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Teknologinen vallankumous ja datan määrän lisääntyminen maailmassa on saanut

tutkijat kiinnostumaan datalähtöisten koneoppimismallien adaptoimisesta akateemisen

rahoituksen piiriin, hyödyntääkseen perinteisten rahoitusmallien epätehokkuuksia.

Tutkimuksen tarkoituksena on testata, voiko eteenpäin kytkettyä monikerroksista

perseptroniverkkoa käyttää FTSE 100 osto-optioiden hinnoitteluun ja suojaamis-

tarkoitukseen. Tuloksia vertaillaan Black & Scholes option hinnoittelumalliin, joka

antaa optioille teoreettisen hinnan perustuen kohde-etuuden hintaan, strike tasoon,

riskittömään korkotasoon, volatiliteetti-ennusteeseen sekä jäljellä olevaan maturi-

teettiin.

Tutkimuksen data koostuu yli 3000:sta optiosta aikavälillä 2019-2021. Lopullinen

aineisto rajausten jälkeen koostuu 271 689 itsenäisestä havainnosta. Tutkimuk-

sessa rakennettiin yhteensä kaksi erilaista monikerroksista perseptroniverkkoa: yksi

koostuen Black & Scholesin perusmuuttujista sekä toinen, jossa on lisäksi GARCH-

perusteinen volatiliteettiparametri. Molemmat neuroverkkosovitukset menestyivät

Black & Scholes mallia paremmin optioiden hinnoittelussa myös silloin, kun aineisto

jaettiin option maturiteetin ja preemion mukaan. Neuroverkkosovitus, jossa oli

mukana ylimääräinen GARCH volatiliteettiparametri, ei tuonut lisää suorituskykyä op-

tioiden hinnoitteluun. Suojaamisen testaus indikoi ylivoimaista suorituskykyä neu-

roverkkosovitukselle verrattaen Black & Scholes malliin varmistaen aikaisemman kir-

jallisuuden tutkimustulokset.
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The technological revolution and the rapidly increasing amount of data have spurred

researchers to adapt data-based deep-learning models to academic finance for the

purpose of leveraging inefficiencies in traditional analytical models. The objective

of this research is to study whether Multilayer Perceptron Artificial Neural Net-

works (ANN) can be used to price and delta hedge FTSE 100 index call options.

The acquired findings are compared to the Black & Scholes option pricing model,

which estimates the theoretical price of an option based on underlying asset price

and volatility, risk-free interest rate, strike price and time to maturity.

The research data contains roughly 3000 unique FTSE 100 call option quotes from

2019 to 2021, containing 271 689 datapoints after filtering. Two distinct MLP archi-

tectures were implemented: one with Black & Scholes input variables and the other

with the inclusion of the GARCH volatility input parameter. Both of the tested

ANN models outperformed Black & Scholes in terms of pricing performance, even

when the data was partitioned based on options time-to-maturity and moneyness

rate. The artificial neural network model with an additional GARCH volatility pa-

rameter added no new explanatory power to pricing. Hedging results also indicated

promising results as Artificial Neural Networks were found superior compared to

Black & Scholes model supporting the findings of previous research.
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1 Introduction

This thesis evaluates how the multilayer perceptron (MLP) type of Artificial Neural

Network (ANN) can be applied to price and hedge index options. Traditionally index

option’s are priced with the most famous option’s pricing model, namely Black &

Scholes model (BSM). The BSM derives a theoretical option price from the market

inputs based on complex differential equations.(Black & Scholes 1973) Artificial Neu-

ral Networks represent one type of computational machine learning technique (ML)

that mimics the behavior of human brains, specifically how neuron signals interact.

The form of Neural Networks used in this thesis is called feed-forward Multilayer

perceptron Neural Networks, consisting of multiple computational layers in a net-

work.

1.1 Background and Motivation

The development of neural networks can be traced back to the 1940s when McCulloch

& Pitts (1943) discovered how the functioning of neurons can be expressed math-

ematically and how binary-valued neurons could execute computations.(Detienne

et al. 2003) The universal approximation theory suggests that Neural Networks can

estimate any continuous function in a closed interval based on input variables, which

makes it possible to model and capture complex non-linear relationships (Ruf &

Wang 2020).

In recent decades, Neural Networks have gained momentum among practitioners and

academics. The computational power of modern computers and the exponentially

growing amount of data have made it possible to solve real-life problems with Neural

Networks and other Deep-learning methods. These problems include aerospace, com-

puter vision, self-driving cars, and health care. In finance, deep-learning applications

primarily stem from securities pricing, fraud detection, and loan risk assessments,
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but due to rapidly increasing data flows, more applications are being constantly de-

veloped.

Although the history of derivatives dates back to a far-reaching history, their theo-

retical pricing only began to gain attention among academics and practitioners in the

1970s, when Fischer Black and Myron Scholes developed the famous option pricing

model (Black & Scholes 1973). BSM relies on several assumptions and simplifica-

tions, which will be introduced in subsequent chapters, including time stochastic

diffusion processes for the underlying asset. The motivation behind the thesis is to

research from the theoretical and practical point of view whether the neural network

can capture the edge-cases of BSM and produce more accurate pricing and hedging

results for FTSE 100 index options.

Malliaris & Salchenberger (1993) and Hutchinson et al. (1994) were the first re-

searchers to successfully point out the possibility of estimating option prices via a

non-parametric data-driven approach. After these papers were published, the pricing

of financial derivatives was given a new direction in this research domain. In addition

to the abovementioned researchers, numerous other papers have reported outstand-

ing performance of Neural Networks in option pricing when benchmarked against

traditional option pricing models Bennell & Sutcliffe (2004);Barunıkova & Barunık

(2011);Gradojevic et al. (2009). However, Gradojevic et al. (2009) reported that

Neural Network models do not produce constant superiority compared to BSM, and

Yao et al. (2000) reported that the BSM model only constitutes better performance

based on error metrics in at-the-money contracts compared to ANN’s. The earliest

papers in the field of study have been done with simple neural network architectures

as well as scant data, which affects the performance of neural networks compared

to traditional pricing models significantly. However, the extended computational

power has enabled more complex neural network architectures and larger datasets

to be used programmatically, leaving more gaps to be filled in this research area.
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1.2 Objectives

The main objective is to study how Multilayer perceptron Neural Networks (MLP)

can be used to price and hedge FTSE 100 European-styled index options during the

years 2019-2021. This thesis will review different methodologies and ANN architec-

tures used for option pricing based on existing literature and how those have fared

against traditional option pricing models. The second objective of this thesis is to ex-

amine whether the best-in-practice methodology can be improved when the constant

volatility assumption of BSM is relaxed by adding additional Generalized Autore-

gressive Conditional Heteroscedasticity (GARCH) volatility component to represent

stochastic underlying asset price dynamics. Lastly, this thesis will re-evaluate the

hedging performance of ANN compared to BSM. The applied ANN models are fur-

ther partitioned by the option’s charasteristics,time-to-maturity and moneyness rate

to determine whether any generalizations of the findings can be inferred.

The research questions in this particular study are introduced as:

What type of Neural Network models are the most suitable for option pricing

and hedging and what is their relative performance compared to Black & Scholes

model according to the literature?

Can the pricing performance of the currently applied Neural Network models

for option pricing be improved with additional GARCH volatility parameter?

What is the relative hedging and pricing performance of MLP neural network

compared to Black & Scholes option pricing model?
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1.3 Limitations

This thesis is limited to covering only European-styled call options. Call options

represent a contract granting the right to purchase the underlying instrument on

specific maturity date, whereas a put option is an opposite alternative to call op-

tion. European-styled options can be exercised only on the settlement date, whereas

American-styled options can be exercised at any point prior to expiration in the

option’s time grid. The restriction to use only European-styled call options is done

to simplify the empirical structure and the amount of data and to have the most

suitable financial instrument to incorporate the properties of the BSM model. The

underlying instrument is European-styled FTSE 100 index options, one of the Euro-

pean continent’s most actively traded options contracts. The observation period is

restricted to cover the time grid from January 2019 to December 2021.

