p. 828) as shown in figure 22: 
 
ܫ௪ =
1
24
ܾଶℎଶ ൬
ℎݐଵ − ܾݐଶ
ℎݐଵ + ܾݐଶ
൰
ଶ
(ℎݐଵ + ܾݐଶ) 
Figure 22. Warping constant of a double symmetric rectangular cross-section (formulated 
from Rubin 2005, p. 828) 
(43) 
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From the equation can be seen that when ℎݐଵ and ܾݐଶ are equal, the warping function returns 
zero, which is the case in a square hollow section with uniform wall thickness. 
By solving the differential equation 41 (page 34) for the variation of the angle of twist at the 
distance ݔ along the beam, the solution has a form (Hughes et.al. 2011, p. 69): 
߮(ݔ) = ܣsinh ቀ
ݔ
ܽ
ቁ + ܤcosh ቀ
ݔ
ܽ
ቁ + ܥଵݔ
ଷ + ܥଶݔ
ଶ + ܥଷݔ + ܥସ 
, where C1…4 are integration constants, which depend on the boundary conditions of the 
beam. In the structural analysis of this thesis it is assumed that the section is rigidly supported 
at one end and free at the other. By applying these boundary conditions, the formula for the 
angle of twist can be found as (Hughes et.al. 2011, p. 74): 
߮(ݔ) = ൬
ܶܽ
ܩܫ௩
൰ ൜ݐܽ݊ℎ ൬
ܮ
ܽ
൰ ቂܿݏℎ ቀ
ݔ
ܽ
ቁ − 1ቃ − ݏ݅݊ℎ ቀ
ݔ
ܽ
ቁ +
ݔ
ܽ
ൠ 
, where ܶ is the applied moment and ݔ the distance from the fixed end. 
2.4 Distortion of a cross-section 
As a fourth strain type to consider in addition to bending, shear and torsion would be 
distortion of the cross-section. It is a phenomena caused by asymmetric load distribution and 
according to Kermani & Waldron (1993, p. 427 – 428) it is a characteristic behaviour for 
thin-walled sections and may be triggered even by a single point load, if it’s placed 
eccentrically in respect to the centroid plane. Distortion is additional to torsional warping 
and occurs where the cross-section is permitted to deform. In Figure 23 is shown an example 
how the distortion effect appears in a square box beam under eccentric point load: 
(44) 
(45) 
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Figure 23. Distortion of a cross-section (according to Zhu et.al. 2020, p. 2) 
On the left in the picture is shown a SHS cantilever beam loaded with an eccentric point 
load F. This load is first divided into symmetric transverse load and asymmetric torsion load. 
Then the asymmetric torsion load is further divided into symmetric torsion load and 
distortion (Zhu et.al. 2020, p. 2). The magnitudes of the force vectors are adjusted in each 
step so that the final sum equals with the initial point load F. In the example the distorting 
forces cause the cross-section to distort from a square shape into a parallelogram and the 
walls of the section to deform into S-shape as the picture shows. To restrict the distortion of 
the cross-section, a diaphragm plate may be used, which locks the two diagonals together 
and prevents the S-deformation of the walls of the section. Remarking the possible 
distortional behaviour of the cross-section is important not only from the displacement point 
of view, but also that it creates stress concentration at the corners of the cross-section, which 
should be considered especially if the load is fluctuating nature and the section is built as a 
welded assembly. (Björk et.al. 2020, p. 5 – 10.) 
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2.5 Estimating sheet transition at the punching center 
One way to estimate the sheet movement at the punching center during frame deflection is 
to use a coordinate system transformation. By choosing a global reference frame to the 
punching center and a local reference frame to the end of the frame, the movement of the 
sheet during the frame deflection can be tracked in respect to the punching center. The rough 
locations of the coordinate systems are shown in Figure 24 below: 
 
Figure 24. Transformation from local to global coordinate system 
In the picture the local coordinate system (xL, yL, zL) is attached to the axis of twist of the 
frame structure and vector VS marks the reference point p at the corner of the sheet, which 
before deflection was located at the global origin. Vector VL positions the origin of the local 
coordinate system during deflection. Angle ψ is the angle of twist due to torsion, and β the 
slope of the deflection curve. The rotation of a coordinate system is done by projecting the 
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vector VS components to the global system using sin and cosine functions repeatedly for 
each axis rotation. Commonly used order for the rotations is the roll-pitch-yaw (or Z-Y-X) 
sequence, where the orientation of the coordinate system is determined by rotating each axle 
once. Below are shown the rotation matrices for each sequence (Siciliano et.al. 2009, p. 42): 
[܀] = 
cos(ߚ) − sin(ߚ) 0
sin(ߚ) cos(ߚ) 0
0 0 1
 ൩ 
[܀୷] = 
cos (ߠ) 0 sin (ߠ)
0 1 0
−sin (ߠ) 0 cos (ߠ)
൩ 
[܀୶] = 
1 0 0
0 cos(߰) −sin (߰)
0 sin (߰) cos (߰)
 ൩ 
The complete rotation matrix [R] is a multiplication of the three (ܴ = ܴ௭ܴ௬ܴ௫). The angle θ 
around the y-axis would be zero in this particular coordinate transformation case and 
therefore with ߠ = 0 the matrix [Ry] would be reduced to identity making it unnecessary to 
include in the rotation matrix, but below is shown the rotation matrix in its complete form 
(all three rotations included): 
[܀] = [܀] × [܀୷] × [܀୶] 
=  
cos(ߚ) cos (ߠ) cos(ߚ) sin(ߠ) sin(߰) − sin(ߚ) cos (߰) cos(ߚ) sin(ߠ) cos(߰) + sin(ߚ) sin (߰)
sin(ߚ) cos (ߠ) sin(ߚ) sin(ߠ) sin(߰) + cos(ߚ) cos (߰) sin(ߚ) sin(ߠ) cos(߰) − cos(ߚ) sin (߰)
−sin (ߠ) cos(ߠ) sin (߰) cos(ߠ) cos (߰)
  
