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This work involves the study of existing solutions in the field of creating Serverless
infrastructure and the analysis of existing solutions. Thesis proposes a new DSL tool that
makes use of code generation techniques for serverless infrastructure. Tool aims to solve
the problem of cloud provider lock-in and provide a more reliable way to create and
manage infrastructure configurations. Tool implementation is based on code generation
techniques for creating all the necessary infrastructure components and operates with
virtualized AST of the DSL declaration. Additional flexibility of the solution achieved by
emitting generated intermediate files and providing APIs for creating adapters and
decorators on the framework client side. More detailed architecture and implementation of
the tool described in the document, along with the evaluation of the solution.
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Abbreviations

● API - Application Programming Interface

● DevOps - Developer Operations

● DSL - Domain Specific Language

● GPL - General Purpose Language

● IaC - Infrastructure-as-Code

● UI - User Interface

● TDD - Test Driven Development

● CI - Continuous Integration

● CD - Continuous Deployment

● VM - Virtual Machine

● CLI - Command Line Instruments

● IDE - Interactive Development Environment

● CDK - Cloud Development Kit
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1. Introduction

Recently, cloud computing became one of the most rapidly developing fields of IT
changing the way large projects can be developed and scaled. Adoption of cloud
technologies allows to scale and rebuild the system much easier and may eliminate the
need in maintaining its own physical infrastructure. More and more companies are starting
to make use of cloud services to build and maintain their infrastructure. The most
innovative and fast growing area of cloud computing is serverless computing, having a
21% share of the cloud market and 75% percent annual growth in enterprise adoption
(CBInsights, 2018). Main advantages of serverless are that it simplifies the DevOps
processes, allows to scale and optimize the infrastructure based on the real-time demand
and usually reduces costs of maintaining infrastructure because customers pay only for
execution time.

However, despite all the benefits which are provided by serverless approach it requires
certain skill and knowledge of specific platforms which provides the service. It means that
companies must have special people who are able to work with a specific serverless
provider stack and understand how to integrate it into the existing enterprise environment.
This may slow down the process of adoption of serverless computing significantly
(Eismann, S. 2022).

Current work is dedicated to attempting to solve that problem by providing an instrument
for implementing serverless interactions using the DSL framework which will allow the
use the same interfaces for different cloud services providers in a unified manner. This will
ease the process of integrating new cloud services and will allow for using different
providers without the need for significant changes in client implementation.
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2. Thesis Background

2.1 Cloud And Serverless Technologies

Serverless is an execution model that provisions computing resources required to run
applications on demand and in response to some specific event, scales the resources in the
response to demand and stops using the resource when they are not needed (IBM Cloud,
2021). All those features do not require any management actions from the client and are
fully encapsulated on the cloud provider side.

Serverless specifies the more broad term of the cloud computing which in turn are usually
implemented using various virtualization techniques and implies orchestrating and
managing of virtual machines (VM), virtual storages and message brokers to provide all
necessary services. And all modern cloud providers offer complex cloud ecosystems with a
broad set of available tools and components that are able to serve any client needs. Major
examples of such ecosystems are Amazon Web Services (EC2, S3, Lambda), Microsoft
Azure (Sphere, Data Lake), Google App Engine - all that services and their components
are getting use of virtual infrastructure (Jain, 2016).

Such a wide range of tools serves to fill demand in storage, monitoring, logging, data
analytics, deploying and execution, however it also increases the complexity of the system
and entry threshold. Any application can make use of only a portion of such services or
combine them in different manners without actually caring about the physical
infrastructure behind them. But clients still need to care about managing the computation
resources on its own and control the allocation and deallocation of executors and
computing units (Jonas, 2019).

On the other hand serverless are usually part of cloud services and the key difference is
that serverless execution model lifts the client responsibility of managing computation
resources onto the cloud provider. Serverless abstracts the process of managing
computation powers from client and makes it much easier to scale and maintain while
ensuring the efficiency of computing (Eismann, 2022).

High efficiency of the computing in serverless is possible due to the optimization that and
predictions that could be made when all physical infrastructure and virtual machines are
fine-tuned to interact in a common consistent environment. Serverless model is highly
inspired by event-driven architectures which are based on so- called events and triggers,
and each event could be initiated by some set of triggers. As an event-driven approach
serverless execution model implies the following properties (Maréchaux, 2006):

▪ Decoupling between components. Publishers know nothing about subscribers and their
implementations.

▪ Many-to-many connections. Events can easily be propagated to any number of
subscribers, as well as subscribers may subscribe to any number of publishers.
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▪ Client based behavior. Control flow is determined by the subscriber and depends on
how it handles the specific type of the event.

▪ Asynchronous nature. The process of event messaging and handling is well suited for
asynchronous and multithreaded environments.

Consequently, all connections between client and cloud platform are established
using the events. Several parts of serverless event model can be highlighted:

▪ Event driven bus provided by cloud platform
▪ Event handlers provided by client application
▪ Event base API provided by cloud platform

Moreover, such an architectural approach allows to accept clients’ requests while no
resources are allocated, so serverless has zero cost of downtime and all billing for the
resources is based on per-usage manner. Which means that clients may not only get
resource-management benefits, but also transparent economical improvements. From an
architectural perspective of cloud computing, serverless services introduce a new layer of
abstraction which is grounded on the base cloud platform infrastructure. This layer is
usually composed out of several different components that make it possible to perform
necessary tasks in a flexible and unified way. The basic blocks are messaging mechanisms,
storagaing, cloud functions and data transformations. Illustration of the serverless
computing layer in context of different architectural layers represented on Figure 1.

Figure 1. Architectural layers of serververless cloud
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To sum up, high-level abstractions of serverless computing provide three significant
improvements over more low-level “basic” cloud computing options. These major
improvements are (Jonas, 2019):

- High decoupling of components, including decoupling of computing and storage,
making it possible to scale and pay for them independently.

- Eliminating resource managing overhead during the computing

- Pay for usage billing model, which means paying only for the resources that are
currently in usage and in proportion relative to the load.

For illustration purposes, the simple example of a serverless application which serves to
handle requests through HTTP/HTTPS on Figure 2 could be described. The first element
of the application is REST API which is some service provided by the cloud platform and
which actы as an HTTP adapter which is accessible to the clients. This adapter's primary
role is to transform user requests into the cloud platform events, here it’s worth mentioning
that cloud platforms usually provide other interfaces based on WebSockets or Messaging
Queues too. That events derived from the HTTP requests are then forwarded to event
handlers. Event handlers are implemented by the client and perform custom logic which is
appropriate for that event. These handlers are often called Lambdas or Cloud Functions.
Those functions may call other functions or perform requests to other services based on the
cloud platform, and get access to the storages. After all the calculations are completed the
client receives a usual HTTP response from the REST API adapter. After that function is
considered as finished by the cloud platform if there are no new requests during some
interval and all necessary for that function resources become deallocated. It’s worth
mentioning that while the function is finished there are no computational resources
allocated for it. That fact has one significant drawback, calls to that function may
experience significant delays - from ~10ms to several seconds. To get rid of such problems
serverless clients may have a pool of “warm resources” by regularly calling functions with
some interval to maintain the allocated resources.
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Figure 2. Simple serverless application structure

2.2 Infrastructure-As-Code Approach

While serverless computing provides rather high-level interfaces for performing a wide
range of tasks, they still significantly rely on the virtual infrastructure maintained by the
cloud platform. Serverless properties of high-isolation and security are directly inherited
from the underlying virtual infrastructure. That virtual infrastructure is based on virtual
machines (VM), containers, unikernels and similar virtualization tools. To ensure high
performance and proper sandboxing of resources along with comprehensive utilization of
multi-tenant resources, serverless cloud must include fine-grained orchestration
mechanisms (Jonas, 2019).

One of the most popular solutions that serve purposes of virtual infrastructure management
is Kubernetes (Burns, 2016), which allows smoothless multi-tenant computing
multiplexing and deploying short-lived isolated environments.. Major cloud platforms
provide Kubernetes orchestration integrated with their infrastructure - Google Kubernetes
Engine (GKE) and AWS Elastic Kubernetes Service (EKS), that gives developers
flexibility in terms of configuring arbitrary containers, while having all operational
overhead on their side.