1.4 Thesis structure

Firstly, a comprehensive literature review will be covered during the first three chap-

ters introducing the theoretical and mathematical concepts of artificial neural net-

works alongside option theory and the Black & Scholes model. Chapter six covers the

previous academic literature on option pricing with ANNs. The standard method-

ology and data structure are explained in the seventh chapter of the thesis. The

chaper eight presents the empirical results of the thesis, and after that, conclusions

are drawn.
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2 Artificial Neural Networks

The concept of Artificial Neural Networks stems from the behavior of human neu-

rons. Scientists are still precarious about how every element in the human brain

interconnects, although the ANNs, which resemble certain properties in biological

neurons, have already shown the capability to perform complex non-linear computa-

tions. (Yegnanarayana 2009, 15) Indeed, the capability of neural networks cannot be

glorified too much since it has been shown by (Hornik et al. 1989) and (Hornik et al.

1990) that neural networks are capable of learning approximation of any function

and its derivatives (Can & Fadda 2014).

Although the development cycle of neural networks can be traced back to the 1940s

when the first mathematical model of biological neurons by McCulloch & Pitts (1943)

was published, the more relevant findings with regards to the boundaries of this thesis

was found in 1958, when Rosenblatt (1958) invented a pillar for learning networks,

specifically referred as the perceptron. Perceptron is a single-layer network model

which is suitable for making predictions for binary classes. The perceptron’s input

signal is combined with a sum of weight and the input value, which is later processed

through a threshold to obtain the final binary prediction. (Yegnanarayana 2009, 15);

(Nielsen 2015, 3-4). According to Krøse (1996) the output y of the perceptron can

be modeled mathematically as follows:

y = F (
2∑

i=1

wixi + θ) (1)

Where F (·) is the activation function or threshold, and x is the input vector and w

the weights or bias term.
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The perceptron’s capability of solving only linear classification tasks led to a break-

through in the development of feed-forward ANNs during the 1980s when inventions

such as the backpropagation algorithm were built by Rumelhart et al. (1986). During

the same time the first Multilayer-Perceptron networks (MLP) were tested. MLP

represents a subset of Feed-Forward ANN, among other Neural Networks such as

Convolutional Neural Networks (CNN) and Radial Basis Functions (RBF). The in-

formation in MLPs is flooding into one direction without any loops through the

architecture of multiple different layers. The significant difference between regu-

lar Perceptron and MLP is the number of used layers and the fact that MLP uses

non-linear activation functions, which increases its capability to characterize features

from non-linear data. The “learning” of the network is happening during the afore-

mentioned procedure called backpropagation which is covered later in this chapter.

In the simplest form, the MLP contains an input layer, single or multiple hidden

layers associated with many neurons, and an output layer (Abraham 2005). The

input layer is the first obstacle of the signal, and it handles the network’s external

communication and passes the inbound data to other layers. The network’s output

layer is the last obstacle and produces ANN’s prediction. Hidden layers can also be

called ”transitional” layers between input- and output layer’s as they operate in the

middle of the network. Each layer contains artificial neurons, inbound data from

previous layers, and an activation function that manipulates the outbound flowing

data to the next layer.

In MLP, neurons’ transformed signals, which are modified by bias and non-linear

activation function, are transferred to neurons in the following layers and repeated

sequentially until the final result is produced at the end of the output layer. The

output is afterward compared against a cost function that models the errors. The

error is minimized during the backpropagation phase by tuning the weights in each

epoch until the desired target accuracy is met. (Amilon 2003)
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2.1 Backpropagation Algorithm

The backpropagation algorithm, developed by Rumelhart et al. (1986) is the funda-

mental part of training ANNs to learn from data. The objective of the process is to

update the weights in MLP’s layers so that it minimizes the error between the net-

work’s output and desired actual output. The backpropagation algorithm is divided

into two phases called a Forward Pass and a Backward pass.

In the forward pass, the network’s weights are first initialized by random numbers

before the output vector for each layer hi is calculated. Firstly the input values x

are multiplied with initial weights W and then the output of the multiplication is

calculated through activation function f(·). The next layer is receiving the output

of h(N) as an input, and this process is prolonged until final layer. This procedure

can be mathematically defined as follows:

h(1) = f(1)(W (1)Tx+ b(1)) (2)

h(2) = f(2)(W (2)Th(1) + b(2)) (3)

h(i) = f(i)(W (i)Th(i−1) + b(i) (4)

ŷx = W (N)Th(N−1) + b(B) (5)

where W i is the weight matrix in i:th layer, x input vector, f(·) the activation func-

tion and b is the bias matrix. (Kubat & Kubat 2017, 104) ; (Murphy 2012, 565-570)

Gradient Descent is a commonly used technique in backward pass phase to improve

the initial random weights in a network to achieve a state where the error between
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the model’s output and actual output is minimized. Let’s estimate the squared

difference between the model’s output (f) and the actual output (d):

ϵ =
∑

(di − fi)2 (6)

The next step in backpropagation is to go backwards from the output layer to next

layers and modifying weights by the negative magnitude of the partial derivative with

respect to weight. Beginning with the output layer, the approach works backwards,

updating initial weights by the amount that ϵ varies in comparison to weight (W ).

The gradient with respect to weight ϕ is derived by applying the chain rule for the

formula below:

∇wϕ =

(
∂ϕ

∂wj
1i

, ...,
∂ϕ

∂wj
li

, ...,
∂ϕ

∂wj
mj−1 + 1, i

)
(7)

The general equation for changing the weights in a network can be expressed as:

W j
i ← W j

i + cjiδ
j
iX

j−1 (8)

where cji is the learning rate, δji sensitivity parameter calculated from the Equation

7. (Nilsson 1996, 53-60)

2.2 Activation functions

Activation functions are the parts between layers that produce the output, which is

afterward used in the next layer in a network. Activation functions are crucial in

terms of learning complex dimensions of data and the possible non-linearity which is

presented (Sharma et al. 2017). Activation functions that are used in the empirical
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section of this thesis are presented next.

Rectified Linear Unit (ReLu) introduced by Hahnloser et al. (2000) is one of the

most used activation function in ANN’s (Ramachandran et al. 2017). The benefit

of ReLu stems from its higher training performance compared to other activation

functions, such as the hyperbolic tangent function (Lu et al. 2019). The basic rule

of ReLu states that the estimation is always linear if the output value is positive

and zero if the output value is negative. Despite the superior training performance,

ReLu activation might incorporate a condition called ”Dying ReLu” where ReLu

activation produces zero output regardless of given input (Arnekvist et al. 2020).

The equation of ReLu can be mathematically denoted as follows:

g(x) = max(x, 0) (9)

A superior form of ReLu, specifically called the LeaKy ReLu (LReLu) activation func-

tion, prevents the occurrence of dying relu condition by containing a small negative

slope to keep updating weights during the whole backpropagation phase (Nwankpa

et al. 2018). This slight adjustment makes LReLu-based gradient optimization more

robust during the backpropagation phase without making it too costly in terms of

training time (Maas et al. 2013). We can observe from the Equation 10 that gra-

dient x will be multiplied with a small α constant parameter, which is in this case

0.3 1 if the gradient turns out to be less than zero. Otherwise, the backpropagation

procedure is identical to ReLu.

g(x) = max(αx, 0) (10)

1Keras’s default α parameters are used without any further adjustments in the empirical section.

