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Design of experiment has been widely applied in the fields of science and industry but
an excellent design of experiment diverges the ratio of extracted information to invested
resources, so it is necessary to obtain an optimal design. The Bayesian approach plays
an important role to solve this problem, as it treats model parameters as random variables
rather than constants. An optimal design can be obtained by optimizing the predicted util-
ity of the experiment. Two design models, A- and D-optimal designs are presented in this
thesis. A-optimality minimized the sum of the main diagonal elements of the information
matrix and D-optimality maximized the determinant of the information matrix.
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LIST OF SYMBOLS AND ABBREVIATIONS
〈., .〉 Inner product in a function space
|.| Determinant of a matrix
⊥ Independent
µ Mean
σ2 Variance
Ω Probability space

C Complex numbers
E Expected value
fX Probability density function
FX Cumulative distribution function
L(., .) Loss function
N Normal distribution
N Natural numbers
P Probability
R Set of real numbers
Tr Trace
U Utility function

DOE Design of Experiment
GP Gaussian Process
GPR Gaussian Process Regression
i.i.d. Independent and Identically Distributed
KL Kullback-Leibler
MLE Maximum Likelihood Estimate
OED Optimal Experimental Design
PDF Probability Density Function
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1 INTRODUCTION

1.1 Background

Design of experiment (DOE) is a statistical method has introduced first by British statisti-
cian Sir Ronald Fisher in the 1920s [1] for the purposes of agriculture but has been widely
applied in the fields of science and industry to gain insights into physical and social cir-
cumstances [2] to support the design, development and optimization [3]. For example,
machine learning algorithms need to optimize the parameter (e.g. weights) in the sense
of training data. In general, we select a set of optimal hyperparameters to benchmark the
process of data training to get a better outcome.

Despite the advancement of new quantitative experimental techniques, data is frequently
limited and for that, the modeller is confronted with a situation in which large regions of
parameter space can adequately describe the measured data [4–8]. This isn’t an issue if
the predictions required to test the hypothesis are well constrained [9–11]. More informa-
tion will be required if this is not the case. Optimal experiment design (OED) methods
can be used to determine which experiments are most useful for statistical inference [12].
Classical design criteria are frequently based on linearization around a best fit parameter
set [11] and are concerned with effectively constraining the parameters [13, 14]. How-
ever, when data is scarce due to model complexity or the model is strongly non-linear,
such methods are inapplicable [11, 15]. As a result, researching the role of parameter
uncertainty in OED is an intriguing topic to research.

To select field experiments, the first experimental design methods relied primarily on
heuristics based on concepts such as space-filling and blocking [1,16–19]. Some of these
methods work well, but they could be better if they took into account what we know about
the physical processes being inferred or measured [12]. For a range of models based on
ordinary differential equations [20–22], partial differential equations [23], and differen-
tial algebraic equations [24], it has been shown that physical model-guided experiment
selection greatly improves the cost-effectiveness of experimental designs. The alphabetic
optimality criterion is typically applied when model observables are linear with regard to
model parameters [25, 26]. A-optimality, for example, is used to minimise the average
variance of parameter estimates, while D-optimality is used to maximise the differential
Shannon entropy [27]. These criteria were created in both Bayesian and non-Bayesian
contexts [25, 28–31].
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Shannon information leads to Bayesian D-optimality in the normal linear model [27],
which can be used for both prediction and mixed utility functions that describe multi-
ple concurrent goals for an experiment. By selecting appropriate utility functions, it is
also possible to derive the Bayesian equivalents of some other popular optimality criteria.
Some of the alphabetical optimality criteria have utility-based Bayesian counterparts, but
not all. When planning an experiment, it may be thought that a prediction is more im-
portant than an inference. This could happen, for example, in quality control, where the
future level of output must be maintained. The predictive Bayesian method is appropriate
for both the design and analysis of these types of situations [32]. Other utility func-
tions may be developed for the design of experiments that take into account more specific
concerns. Randomization, for instance, is not required for inference in a Bayesian exper-
iment; it is ”merely useful" [33] but randomization is an essential component of design.
This problem is considered within the Bayesian optimal experimental design theory for
linear models [34, 35].

OED in Bayesian approach is to optimize the design of the experiment in such a way,
that we can obtain the most informative data for parameter estimation or response pre-
dictions [36, 37] to address the aims of the analysis [38]. The problem which need to be
solved in experimental design optimization is to identify an experimental design includes
underlying model, among a set of candidate models of interest using less steps [2,39,40].
Maximization (or minimization of cost) of the information extracted from the data is an
expected objective of an experiment [41].

Our aim is to find an optimal experimental design x∗ using utility function f : Ω →
R, that describes the value of executing an experiment in the space of possible design.
Mathematically,

x∗ = arg max
y∈Ω⊂Rd

f(x) (1)

where Ω is any design space of interests, often a compact subset of Rd and furthermore,
we assume the function f has no simple closed form but can be evaluated at any arbitrary
point in the domain assumed to be expensive to evaluate [40].
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1.2 Objectives

The goal of the thesis is to cover the mathematical theory behind Bayesian approach in
an experimental design to find the best experimental design.

Research questions:

1. What are the criteria for optimal experimental design?
2. How can we obtain an optimal experimental design on Bayesian approach?

1.3 Structure of the thesis

The thesis tells everything need to know about optimal design on Bayesian approach
to find the best way to design an experiment. The theory behind Gaussian distribution,
Bayesian inference, and Gaussian process regression is explained in Chapter 2. Prior
distribution, posterior distribution, and Bayesian estimators discussed in Chapter 3. In
Chapter 4, there are theory about how to design experiments and to obtain an optimal
design. In the section on Bayesian optimal design, A- and D-optimality are discussed. In
the Chapter 5, there is conclusion of this thesis and at the end, there are references.
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2 GAUSSIAN RANDOM VARIABLES

A real valued Gaussian (random) process (GP) to be a random field on a parameter set, for
which the (finite dimensional) distributions of all random field are multivariate Gaussian.

