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Saimaa ringed seals are among the most endangered seal species. Monitoring Saimaa
ringed seals using image data is a useful tool in their conservation efforts. The images
can be collected automatically by using camera traps and the amount of data collected can
be large. Automatic computer vision methods for identifying individual seals are used
to reduce the amount of manual work involved in the identification. Utilising informa-
tion from multiple images and views simultaneously can give additional information and
enhance the features present in the images. In this thesis the one-to-many and many-to-
many matching of Saimaa ringed seals is considered. Information from multiple images
was utilised by aggregating the features from multiple images to a single Fisher Vector.
The experiments were conducted with aggregating only the database features, only the
query features, and aggregating both. The achieved results were compared to one-to-one
matching where features from a single image are used at a time. Aggregating the only the
database features failed to improve results over the baseline one-to-one matching. The
other two aggregation methods significantly improved the re-identification accuracy.
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Saimaannorppa on yksi uhanalaisimmista hyljelajeista. Saimaannorppien tarkkailu ku-
vien avulla on hyödyllinen työkalu niiden suojelutyössä. Kuvia voidaan kerätä automaat-
tisesti käyttämällä riistakameroita ja kerätyn datan määrä voi olla suuri. Manuaalisen työn
vähentämiseksi norppayksilöiden tunnistamisessa hyödynnetään automaattisia tietoko-
nenäköön pohjautuvia metodeja. Useiden kuvien ja kuvakulmien käyttö samanaikaisesti
voi antaa lisäinformaatiota ja tarkentaa kuvissa olevia piirteitä. Tässä työssä käsitellään
saimaannorppien yksi-moneen- ja moni-moneen-vastaavuutta. Informaatiota useista ku-
vista hyödennettiin yhdistämällä useista kuvista kerätyt piirteet yhteen Fisher-vektoriin.
Suoritetuissa kokeissa yhdistettiin piirteet vain tietokantakuvista, vain kyselykuvista, sekä
molemmista. Saavutettuja tuloksia verrattiin yksi-yhteen -vastaavuuteen, jossa käytetään
piirteitä vain yhdestä kuvasta kerrallaan. Vain tietokantakuvien piirteiden yhdistäminen
ei parantanut tuloksia suhteessa yksi-yhteen-vastaavuuteen. Kaksi muuta kokeiltua yhdis-
tämismetodia paransivat tunnistamistarkkuutta merkittävästi.
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1 INTRODUCTION

1.1 Background

Many species of animals are endangered due to climate change, human land usage and
other human activities. Monitoring endangered animal populations and tracking their
evolution over time is important for conservation efforts of the endangered species [1].
Observing animals from image data is a non-invasive method and can be done by utilising
automatic camera traps or images from photographers. Due to large amounts of data
generated through these methods, automatic computer vision methods are used in re-
identification of known individuals [1].

One endangered species is the Saimaa ringed seal, as shown in Fig. 1 [2]. With a pop-
ulation size of only 400 individuals, it is among the most endangered pinnipeds in the
world [3]. Photo identification has been used in conservation efforts to monitor the seal
population as it is a non-invasive alternative to methods that require catching the seal, thus
reducing the amount of stress that is caused to the animals. Identification from images
has been traditionally done manually [4], but it is laborious and time-consuming, creating
a need for automatic methods.

Figure 1. Example images of Saimaa ringed seals. [2]

Multiple methods for automatic animal re-identification, such as [5, 6] exist in literature,
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many achieving very successful results. Often these methods make use of identifiable
features in fur patterns present in the animals. Saimaa ringed seals have a ring pattern
in their fur which is unique in each individual, allowing for re-identification based on
the pattern [2]. Photographs of Saimaa ringed seals offer a challenging task in automatic
re-identification, with large variance in poses, lighting, and low contrast between the ring
pattern and rest of the fur making the task more demanding. As a part of the CoExist
project [7], various methods [8–13] utilising computer vision have been proposed for
automatic re-identification of Saimaa ringed seals, matching features found in the pelage
patterns in different images in order to identify the individual animals, as shown in Fig. 2.
A general example of steps in an animal re-identification pipeline is shown in Fig. 3. From
the raw image, the seal is segmented and the image is cropped to the bounding box of the
seal. The pelage pattern is then extracted and taken through a feature extraction process,
finding interesting regions from the pelage pattern and encoding them. The extracted
features are aggregated to form a decriptor of the seal, and the descriptor is then compared
against descriptors from known identified seals from the database (DB) to find the closest
matches.

Figure 2. Feature matching between two Saimaa ringed seal images. [13]

The matching of Saimaa ringed seals has been previously done one-to-one, comparing
images from the database to the query image one by one. Aggregating information from
multiple images of an individual can provide more features or enhance the features if they
are seen from multiple angles. Comparing descriptors built from single or multiple query
images to descriptors built from multiple database images, the use of one-to-many, many-
to-one and many-to-many matching has the ability to improve speed [5] and accuracy [14]
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Figure 3. An example of steps taken in automatic re-identification of Saimaa ringed seals.

of re-identification algorithms. While image sequences and multiple views have been used
to improve methods in human re-identification [15,16], relatively few works utilising such
techniques exist in the realm of automatic animal re-identification.