More information may be found on Keras’ website: https:keras.io/api/layers/
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Exponential Linear Unit (ELU) is a similar activation function in contrast to LReLu,

except the negative values in a layer are transformed with the exponential func-

tion. ELU activation also solves the ”dying ReLu” condition like LReLu, but it is

also capable of producing negative output values allowing near-zero mean activation

without the cost of increased training speed (Nwankpa et al. 2018). The exponential

activation can be expressed as follows:

g(x) =

x if x>= 0

α ∗ (ex − 1) if x< 0

(11)

The last activation function used in the empirical section is called the exponential

function. Generally, the exponential function is referred to as any particular linear

function for positive real numbers. This activation is used in the final layer to pro-

duce positive only values for option prices between the range of [0,∞] (Culkin & Das

2017). More formally the exponential can be denotes as:

g(x) = ex (12)

3 Financial Options

A non-linear derivatives contract that grants the right to buy or sell the underlying

asset at a predetermined strike price is known as an option. Options are typically

employed for speculative reasons or to manage the tail risks of a portfolio. Options

contracts can be traded over-the-counter (OTC) or on exchanges. Put options and

Call options are the two types of options. The holder of a call option has the right

to purchase the underlying asset at the expiration date based on the predetermined

strike price. The put option is reversed to the call option, thus giving the right to

sell the underlying constraint when the contract matures. Black & Scholes (1973);
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(Hull 2003, 10-14)

Options are exercised at the maturity date or any time interval during the tenure,

depending on the option’s exercise style. The exercising style for options can be

either European- or American-styled. American-styled options can be exercised at

any point in the time grid before expiration, whereas European-styled contracts can

be solely exercised upon maturity date. (Hull 2003, 10-14) There are always at least

two counterparties between option transactions, one taking a long position and the

other taking a short position. Option writers are typically banks, and especially the

OTC contracts are typically collateralized since one counterparty always has liabili-

ties due to a netting under the master agreements. The writer’s benefit in option is

always reversed to another counterparty (Taleb 1997, 18).

Figure 1: Option Payoff

As previously stated, the payout structure for options is non-linear and differs be-
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tween call and put options. Figure 1 shows a graphical representation of a long call

and a short put. The option’s moneyness specifies its present position in relation

to the defined strike price. (Cox & Rubinstein 1985, 9-22) When the strike price of

an call option is more than the embedded underlying asset, the option is considered

out-of-the-money (OTM). When the situation is reversed and the strike price is lower

than the underlying asset, the call option is in-the-money (ITM). Due to the asset’s

time-varying fluctuations, options are seldom traded at-the-money (ATM), denoting

the condition when strike equals underlying asset. The intrinsic value of options

indicates how much ITM the option is currently. For a call option the intrinsic value

can be formulated as:

max[S −X, 0] (13)

And for put option:

max[X − S, 0] (14)

Where S represents the current stock price and X represents the Strike price of an

option (Hull 2003, 107-110).

3.1 Black & Scholes option pricing model

Fischer Black and Myron Scholes made an immense breakthrough in academia in the

same year when Chicago Board Options Exchange started the sales of call options in

1973 as they developed one of the most famous option pricing model, namely called

Black & Scholes model. The equation for Black & Scholes can be formulated as:
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∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
= rf (15)

Where f is the function of stock price S , time-to-maturity t, risk-free rate r and

volatility of the underlying asset σ. (Black & Scholes 1973)

Their novel idea was to construct a closed-form solution based on complex differen-

tial equations to model the theoretical price for European-styled options based on

market inputs and several assumptions. BSM can be formulated for European-styled

puts and calls as follows:

The Black & Scholes formula can be expressed as follows:

Call = S0Φ(d1)−Ke−rTΦ(d2) (16)

Put = Ke−rTΦ(−d2)− S0Φ(−d1) (17)

where:

d1 =
log(S0/K) + (r + σ2/2)T

σ
√
T

(18)

d2 =
log(S0/K) + (r − σ2/2)T

σ
√
T

= d1 − σ.
√
T . (19)

Where K is the Strike Price, S stands for underlying asset price, K, r is the risk-free

rate σ is the volatility input, T time-to-maturity, d1 and d2 are parameters to the phi

ϕ in equations 5 and 6. ϕ and N(x) stands for a cumulative probability distribution
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function for a standardized normal variable, which can be expressed as:

N(X) = (2π)−
1
2

∫ x

−∞
exp(−z

2

2
)dz (20)

According to Hull (2003, 92-93), the assumptions of Black & Scholes option pricing

model are listed as:

1) The stock price follows Geometric Brownian motion. Volatility of the underlying

asset is constant over the lifetime of an option.

2) Short selling is permitted

3) No transaction costs or taxes

4) No dividends or other distributions are paid during the lifetime of the security

5) No riskless arbitrage opportunities

6) Trading of security is continuous

7) The risk-free rate r is constant for all maturities

Despite being one of the most significant contributions in academic finance, the

BSM model has received criticism among academics and practitioners due to its

strict assumptions. Even the model’s inventors expressed concern about the under-

lying assumptions being ”idealizations” of market circumstances (MacKenzie 2006).

Jackwerth & Rubinstein (1996) for example, revealed very substantial evidence of

infrequently log-normally distributed stock prices indicating skewed stock price dis-

tributions. This conclusion contradicts BSM since the underlying asset increments

are represented using a log-normal distribution. Another flaw with BSM is that it

implies continuous trading and hedging at arbitrary time intervals. Haug & Taleb

(2011) criticizes the dynamic hedging context since dynamic hedging is technically

not achievable due largely to technical constraints. From a private person’s perspec-

tive, the assumption of zero breakage commissions, structuring- or transaction fees,
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does not correspond to genuine market circumstances, which should be considered

in terms of valuation.

3.2 Delta Hedging

Delta is one of the most used ”Greeks” of options. Greeks measure the dimension

of risks involved in options. Delta presents a proportion of movement in underlying

asset price with respect to option price. The mathematical representation of this

partial derivative can be noted as:

∆ =
∂V

∂S
(21)

Where V is the option price and S the underlying asset price. Hull (2003, 285-286)

In other words, option delta can be thought as a sensitivity metric that option traders

are typically monitoring to cover their positions with respect to delta movements. If

for example the delta of call option is measured to be 0.5, for every one dollar move-

ment in the underlying asset changes value of call option 0.5 dollars. Hull (2003,

402-403)

Delta hedging refers to a option trading strategy where the portfolio is constructed

by offsetting positive and negative deltas in a way they create the overall portfolio

delta as close to zero as possible. (Hull & White 2017). The balancing is usually

done with the combination of options and underlying assets. However delta hedging

is quite cumbersome in practice as the portfolio keeps delta hedged for only a short

time period, and it needs to be re-balanced at discrete time intervals to keep the

portfolio delta neutral.
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4 Performance Measurement

The pricing performance of the empirical section will be evaluated based on the error

metrics used by Bennell & Sutcliffe (2004), Anders et al. (1996) and Culkin & Das

(2017). Let’s assume that CANN is the call price estimated with Neural Network,

and C represents the call price observed by markets.

Mean Square Error (MSE) =
1

N

N∑
i=1

(C
(i)
ANN − C

(i))2 (22)

Mean Absolute Error (MAE) =
1

N

N∑
i=1

|C(i)
ANN − C

(i)| (23)

Root Mean Square Error (RMSE) =

√√√√ 1

N

N∑
i=1

(C
(i)
ANN − C(i))2 (24)

The risk metrics in the empirical study are applied to BSM by replacing CANN with

CBSM .

5 Asset Volatility

Volatility, which is said to be the measure of uncertainty, represents the spread of

all likely outcomes of an asset during a specific timeframe. (Poon & Granger 2003)

Volatility is one of the key components in option’s pricing since the BSM model

inputs the volatility of an underlying asset. The so called implied volatility can be

calculated backwards from the BSM formula with numerical approximation, which

tells the estimate of the option’s future volatility until the maturity date. Option

traders are usually trading volatility based on current implied volatility levels, since
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it is the only unobservable BSM parameter in the market.

According to Hull (2003, 121), the realized volatility, which give the ex-post estimate

can be calculated for an asset as follows:

S =

√√√√ 1

n− 1

n∑
i=1

(ui − ū), (25)

where i represents the time interval, ui is the continuously compounded log returns

and ū is the mean of continuously compounded log returns.

5.1 GARCH

Another volatility estimate used in this study is the Generalized Autoregressive Au-

toregressive Conditional Heteroscedasticity model (GARCH). The history of GARCH

stems back in the 1980’s when Bollerslev (1986) invented the GARCHmodel. GARCH

model forecasts the future volatility by combining the fitted value of the previous

forecasting period with a longer term moving average component (Brooks 2002).

