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Uncertainty can come in different forms and for different reasons and can have an impact on 

projects. This requires project managers to know the different methods for planning projects 

under uncertain conditions, and at best different mathematical models, in order to make 

predictions and, if necessary, further measures about the course of a project. This study 

investigates the effect of changing uncertainty parameters in projects through the method of 

Monte Carlo simulation. 

 

The study was conducted using quantitative methods by experimentally simulating input 

uncertainty, combining the results with literature reviews. The results show that partially 

clear stochastic effects can be observed when comparing different parameter changes 

induced by uncertainty, with other stochastic variables showing no correlation. Furthermore, 

clear correlations can be shown by which parameter settings the simulation provides more 

accurate and reliable results. It was also found that it is possible to simulate uncertainty in a 

meaningful way and that minor changes to the parameters before the simulation, which can 

arise due to uncertainty, still lead to usable results. 
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1  Introduction 

Recently, global crises such as Covid-19 and problems in interconnected supply chains, 

exacerbated by the Ukraine crisis, have made every economist aware once again that 

uncertainty in planning is and will always be present. For this recurring reason, attempts 

have been made since the 1960s to model uncertainty - in whatever form - in order to draw 

conclusions and make predictions.  

In project management in particular, one deadline follows the next, which leads to very tight 

and less flexible planning in resource and time management. Especially in the area of the 

critical main path, deviations from the optimum can quickly jeopardize the entire project. 

Therefore, it is a proven method to use mathematical models to find the best possible solution 

for such industrial applications that optimally takes into account an uncertainty factor and is 

equally effective. 

Scheduling is a process of assigning specific activities to specific resources over time. 

Similarly, in reality, these can be machines and jobs that take different forms, such as 

machines in a production workshop and operations in a manufacturing process. Tasks can 

be distinguished from each other by priorities, release dates or processing times, among other 

things (Mundi et al., 2019).  

Mathematical scheduling problems are analyzed in scheduling theory, consisting of basically 

two parts, which are either based on stochastic or deterministic models. On a more general 

level, scheduling settings have been constructed using a stochastic model, whereby the 

processing time of a task is considered to be a random variable with known probability 

spread. In this way, difficulties can emerge in reality. On the one hand, one may not have 

sufficient prior information to properly describe the probability spread of a coincidental 

processing time. Conversely, while the probability distributions of all random processing 

times may be known in advance, these distributions are only useful for a significant number 

of implementations of similar planning environments, while in practice they may be less 

useful with respect to a single or a limited number of such implementations. Deterministic 

models got established for scheduling environments wherein the processing time of each 

(machine) order is given before the utilization of a scheduling process and is considered a 

constant during the implementation of a schedule. However, in reality, accurate numerical 



data is not known beforehand, and challenges occur when certain job processing times, 

previously assumed to be known, fluctuate as a result of modifications in a dynamic 

environment. And even if all machining times are known before planning, the degree of 

accuracy of the equipment used to determine machining times, possible errors in the 

implementation of a plan, machine failures, rounding errors in the computerized calculation 

of a plan or the receipt of additional orders must be considered with high priority (Sotskov 

et al., 2010). 

 

1.1  Background 

The focus of this master’s thesis is on the Monte Carlo Simulation (MCS), investigating the 

effect of changing various input parameters that may arise due to uncertainties on a project 

deadline.  

Researchers can use the results of the parameter influence experiments in this work and 

apply them to further experimental research on uncertainty. In addition, the theoretical 

knowledge explored can be directly used for industrial applications to be informed about the 

stochastic effects of uncertainty in projects. In this way, project managers can keep in mind 

the possible uncertainty impact on their project from the beginning and use it for project 

duration estimations and assessments. 

Over time, a variety of mathematical models have evolved that can be used to make 

uncertainty tangible, depending on the situation and the need for analysis. This thesis 

summarizes the most important mathematical models in this respect, as well as typical 

management scheduling methods that can be used when uncertainty occurs. In addition, to 

make the origin and classification of uncertainty understandable, an overview of the types 

of uncertainty in projects is provided. 

 

1.2  Research gap 

Since the 1960s, mathematical models for project and operations management have been 

created, studied, and developed, leading to new forms and areas of research. Research also 



addresses the origin of uncertainty in projects, with current literature focusing on the 

intricacies and actual origin of cause relationships. Various approaches to managing 

uncertainty in projects are also presented in the literature. 

However, what is not really presented in the literature is concrete research on the stochastic 

effects of parameter selection and input conditions, which can be considered as uncertainty 

simulation already at the input of a project, in a MCS of planning problems. Nor are the 

concrete stochastic effects of uncertainty on critical path changes discussed. 

 

1.3  Objectives, research questions and scope of the research 

The main objective of this master thesis is to provide a clear picture of how uncertainty 

factors and their modeling stochastically affect the outcome of mathematical analysis 

methods, specifically MCS. The results and conclusions obtained through this thesis using 

quantitative experimental (empirical) studies have a clear benefit for researchers as they 

provide a researched insight into the types of uncertainty, mathematical models, and the 

influence of parameters in the simulation of uncertainty. With this knowledge, further 

research can be conducted with other parameters and simulation methods, and the results 

can be used to evaluate the impact of input parameters due to uncertainty. Also, the work 

provides project managers with a good overview of the facets of uncertainty in projects, as 

well as the stochastic effects of uncertainty can be better understood prior to a project, which 

can help, for example, in estimating the expected project completion range. 

With the help of the research questions (RQ), an overview of the impact of uncertainty 

factors on management applications can be provided. In this context, the following table 1 

shows the RQs and their specific objectives. 

 

Table 1. Overview of the RQs with their objectives 

Research question Objective 

1. How does uncertainty affect input 

parameters in project management? 

To assess the impact of input uncertainty 

factors on an operation and project 

management tool. 



2. Do some parameters in 

mathematical simulation modeling 

(e.g., MCS) provide more accurate 

and reliable results than others? 

To give an evaluation of which parameters 

are better or worse suited to obtain more 

accurate results for uncertainty prediction. 

3. Is it possible to simulate uncertainty 

in a useful way or does every 

parameter change lead to 

completely new results? 

Evaluation of the usefulness of uncertainty 

simulations based on the distribution of 

results. 

 

The results of the literature review are generally applicable to project-related topics, with 

classifications and overviews based on different types of literature and sources. The results 

of the experimental evaluation are clearly only safe to use for MCSs and similar problems. 

Problem modifications require re-examination and may be the subject of further research. 

 

1.4  Research realization and structure of the thesis  

This paper is mainly divided into a literature review and the empirical part. The literature 

search provides a scientific background that allows the reader to obtain coherent information 

on the topic. In addition, the theoretical part is important in order to be able to correctly 

classify and partly answer the RQs. The research was conducted in the search databases of 

Google Scholar, Semantic Scholar, ResearchGate and the university's own LUT Primo in 

order to be able to find and process as much relevant literature as possible. Literature on 

mathematical models in operation and project management since their origins in the 1960s 

was included, whereby in the area of uncertainty research, the search was mainly for more 

recent scientific findings from the last few years. However, in all cases, the literature was 

reviewed and used on the basis of its relevance, regardless of age. Where possible, the focus 

was on peer-reviewed literature to ensure reliability and to identify established models. As 

(combined) search keywords, mainly uncertainty, mathematical modelling, MSC and 

scheduling were investigated. 



The empirical part deals with the investigation of the influence of input parameter changes 

and fluctuations in various project schedules, which are statistically examined with the help 

of a MCS, and conspicuous features or correlations are recorded. 

After the introduction, the second chapter gives an overview of internal and external sources 

of uncertainty in management. The third chapter then deals with how these uncertainties are 

dealt with and which scheduling methods resulting from this problem exist specifically in 

project management. 

The fourth chapter gives an introduction to the common mathematical models in project 

management that are also used to model uncertainty problems. Among these models is the 

MCS, which is examined again in the fifth chapter with regard to its advantages and 

limitations, since it was also used as an analysis method in this thesis. 

The methodology of the master’s thesis is then explained, whereby the research context, the 

choice of methods, the data collection and explanations of the data quality are examined. 

Subsequently, the results of the experimental part are given in relation to project scheduling 

and critical path analysis, which are analyzed and discussed in the following chapter. The 

conclusion is a summary of the research results and an answer to the RQs.  



2  Uncertainty in project management 

According to Hazır and Ulusoy (2020) , uncertainty in projects is divided into external and 

internal, which are further classified into subcategories (see Fig. 1). 
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Figure 1. Types and classification of uncertainty in projects, adapted overview (Hazır and 

Ulusoy, 2020). 

 



Here, the factors of internal can be controlled and resources as well as systems have a direct 

relation to the project. If the control factor is not given, the external factors are referred to, 

whereby a clear distinction and classification is not always unambiguous, since the 

uncertainty factors interact or cause others. 

An example of such an unclear classification is that the development of the market situation 

or economic parameters is externally imposed and thus external. As the project manager has 

no direct control over them, this could lead to a change of priorities in the project, which in 

turn is an internal source of uncertainty (organisational uncertainty). Furthermore, economic 

uncertainty can affect the availability of resources and influence the budget. The 

subcategories are presented in more detail below. 

 

2.1  Internal 

Internal factors refer to the respective project and can be controlled and influenced by the 

organisation. Subcategories are the nature of the organization, the work content, and the 

availability of resources. 

 

2.1.1  Organizational 

Factors that decisively shape the course of the project are organisational goals and priorities, 

the structure, management concepts, responsibilities and administrative competences, 

information channels and cooperation with stakeholders and other companies. 

Structural factors may shift in the course of project implementation. As a result of such 

deviations, the client may re-evaluate its objective and priorities with regard to the project 

in question. A project's priorities could be reprioritised, more resources made available or 

the project manager asked to speed up project delivery. An important task of the manager is 

to communicate this time target and review the overall approach (Petit and Hobbs, 2010). 

The parallel handling of different processes can lead to complexity in companies. Excessive 

commitment of resources and momentous missteps in design can lead to an unjustified 

shortfall of funds in other projects and, in general, to uncertainty in resource management. 



In project planning, the prerequisites and scope of tasks are first defined and then split into 

smaller sub-projects (Engwall and Jerbrant, 2003). 

 

2.1.2  Work Content 

From an operational management standpoint, the focus of project management is on setting 

the objectives, usually in the form of time or/and cost objectives, the process of developing 

the Work Breakdown Structure (WBS) and the strategy for reaching these objectives. Most 

research on scheduling either assumes deterministic process parameters or considers only 

the activity duration as random. Effectively, the work content is beside the point, and may 

be further characterised as the overall effort needed to accomplish the totality of the activities 

in the project (Tereso, Araújo and Elmaghraby, 2004). 