1.2 Objectives and delimitations

The aim of this thesis is to implement one-to-many, many-to-one and many-to-many
matching for Saimaa ringed seal re-identification, and to evaluate their performance for
the task, with the delimitation of focusing only on Saimaa ringed seals. The many-to-
many matching is visualized in Fig. 4 where information from multiple images is aggre-
gated to a single descriptor. For the query individual and each database individual, all of
the features from all of the images of an individual are aggregated to a single descriptor.
The distance between the query descriptor and each database descriptor is then calculated
to perform the final re-identification. The database individuals with the shortest distances
to the query individual are the most likely matches. In one-to-many matching only a
single query image would be used instead of many.

The objectives of this thesis are as follows:

• to prepare a dataset for the one-to-many, many-to-one and many-to-many Saimaa
ringed seals photo-identification,
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Figure 4. An illustration of many-to-many matching for Saimaa ringed seals.

• to update the Saimaa ringed seal identification method by implementing one-to-
many, many-to-one and many-to-many image matching, and

• to evaluate the updated Saimaa ringed seal identification method on the prepared
data sets.

A delimitation for thesis is that only the re-identification of Saimaa ringed seals is consid-
ered in this thesis. However, it should be possible to apply the method to other patterned
species as well.

1.3 Structure of the thesis

The thesis is structured as follows: Chapter 2 discusses the development of methods and
different aspects in automatic animal re-identification. Chapter 3 describes use of infor-
mation from multiple images in re-identification tasks. In Chapter 4 the proposed methods
to utilise one-to-many and many-to-many matching in Saimaa ringed seal re-identification
are presented. Chapter 5 describes the conducted experiments and the results of the exper-
iments while Chapter 6 discusses the achieved results and possible future work. Chapter
7 concludes the thesis with a summary of the conducted work and achieved results.
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2 ANIMAL RE-IDENTIFICATION

2.1 Background

Animal re-identification is an effective tool in environmental conservation efforts, al-
lowing for monitoring of animal populations [1]. The data gathered from animal re-
identification can be used for evaluating multiple aspects of animal populations, such as
their evolution over time, travel patterns, responses to environmental changes [17]. With
many species being endangered and facing threats such as changes in climate, habitat loss
due to human land usage, pollution, diseases and poaching [18], being able to monitor
their populations and behaviour is a key part of conserving biodiversity.

Traditionally animals have been identified with techniques such as tagging, scarring or
DNA analysis [1]. These methods are reliable for accurately identifying the individual
animals but they are also intrusive, requiring contact with the animal and causing stress to
it. These methods are also laborious to the researchers due to needing field work, catching
the animal and performing the re-identification manually [9]. Using image data of the
animals, such as images acquired from camera traps, has become a preferred method for
performing animal re-identification. Camera traps are inexpensive, easy to maintain [19]
and require less work from the researchers [1]. Camera traps are non-invasive, and a
large number of them can be installed in the environment that is being monitored [20]
allowing for better and continuous monitoring of animals without causing disturbance in
their behaviour [1].

While having researchers perform the re-identification from images is a better method
than the ones traditionally used in animal re-identification, it still has some issues of its
own. Vast amounts of data is produced by the cameras, and it needs to be analyzed by
researchers in order to gain the desired information on animal individuals [20]. While not
as laborious as performing the work out in the field, the manual identification still takes a
large amount of time. In addition, accuracy can become an issue, as human error can lead
to a researcher identifying the same individual as another individual [17] or identifying an
animal as being of another species altogether [21]. Presence of clear patterns or markings
on the animal has traditionally been a needed feature for reliable animal re-identification
from images [1].

In order to reduce the amount of manual work that needs to be done, computer vision
techniques have been used to perform the animal re-identification automatically. Early
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methods for automatic re-identification were based on using feature engineering, where
the common features in an animal species were identified and used to identify the indi-
viduals. These methods are however lacking in their ability to generalize, as features that
have been designed for identifying individuals from one species would not necessarily
work on other species [1]. Emergence of deep learning and the availability of large data
sets has allowed for creation of algorithms that are capable of learning the needed features
from the data, with even the ability to use the same algorithm on multiple species [5].

2.2 Animal detection

Determining whether an image contains an animal or not is a relatively simple and fast
task for a human observer [22], but in order to enable automatic re-identification and mon-
itoring of animals, the automatic detection methods are needed. Steps in animal detection
can range from determining if an image contains an animal to determining the the loca-
tion of the animal in the image or segmenting the animal from the image. Problems can
be posed by multiple animals being present and the possibility of them being of different
species [23]. Further, natural scenes tend to be cluttered and dynamic with movement
from trees, water and natural lighting making the task of animal detection more com-
plex and rendering more traditional motion-based object detection methods void for the
task [19].

Traditional methods were based on detecting the face of the animal or subtracting the
background from the image to locate the animal [24]. Due to the aforementioned chal-
lenges in detecting wild animals in natural scenes, Convolutional neural networks (CNN)
have risen to be the tool of choice for animal detection due to their ability to learn rep-
resentations and excellent performance in image classification and object detection [25].
Instead of using hand crafted features, convolutional layers in CNNs are capable of learn-
ing features, such as contours and other shapes and patterns from training data, classi-
fying inputs based on the presence of these learned features. A CNN detector, such the
R-CNN [26], typically consists of two stages with the first stage generating regions which
may contain the object to be detected, and the second stage classifying the proposed ob-
jects into true and false objects. Example results from animal detection can be seen in
Fig. 5 [27].