Together with more high-level interfaces that were discussed in section 1.1, orchestration
mechanisms compose the full-fledged serverless infrastructure. Naturally, any serverless
based application requires proper deployment of the whole serverless infrastructure. That
infrastructure must be reproducible and reliable to provide the application with expected
behavior. All cloud providers have several options for creating and deploying
infrastructure, those options are UI-based configurations, API-based configurations or
Code-based configurations.
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All of those methods could be used in production, however UI-based configurations are
rapidly losing their popularity, due to serious flaws they have in comparison with other
methods. First of all, infrastructure is hardly reproducible, because everything is made
manually through some kind of specialized UI console. That makes it impossible to deploy
the infrastructure in a fast and automated manner and limits reusability of such
configuration for different modules or applications. Another big problem of such an
approach is versioning - evolution of the application inevitably leads to changes in the
infrastructure, but with UI based configurations it’s impossible to keep configuration in
sync with the application code. On the other hand, infrastructure fully defined and
configured using configuration files solves all the stated problems.

Infrastructure-as-Code (IaC) approach is a way of defining a deploying infrastructure using
configuration files and scripts written in some language. Such methodology is highly
inspired by common software development practices which evolved through decades of
enterprise software engineering. IaC emphasizes repeatable, reusable and consistent
configurations and opens an opportunity for applying best testing practices such as Test
Driven Development (TDD) and Unit Testing (Morris, 2016). Moreover in the case of IaC
approach all configurations would be stored along with the regular code of the application
in the same repository which means that infrastructure would be versioned and naturally
synchronized with application code. Therefore, having the code versioned in the same
repository with the rest of the application, also allows for applying Continuous Integration
(CI) and Continuous Deployment (CD) practices, the whole process of applying IaC
configurations is illustrated on Figure 3.

Figure 3. Infrastructure-as-Code (IaC) approach schematically

Figure 3 shows the whole process of deploying the configuration on the actual
infrastructure, and the process looks mostly the same as with deploying application code
while exploiting the same automation mechanisms. Usually companies and big projects
use IaC to achieve several goals that are inherited from the main beneficial properties of
IaC (Morris, 2016):
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● IT infrastructure becomes “open to changes” and requires less time for
configuration

● Teams can easily recover from failures and replay configurations

● Changes to the infrastructure could be made in continuous and iterative
manner

● Infrastructure solutions could be proven and documented through tests

There are no limitations on how the configuration file must be structured; it could be
written with imperative or declarative paradigm in mind. But the most sensible and natural
way of creating configuration files is using declarative Domain Specific Languages
(DSLs), which allows to specify all needed properties in a concise and brief form.

A Domain Specific Language (DSL) is a language primarily intended for use in the context
of some specific domain. Compared to General Purpose Languages (GPLs) DSLs are
usually Turing incomplete and have only syntax constructions closely related to the
domain where they are used. Thus, DSLs configurations are much easier to read and
implement, because they are not overwhelmed with unnecessary implementation details
and emphasize use of the essential abstractions. There are two type of DSLs based on the
way they are executed (Mernik, 2005):

● External DSL - language that is written in a distinct language with its own
interpreter and processed or executed by another so-called host language.

● Internal/Embedded DSL - host language and DSL are the same and DSL
written in that language semantics and processed by it.

While both approaches have their own benefits - in the case of internal DSL leads to much
tighter integration between the domain described in DSL and other applications. That also
opens up opportunities to work with configuration of the infrastructure without additional
competencies. Any developer who works on the project would be able to understand and
work on the infrastructure, without the necessity to learn new tools and languages. Also,
using DSL reduces not only the entry threshold, but also the amount of code in terms of
lines of code (LOC), due to the domain oriented syntax(Mernik, 2005).

2.3 Overview of an existing solutions

There are several solutions for IaC configuration of cloud infrastructure in general and for
serverless in particular. Different solutions provide different ways of integration - some
solutions are specific to the one cloud provider, others specific to only serverless clouds,
several have support for multiple clouds. Solutions are implemented in different languages
and use different paradigms and approaches.
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● Google Cloud Deployment Manager - is an IaC tool dedicated to configuration and
deployment of the Google Cloud Platform (GCP) infrastructure. Tool provides
functionality to create and manage infrastructure resources using declarative
YAML language in conjunction with Python scripts. It suggests a wide range of
settings to give users as much control of infrastructure as possible. The main
problem of the solution, that it works with GCP exclusively and is relatively
verbose.

● AWS CloudFormation and AWS CDK - solution for working with Amazon cloud
services. AWS CloudFormation is a solution based on the YAML/JSON
configurations and it offers shared language for description and provisioning
resources in the Amazon cloud environment. It offers concise and understandable
DSL in terms of Amazon services domain. On the other hand AWS CDK is a set of
frameworks for several popular languages, which provide type-safe way of
interacting with AWS cloud.

● Terraform - a serverless tool that supports a wide range of cloud providers, and
works not only with serverless infrastructure, but also with base cloud
infrastructure, taking a lot of responsibility that is hidden by serverless on itself.
Initially developed for more classical infrastructure Terraform syntax may be too
verbose and contain a lot of unnecessary implementation details. Configurations are
declared using YAML.

● Serverless.com framework - provides a powerful instrument of configuring and
deploying infrastructure configuration using several popular cloud providers. In
contrast to Terraform which also supports different providers and configured using
YAML Serverless.com is focused only on serverless computation, thus it eliminates
the verbosity which exists in Terraform declarations. However, it supports fewer
cloud providers and  in some aspects is less flexible than Terraform.

All the mentioned solutions provide production ready instruments for implementing
serverless applications, however while some of the instruments like AWS CloudFormation
provide frameworks for specific languages making the interactions with cloud type-safe
and more tightly integrated with application code, they are specific only to some cloud
providers. On the other hand tools like Terraform and Serverless.com are more universal
and may be used with different providers, they don’t provide type-safety and actually
represents a parallel codebase to the main application, which can be out-of-sync with
application code in terms of interfaces, constants and API endpoints. Changes to
application code are not reflected in the infrastructure configurations. Also managing large
amounts of configurations still may include a lot of tedious and error-prone work and lack
of single architectural structure. While the ability to call and create configurations straight
from the application code will simplify and unify the process of creating serverless
applications. So, at this point it seems reasonable to provide general purpose languages
with DSLs which will support all language features, auto completion, type-safety and will
fit well into the existing application architectures. That approach would also solve the
problem of synchronization between infrastructure code and application code, making it
possible to detect such problems at compile-time and also perform integration and unit
tests in the same test infrastructure that application already has.
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2.4 Thesis background summary

Serverless computing is one of the most prominent programming paradigms in modern
software engineering. And in the advent of serverless programming it’s important to build
a solid and scalable foundation taking in account time-proven practices that ease the
process of development and deploying the artifacts. As serverless computation resides in
the bounding context between infrastructure management and software development, the
best approaches from well-established development processes could be encompassed there
too. Infrastructure-as-code is one of those techniques which allows to gain more control
over the classical infrastructure management and could be successfully applied in the case
of serverless computing too and existing solutions provide several ways to do that using
custom configurations. However, using DSL and code generation in conjunction with
infrastructure-as-code may facilitate and abstract infrastructure details even further,
allowing the developer to keep the infrastructure declarations in sync with changes made to
the application code and share the same objects between infrastructure declarations and
application code, making room for additional type-safety and checks for correctness. The
properties which can not be found in existing solutions.
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3. Architecture Of The Solution

3.1 Implementation language

Swift language has been chosen as an instrument for the project implementation. Swift is
an open-sourced general purpose programming language that was announced in 2014. It’s
maintained and supported by Apple and supports multiple platforms: all Apple platforms,
Linux, macOS, Android. The language by itself is primarily used as an instrument for
development on Apple devices. However, the language is open-sourced and is actively
adopting new features for server-side development since 2016 by means of the special
“Swift Server API Workgroup” which consists of Swift core team from Apple as well
along with engineers from Amazon and MongoDB. These API will provide low-level
“server” functions as the basic blocks for developing server-side capabilities, removing the
reliance on interfacing with generally platform specific C libraries. The latest stable
releases of Swift throughout the 2021 already included prominent changes to the standard
libraries and memory model - now the language standard libraries provide high-level
interface intended to work with WebSockets, TLS, UDP, TCP with introduction of
Network library, also Swift adopted the async/await paradigm and structural concurrency
(Swift Evolution Async/Await., 2021). All of the recent changes in the language have an
explicit vector towards server side development and there is still a huge space for
proposing features and incorporating them into the Swift runtime.