Aggregate input necessary to perform an activity can be estimated in terms of hours worked 

or machinery hours operated by multiplying the input of resources with the length of the 

activity. There is a correlation between these two variables, and the activity duration depends 

on the resource input. Consequently, the activities can be carried out in several ways, 

resulting in processing with alternating technologies, resource inputs and changing times and 

costs. 

The duration of the activities does not match the forecasts for many projects. Usually, the 

activities require more time or additional resources because these parameters were not set 

correctly, or unexpected circumstances occurred. Sometimes rework may also be necessary, 

but this still does not reduce workload in cases. However, for other tasks, the processing 

sequence may need to be adjusted, especially if technical requirements are modified, which 

requires replanning both the project network and time schedule.  

The main variables contributing to work content uncertainties can be grouped into four 

subgroups: Task duration, resource utilization, requirement changes, and quality issues 

(Hazır and Ulusoy, 2020). 

 

• Activity duration: The main reason for changes in activity duration is inaccurate 

forecasting. 



• Resource requirements: the number of resources required to perform an activity is 

not always accurately estimated. 

• Changes in requirements: Changing organizational, customer, or technical process 

needs may entail adjusting the content of the work. This may require a correction of 

the project network. In addition, new activities or hierarchical relationships can either 

be deleted or added to the network. Deadlines and dates may shift accordingly. 

• Quality issues: In the case of quality issues, rework is possible, which in turn can 

lead to a postponement. 

 

The main causes of inaccuracy in estimating both activity duration and resource use are the 

absence of detailed analysis, explicit specifications or expert knowledge, and the difficulty 

of the accurate estimation procedure (Ward and Chapman, 2003). 

Project managers are not only concerned with estimation problems, but also with quality 

issues. Changes in customer needs, on the other hand, usually entail adjustments in project 

scope and require restructuring. Project parameters must therefore be reformulated: the 

quality requirements, relationships of priorities, activity durations, resource requirements, 

and the project network. Subsequently, attention must be paid to the uncertainty of these 

parameters. 

Project managers usually allocate additional resources to the activities, for example in the 

form of additional machines or additional labour, when the appropriately time-managed 

execution is considered risky or when experiencing variances to the schedule. This leads to 

fluctuations in the quantity assigned to each operation and in the aggregate utilisation of 

them. Resorting to additional resources to reduce the duration of the activity, for example, 

by terminating the project, similarly introduces cost uncertainty (Nozick, Turnquist and Xu, 

2004). 

During the project duration, the funding situation is not influenced through the selection of 

the cost function or the assignment of the activity duration, but through the schedule of 

payments (Zhang and Elmaghraby, 2014). 

Difficulties in implementing projects on behalf of engineers due to planning uncertainties, 

which include changes in specifications, are frequently perceived. Engineers' information 



uncertainties are transmitted onto the project network, although activities are created to deal 

with them. These postpone the making of design related decisions and are common in 

alternative designs (Vaagen, Kaut and Wallace, 2017). 

Not to be neglected are contract-related uncertainties that usually occur due to changes in 

requirements. Schedule fluctuations can occur due to requirements from internal 

departments or stakeholders. Missed activities can lead to inevitable delays, and schedule 

slippage can lead to penalties, as well as bonuses, should the project be completed ahead of 

schedule (Bordley, Keisler and Logan, 2019). 

 

2.1.3  Resource Availability 

Failures are among primary sources of uncertainty in the availability of resources. In the 

context of resource availability, liquidity planning is of key importance (Aytug et al., 2005). 

It is of great importance for the project manager to ensure the availability of cash during the 

project period in order to avoid cash flow irregularities. In this context, one objective would 

be to minimize the maximum cumulative difference between payments received and 

payments made by the contractor. The lack of capital can be compensated by the appropriate 

use of time buffer systems and the use of lower-cost service types (Ning et al., 2017). 

From a risk perspective, budgeting is critical. During execution, project support resources 

may vary from initial estimates. When managing many projects, organizations must weigh 

various funding options, so budget uncertainties should be known and accounted for. The 

greater the uncertainty, the tighter the funding constraints and the more time must be allowed 

for contingencies (Yang, 2005). 

 

2.2  External 

In particular, externally caused uncertainties involve logistical and procurement-related, 

technological, socio-political, environmental and market factors (see figure 1). 



2.2.1  Procurement and logistics factors 

Supply disruptions caused by vendor difficulties and variations in procurement are not 

uncommon in projects. The availability of materials, equipment and personnel and their 

timely delivery during the project cycle can significantly impact execution. Many companies 

prefer to use subcontractors, and the procurement process is increasingly confusing and 

fraught with uncertainty. Coordination problems between different subcontractors can lead 

to project delays (Hazır and Ulusoy, 2020). 

 

2.2.2  Environmental Factors 

The effects of weather and environmental problems are crucial to a number of industries. 

Thus, in the building industry, changes in plans induced by weather conditions are among 

the main causes of delays. 

Cancellation of projects can be an obvious consequence. In some large construction projects, 

environmental damage was not adequately assessed during the design phase or social and 

economic risks were underestimated. In the field of project evaluation, the real options 

theory has gained acceptance, which allows the possibility of cancellation due to a 

catastrophic event to be included (Schwartz and Zozaya-Gorostiza, 2003). 

 

2.2.3  Socio-Political Factors 

Among the components defining the project environment within which the project life cycle 

operates, including those likely to vary through time, are legislation, political and social 

influences. Modifications to state environmental or fiscal laws, or health and labour 

regulations, may impact achieving the project's objectives. The planned progress of projects 

can be influenced and disrupted by a variety of events. Among these are politically or 

socially related events which include governmental requirements and labour strikes. Thus, 

it can be expected a disturbing event of this nature will interrupt all immediate labour related 

activities by a certain duration, but the indirect and overall works will proceed and the 

corresponding expenses will be incurred (Klastorin and Mitchell, 2012). 



2.2.4  Market Factors 

During the implementation of the project, the market situation, producer prices and market 

demand may change. Changes in exchange rates and factor prices can lead to uncertainties 

in the costs incurred. Fluctuations in exchange rates or material costs, for example, can cause 

a significant increase in total costs.  

Considering the high level of uncertainty in product development's early phases, companies 

spend a great deal of effort to determine which features will be successful in the market. 

Equally high is the uncertainty in the "make-or-buy" decision that is made in the start-up 

phase of a new product development (NPD). These kinds of uncertainties add to 

uncertainties in supplier partnerships and may affect the market (Petit and Hobbs, 2010). 

 

2.2.5  Technology factors 

As a project is implemented, new product and process variations can evolve. When the usage 

of new processes and materials gets implemented while the project is being carried out, for 

example, the plan can be decisively changed or modified. According to Shenhar and Dvir 

(1996), there are two dimensions of projects, which are complexity and uncertainty. 

Regarding uncertainty, the authors looked at technological uncertainty and distinguished 

between low-tech and super-high-tech projects. Low-tech projects, such as basic road 

construction, apply incumbent technologies and best practices, while super-high-tech 

projects exclusively use new technologies. In terms of complexity, a distinction is made 

between the levels array, system, and assembly. Arrays are the extension, construction or 

design of a widely distributed and large set of systems that cooperate to accomplish a shared 

objective. Systems comprise a set of interaction elements and sub-systems (developed or 

built) that fulfil a broad range of tasks or functions. An assembly aggregates a set of 

components to form a single common unit. 

Shenhar (2001) concludes that project management techniques differ according to the level 

of uncertainty and complexity, where uncertainty refers to the solution path for technical 

issues, while complexity refers to aspects of project management that are administrative in 

nature.  



3  Managing Project Uncertainty 

The following planning approaches are being discussed within the literature to mitigate the 

consequences of unforeseen changes on project performance (see figure 2): Reactive/ 

Robust/ Stochastic/ Fuzzy Scheduling and Sensitivity Analysis (Herroelen and Leus, 2005). 

 

 

Figure 2. Project scheduling under uncertainty taxonomy, adapted overview  (Herroelen and 

Leus, 2005). 

 

In this section, the individual sub-areas of uncertainty in project scheduling are explained in 

more detail and characteristics are described. 

 

3.1  Reactive Project Scheduling 

Reactive planning is when a schedule has to be modified or changed in response to problems. 

The creation of a baseline plan prior to actual execution is referred to as forward-looking, 

reactive planning. However, the plan can also be created in a dynamic manner (dynamic 

planning) (Aytug et al., 2005). 



Reactive planning is primarily concerned with making timely decisions about how and when 

to reschedule. There are two ways of planning. With periodic planning, the planning is newly 

planned at the start of each cycle, whereas with event-driven planning, the planning is 

renewed if an unforeseen incident happens. When disruptions occur, correction measures in 

the form of either partial or complete rescheduling can take place. With partial rescheduling, 

there is only a partial actualisation of the ongoing schedule, while with full rescheduling, 

there is a rescheduling of every potential task.  

Reactive project scheduling often uses the method of simulation.  Furthermore, it has been 

experienced that a heuristic of simulated annealing was more efficient than a simple planning 

rule in developing schedules. In addition, it was found that the impact of rescheduling is 

related to the intensity of the constraints in terms of urgency and resources, and that the 

frequency of rescheduling has a significant impact on completion time. In case these 

restrictions are severely loose or tight, the effects of rescheduling are vanishingly small 

(Yang, 1996). 

 

3.2  Robust planning of projects 

In robust or proactive scheduling, the aim is to have a schedule that is less subject to 

disruption, and modelling incorporates variation. The robustness of the schedule can be 

divided into two categories: quality robustness and solution robustness. Robustness of 

quality is understood to be the insensitivity of schedule output, such as project length, to 

disruptive influences. Whereas solution robustness is conceived as the insensitivity of task 

launch dates against changes in their input information (Herroelen and Leus, 2005).  

The purpose of quality robust scheduling is to design the schedule in such a way that the 

performance value is influenced by disruptions to the minimum possible extent. Critical 

Chain Project Management (CCPM, see also chapter 4.4 for explanations of Critical Chain 

Scheduling), originating from Goldratt (1997), remains the most famous approach in project 

management based on the robustness of quality.  

CCPM focuses on managing and identifying system constraints, thereby improving overall 

performance. Safety buffers are used to monitor project performance and protect the project 

from uncertainty. Factors of safety are deducted from individual activities and summarised 



together towards the end in the form of a project buffer. This allows shifts within an activity 

to be mitigated and risks to be combined by deducting safety factors from another activity. 