CNNs tend to be computationally intensive [27], and for faster performance methods such
as YOLO [28] that consist of a single CNN have been presented. While not as accurate as
the methods with separate networks for region proposals and classification, they do have
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Figure 5. Results from animal detection, displaying the bounding boxes. [27]

their uses when low latency is needed.

Animals with high site fidelity, such as Saimaa ringed seals, can end up being captured
with a fairly static background when using camera traps, leading to supervised identifi-
cation algorithms running the risk of learning features from the background instead of
learning only the features from the animal [8]. In such cases segmentation of the animal
at pixel level is important to separate it from the background. Superpixel based meth-
ods [29,30] and the Mask R-CNN [31] are examples of methods that have been shown to
accurately achieve the separation of animals from the image background. Mask R-CNN
has also been successfully used in segmenting multiple animals from single images [32]
as can be seen in Fig. 6 for cattle and in Fig. 7 [14] Ladoga ringed seals, a sister species
of the Saimaa ringed seal.

Figure 6. Segmentation masks produced by the Mask R-CNN for cattle. [32]
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Figure 7. Segmentation masks produced by the Mask R-CNN for Ladoga ringed seals. [14]

2.3 Re-identification

Early works utilising computer assistance in animal re-identification were based on fea-
ture engineering [1] such as [33] where whales were identified based on the features in
their tail flukes. The predetermined features, such as notch shape and pigmentation, were
manually coded from each image and a matching algorithm was then used to find the best
matches. While aiding in the re-identification process, the images still needed to be man-
ually tagged and the system could fail to account for characteristics that have not been
previously encountered in the tails.

In [34], the Finscan algorithm was presented, where the edge pattern of the dorsal fin in
multiple delphinid species was used to identify the animals. The system utilises automatic
recognition of the boundaries of the dorsal fin, and the shape of the fin is automatically
computed using curve matching and string matching [35]. The automatically computed
features were used for making database query, finding the images with the highest simi-
larity to the features in the query image. Using top-1 accuracy to measure, as in how often
the closest match provided by the algorithm was the correct individual, Finscan achieved
promising results and was a step towards autonomous re-identification.
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More complex features have been introduced to use visual patterns in the animal for iden-
tification, such as using local colour and brightness information as well as the shape for
salamanders [36], spot patterns for whale sharks [37] or whisker spot patterns in polar
bears [38]. In [39] feature patterns were extracted by 3D modelling the animal, with the
ability to use the same method on different patterned species, only needing to train a new
classifier.

The use of Scale Invariant Feature Transform (SIFT) features to find keypoints in im-
ages [40] has been a popular method in animal re-identification due to their invariance to
scale and orientation. For example in the Wild-ID algorithm presented in [41], the SIFT
features are extracted from images of giraffes and identification is performed by finding
the database image with the most similar features, with a modified Random Sample Con-
sensus (RANSAC) algorithm [42] being used to ensure the geometric consistency of the
matched features. An example of SIFT features and matching them can be seen in Fig. 8.

Figure 8. Feature matching using SIFT features. White dots in each image are the locations of the
matching SIFT features. [41]

The HotSpotter [5] built upon similar methods as the Wild-ID, using the Root-SIFT [43]
for feature descriptors and finding the database images with similar descriptors. HotSpot-
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ter uses RANSAC to ensure the consistency of the descriptors in the found matches and
computes the combined scores for each label in the database to classify the query image
instead of simply using the highest scoring image. Achieving high re-identification accu-
racy on jaguars, giraffes, zebras and lionfish, HotSpotter has been shown to be accurate
and work on multiple patterned species [5].

Deep learning methods, particularly Convolutional Neural Networks have shown very
strong results in recognition tasks. With their ability to learn the needed features from
training data, removing the problem of crafting the needed features by hand. In human
re-identification CNNs have been used to great effect, but traditional CNN architectures
for image classification face problems with needing sufficient data for each individual and
needs to re-trained for every new individual [1].

The Siamese network [44] is an architecture capable of tackling the above problems. A
Siamese Network consists of a pair of networks with identical structure and parameters,
with the outputs from each network connected at the final level by a function that com-
pares the similarity of the two outputs [45]. With two similar input images, both networks
should give similar outputs, and each network produces the same output if it is given
the same input as the other [46]. The twin network structure thus allows for evaluating
whether the two inputs are similar to each other. For example in [47], the Siamese archi-
tecture is utilised in re-identification of lemurs, chimpanzees and golden monkeys. Using
CNNs to create the representations of facial images of the animals, the cosine similarity
between the feature vectors is used as the metric for determining similarity.

The Triplet Loss network [48] is a developed version of the Siamese network, but uses a
triplet of networks as shown in Fig. 9 [11], instead of twins. A Triplet Loss network is
trained by inputting a reference image, an image of the same class and an image from a
different class to each of the respective networks, and the feature representations can then
be used to determine which image better matches the reference [48]. Use of the triplet
loss has shown improved results in digit classification over a Siamese network with twin
structure [48], as well as better re-identification results in multiple species of animals [6].
Triplet loss does come with the triplet mining problem, meaning that during training the
triplets need to be chosen in such a way that the samples positive and negative images are
close to the reference, to make the network learn subtler differences. Choosing a suitable
strategy for triplet mining can be difficult [14].
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Figure 9. An example of the Triplet loss network training architecture. [11]

2.4 Ringed seal re-identification

Multiple methods and subsequent improvements have been presented for automatic re-
identification of ringed seals. In [8], the segmentation of Saimaa ringed seals from images
is considered, using a superpixel based method [29,30] to extract the seals from the image
background. The results were evaluated using the Cumulative Match Score (CMS) his-
togram, in essence measuring the top-N accuracy of the identification at different numbers
of N closest matches.