Characteristics that make Swift a good choice for server-side applications in general and
serverless and cloud computing in specific are:

● Small memory footprint - Swift has a smaller memory footprint, compared to
popular server-side languages that rely on automatic memory management and may
achieve memory footprints close to C/C++ footprint results. Benchmarks related to
other languages and measuring techniques may be found on the benchmarking
project web-site. That property is valuable for cloud computing, since it allows
maximizing resource utilization on cloud platforms.

● Quick startup time - Swift applications have small boot time, since there are almost
no warm up operations, that implies less wait time for streamlining CI/CD
processes and deploying on VMs or containers. That property is especially precious
for serverless computing and cloud functions, since it helps to reduce the
“cold-start” problem of serverless that was mentioned in paragraph 1.1.

● Deterministic performance - Swift doesn’t use garbage collection techniques and
lacks just-in-time (JIT) compilation, which means light runtime without additional
operations and memory allocations tracing. That also makes Swift runtime more
deterministic compared to JIT based languages, since even modern garbage
techniques still may produce non deterministic behavior. JIT also imposes delays in
the initial execution of applications, since it is necessary to load and compile
bytecode in the runtime.

● High level APIs and expressiveness - all the previous properties make Swift stand
out from the background of high-level languages such as Python or Ruby. But it
stills benefits on the background of more low-level language like C/C++ or Rust, in
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terms of rich type-system and expressive syntax, while providing direct
interoperability with C and unsafe memory operations.

There are already developments regarding the native serverless computing in the
“swift-server” project. One of them is the “swift-aws-lambda-runtime” module, which is
actually the Swift implementation of AWS Lambda Runtime, it’s designed to make
building AWS Lambda functions safe and simple. That library uses an embedded
asynchronous HTTP Client based that is fine-tuned for performance in the AWS Runtime
context. The library provides a multi-tier API that allows building a range of Lambda
functions: From quick and simple closures to complex, performance-sensitive event
handlers. As most Lambda functions are triggered by events from AWS platform - library
module AWSLambdaEvents provides implementation for common AWS events to
simplify writing Lambda functions. The library is based on three main protocols which
provide interfaces of different abstraction levels - ByteBufferLambdaHandler,
EventLoopHandler, LambdaHandler. All of them provide strongly typed asynchronous
processing protocols for Lambda functions. The library provides safe and high performant
native instruments for AWS serverless infrastructure. However, while the core API is
considered stable the library is still on its way to 1.0 version and doesn’t provide
convenient ways to deploy serverless infrastructure. Now, to deploy Lambda function to
AWS the developer has to manually compile the code for Amazon Linux using additional
instruments like AWS Serverless Application Model (SAM), AWS Command Line
Instruments (AWS CLI) or Amazon Linux XCode toolchain which is a plugin that
integrates with the XCode build system and allows to build the executable using XCode,
but binds the developer to using the XCode development environment.

Summing up, it can be said that the Swift language was chosen as the language for the
implementation of the project due to its qualities perfectly suitable for cloud development
and the ability to integrate new solutions into open source projects supported by the
language team, since the language roadmap is targeting serverless and cloud computing
realm.

3.2 DSL instruments in Swift

In 2019 Apple has announced its brand new declarative SwiftUI framework for developing
on iOS devices. With the introduction of SwiftUI, Swift 5.1 received new hidden
functionality that was called “result builders”. After stabilizing the result builders API, it
was officially unveiled in Swift 5.4 release in 2021, the motivation and architectural
decisions behind that feature described in detail in the corresponding “swift evolution
proposal” (Swift Evolution, 2021). The main effect of this proposal is that it allows
implementation of a new type of embedded DSLs in Swift by calling transformations to
the statements of the “building function”.

Result builders is a feature that allows certain specially-annotated functions to collect and
build up the resulting values from a sequence of components or statements. The idea can
be illustrated with a simple Figure 4 from the feature proposal (Swift Evolution, 2021).
Such syntax allows the design of type-safe and expressive DSL libraries inside Swift to
describe special domain specific problems. That approach is especially useful in
conjunction with code generation techniques, including generating structured data formats
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like JSON, YAML, etc. The feature is based on compile-time code generation and does not
affect runtime performance of the applications.

@TupleBuilder
func build() -> (Int, Int, Int) {

1
2
3

}

// This code is interpreted exactly as if it were this code:
func build() -> (Int, Int, Int) {

let _a = TupleBuilder.buildExpression(1)
let _b = TupleBuilder.buildExpression(2)
let _c = TupleBuilder.buildExpression(3)

return TupleBuilder.buildBlock(_a, _b, _c)
}
Figure 4. Result builders example

Any single  result builder must implement just two basic requirements:

● Result builder must be annotated with @resultBuilder attribute, which
allows that type to be used as result builder.

● Result builder must have at least one invariant of the static buildBlock
method.

However, to provide flexible syntax and rich functionality, the result builder should
provide an extended set of static result-building methods. The full set of result building
methods contains the following methods:

● func buildBlock(_ components: Component...) -> Component]
● func buildOptional(_ component: Component?) -> Component
● func buildEither(first: Component) -> Component
● func buildEither(second: Component) -> Component
● func buildArray(_ components: [Component]) -> Component
● func buildExpression(_ expression: Expression) -> Component
● func buildFinalResult(_ component: Component) -> FinalResult
● func buildLimitedAvailability(_ component: Component) ->

Component

Architecture incorporated in ResultBuilders basically implements the closure of operations
design pattern mentioned by E.Evans in “Domain Driven Design”. This design pattern is
inspired by rigorous mathematical formalisms, where the operations are usually closed
under the set of its operands. Such refinement of interfaces significantly simplifies the
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interpretation operations and allows for combining and chaining operations in the
declarative form, resembling the way how mathematical statements are expressed. In
conjunction with immutable value objects such approach enforces side-effects free
functions and safe-multithreading.

Based on the set of implemented methods, several imperative and control flow
constructions could be used in result building context. Exception-handling statements,
if-else statements, switch statements and for-in loops can be used inside of the building
context, while the builder implements necessary methods. More detailed documentation
and future plans to improve the Result Builders API could be found on its evolution
proposal.

NavigationView {
HStack {

CircleImage(image: viewModel.avatar)
VStack {

Text(viewModel.name)
.padding(.leading, 15)
.font(.title)

Text(viewModel.personastate.description)
.font(.headline)

}
Spacer()

}

VStack {
FriendListView(friendList: viewModel.friends)

}
}

Figure 5. Production-ready snippet of SwiftUI DSL

3.3. Possible solutions for serverless DSL library

There are several frameworks and standalone solutions exist as the open-source solutions
and as proprietary solutions too. They have different integration processes and work with
different sets of cloud providers. All those properties influence possible architectural
decisions and reusability issues related to the library. Some of the approaches for the
library that were considered during the research are using third-party cloud provider
specific SDKs as external dependencies to the library or using DSL to generate code for
solutions that support multiple cloud provider platforms.

Summing up all the problems in existing solutions the requirements for the DSL
framework could be formulated as following. The implementation must be provider
agnostic allowing to ease the problem of vendor lock-in that exists in serverless
computing. However, there should be a way to integrate some specific features that are part
of the providers ecosystem, using modifiers or decorators. This will provide the user with
all possible capabilities, while keeping the separation of concerns in place. The solution
must seamlessly support integration of different cloud providers, without forcing the user
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to write its own integration code for each vendor. The implementation dependency and
version management should be kept as simple as possible, eliminating the situation where
the new versions must be published when any of the dependencies were updated. There
must be a way to define all the necessary configuration parameters from a single source of
truth, even in cases when providers require separate configuration files for different
purposes like authentication constants, database configurations or environment
parameters. To support different cloud providers and consequently various computational
environments functions deployed using the DSL declarations must support different forms
of publishing like plain binaries and Docker images.