From here the coordinates for the point p in the global coordinate system can be given as: 
[܄୮] = ቈ
ݔ
ݕ
ݖ
 = [܄] + [܀] × [܄ୗ] 
For example, if the initial local origin of the frame structure where the sheet is attached is 
found at [2150, 1270, -480] (mm) measured from the punching center and then the frame 
would first deflect 0.05 mm in y-direction, the vector ܄ would be 
[2150; 1270.05; -480]T (mm). In addition to transverse deflection the frame would also be 
(46) 
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bent according to the deflection slope so that rotation around z-axis is -0.0001 and finally 
the torsion rotation around x-axis would be +0.0002 radians; The corresponding angles 
[ߚ, ߠ, ߰] for rotation matrix are then [-0.0001; 0; 0.0002]. The vector ܄ୗ marking the 
reference point in the sheet at the punching center in a local coordinate system is the same 
as ܄but only to opposite direction: [-2150; -1270; 480]
T(mm). Inserting the vectors and 
angles to the equation, the coordinates for point p are obtained as: 
 [܄୮] ≈ [−0.127; 0.169; −0.254]
்(mm) and the total positioning error in x-y –plane would 
be: ඥ∆ݔଶ + ∆ݕଶ ≈ 0.211 mm. 
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3 Results from analytical calculations 
In the following are presented results obtained from analytical calculations. The maximum 
transverse and torsion deflection are calculated for a group of cross-sections according to the 
load caused by the system acceleration. The obtained results are then inserted into a 
coordinate system transformation which shows the theoretical movement of the sheet at the 
punching center due to the frame deflection. 
3.1 Model description 
Structural model used for the calculation is shown in Figure 25: 
 
Figure 25. Structural model for calculation 
In the picture the model is loaded by a lateral force F, placed at distance r from the centroid, 
which is also the center of twist in a double symmetric section. T1 and t2 are the wall 
thicknesses for the side plates and top/bottom plates. H and W mark the overall height and 
width taken from the free surfaces. L is the length of the section. The section is rigidly 
supported at the root. Calculation constants are listed in Table 1: 
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Table 1. Calculation constants 
F (N) L (mm) H (mm) r (mm) E (MPa) G (MPa) 
10000 2150 350 520 210000 80000 
Section width (W) and wall thicknesses t1 and t2 are chosen as variables. Width is set to vary 
from 400 mm to 1000 mm by 100 mm increments. Wall thicknesses range from 20 mm to 
30 mm by 5 mm increments uniformly for both t1 and t2; this makes a total of 21 different 
cross-sections for analytical calculations. 
3.2 Transverse deflection and slope of the deflection curve 
The second moment of area I needed for the calculation is deduced simply by subtracting 
the hollow zone of the cross-section from the value calculated by the outer dimensions: 
ܫ௭ି௭ =
ܪܹଷ − ℎݓଷ
12
 
, where ℎ = ܪ − 2ݐଶ and ݓ = ܹ − 2ݐଵ. Bending deflection and slope of the flexure curve 
are calculated by eq. 12 & 13 (page 16). For shear deflection, the formulas based on the first 
moment of area are used (eq. 23, 25 & 27, pages 23 – 24). Results are shown in the next 
page in a chart format (Figure 26): 
(47) 
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Figure 26. Transverse deflection 
The figure shows the magnitude of the bending and shear deflection as stacked columns. In 
the chart the cross-sections are divided into groups according to their width (400 mm  
1000 mm) and within each group there are three columns which mark the deflection with 
each wall thickness. Results show that as the width of the cross-section increases, the 
deflection decreases significantly. The flexure in the narrowest cross-section is about 8 times 
greater than in the widest one. The “slope” of the graph decreases towards the end as the 
proportional change in width from the previous section to the next one decreases. On the 
next page are shown the same results in a table format (Table 2): 
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Table 2. Transverse deflection and slope of the deflection curve 
W (mm) t1=t2 bending (mm) shear (mm) total (mm) slope (rad) 
400 20 0.2385 0.0201 0.2586 0.0001758 
  25 0.1985 0.0163 0.2148 0.0001460 
  30 0.1721 0.0137 0.1858 0.0001264 
500 20 0.1394 0.0163 0.1557 0.0001048 
  25 0.1153 0.0131 0.1285 0.0000866 
  30 0.0994 0.0111 0.1104 0.0000745 
600 20 0.0895 0.0137 0.1032 0.0000688 
  25 0.0737 0.0111 0.0848 0.0000566 
  30 0.0632 0.0093 0.0725 0.0000484 
700 20 0.0612 0.0119 0.0731 0.0000482 
  25 0.0503 0.0096 0.0598 0.0000395 
  30 0.0430 0.0080 0.0510 0.0000337 
800 20 0.0439 0.0105 0.0544 0.0000355 
  25 0.0360 0.0085 0.0444 0.0000290 
  30 0.0307 0.0071 0.0378 0.0000247 
900 20 0.0327 0.0094 0.0421 0.0000272 
  25 0.0267 0.0076 0.0343 0.0000222 
  30 0.0227 0.0064 0.0291 0.0000188 
1000 20 0.0250 0.0086 0.0336 0.0000214 
  25 0.0204 0.0069 0.0273 0.0000174 
  30 0.0173 0.0058 0.0231 0.0000148 
In the table are listed round values for bending and shear deflection, total transverse 
deflection and the slope of the deflection curve, measured at the end of the section. The 
portion of shear deformation of the total deflection ranges from 7.5% to 25.6%, the smallest 
value being found in the narrowest section with t = 30 mm. From there the share or shear 
deflection increases by the width of the cross-section and reaches the maximum of 25.6% in 
the 1000 mm wide section with 20 mm wall thickness. The slope of the deflection curve 
contains the combined action of bending and shear deformation: It is used as the rotation 
angle around z-axis when assessing the sheet displacement at the punching center. 
3.3 Deformation due to torsion 
Torsion deformation was calculated using both Saint-Venant (pure torsion) and warping 
torsion. For Saint-Venant torsion the torsion modulus Iv is calculated using Bredt’s formula 
(eq. 35 on page 29), which is then placed to equation 34 (page 27) in place of Ip. The 
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following graph (Figure 27) shows the results for Saint-Venant torsion caused by the 
moment Fr: 
 