Using Segmentation based Fractal Texture Analysis (SFTA) features [49] and a Naive
Bayesian classifier to perform re-identification, the top-15 accuracy was decent [8], mean-
ing that often the correct individual was found within the be closest 15 matches given by
the algorithm.

In [9] a more elaborate pipeline is presented, featuring colour normalisation and contrast
enhancement to better extract the features in the pelage patterns. Trying out Wild-ID and
HotSpotter, HotSpotter was the better performing of the two when colour normalisation
and contrast enhancement were applied, markedly increasing the accuracy from [8]. The
pipeline is visualised in Fig. 10.

In [10], transfer learning is utilised to retrain a pretrained CNN for the Saimaa ringed seal
identification task. A CNN is also used to extract features from the images that were then
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Figure 10. Segmentation of seals using superpixel based methods and classification with Wild-ID
and HotSpotter. [9]

used for classification with a Support Vector Machine (SVM). Both the CNN and SVM
method achieved very high accuracies. However, the use of CNN faced the issues of
needing lots of images of each individual and being unable to deal with new individuals,
needing retraining when a new individual is introduced.

A Triplet Loss Network is used in [11] to better generalize when presented with indi-
viduals from a new class. In addition multiple other improvements to the Saimaa ringed
seal identification pipeline are made as follows: the DeepLab model [50] is used for seal
segmentation, Sato tubeness filter [51] is used for extracting the pelage pattern from the
segmented seals, and the extracted patterns are divided into patches to increase robustness
towards the pose of the seal and the angle it is viewed from. A Triplet Neural Network
with a rotation-invariance pass is trained for computing the similarities between patches.
The re-identification is then performed by calculating the similarities between images,
filtering the possible matches based on topological consistency, and finding the closest
match. Quite high top-1 accuracy was achieved, with the extracted pattern patches out-
performing the use of raw patches from the segmented images.

In [12] the EDEN pooling method and a further improved pipeline is presented, using
Mask R-CNN [31] for the segmentation step and a CNN for the pelage pattern extraction
[52]. The ArcFace [53] loss is used to deal with the problem of triplet mining. The pattern
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patches are run through a ResNet-18 [54] based CNN, with a custom global pooling layer
at the end replacing the global average pooling of ResNet, and after the pooling step, the
patch descriptors are aggregated to a Fisher vector [55] to generate the descriptor for an
entire image. The EDEN pooling outperformed other methods, with the combination of
the EDEN and Maximum activations of convolutions (MAC) [56] poolings achieving the
highest accuracy.

A similar pipeline is utilised in [14] for re-identification of Ladoga ringed seals from im-
age sequences where the SphereFace [57] loss is used to avoid triplet mining, Generalized-
Mean pooling is used in the global pooling layer, and a grouping step is used for multiple
images of the same individuals, aggregating their descriptors from multiple images into
a single Fisher Vector. On the 50 images of the test set, very high top-1 accuracy was
achieved.

The Novel Ringed seal re-identification by Pelage Pattern Aggregation (NORPPA) pipeline
is presented in [13] again improving the accuracy from previous methods. The pipeline is
visualised in Fig. 11. The HesAffNet [58] is used to extract affine covariant regions from
the pelage pattern and the extracted regions are embedded using the HardNet [59] instead
of the pooling step in [12]. Principal Component Analysis (PCA) is then applied to the
embedding before aggregating the features into Fisher Vectors. Kernel PCA [60] is also
utilised to reduce the dimensionality of the descriptors. For the re-identification step, the
distance between the descriptors of query images and database images is computed, with
lowest distance being the nearest match.

Figure 11. The Novel Ringed seal re-identification by Pelage Pattern Aggregation (NORPPA)
pipeline. [13]
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A new, more extensive and challenging dataset is presented in [2] consisting of 57 seal
individuals and 2080 total images with more variability in appearance compared to pre-
vious sets. On the newer more difficult dataset, the NORPPA HardNet version achieved
much higher top-1 accuracy than the ArcFace method from [12]. Combining EDEN with
HardNet was also attempted but did not improve results.
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3 RE-IDENTIFICATION USING MULTIPLE IMAGES

3.1 Background

Traditional re-identification methods search for matches by brute force, that is by com-
puting the similarity between the query image and each database image one at a time.
Going through each image is a slow process, and aggregating information from multi-
ple images of an individual to a is a possible way to increase the efficiency of the re-
identification [5, 61]. In addition, using multiple images to construct the feature descrip-
tor for an individual can lead to obtaining more reliable features, better representing its
appearance [62]. The concept is visualized in Fig. 12 where many-to-many matching is
illustrated. In one-to-many matching a single query image would be used instead and in
many-to-one matching a single database image would be used instead.

Figure 12. Concept of aggregating information from several images for image matching.