1. Library based on the third party SDKs approach.

That approach implies the use of SDKs provided by specific cloud platforms, for
example AWS Swift SDK, Azure Swift SDK or Google Cloud Swift SDK. In that
case several SDK specific wrappers must be implemented in the library and each
wrapper would have to implement custom logic to provide the common behavior
and common abstractions across all the platforms. All the internal quirks and
differences between platforms would have to be resolved during the development
of the library.

Solution advantages :

● Library uses official SDKs provided by cloud providers
● Type-safety ensured on the 3rd party SDKs level
● Easy and predictable integration
● Unnecessary functionality provided by more general cloud SDKs

Solution disadvantages:

● Wrapper for each specific SDK should be implemented manually
● Set of cloud providers is limited by number of available SDKs
● Manual SDKs version management

That solution requires a large amount of boilerplate logic to implement wrappers for each
provider, while the opportunities to use different cloud platforms are highly limited, since
only large-scale popular platforms provide SDKs for different languages and inappropriate
for applications that are going to use less popular platforms.
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Figure 6. High-level architecture of the solution based on SDKs

Another significant problem which exists in that solution is that each specific SDK API
update may trigger changes in the source code of the library and introduce overhead
related to monitoring and adopting new SDKs versions. SDKs provided by cloud platforms
are not optimized only for serverless interactions, but also contain additional overhead to
interact with all services included in cloud platform infrastructure.

2. Library based on the code generation

That approach includes working with instruments that support several cloud platforms and
store configuration files in separate structured data formats, making it possible to generate
such files from Swift runtime using DSL interface. That approach fully utilizes the DSL
opportunities and puts all the heavy lifting of providers integration to the underlying
frameworks such as Terraform or Serverless.com.
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Figure 7. High-level architecture of code-generation based solution

Solution advantages:

● Single code generator for different platforms
● Number of platforms limited only by 3rd party supported providers
● Intermediate artifact in form of configuration file may be reused
● All SDKs version management overhead lies on 3rd party
● Less boilerplate code in the library

Solution disadvantage:

● Type-safety must be ensured on the library side
● Code generation requires more complex code

That solution provides a unified way to declare and generate serverless infrastructure
without coupling to specific cloud providers on library level. In that case the library
produces intermediate artifacts that further can be shared between projects to smoothly
recreate the same environment. Moreover it has a perspective to be extended on different
languages in the form of lightweight language-specific wrappers, very similar to how
Protobuf protocol was implemented by Google, saving type-system power of each
individual language, while having language and platform independent intermediate
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representation. The only serious disadvantage of such an approach compared to the
integrating SDKs per provider is that code generation usually requires more complex code
structures and algorithms.

3.4 Intermediate representation instruments

Both of the solutions presented above in paragraphs 2.1 and 2.2 provide several benefits
and several drawbacks each, however the possible architecture based on the
code-generation techniques seems to be more viable and platform/language independent.
Those properties are crucial for providing a flexible and universal solution. Thus, it was
decided to use the code generation approach, since it provides more valuable benefits. Two
existing solutions mentioned in paragraph 1.3 support multiple cloud providers and their
infrastructure could be used as an intermediate representation of the proposed solution -
Terraform and Serverless.com.

On the one side Terraform is a classical open-source solution which is now used in
wide-range of applications and has a large and active community as well as extensive
documentation and code examples. Terraform makes use of its special HashiCorp
Configuration Language (HCL), which allows to describe and deploy any kind of cloud
configuration, Terraform is able to manage a broad range of services including PaaS and
IaaS. HCL by itself is a full-fledged complex language with its own syntax and special
constructions. While it makes Terraform applicable for any type of task in the context of
cloud infrastructure, it also makes it redundantly verbose for solely serverless
infrastructure purposes and adds complexity to the task of translating Swift DSL to the
HCL representation.

On the other side Serverless.com is the solution initially positioned as serverless oriented
and also has an open-sourced nature. But in contrast to Terraform its limited only to
serverless realm, at first glance it only imposes limitations on the usage, but in fact that
also brings simplicity and brevity to the Serverless.com configurations. Syntax of
Serverless.com configurations are more concise and can be used as intermediate
representation more easily than HCL, without imposing limitations on the current project,
since the project is targeted solely for serverless environments.

3.5 Solution architecture summary

Swift language is actively developed in open source with Apple support and aims on
natively adopting new programming paradigms. Concise and powerful concurrency model
inspired by structural concurrency ideas and implemented in form of actors and
async/await interactions, native support of distributed computing by usage of distributed
actors make Swift very promising in terms of modern server-side development. Thus ideas
of unifying and abstracting the serverless computation using the language foundation in the
area of DSL building may have a way to the language standard libs. The idea of
intermediate representations for infrastructure configurations is inspired from the way
modern compilers work and may allow for a flexible and structured way to deploy
infrastructure from the code without the need to learn completely new concepts and
languages.
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4. Solution Implementation

4.1 Components overview

The implementation of the solution is written using the latest Swift 5.6 version (at the
moment of writing), however serverless functions themselves could be written with any
compatible Swift versions, as well as in other languages, but it will mean loss of
unification and compile time checks. The library would be distributed using SwiftPM
packages and have the structure illustrated on Figure 6. The reasoning behind such division
is that the SwiftyServerless package will only contain logic and abstractions strictly related
to the serverless domain overall, so it would be unaware of specific cloud providers and
their configuration details.

Meanwhile, that package will expose the API that is required for building custom
provider-specific adapters if needed. The SwiftyServerless package makes use of SPI
(system programming interfaces) experimental feature to maintain the proper level of
interface segregation and encapsulation. System programming interfaces allow to make the
methods and initializers public only for the client code that imports the host package with
specific @_spi attribute. Modules exposing SPI and using library evolution generate an
additional .private.swiftinterface file (with -emit-private-module-interface-path) in addition
to the usual .swiftinterface file. This private interface exposes both API and SPI. Clients
can access SPI by marking the import as @_spi(spiName) import Module. This also makes
it easy to find out which clients are using certain SPIs by doing a textual search. @_spi is a
private attribute that is mostly used for Swift compiler development, but it is undergoing
the Swift evolution process, which means that most probably it won’t be changed in the
nearest future. For example ServerlessServiceRepresentation class is marked with @_spi,
so the adapter packages may transform and enrich initial representation with new
information in a functional manner - without changing the initial instance.

Such a functional approach to the data transformation allows to enforce multithreading
safety on solution design level, because it eliminates the possibility of data-races, due to
the absence of shared state between threads. While the creation of new representation may
take additional computation efforts the representations itselves are simple lightweight DTO
structures, thus the overhead would be unnoticeable.
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Figure 8. Swift packages structure

The DSL implementation is based on the hierarchy of ResultBuilders in the form of
tree-like structure. Each result builder collects the heterogeneous set of elements and
forms the representation of the described component. The opportunity to work with
heterogeneous collections, without losing the actual types metadata is achieved by using
enumerations with associated values, as illustrated in Figure 9.

public enum Types {
indirect case list([ServerlessServiceParameters.Types])
case provider(ServerlessProviderRepresentation)
case function(ServerlessFunctionRepresentation)

}

Figure 9. Enum with associated types

Such structure allows to wrap up the underlying type information like
ServerlessProviderRepresentation or ServerlessFunctionRepresentation into the single data
type, which effectively makes the collection homogeneous for compiler, but allows to
retrieve wrapped data in order to perform additional checks or to manipulate and enrich
specific data. The simple tree of serverless representations is depicted on Figure 7.
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Figure 9.  Tree of serverless components representations

While the actual structure of the would remain more or less the same, the actual content of
any node must be open to modifications. In order to give room for implementing various
plugins or modifiers custom decorators which conforms to the Decorator protocol could be
used. That approach makes it possible to add new parameters to the declarative
representations dynamically and then implement custom options for encoding new
properties into desired intermediate representation on adapters level. That also brings
another crucial advantage of such a framework - it is possible to combine and generate
additional configurations from the single DSL representation.