Thus, project buffers can be adapted through analysing the extent of resource interconnection 

among activities and resource constraints (Zhang, Song and Díaz, 2016). 

Mathematical programming models were formulated to create solution robust project 

schedules or linear programming models. These in turn allowed for a single activity 

interruption, which made it possible to increase the length of an activity while the schedule 

was running. In addition, the stability framework was adapted to resource-constrained 

networks by implementing resource flow networks, which expressed the quantity of resource 

units transferred between tasks in terms of the flow of resources from one activity to another 

(Herroelen and Leus, 2004). 

 

3.3  Stochastic Project Scheduling 

Stochastic scheduling covers planning issues with random properties such as production 

times, deadlines or stochastic machine failures. The objective of stochastic scheduling 

problems is either a conventional task, such as reducing the total lead time, time span, or 

total cost of delay for missed due dates, or it is an irregular objective, like the minimisation 

of follow-up costs of premature or delayed completion of tasks in operational management 

(Cai, Wu and Zhou, 2014). 

Since the duration of the activities is considered random, the result of these strategies is not 

a deterministic schedule but a variable schedule (Möhring, Radermacher and Weiss, 1984). 

It was further shown that deterministic proximity methods such as the Programme 

Evaluation and Review Technique (PERT) produce biased results (see also chapter 4) 

(Mitchell and Klastorin, 2007). 

 

3.4  Fuzzy Project scheduling 

Bellman and Zadeh (1970) are considered pioneers of fuzzy programming, which serves as 

an alternative paradigm designed to solve uncertainty driven planning problems. Limitations 



become definable with the help of membership functions and fuzzy sets, and rather than 

random variables, parameters of uncertainty become modulated as fuzzy numbers. 

Membership functions provide a measure of the extent to which the constraints are satisfied 

and might permit certain constraint violations. According to the fuzzy approach, the 

probability distributions for the length of activity are usually not known because, for 

example, accurate historical data are not available. In addition, it is believed that activity 

durations approximated by human experts tend to be inaccurate (Zimmermann, 2001). 

In this context, corporate resources are used differently depending on the position in the 

company. According to Gang, Xu and Xu (2013), decision-makers at the upper level, e.g., 

company managers, try to distribute company resources across several projects to achieve 

minimum total costs. In contrast, on the lower level, the project manager allocates resources 

in order to minimise the length of the project he or she is in charge of. 

 

3.5  Sensitivity Analysis 

Data analyses can be used to formulate the development and probability of success of a 

project, which is also referred to as project sensitivity. In addition, risks are listed, classified 

according to their probability of occurrence and a quantified assessment of their impact is 

given. It is presented through mathematical modelling and a written analysis. The model is 

based on existing data, whereby the project duration and the average duration of the 

individual sections are estimated using hypothesis models (Razavi et al., 2021). 

While consideration can be given to the entire project, it is also possible to assess only some 

(critical) sections and/or building blocks, such as project implementation, by means of 

sensitivity analysis. The general objective is to find a suitable approach to the problem at 

hand. By looking at the big picture, components that hinder the project goal can be identified, 

sorted by threat level and addressed (Hall and Posner, 2004). 

  



4  Standard mathematical models in project management 

Mathematical models can accurately replicate problem situations and help decision-makers 

make more accurate and faster decisions. As a rule, they offer convenience and cost 

advantages over other ways of obtaining the necessary information about reality. When used 

successfully, large and complex problems can be easily represented and solved, conveying 

information and implications to others under changing conditions (Advantages of 

mathematical modelling - quantitative techniques for management, 2020). 

Since the full introduction of the Critical Path Method (CPM) and PERT in the early 1960s 

(first mentions in 1959), the scientific field of project planning has evolved in two directions, 

as shown in Figure 3. Exploring more general and complex network structures and 

contingencies (Graphical Evaluation and Review Technique (GERT)), and explicitly 

modelling resource constraints like Resource-Constrained Project Scheduling (RCPSP), 

have become widely known. In other words, uncertainty and resource constraints have been 

researched on separately in the context of PERT/GERT and RCPSP for nearly 50 years 

(Moore and Clayton, 1976; Elmaghraby, 1977; Demeulemeester and Herroelen, 2002). 
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Figure 3. Evolution of the project scheduling methods, adapted overview by (Li and Worner, 

2011). 

 

In the following, the standard models for describing single projects, especially the standard 

project management model, deterministic network models, stochastic cost models, stochastic 

time-network models and stochastic resource-constrained project planning are further 

elaborated through the following subchapters. 

 

4.1  The standard project management model 

The Project Management Body of Knowledge (PMBOK), first published in 1996 and now 

in its seventh edition in 2021, provides world-wide accepted and standardised guidelines and 

terminology regarding project management. Many widely used and well-known methods, 

such as the mathematical model of the CPM, have been able to significantly increase their 

level of awareness through inclusion in the guide, which is released by the Project 

Management Institute (PMI) (Project Management Institute, 2021). 



Operational scientists create models to evaluate what will happen, has already happened or 

is happening in a project, meaning that the analysis needs to consider different circumstances 

and their effects on project output. Indeed, controlling the project towards meeting these 

objectives and defining the goals of a project is a fundamental aspect of project management. 

A project can be described as an organisation formed by people committed to a certain 

objective or purpose. Further, projects are usually unique, large, risky, or expensive ventures 

that have to be accomplished within a specific timeframe, with a specific anticipated 

performance level, and for a specific monetary investment (Steiner, 1969).  

The trinity of meeting performance, schedule and cost targets (see figure 4) emerged to be 

the standard criterion for success being generally considered the significant task of project 

managers (Barnes, 1988). 

 

Scope Timescale

Cost
 

Figure 4. Threefold principle of a project; provide the basis for the typical trade-off 

relationships. 

 

The threefold principle includes the key trade-offs which the project manager has to address, 

and which models have to adequately reflect. Meeting either of the objectives tends to take 

place at the expense of both others. Since measurements can include more than one 

dimension, the criteria are not adherence to budget, schedule, and specifications, rather 

adherence to performance, cost and schedule objectives.  This means not only understanding 

whether the total cost of the project is on budget, but also knowing the piece cost of the 



finished product, the cash flow and oftentimes the lifetime cost of the end product. (Turner, 

1995).  

However, this fails to do justice to the complexity of identifying success criteria, so that in 

some cases more sophisticated objective functions are required in the models.  

Project management methods are premised on decomposing the project into its constituent 

parts and monitoring each of them individually. Therefore, various methods are built on the 

control of the individual parts according to the triplicate criterion, which will be described 

in more detail below:  

The first area of the threefold principle is cost. When preparing cost estimates, a breakdown 

structure like the WBS is frequently used, namely the Cost Breakdown Structure (CBS). 

Breaking down the organisational structure of the project through a related framework, the 

Organizational Breakdown Structure (OBS), will result in a three-dimensional matrix, 

commonly referred to as a cost control cube (Farid and Karshenas, 1986). 

 

 

Figure 5. Cost control cube, based on Farid and Karshenas (1986). 



 

As shown in the figure 5, a cube of WBS (ordinate, element to be delivered), OBS (abscissa, 

resource allocation) and CBS (applicate, e.g., labour costs, material costs, etc.) is formed. 

This forms many smaller cubes that have clearly definite structures properties and 

affiliations. 

The CBS not only gives an early indication of project expenditure but can also be used to 

monitor the development of expenditure over time and the progress of the project. The 

prerequisite is that the activities have been planned in a baseline schedule, applying the 

principles of acquired value analysis by considering not only the total budgeted cost of the 

actual completed activities, but also the budgeted work, in order to determine deviations in 

both the schedule and the costs (Fleming and Koppelman, 2000). 

The second section of the threefold principle is the timescale. Project networks are the main 

basis of the timescale analysis. They are visualised in the form of an activity on arrow (see 

figure 6), with the activities represented as arrows and the nodes as events. Here, the 

networks begin with a start event and ends with a finish event. Further, before an activity 

can be completed, it is necessary for the event preceding that activity to be completed. 

Finally, to complete an event, all activities leading to that event (node) are required to be 

finished. (Kent, 2016; Lester, 2021). 
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Figure 6. Exemplary activity on arrow project network (Rajapakse Ruwan, 2017). 



 

Alternatively, the project network can be mapped in the form of an activity on a node (see 

figure 7), where the links from one activity to another are represented by using the node as 

the activity field and their linkage by lines, with the duration written to the activity field or 

node, which has the advantage of not requiring separate dummy activities. Both examples 

of the formats have random concrete content purely for visualisation purposes. These were 

the basis for the development of  the PERT in 1958 (Malcolm et al., 1959). 
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Figure 7. Exemplary activity on node format with explanation of the columns. 

 

The third and final section of the threefold principle is the scope. Mathematical modelling's 

contribution during the beginnings of project management concentrated around project 

timescales built around the idea of a network. Summing up the costs in an outline structure 

is generally trivial. Although assessing the overall length of a basic network needs some 

elementary sums, when resource constraints and uncertainty are included and the key/critical 

activities are determined, there is plenty of scope within which modelling can be applied for 

a better insight (Williams, 2003). 



Here, the main procedure is the application of the WBS along with visualisation forms 

similar to the milestone plan, which presents the milestones of one or more projects in 

chronological order, improving visualisation, facilitating understanding and highlighting 

particularly important events (Turner, 1995). 

 

4.2  Deterministic network models 

The first appearance of papers on PERT as well as the CPM was in 1959. Nevertheless, 

solving the basic CPM model, which is not resource-constrained but deterministic, is rather 

trivial, while including constraints or specifying broader definitions offers the possibility of 

generating mathematically rich and better-defined problems. 

Three components are found in the basic versions of the network models (Kolisch and 

Padman, 2001). Whereas a project is made up of a sequence of activities, where inputs can 

be processed in one of various modes, meaning different ways of carrying out the activity, 

the time required for each activity is determined by its mode. Thus, the project generally 

takes the form of a directed graph, where the priority correlation that exists within two 

activities is expressed by a directed arc, and an activity is depicted through a node. 

Accordingly, the activities require resources that are either renewable, i.e., the number of 

resources available is fixed for every period, or non-renewable, implying a constraint on the 

overall demand throughout the project. 

There are a number of common problems associated with these definitions, most of which 

involve minimizing either the time span, or more precisely the total duration of the project, 

or the cost represented by money or resource input. Deterministic network models exist in 

many different forms and accordingly cover a wide range of mathematical modelling 

possibilities and problem-solving options. 