Figure 27. Deformation due to Saint-Venant torsion  
The angle of twist ranges from 0.000158 to 0.000031 radians (calculated values) from the 
narrowest one (W = 400, t = 20 mm) to the widest one (W = 1000, t = 30). When sections 
with equal wall thicknesses are compared, the angle of twist in the widest section is around 
73% smaller than in the narrowest one. As the assessment o8) is shown the resulting lateral 
displacement at 480 mm height from the axis of twist; this is the height where the punching 
center is located in reference to the frame. 
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Figure 28. Saint-Venant torsion: Lateral displacement measured at 480 mm height from the 
axis of twist 
The displacements are within same order of magnitude as the flexural displacement 
(bending + transverse shear), but with the narrowest section (W = 400, t = 20 mm) the 
flexural displacement is clearly dominating being about 3.4 times more than the torsional 
displacement. As the width of the section increases, the gap narrows down, yet in the widest 
section (W = 1000 mm, t = 30 mm) the displacement from bending and shear deformation is 
still 1.5 times higher than the displacement caused by torsion. 
Corresponding graphs for warping torsion are not represented here as they follow very 
closely Saint-Venant solution, but they are included in Table 3 next, where is shown the 
percentage difference between Saint-Venant and warping torsion. Warping constant Iw and 
warping torsion are calculated here by equations 43 and 45. 
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Table 3. Saint-Venant torsion and warping torsion comparison 
W (mm) t1=t2 
Saint-Venant 
torsion (rad) 
warping 
torsion (rad) 
difference 
(%) 
400 20 0.00015774 0.00015774 0.0 % 
  25 0.00013172 0.00013172 0.0 % 
  30 0.00011464 0.00011464 0.0 % 
500 20 0.00011279 0.00011279 0.0 % 
  25 0.00009382 0.00009382 0.0 % 
  30 0.00008135 0.00008135 0.0 % 
600 20 0.00008679 0.00008443 -2.7 % 
  25 0.00007203 0.00007007 -2.7 % 
  30 0.00006231 0.00006061 -2.7 % 
700 20 0.00007008 0.00006741 -3.8 %  
  25 0.00005808 0.00005587 -3.8 % 
  30 0.00005016 0.00004825 -3.8 % 
800 20 0.00005853 0.00005567 -4.9 % 
  25 0.00004846 0.00004609 -4.9 % 
  30 0.00004182 0.00003977 -4.9 %  
900 20 0.00005013 0.00004713 -6.0 % 
  25 0.00004147 0.00003899 -6.0 %  
  30 0.00003576 0.00003362 -6.0 % 
1000 20 0.00004376 0.00004067 -7.1 % 
  25 0.00003619 0.00003363 -7.1 %  
  30 0.00003119 0.00002898 -7.1 %  
The last row shows, how much smaller the angle of twist from the warping torsion is 
compared to Saint-Venant torsion. The more the aspect ratio of the section diverges from a 
square, the more significant the effect of warping torsion becomes. With 400 and 500 mm 
wide sections the error is practically zero. The maximum difference between Saint-Venant 
and warping torsion is 7.1% in the widest section. 
3.4 Sheet movement at the punching center 
For the calculation of sheet movement at the punching center, the wall thickness was selected 
25 mm to narrow down the number of candidates from 21 to 7. Based on the analytical 
results, the components for the vector VL, which marks the origin of the local reference frame 
placed at the centroid at the free end of the frame, are listed in Table 4: 
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Table 4. Components for the vector VL 
Section # x (mm) y (mm) z (mm) 
1 2150 1270.2148 -480 
2 2150 1270.1285 -480 
3 2150 1270.0848 -480 
4 2150 1270.0598 -480 
5 2150 1270.0444 -480 
6 2150 1270.0343 -480 
7 2150 1270.0273 -480 
Sections are numbered according to their width, where #1 section is 400 mm wide and #7 
1000 mm wide. Components for the vector VS in a local reference frame are 
[-2150; -1270; 480]T. Angles for the rotation matrix R are listed in Table 5: 
Table 5. Angles for the rotation matrix R 
Section # Ψ (rad) θ (rad) β (rad) 
1 -131.72E-6 0 146.04E-6 
2 -93.82E-6 0 86.58E-6 
3 -72.03E-6 0 56.56E-6 
4 -58.08E-6 0 39.52E-6 
5 -48.46E-6 0 29.03E-6 
6 -41.47E-6 0 22.15E-6 
7 -36.19E-6 0 17.44E-6 
The rows in the table are in the same order as were the vector VL components: rotations 
around x-, y-, and z-axis. Being a more conservative choice, values for the x-axis rotation 
are based on Saint-Venant torsion. By inserting the values into the rotation matrix, the x- 
and y-coordinates for the point P and the corresponding total displacement at the punching 
center are obtained as in Table 6: 
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Table 6. Displacement of the sheet at the punching center in x-y –plane 
Section # x (mm) y (mm) ඥ࢞ + ࢟ (mm) 
1 0.185491 -0.035991 0.188950 
2 0.109963 -0.012624 0.110686 
3 0.071834 -0.002267 0.071869 
4 0.050195 0.002749 0.050270 
5 0.036864 0.005282 0.037241 
6 0.028136 0.006562 0.028891 
7 0.022145 0.007170 0.023276 
Figure 29 below shows the same results placed in x-y –coordinate system grid: 
 