4.2 Establishing the single source of truth for infrastructure configurations

Often, setting up the serverless environment and deploying functions require not only one
configuration file, but a set of files each dedicated to the specific subdomain like
authentication, databases etc. In such a situation, it becomes even harder to maintain all the
necessary configurations in the appropriate state, because there is no single source of truth,
which contains all configuration properties in one place. Moreover, those configuration
files are also usually located in different directories. But, code generation techniques allow
us to keep all configurations in sync by generating all the necessary files from one
declaration even if they have different formats or must be located in specific directories.
For example, OpenWhisk cloud provider requires to declare a separate .wskprops
configuration file which contains key/value parameters, usually for authorization purposes.
So, in case of deploying the serverless function the developers have to create such a file.

APIHOST=openwhisk.ng.bluemix.net
AUTH=xxxxxx:yyyyy
APIGW_ACCESS_TOKEN=<some token>

Figure 10. Example of .wskprops required by OpenWhisk
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The configuration itself is very simple and it’s desirable to have it in the same place, along
with other parameters. That could be achieved using decorators as they allow additional
parameters and encode them in appropriate format. For example, the declarative Swift
code from Figure 11 makes use of .configure decorator which adds additional
configurations and writes them into the format associated with the given provider.
Basically, output of that declaration would consist of two intermediate files: .wskprops
with specific provider settings and serverless.yml with serverless.com representation.

service(name: "example", version: "3.12.0") {
provider(name: "openwhisk", ignoreCerts: true)

.configure(using: OpenWhisk.config)
}
.plugins("serverless-openwhisk")
.serverlessComRepresentation()

Figure 11. Simple service declaration using Swift DSL

service: example
frameworkVersion: 3.12.0
configValidationMode: error
useDotenv: true
provider:
name: openwhisk
runtime: swift
ignoreCerts: true

plugins:
- serverless-openwhisk

Figure 12. Generated serverless.yml

APIHOST=http://localhost:3233
AUTH=23bc46b1-71f6-4ed5-8c54-816aa

Figure 13. Generated .wskprops file

Demonstrated code-generation approach emphasizes operating on the higher level of
abstractions, more tightly related with the domain, instead of digging into implementation
details of the authorization process associated with the provider, because such necessity to
manipulate with the implementation details undermines the whole purpose of
abstractioning other parts of the code. Versatility and suppliness of that approach is also
empowered by the ability to share, interpret and modify the fully platform agnostic
intermediate artifacts. All the intermediate representations could be easily collected and
transferred, meanwhile the collection of such files may independently describe the whole
serverless infrastructure, including the provider specific details. That allows us to
reproduce required infrastructure in different environments, while keeping the generated
configuration files without changes. Moreover, richer abstractions could be built over for
different provider adapters - some providers adapters may provide a way be configured
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using permissions components, auth components or resource components which will
further be interpreted into separate configuration files.

service(name: "example", version: "3.12.0") {
provider(name: "openwhisk", ignoreCerts: true)

auth("23bc46b1-71f6-4ed5-8c54-816aa")
.readOnly
}
.hostedOn("http://localhost:3233")
.plugins("serverless-openwhisk")
.serverlessComRepresentation()

Figure 14. DSL using higher level abstractions for authorization and
permissions management

However, a more general option for setting up the config still must be preserved and also
extended to make it possible to specify the configuration file instead of generating one,
because by some means it could be interpreted as a more secure way to handle permission
or authorization configurations, without explicitly exposing constants to the application
code. Such vulnerability is classified as “CWE-798: Use of Hard-coded Credentials”
according to Common Weakness Enumeration (CWE). Hard-coded credentials usually
create a highly dangerous hole that allows an external attacker to overcome the established
authentication process. There are two variants of the vulnerability:

● software contains an authentication mechanism that checks the input
credentials against a hard-coded set of credentials

● the software connects to another system or component, and it contains
hard-coded credentials for connecting to that component

An example of the case when the user would prefer to specify a standalone config file
instead of autogenerated one is continuous integration implementation with Jenkins. To
ensure proper level of security the DevOps developer most likely will store the file using
Credentials store, which allows to store the file ones, but does not allow to fetch its
contents afterwards. Such credentials configured in Jenkins are stored in an encrypted form
on the controller instance and are only handled in Pipeline projects via their credential IDs.
This minimizes the chances of exposing the actual credentials themselves to Jenkins users
and hinders the ability to copy functional credentials from one Jenkins instance to another.

4.3 Avoiding of code duplication and ensuring additional checks

Nowadays, server application developers have to declare the serverless infrastructure
configuration and actual application code separately. Such division has several negative
implications which could be neglected by declaring the infrastructure along with the
application code. The total separation of infrastructure from the application code not only
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leads to the losing of a single source of truth as was stated in paragraph 3.2, but also
impoverishes the opportunities for checking the correctness of integrations between the
infrastructure and the application. The code snippet on the Figure 15 demonstrates the
declaration of a simple application endpoint that is intended to return the list of users to the
client.

let app = Application()
let router = try app.make(Router.self)
router.get("/users") {

req in return try User.all()
}
try app.run()

Figure 15. Declaration of a simple endpoint “/users”

There is nothing wrong in declaring such a simple endpoint, but if the developer will need
to tie that endpoint with the serverless function, it would have to copy-paste the route to
the endpoint. While it does not seem to be a big problem in the small example, such a
solution is not scalable and highly error-prone when the number of endpoints increases.
Traditionally developers have to manually track changes to the endpoint and update
according configuration for the serverless infrastructure, eventually the endpoints stated in
the application code and in the serverless configuration files could easily go out of sync. In
the best case scenario such problems would be identified on the stage of automated
integration/acceptance testing or during the manual testing stage. In the worst case scenario
such a problem may occur after production deployment, if there were not enough
automated tests and the manual testing cases have missed the case where the function is
used. In both cases, the software development process would suffer negative consequences
of the technical issue. At best, some efforts would be spent on finding the bug, fixing it and
retesting which may take a noticeable amount of time depending on the established
software processes. At worst, client experience would be affected by such mistakes and
even more resources would be spent on fixing the problem. But, it is possible not to
increase the development and testing cycles length and not to put the risk of exposing
erroneous code to the clients, with the help of build time checks.

If the solution makes it possible to generate the code for serverless infrastructure then it's
also possible to build more precise and type safe abstractions in a way that is usual for any
developer who works in OOP paradigm. To create an intention revealing interfaces that
operate with the ubiquitous terminology that is clear to any experienced developer the DI
Container pattern could be applied for typed integration of serverless functions between
different components of the app, while still preserving the low-coupling between the
concepts of infrastructure and business logic. The purpose of such a container would be to
eliminate the possibility of desynchronization by introducing a new layer of abstraction.
The declarative declaration of service using the functions container is presented on Figure
16.

service(name: "example", version: "3.12.0") {
provider(name: "openwhisk", ignoreCerts: true)

.configure(using: OpenWhisk.config)
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function(of: UsersHandler.self)
.stage(.production)

function(of: PhotosHandler.self)
.stage(.dev)

}
.plugins("serverless-openwhisk")
.serverlessComRepresentation()

Figure 16. Declaration of the typed functions registered in the container

With that approach the handler object is the single source of truth for both infrastructure
part of the code as well as for the application code, so the unnecessary and error prone
duplication of code was eliminated. Moreover, all the necessary meta information about
the handler, like file path could be inferred automatically. The implementation of the
underlying dependency container, which is depicted on Figure 17 is relatively simple, but
it allows access and register entities based on their type.

actor DefaultHandlerContainer: HandlerContainer {
private var services = [String: AnyHandler]()

private func typeName(_ anyHandler: AnyHandler) ->
String {

return "\(type(of: some))"
}

func register<T>(service: T) {
let key = typeName(T.self)
services[key] = service

}

func resolve<T>() -> T? {
let key = typeName(T.self)
return services[key] as? T

}
}

Figure 17. Implementation of handlers container

That implementation allows to resolve specific handlers based on their type, and returns
not the abstract protocol, but actual class which allows access to the specific properties and
metadata of the class. It lifts the responsibility of providing the correct file path to the
handler from the developer and that is needed for developer to use the handler is to create
the class object, then make it conform to the Handler protocol and that's all. The
implementation is simple and has room for evolution - one obvious drawback is that it still
provides only runtime or build time checks, because if the handler has not been registered
before using in declaration it will propagate an error. Inside there is a dictionary, where the
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key is a string containing the type name, and the value is an object that we register in the
locator. To get some kind of dependency, you need to register it first. Handlers should be
registered in one place at the start of the application.