One of these models is the Net Present Value (NPV) maximisation without resource 

constraints. In case resource constraints do not exist, at that point the fundamental problem 

of minimizing the period of time is well known and rather straightforward. With large 

projects, though, there is the additional issue of seeking to maximize net present value with 

the goal of postponing activities with negative cash flow and giving preference to those with 

positive cash flow (Elmaghraby and Herroelen, 1990). 



However, if resources are subject to constraints when planning a project, the problem can be 

described as RCPSP, which is the fundamental problem type in project planning and targets 

to keep the total project time to a minimum. Indeed, it is among the most researched project 

scheduling problems within the literature and has led to a large number of papers providing 

solution methods for the problem (Carlier, Moukrim and Xu, 2009).  

Moreover, the traditional Time-Cost Trade-off (TCT) is a deterministic network model. In 

TCT analysis, the activity length is shortened by assigning a greater number of resources, 

which leads to reduced indirect costs incurred at the expense of higher direct costs and a 

reduced project length. As a result, project planners can conduct a TCT analysis to determine 

the least-cost project length. Still, the outcome of the TCT analysis is not a feasible selection 

without also addressing financing costs and constraints on the availability of cash. During 

construction, for example, assuming in the TCT analysis that there is unlimited access to 

cash throughout the project duration, will not be viable if intermediate payments are subject 

to delay and if the contractor incurs a retainage at the time of intermediate payments. 

Consequently, contractors frequently require supplemental funds to prevent shortfalls 

(Alavipour and Arditi, 2019). 

The figure 8 shows such a TCT. The abscissa reflects the project duration and the ordinate 

the costs in US dollars. The course of the "direct costs" decreases exponentially with the 

project duration, the "indirect costs" increase exponentially with the project duration and the 

sum of these two lines is the "total cost" line, which has a global minimum (here optimum 

cost-time point). When the indirect and direct cost lines cross, the optimal project duration 

is given based on the minimum cost. The optimum can also be slightly before or after the 

intersection of the two lines. According to this model, project durations that are either shorter 

or longer than the optimum inevitably lead to an increase in project costs. 
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Figure 8. Graphical visualization of the TCT, based on Alavipour and Arditi (2019). 

 

Often, the duration of the work can be shortened at the cost of consuming more resources, 

be it a renewable resource like machines or people or a non-renewable one like money.  

This poses two possible problems for modelling, either finding the realisation that minimises 

the duration in a way where the aggregate cost is neither higher than a fixed budget limit, or 

finding the realisation that minimises the aggregate cost (Brucker et al., 1999). 

 

4.3  Stochastic cost models 

The summation of the stochastic costs for the CBS is obviously a fairly uncomplicated matter 

of summing up expense distributions, with more complicated modelling required only when 

these costs are associated with a time profile. In this context, straightforward approaches 

such as those developed by Ho and Pike (1992) can be used to develop a cost allocation plan 

for the project as a whole. 

An example of the application of stochastic cost models is the study of the impact of high 

wind penetration on the operation of the electricity system, which is curcial given the 

intermittent nature of wind energy and the ever-increasing number of wind turbines. 



Scheduling solutions in the power grid are commonly decided one day ahead in order to 

cover the peak demand and meet any net load. Nevertheless, the vast variability of wind 

during the forecasting period makes the planning of the power generators a difficult 

undertaking. For best utilisation of generators and optimal planning, it is essential to estimate 

wind penetration levels with a sufficient degree of reliability. Furthermore, its very volatile 

nature requires additional reserves to operate the wind-integrated electricity network at the 

required span of stability.  The electricity grid operators require a robust load commitment 

system that can accommodate the irregular intermittent character of wind generation. 

Swaroop et al. (2009) used a stochastic cost model which considers the effects of 

uncertainties regarding demand and generation of wind to run the power system in the best 

possible way. Based on particle swarm optimisation, the suggested uncertainty modelling is 

capable of handling a large number of possible settings. The choice of ideal settings is built 

on the technique of swarm intelligence. As the mitigation process is not subject to 

comparison on the basis of 1:1, the method is calculational efficient. With the ability to 

manage a high level of branching, this scenario mitigation technique is capable of modelling 

the full stochastic nature of the uncertainties. 

However, MCSs (see chapter 5) are often used to identify reasonably good distributional 

approximations instead of using more analytical methods. 

 

4.4  Stochastic time-network models 

As described in chapter 4.2, solutions to the basic CPM model, which is without resource 

constraints and deterministic, tend to be rather trivial. The assumption of infinite resources 

is an unrealistic aspect of the base model, although the addition of resource constraints turned 

out to add mathematical interest to the problem. A further unrealistic aspect of the base 

model involves the assumption of deterministic activity periods, whereby loosening this 

assumption equally yields a mathematically interesting problem. Including uncertainty in 

activity durations was sought in the original PERT, but this method did not catch on 

(MacCrimmon and Ryavec, 1964). 

As with deterministic network models, stochastic time-network models use resource-

unconstrained and constrained models.  



In the case of non-resource-constrained, the main problem with the network technique is, as 

always, the estimation of the project duration. In this case, however, the distribution of 

project span has to be assessed on the basis of the hypothesis that the length of activities is 

both stochastic and that these individual activities are initially assumed to have independent 

distributions (Ritchie, 1985).  

By contrast, in resource-constrained time-network problems, allowing for activity durations 

is problematic because they complicate the problem (Brucker et al., 1999). 

Special consideration should be given to the concept of criticality. Management wants to 

know what the most important or "critical" operations are. While management wants this 

question resolved, no single standard definition of these terms is in place. The widespread 

and well-established definition of criticality, which has been in use for several decades, states 

that the criticality level of an activity is the likelihood that the activity is on the critical path 

(Williams, 1995).  

Yet it has become apparent over time that this is actually an unhelpful definition, primarily 

due to the fact that it does not convey the type of information a manager is intuitively likely 

to expect. Moreover, the concept of critical path for a limited resource network remains to 

be defined. It has therefore been shown that the correlation between the length of an activity 

and the overall length of the project yields more meaningful information, and this parameter 

has been referred to as the criticality of an activity (Elmaghraby, Fathi and Taner, 1999).  

However, this is no substitute for the prior criticality definition, but the process of decision-

making demands taking both metrics into account: criticality to assign relevance to 

monitoring the uncertainty of the activity's length, coupled with criticality to assign 

relevance to monitoring the activity's length (Elmaghraby, 2000). 

In the context of stochastic time network models and criticality, simulations play a crucial 

role. Determining the time span for stochastic networks even under constrained conditions 

is challenging and, certainly, determining criticalities (of any definition) involves such 

calculation beforehand. That said, the main issues with analytical frameworks are the 

compelling assumptions required by all of them, hampering their applicability in almost all 

real-world situations. As such, there are limitations in commissioning, as the majority 

presume a certain, sometimes unrealistic, length distribution and are consequently valid only 

if that distribution is met by all activities (Williams, 1999).  



Of greater significance are the omission constraints, which are of great importance. Aside 

from the resource constraints that naturally make analytical approaches inconvenient, many 

complex elements need to be integrated into the analysis of a project model creator to ensure 

that the results are both valid and relevant. These are impacts that span multiple activities 

and resources, including third party or common cause impacts, where the assumption that 

the length of activities are autonomous, identically dispersed random variables is generally 

not plausible in practical terms. In this context, the unusual distributions of activity lengths 

are also related. Here, examples include the effects of goal setting as in Management by 

Objectives, a strategic model designed to enhance an organization's output by establishing 

explicit goals that are agreed to by executive management as well as employees (Williams, 

1995).  

Similarly, Parkinson's Law, a model that outlines the trend for the effort required to perform 

a given activity to rise and take up more and more of the time available to do it (see Figure 

9). The abscissa represents the allocated time, and the ordinate indicates the effort. The 

optimal time to complete a task is marked with a dashed line and is at the level of the 

maximum effort value. More time than the optimum corresponds to wasted time and less 

time than the optimum corresponds to an increase in productivity. The generalized concept 

refers to the trend of using all the capacities available in a given system (Parkinson and 

Osborn, 1957). 
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Figure 9. Visualization of Parkinson’s law, based on Parkinson and Osborn (1957). 

 

In addition, there are uncertainties in the structure of the project network, because although 

classical network planning techniques all consider the network itself to be fixed, there may 

be branching conditionally or probabilistically in practice. 

Another thing to consider is that several analysis methods cover only certain points in time 

during the project. In practice, though, a major use of this analysis is to offer assistance in 

solving problems involving the project length at a chosen confidence interval or the 

likelihood of the project deadline being met. Such distributions cannot be adopted within 

standard models, and problems involve the need for estimation of the overall duration 

distribution. Even for a basic stochastic network, the total period of time is the result of the 

assumption of maxima and a mixture of convolutions. Consequently, the duration can take 

complicated forms in the presence of more complex uncertainties (Mehrotra, Chai and 

Pillutla, 1996).  

Therefore, in practice, MCSs are almost exclusively used for real applications (see chapter 

5). Network simulation will be considered the standard method and has replaced the PERT 

method. According to PMI, schedule simulation ought to be utilised for any major or 

complicated project, as conventional mathematical analysis tools such as CPM and PERT 

do not take path constraints into account and therefore tend to underestimate the project 

length (Project Management Institute, 2021). 



This view was confirmed in the 1997 Project Risk Analysis and Management (PRAM) 

Guide, which noted that the PERT technique had been substituted by the better-performing 

MCS (see in more detail chapter 5) and that PERT was no longer regarded as an appropriate 

risk analysis technique (Peter, Hillson and Newland, 1997). 

An issue with many real-world network simulation outcomes is that the scatter of results is 

frequently very large since the simulations themselves run unwisely past every iteration in 

the absence of management intervention. Obviously, in a real system, management will take 

steps to keep a delayed project under control, yet many simulations do not consider this.  

One approach to incorporating management measures into the models comes from Golenko-

Ginzburg and Gonik (1998), which outlines a range of work on GERT that results in 

Controlled Alternative Activity Networks (CAAN) and attempts to make decisions to 

upgrade the networks, albeit that the decisions do not depend on the advancement of the 

project at that point in time. Such methods do not appear to be broadly applied in the real 

world, as they are very complex and not general and transparent enough to be widely 

recognised by practitioners. However, only straightforward control measures are analysed, 

and straightforward results are modelled, while the effects of these kinds of measures are 

frequently not evident in practice. Therefore, multiple impacts interact to produce the 

oftentimes counter-intuitive effects. 