Let ϵt denote a discrete stochastic process and the information set by ψt. The

general form of Generalized Autoregressive Conditional Heteroscedasticity model

GARCH(p,q) invented by Bollerslev (1986) can model historical returns ht in a

combination of ARCH as follows:

ϵt|ψt ∼ N(0, ht) (26)
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ht = α0 +

q∑
i=1

αiϵ
2
t−1 +

p∑
i=1

βiht−1 (27)

= α0 + A(L)ϵ2t +B(L)ht (28)

Where α is the short run persistence and β is the long run persistence.

And p ≥ 0, q ≥ 0, α0 ≥ 0, αi ≥ 0, i = 1....q, βi ≥ 0, i = 1....p

Finally, L is the lag operator:

α(L) = α1L+ α2L
2 + ...αqL

q (29)

β(L) = β1L+ β2L
2 + ...βpL

p (30)

When p = 0 the process is simply ARCH(q), in other words, a linear function of past

sample variances and ϵt is the white noice. GARCH(p,q) function adds up to the

formula previous lagged conditional variances obtained by simple linear regression.

(Bollerslev 1986)

The existing literature enclose large number of different methods built on top of

GARCH model family, but this thesis uses GARCH(1,1) order model volatility in-

put in one of the Neural Network models since multiple studies has shown that

GARCH(1,1) is sufficient for capturing volatilities in most financial time series (Brooks

2002, 394). According to Bollerslev (1986), the mathematical definition of GARCH(1,1)

can be expressed as follows:

ht = α0α1ϵ
2
t−1 + β1ht−1, α0 ≥ 0, α1 ≥ 0, β1 ≥ 0 (31)
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6 Literature Review

Artificial Neural Networks have been widely used as an alternative tool in derivatives

pricing since the 1990s, as the sophisticated data mining techniques allow the pric-

ing formulas to be more relaxed from theoretical assumptions that drive the existing

theoretical models. In most studies, ANNs are trained to learn the price of an option

as a function of BSM parameters, but some studies have also trained the ANNs to

learn implied volatility surfaces and hedging ratios.

The following chapters describe the majority of the previous literature based on the

research domain. The history of options pricing with ANNs will be briefly addressed,

followed by a presentation of several ANN models and designs utilized for option pric-

ing purposes. Lastly, a Table showing majority of the relevant previous studies is

presented.

6.1 Early Studies

The very first study about neural networks in options pricing was published in the

1990s by Malliaris & Salchenberger (1993). The authors trained MLP neural network

to estimate S&P 100 call option prices using Black & Scholes model input variables.

As a result, authors reported that ANNs outperform Black & Scholes model roughly

in half of the cases for in- and out-of-money options when benchmarked with MSE

metrics.

Hutchinson et al. (1994) published the most referenced paper in this field of study

right after Malliaris and Salchenberg. They suggested a nonparametric technique

for predicting the pricing formula for options based on radial basis functions (RBFs)

with four multiquadric centers and one output sigmoid, as well as MLP neural net-

works with a single hidden layer and four neurons. A neural network that employs
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radial basis functions as activation functions is known as a radial basis function

network (RBF). Using synthetic data and S&P 500 futures options during the time-

frame of 1987-1991, the authors investigated the pricing and hedging performance of

feedforward neural networks in comparison to the Black & Scholes model.

Hutchinson et al. (1994) reduced the functional form of the ANN’s pricing formula

based on the BSM’s homogeneity assumption, where the underlying asset’s return

is independent of the level of Stock price (S), such that the pricing formula required

to be estimated was f(S(t)/X, 1, T − t), relaxing the potential overfitting dilemma.

With synthetic data, the authors obtained above 99 percent out-of-sample R2 values

for both RBF and MLP networks. The aforementioned neural networks also out-

performed the Black & Scholes model with real data, as the experiment applied to

S&P 500 future options yielded above 90% R2 values. Arbitrage conditions were

also tested with encouraging results: hedging errors for both out-of-sample datasets

were less than that of the Black & Scholes model.

Figure 2: Anders et al. (1996) ANN architechture with four input parameters and

three hidden layers

2

2S represents Stock Price, S/X is the moneyness assumed by homogenity degree one form, r is

the risk-free rate, T − t refers time-to-maturity and σ30 is the 30-day volatility input

23



Anders et al. (1996) priced DAX index options with MLP network using similar

methodology as Hutchinson et al. (1994). Instead of using only regular BSM param-

eters, Anders et al. (1996) used multiple volatility estimates alongside hint form as

input for pricing options. Their study showed that the MLP network with a single

hidden layer can be adopted to a pricing formula with promising results.

Arguably the form of the pricing function to be estimated is one of the biggest ques-

tion marks when neural networks are applied to derivatives pricing. Garcia & Gençay

(2000) continued Hutchinson et al. (1994) and Anders et al. (1996) studies which in-

corporated the so-called homogeneity hint to pricing formula, a superior functional

form, which considers ANN’s first part controller by moneyness and the second one

by time-to-maturity. Garcia & Gençay (2000) stated that the homogeneity hint al-

ways reduces the MSE statistics, and they found the usage of the homogeneity degree

one form for ANNs is crucial for outperforming BSM in the S&P 500 index options.

Nonetheless, the BSM is the standard benchmark for pricing European-styled op-

tions, alternatives such as American-styled- and exotic-styled options necessitate

slightly different valuation techniques. The likelihood of early exercise in American

Styled options and contract-specific features for Exotic options must be considered

when estimating the option’s fair pricing. ANN’s capability to estimate these types

of options have also been tested in the existing literature several times. Kelly et al.

(1994) taught to MLP network a price function of an American-styled option. Kelly

et al. (1994) used equity put options listed for IBM, Chrysler, GM, and Merck from

1993 to 1994. The findings were benchmarked against the binomial option pricing

model, which is an iterative method for pricing options. Neural Network was found

superior over the binomial option pricing model. Other researchers, such as Zapart

(2002); Pande & Sahu (2006); Teddy et al. (2006); Hirsa et al. (2019) have also

concentrated on their research for exotic and American-styled options.
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6.2 Extended ANN models for Option’s pricing

Most models utilized in the study domain have been implemented with MLP and

RBF type-of neural networks, but multiple extensions to the conventional models

have been built according to the literature. Niranjan (1996) estimated FTSE 100

index option prices with radial basis function similar to that employed by Hutchin-

son et al. (1994). Unlike Hutchinson et al. (1994), Niranjan (1996) protracted the

learning procedure with Extended Kalman Filter (EKF) algorithm. Kalman filter is

a recursive algorithm that estimates the state of the process by reducing the mean of

squared error. By training the model with Kalman filter, Niranjan (1996) reported

that radial basis function with Extended Kalman filter produces fewer errors than

that of basic BSM, but found the best performance in BSM associated with Extended

Kalman Filter. Ormoneit (1999) used Iterative Extended Kalman Filter (IEKF) as

a learning algorithm for pricing DAX index options. They also found MLP with

two sigmoidal hidden units and IEKF outperformed several benchmark models and

alternative learning procedures, such as online backpropagation and regular EKF

based on MSE and R2 metrics. In the context of training neural networks with

Kalman Filters, these researchers have also illustrated novel usage of Kalman Filters

in deep-learning-based Option pricing: Freitas et al. (2000); Huang (2008)

Schittenkopf & Dorffner (2001) constructed a mixture density network model (MDN)

to extract risk-neutral densities from FTSE 100 index option contracts. The primary

concept behind MNDs is to approximate conditional density function as a mixture

of Gaussians in a way where the distribution and the mixture coefficients are pa-

rameterized as a function of input variables. The authors estimated the parameters

by using MLPs with a single input, T , which stands for time-to-maturity, and the

model produced Gaussian parameters. As a consequence of comparing two alter-

native network specifications, the authors found that MNDs performed better than

standard BSM and adjusted BSM. The conclusion hold for both pricing- and hedging

performance.
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Gradojevic et al. (2009) used a modular neural network to price S&P 500 index

options from 1987 to 1993. A modular neural network is a type of artificial neural

network which consists of a sequence of autonomous neural networks controlled by

an intermediate. The authors decomposed the data into modules consisting of mon-

eyness and time-to-maturity. Each of the nine modules of the network was trained

independently, improving the parameter generalization and cutting out the recency

effect incorporated in single ANN models. Gradojevic et al. (2009) reported superior

performance over BSM with three modules selected by moneyness criterion, but the

alternative model with the time-to-maturity criterion was found inferior compared

to the BSM model indicating an inconsistency in pricing performance.