Figure 29. Displacement at the punching center 
Total displacement varies from 0.023 mm (section #7) to 0.189 mm (section #1). The major 
share of the displacement comes from the change in x-coordinate and this value also ranges 
more significantly between sections than the y-coordinate, which with all sections stays 
within 0.04 mm. From the results can be noticed the effect of the rotation of the vector VS 
according to the slope of the flexure curve: As the vector is being rotated, it compensates for 
the y-displacement, but at the same time the x-coordinate moves away from the initial zero 
position. With sections 1 – 3 the rotation actually overshoots the y-coordinate to the negative 
side, opposite to the force direction. 
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4 Results from FEM analysis 
On the following are presented the results from the FEM analysis. Cross-section dimensions 
of section #6 are chosen as a basis for the FEM simulation. To get comparative results, the 
model is first tested with a single load type at a time. Then the model is further defined to 
represent more closely the actual application. In FEM, the model is also tested for structural 
modifications that either increase the stiffness by adding material, or decrease stiffness by 
removing material from places that could be required in the final construction. Apart from 
one exception, a surface mesh is used for FEM simulations, since it enables gathering results 
for both translational displacement and rotational displacement. For load attachment, an end 
plate with equal wall thickness as the rest of the model is used at the free end of the frame 
to avoid heavy distortion due to the force distribution. Simulations are done in Solid Edge® 
2019 simulation environment. Meshing is done otherwise fully automatically except in some 
occasion the element quantity on an edge is assigned to an even number to position a node 
to the middle of the edge. On a scale 1 to 10 a value of 9 is used as the subjective mesh size. 
For Poisson’s ratio a value 0.3 is used. 
4.1 Deflection due to transverse force 
Result due to transverse force is shown in Figure 30: 
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Figure 30. Transverse load: Y-displacement (Solid Edge® 2019) 
The surface mesh model shown in the picture is made to the mid-planes of the solid model, 
so that the nodes at the free end are located at 2137.5 mm distance from the root 
(2150 mm – 0.5t). The load (10 000 N) is attached to the end face of the model. The 
maximum transverse deflection is 0.0328 mm, which is within 5% compared to the analytical 
result which was 0.0343 mm. The nodal rotation around z-axis due to the same transverse 
force is shown in Figure 31 below: 
 
Figure 31. Transverse load: Nodal rotation around z-axis (Solid Edge® 2019, modified) 
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The mesh gives a maximum value of 0.001275 degrees located two elements away from the 
corner, which is within 1% when compared to the slope of deflection curve from analytical 
calculations. At the node next to the centroid plane the angle of rotation is 0.001018 degrees 
as marked in the picture. The surface mesh consists of 1272 nodes. 
4.2 Deformation due to torsion 
Deformation due to torsion is shown in Figure 32: 
 
Figure 32. Torsion load: Nodal rotation around x-axis (Solid Edge® 2019) 
In the picture the torque is applied to the face of the free end and the torque axis is set to the 
centroid line. The rotation degree varies at the end surface from around 0.00201 degrees to 
0.00267 degrees. Angle of twist can be approximated also from the translational 
displacement at the side of the section (∆ݖ) by calculating the angle as ߖ = ∆ݖ/ݎ where ∆ݖ 
is the deflection at distance r from the axis of twist. Vertical displacement was measured 
0.0183 mm in the node closest the centroid plane so therefore: 
ߖ = 0.0183 ݉݉/437.5 ݉݉ = 0.00004183 ݎܽ݀ ≈ 0.00240 ݀݁݃. 
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The result is 2% more when compared to Saint-Venant solution (0.00238 degrees) and 8% 
more than the result from warping torsion which was 0.00223 degrees. 
If the torque is applied without an end plate, the result is quite different. Figure 33 shows the 
vertical displacement of the same section under torsional loading, but the torque now applied 
to the cross-section without an end plate: 
 
Figure 33. Torsion load: Deformation in z-axis direction without an end plate (Solid Edge® 
2019) 
In the picture can be seen the distorting effect of the torsion load as it is distributed to the 
end face. The resulting vertical deformation is almost 6.5 times greater than in the model 
with an end plate. In this simulation a tetrahedral mesh of 44936 nodes was used to place the 
torque to the cross-section. 
4.3 Diagonal bracing against torsion 
In the chapter concerning structure under torsion, one design guideline was to use diagonal 
bracing. In Figure 34 is shown result for the angle of twist with single and double diagonal 
bracing: 
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Figure 34. Torsion load: Nodal rotation around x-axis with diagonal bracing (Solid Edge® 
2019, modified) 
The wall thickness of the diagonal plates is the same as the cross-section: 25 mm. With single 
diagonal bracing (upper picture) the maximum angle of nodal rotation is 0.00245 degrees 
and with double diagonal bracing 0.00227 degrees. Values are 8% and 15% less compared 
to the surface mesh model without bracing, which had maximum value of 0.00267 degrees. 
The model with single diagonal bracing is made of 1932 nodes and the model with double 
diagonal bracing of 3876 nodes. 
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4.4 Refining the FEM model 
In the following the FEM model is further refined to represent more closely the actual 
application. The effect of diagonal and diaphragm bracing is also tested. Similarly the effect 
of cut outs at the sides of the frame is investigated. In the defined model the load vectors are 
placed using split-surfaces in the top of the model. The dimensions of the simulation model 
are shown in Figure 35 below: 
 
Figure 35. Dimensions of the simulation model (Solid Edge® 2019, modified) 
The frame is still built as a mid-plane surface model, but the overall length is increased 
according to the application. To avoid force concentration only to few nodes, four 
independent rectangular segments of 150 x 50 mm are built to the top surface to represent 
the areas where the loads are assumed to go through. The segments are located symmetrically 
in respect to the 2150 mm x-coordinate, which was used as the beam length in the analytical 
calculations and which is the center of the moving mass. Numbers 1 – 6 refer to nodes from 
which the displacements are measured after each simulation. They are located at the outside 
edges of the mesh model. Nodes 1 – 2 and 5 – 6 are at the center of the load attachment 
surfaces and nodes 3 – 4 are the ones which are located closest to the center of the moving 
mass: With automated meshing the nodes were located roughly at 2130 mm from the origin. 
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When the sheet displacement at the punching center is later calculated, the rotation around 
x-axis and the y-displacement of the local reference frame VL is defined by nodes 3 – 4. The 
rotation around z-axis is calculated according no nodes 1 – 5. As the sheet displacement is 
calculated according to the nodal coordinates, only translational displacement (y or z) are 
reported in the following simulations. 
Figure 36 shows the simulation result for vertical displacement in a model without any 
additional bracing other than the end plate. The picture also shows the load placement: 
 