GP is a stochastic process (a collection of random variables indexed by some mathe-
matical set) assuming that every random variables has a multivariate normal distribution
whose mean function and covariance function are fully described [43]. GP is a joint dis-
tribution of those random variables over a continuous domain i.e. time or space. This
is a natural generalization of the Gaussian distribution using a vector for the mean and a
matrix for the covariance [44]. When no better information of the unknowns is available,
the Gaussian distribution is a popular choice as a prior information. The fact, that un-
correlated Gaussian random variables are independent is a notable property of Gaussian
random variables [45]. Another reason for the Gaussian distribution’s wide use is that its
properties can be changed and used in an analytical form without much effort.

2.1 Gaussian distribution

Let X1, X2, ....., Xn be independent and identically distributed (i.i.d.) random variables.

Definition 2.1.1 (Sample spaces). A sample space Ω can be define as the set of all possible

outcomes of an experiment.

Subsets of Ω are called events.

Definition 2.1.2 (Independent events). Events A and B are called independent if

P(A ∩B) = P(A)× P(B),

and we express A ⊥ B means A and B are independent.

We define P is the probability and R is the real number in this thesis.

Lemma 2.1.1. For any events A and B,

P(A ∪B) = P(A) + P(B)− P(A ∩B).
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Proof. Write A ∪ B = (A ∩ Bc) ∪ (A ∩ B) ∪ (Ac ∩ B) and the events are disjoint. P is
additive for disjoint events, such that

P(A ∪B) = P((A ∩Bc) ∪ (A ∩B) ∪ (Ac ∩B))

= P(A ∩Bc) + P(A ∩B) + P(Ac ∩B)

= P(A ∩Bc) + P(A ∩B) + P(Ac ∩B) + P(A ∩B)− P(A ∩B)

= P((A ∩Bc) ∪ (A ∩B)) + P((Ac ∩B) ∪ (A ∩B))− P(A ∩B)

= P(A) + P(B)− P(A ∩B).

Here, Ac is a complement set, that contains all of the universal set’s elements which are
not present in the given set.

Theorem 2.1.1. Let An be monotone increasing and A = ∪∞i=1Ai. Then

P(An)→ P(A)

as n→∞.

Proof. Define B1 = A1, B2 = {ω ∈ Ω : ω ∈ A2, ω /∈ A1}, B3 = {ω ∈ Ω : ω ∈
A3, ω /∈ A2, ω ∈ A1}, ... It can be shown that B1, B2, ... are disjoint, An = ∪ni=1Ai =

∪ni=1Bi for each n and ∪∞i=1Ai = ∪∞i=1Bi. By definition,

P(An) = P
(
∪ni=1 Bi

)
=

n∑
i=1

P(Bi).

Hence,

lim
n→∞

P(An) = lim
n→∞

n∑
i=1

P(Bi) =
∞∑
i=1

P(Bi) = P
(
∪∞i=1 Bi

)
= P(A).

Definition 2.1.3 (Random field). Let Ω be a parameter space, X be a stochastic process

over Ω is a collection of a random variables {X(t) : t ∈ Ω}. If Ω is a set of N dimension

and the random variables X(t) are all vector valued of dimension d, then vector valued

random field X is called a (N, d) random field.
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A random variable X is a real-valued function with domain Ω, such that

X(t) ∈ R = {y : −∞ < y < +∞}, for all t ∈ Ω.

Definition 2.1.4 (Probability density function). Consider the random variable X with

probability density function (pdf) fX(x) is an integration function. We have

• fX(x) ≥ 0, for all x ∈ R.

•
∫∞
−∞ fX(x) dx = 1.

• P(a < X ≤ b) = f(a)− f(b) =
∫ b
a
fX(x) dx.

• For a set A, P(X ∈ A) =
∫
A
fX(x) dx.

Here, A is some intervals, a and b are some constant.

Definition 2.1.5 (Characteristic function). The characteristic function of a real valued

random variable X can be defined as

φX(t) = E(exp(itX)), (2)

where i is the imaginary unit i.e. i2 = −1.

It can be shown that
φaX+b(t) = exp(itb)φX(at). (3)

If X has the density fX(x) then the characteristic function is it’s Fourier transform, such
that

φ(t) =

∞∫
−∞

exp(itx)fX(x) dx. (4)

If φ(t) is integrable, then we get

fX(x) =
1

2π

∞∫
−∞

exp(−itx)φ(t) dt,

which is the inverse Fourier transform.

Definition 2.1.6 (Location and scale parameters). Let X be a real-valued random vari-

able, with density

fX(x|µ, σ) =
1

σ
g
(x− µ

σ

)
,
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where g is also a density, −∞ < µ < ∞ and σ > 0. Then µ and σ are called location

and scale parameter.

Definition 2.1.7 (Gaussian distribution). A continuous random variable X is said to be

Gaussian (or normally distributed) if it has the pdf

fX(x|µ, σ2) =
1

σ
√

2π
exp(− (x− µ)2/2σ2) for all x ∈ R, (5)

for some µ ∈ R and σ > 0.

Here µ and σ2 is the mean and variance of X respectively, and the characteristic function
is given by

φX(t) = E
{

exp(itX)
}

= exp(itµ− σ2t2/2). (6)

We abbreviate this by writing X ∼ N (µ, σ2). When µ = 0 and σ = 1, we say that X has
a standard normal distribution and if a random variable has zero mean simply, we call it
centered.

The pdf of a standard normal random variable X is given by,

fX(x) =
1√
2π

exp(−x2/2) for all x ∈ R. (7)

A normal distribution with random variable X ∼ N (0, 1), that is µ = 0 and σ = 1.

Univariate normal variable X can be written as

X = σZ + µ, (8)

where Z ∼ N (0, 1) is the standard random variable with the characteristic function e−
t2

2 .