In case of having a single image for the query individual and multiple images for the
database individual the matching would be called one-to-many matching. In many-to-one
matching multiple images for the query individual are used and a single image for the
database individual. In many-to-many matching multiple images are used for both the
query and database individual. Use of these matching techniques has been shown to have
the ability increase the speed [5] and accuracy [14] of animal re-identification. Thus, find-
ing methods of utilising multiple images in animal re-identification is an alluring prospect.
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3.2 Multi-view image features

Multiple views may be utilised to acquire more features of an object or to gain better
representation of a feature that is present in multiple views. Features may need to be
matched between the views to allow for forming a single feature descriptor from the
multiple views. Re-identification tasks and matching features between images could also
be thought of as Content Based Image Retrieval (CBIR) tasks [63], where similar methods
often apply. Various methods exist for matching features from multiple views.

In [64] matching features between multiple images is explored, using SIFT for feature
representation and distances between features to determine matches and distinctiveness
of features. Bag-of-Visual words [65] models establish "vocabularies" of visual features,
assigning the same encoding for similar features, effectively matching similar features
when obtaining encodings from multiple images, as illustrated in Fig. 13.

Figure 13. An example of a Bag-of-Visual words model. [65]
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Fisher Vectors (FV) are a similar way of representing the features in an image and can be
understood as a probabilistic visual vocabulary [66]. Using a generative model to create
a vocabulary of features from a training set of features, the obtained parameters are then
used to describe query features by their deviation from the model. In [66] Fisher Vectors
were created by using a Gaussian Mixture Model (GMM) to create the vocabulary to
achieve competitive results with state-of-the-art techniques in standard datasets.

In some cases use of multiple views has been shown to outperform methods that utilize
a single view. In [15], videos of human faces were considered. Pooling features from
multiple frames is performed using two different methods: 1) computing Fisher Vectors
for each frame and averaging the vectors and 2) pooling all SIFT features from each frame
and computing one Fisher Vector from the pooled features. The Video Fisher Vector Faces
representation achieved state-of-the-art performance across multiple datasets.

CNN based techniques have also been used for multi-view tasks. A multi-view CNN
for object recognition was presented in [67]. Multiple views of an object are fed to the
network and a pooling layer is used to aggregate the views before classification. The
concept is illustrated in Fig. 14.

Figure 14. Concept of the Multi-view CNN. [67]

In [68], the Views Knowledge Distillation (VKD) is presented, in which a teacher CNN is
used to optimise a student CNN with the same architecture. During training, the teacher
receives more views of of the targets and the student receives fewer views. The Knowl-
edge Distillation loss [69] is used to make the student network match the representations
of the teacher network while having access to fewer views. This training method is illus-
trated in Fig. 15.
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Figure 15. Training a CNN using the Views Knowledge Distillation. [68]

3.3 Re-identification from image sequences

Various works exist exploring the use of image sequences or video data in human re-
identification. In addition to using spatial appearance, the sequential nature of the data
enables use of temporal features for the re-identification. In [70], a model for selecting
the most discriminative video fragments by using motion intensity is presented. These
fragments are then used for person re-identification by matching the features between the
most discriminative fragments of two sequences. In [71], the Adaptive Fisher Discrim-
inant analysis algorithm is presented for multi-shot re-identification, aiming to create a
feature space in which images of different people are separated and images of the same
person are clustered near each other. This is achieved by adapting the Local Fisher Dis-
criminant Analysis and iteratively updating the feature space, preserving diversity in the
samples. The method has been shown to achieve better performance than the earlier state-
of-the-art methods.

In [16], a Recurrent Convolutional network with temporal pooling was utilised to make
use of the temporal information as shown in Fig. 16. Both optical flow and colour chan-
nels are used as the inputs to the network and a convolutional layer is used for feature
extraction. The recurrent layers use information from both current and previous time-
steps to produce their output. The outputs from different time-steps are then pooled and
the Siamese architecture is used to train the network for extracting the features that are
used in classification. The method was shown to outperform other state-of-the-art video
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re-identification methods.

Figure 16. The Recurrent CNN architecture with temporal pooling. [16]

3.4 Animal re-identification using multiple images

For animal re-identification, features aggregated from multiple images have been occa-
sionally used to enhance the performance of the algorithms. In [5], a one-to-many variant
the HotSpotter animal individual matching algorithm is presented in addition to a one-
to-one version. Instead of comparing the query features to each database individual, all
database descriptors are aggregated to a forest of kd-trees [72] from which the closest
matches for query descriptors were sought. Tested on datasets of jaguars, giraffes, zebras
and lionfish, the one-to-many version outperformed the one-to-one algorithm in accuracy
and was vastly faster [5].

In [14], instances of individual Ladoga ringed seals are grouped by utilising distance
between their descriptors, grouping individuals with similar descriptors to a single group,
as shown in Fig. 17. The grouping is done by using the ResNet-101 to obtain descriptor
vectors for each instance, forming initial groups from the image with the largest amount
of seals, and then adding the instances from each image to groups with minimum mean
distance to their descriptor. For the re-identification process, the pattern descriptors from
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each instance in a group are aggregated using a Fisher Vector to create the final descriptor
of each seal, gaining more information for matching the seals. The top-1 re-identification
accuracy was improved by 30% when utilising the grouping method.