Figure 36. Vertical displacement without bracing and load attachment (Solid Edge® 2019, 
modified) 
In the simulation all loads are defined as distributed loads within each segment – the single 
load vectors are drawn only for reference. As the transverse force isn’t placed at the centroid 
plane anymore, it produces a moment which is subtracted from the additional torque 
requirement: 5200 ܰ݉ − 0.1625 ݉ × 10000 ܰ = 3575 ܰ݉. The axis of torque is set to 
the centroid line of the cross-section. The mesh consists of 6219 nodes. Vertical 
displacement at the nodes mentioned in the previous page are listed in the following (in 
millimetres): 
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1. 0.0139 
2. -0.0125 
3. 0.0188 
4. -0.0163 
5. 0.0223 
6. -0.0185 
The results show that the displacement on the left side of the frame is more than on the right 
side. Difference varies from 11% to 15% to 21% according to the distance from the root, the 
smallest percentage difference representing nodes 1 and 2. To assess the angle of twist, a 
straight line is placed through nodes 3 – 4 and the angle of the line is calculated from: 
߮ ≈ atan ൬
ݖଶ − ݖଵ
ݕଶ − ݕଵ
൰ 
Taking the values from the listed results and using +/- 437.5 mm for the y coordinate, the 
angle of twist is found to be 0.00004011 radians or 0.00230 degrees. Results is 3% more 
than the analytical result from the warping torsion and 4% less than the result calculated 
from the surface mesh model shown in figure 33. 
Results for horizontal displacement are shown in Figure 37: 
 
Figure 37. Y-displacement without bracing (Solid Edge® 2019) 
(44) 
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A banded color bar is used to shown the inclined shape of the displacement variation across 
the height of the beam. Taking the exact values from the nodes 1 – 6, the horizontal 
displacements are (mm): 
1. 0.0268 
2. 0.0268 
3. 0.0450 
4. 0.0450 
5. 0.0677 
6. 0.0677 
Although results are not directly comparable with previous simulations anymore, the 
displacement in points 3 – 4 is found 37% bigger than in the model in figure 31. The rotation 
around the z-axis, which is needed to assess the theoretical sheet movement at the punching 
center, is approximated similarly as the angle of twist in the previous by placing a line 
between two measured nodes: in this case the nodes 1 – 5. Taking the y-coordinates from 
the results above and the x-coordinates from the dimension sketch (figure 37) the angle of 
the line is given as: 
߮ ≈ atan ൬
0.0268 ݉݉ − 0.0677 ݉݉
1420 ݉݉ − 2880 ݉݉
൰ ≈ 0.00002801 ݎܽ݀ 
The result is 26% greater than the one obtained from analytical calculations. By inserting the 
gathered results (rotation around x- and z-axis and the coordinates of vector VL) to the 
coordinate system transformation matrices, the resulting sheet movement at the punching 
center is obtained as in Table 7: 
Table 7. Displacement at the punching center (no additional bracing) 
x (mm) y (mm) ඥ࢞ + ࢟ (mm) 
0.035578 0.004027 0.035805 
The result for the total displacement places between sections #6 (0.029 mm) and #5 
(0.037 mm) from the analytical calculations. 
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4.4.1 Diagonal bracing 
Results for vertical and horizontal deflection using diagonal bracing (single type) are shown 
in Figure 38 below. Model contains four 25 mm thick diagonal plates which are placed at 
45 degree angle, starting from the root. The mesh consists of 7115 nodes. 
 
Figure 38. Z- and y-displacement with single diagonal bracing (Solid Edge® 2019, 
modified) 
The exact results for the nodes are shown in Table 8, which contains also the percentage 
difference when compared to the model without bracing: 
60 
 
Table 8. Z- and y-displacement with single diagonal bracing and comparison to the model 
without bracing 
Node Δz (mm) % change Δy (mm) % change 
1 0.0115 -17.3 % 0.0263 -1.9 % 
2 -0.0100 -20.0 % 0.0263 -1.9 % 
3 0.0150 -20.2 % 0.0446 -0.9 % 
4 -0.0125 -23.3 % 0.0446 -0.9 % 
5 0.0189 -15.2 % 0.0666 -1.6 % 
6 -0.0145 -21.6 % 0.0666 -1.6 % 
The added torsional rigidity from the diagonal bracing improved the results for vertical 
displacement between 15 – 23%. The y-displacement, however, stayed within 2% compared 
to the model without bracing. The calculated sheet displacement at the punching center with 
diagonal bracing is shown in Table 9: 
Table 9. Displacement at the punching center (diagonal bracing) 
x (mm) y (mm) ඥ࢞ + ࢟ (mm) 
0.035056 0.000341 0.035058 
The improved in the total displacement compared to the model without bracing is under one 
thousand of a millimetre, so it has no practical effect on the accuracy. 
4.4.2 Diaphragm bracing 
In the next the model is tested with diaphragm bracing. Here two 25 mm thick plates are 
positioned in the middle of the load attachment surfaces perpendicularly by the centroid line. 
The simulation result is shown in Figure 39. The mesh consists of 6739 nodes. 
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Figure 39. Z- and y-displacement with diaphragm bracing (Solid Edge® 2019, modified) 
The maximum vertical displacement shown in the color bar is 2% more, and horizontal 
displacement 3% more than in the previous model with diagonal bracing. Measured values 
at the nodes are listed in Table 10 below: 
Table 10. Z- and y-displacement with diaphragm bracing and comparison to model without 
bracing 
Node Δz (mm) % change Δy (mm) % change 
1 0.0119 -14.4 % 0.0274 2.2 % 
2 -0.0105 -16.0 % 0.0274 2.2 % 
3 0.0158 -16.0 % 0.0461 2.4 % 
4 -0.0134 -17.8 % 0.0461 2.4 % 
5 0.0192 -13.9 % 0.0687 1.5 % 
6 -0.0155 -16.2 % 0.0687 1.5 % 
Similarly to diagonal bracing the biggest improvement is in vertical displacement, where the 
improvement varies between 14 – 18%. However, on horizontal displacement the values are 
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actually higher than without bracing, but the difference is within 2.4%. Similar increase in 
displacement wasn’t seen at the end of the frame though, so the increase in displacement 
seems to be local. The calculated sheet displacement at the punching center is shown in 
Table 11 below: 
Table 11. Displacement at punching center (diaphragm bracing) 
x (mm) y (mm) ඥ࢞ + ࢟ (mm) 
0.035923 0.001301 0.035950 
Again, there is no meaningful difference in the total displacement compared to the original 
model. The most notable effect of the diaphragm bracing can be seen when comparing the 
nodal rotation around x-axis side by side with the model without bracing (Figure 40): 
 