Finally, in connection with stochastic time-network models, the critical chain method should 

not be forgotten. Buffer management or critical chain scheduling is the application of 

Goldratt's Theory of Constraints principles to the management of projects, referring to his 

book Critical Chain mentioned in chapter 3.2 on the robustness of project scheduling 

(Goldratt, 1997). Essentially, the thinking is to pinpoint the critical chain, adopt the 50% 

likely time estimates for the tasks to minimise the cumulative length of the project, and utilise 

resource buffers to keep the critical chain tasks from starting late due to the unavailability of 

resources. Indeed, it offers a simplified and uncomplicated planning tool compared to many 

other techniques, which are quite challenging to execute and complex, although the creation 

of a proper, realizable plan, with the goal of finding the critical chain, might not be easy. 

However, it is important when the method is applied in an oversimplified way, resulting in 

plans that are far below the optimum (Herroelen and Leus, 2001). 

 



4.5  Stochastic Resource-Constrained Project Scheduling (SRCPSP) 

In the early 2000s, the SRCPSP was developed to consider resource constraints and 

uncertainty simultaneously (Herroelen and Leus, 2005). 

An SRCPSP can include either non-structural contingencies, such as stochastic operation 

duration and resource capacity, or GERT-type structural contingencies, such as uncertain 

operation outcomes, which can potentially change the underlying network structure. 

An example of the application of SRCPSP can be found in military applications. For 

example, a military mission can be modelled as a project composed of a queue of tasks as 

encountered in the WBS of project management. Several resources such as equipment, 

material and manpower might be critical to the accomplishment of a mission. When 

considering a mission planning problem in the naval ship context, for instance, in emergency 

scenarios survival often requires that the tasks are properly planned in the correct order, and 

according to the mission, the task list to be done on board differs depending on the period. 

Additionally, the tasks have to be completed with limited resources, namely a multi-skilled 

and permanent crew. Therefore, the deterministic version of the challenge might be modelled 

as a project planning challenge involving multi-purpose resources, being a variation of the 

RCPSP. Within this environment, non-structural as well as structural contingencies can 

appear, leading to an SRCPSP. Thus, a task may succeed or fail and the task length can be 

stochastic (Li and Worner, 2011). 

  



5  Monte Carlo Simulation for Project Scheduling 

Simulations are applied to gain an understanding of a deterministic problem and statistical 

sampling is applied to assess the uncertainties within the simulations. MCSs invert this type 

of approach, solving deterministic problems by probabilistic analogies. Back in 1930, Enrico 

Fermi was the first to experiment with the MCS while investigating neutron diffusion, 

although none of his papers were published. At a later stage, Stanislaw Ulam, a 

mathematician, used it in the 1940s when developing the Manhattan Project for nuclear arms 

during the Second World War (Bagal and Kulkarni, 2019). 

In fact, it was given its name based on the famous casino city of Monaco, as the likelihood 

element is key to the modelling process, much like the game of roulette. Ever since their 

implementation, MCSs have evaluated the impact of uncertainty in a wide range of realistic 

scenarios, such as revenue forecasting, stock prices, artificial intelligence, pricing, and 

project management. In addition, they deliver a number of advantages over predictive 

models based on fixed inputs, which include the ability to calculate the correlation of inputs 

or to perform sensitivity analyses. The correlation enables an understanding of the 

relationships among any input variables, while the sensitivity analysis allows decision-

makers to determine the impact of certain inputs on certain results (IBM Cloud Education, 

2020). 

Through the application of MCSs to scheduling, the traditional approach of a critical path 

and an end date in a schedule (deterministic approach) is instead substituted with a set of 

possible critical paths and end dates with corresponding probabilities (probabilistic 

approach). Although the project schedule is on the whole determined by a single critical 

path, being the main continuous path in the network, the MCS identifies and evaluates 

several critical paths. Figure 10 illustrates the approach differences of the two techniques. 
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Figure 10. Visualization of a deterministic and probabilistic situation; based on (Verschoor 

and Eng, 2005). 

 

A MCS allows modelling of the potentially changing duration of tasks, dynamic date ranges 

can be set, and multiple schedule variants can be simulated using a probabilistic approach, 

as opposed to a deterministic schedule consisting of a single period. As a result, many 

different schedules and variants of the critical path can be simulated. Using the outcomes of 

each of these simulations, data may be interpreted that provides an understanding of which 

activities are most likely to affect the final deadline, relative to the activities along the actual 

critical path. Furthermore, this may be used to determine a reasonable end date that can be 

mutually agreed upon by the owner and contractor (Verschoor and Eng, 2005). 

 

5.1  Benefits 

The benefit of applying a MCS to projects is that it is a very powerful simulation technique: 

Indeed, without considering uncertainty in both schedules and project costs, there is a risk 

that the project will overrun the project targets. The MCS assists in providing justification 

and quantifying reasonable project contingency to manage the risk activities that arise during 



the project cycle. An added feature of a MCS compared to competing methods of project 

evaluation lies in the fact that it attempts to incorporate uncertainty. Many analytical 

methods are available for project planning, although the issue with these analytical 

approaches is the constraining set of assumptions they each demand, effectively disabling 

them in all real-world situations. The analytical methods frequently yielded particular 

moments of project duration only rather than distributions of project duration, which actually 

would be far more beneficial in providing answers to questions regarding the degree of 

confidence in project completion dates. Yet while the programme evaluation and verification 

technique has been the past method for evaluating project schedule networks, this 

methodology statistically fails to account for path convergence and therefore normally leans 

towards underestimating project lifespans. Fortunately, the MCS, which repeats project 

cycles n times depending on the default settings, takes these path convergence situations into 

account (Bagal and Kulkarni, 2019). 

 

5.2  Limitation 

The disadvantages of MCSs in the past included the heavy computational power 

consumption and the high time and resources needed to carry out the simulation activity. 

Shortage of user-friendly software-based tools to conduct more complex simulations based 

on project plans has also been a constraint. These concerns are almost outdated by the drastic 

enhancements in processing capabilities and the addition of MCSs as an additional 

functional extension of the software to common project management tools. Similarly, 

another disadvantage is that a MCS reveals a very wide spread of project length. Indeed, this 

is attributable to the fact that the simulations simply proceed unintelligently through every 

iteration with no management intervention. However, in reality, it is highly probable that 

management takes steps to rescue projects that are seriously lagging behind schedule and 

taking some of these steps might contribute to returning the project back to an agreeable time 

frame. While models have emerged that include management actions in the simulation, these 

models have proven to be highly complex and nonetheless do not deliver adequate levels of 

generality with adequate transparency for acceptability in real-world applications. While the 

MCS is an exceptionally strong performing tool, a simulation is considered to be only as 

useful as the model it is fed with to represent the information it is simulating. If the project 



model or network does not keep up, the simulations will not closely represent even the real 

activities. Likewise, unless the task duration distributions for simulating the project duration 

are inadequate, the simulation will be flawed. Forecasting project activity length typically 

involves expert insight, and feedback even provided when a three-point estimation (as in the 

PERT estimate) is undertaken to include uncertainty in a model still leaves partial 

uncertainty latent in the three-point estimation. Experience and advance knowledge from 

previous projects of a comparable nature are valuable in reducing this estimation uncertainty, 

even though this data is often lacking (Bagal and Kulkarni, 2019).  



6  Methodology 

Throughout this section, the methodology used in the study will be described and the factors 

that influenced the choice of these research methods will be highlighted. Equally, the chapter 

gives an overview of how the analysis was conducted and the information obtained from it 

was evaluated. 

 

6.1  Research context 

The purpose of the analysis conducted in this study is to find answers to the RQs posed in 

the introductory chapter: 

 

• How does uncertainty affect input parameters in project management? 

• Do some parameters in mathematical simulation modelling (e.g., MCS) provide 

more accurate and reliable results than others? 

• Is it possible to simulate uncertainty in a useful way or does every parameter change 

lead to completely new results? 

 

The thesis uses quantitative research methods by experimentally simulating uncertainty to 

achieve the objectives of the thesis and provide answers to the RQs. The end result of the 

thesis should provide a clear understanding of how uncertainty stochastically affects project 

planning and what conclusions can be drawn. 

 

6.2  Methodological choices 

The aim is to investigate how uncertainty stochastically affects the project length. 

Furthermore, it is to be investigated how uncertainty as an influencing variable affects the 



result of these applications and thus to be able to give an assessment of whether a simulation 

of uncertainty makes sense. 

To investigate this, a quantitative analysis method was chosen in which the data was 

examined and generated experimentally. In this way, possible correlations and influences of 

uncertainty on the range of project end dates can be identified. Scheduling problems and 

uncertainty-induced changes to the critical path are investigated, as this does happen in the 

real project world. 

MCS was chosen as the mathematical analysis method, which provides a good overview of 

stochastics, is easy to perform and comprehensible. 

 

6.3  Data collection 

A project plan has been created in MS Project, which ideally represents a typical project 

with all its imponderables. The basic model of the study on scheduling consists of several 

task sections that differ in duration. In order to include the factor of uncertainty, a possible 

variable temporal variance was also inserted for each individual section. In addition, the 

number of task sections was varied, and the location of the temporal variances was examined. 

The basic Gantt chart from MS Project was transferred to MS Excel, with the addition that 

the individual sections contain a random factor. Thus, after each update of the spreadsheet, 

the sections output a new random value in the previously entered time span. However, the 

relevant value for further simulations is only the project end date. 

This end date, which changes after each update, is the starting point and input value for the 

MCS, which was also carried out in MS Excel. 

The simulation is started by a VBA macro and the spreadsheets are updated preset desired n 

times, each time recording the end date. A histogram was now formed from this data list, 

which was used for analysis purposes enabling statements to be made about the uncertainty 

influence. In addition, stochastic parameters such as central tendency, dispersion, shape, and 

quartiles were plotted. All these data were then compared with each other depending on the 

desired analysis in order to be able to make statements and possible correlations about the 

influence of uncertainty on the project planning tool. 



Furthermore, in a second area of investigation, the stochastic effects of uncertainty on the 

change of the critical path in parallel processes were investigated. Here, simple critical paths 

without branching were compared with double and triple parallel paths. 

 

6.4  Data quality of the research 

Since uncertainty can occur in many different forms, the focus was placed specifically on 

the uncertainty of deadlines in the planning of projects. This is to ensure the validity of the 

results, as variations in the input parameters and thus the realization of the uncertainty factor 

also provide comprehensible and measurable results. However, the origin of the uncertainty 

does not play a role in the investigations, as only the actual resulting time delay is relevant 

and underestimated. 