The handlers container has a mutable state inside it and while it is highly likely that
container could be accessed from different threads, the access to the state must be
synchronized to allow safe usage in a multithreading environment. That behavior could
easily be achieved using the new Swift actors model, which enforces isolated context when
the properties of the actors are being accessed from the outside, but the client code would
have to access methods of the actors an asynchronous ones, because accessing the
properties may assume waiting for other threads to finish their operations.

Opportunity to move such checks to the compile time stage is possible using source code
analysis and currently is being investigated. Such code analysis could be performed using
the SourceKit library that is distributed within Swift toolchain and provides rich source
code indexing. Similar approach is used in Dagger for JVM and there is also an adaption
for Swift by Uber in their Needle framework which is still in the early stage of
development, having the last version of 0.18.1, while claimed as production ready and used
across Uber development environment.

4.4 Solution implementation summary

Proposed solution introduces several important properties to how the serverless
infrastructure code is written. It makes it possible to use the syntax constructions that are
common for developers of the application and get rid of provider specific SDKs which also
does not provide a way to create infrastructure configurations. In turn, the DSL framework,
also automates generation of helper files and becomes a single source of truth. Duplication
of code and out-of-sync problems mitigated by such a single source of truth and that lead
to more maintainable and detangled structure of code. Creating the declaration inside the
host language of the application, also contains an advantage which is natural to cloud
provider SDKs - type safety and build-time/compile-time checks that can reduce time
spent on the software testing stage.



30

5. Testing and evaluation of the solution

5.1 Example of an API

To demonstrate and evaluate the solution, we need to conduct a proof-of-concept
evaluation based on the several APIs implementations one of which would be implemented
using AWS Runtime CDK, other one would be implemented and deployed using the
presented solution in the form of Swift DSL. Current paragraph is dedicated to the process
of implementation and deploying an API using those two solutions. Given the fact that
AWS Runtime CDK has been maintained and developed for several years, it presents more
instruments to interact with AWS runtime in different ways. But, it also contains much of
the business logic required for integrations and development, whereas the proposed
solution dispatches most of the work to the underlying implementation that is responsible
for establishing the integration and deployment to the specific provider. So, the framework
could be quickly extended to support a wider range of AWS specific abstractions through
lightweight adapters, that do not require years of implementation and do not actually
contain much business logic. But, now the goal of the work was to implement the core
cloud terminology in code in an extendable and flexible manner, and ensure the basic
support of at least several cloud providers.
So, keeping in mind that fact the following API would operate using the basic building
blocks of the AWS infrastructure, to present a fair comparison between the
implementations.

The simple API would be intended for a cloud based TO-DO list application and provide
several endpoints to fetch all to-do tasks, fetch the specific one or to create a new one.
Endpoints specifications are shown below.

- POST: /task - Creates a new to-do task with a unique id.

Parameters:
"title": "ToDoTask"
"type": "object"
"properties": {

"id": {
"type": "integer"
},
"description": {
"type": "string"

}
},
"required": ["id", "description"]
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- GET: /tasks - Fetches all available tasks.

Result:

"title": "ToDoTasksList"
"type": "object"
"properties": {

"tasks": ["ToDoTask"]
},
"required": ["tasks"]

- GET: /task/<id> - Fetches task with the provided identificator.

Result:

"title": "ToDoTask"
"type": "object"
"properties": {

"id": {
"type": "integer"
},
"description": {
"type": "string"

}
},
"required": ["id", "description"]

5.2 AWS Lambda Runtime Implementation

To start building the API AWS Runtime dependency must be included to the Package.swift
file, to build the TO-DO API application target should import AWSLambdaRuntime and
AWSLambdaEvents components along with resources config file. Then the lambda
function itself must be implemented using AWSLambdaRuntime. For the returned data
several mock tasks have been added as a static array. The implementation of the lambda
function using AWSLambda runtime is depicted in Figure 22 (code related to JSON
encoding/decoding is irrelevant to the subject and was omitted for the sake of simplicity).

import Foundation
import AWSLambdaRuntime
import AWSLambdaEvents

Lambda.run { (context,
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request: APIGateway.V2.Request,
callback: @escaping (Result<APIGateway.V2.Response, Error>)

-> Void) in
switch request.routeKey {

case "GET /tasks":
// JSON Encoding logic

case "GET /task/{id}":
// JSON Encoding logic

case "POST /task":
// JSON Encoding logic

default:
callback(.success(APIGateway.V2.Response(statusCode:

.notFound)))
}

}

Figure 18. Implementation of lambda function

The implementation of the serverless function is straightforward and intuitive, because of
the one-to-one match of serverless function and Swift closure. Such design seems very
intuitive to framework clients and fits naturally in the process of development Swift code,
in such a way that is familiar for any developer. The closure accepts several parameters
which are context, request and callback. The context can be used to retrieve environment
variables and constants from the AWS environment.

One of the drawbacks of the listed code that could be outlined is tight integration with
underlying implementation of cloud provider, because details of deploying environment
get sunk into the function implementation and interface. Not only through imports of AWS
CDKs, but also function interfaces are tied up with the APIGateway component of AWS
infrastructure in such a way that even version of the APIGateway has to be specified in the
interface. However, in fact those interfaces do not introduce any useful insights to the
function implementation and it seems that the function should ideally be agnostic of its
deployment environment. After creating the implementation of the function and providing
mock data, the function must be deployed to AWS manually. Deploying a function to AWS
firstly implies creating a Docker image for Amazon Linux 2 OS. To compile the functions
using Docker it is reasonable to create a separate script, where the specific compiler and
build parameters would be specified.

docker run \
--rm \
--volume "$(pwd)/:/src" \
--workdir "/src/" \
swift:5.3.1-amazonlinux2 \
swift build --product ToDoList-API -c release -Xswiftc -static-stdlib

Figure 19. Creating of a docker image
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Script builds source files which reside in the working directory and then docker image is
created using the compiled artifacts. After building the Docker image for Amazon OS all
created images must be zipped in the archive with special structure and after that it finally
would be ready for deployment. The next step is uploading the artifacts to AWS Lambda
using the AWS account console. Firstly, users have to create a new Lambda function either
from scratch or using some existing blueprint. Creation of the functions is made through
the web application UI and requires function name, runtime and optionally specifying
permissions. After that the artifact generated by the user must be uploaded to the function.
However, there are several problems with this step. First of all it is performed through the
UI and which is an error-prone and not reproducible approach, due to the lack of any
version management and inability to properly review such changes (discussed in more
details in Paragraph 1). For example, when a user has several functions prepared for
uploading it may upload the wrong binary to the function. The second, is duplication of
data in the UI configuration and in the build parameters for artifacts - the user has to
specify name and runtime while building the artifacts and while creating the function in the
console. This not only leads to duplication, but also a possible point for desynchronization
between build parameters and created functions.