Figure 40. Nodal rotation around x-axis (Solid Edge® 2019, modified) 
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The model without bracing is shown in the upper picture, where there is a clearly defined 
blue – magenta zone in the middle of the top plate. Similar effect was also seen in the bottom 
plate, although in a more moderate fashion. Result indicates that the top and bottom plates 
distort into S-shape as in figure 32, page 53. With diaphragm bracing (bottom picture) the 
distortion is restrained at the diaphragm plates. One way to evaluate the magnitude of 
distortion is to calculate the difference of diagonals in a cross-section. Taken from nodes 3 
and 4 to the opposite corners of the section, the difference in the diagonals is calculated to 
be 0.00972 mm in the model without bracing. With diaphragm bracing the difference is 
0.00129 mm, which is 87% less than without bracing. The diagonals were also measured 
with the transverse force applied only: There the difference in diagonals was measured 
0.01834 mm in the model without bracing, which is almost 2 times more than in the final 
simulation, where the additional torque is also present. The phenomena is further discussed 
in chapter 5. 
4.4.3 Effect of cut outs 
In the final structure there might be a need for access to the inside of the frame to carry out 
installation of some accessory equipment. For this purpose two pieces of 200x100 mm cut 
outs are placed through the sides of the frame making four cuts outs total. Cut outs are placed 
so that the first one is midway from the root to the first load attachment surface, and the 
second one midway between the two load attachment surfaces. Figure 41 shows the result 
when the cut outs are applied to the frame without any additional bracing. The mesh consists 
of 11420 nodes. 
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Figure 41. Z- and y-displacement with cut outs and no bracing (Solid Edge® 2019, 
modified) 
In Table 12 below is shown the results for the displacement of the nodes: 
Table 12. Z- and y-displacement with cut outs and no bracing compared to the original 
model (no cut outs, no bracing) 
Node Δz (mm) % change Δy (mm) % change 
1 0.0157 12.9 % 0.0278 3.7 % 
2 -0.0143 14.4 % 0.0278 3.7 % 
3 0.0206 9.6 % 0.0471 4.7 % 
4 -0.0181 11.0 % 0.0471 4.7 % 
5 0.0245 9.9 % 0.0707 4.4 % 
6 -0.0207 11.9 % 0.0707 4.4 % 
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In the table the values are compared against the original model. The increase in vertical 
displacement is 10 – 14% and in horizontal 4 – 5%. The resulting sheet displacement at the 
punching center is found as in Table 13 below: 
Table 13. Displacement at punching center (cut outs and no bracing) 
x (mm) y (mm) ඥ࢞ + ࢟ (mm) 
0.037317 0.005157 0.037672 
The result for the total displacement is 5.2% more than in the model without cut outs. 
Same cut outs were also tested in the model with diaphragm bracing. There the decline in 
stiffness was the same order of magnitude as without bracing. Although torsional stiffness 
is reduced by the cut outs, the model with diaphragm bracing still remains stiffer against 
torsion compared to the one without bracing. The gap in the horizontal displacement, 
however, increased from the initial 2% to roughly 7% as Table 14 below shows: 
Table 14. Z- and y-displacement with cut outs and diaphragm bracing compared to the 
original model without cuts out or bracing 
Node Δz (mm) % change Δy (mm) % change 
1 0.0132 -5.0 % 0.0286 6.7 % 
2 -0.0117 -6.4 % 0.0286 6.7 % 
3 0.0171 -9.0 % 0.0485 7.8 % 
4 -0.0145 -11.0 % 0.0485 7.8 % 
5 0.0210 -5.8 % 0.0719 6.2 % 
6 -0.0172 -7.0 % 0.0719 6.2 % 
The resulting sheet displacement at punching center is shown in Table 15 below: 
Table 15. Displacement at punching center (with cut outs and diaphragm bracing) 
x (mm) y (mm) ඥ࢞ + ࢟ (mm) 
0.037666 0.002073 0.037722 
Compared to Table 13 (cuts outs and no bracing), diaphragm bracing didn’t make any 
noticeable improvement in the sheet displacement. 
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4.4.4 Increasing the side wall thickness 
Figure 42 shows results with the side wall thickness (t1) increased to from 25 to 30 mm. 
 