The reliability of the results depends on the parameters used for the experiment and in this 

case for the simulation. In fact, the problem of uncertainty research is exactly this: that 

reproducibility is difficult and problem concretization makes uncertainty disappear. Since 

uncertainty does not occur consistently, this point is challenging, and in the following section 

some parameters turned out to be more useful than others. This allows other researchers to 

use the more reliable parameters from the evaluation of this work and thus reproduce the 

results if needed. Nevertheless, the complete generalizability of the results is not available 

and need to be re-examined for each new problem and change in the project data, although 

the results of this work can give a good preliminary estimate.  



7  Results 

The results presented are divided into project planning and critical path change analysis. The 

network plans of the project under investigation and the experimental parameters in general 

are described first, followed by the experimental results of the MCS. The results are rounded 

to a maximum of one decimal place and correspond to the average values of ten runs per 

parameter setting. 

The results should provide the basis for answering the RQs such as the influence of 

uncertainty on input parameters in project management, the usefulness of simulation under 

uncertainty conditions, and reliability. The actual discussion and interpretation of the results 

takes place in the following chapter 8. 

The results of the mean, median, standard deviation, range, kurtosis and skewness are based 

on the usual mathematical definitions (for example in Serfozo (2009)). The standard error is 

the uncertainty associated with the estimated mean and is an estimate of the standard 

deviation of the sample mean for repeated MCSs. The IQ range is the difference between 

the upper and lower quartiles (Q (0.75) - Q (0.25)). 

 

7.1  Project scheduling 

The basic model consists of 15 task sections, each lasting from 2 to a maximum of 63 days, 

resulting in a total duration of 413 days. In order to include the factor of uncertainty, the 

individual sections have a possible temporal variance of ± one to three days. In addition, the 

number of task sections was varied, and the location of the temporal variations was 

examined. 

Appendix 1 illustrates a Gantt diagram of the basic scheduling parameters without 

uncertainty. 

 



 

Figure 11. Basic network diagram for the series of project scheduling experiments.  

 

The network diagram (see figure 11) has thus depicted typical project scheduling 

management issues. For example, the 11th section can only take place after the 5th, 9th and 

10th sections have been completed. The 10th, 12th and last sections each have two 

predecessors. Since four process steps can start at the same time after the completion of the 

second section, this creates a parallelism of tasks. The critical path consists of sections 1, 2, 

3, 7, 8, 9, 12, 13, 14 and 15, which are marked in red in the network diagram.  

When simulating uncertainty, four specifications in particular were compared with each 

other (unless otherwise stated, the simulation runs were set to 1000):  

 

• First, the uncertainty level was simulated by having each section represent a random 

variation of ± one, two or three days. 

• The second variation concerns the project scope. To keep the results comparable, the 

project model was doubled to 30 sections by running the basic model of 15 sections 

twice, connected by the original last 15th section with the theoretically originally 

first and now 16th section. 

• The third comparison examines how a variation of the uncertainty location, or more 

precisely whether the location of the temporal uncertainties plays a role. For this 

purpose, the base was doubled as in the previous experiment, with temporal variances 

first applied only to the first half (i.e., the original base) and then only to the second 

half. Thus, it was investigated whether an uncertainty rather at the beginning of the 

project or at the end of the project has an impact on the project end date. 

• The last investigation directs the consideration to the influence of the simulation runs. 

Here, a temporal uncertainty of  ± 3 days was specified for each section, and then the 
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statistical behavior of the final time distribution was examined for 100, 1000, and 

10000 runs. 

 

The analysis was always carried out 10 times per new parameter setting and minimum, 

maximum and average values were noted, which were then compared with other parameter 

settings. 

 

 

Figure 12. Exemplary histogram from a test series (iterations: 1000, ± 3 days of uncertainty 

on all tasks, basis model). 

 

The histograms generated after each iteration give an overview of the results (see figure 12). 

These depend on the preset parameters and change with each iteration. The abscissa values 

are simulated project end data, whereas those of the ordinate reflect the absolute frequency 

of these. It follows that the longer a blue bar is, the more often this date was simulated as the 

end of the project. This results in a probability distribution of the end dates, whereby it 

flattens out towards the edge and less frequent end dates are found there. The solid red lines 

represent the 95% interval (0.025 and 0.975 quantiles). This means that 2.5% of the results 



are to the left of the left line and 2.5% to the right of the right line and could be hidden 

depending on the analysis desired in order to minimize outliers. In this case, the lower 

quantile is 9/21/22 and the upper quantile is 10/16/22. The right ordinate also shows the 

cumulative probability. The green line thus shows how the final data are distributed. The 

average of the ten simulation runs (of which the histogram shows one as an example due to 

similarity) has a rounded value of 0 for skewness and -0.2 for kurtosis, which makes the 

simulated distribution slightly flatter than the normal distribution. 

 

7.1.1  Variation of the uncertainty level 

The following Table 2 (data overview in Appendix 2) summarizes the results of varying the 

uncertainty level. 

 

Table 2. Results of variation of the uncertainty level 

Category Subcategory Result Description 

Spread Range Highest average values for three-day uncertainty level 

(38.4), followed by two-day (30.7, -20%) and one-day 

(24.3, -21 % to the previous level). 

Standard Deviation The standard deviation increases from 96 h at one-day 

level, to 121 h (+26%) at two-day level, up to 152 h 

(+26 % to the previous level) at three-day level. 

Central 

Tendency 

(Location) 

Mean The mean is highest for one-day fluctuations (10/4/22 

9:27) and about the same for the remaining two (± 2 

days: 10/3/22 18:53 and ± 3 days: 10/3/22 19:55). 

Standard Error The standard error increases from 3h 2min for one-

day fluctuations, to 3h 50min (+26%) for two-day 

fluctuations, to 4h 49min (+26% to previous level) for 

three-day fluctuations. 

Median The average median falls from the one-day 

uncertainty level (10/4/22 14:24) to a similar level at 



the other two levels (± 2 days: 10/3/22 21:36 and ± 3 

days: 10/4/22 0:00). 

Quartiles IQ Range The average IQ range increases from 6.5 at one-day to 

7.3 (+12%) at two-day to 8.9 (+22% to previous level) 

at three-day uncertainty level. 

Shape Skewness On average, this is in the range of -0.1 to 0.1 for all 

around 0. 

Kurtosis Here, the average values of -0.1 for one day, -0.1 for 

two days and -0.2 for three days are obtained in 

relation to the uncertainty level. 

 

When comparing the histograms from the test series, it is noticeable that the scaling of the 

ordinate decreases from a maximum of 140 at the one-day uncertainty level, to 120 at the 

two-day uncertainty level, to 80 at the three-day uncertainty level. In addition, the largest 

deviations from the respective mean of the abscissa are found at the uncertainty level of ± 3 

days and the least at the uncertainty level of one day. At the three-day uncertainty level, the 

histogram is visually more detailed than compared to the spottier one-day level. 

The cumulative probability curve is similar for all three uncertainty levels, although the one-

day curve appears with more plateaus than the three-day curve, which is more "smoothed".  

 

7.1.2  Variation of the project size 

A summary of the results of the variation in project size is given below (see table 3, data 

overview in Appendix 3). 

 

Table 3. Results of variation of the project size 

Category Subcategory Result Description 

Spread Range The average value is about 50% higher when the 

doubled is compared to the base model (base: 38.4, 

doubled: 57.1) 



Standard Deviation Standard deviation average is about 42% higher when 

the doubled is compared to the base model (base: 152 

h, doubled: 216 h) 

Central 

Tendency 

(Location) 

Mean Here, a minimally fluctuating value is observed in 

each case (base: 10/3/22 19:55, doubled: 7/7/23 

22:43). The dates are 277 days apart. 

Standard Error The standard error grows by about 42% when the base 

is doubled (base: 4h 49min, doubled: 6h 51min). 

Median The values are quite constant on average (base: 

10/4/22, doubled: 7/8/22) and, as with the mean, 277 

days apart. 

Quartiles IQ Range The IQ range increased by 42% when the base was 

doubled (base: 8.9, doubled: 12.5). 

Shape Skewness The values are around 0. 

Kurtosis This has a base value of -0.2 to -0.1 when doubling. 

 

The course and visual appearance of the two histograms show similarities. The ordinate of 

the histogram with twice as many task sections is slightly larger with a maximum of 100 

counters than that of the basic histogram with a maximum of 80. The abscissa of the basic 

histogram is somewhat spottier because fewer different end date values were assumed. 

The cumulative probability therefore has fewer plateaus in the histogram with the doubled 

base and thus appears somewhat smoother. 

 

7.1.3  Variation of uncertainty localization 

The results of the variation of the uncertainty localization are shown below (Table 4, data 

overview in Appendix 4). 

 

Table 4. Results of variation of uncertainty localization 

Category Subcategory Result Description 



Spread Range The average range values do not differ greatly (40.4 

to 38.6), although with temporal uncertainty in the 

second half the values fluctuate more (difference 

between maximum and minimum 7 to 2). 

Standard Deviation The average standard deviation is comparable in both 

analyses (156 h to 155 h). 

Central 

Tendency 

(Location) 

Mean The mean of the two analyses is slightly two days 

apart (7/7/23 8:17 to 7/9/23 19:56). 

Standard Error This value is almost the same for both evaluations (4h 

57 min to 4h 55min). 

Median The median is about three days apart (7/6/23 to 

7/9/23), with temporal uncertainty in the second half 

causing the values to fluctuate by about one day. 

Quartiles IQ Range The IQ range dropped by an average of about 11 % 

when the temporal uncertainty was localized in the 

second half, from 10 to 8.9. 

Shape Skewness The values range around 0 for both versions from -0.1 

to 0.1. 

Kurtosis The values range around -0.1, tending to be slightly 

lower when uncertainty is present in the second half. 

 

A comparison of the two exemplary histograms reveals clear differences. The ordinate 

scaling is many times higher if temporal uncertainties were only set in the first half (scaling 

comparison 300 to 80 with uncertainties in the second half). The abscissa when the first half 

is occupied by uncertainty factors consists of only a fraction of possible end data values 

compared to the other histogram. 

The cumulative probability curve appears in the histogram with the variable time data in the 

first half with clear long plateaus, whereas the histogram of the variable second half is 

without visible plateaus. 



7.1.4  Variation of simulation accuracy/runs 

Table 5 (data overview in Appendix 5) shows the results of the variation of the simulation 

runs. 