Proposition 2.1.1. If f : R+ → R be a function, such that

f(x) = f(0) +

x∫
0

g(t) dt, E{|f(X)|} <∞ and X ≥ 0,

then

E{f(X)} = f(0) +

∞∫
0

g(t)P(X ≥ t) dt. (9)

If g ≥ 0 and right hand side of equation (9) is finite, then E{.} <∞.
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Proof. Using Fubini’s theorem, for X ≥ 0

∫
Ω

f(X) dP =

∫
Ω

(
f(0) +

∞∫
0

1t≤Xg(t) dt
)
dP

= f(0) +

∞∫
0

g(t)
(∫

Ω

1t≤X dP
)
dt

= f(0) +

∞∫
0

g(t)P(X ≥ t) dt.

Corollary 2.1.1. If E(|X|r) <∞ for an integer r > 0, then

E(Xr) = r

∞∫
0

tr−1P(X ≥ t) dt− r
∞∫

0

tr−1P(−X ≥ t) dt. (10)

If E(|X|r) <∞ for real r > 0, then

E(|X|r) = r

∞∫
0

tr−1P(|X| ≥ t) dt. (11)

Left hand side of equation (11) is finite if and only if the right hand side is also finite.

Proof. Equation (10) follows from proposition (2.1.1) with f(x) = xr and g(t) = d
dt
f(t)

= rtr−1. Since E(X) = E(X+) − E(X−), where X+ = max{X, 0} and X− =

min{X, 0}, now applying proposition (2.1.1) separately we will get corollary (2.1.1).

Theorem 2.1.2. If X1 and X2 are two independent random variables such that X1 +X2

follows normal distribution, then each of the variable X1 and X2 is normal.

Proof. We assume that E(X1) = E(X2) = 0 without the loss of generality. We know
that E(aX2

j ) <∞, j = 1, 2 for any constant a and therefore, the characteristic functions
φ1(.) and φ2(.) are analytic. By the uniqueness of the analytic extension, φ1(s)φ2(s) =

exp(−s2/2), for all s ∈ C, set of complex numbers. Thus φj(z) 6= 0 for all z ∈ C, j =

1, 2. Thus both characteristic function correspond to normal distribution.
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Definition 2.1.8 (Covariance matrices). Let X and Y be two random variables. The

covariance of X and Y is defined as cov(X, Y ) = E(X − E(X))(Y − E(Y )) assuming

that these expectations exist.

The variance of X is varX = cov(X,X) and the expectation is linear such that E(aX +

bY ) = aE(X) + bE(Y ). The covariance is symmetric and bilinear such that cov(aX +

bY, Z) = acov(X,Z) + bcov(Y, Z).

Definition 2.1.9 (Positive semi-definite). A matrix (covariance matrix) Cd×d is called

positive semi-definite (positive definite) if x>Cx ≥ 0(> 0) for all x ∈ Rd.

A function C : R × R → R is called positive definite if the matrices (C(ti, tj))
n
i,j=1 are

positive definite for all 1 ≤ n <∞ and all (t1, ..., tn) ∈ Rn.

Note that, a (vector valued) random variable X is symmetric if X and −X has the same
distribution.

Lemma 2.1.2. For every matrix A, vector b, and random vector X , we have

1. E(AX + b) = AE(X) + b,

2. Cov(AX) = A(CovX)AT ,

3. CovX is symmetric and positive definite,

4. P(X ∈ E{.}+ range(CovX)) = 1.

Lemma 2.1.3. Each bilinear form of C has the dot product representation

C(x, y) = C〈x, y〉,

where C is a linear mapping, represented by a d× d matrix, C =
[
ci,j]. Furthermore, we

have C = C>.

Definition 2.1.10 (Gaussian random variable). A real-valued random variableX is called

a Gaussian random variable, if it has characteristic function

E(eiλX) = exp
(
imλ− σ2λ2

2

)
.

Here m and σ are some real numbers. From the above characteristic function, using

differentiation with respect to λ and setting λ = 0, we get

E(X) = m and V ar(X) = σ2.
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An Rn valued random variable ξ is a Gaussian random variable if (y, ξ) is a real valued
Gaussian random variable for each y ∈ Rn, that it has characteristic function

φξ(y) = E(exp(i(y, ξ))) = exp
(
iE(y, ξ)− V ar(y, ξ)

2

)
, (12)

for each y ∈ Rn. Settingm = (m1, ...,mn), E(ξj) = mj and E(ξj−mj)(ξk−mk) = Σj,k,
we can rewrite equation (12) as

φξ(y) = exp
(
imy − y>Σy

2

)
, (13)

where Σ = {Σj,k}nj,k=1 is a symmetric n × n matrix with real components. Here m and
Σ are the mean and covariance matrix of ξ and the rank of Σ is the dimension of the
subspace of Rn.

Lemma 2.1.4. Let ξ be an Rn valued Gaussian random variable with mean vector m and

assume that

E((ξj −mj)(ξk −mk)) = 0, j 6= k.

Then ξ1, ..., ξn are independent.

Definition 2.1.11 (Multivariate gaussian). A real-valued random variable X is said to

be multivariate Gaussian if, for all a = (a1, a2, ..., ad) ∈ Rd, the real valued variable〈
a,X

〉
=
∑d

i=1 aiXi is Gaussian. Here, µ ∈ Rd with µj = E
{
Xj

}
is a mean vector

and C is a positive semi-definite d × d covariance matrix with elements ci,j = E
{

(Xi −
µi)(Xj − µj)

}
, such that the probability density of X is given by

ϕ(x) =
1

(2π)d/2|C|1/2
exp(−1

2
(x− µ)>C−1(x− µ)), (14)

where |C| = detC is the determinant of C. We write this as X ∼ Nd(µ,C) with
dimension d.

Corollary 2.1.2. LetX and Y has a (joint) normal distribution onRd1+d2 and ||.||X , ||.||Y
are 〈., .〉-orthogonal (X and Y are uncorrelated), then X, Y are independent.

Here ||.|| is some space.