Figure 17. Grouping instances of the same Ladoga ringed seal individuals. [14]
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4 ONE-TO-MANY AND MANY-TO-MANY MATCHING
METHOD

4.1 Pipeline

In this chapter the proposed implementation of one-to-many and many-to-many matching
for the Saimaa ringed seal re-identification is presented. A Fisher Vector based approach
was chosen for the aggregation of the features across multiple images since using the
Fisher Vector based grouping method gave good results in [14].

The proposed re-identification pipeline utilising one-to-many and many-to-many match-
ing is largely based on the seal identification pipeline from [13] which is illustrated in
Fig. 11. In [13] features from each image were aggregated to a single Fisher Vector. With
the proposed one-to-many and many-to-many matching methods, the Fisher Vectors are
instead formed from all of the features from all images of a single seal. The updated
pipeline is presented in Fig. 18.

Figure 18. The proposed Saimaa ringed seal re-identification pipeline.

4.2 Segmentation and feature extraction

Instance segmentation of seals and feature extraction follow the same process that is pre-
sented in [13]. Mask R-CNN [31] is used to remove the background from images, leaving
only the seal visible. U-net CNN is then used to extract the pelage pattern of the seal into
a binary image. As the images vary in resolution, the pattern images are resized to make
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the pattern lines have similar width in each image. Examples of pattern images are shown
in Fig. 19.

Figure 19. Examples of pattern images extracted by U-net CNN.

With the pattern extracted, affine covariant regions are found and extracted from the pat-
tern image by using HesAffNet [58]. HesAffNet extracts local descriptors from images
and transforms them in such a way that similar patches from different images are geo-
metrically corresponding. The HesAffNet is trained by using the HardNegC loss func-
tion [58], which is similar to the triplet loss but within the training batches the distance to
the closest negative sample is constant. The HardNegC loss is defined as [58]

L =
1

n

∑
i=1,n

max(0, 1 + d(si, ṡi)− d(si, N)),
∂L

∂N
:= 0 (1)

where d(si, ṡi) is the distance between matching patches and N is the hardest negative
sample in the training batch, making d(si, N) the distance to the that sample. The deriva-
tive of L with respect to N is set to zero. Examples of extracted patches are shown in
Fig. 20.

The extracted patches are then embedded into vectors of size 1×128 by using HardNet
[59]. HardNet is trained to correctly embed and match descriptors while avoiding false
positives from similar appearing descriptors by using triplet margin loss which is defined
as [59]

L =
1

n

∑
i=1,n

max(0, 1 + d(ai, pi)−min(d(ai, pjmin
), d(akmin

, pi))) (2)
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Figure 20. Patches extracted by HesAffNet and their locations in the pattern image.

where d is the chosen distance function for measuring the distance between descriptors,
ai is the reference descriptor from group of descriptors A, pi is from another group of
descriptors P and is a positive match to ai, pjmin

is the closest negative match to ai from
P and akmin

is the closest negative match to pi from A. Choosing the minimum distance
between the positive and negative matches in the loss function effectively always picks the
most difficult sample into the triplet, improving the net’s ability to avoid false positives.
After the HardNet embedding, PCA is applied to the features to achieve decorrelation and
dimensionality reduction.

4.3 Feature aggregation

The main difference to the method presented in [13] is in the aggregation of features from
multiple images to a single descriptor. The features embedded by HardNet are grouped
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for each seal individual. The grouping is done based on the metadata of the images which
contains information such as the identity of the individual and the time and place where
the image was captured.

The Fisher Vectors for the extracted features are created by using parameters from a Gaus-
sian Mixture Model and the feature vectors I = (x1, . . . , xN) [73]. A GMM is a mixture
of Gaussian distributions with K components (distributions). The parameters of a GMM
are

Θ = (µk,Σk, πk : k = 1, . . . , K) (3)

where µk are the means, Σk the covariances and πk the priors of the components.

In order to create the Fisher Vectors, each feature vector xi is connected to each of the K

components in the GMM with a strength that is the posterior probability of the component
defined as [73]

qik =
exp

[
−1

2
(xi − µk)

TΣ−1
k (xi − µk)

]∑K
t=1 exp

[
−1

2
(xi − µt)TΣ

−1
k (xi − µt)

] (4)

The mean and covariance deviation vectors for the K components are [73]

ujk =
1

N
√
πk

N∑
i=1

qik
xji − µjk

σjk

, (5)

vjk =
1

N
√
2πk

N∑
i=1

qik

[(
xji − µjk

σjk

)2

− 1

]
(6)

where j = 1, 2, . . . , D spans the vector dimensions.

The Fisher Vector is formed by stacking each of the vectors uk and the vectors vk for each
of K components in the GMM, defined as [73]
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Φ(I) =



...
uk

...
vk
...


(7)

All of the grouped features are encoded to a single Fisher Vector to form a descriptor for
the seal, utilising information from multiple images. The vocabulary of features for the
Fisher Vectors is created by applying a Gaussian Mixture Model to the database patch
features. The grouping step is illustrated in Fig. 21.

Figure 21. Illustration of the grouping step.
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4.4 Re-identification

The final re-identification is performed by measuring the distance between the query de-
scriptor and each of the database descriptors. This is achieved by computing the cosine
distance between the descriptors. The cosine distance is calculated as [74]

Dcos = 1− u · v
||u||2||v||2

(8)

where u and v are the seal descriptor Fisher Vectors.