 

Table 5. Results of variation of simulation accuracy/runs 

Category Subcategory Result Description 

Spread Range The average range increased from 32 at 100 runs, to 

38 at 1000, to 44 at 10000, an increase of +19% at 

1000 and +38% at 10000 runs. 

Standard Deviation The values of the standard deviation first decreased 

slightly and then remained almost unchanged (158 h 

at 100, to 152 h at 1000, to 153 h at 10000). 

Central 

Tendency 

(Location) 

Mean The average mean value of the three test series differs 

only in the exact time of day. (10/3/22 14:57 at 100, 

19:55 at 1000, 18:22 at 10000). 

Standard Error The standard error drops sharply from 100 to 1000 

runs by 328% from 15h 50min to 4h 49min. When 

comparing 1000 and 10000 runs, it drops further by 

315% from 4h 49min to 1h 32min. 

Median The median is 10/3/22 for 100 runs and 10/4/22 for 

the other two. 

Quartiles IQ Range The average IQ range of the three runs was almost 

unchanged. (9:8.9:9) 

Shape Skewness With 100 runs this varies from -0.6 to 0.2. With 1000 

from -0.1 to 0.1 and with 10000 from -0.1 to 0. 

 Kurtosis This is between -0.8 and 1.1 for 100 runs, between -

0.4 and -0.1 for 1000 runs, and between -0.2 and 0 for 

10000 runs. 

 



The three exemplary histograms of the test series show clear differences. The ordinate 

scaling grows from 12 at 100 runs, to 80 at 1000, to 700 at 10000. This corresponds to a 

factor of 1:7:59. The number of different values is greatest at 10000 runs and least at 100. 

The interruptions or jumps between the different end dates are greatest at 100 runs and least 

at 10000. 

The cumulative probability curve has clear and longer plateaus at 100 runs, whereby these 

have already decreased at 1000 and are no longer visually recognizable at 10000. 

 

7.2  Critical path analysis 

Three different project sequences were simulated, which are shown in the form of the 

network diagram in Table 6. The first and last task of each of the three test series are constant 

in time (5 days) and are not subject to fluctuations. On the other hand, the tasks in the middle 

have a random duration in the range of 3 to 9 days, i.e., the values fluctuate with equal 

probability by ± 3 days for a duration of 6 days. Again, the analysis was carried out 10 times 

per new parameter setting and minimum, maximum and average values were noted (see 

graphical summary with example histograms Appendix 6). 

 

Table 6. Visualization of the critical path analysis as a network diagram, created in MS 

Project 

Number of 

paths 

Visualization in the network diagram 

1 

 

2 

 

2 31

3

21 4



3 

 

 

When comparing the three example histograms, smaller, visually not too significant 

differences (under default graph settings) are noticeable. The ordinate scaling increases from 

300 for one path to 350 and 450 for three parallel paths. The end dates for one path seem 

about equally probable, whereas for three parallel paths a clearer maximum value is reached, 

with values occurring more rarely the further away they are from the maximum value. The 

cumulative probability curve begins with only one variable section with a higher initial value 

(here 30%). The first cumulative value with three parallel variable values, on the other hand, 

is about 5%. Table 7 shows the results of the analysis of the influence on critical paths 

changing due to uncertainty. 

 

Table 7. Results of variation of number of parallel paths 

Category Subcategory Result Description 

Spread Range The value for all three test series is 7 with no 

fluctuations. 

Standard Deviation The approximate average standard deviation is almost 

identical for the first two series of experiments (one 

and two paths: 55h) and decreases slightly to 51h for 

three parallel paths. 

Central 

Tendency 

(Location) 

Mean The mean increases from 1/16/22 via 1/17/22 to 

1/18/22 by one day each time an additional variable 

path was added. 

Standard Error As with the standard deviation, the average standard 

error values are almost constant for the first two test 

2

4

3

51



series (one path: 1 h 45min, two paths: 1 h 44 min) 

and drop slightly to 1 h 38 min for three paths. 

Median The median increases by one day for each additional 

path from 1/16/22 via 1/17/22 to 1/18/22. 

Quartiles IQ Range The average IQ range has no fluctuations and first 

increases from 4 to 5 and then decreases again to 4 

with three parallel paths. 

Shape Skewness The values are on average 0.8 for one path, 0.2 for two 

paths and 0 for three paths. 

 Kurtosis The average values are -0.4 for one path, -1.1 for two 

pages and -1.2 for three paths. 

 

It is important to mention that these are the results of a very specific problem and cannot be 

generalized. 

  



8  Discussion 

This section, like the previous one, is divided into two subsections (project scheduling and 

critical path analysis). For each statistical category of analysis, salient correlations are 

presented and for each series of experiments, the major anomalies are generally noted. In 

addition, further potential research ideas are noted. 

 

8.1  Project scheduling 

The first sub-category of the discussion section deals with the four experiments on project 

scheduling. 

 

8.1.1  Variation of the uncertainty level 

It can be seen from the histograms that an increase in the uncertainty level leads to a broader 

distribution of potential final data. This is expressed by the fact that the absolute frequency 

of individual end dates increases with each uncertainty level and more potential end dates 

emerge. Furthermore, the cumulative probability curve becomes smoother as the uncertainty 

level increases, as more possible end dates are theoretically reached. Table 8 summarizes 

further discussions on this subtopic. 

 

Table 8. Discussion of the results of the variation of the uncertainty level in project 

scheduling 

Category Subcategory Result Description 

Spread Range The average range decreases by about 20% each time 

the uncertainty level is increased by one day. 

Standard Deviation The average standard deviation increases by 26% 

when the uncertainty level increases by one day. 



Central 

Tendency 

(Location) 

Mean The mean value for all three levels lies approximately 

in the night from 10/3/22 to 11/3/22. No decrease or 

increase can be detected, also due to partially 

overlapping error bars. 

Standard Error This value increases by 26% with each additional day 

of uncertainty. 

Median Like the mean, the median fluctuates around the 

transition from 10/3/22 to 10/4/22 regardless of the 

uncertainty level. However, the fluctuations around 

the mean seem to decrease with a higher uncertainty 

level. 

Quartiles IQ Range The IQ range increases as the uncertainty level 

increases, and this rises even more for larger 

uncertainty levels than for the transition from smaller 

ones. 

Shape Skewness The uncertainty level does not seem to have any 

influence on the skewness, as it differs only minimally 

for all of them and is around 0. 

Kurtosis The kurtosis seems to decrease slightly with 

increasing uncertainty level. 

 

 

The values of the range, standard deviation, standard error and IQ range increase 

proportionally with the increase of the uncertainty value of one day and thus the variation of 

the uncertainty range here has a clear influence on the stochastic quantities. This influence 

is due to the fact that the range of possible end dates increases with the increase of the 

possible uncertainty level. 

In contrast, the mean, median and both shape categories are less influenced by the variation 

of the uncertainty level. With no change in the probability of each possible end date, the 

mean and median remain fairly constant. The stochastic shape (skewness, kurtosis) of the 

histogram also shows no changes due to the remaining probabilities. 



8.1.2  Variation of the project size 

From a purely visual point of view, the change in project size has no great influence on the 

histogram. Logically, the abscissa values vary because the basic project was doubled in size 

and therefore the original values cannot be reached. Also, when the project volume is 

doubled, the distribution appears somewhat denser with fewer interruptions. A detailed 

examination of the statistical parameters nevertheless reveals some more differences (see 

table 9). 

 

Table 9. Discussion of the results of the variation of the project size in project scheduling 

Category Subcategory Result Description 

Spread Range The doubling of the project scope has the effect of 

increasing the range by 50%. 

Standard Deviation A similar effect is observed for the standard deviation, 

where a doubling of the project size increases it by 

42%. 

Central 

Tendency 

(Location) 

Mean The mean values are not really comparable, since 

linking two "basic projects" also inevitably shifts the 

position of the mean value. What is comparable, 

however, are the fluctuations around the mean value, 

which take up about half a day in both test series and 

are thus independent of the project size. 

Standard Error As with the standard deviation, doubling the project 

size has an effect of increasing the standard error by 

42%. 

Median As with the mean, the location of the median is not 

really comparable. However, the doubling has led to 

slight fluctuations of ± 1 day around the average 

median value. 

Quartiles IQ Range The IQ range increases by 42% with the doubling of 

the project scope. 



Shape Skewness The values differ only minimally, from which it can 

be concluded that the project size has no influence on 

skewness. 

Kurtosis The kurtosis increases minimally as the project size 

doubles but is still slightly in the negative range. 

 

For the subcategories, range, standard deviation, standard error and IQ range, an increase of 

42-50% was observed when doubling the project size. This is due to the fact that more 

possible end dates are possible and therefore the standard deviation error also increases. 

In this constellation, the project size has no significant influence on the shape categories, as 

the probability distribution has not changed. 

 

8.1.3  Variation of uncertainty localization 

Visually, the location of the uncertainty factors has a very large influence on the histogram 

(see for example appendix 4). For instance, the number of possible end dates changes greatly, 

which has an influence on the ordinate scaling and the cumulative probability curve. Since 

this result was rather unexpected, the exact cause of this development should be investigated 

in further test series. Thus, the basic project could be tripled and then only simulate the 

uncertainty factors in one third each. Other parameters such as the range of uncertainty and 

their influence on the statistical evaluation could also be investigated.  

For the present series of experiments, however, it can be stated that the location of the 

uncertainty factors in the second half produces significantly more different project end data. 

Further discussion regarding the variation of uncertainty localization is presented in Table 

10. 

 

Table 10. Discussion of the results of the variation of uncertainty localization in project 

scheduling 

Category Subcategory Result Description 



Spread Range The uncertainty towards the end of the project leads to 

more fluctuations in the range and in comparison, with 

the range at the beginning of the project it decreases 

slightly. 

Standard Deviation The location of the uncertainty did not affect the 

standard deviation, as the values for both test series 

were statistically unobtrusive. 

Central 

Tendency 

(Location) 

Mean The mean value changes at a later point in time (in this 

case approx. +2.5 days) when the uncertainties tend to 

take place towards the end of the project. 

Standard Error The standard error is, like the standard deviation, not 

statistically distinguishable for both test series. 

Median As with the mean value, the uncertainty towards the 

end of the project leads to a shift of the median 

backwards by two to three days. 

Quartiles IQ Range The IQ range decreases slightly when the 

uncertainties are localized towards the end of the 

project, as well as the fluctuations of the IQ range 

during the simulations, decreases in the second half. 

Shape Skewness The position of the uncertainty does not seem to have 

any influence on the skewness. 