Theorem 2.1.3. LetX, Y be a real valued random variables have the joint characteristics

function φ(t, s). Let E(|X|m) < ∞ for some m ∈ N and g(y) be such that g(Y ) =
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E{Xm|Y }. Then for all real s

(−i)m ∂m

∂tm
φ(t, s)

∣∣∣
t=0

= E(g(Y ) exp(isY )). (15)

If g(y) =
∑
cky

k is a polynomial, then

(−i)m ∂m

∂tm
φ(t, s)

∣∣∣
t=0

=
∑
k

(−i)kck
dk

dsk
φ(0, s). (16)

Proof. E(|X|m) <∞, then the joint characteristic function φ(t, s) = E(exp(itX+ isY ))

can be differentiated m times with respect to t and

∂m

∂tm
φ(t, s) = imE(Xm exp(itX + isY )).

Putting t = 0 gives us equation (15). To prove equation (16), we need to prove E(|Y |r) <
∞, where r is the degree of the polynomial g(y). Using Jensen’s inequality, we get
E(|g(Y )|) ≤ E(|X|m) <∞, and since |g(y)/yr| → constant 6= 0 as |y| → ∞, therefore
there is constant > 0 such that |y|r ≤ constant |g(y)|, for all y. Therefor, E(|Y |r) <
∞.

Definition 2.1.12 (Maximum likelihood estimate). The maximum likelihood estimate

(MLE) θ̂ is a value of θ, where the likelihood function L(θ) = f(x|θ) attains it’s supre-

mum, i.e.,

sup
θ
f(x|θ) = f(x|θ̂).

The MLE can be obtain to solve the likelihood equation

∂

∂θj
log f(x|θ) = 0, j = 1, ..., n,

if f is differentiable with respect to θ and f > 0.

Theorem 2.1.4. Given a random sample of size n from a normal distribution with mean

µ and variance Σ, the log-likelihood is given by

L(µ,Σ) = −n
2

(X − µ)>Σ−1(X − µ)− n

2
Tr(Σ−1S)− n

2
log |Σ|.

The MLE is,

µ̂ = X and Σ̂ =
(n− 1

n

)
S.
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Here, S is a variance-covariance matrix.

Proof. By taking logarithm in the likelihood function of normal distribution we get log-
likelihood, differentiate depending on the parameter of µ and Σ we get the MLE.

Lemma 2.1.5. The random vector X ∼ Nd(µ,Σ), if and only if for every a ∈ Rd, a>X
has distribution N1(a>µ, a>Σa).

Proof. Since X ∼ Nd(µ,Σ), the parameters a>µ and a>Σa are the expectation and co-
variance of the variable a>X . So, it is enough to show that a>X is normally distributed.
Since the distribution of X and µ + LZ are same, then the variable a>X has the same
distribution as a>µ+ (L>a)>Z. The second term is a constant as well as a linear combi-
nation of independent variables, b>Z (b = L>a) and normally distributed with zero mean
and unique variance.

Again, let a>X ∼ N (a>, a>Σa), then a>X and a>Y has the same distribution for an
Nd(µ,Σ)-distributed vector Y . If this is true for every a, then X and Y also have the
same distribution; hence X ∼ Nd(µ,Σ).

Corollary 2.1.3. If the vector X = (X1, ..., Xd) has the distribution Nd(µ,Σ) and A :

Rd → Rm is an arbitrary matrix, then AX has distribution Nm(Aµ,AΣA>).

Proof. Aµ and AΣA> are the expectation and covariance matrix of AX . It’s enough
to prove, that AX is normally distributed. We have a>(AX) = (A>a)>X . According
to lemma (2.1.5), this variable has a one-dimensional normal distribution, which implies
that, AX has a multivariate normal distribution.

Above lemma and corollary imply that the marginal distributions of a multivariate normal
distribution are normally distributed [46].

Theorem 2.1.5. Let a be a vector and X be a random vector of the same length d with

mean µ and variance Σ. Then E(a>X) = a>µ and V ar(a>X) = a>Σa. If A is a matrix

with d columns, then E(AX) = Aµ and V ar(AX) = AΣA>.
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Proof.

E(a>X) = E(a>
1

d

d∑
i=1

Xi) = a>
1

d
E(

d∑
i=1

Xi)

= a>µ.

Again

V ar(a>X) = E(
d∑
i=1

(a>Xi − µ)2) = a>E(
d∑
i=1

(Xi − µ)2)a

= a>Σa.

Lemma 2.1.6. The vector X = (X1, ..., Xd) has a multivariate normal distribution with

a diagonal matrix Σ, if and only if X1, ..., Xd are independent and has normal marginal

distributions.

Proof. A symmetric, positive definite diagonal matrix Σ can be written as Σ = LL>

for L the diagonal matrix with entries the square roots of the diagonal entries of Σ. By
definition, X has distributionNd(µ,Σ) if it has the same distribution as µ+ LZ = (µ1 +

L11Z1, ..., µd +LddZd) for independent standard normal variables Z1, ..., Zd. Hence X =

(X1, ..., Xd) are independent and normally distributed.

Lemma 2.1.7. Let ξ be a real valued Gaussian random variable with zero mean and

variance σ2. Then, for all a > 0,

P(|ξ| > a) ≤ exp
(

(− a2

2σ2
)
)
, (17)

and a/σ ≥ 1,

(σ/a)φ(a/σ) ≤ P(|ξ| > a) ≤ 2(σ/a)φ(a/σ). (18)
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Proof. We divide |ξ| using σ and when σ = 1 we get,

P(|ξ| > a) =
2√
2π

∞∫
a

exp(−u2/2) du

≤ 2

a
√

2π

∞∫
a

u exp(−u2/2) du

=
2

a
√

2π
exp(−a2/2)

Also, using derivatives, exp(−a2/2)− P(|ξ| > a) is increasing for a < 2/
√

2π. Now,

P(|ξ| > a) =
2√
2π

∞∫
a/σ

exp(−u2/2) du ≤ 2σ√
2πa

∞∫
a/σ

u exp(−u2/2) du.

Definition 2.1.13 (Gaussian process). A real-valued stochastic process {X(t), t ∈ T} (T

is some index set) is a GP, if it’s finite dimensional distribution are Gaussian which is

characterized by it’s mean function m and it’s covariance kernel Σ, given by

m(t) = E(X(t)) and Σ(s, t) = E(X(t)−m(t))(X(s)−m(s)).