Figure 42. Z- and y-displacement with t1 = 30 mm (Solid Edge® 2019) 
The simulation model is here otherwise identical with the original model but the side wall 
thickness (t1) has been raised from 25 to 30 mm. Displacement at the nodes is shown in 
Table 16 below: 
Table 16. Z- and y-displacement with t1 = 30 mm and comparison to the original model 
Node Δz (mm) % change Δy (mm) % change 
1 0.0129 -7.2 % 0.0249 -7.1 % 
2 -0.0115 -8.0 % 0.0249 -7.1 % 
3 0.0177 -5.9 % 0.0416 -7.6 % 
4 -0.0152 -6.7 % 0.0416 -7.6 % 
5 0.0210 -5.8 % 0.0622 -8.1 % 
6 -0.0174 -5.9 % 0.0622 -8.1 % 
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Results show that from the tested models, this is the only one with notable improvement in 
the horizontal displacement. The resulting sheet displacement at the punching center is found 
as shown in Table 17: 
Table 17. Sheet displacement at the punching center (with t1 = 30 mm) 
x (mm) y (mm) ඥ࢞ + ࢟ (mm) 
0.032446 0.004721 0.032788 
The total displacement is 8.4% less than in the original model (Table 7). 
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5 Analysis of results 
In the analytical calculations the results for the transverse displacement are as anticipated: 
As the width increases, the bending stiffness increases rapidly. When the section width 
increases from 400 mm to 600 mm, the bending deflection is already reduced by 60%. At 
the same time the cross-sectional area (and therefore the weight) of the section is increased 
only 29%. The portion of shear deflection in the total transverse deflection grows by the 
section width as every increment in width has more powerful impact on bending stiffness 
compared to shear stiffness. In the 400 mm wide section the portion of shear deflection is 
7.5%, whereas in the widest section (w = 1000 mm) the portion of shear is almost 26% of 
the total transverse deflection. 
For torsion deflection both Saint-Venant and warping torsion were used. The maximum 
difference between the two methods was in the widest section, where warping torsion gave 
7.1% smaller result for the angle of twist. The difference can be considered relatively small 
when taking into account the somewhat extreme dimensional proportions of the frame. The 
small difference between two methods is a consequence of the use of a closed hollow section, 
where the warping effect is typically quite mild. In the literature research it was found that 
the formula for the warping constant for a RHS section isn’t often given at all as the warping 
phenomena is seen so negligible. When comparing the torsion induced movement at the 
reference height (480 mm from the centroid) to the transverse displacement caused by 
bending and shear, it was concluded that any increase in width of the section had more 
significant effect to the flexural stiffness than torsional stiffness as the share of torsion 
induced transverse displacement grew by each increment in the width of the cross-section. 
From the results for the sheet displacement at the punching center can be noted, that the 
rotation of the cross-section according to the flexure curve compensates for the transverse 
displacement caused by bending, shear and torsion. In three most narrow frames the rotation 
actually overshoots the compensation so that the final position of the sheet is on the negative 
side of the y-axis. From the results can be also concluded that the change in the x-coordinate, 
which was dominant in the position error, depends not only on the stiffness or length of the 
frame, but also how the frame centroid is located in reference to the punching center: If its 
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origin would be located further away from the x-z –plane of the global coordinate system 
(punching center), the movement in x-direction per angle degree of β would be greater. This 
would be the case if the specification for the maximum sheet width would change to a next 
bigger one and the fixed frame location would therefore be shifted further away from the x-y 
–plane of the punching center. So, in a system with similar masses (= similar deflection) but 
a wider sheet, the error in x-direction would increase and correspondingly, the compensating 
movement in y-direction (opposite to the load) caused by the rotation would be slightly less. 
The described arrangement is illustrated in Figure 43 below: 
 
Figure 43. Effect of the reference frame position to the change in x- and y-coordinates during 
rotation 
In the picture is shown two sheets of equal length and equal rotation angle, but the left one 
being 1.5 meters and the right one 2 meters wide. The centroid of the fixed frame is here 
positioned according to the sheet size, so the rotation axis is located further away from the 
punching center x-y –plane, which effects to the ratio of x- and y-displacement per rotation 
angle. 
In the FEM analysis of the simplified model (L ~ 2150 mm) the result for transverse 
displacement (Figure 30, page 51) was within 3% compared to the analytical result. 
Although the slope of the deflection curve in the analytical calculations and the nodal 
rotation in FEM are different definitions and can’t be directly compared to each other, the 
maximum angle at the sides of the FEM model (Figure 31, page 51) matched almost exactly 
the slope of the deflection curve. The nodal rotation, however, decreased right after the side 
plates when moving towards the centroid of the section: This is consistent with Figure 10 
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(page 20) where the shear stress causes the cross-section to diverge from a perpendicular 
angle in respect of the deflection curve between the free surfaces. 
For the rotation due to torsion (Figure 32, p. 52) the FEM result was closer to Saint-Venant 
solution than warping torsion, when the angle of twist was calculated based on the vertical 
displacement at the sides of the section. There the angle of twist was calculated 0.00240 
degrees, which is 2% more than Saint-Venant torsion and 8% more than the result from 
warping torsion. With diagonal bracing (Figure 34, p. 54) the torsion deflection was reduced 
by 8% in a single diagonal and 15% in a double diagonal bracing. The improvement achieved 
with double diagonal bracing equals roughly the difference in torsional stiffness between 
900 mm and 1000 mm wide sections. 
In the model with increased definition (Figure 38, page 59) the use of single diagonal bracing 
improved torsional rigidity 15 – 23%, when the vertical movement of the selected nodes 
were compared to the model without bracing. The diaphragm bracing improved similar 
results by 14 – 18%. When comparing the weight added by the two bracing methods, the 
diaphragm bracing seems to be more effective in this particular simulation assignment as it 
raised the weight by approximately 5.3% (for 14 – 18% improvement), whereas single 
diagonal bracing increased the weight by 14.8% (for 15 – 23% improvement). However, it 
should be noted that the use of diagonal bracing was pictured in the referenced material 
(Blodgett 1972, p. 2.10-18) as a part of an open build-up frame without top and bottom plates 
(Figure 18, page 31). There the achieved effect was in a completely different scale and in 
favour to diagonal bracing. When used in a ladder type frame structure with open top/bottom, 
the diagonal bracing was reported to provide multiple times greater improvement in torsional 
rigidity per added weight than diaphragm bracing (Blodgett 1972, p. 2.10-18). 
The distortion of the cross-section was assessed by calculating the difference in diagonals 
taken from nodes 3 and 4 to the opposite corners. When compared to the model with 
diaphragm bracing there was some S-shape distortion visible in the model without bracing 
(Figure 40, page 62). The difference in diagonals was there calculated 0.00972 mm. 
However, when measured with the additional torque load removed, the difference in 
diagonals was 0.01834 mm, which is almost 2 times more than in the simulation with all the 
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loads present. The relative order of the diagonal lengths also changed between the 
simulations. The distortional behaviour of the section is shown in Figure 44: 
 