The final study of interest concerning different neural network designs for options

pricing represents gated neural networks (GNN). GNN uses a very similar approach

to modular neural networks but contains multiplicative gating connections. As

Gradojevic et al. (2009) decomposed the data into different modules consisting of

independent pricing models, Yang et al. (2017) proposed a slightly different modular

approach, where the option grouping is automated and learned from data instead

of heuristically labeled. Hence GNN dynamically adjusts the pricing functions and

labeling of each group when the market changes gradually. Their model was designed

so that they integrated economic constraints into their neural networks to produce

more economically meaningful predictions. 3 Firstly, Yang et al. (2017) proposed a

single model consisting of time-to-maturity and moneyness inputs. The performance

of the single model benchmarked with MSE statistics was poor compared to BSM,

Variance-Gamma (VG), and Kou Jump models, which represents different statistical

option pricing models. However, they proposed also a multimodel, which trains a

number of single pricing models as well as a weighting model to transition between

the single models. Based on the MSE statistics, multimodel outperformed all three

benchmark models.

3The specifications for economic axioms are not presented in this study.
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Figure 3: Yang et al. (2017) design for single model (left) and multimodel (right)

4

6.3 Summary of the Literature Review

To shortly recap the history of options pricing with Artificial Neural Networks, the

vast majority of studies have focused on the pricing performance instead of testing

hedging performance or implied volatility forecasting performance. Most of the ANN

models are based on either RBF or MLP networks, but more complex ANN architec-

tures are also presented in the literature. Lately, the focus on the research area has

been more on thinly traded markets and products and on more complicated neural

network architectures. Ruf & Wang (2020) has comprehensively listed the major-

ity of the studies in their literature review. Citing their literature review, Table 1

displays over 20 relevant studies regarding option pricing and hedging with ANNs

compared to the BSM model.

4The single model (left) with input variables m and t is depicted in the picture below. The multi

model (right) is composed of a series of M single modules as well as a weighted model that rotates

between the single models. x○ is a multiplication gate that outputs the product of its inputs.

27



Table 1: Previous literature presented in table

Authors & Year Input Output Data

Malliaris & Salchen-

berger (1993)

S,K, t, σI, r C S&P 100

Hutchinson et al. (1994) S/K, t C/K Simulated,

S&P 500

Kelly et al. (1994) S,K, t, σH C Individual

stocks

Niranjan (1996) S/K, t C/K FTSE 100

Anders et al. (1996) S/K, S, t, σH, σV, r C/K DAX

Ormoneit (1999) S/K C/K DAX

Briegel & Tresp (2000) S, t C FTSE 100

Ghaziri et al. (2000) S,K, t, σH, r, OI C S&P 500

Dugas et al. (2001) S/K, t C/K S&P 500

Garcia & Gençay (2000) S/K, t C S&P 500

Healy et al. (2002) S,K, t, σI, SD,OI, V C FTSE 100

Zapart (2002) Wavelet coefficients with

lags

Wavelet

coefficients

Individual

stocks

Bennell & Sutcliffe

(2004)

S/K, t, σIH,OI, V C,C/K FTSE 100

Lin & Yeh (2005) S,K, t, σH, r C TAIEX

Jung et al. (2006) S,K, t, σIH C KOSPI

200

Mitra (2006) S,K, t, σH, r C NIFTY 50

Pande & Sahu (2006) S,K, t, σPCA, r C Individual

stocks

Teddy et al. (2006) S −K, t, σH C GBP-USD

Gençay & Gibson (2007) S,K, t, σG, r C S&P 500

Thomaidis et al. (2007) S,K, t C S&P 500
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Andreou et al. (2008) S/K,r,skewness, kurtosis,

σH, σCAL, σV

C S&P 500

Gradojevic et al. (2009) S/K, t C/K S&P 500

Barunıkova & Barunık

(2011)

S,K, t C S&P 500

Can & Fadda (2014) S/K, S, t, r C/K S&P 100

Montesdeoca & Niranjan

(2016)

S/K, t, σH , volume, C/K FTSE 100,

individual

stocks

Culkin & Das (2017) S/K, t, σ, r C/K Simulation

Terms: Option Price (C), Strike Price (K), Underlying Price (S), Volatility parameter

(σ), risk-free rate(r), trading volume (volume), historical volatility (σ
h
), GARCH-

generated volatiltiy (σ
G
), Calibrated volatility (σ

CAL), Open-Interest (OI)
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7 Data and Methodology

The quantitative data used in the empirical section of this thesis is retrieved from

the Thomson Refinitiv Eikon. FTSE 100 index options traded in LIFFE were chosen

for the analysis as they are European-styled and do not pay dividends. The data

is also restricted to call options as the appropriate version of the Black & Scholes

model for put options requires separate training for ANN. The 3-month LIBOR rate

is used as a proxy for the risk-free rate in BSM and ANN. The study domain has

mostly focused on the S&P 500 index options, and for the last ten years, FTSE 100

index options haven’t been shown in the research domain, filling the gaps for pricing

UK options with neural networks and fresh data.

Figure 4: FTSE index during 2019-2021
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Figure 5: 3-month LIBOR rate during 2019-2021

The time frame used in this study is from January 2019 to December 2021, containing

the high-volatility periods and v-shaped recovery caused by the COVID-19 pandemic.

FTSE 100 index options traded in LIFFE are cash-settled index option contracts.

The interval between the strike prices is determined by the expiry month’s lifetime

and proximity to the at-the-money strike. The contracts are listed between 25, 50,

100, and 200 index points, and the last trading day is the third Friday or the next

available trading day in the delivery month. (LIFFE 2022). The whole dataset before

filtration covers 3070 unique FTSE 100 index option contracts between 5000-8000

index points, in total consisting of 578 715 observations across all maturities and

strike prices.
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7.1 Research Environment

Python 3.9.5, an open-source general-purpose computer language, is used for the

main part of the empirical study. The computations are carried out using the RTX

580 8Gb GPU and the AMD Ryzen 5 3600 (4Ghz) computer hardware. The MLP

neural network is built with Keras 2.8.0, a deep learning API that uses Tensorflow

as a computational engine. Keras allows to construct complicated neural network

architechtures in a flexible manner.5

7.2 Data pre-processing

The data filtering for the final dataset follows the logic proposed by Anders et al.

(1996), where the purpose of the filtering is to cut off extraneous and non-representative

observations from the data in order to obtain more meaningful results. The first

criterion excludes low-priced options, which may lead to high deviations between

theoretical and observed option prices. The second criterion filters options with a

small amount of time-value as they may also cause deviations between theoretical

and observed prices. The third criterion filters options that are not consistent with

no-arbitrage conditions. The last criterion filters the options that are deep-in- or

deep-out-of-money, as they are rarely traded, containing almost zero informational

content. (Anders et al. 1996)

5More information about Teras and Kensorflow can be found directly from their websites:

https://www.tensorflow.org/ ; https://keras.io/
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The filtering is formulated as follows:

1) The call option is traded at less than 10 points:

Ct < 10 (32)

2) Time-to-Maturity (T − t) is less than 15 days:

T − t < 15 (33)

3) The lower boundary condition of option is violated:

C < S −Ke−r∗r (34)

Where C represents call price, S Underlying price and r risk-free rate.