Once the distances between the query descriptor and all database descriptors have been
computed, the class of the database descriptor with the shortest distance to the query
descriptor is chosen as the predicted class. The database descriptors can be stored in the
database to remove the need to compute them for each query, reducing the amount of
computation needed when a query is made.

Three different methods of utilising the aggregated features were implemented with re-
spect to whether the query features, database features or both were aggregated from mul-
tiple images. The implemented methods were one-to-many, where the database features
are aggregated, many-to-one, where the the query features are aggregated and many-to-
many, where both the query and database features from multiple images are aggregated
to a single descriptor. The different methods are illustrated in Fig. 22, visualizing what is
grouped and when.
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Figure 22. The different manners of grouping visualized, showing when the features from the
query, database or both are aggregated.
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5 EXPERIMENTS

5.1 Data

Two different datasets were used for evaluation of the re-identification performance. The
first dataset is the SealID dataset [2] which was used for the re-identification experiments
in [13] as well. The SealID dataset consists of 2080 segmented seal images with 57
different individual seals. The dataset is divided into database and query sets with the
database set containing 430 images and the query set containing 1650 images. Example
images from SealID dataset are shown in Fig. 23.

Figure 23. Example images of various individuals from SealID dataset.

The second dataset, SealID_seq, is a larger, more difficult set of images consisting of seal
images from camera traps. The images in the set are generally lower quality with worse
pelage pattern extraction performance than those in the SealID set. SealID_seq contains
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multiple image sequences for each individual, with the sequences separated by the date
they were captured. After segmenting and extracting patterns from the raw images, im-
ages with less than 10% of the area containing pattern or images with no patches found
were discarded. After this preprocessing step, the dataset used for the re-identification
experiments contains images of 29 individuals, consisting of 47171 pattern images in 183
separate sequences. The mean sequence length is 258 images, with the shortest sequence
containing 1 image while the longest sequence contains 1565 images.

Especially in larger sequences the pose of the seal can vary greatly, allowing for a bet-
ter representation of the entire pelage pattern. The lighting conditions can also change
within a sequence with some images for example having the seal lit up by the sun while
other images are darker or night vision as the day goes on. An example sequence from
SealID_seq is shown in Fig. 24 where a gradual change in the pose and illumination can
be seen throughout the sequence.

Figure 24. Example sequence from SealID_seq dataset.

5.2 Description of experiments

In Experiment 1 the query and database images from SealID dataset were used to evaluate
the performance of the one-to-many and many-to-many matching methods in relation to
the existing one-to-one method. When using the grouping method, all features from each
image of each individual were aggregated to a single descriptor.

The following methods utilising the grouping were tested: one-to-many, many-to-one and
many-to-many. In the one-to-many matching the database features for each individual are
grouped to single descriptor and every query image is matched to these descriptors. In
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the many-to-one matching the query features for each individual are instead grouped and
matched to the individual database images. In the many-to-many matching both the query
and database features are grouped to single descriptors for the matching process.

In addition to the proposed methods, a voting method was tested as a more naive way of
utilising information from multiple images in the re-identification process. The distances
between the descriptors were computed using the one-on-one method as in [13], and a
majority voting was done with the ten nearest database images. If a class had more images
among these ten nearest images than other classes, thus a majority, it was chosen as the
prediction. In case of ties the classes were ranked by the lowest minimum distance.

In Experiment 2 the database images from SealID dataset were still used as the database
set, but the entirety of SealID_seq dataset was used as the query set. As SealID_seq con-
tained multiple sequences of each individual, images from each sequence were grouped
when using the grouping method, instead of grouping all images of an individual to a
single descriptor.

Some of the query sequences in SealID_seq contain very large amounts of images with
only a small variation in pose between consequent images. The impact of discarding the
overlapping information from similar images was tested by implementing a sparse version
of the algorithm, where only every 10th image from a sequence is used if the sequence
contains more than 20 images.

5.3 Evaluation criteria

To evaluate the re-identification performance of the proposed methods, Top-1-accuracy
and Top-5-accuracy were used as the metrics to determine the accuracy of the predictions.
When using Top-1-accuracy, a correct prediction is one where the nearest matching image
predicted by the model is of the correct class. When using Top-5-accuracy a correct
prediction is such that an image of the correct class is found within the five nearest images
predicted by the model. The accuracy is then calculated as

accuracy =
Number of correct predictions

Number of query samples
(9)
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5.4 Results

Results from Experiment 1 are presented in Table 1 and Fig. 25. The one-to-one accuracy
was calculated by using the version of the pipeline from [13].

Table 1. Experiment 1 results.

Method Top-1 accuracy Top-5 accuracy

One-to-one 77.33% 84.79%
One-to-many 69.27% 81.15%
Many-to-one 100.00% 100.00%
Many-to-many 100.00% 100.00%
Voting 59.45% 84.85%
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Figure 25. Top-k-accuracies from Experiment 1 for values of k from 1 to 10.

Results from Experiment 2 are presented in Table 2. The sparse parameter indicates
whether sequences over 20 images long were truncated by only using every tenth image
in the sequence. The achieved accuracies are significantly lower than those achieved for



38

the SealID dataset, showcasing the more difficult nature of SealID_seq. Figures 26 and
27 show the topk-accuracies for values of k from 1 to 10.

Table 2. Experiment 2 results.