Next step is connecting the function to API Gateway which allows the user to trigger a
function using regular REST API. This step involves creating an integration with
previously instantiated Lambda, it means that users need to select name, region and stage
for the endpoint. But, also users have to manually specify routes to the resources, basically
copy-pasting the endpoints which were setted up in the code. Again, such technique is
likely to result in subtle errors and typos, not saying that all this setup is straightforward
manual job that has to be automated. Such, approach may be suited for small projects
where it is easy to control all the changes and problems would be identified quickly, but
it’s not appropriate for large projects with long testing cycles and many new changes
arising. To sum up, the whole process of setting up the Lambda function could be divided
into several consequent steps:

1. Writing the function implementation

2. Building a Docker image and packaging it

3. Creating a function through web console and uploading the package

4. Creating an integration with gateway

5.3 Implementation with Swift DSL library

On the other hand, the proposed solution does not require most of the steps involved in the
setup with AWS Lambda Runtime and eliminates duplication of information between steps
by reusing the code and parameters. The first step stays the same - creating the function
implementation. This time function implementation would be almost the same, the only
difference is that it will lack AWS entities like Lambda or APIGateway.Response, which
makes the function agnostic of deployment environment and hence more reusable for
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different providers if needed. And also the handler which is able to send back the API
response must be implemented by a client.

struct LambdaFunction {
public let endpoints: [String] = [

.get("/tasks"),

.get("/task/{id}"),

.post("/task")
]

private let requestPerformer: RequestPerformer

init(requestPerformer: RequestPerformer) {
self.requestPerformer = requestPerformer

}

func run(args: [String: Any]) {
guard let route = args["route"] else {

requestPerformer(.success(.notFound))
}

switch route {
case "GET /tasks":

// JSON Encoding logic

case "GET /task/{id}":
// JSON Encoding logic

case "POST /task":
// JSON Encoding logic

default:
requestPerformer(.success(.notFound))

}
}

}

func main(args: [String: Any]) {
LambdaFunction(requestPerformer: .default).run(args: args)

}

Figure 20. Implementation of lambda function with plain Swift
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Lambda function presented on Figure 20 simply parses the endpoint route and based on the
passed parameters and route performs required logic and sends response back to the client
using the RequestPerformer provided in the initializer. RequestPerformer is a generic
composite wrapper around standard library URLSession with async/await interface. It
provides the mechanism to communicate over HTTP protocol.

The next step would be creating the infrastructure configuration using Swift DSL. That
configuration will represent the whole configuration and data from that declaration would
be used in AWS to create an appropriate Lambda function. The declaration exemplified on
Figure 21 contains all information that is necessary for deploying the serverless function
and can be inferred automatically on stage of creating the intermediate representation.

import ServerlessComAdapter
import SwiftyServerless

service(name: "example", version: "3.12.0") {
provider(name: "aws", ignoreCerts: true)

serverlessFunction(
name: "ToDoFunction",
handler: LambdaFunction.self

) {
event(.httpAPI(method: .get, route: "/tasks"))
event(.httpAPI(method: .get, route: "/tasks/{id}"))
event(.httpAPI(method: .post, route: "/task"))

}
}
.serverlessComRepresentation()

Figure 21. Infrastructure declaration with DSL

To create the infrastructure declaration, client code must import several packages that are
implied to be a part of distribution units from the solution. SwiftyServerless represents the
set of objects that build the common foundation of serverless domains such as
ServerlessService, ServerlessFunction, etc. That package does not contain any information
about the possible intermediate representation and interpretation details. On the contrary
ServerlessComAdapter is imported to provide mechanisms for interpreting the DSL
components into ServerlessCom representation and provides additional decorators to
Serverless DSL. One of such decorators .serverlessComRepresentation() is used in the
Figure 21 and provides mechanisms to translate Swift structure into the expected
representation. Further, the service component accepts parameters that describe the service
properties through the initializer and for brevity's sake some of the parameters have
sensible default values. The last required parameter for service initializer is lazy-computed
anonymous closure closed over ServerlessServiceComponent type with the signature
(ServerlessServiceComponent…) → ServerlessServiceComponent that effectively creates
a namespace which restricts the set of available components that could be created inside it.
ServerlessServiceComponent is an existential type that represents a box that could contain
different implementations that conform to the same requirements. So, ServerlessProvider
and ServerlessFunction should conform to ServerlessComponent protocol, but the builder
still should be able to retrieve the actual nominal underlying type to provide compile-time
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code checks for available methods of the type and code completion. Thus, the
ServerlessServiceComponent is represented in the form of protocol with associated type
capturing and requires the components implementation to capture the underlying type and
have several common functionality - represented on Figure 22. Basically, all other
components also create their own scopes built upon generic protocols. Moreover such
structure allows for external packages to extend either the protocols or concrete types,
using extensions. Example of such extension is adding .serverlessComRepresentation()
decorator to ServerlessServiceComponent protocol in ServerlessComAdapter package, that
allows to separate logic of interpreting the component to the special package, properly
distributing areas of responsibility between code parts.

protocol ServerlessComponent {
associatedtype T: Decoratable
init(_ type: T)

}

protocol Decoratable {
associatedtype T

func decorate(using: Decorator<T>) → T
}

protocol ServerlessServiceComponent:
ServerlessComponent,
Decoratable

where Decoratable.T = ServerlessServiceComponent,
ServerlessComponent.T = ServerlessServiceComponent {

}

Figure 22. Basic generic constraints that build up the components hierarchy

ServerlessFunctions are created from the standalone structures that incorporate some
metainformation required to deploy functions. Before referencing in DSL functions have to
be registered in the handler container - its implementation is depicted on Figure 17.

extension DefaultHandlerContainer {
public static let shared = DefaultHandlerContainer()

private init() {}
}

let lambda = LambdaFunction(handler: .default)
DefaulthandlerContainer.shared.register(lambda)

Figure 23. Registering function using singleton container

After registering it could be used in the ServerlessFunction component simply just by
specifying the type of the handler as demonstrated in Figure 21. The function component
DSL builder will then resolve the function by using the singleton (Gamma, E., 1995)
instance of the container. Singleton is sometimes recognized as an anti-pattern, but in the
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case with a container it seems to be rational to use it, because while it still contains global
state, the state access is isolated through actors and the code is forced to use only one
single storage of handlers. For some of the underlying intermediate representations it’s
important to know the absolute path to the handler to invoke it on the cloud platform. This
information is also encapsulated by the ServerlessFunction structure by accessing #filePath
preprocessor macros and this hides the details of path manipulating from the end user.

Building the module that contains the infrastructure declaration produces the intermediate
representation which reflects the infrastructure declared in the code. The example from
Figure 21 will produce a .yml file in the form of Serverless.com specification shown in
Appendix 2.

Such approach is an effective replacement for steps 3 and 4 of deployment using AWS
Lambda Runtime. It allows to get rid of duplication and will be versioned along with the
serverless function implementation code. After making declarative infrastructure
configurations, the code can be built and will produce intermediate representation files that
are used for simplified deployment using Serverless.com in the case represented on Figure
21. After obtaining the intermediate files deployment could be made with a single
command ‘serverless deploy’ and all necessary information would appear in the AWS
console. So, in order to sum up the process of deployment a serverless function with Swift
DSL library will follow the next steps:

1. Writing the function implementation

2. Writing the infrastructure declaration

3. Deploy the configuration

Although, there is a reduction only in one step compared to the deployment with AWS
framework, the steps required by the proposed solution are much simpler and introduce
code generation, which lifts some of the extra work required by the other solution.
Compared to the implementation with AWS Runtime there is no need to manually build
the source files to create Docker images and no requirements for manually packaging such
artifacts according to some special structure. So, the overall process of deployment of the
serverless function becomes more unified and automated.

5.4 Quantitative evaluation of implementations

Quantitative evaluation is an approach which is used to make evaluations and assumptions
based on statistics or other quantitative data. Usually such data is obtained using
monitoring or analytics techniques. In case of evaluating the proposed solution - there are
several parameters which could be used to perform a quantitative evaluation. Those
parameters are gained using built-in monitoring tools from Xcode and VSCode interactive
development environments (IDE).

● Number of LOC (lines of code) required to deploy and implement the same
serverless function using the proposed framework comparing to the
implementation without it

● Function start times for cold and warm start using different implementations
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● Number of required dependencies for client code

LOC parameters usually reflect the expressiveness of the software code, because having
the same functionality implemented in fewer lines could mean that syntax of the code is
more clear and important domain ideas could be identified easier. But, the main notion of
that metric is to reflect the effort required to maintain and develop the software. However
there are several drawbacks in this metric, more naive code may involve code duplication,
but still will be easier to understand than brief and complex generic code, developer
experience and language may affect the metric significantly too. In the case of DSL metric
may eventually include lines that have no actual meaning, because statements in DSL can
be separated using empty line or figure brackets. However, in the case of evaluating small
examples of the same functionality used through the paper, such an approach seems to be
reasonable and will show the difference between implementations. The LOC results
depicted on Table 1 were obtained from the implementation of TODO API discussed in
section 4.1.