4) The option is deep-in- or deep-out-of-money:

S

K
< 0.85 or

S

K
> 1.15 (35)

After the applied filtering, the final dataset consist of 271 689 independent obser-

vations. Distribution of different strike prices and descriptive statistics are shown

below.
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Table 2: Descriptive statistics for options

Days till Expiration <60 60-180 >180 All Options

Average Price £

OTM (<0.95) 18.92 77.65 140.73 70.98

ATM (0.95-1.05) 154.69 257.96 340.97 249.90

ITM (>1.05) 580.36 654.21 710.68 647

Count

OTM (<0.95) 195591 37237 11085 68502

ATM (0.95-1.05) 35250 76798 30208 143513

ITM (>1.05) 14038 34150 10973 59674

As shown in the Table 2, majority of the options in the final dataset are close to

at-the-money (0.95-1.05 moneyness rate) and have less than 60 days until expiration.

The lowest average price for options is for out-of-money options with less than 60

days until expiration, and the highest average price is for options that are close to at-

the-money but have more than 180 days until expiration. Naturally, in-the-money

options have the highest average prices, while out-of-the-money options have the

lowest average prices.
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Following Hutchinson et al. (1994) study, 60-day volatility is used as an input variable

for BSM. The picture below shows the estimates of 1-month,2-month and 3-month

historical volatilitities during 2018-2022, including the study period.

Figure 6: different volatility levels during 2018-2021

Volatility estimates are annualized for both BSM and ANN models using the formula

below:

V ol(p.a) = S ∗
√
252, (36)
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Another volatility estimate used in this study is the GARCH (1,1) volatility estimate

introduced in section 5.1. Bollerslev (1986) showed, that the order of the GARCH

form can be evaluated graphically by using autocorrelation function (ACF) and par-

tial autocorrelation function (PACF) plots. The magnitude of significant lags in the

graph below suggest using higher order GARCH model, but multiple studies have

shown that GARCH(1,1) is sufficient for capturing volatilities in most financial time

series (Brooks 2002, 394).

Figure 7: ACF & PACF

The fitted parameters of GARCH(1,1) model are shown below in Table 3. Samples

are fitted from 1.6.2018 to 1.3.2021 but the timeframe is later on adjusted to cover

only the observation period between 1.1.2019 to 31.12.2021.
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Table 3: GARCH(1,1) estimate

Garch coefficients Standard Error t

µ 0.0350 0.544 0.804

ω 0.0525 0.01408 2.455

α 0.1249 0.04668 2.829

β 0.8241 0.05195 15.864

Where µ refers to mean returns, ω to variance intercept, α represents the ARCH

effect in equation whereas β refers to GARCH equation.

The mean returns of the estimation, specifically referred as µ are approximately

0.035 during the observation period. When observing the GARCH equation coeffi-

cients, both α and β terms appears to be statistically significant in 1% confidence

interval indicating that the order of the model fits well to data. Also the constant

ω is statistically significant in 1 % confidence interval. Graphical representation of

GARCH(1,1) model is also compared to short term volatility in the Figure shown be-

low. The data visualization reveals a close co-integration between the GARCH(1,1)

and 5-day volatility series.
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Figure 8: GARCH(1,1) vs 5-day volatility during 2018-2021

7.3 Neural Network Architecture

The architecture of the applied MLP neural networks are influenced by Culkin & Das

(2017) study. The input parameters consists of: Underlying price S, Strike price K,

risk-free interest rate r, time-to-maturity T − t and volatility estimates σ30, σ60, σ90

and σGARCH .

Two distinct architectures will be implemented. The first ANN contains all other

aforementioned input parameters than σGARCH , and the second model includes an

extra GARCH input parameter. These networks’ purpose is to approximate the

option’s pricing function f(·). According to Merton (1973), the return of the under-

lying asset is independent of the level of the price of the underlying asset S such that

it is also independent of the pricing function f(·) of an option price C. Therefore

ANNs are taught to estimate the price C divided by strike K. Following Hutchin-

son et al. (1994) methodology, the input variables are normalized to point out to a
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homogeneity hint form. The functional form of the first model can be denoted as:

C

K
= f(S/K, 1, T − t, r, σ30, σ60, σ90) (37)

And for the second model with additional GARCH parameter:

C

K
= f(S/K, 1, T − t, r, σ30, σ60, σ90, σGARCH) (38)

The entire network architecture is composed of one input layer, four hidden layers

with 120 neurons each, and one output layer that outputs the projected call option

price. The first hidden layer utilizes LeakyRelu as activation function, the second

and fourth hidden layers Elu and the third hidden layer uses Relu. Since the option

prices can not be negative, the exponential function is used at output layer to yield

only positive values (Culkin & Das 2017).
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Figure 9: Applied Neural Network Model with 4 hidden layers

Furthermore, the data is divided according to the 80/20 principle, with the first

80% of the dataset serving as a training sample and the remaining 20% serving as

a test sample. The model’s performance is evaluated with out-of-sample testing

set after training it with a training set. The hyperparameters are also tuned with

a 25% dropout rate. The dropout rate is a regularization technique that prevents

the neural network from overfitting (Srivastava et al. 2014). The number of epochs

used for training is 1000 per learning network, and the batch size, which reflects the

number of samples processed before updating the model, is set to 64. In addition

to this, the loss function is optimized using MSE statistics formulated in Equation 22.
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7.4 Delta Hedging performance measure

Delta hedging performance of ANN compared to BSM is investigated through track-

ing error proposed by Hutchinson et al. (1994). The idea behind the methodology is

to replicate a delta hedged position by offsetting the risk from the option position. If

the pricing formula is correctly identified and there is a possibility to trade without

costs on a continuous basis, then the combined value of the stock and bond position

should offset the value of the call position. The BSM model assumes continuous delta

hedging, but in reality, this is impossible, and there will always be some level of track-

ing error due to discreteness. Hence the hedging performance will be evaluated by

comparing if the tracking error of the neural network is lower than the one with BSM.

Lets denote the portfolio value at time t as V (t).

V (t) = VS(t) + VB(t) + VC(t) (39)

Where VS(t) is the value of spot value of stocks, VB(t) is the value of bond position

and VC(t) is the spot value of calls taken at date t. The composition of the portfolio

at date 0 can be denoted as:

S(0) = S(0)∆ANN(0), ∆ANN(0) =
∂FANN(0)

∂S
(40)

VC(0) = −FBSM(0) (41)

VB(0) = −(VS(0) + VC(0)) (42)

The hedging strategy goes as follows: one writes a call option according to Equa-
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tion 41, takes simultaneously a long position for the spot shown in equation 40, and

lastly shorts the bond to finance the hedge according to eq. 42. FBSM represents the

approximation of the call value calculated by BSM, FANN is the corresponding call

approximation calculated by the neural network. Note that the ∆ANN represents

the partial derivative of call price computed via Neural Network with respect to spot

price. The delta for the Neural Network can be computed analytically from the net-

work approximation. The computer graph of Tensorflow allows us to calculate the

delta measure easily.

Preceding the expiration, the portfolio will be rebalanced in a regular interval τ . The

stock and bond positions are rebalanced as follows:

VS(t) = S(t)∆ANN(t), ∆ANN(t) =
∂FANN(t)

∂S
(43)

VB(t) = ertVB(t− τ)− S(t)(∆ANN(t)−∆ANN(t− τ) (44)

τ represents one trading day, and r is the definition of risk-free rate.

Finally the tracking error of the portfolio can be formulated as:

ξ = e−rTE[|V (T )|] (45)

The experiment will be done simultaneously for Black & Scholes model, where ∆ANN

is replaced by:

∆BSM(0) =
∂FBSM(0)

∂S
= N(d1) (46)

A paired t-test will be done to test the statistical properties of the absolute hedging

errors. Hutchinson et al. (1994) argues that the statistical dependence in option-

price paths might cause nonreliable results and suggests a less formal methodology

42



to investigate the differences in tracking errors. The null hypothesis of the paired

t-test is that the average difference in tracking errors are zero and the one-sized

hypothesis states that the difference is positive:

D = |µANN | − |µBSM | (47)

• H0: D = 0

• H1: D ̸= 0
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8 Results

In this chapter, the findings of the empirical data analysis are presented based on

the methodology described in the last chapter. At first, the pricing performance of

ANN models and BSM for the whole out-of-sample is evaluated using performance

metrics listed in Section 4. Pricing performance is hereafter analyzed by segmenting

data based on the option’s moneyness rate and time-to-maturity to obtain more

insights. Lastly, the results of the hedging performance measured by paired t-test

are discussed.