Method Sparse Top-1 accuracy Top-5 accuracy

One-to-one
No 40.40% 55.93%
Yes 40.68% 55.92%

One-to-many
No 34.72% 52.21%
Yes 34.87% 52.11%

Many-to-one
No 50.27% 75.41%
Yes 50.82% 75.96%

Many-to-many
No 55.19% 71.04%
Yes 54.64% 71.58%

Voting
No 31.87% 56.81%
Yes 31.98% 56.92%

In Fig. 28 example images from a correct match produced by many-to-many matching
are shown. The query images have been picked with intervals of ten starting from the
beginning of the sequence to illustrate the change in the pose of the seal over the course
of the sequence. With the database set containing enough images to create a representation
of the entire seal a successful match has been made.

In Fig. 29 example images from an incorrect match produced by many-to-many matching
are shown. Over the course of the query sequence the seal is largely captured from a
single angle. With fewer angles to work with, gaining information of the entire pelage
pattern can be difficult, offering a possible explanation for the misclassification.
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Figure 26. Top-k-accuracies from Experiment 2 for values of k from 1 to 10.
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Figure 27. Top-k-accuracies from Experiment 2 for values of k from 1 to 10 (sparse version).
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Query

Database

Figure 28. Example images from correctly matched query and database sequences.

Query

Database

Figure 29. Example images from incorrectly matched query and database sequences.
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6 DISCUSSION

6.1 Current study

The objectives of this thesis were to implement the one-to-many and many-to-many
matching for Saimaa ringed seal re-identification and to evaluate the performance of the
implemented methods. The results of the experiments show that aggregating over the
query images gives a substantial improvement in re-identification accuracy, with many-
to-one and many-to-many matching achieving perfect accuracy with the SealID dataset,
and outperforming the use of a single query image with the more challenging SealID_seq
dataset as well. The achieved perfect accuracies are very high and a possible explana-
tion is offered by the fact that combining features from all images reduces the amount of
descriptors, reducing the chances of getting the re-identification wrong. In Experiment
1 in both many-to-one and many-to-many matching the amount of query descriptors is
the amount of individuals in the dataset (57) which is not very many. The simple vot-
ing method did not perform as well as the other grouping methods, only achieving better
Top-5 accuracy than one-to-many matching and being outclassed in all other cases. The
performances of one-to-one matching and the voting method indicate that aggregating
features from multiple images to a single descriptor does offer better re-identification
accuracy.

Surprisingly, one-to-many matching fails to improve the accuracy over one-to-one match-
ing. A possible explanation could arise from the fact the database set from the SealID
dataset contains just enough images for each seal that their full body pattern is covered.
While aggregating the features from each image does increase the overall information
of the individual’s pattern, it effectively increases the amount of noise for query images
where only a certain angle of the pattern is visible. The poor performance of the voting
method could be explained in a similar fashion. While one of the angles from database
could match decently to the query image, the rest would be just noise and this time without
the multi-view information from one-to-many.

For similar reasons one could argue that many-to-one matching should also perform worse
than one-to-one matching. However, on the query side the amount of images is larger,
with more overlap in views between the images. Thus, aggregating features from the
query images can lead to better representation of features that are matched to the database
features. Many-to-one matching also performed nearly as well as many-to-many match-
ing indicating that aggregating features from the query images is more important than
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aggregating over database images. The query images are generally of a lower quality
with less of the pelage pattern showing while the database images are much better in
terms of how much pattern can be extracted from an image. Thus the query descriptors
would gain more from the aggregation from multiple images.

Based on the performance of the sparse version more images in a sequence does not seem
to make a large difference in the accuracy. Long sequences tend to have little variation in
pose between consequent images and leaving out some of the images can greatly reduce
the required computation time while not impacting the re-identification accuracy. Gaining
a complete representation from multiple angles of the seal appears to be a more important
factor based on the observations from Figures 28 and 29.

6.2 Future work

As discussed above, one-to-many matching failed to improve upon the baseline of one-
to-one matching. A larger database set of images with more overlap in views between the
images could be experimented with to further test the performance of one-to-many match-
ing, and seeing whether adding more information to the database side would improve its
accuracy. A new aggregation method could also be developed to gain representation of
different sides of a database seal. This could be achieved by using for example clustering
to group the features and form the Fisher Vectors from the clusters, effectively creating
representations of different sides. Since a single query image has a limited view of the
seal, this could improve the chances of a correct match.

As was observed from the performance of the sparse version, the number of images in
a sequence did not seem to have a large impact on the re-identification accuracy, while
acquiring a complete representation of the seal seems to carry more importance. Finding
a method to select the minimum required images from a sequence to gain as much infor-
mation from different views while discarding overly overlapping images could be a way
to further increase the efficiency.
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7 CONCLUSION

In this thesis, the one-to-many, many-to-one and many-to-many matching of Saimaa
ringed seals were considered to utilise information from multiple images or multiple
views in the re-identification of the seals. An approach using Fisher Vectors to aggregate
features from multiple images to a single descriptor was implemented and experimented
with.

In the experiments three different ways of aggregating the features were considered: 1)
one-to-many, where database features for a seal were aggregated from multiple images, 2)
many-to-one, where query features for a seal were aggregated from multiple images, and
3) many-to-many, where both query and database features for a seal were aggregated from
multiple images. Of these tested methods, the many-to-many matching outperformed both
the other grouping methods and the existing one-to-one matching where the descriptor for
a seal was formed from a single image.
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