A GP is defined as a distribution across functions, according to one definition [44]. We
can sample a function at the point x from a GP that has been completely described by a
mean and covariance function according to,

f(x) ∼ GP(m, k),

where f(.) is a covariance function, which is a subclass of kernel functions, and m(.) is
the function we sample from the GP.

The GP approach to nonparametric regression uses a Gaussian stochastic process prior to
perform Bayesian inference directly on the space of functions f .

Gaussian process regression (GPR) is a kernel technique, but being derived in a com-
pletely different way [47, 48]. The GPR model commonly known as the Kriging model,
is a Bayesian nonparametric approach that implements GP for regression analysis [49].
The fact, that functions can be readily defined by a mean function m(x) and a covariance
function k(x, x′) is a major advantage of utilizing the Gaussian prior assumption [50],
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such that

m(x) = E(f(x)) and k(x, x′) = E((f(x)−m(x))(f(x′)−m(x′))).
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3 BAYESIAN INFERENCE

Thomas Bayes is the father of Bayesian inference but the credit goes to Pierre-Simon
Laplace [51] for driving the formula that we use now-a-days [52]. The primary difference
between Bayesian inference and classical inference (or frequentist inference) is that it
treats model parameters as random variables rather than constants [53]. Prior information
can be explicitly considered using the Bayesian framework (or paradigm). It can also
be used to create a complex statistical model that is difficult to solve using traditional
approaches. One disadvantage of Bayesian inference is that it always requires a prior
distribution to be defined, even in the absence of any prior knowledge.

However, suitable uninformative prior distributions [54] have been constructed to over-
come this issue, and in many circumstances, a good feature of Bayesian inference is that
these priors lead to exactly the same point and interval estimates as classical inference.
When there is at least a considerable amount of data available, the issue becomes even
less pressing. The Bayesian technique often converges to the same inferential results as
sample size grows, regardless of the stated prior distribution.

If the likelihood is Gaussian, for example, using a Gaussian distribution as a prior is
advantageous since the product of two Gaussian probability density distributions is also
Gaussian. In that situation, calculating the posterior covariance is also straightforward.
Furthermore, a Gaussian distribution’s conditional mean and maximum a posteriori values
are the same.

3.1 Prior distribution

The prior distribution is a crucial component of Bayesian inference, representing knowl-
edge about an uncertain parameter θ, that is coupled with the probability distribution of
new data to produce the posterior distribution, which is utilized for future inferences and
decisions concerning θ [54, 55]. Axioms of decision theory can be used to justify the
presence of a prior distribution for any problem.

Definition 3.1.1 (Conditional probability). If P(B) > 0, then the conditional probability

of A given B is

P(A|B) =
P(A ∩B)

P(B)
. (19)

When B is fixed, P(B) > 0, P(.|B) is a probability. The probability P(A∩B) is the joint
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probability of A and B.

Lemma 3.1.1. Let A and B are two independent events, then P(A|B) = P(A). When A

and B are any pair events, then

P(A ∩B) = P(A|B)P(B) = P(B|A)P(A).

Definition 3.1.2 (Prior distribution). A prior is expressed as a probability distribution and

can be determined in a variety of ways (e.g., previous information, subjective evaluation,

maximization of entropy under constraints), and is typically combined with the likelihood

function using Bayes’ theorem to obtain a posterior distribution.

3.2 Posterior distribution

Posterior distribution holds all the information related to the unknown parameter θ [56]
after the observation of data X .

Definition 3.2.1 (Posterior distribution). Let X = x be the observed realization of a

random variableX with density function f(x|θ) (from now we will use density f(.) instead

of fX(.)). Prior distribution with density function f(θ) allows to compute the density

function f(θ|x) of the posterior distribution using Bayes theorem

f(θ|x) =
f(x|θ)f(θ)∫
f(x|θ)f(θ) dθ

. (20)

For discrete parameters θ, the integral in the denominator has to be replaced with a sum.

The term f(x|θ) is the likelihood function L(.). The denominator can be rewrite as∫
f(x|θ)f(θ) dθ =

∫
f(x, θ) dθ = f(x),

that is it does not depend on θ.

Definition 3.2.2 (Bayesian point estimates). The posterior mean E(θ|x) is the expectation

of the posterior distribution, such that

E(θ|x) =

∫
θf(θ|x) dθ.
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The posterior mode is the mode of the posterior distribution, such that

Mod(θ|x) = arg max
θ

f(θ|x).

The posterior median is the median of the posterior distribution, i.e. any number a that

satisfies
a∫

−∞

f(θ|x) dθ = 0.5 and

∞∫
a

f(θ|x) dθ = 0.5. (21)

3.3 Bayesian estimators

Using the Bayes theorem, the posterior density can be given

f(θ|x) =
f(x|θ)f(θ)

m(x)
, (22)

where m(x) =
∫
f(x|θ)f(θ) dθ is the marginal distribution of X . Then, we can define

the posterior risk of an estimator θ̂(x) by

r(θ̂|x) =

∫
L(θ, θ̂(x))f(θ|x) dθ, (23)

where L(., .) is the loss function.

Definition 3.3.1 (Risk). The risk of an estimator θ̂, is

R(θ, θ̂) = Eθ
(
L(θ, θ̂)

)
=

∫
L(θ, θ̂(x))f(x|θ) dx.

Definition 3.3.2 (Bayes risk). The maximum risk is given by

R(θ̂) = sup
θ
R(θ, θ̂),

then the Bayes risk is defined as

r(f, θ̂) =

∫
R(θ, θ̂)f(θ) dθ.

Here, f(θ) is a prior for θ.

Definition 3.3.3 (Bayes rule). An estimator θ̂ is called a Bayes rule with respect to the
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prior f , if

r(f, θ̂) = inf
θ̃
r(f, θ̃).

Here the infimum is over all estimators of θ̃.