8.1 Pricing Results

Table 4: Results for test set without partition

Full test set MSEx10-4 RMSEx10-3 MAEx10-3

NN 0.565 7.57 5.85

NN Garch 0.764 8.17 7.16

Black&Scholes 5.3 23.2 15.7

The Table 4 shows MSE, RMSE, and MAE (Eqs. 22,24,23) measures for the whole

out-of-sample without data partition. Both RMSE and MAE quantify price discrep-

ancies in absolute units, while MSE assesses pricing performance more holistically

(Anders et al. 1996). The results indicate superior pricing performance for both

ANN models over BSM measured with MSE, RMSE, and MAE during the observa-

tion period. This finding is consistent with the previous studies of, e.g. Hutchinson

44



et al. (1994), Anders et al. (1996) and Bennell & Sutcliffe (2004).

When the whole out-sample data set is considered, the MLP network with addi-

tional GARCH parameters is inferior compared to the regular MLP neural network

in all performance metrics. This outcome might be explained by the fact that the

GARCH-generated volatility estimate (eq.28) is insufficient to provide any explana-

tory power on the ANN’s pricing function. Despite the fact that several studies have

demonstrated the GARCH(1,1) process’s volatility estimation capabilities, the use of

GARCH-derived volatility estimates in option pricing formulas has faced criticism in

the literature. For example Anders et al. (1996) contends that the GARCH model is

incompatible with the BSM valuation formula (eq.15), and more advanced EGARCH

models should be used instead.

Figure 10: Predicted vs Actual plots

The performance for the overall out-of-sample dataset is also evaluated graphically.

The predicted vs. Actual plots in Figure 10 illustrate the best-fitting line for the

regular ANN model and the worst-fitting line for BSM. The equivalent plot also il-
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lustrates some deviation in higher and lower C/K levels for the ANN GARCH model

and BSM model. One rationale for this interpretation is because deep-in- or deep-

out-of-money options are traded far less frequently than near-the-money options.

Figure 11: Absolute Error Histograms

Pricing error distribution plots are found in Figure 11. Pricing errors are calculated

by subtracting the model price from the actual option price per each data point

pair. Pricing error distribution is relatively normally distributed based on visual in-

spection in the case of regular- and GARCH ANN model, but positively skewed for

BSM indicating overpricing in options. One possible explanation for this stems from

the constant 60-day volatility assumption made for BSM. During the observation

period, the 60-day volatility was higher compared to longer-term volatility, which

causes some form of overpricing of options and leads to a right-tailed absolute error

histogram.
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Figure 12: Moneyness vs Pricing Error

Moneyness vs. Pricing error plots are displayed in Figure 12 for all three models.

The plots show the magnitude of pricing error compared to the moneyness level.

According to the visualization, the regular ANN model seems to underprice deep-

out-of-money options. Similar observations can also be drawn for ANN Garch and

BSMmodels. Both BSM and MLP GARCHmodels also overprice deep-in-the-money

options according to the plots. Figure 12 also show that BSM tends to underprice

deep-out-of-money options similarly as mentioned for deep-ITM options. This ten-

dency has also shown in the papers of Yao et al. (2000) and Gençay & Salih (2003).
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Table 5: Results for Pricing performance, in-the-money (>1.05)

ITM MSEx10-4 RMSEx10-3 MAEx10-3

NN 0.319 5.07 4.1

NN Garch 2,9 17.22 16.53

Black&Scholes 3.5 19.12 13.75

Table 6: Results for Pricing performance, out-the-money (<0.95)

OTM MSEx10-4 RMSEx10-3 MAEx10-3

NN 0.294 5.4 3.11

NN Garch 0.676 8.2 5.26

Black&Scholes 9.1 30.12 22.17

Table 7: Results for Pricing performance, at-the-money, (0.95-1.05)

ATM MSEx10-4 RMSEx10-3 MAEx10-3

NN 0.846 9.14 7.93

NN Garch 0.848 9.22 8.24

Black&Scholes 4.6 21.55 14.41

Pricing results partitioned by their maturity are displayed in tables 5-7. Data is par-

titioned by grouping options based on their moneyness level following the filtering

criteria: ITM, when moneyness > 1.05, ATM when moneyness between 0.95-1.05,

and OTM when moneyness < 0.95. Both ANN models outperform BSM in all three

performance metrics even though the data is partitioned by moneyness rate. Regu-

lar ANN model outperforms ANN GARCH model in ITM and OTM category, but

48



contains almost identical MSE statistics compared to ANN GARCH model in ATM

category. Rather small deviations in the ATM category are not sufficient enough to

explain which one of the following ANN models is better to price ATM options.

Table 6 also illustrates that both ANN models compound the lowest MSE, RMSE,

and MAE values in the OTM category indicating that they are better at pricing

OTM options than ITM or ATM options. This finding is also in line with Malliaris

& Salchenberger (1993) and Healy et al. (2002) and Bennell & Sutcliffe (2004). A po-

tential explanation for why ANN models perform better than the BSM model in the

OTM category can be found in the underlying assumptions of BSM. BSM assumes

continuous and cost-free trading on options (Black & Scholes 1973). As mentioned

previously, very thin trading in deep in- or out-of-money options may create potential

mispricing effects on the markets, which ANN models have clearly captured during

the training. Another interesting finding can be found in the ITM category. BSM

model compounds the best performance in the ITM category compared to all other

moneyness categories. This observation is in line with Bennell & Sutcliffe (2004).

Their paper also found BSM superior compared to ANN, which is not in line with

these results.

Table 8: Results for Pricing performance, long-term options (>180d)

Long term MSEx10-4 RMSEx10-3 MAEx10-3

NN 0.304 5.45 4.2

NN Garch 0.933 9.67 5.01

Black&Scholes 3.3 18.3 17.17

49



Table 9: Results for Pricing performance, medium-term options (60-180d)

Medium term MSEx10-4 RMSEx10-3 MAEx10-3

NN 0.25 5.19 3.43

NN Garch 0.491 7.28 5.30

Black&Scholes 5.8 7.31 5.62

Table 10: Results for Pricing performance, Short-term options (<60d)

Short term MSEx10-4 RMSEx10-3 MAEx10-3

NN 0.1683 4.17 3.23

NN Garch 0.395 6.26 5.13

Black&Scholes 0.541 7.32 6.50

Furthermore, pricing results are also partitioned by time-to-maturity following the

criterion: Short-term options < 60 days, medium-term options 60-180 days, and

long-term options > 180 days. Time-to-maturity partitioned results are seen in ta-

bles 7-10. Overall, we can say that the regular ANN model has the best pricing

performance compared to other models in all three error metrics when different ma-

turity levels are considered. The maturity split also shows that both ANN models

outperform BSM, and therefore it can be concluded that the neural network model

is more suitable for pricing FTSE 100 index options than the theoretical BSM model.

To open a little bit more of the partitioned results based on the time-to-maturity

level, the regular ANN model has the best fit for medium-term options compared to

the two other models. ANN GARCH model and BSM model have the best fit for

short-term options. This stems from the fact that GARCH(1,1) volatility’s explana-

tory power is superior for short-term options due to the fact that GARCH(1,1) is

sufficient for capturing short-term fluctuations. This finding is also straightforward
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for BSM, since the calculation for BSM is done by following Hutchinson et al. (1994)

methodology, and constant 60 days historical volatility has been used to calculate

theoretical BSM prices. This procedure automatically leads to some degree of matu-

rity mismatch dilemma compared to exact volatility matching, especially for options

with longer time-to-expiration, thus potentially under- or overpricing options de-

pending on the current volatility level. However, on a larger scale, this effect should

not be relatively significant to actually explain why the pricing performance of BSM

is inferior compared to ANN. The regular ANN model also outperforms BSM, and

the ANN Garch model with long-term category than its peers, thus containing the

lowest errors in every category when the time-to-matyrity and moneyness is consid-

ered.