Figure 44. Distortion of a cross-section (Solid Edge® 2019, modified) 
On the left is shown the simulation where only the transverse force is applied. The 
asymmetric force distribution causes bottom plates to deform into S-shape and the section 
into a parallelogram. On the right is the same model but with the additional torque also 
applied. The torque acts against the initial distortion so that the final distortion has smaller 
magnitude and also opposite direction. It should be noted that the loads and boundary 
condition (cantilever beam) are here applied according to the application, so the picture 
includes also bending and torsion deformation in addition to distortion. 
When cut outs were added to the sides of the frame the vertical displacement at the reference 
nodes increased 10 – 14% and the horizontal displacement around 4 – 5%. By adding the 
diaphragm plates, the torsional stiffness could be restored so that results for vertical 
displacement were still better than in the original model (without cut outs), but the bracing 
didn’t improve the horizontal displacement: It actually grew slightly at the measured nodes. 
The reason to slight increase in nodal displacement could be related to the distortion of the 
unbraced section which effects the displacement of these specific nodes, but the issue wasn’t 
investigated more deeply as the difference is yet quite small and didn’t recur as such in the 
total displacement at the end of the frame. 
In order to assess the sheet displacement at the punching center according to the results from 
FEM, and to do it without modelling up the whole sheet positioning system, coordinates 
measured at specified nodes were used as a basis for the displacement calculations. The 
rotation around x-axis was defined by the slope of a line placed through nodes 3 – 4 which 
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were placed midway between the load points. Similarly, the rotation around z-axis was 
defined by a line through nodes 1 – 5 which represent the positions of linear carriages fixed 
beneath a sub frame which holds the sheet. The y-coordinate in the vector VL was calculated 
based on the transverse displacement in the nodes 3 – 4: The value in these nodes was 
selected being a more conservative choice rather than estimating the displacement at the 
centroid of the cross-section. The results for different models are gathered in Table 18 below: 
Table 18. Displacement at punching center 
  x (mm) y (mm) ඥ࢞ + ࢟ (mm) 
No bracing, no cut outs 0.0356 0.0040 0.0358 
Diaphragm bracing 0.0359 0.0013 0.0359 
Diagonal bracing 0.0351 0.0003 0.0351 
Cut outs, no bracing 0.0373 0.0052 0.0377 
Cut outs, diaphragm bracing 0.0377 0.0021 0.0377 
No bracing, t1=30 mm, t2=25 mm 0.0324 0.0048 0.0328 
From the results can be seen that in all sections the change in x-coordinate determines almost 
completely the total displacement as the change in y is an order of magnitude smaller.  The 
results also show that either one of the bracing methods (diaphragm or diagonal) didn’t have 
much effect on the displacement at the punching center as they both increase primarily the 
torsional stiffness, which affects mainly to the y-coordinate. Cut outs in the side plates 
increased the total displacement by 5%. In the last row is shown the model with increased 
side wall thickness (t1 = 30 mm) where the total displacement is 8.4% less compared to the 
original model. The 5 mm of added material in the side walls increased the total weight of 
the frame by 4.8%, which makes it the most effective choice in decreasing the sheet 
displacement at the punching center when compared to the two other bracing methods. 
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6 Conclusions 
In the structural analysis of this thesis it was found that with the dimensions used, the 
bending deformation is the dominant factor in achieving the best accuracy at the punching 
center. Design against bending deformation calls for the placement of material as far away 
as possible from the neutral axis. So, if the displacement at the punching center should be 
further decreased, it could be done either by increasing the width of the cross-section or if 
not possible, by increasing the wall thickness of the side plates. The shear deformation 
accounted up to 26% of the total transverse deflection in the widest section, so it was 
justifiable to include in the calculations. Contrary to bending stress, shear stress induced by 
a transverse load is carried also by the material at the centroid of a cross-section, where the 
shear stress actually reaches its peak. Correspondingly, the shear stress in the top and bottom 
flanges of a section is almost negligible compared to the shear stress in the web plate(s). The 
transverse displacement at the point of load didn’t translate as such at the punching center 
though: As the frame deflects, the cross-section also rotates according to the deflection 
curve, which causes the sheet to move in opposite direction to the load at the punching center. 
This compensates for the transverse displacement caused by bending, shear and torsion, so 
that the positioning error at the punching center was measured mainly in the longitudinal 
direction of the frame. 
In torsion deflection the maximum difference between Saint-Venant and warping torsion 
was found 7.1% in the widest section, so the assumption often found in the literature that the 
warping phenomena in a closed rectangular section is usually negligible seems justifiable as 
the widest section had already quite extreme proportions (ܮ/ܪ~2.2) yet the difference was 
still well under 10%. In the design against torsion, the most important guideline is to use a 
closed section whenever possible, which was done also here as the torsional stiffness it 
provides is in a whole different scale when compared to an open one with similar dimensions. 
When comparing the results from FEM and analytical calculations it was found that both 
gave almost identical values for the transverse deflection. The torsion deflection results from 
FEM and analytical calculations are a bit more challenging to compare against each other, 
but when estimating the angle of twist by the vertical moment at the sides of the FEM model, 
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the result matched almost exactly with Saint-Venant torsion. The positioning error calculated 
according to FEM was found 24% bigger than the analytical result. The difference can be 
considered yet admissible, as the results still positions before the next narrower section 
candidate. The main reason for the bigger result in FEM was the greater rotation angle 
around the z-axis, which was approximated by calculating the slope of a straight line placed 
between nodes which represented the linear carriage positions. 
The additional bracing methods tested in FEM improved mainly the torsional stiffness, so 
the reduced transverse displacement at the point of load due to smaller angle of twist had 
only negligible effect on the sheet displacement at the punching center. From the two bracing 
methods, the diaphragm bracing was found to be more effective to increase the torsional 
stiffness in this particular assignment than diagonal bracing. The diaphragm bracing also 
restricted the distortion of the cross-section, although it wasn’t found to be a major issue in 
the load case as the effect of the transverse load and torsional load partly cancelled each 
other out. The cut outs tested at the sides of the frame didn’t affect the sheet displacement 
too much, although they caused a local degradation of structural stiffness which could be 
mainly seen as a greater angle of twist. Examining the effect of these structural modifications 
are examples of research problems that could be assessed only by FEM. 
A cantilever beam was used as a boundary condition in both the FEM and analytical 
calculations to keep the focus only on the frame itself. Connection at the root plays a crucial 
role in the structural behavior of the system, so the next step in the design process could be 
the modelling of the fixing of the frame and examining how it performs under the strain. It 
would be equally important to investigate the complete force chain from the sheet to the 
punching center in order to find any possible weak links in the system; a weak connection 
element along the force chain could dilute the whole system making the rigidity of all other 
elements more or less redundant. A dynamic analysis could also come into question at some 
point. A time response analysis of the complete system would probably turn out to be quite 
challenging to perform, but examining even the natural frequencies and mode shapes of 
some individual parts or subassemblies could give some perception of the mass – stiffness 
ratio of the construction. 
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