Theorem 3.3.1. The Bayes risk r(f, θ̂) satisfies

r(f, θ̂) =

∫
r(θ̂|x)m(x) dθ,

where m(x) =
∫
f(x|θ)f(θ) dθ and r(θ̂|x) is the posterior risk. If θ̂(x) is the value of θ

that minimizes r(θ̂|x), then θ̂ is the Bayes estimator.

Proof. The Bayes risk can be rewrite as follows

r(f, θ̂) =

∫
R(θ, θ̂)f(θ) dθ

=

∫ (∫
L(θ, θ̂(x))f(x|θ) dx

)
f(θ) dθ

=

∫ ∫
L(θ, θ̂(x))f(x, θ) dxdθ

=

∫ ∫
L(θ, θ̂(x))f(θ|x)m(x) dxdθ

=

∫ (∫
L(θ, θ̂(x))f(θ|x) dθ

)
m(x) dx

=

∫
r(θ̂|x)m(x) dx.

If θ̂(x) be the value of θ, which minimizes r(θ̂|x), then we will minimize the integrand at
every x, which minimize the integral

∫
r(θ̂|x)m(x) dx.

Theorem 3.3.2. If L(θ, θ̂) = (θ − θ̂)2, then the Bayes estimator is

θ̂(x) =

∫
θf(θ|x) dθ = E(θ|X = x). (24)

When L(θ, θ̂) = |θ − θ̂|, then the Bayes estimator is the median of the posterior f(θ|x)

and L(θ, θ̂) is zero-one loss, then the Bayes estimator is the mode of the posterior f(θ|x).

Here, zero-one loss literally counts the number of errors made by a hypothesis function
on the training set.
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Proof. We will consider the theorem in the context of squared error loss. The Bayes rule
θ̂(x) minimizes r(θ̂|x) =

∫
(θ− θ̂(x))2f(θ|x) dθ. The derivative of r(θ̂|x) with respect to

θ̂(x) and setting it equal to zero gives the equation,
∫

(θ − θ̂(x))f(θ|x) dθ = 0. Solving
for θ̂(x) we will get the estimate.

Definition 3.3.4 (Minimax rule). An estimator θ̂ is called minimax, if

sup
θ
R(θ, θ̂) = inf

θ̃
sup
θ
R(θ, θ̃),

where the infimum is over all estimators θ̃ and the supremum is over all admissible values

of θ.

Theorem 3.3.3. Let θ̂f be the Bayes rule for some prior f , such that

r(f, θ̂f ) = inf
θ̂
r(f, θ̂). (25)

Let

R(θ, θ̂f ) ≤ r(f, θ̂f ) for all θ. (26)

Then θ̂f is called minimax and f is called a least favorable prior.

Proof. Let θ̂f is not minimax. Then there exist another rule θ̂0, such that sup
θ
R(θ, θ̂0) <

sup
θ
R(θ, θ̂f ). We know that the average of a function is always less or equal to it’s maxi-

mum. We have r(f, θ̂0) ≤ sup
θ
R(θ, θ̂0). Hence

r(f, θ̂0) ≤ sup
θ
R(θ, θ̂0) < sup

θ
R(θ, θ̂f ) ≤ r(f, θ̂f ),

which is contradicts.

Theorem 3.3.4. Let θ̂ is the Bayes rule with respect to some prior f . Suppose θ̂ has

constant risk, such that R(θ, θ̂) = constant. Then θ̂ is minimax.

Proof. The Bayes risk is, r(f, θ̂) =
∫
R(θ, θ̂)f(θ) dθ = constant. So, r(θ, θ̂) ≤ r(f, θ̂)

for all θ. Using theorem (3.3.3), we can get the proof.

From above we can say, that with a constant risk function, the Bayes estimators are mini-
max [57].
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Definition 3.3.5 (Admissible). An estimator θ̂ is called inadmissible if there exists another

rule θ̂′, such that

R(θ, θ̂′) ≤ R(θ, θ̂) for all θ

and

R(θ, θ̂′) < R(θ, θ̂) for at least one θ.

Otherwise, θ̂ is called admissible.

Theorem 3.3.5. If X is a random variable follows normal distribution with mean θ and

variance σ2, then aX + b is inadmissible as an estimator of θ for squared error loss if

(a) a < 1

(b) a > 0

(c) a = 1, b 6= 0.

Proof. For any a and b, the risk of the rule aX + b is given by

R(θ, aX + b) = a2σ2 + {(a− 1)θ + b}2 ≡ ρ(a, b).

(a) If a > 1

ρ(a, b) ≥ a2σ2 > σ2 = ρ(1, 0),

so, aX + b is dominated by X .
(b) If a < 0, then (a− 1)2 > 1 and

ρ(a, b) ≥ {(a− 1)θ + b}2 = (a− 1)2{θ +
b

a− 1
}2

> {θ +
b

a− 1
}2 = ρ(0,

−b
a− 1

).

(c) If a = 1, b 6= 0,

ρ(1, b) = σ2 + b2 > σ2 = ρ(1, 0),

so, X + b is dominated by X .
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Theorem 3.3.6. Suppose that, R(θ, θ̂) is a continuous function of θ for every θ̂. Let f be a

prior density with full support, meaning that, for every θ and every ε > 0,
∫ θ+ε
θ−ε f(θ) dθ >

0. Let θ̂f be the Bayes rule. If the Bayes risk is finite then θ̂f is admissible.

Proof. If θ̂f is inadmissible, then there exists a better rule θ̂, such that R(θ, θ̂) ≤ R(θ, θ̂f )

for all θ and R(θ0, θ̂) < R(θ0, θ̂
f ) for some θ0. Let v = R(θ0, θ̂

f ) − R(θ0, θ̂) > 0. R is
continuous, so there exists some constant ε > 0 and then R(θ, θ̂f )−R(θ, θ̂) > v/2 for all
θ ∈ (θ0 − ε, θ0 + ε). Then,

r(f, θ̂f )− r(f, θ̂) =

∫
R(θ, θ̂f )f(θ) dθ −

∫
R(θ, θ̂)f(θ) dθ

=

∫ [
R(θ, θ̂f )−R(θ, θ̂)

]
f(θ) dθ

≥
θ0+ε∫
θ0−ε

[
R(θ, θ̂f )−R(θ, θ̂)

]
f(θ) dθ

≥ v

2

θ0+ε∫
θ0−ε

f(θ) dθ

> 0.