8.2 Hedging Results

The hedging performance for ANN vs. BSM is introduced in this subsection. The

hedging performance measurement is followed by the procedure introduced in chapter

7.4. The results are stored for the whole out-of-sample dataset and also partitioned

by moneyness. Options with time-to-maturity less than 50 days are removed from

the dataset following Hutchinson et al. (1994) procedure. Only the regular ANN

model is chosen as a benchmark against BSM since the pricing performance was

better compared to ANN GARCH, meaning that regular ANN’s delta must be more

realistic compared to the corresponding one of the ANN GARCH model.

Table 11: Hedging results partitioned by moneyness

Sample t-statistic p-value Tracking error ANN £ Tracking error BSM £

Full -3.11 <0.0019 557.14 613.99
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Table 11 shows hedging results for the whole out-of-sample. Based on the obtained

results, the ANN outperforms BSM in delta hedging based on paired t-test in 1% con-

fidence interval. A similar finding can also be made by looking at average tracking

errors: The average tracking error for ANN is smaller than for BSM. More com-

prehensive analysis can be done when options are partitioned by moneyness. The

moneyness partition criteria are different compared to the pricing criteria to keep

more observations in different categories. An option is considered to be ITM when

moneyness is greater than 1, and OTM when moneyness is lower than 1.

Table 12: Hedging results partitioned by moneyness

Sample t-statistic p-value Tracking error ANN £ Tracking error BSM £

ITM -1.23 <0.21 1265.52 1314.28

OTM -7.11 0.00001 423.09 525.45

Figure 13: ∆ANN surface
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Figure 14: ∆BSM surface

From Table 12, we can see that neither of the models is better for pricing ITM

options. One reason for this is caused by the delta properties of ANN: for deep-in-

the-money options, the delta level boundary is violated. According to theory, the

delta for the options should be between 0 and 1 (Cox & Rubinstein 1985, 44-47).

The Figure 13 shows a delta greater than 1 for short-term ITM options, showing the

delta level boundary violation graphically. Similarly, Figure 14 shows delta distribu-

tion for the BSM model, which explicitly shows that the delta values are distributed

between 0 to 1, indicating consistent delta estimation. This finding is aligned with

(Anders et al. 1996), indicating the neural network hasn’t learned the implicit prop-

erties of the pricing formula.

When OTM options are considered, the result is clear. ANN outperforms BSM with

1% confidence interval, and the tracking error is significantly smaller compared to

BSM. The result is not surprising since the ANN’s pricing performance was already

found to be highest for OTM options. The obtained results are also in-line with

Hutchinson et al. (1994), who also found superior hedging performance in MLP

neural network over BSM based on the paired t-test.
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9 Conclusion and Discussion

This study evaluated the option pricing & delta hedging performance of Artificial

Neural Networks in comparison against the Black & Scholes option pricing model

using FTSE 100 index options during 2019-2021. In total, two distinct MLP models

were tested against BSM: One with regular BSM input variables and the other with

additional GARCH(1,1) parameters.

The first research question: What type of Neural Network models are the most suit-

able for option pricing and hedging and what is their relative performance compared

to Black & Scholes model according to the literature? was covered in the literature

review section by looking latter research about option pricing and hedging with Neu-

ral Networks. To summarize the findings, the research domain compounds multiple

different Artificial Neural Network models for option pricing. Much of the research

has been made with MLP, and they have mostly provided better results compared

to BSM and other option pricing models.

In the empirical part, both MLP models built for the purposes of this thesis were

found superior in option pricing when benchmarked against the BSM model in the

given data, giving answers to the second research question: What is the relative hedg-

ing and pricing performance of MLP neural network compared to Black & Scholes

option pricing model? The key findings in pricing also cover superior performance

for both MLP models when the data was split based on moneyness and time-to-

maturity, confirming the previous studies in this research area. Answers were also

found for the second part of the research question, as the delta hedging performance

was tested against the BSM model. Delta hedging performance of ANNs suggests

superior performance over BSM in the overall dataset, but when the data was split

based on moneyness, only OTM options were found statistically significant to out-

perform the BSM model.
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The last key finding of the empirical testing concludes that the additional GARCH(1,1)

parameter did not improve pricing performance giving answers to the last research

question: Can the pricing performance of the currently applied Neural Network mod-

els for option pricing be improved with additional GARCH volatility parameter? This

conclusion might be explained by the data and time period employed, or by the fact

that the regular GARCH volatility is an inadequate parameter in the option pricing

formula. However, these findings gives a basis for the fact that ANNs are actually

capable of learning the option pricing formula and improving the inefficiencies in the

BSM formula to construct more accurate estimates for option’s pricing and hedging.

Traders may find this thesis useful by using neural network models for observing

arbitrage opportunities in option markets or when creating more efficient hedging

strategies to cover their positions.

The research area has been focusing much on the pricing performance, whereas the

hedging performance hasn’t been explored so widely. Potential research ideas in

this field of study could be associated with hedging performance with more complex

neural network architectures and other option types such as commodity options.

Another interesting research idea would be to study whether the more advanced

GARCH volatility estimates used as an input variable in Neural Networks, such as

the E-GARCH volatility proposed by Anders et al. (1996), would increase the option

pricing accuracy.

55



References

Abraham, A. (2005), ‘Artificial neural networks’, Handbook of measuring system

design .

Amilon, H. (2003), ‘A neural network versus black–scholes: a comparison of pricing

and hedging performances’, Journal of Forecasting 22(4), 317–335.

Anders, U., Korn, O. & Schmitt, C. (1996), ‘Improving the pricing of options: A

neural network approach’, Journal of forecasting 17(5-6), 369–388.

Andreou, P. C., Charalambous, C. & Martzoukos, S. H. (2008), ‘Pricing and trading

european options by combining artificial neural networks and parametric models

with implied parameters’, European Journal of Operational Research 185(3), 1415–

1433.

Arnekvist, I., Carvalho, J. F., Kragic, D. & Stork, J. A. (2020), ‘The effect of target

normalization and momentum on dying relu’, arXiv preprint arXiv:2005.06195 .

Barunıkova, M. & Barunık, J. (2011), ‘Neural networks as a semiparametric option

pricing tool’.

Bennell, J. & Sutcliffe, C. (2004), ‘Black–scholes versus artificial neural networks in

pricing ftse 100 options’, Intelligent Systems in Accounting, Finance & Manage-

ment: International Journal 12(4), 243–260.

Black, F. & Scholes, M. (1973), ‘The pricing of options and corporate liabilities’,

Journal of political economy 81(3), 637–654.

Bollerslev, T. (1986), ‘Generalized autoregressive conditional heteroskedasticity’,

Journal of econometrics 31(3), 307–327.

Briegel, T. & Tresp, V. (2000), ‘Dynamic neural regression models’.

Brooks, C. (2002), Introductory Econometrics for Finance, Cambridge University

Press.

URL: https://books.google.fi/books?id=3lqHDwAAQBAJ

56



Can, M. & Fadda, S. (2014), ‘A nonparametric approach to pricing options learning

networks’, Southeast Europe Journal of Soft Computing 3(1).

Cox, J. C. & Rubinstein, M. (1985), Options markets, Prentice Hall.

Culkin, R. & Das, S. R. (2017), ‘Machine learning in finance: the case of deep

learning for option pricing’, Journal of Investment Management 15(4), 92–100.

Detienne, K. B., Detienne, D. H. & Joshi, S. A. (2003), ‘Neural networks as statistical

tools for business researchers’, Organizational Research Methods 6(2), 236–265.

Dugas, C., Bengio, Y., Bélisle, F., Nadeau, C. & Garcia, R. (2001), ‘Incorporating

second-order functional knowledge for better option pricing’, Advances in neural

information processing systems pp. 472–478.

Freitas, J. d., Niranjan, M. & Gee, A. H. (2000), ‘Hierarchical bayesian models for

regularization in sequential learning’, Neural computation 12(4), 933–953.
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