Traditional SDK Swift DSL

OpenWhisk Provider 121 101

AWS Provider 113 87

Table 1. LOC for different implementations

Figure 25. LOC charts for different implementations

According to the charts represented on Figure 8 Swift DSL demonstrated a decrease in the
number of lines of code for both examples. In the case of the OpenWhisk provider it
showed a decrease of 7% and for AWS the decrease was 14%. Reduction in number of
lines does not seem to be significant and with the increase of the project size the
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percentage will become even lower, because the serverless function implementation
contributes to the metric mostly, while the DSL code required for deploying the code
usually will be much smaller and also grow slower than function logic. In some cases there
would be even an increase in the number of lines, because like it was with an AWS
Lambda Runtime deployment requires mostly actions in UI instead of making any code
declarations, but the possibility to track changes and version management for such
configurations outweigh the need of additional code, especially keeping in mind that the
code is written in declarative manner and tightly related to the domain.

Next parameter that is possible to evaluate is the number of external dependencies that is
required by compared implementations. Despite the fact that dependencies are good in
terms of reducing the amount of work required by project maintainers and usually provide
well designated and tested constructions, they still introduce a point of failure into the
software structure. That means the user firstly has to deal with declaring those
dependencies and establishing a way of resolving such dependencies using some kind of
package manager supported by all dependencies and in complex cases maintaining them
could be difficult. Although, the presence of dependencies imposes requirements on
execution environments and complicates the process of setting up development tool sets.

In case of AWS Lambda Runtime implementation, developers should explicitly add several
frameworks as a package dependencies, those are: AWSLambdaRuntime,
AWSLambdaEvents, swift-nio, swift-backtrace and swift-log. Also as far as the source
files need to be built as Docker image the implicit dependency on Docker gets introduced.
On the other hand, the implementation of the TODO API example using Swift DSL
solution introduces several other dependencies too. It requires the client code to explicitly
add dependencies for SwiftyServerless and ServerlessComAdapter along with
Serverless.com framework as implicit dependency. Dependency graphs for both cases
depicted on Figure 9. As could be seen from the graphs, the approach with AWS Runtime
framework requires more dependencies to be explicitly stated and managed by the
developer in the case with TODO API 6 dependencies against 3.
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Figure 26. Dependencies graphs

In addition to LOC metrics and dependencies one possible option to compare and evaluate
solutions is performance metrics. Performance is a crucial characteristic of a high-load
cloud system, but the concerns regarding the most part of performance issues are lifted on
to the cloud provider  and this one the biggest advantages of serverless approach. However,
in terms of deploying serverless function usage of provider-specific SDKs may introduce
additional optimizations, which allow for a faster execution of the functions. Charts
demonstrated on Figure 10 demonstrate this hypothesis in action.

(a)
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(b)

Figure 27. Start times of the function deployed on AWS cloud

The data have been collected using the automated script - to simulate cold starts of the
function script invoked the function 40 times with the interval of 1 hour for each case.
Obtained data showed that the function deployed with the Amazon Runtime showed
5-10% faster response time compared to the same function deployed with Swift DSL. The
reason for that is possibly the usage of pre-compiled binary Docker images, which are built
for Amazon OS and optimized to run on top of that OS. However, DSL representation may
also automate generation of Docker images and deploying it to the AWS, if that will have a
notable effect on the performance. Similar measurements were conducted with functions
deployed using OpenWhisk provider Appendix 1, but the measurements did not contain
any significant variations.

5.5 Solution evaluation summary

DSL slightly reduces the number of code required to achieve the same functionality,
compared to SDK from cloud providers, but makes the deployment process significantly
more explicit, because it does not require any separate configuration or custom automation
scripts which distracts the understanding of the process and provides unnecessary details.
From the performance point of view, functions deployed with the DSL show the similar
response times on cold and warm start compared to deployed manually and using SDKs,
but in some cases they may lack optimizations achieved using the cloud providers
solutions. However, such optimizations also could be added to the DSL by introducing
additional layers for optimizations on build time.
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6. Conclusion

The solution proposed in the current work currently resides in the development stage and
has plenty of features to be implemented. However, based on the observation of existing
solutions and conducted evaluations it could be stated that the proposed solution provides a
more reliable and convenient way for deploying serverless infrastructure. It already allows
to significantly simplify the process of deployment of the serverless function, which was
demonstrated in section 4.3 by automating part of the manual job required to deploy
functions, also it introduces additional build-time checks and type-safety to the
infrastructure configurations. Such checks help to maintain the application code and its
infrastructure by keeping them in the same project and written in the same language.
Declarative configuration provides a way to abstract clients from underlying details and
instruments used to deploy function, is such a way that additional optimizations and
instruments could be injected additively without breaking the existing codebase. The fact
that the solution may lack some features that are critical for specific projects is mitigated
by the presence of intermediate files as build artifacts from the declaration, in critical cases
it could be used to manually add necessary fields or options that are still not introduced in
DSL. While this introduces desynchronization and will cut off several possible
automations, it's a viable way for critical cases and makes the solution more flexible during
the development phase.

Despite the solution's advantages there are plenty of problems too, part of them related to
the DSL concept as whole, part of them specific to the concrete solution here. The first is
tightly related with the nature of DSL. DSL solutions can operate only on a fixed set of
instruments provided by developers of the framework, however that set may not be
sufficient for all the corner cases emerged during production development and such cases
are hardly be envisioned by the framework developers. Eventually, it may be too restrictive
for developers to use the library and it would be dropped. The answers to this problem are
generated intermediate representations that could be modified independently and
modification-encompassing design of the library, which should allow writing custom
modifiers for the DSL entities. The second large problem is lack of unified protocol for
serverless interactions, that basically means that whereas all the providers operate on the
same set of objects and definitions, the actual implementation may differ and that may
require additional configuration options per provider. That either could be resolved in a
client code using custom modifiers or should constitute an additional abstraction layer
which provides the ready instruments for most provider-specific settings. However, as
most of the logic is performed by intermediate files consumers, such adapters still would
be thin and lightweight.

As could be seen from the problems section there is a lot of room for improving and
extending the solution. At the time of writing the framework still cannot provide Swift
interface to create and manage resources located on the cloud provider side. But the work
is going on implementing the possibility to create AWS tables using its adapter package.
Possible extensions and improvements may include more advanced use of type system and
eliminating type erasure as much as possible, this may introduce more code duplication for
different components, but will move the build-time checks to compile time and will result
in better auto-completion options, because the compiler will be able to check all possible
invariants. Also more build-time checks for the declaration correctness maye added, for
example ensuring that all intermediate files required by declaration were created and reside
in expected directories. The most advanced possibilities of improving such a solution are
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opened with usage of the common serverless interactions model, which may allow to
generate the serverless representation, along with Swift intermediate representations, based
on the language AST and encompassing guaranteed language optimizations. That could be
a large step towards native support of the serverless computing paradigm.
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Appendix 1

import ServerlessComAdapter
import SwiftyServerless

service(name: "example", version: "3.12.0") {
provider(name: "aws", ignoreCerts: true)

serverlessFunction(
name: "handleGetTasks",
handler: GetTasksHandler.self

) {
event(.httpAPI(method: .get, route: "/tasks"))

}

serverlessFunction(
name: "handleGetTaskWithID",
handler: GetTaskWithIDHandler.self

) {
event(.httpAPI(method: .get, route: "/tasks/{id}"))

}

serverlessFunction(
name: "handlePostTask",
handler: PostTaskHandler.self

) {
event(.httpAPI(method: .post, route: "/task"))

}
}
.serverlessComRepresentation()
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Appendix 2

service: example
frameworkVersion: "3.12.0"
configValidationMode: error
useDotenv: true
deprecationNotificationMode: warn:summary

provider:
name: aws
stage: dev
region: us-east-1
profile: dev
runtime: swift5
memorySize: 1024
timeout: 10
ignoreCerts: true

functions:
HandleGetTasks:
events:
- httpApi:
method: GET
path: /tasks

HandleGetTaskWithID:
events:
- httpApi:
method: GET
path: /tasks/{id}

HandlePostTask:
events:
- httpApi:
method: POST
path: /task