Hence r(f, θ̂f ) > r(f, θ̂). This is contradiction.

Theorem 3.3.7. Let θ̂ has constant risk and is admissible. Then it is minimax.

Proof. The risk R(θ, θ̂) is constant. Let θ̂ is not minimax, so there exists a rule θ̂′ such
that

R(θ, θ̂′) ≤ sup
θ
R(θ, θ̂′) < sup

θ
R(θ, θ̂) = constant.

Then, θ̂ is inadmissible.

Theorem 3.3.8. Let X1, ..., Xn ∼ N (θ, 1). Then, under squared error loss, θ̂ = X is

minimax.

Proof. We know, that under squared error loss, θ̂ is admissible. The risk of θ̂ = 1/n is a
constant. The proof can be draw from theorem (3.3.7).
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4 EXPERIMENTAL DESIGN

The core of this thesis is the theory related to obtain an OED. When it comes to exper-
imental design, every part of the experiment is planned out in advance [58]. To get the
most out of the given resources, it is critical to plan the optimal experiments based on rec-
ognized restrictions. It is also critical to plan the experiments such that they are centered
around the goal.

4.1 Optimal design

The main purpose of optimal design is to choose a design d∗ from a set of possible designs
D, which produces the best estimate of the desired parameters [59–61]. The optimal
design is contingent upon how the term "best" is defined.

Let d be a design and Y be the vector of observations obtain under design d andX is n×k
design matrix with known entries specified by design d. Let introduce noise ε ∼ N (µ, σ),
then

E(Y + ε) = Xθ, Cov(Y + ε) = σ2In, (27)

where θ is a k × 1 vector of unknown parameter and In is the identity matrix of order n.
Here, E(ε) = 0. Note that Cd = X>X is an information matrix for the design d.

Definition 4.1.1 (Uniformly optimal). A design d∗ is said to be uniformly optimal among

a class D of designs if for any design d ∈ D, Cd∗ − Cd is non-negative.

Now we will introduce some criteria [60, 62, 63] for optimality.

Definition 4.1.2 (Φp-criteria). The Φp-criteria are defined as

Φp(Cd) =
[1

k
Tr(C−pd )

] 1
p

=
[1

k

k∑
i=1

λ−pi (Cd)
] 1

p
, 0 < p <∞.

Φ0(Cd) = lim
p→0

Φp(Cd) =
k∏
i=1

λ
−1/k
i ,

Φ+∞(Cd) = lim
p→+∞

Φp(Cd) = maxλ−1
i (Cd),

Φ−∞(Cd) = lim
p→−∞

Φp(Cd) = minλ−1
i (Cd).
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Definition 4.1.3 (Φp-optimal). A design d∗ is said to be Φp-optimal if it holds that

Φp(Cd∗) ≤ Φp(Cd),

for all d ∈ D.

We need to clarify the optimality criteria [63, 64] before to find the optimal design. Ma-
jorization and Schur convexity [65] are important ideas for figuring out how two or more
criteria relate to each other.

Definition 4.1.4 (Convex). A function f : Rn → R is convex if it’s domain is a convex set

for all x, y in it’s domain, and all λ ∈ [0, 1], we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

If we take any two points x and y, then f evaluated at any convex combination of these
two points should be not larger than the same convex combination of f(x) and f(y).

Corollary 4.1.1. Consider an unconstrained optimization problem

min
x∈Rn

f(x)

where f is convex and differentiable. Then, any point x that satisfies ∇f(x) = 0 is a

global minimum.

Proof. Using first order characterization of convexity, we have

f(y) ≥ f(x) +∇f>(x)(y − x), for all (x, y)

Particularly,

f(y) ≥ f(x) +∇f>(x)(y − x), for all y.

Since∇f(x) = 0, we get

f(y) ≥ f(x), for all y.

Now we introduce MS-optimality [66] depending on the Φp-criteria.
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Definition 4.1.5 (MS-optimal). A design d∗ of a class of designs D is called MS-optimal

if it minimizes Φ−1 and if it maximizes Φ−2 among the subclass of designs minimizing

Φ−1.

There are some situations where a design is better than others in terms of multiple criteria,
not just one. Using this as a starting point, Kiefer [67] proposes the concept of "universal
optimality".

Definition 4.1.6 (Universally optimal). A design d∗ ∈ D is universally optimal design if

d∗ is Φ-optimal for all the criteria Φ(C) from C to ]−∞,+∞] satisfying

(a) Φ is invariant under each permutation of rows and columns,

(b) Φ(aC) is non-increasing in the scalar a > 0,

(c) Φ is convex.

Let Pσ denote the (d, d)-matrix that permutes the components of a vector according to the
permutation σ lying in St, where St is the symmetric group on {1, ..., d}.

Definition 4.1.7 (Symmetric). A function φ on Rd is symmetric if for all x ∈ Rd and for

all σ ∈ Sd, φ(Pσx) = φ(x).

Proposition 4.1.1. A design d∗ is universally optimal among a class D of designs if it

satisfies

(i) Tr Cd∗ = maxd∈D Tr Cd,

(ii) for all d ∈ D, there exist scalers adσ ≥ 0 such that

Cd∗ =
∑
σ∈St

adσPσCdP
>
σ .

Proof. Condition (i) is necessary as C → −Tr C satisfies condition (a), (b) and (c) in
definition 4.1.6. Let d∗ be a universally optimal design, and further assume that there
exists a design d1 such that

Cd∗ =
∑
σ∈St

PσCd1Pσ
>.