Kurtosis Due to the minimal differences, no influence of the 

uncertainty localization on the kurtosis can be stated. 

 

When looking at the influence where the uncertainty impact on the project in terms of 

temporal variation in either the first half or second half (both halves have the same basic 

parameters) is shown by a shift in the mean and median when the uncertainty is localized in 

the second half by two to three days. Whereby this is quite small when viewed over the entire 

project duration (approx. 400 days excluding uncertainty fluctuations) and thus no clear 

general influence can be determined. 



In the subcategories such as standard deviation, standard error, skewness and kurtosis, no 

differences could be found in the comparisons within this test series, as these cannot depend 

on the location of the uncertainty under these conditions. 

 

8.1.4  Variation of simulation accuracy/runs 

By comparing the histograms, it can be concluded that increasing the number of simulations 

runs leads to a visually more spread-out normal distribution. This is also expressed by a 

cumulative probability curve with less recognizable plateaus for higher simulation runs. The 

scaling of the ordinate also increases with higher simulation runs, but not linearly, as the 

values are statistically more evenly distributed. This means that a tenfold increase in 

simulation runs does not cause a tenfold increase in the ordinate scaling, and this scaling will 

increase less and less rapidly with further tenfold increases. Table 11 provides a summary 

of the interpretation of the results for the variation of the simulation runs. 

 

Table 11. Discussion of the results of the variation of simulation accuracy/runs in project 

scheduling 

Category Subcategory Result Description 

Spread Range The range increases by 19% for each tenfold increase 

in the number of simulations runs. 

Standard Deviation The standard deviation remains almost unchanged 

regardless of the number of runs, with the fluctuation 

around the average standard deviation becoming 

smaller with a larger number of simulations runs. 

Namely, it first decreases by 56% and with a further 

tenfold by 81%. This means that the results are more 

stable and reliable (same result with a new run) with a 

higher number of simulations runs. 

Mean The average mean value is approximately the same 

and thus independent for all simulation runs. 



Central 

Tendency 

(Location) 

However, the fluctuation of the individual test series 

around the mean value decreases significantly the 

higher the preset number of simulations runs. 

Standard Error A tenfold increase in the number of simulations runs 

leads to a decrease of just over 300% of the standard 

error, as well as much smaller fluctuations in the 

results from the different test series. With 10000 runs, 

this is even almost constant (± 1 min; to be compared 

with over 3 h with 100 runs). 

Median The median stabilizes at higher runs, whereby this 

effect is already visible at 1000 runs. 

Quartiles IQ Range The number of simulation runs does not seem to have 

any influence on the IQ range, as the average values 

are almost the same. However, the fluctuation 

decreases noticeably and is even constant or non-

existent at 10000 runs. 

Shape Skewness It becomes clear that the fluctuations of the maximum 

and minimum values decrease the more runs the 

simulation has. The more runs, the closer to the 

normal distribution (i.e., value 0). 

Kurtosis Similar to skewness, the fluctuations decrease 

significantly with increasing simulation runs and 

approach the normal distribution value (= 0). 

 

The observation of this section that the dispersion of the results decreases as the number of 

simulation runs increases is thus consistent with the result of a study by Farrance and Frenkel 

(2014). One of the results of the study is shown in Figure 13, which shows the spread of the 

standard deviation in relation to the number of MCSs runs. More specifically, the scatter of 

the standard deviation calculated by 100, 1000, 10.000, 100.000 and 1.000.000 Monte Carlo 

trials is shown, where a small number of trials per simulation leads to a larger scatter of 

results. Thus, the values for the standard deviation fluctuate approximately between 2.1 and 



2.5 for 100 simulation runs and, in contrast, are almost point-like at approx. 2.27 for 100000 

runs. 

 

 

Figure 13. Results of a study of the dispersion of the standard deviation in relation to the 

number of MCS runs (Farrance and Frenkel, 2014). 

 

It should be noted that the required computing power and computing time for higher 

simulation runs increases significantly, which is why it should be determined beforehand 

which scattering interval is acceptable. Ultimately, the project manager must decide, 

depending on the situation, whether the simulated results are sufficiently accurate or whether 

variations are acceptable. 



8.2  Critical path analysis 

The more parallel paths there are, the more a most probable end value emerges, which is the 

last possible end date. This finding results from the comparison of the three example 

histograms of the respective test series. Thus, the scaling of the ordinate also increases with 

more paths. The cumulative probability curve confirms this observation, as the jumps of the 

plateaus between the individual end dates become larger and larger (from the first date to the 

end date) the more parallel paths there are. Table 12 combines the interpretation of the results 

for the variation in the number of possible critical paths. 

 

Table 12. Discussion of the results of the critical path analysis 

Category Subcategory Result Description 

Spread Range The number of paths appeared to have no influence on 

the range, as it was consistently constant across all 

three test series. 

Standard Deviation The standard deviation remains constant at one and 

two paths and decreases slightly at three parallel 

paths. 

Central 

Tendency 

(Location) 

Mean The mean value increases with more paths. 

Standard Error The standard error behaves like the standard 

deviation, i.e., it remains constant at first and then 

decreases slightly with three parallel paths. 

Median The median, like the mean, increases with more paths. 

Quartiles IQ Range The IQ range first increases slightly and then drops 

back to the initial value with three parallel threads. 

Shape Skewness With more paths, the skewness seems to converge to 

the normal distribution. 

Kurtosis The kurtosis seems to decrease slightly with more 

threads. 

 



The subcategories of the shape category show correlations in the increase of paths, as the 

probability distribution of the possible end dates is changed with each new parallel path. 

Specifically for this constellation, the categories such as range, standard deviation, standard 

error and IQ range remain constant, or have only small fluctuations without patterns. 

However, as further potential experiments, investigations of more complex project 

sequences and even more branches would be interesting.  



9  Conclusion 

In order to draw a connection to the RQs formulated at the beginning, the RQs are answered 

below, and their objectives are also taken into account. In addition, the limitations of the 

thesis results are discussed, as well as possible follow-up research opportunities. 

The first RQ deals with the question of how uncertainty affects the input parameters in 

project management? Stochastic correlations are recognisable, but these depend on the 

comparative variables chosen. Concrete correlations such as the reduction of the scatter with 

an increase of simulation runs are clearly recognisable, whereas the variation of the 

localisation of the uncertainty at different task sections has shown fewer clear deviations. In 

general, each statistical variable must be examined individually for abnormalities, whereby 

e.g., the standard deviation and the standard error, or also the median and mean value 

produced similar and coherent results within the test series. 

The second RQ, on the other hand, examines the issue of whether some parameters in 

mathematical simulation modelling (e.g., MCS) provide more accurate and reliable results 

than others? When varying the uncertainty level, it has been shown that logically a larger 

temporal uncertainty results in larger end date deviations (e.g., +20% increase in range with 

± one additional day of uncertainty in all task sections). Also, increasing the scope of the 

project has a direct impact on the stochastic results of the uncertainty analysis, e.g., an 

increase of 42% of the standard deviation when doubling the scope of the project. The 

localisation of uncertainty within the project, on the other hand, did not show any significant 

differences in the evaluation. However, the most significant differences were found when 

the number of simulation runs was increased, with fluctuations in the simulation results 

decreasing significantly with an increase in the number of runs. 

When analysing the change in the critical path due to temporal variation of task sections 

caused by uncertainty, it was shown that with more parallel paths, a most likely end date 

emerged. In contrast, with only one possible critical path, the distribution of theoretical end 

dates produced several equally likely project end dates. 

Finally, the third RQ addresses the question of whether it is possible to simulate uncertainty 

in a meaningful way or does every parameter change lead to completely new results? The 



MCS provides fast and usable results for various parameter settings, which remain 

comparable even with the proportional change of input parameters caused by uncertainty. 

From this, e.g., a project manager can gain important information about his project flow and 

take precautions. However, it should be noted that even comparatively small changes in the 

input parameters (increasing the uncertainty of 15 tasks by ± one day for a project over a 

total of 400 days, can lead to a 20% larger range of possible project end dates) can produce 

different simulation results, which is why several parameter settings should always be 

simulated in order to avoid inferring incorrect estimates. 

Probably the clearest and most generalizable results of the study are those of the influence 

of the simulation runs on the stochastic values of the MCS, with results in line with a 

comparable study. Here, the recommendation can be made to set a high number of 

simulations runs, as these make the results of the simulation more accurate. However, the 

noticeable increase in computing power and simulation duration should be kept in mind, as 

well as what the desired error interval should be, since normally quite useful results can be 

delivered in real project situations even with fast simulation times. 

On the other hand, the results of the other test series refer to very specific problems and may 

give different results for other parameter settings of the project plan. Furthermore, the results 

of the study all refer to the MCS, although consideration of other mathematical models, 

especially for more complex problems, may lead to generalizable results. Moreover, in the 

real world, different sources of uncertainty may act at once, resulting in different 

probabilities of project delays, and thus may be subject for further investigation, as the 

present study only covers equally probable delays. 

In general, though, it is important to know the source types of the forms of uncertainty 

discussed in chapter 2 in projects so that precautions can possibly be taken to minimize 

uncertainty. 

However, since these will always be part of the planning in real projects, project managers 

should be aware of the different types of scheduling discussed in chapter 3. This will allow 

you to use the method that best suits your needs as a solution approach. Finally, the 

mathematical models presented in chapter 4 can be used to solve the respective problem. 

Optimally, future research would focus on the impact and reduction possibilities of 

individual sources of uncertainty on projects and develop methodologies for this. This could 



specifically increase planning certainty and, desirably, make studies on the impact of input 

uncertainty on project processes obsolete. In addition, for complex problems, it is advisable 

to use one of the mathematical scheduling solution algorithms, which are constantly being 

further developed, since they can take into account more input parameters. 
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Appendix 1. Gantt chart of the basic scheduling parameters without uncertainty parameters 

 

  



Appendix 2. Variation of the uncertainty level (Upper left: ± 1d, upper middle: ± 2d, Upper right: ± 3d) 

   

   

   

 



Appendix 3. Variation of project size (Upper left: basis size, upper middle: doubled basis size) 

  

 

   

   

 



Appendix 4. Variation of uncertainty localization (Upper left: Uncertainty in first half; upper middle: Uncertainty located in second half) 

  

 

   

   

 



Appendix 5. Variation of simulation accuracy/runs (Upper left: 100, upper middle: 1000, Upper right: 10000) 

   

   

   

 



Appendix 6. Variation of parallel paths (Upper left: 1 path, upper middle: 2 paths, Upper right: 3 paths) 

   

   

   

 