Let A be the convex cone generated by the matrices {Pσ Cd1 P>σ }σ∈St . Consider the
criterion Φ defined by:

Φ(Cd) =

0 if Cd ∈ A

+∞ if Cd /∈ A
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For all σ ∈ St, PσAP>σ = A, thus Φ(PσCdP
>
σ ) = Φ(Cd). Also, for any constant a >

0, Φ(aCd) = Φ(Cd). Hence Φ satisfies the conditions from the definition 4.1.6. Then, we
have Φ(Cd1) < Φ(Cd∗), which is a contradiction.

Definition 4.1.8 (Majorize). Let x, y ∈ Rd, we denote x↓i be the ith largest component of

x. We say x is majorized by y, and write x ≺ y, if

d∑
i=1

xi =
d∑
i=1

yi and for all k = 1, ..., d− 1 :
k∑
i=1

x↓i ≤
k∑
i=1

yi

The term strict majorization is used when
∑k

i=1 x↓i <
∑k

i=1 yi.

Corollary 4.1.2. A design d∗ is Φp-optimal among a class D of design for p ≥ −1 if for

all d ∈ D it hold that

λ(Cd∗) ≺ λ(Cd),

where λ(Cd) is the d-vector of the decreasing ordered eigenvalues of Cd.

Lemma 4.1.1. Let A and B be two (n, n) symmetric matrices, then

λ(A+B) ≺ λ(A) + λ(B).

Proof. From Ky Fan’s maximum principle [68] we know that

λ(A) =
k∑
j=1

λj(A) = max
k∑
j=1

〈xj, Axj〉

So

λ(A+B) = max
k∑
j=1

〈xj, (A+B)xj〉

≺ max
k∑
j=1

〈xj, Axj〉+ max
k∑
j=1

〈xj, Bxj〉

≺ λ(A) + λ(B).

Proposition 4.1.2. A design d∗ is universally optimal (with condition a′) among a class
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D of designs if and only if

(a) Tr Cd = max
d∈D

Tr Cd,

(b) λ
( Cd∗

Tr Cd∗

)
≺ λ

( Cd
Tr Cd

)
.

Proof. Let the conditions (a) and (b) holds, then for all d ∈ D, condition (b) implies
that λ(Cd∗) ≺ λ(Tr Cd∗

Tr Cd
Cd) and Φ(Cd∗) ≤ Φ(Tr Cd∗

Tr Cd
Cd). By the definition 4.1.6 and by

condition (a), Φ(Cd∗) ≤ Φ(Cd).

In an opposite way, let say d∗ be universally optimal (with condition a′). Then the condi-
tion (a) is true. If the condition (b) is not true, then we assume, that there exists a design
d1 such that

λ
( Cd∗

tr Cd∗

)
⊀ λ

( Cd1
Tr Cd1

)
.

Now we define the set A is a cone and using lemma 4.1.1, we can show that A is convex,
which give the identical proof of proposition 4.1.1.

Corollary 4.1.3. A design d∗ is MS-optimal among a class D if it minimizes Φ−1 and if

λ(Cd∗) ≺ λ(Cd) for all the designs minimizing Φ−1.

Definition 4.1.9 (Schur-convex). A real function φ on Rd is Schur-convex if

x ≺ y ⇒ φ(x) ≤ φ(y).

and Schur-concave if

x ≺ y ⇒ φ(x) ≥ φ(y).

Pσ denote by the (k, k)-matrix that permutes the components of a vector according to the
permutation σ lying in St, where St is the symmetric group on {1, ..., k}.

Corollary 4.1.4. A convex symmetric function φ on Rd is Schur-convex.

For all symmetric real matrices,

δ(C) ≺ λ(C),

where δ(C) is the vector of diagonal terms of C. This is sometimes referred as Schur’s
theorem.
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We denote λ(C) as the vector of the decreasing ordered eigenvalues of C.

Definition 4.1.10 (Schur-convex criterion). A criterion C 7→ φ(C) is Schur-convex on

the eigenvalues if

λ(C) ≺ λ(D)⇒ φ(C) ≤ φ(D).

Proposition 4.1.3. Let Φ be a Schur convex criterion on the eigenvalues. So that Φ(C) =

φ(λ(C)). Then d∗ is Φ-optimal among a class D of designs if

Φ(Cd∗) ≤ φ(δ(Cd)) for all d ∈ D,

where δ(Cd) is the vector of diagonal terms of Cd in decreasing order.

Proof. Using Schur’s theorem

δ(C) ≺ λ(C),

Then

Φ(Cd∗) ≤ φ(δ(Cd)) for all d ∈ D.

Hence the proof.

4.2 Bayesian optimal design

Experimental design has always taken prior knowledge into account when determining
the type of experiment to conduct. The Bayesian technique is distinct in that it considers
prior information to act as a probability function, adding some degree of uncertainty into
the model. BODs are a subclass of experimental designs whose objective is to produce
optimal decisions in the face of uncertainty. The optimization is accomplished by select-
ing the optimal optimization criteria based on some statistical criteria. When dealing with
many experimental sets, rather than utilizing the same model for each set, we can use the
results of prior tests to change our model for the subsequent experimental sets. This can
be employed in standard experimental design, but optimum designs yield more precise
results due to their optimization.

The optimal design can be achieved by optimizing the experiment’s predicted utility [69].
If a design plan is chosen from the possible plan set D, then the sample data x is gath-
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ered, and a decision rule Ψ is picked from the possible rule set H using the given d∗ and
observed x. This utility function can be denoted as U(Ψ, d∗, x, y); then for any design d∗,
the expected utility can be given as:

U(d∗) = E[U(Ψ, d∗, x, y] =

∫∫
U(Ψ, d∗, x, y)ξ(y|x, d∗)ξ(x|d∗) dy dx

where ξ(x|d∗) is the likelihood function under the given d∗ and ξ(y|x, d∗) is the posterior
distribution of y under the given d∗ and observed x.

There are other modes, but we will concentrate on A- and D-optimality in this thesis as
the information matrix’s trace is minimized when A-optimality (average) is used and the
determinant of the information matrix is maximized by D-optimality (determinant).

4.2.1 A-optimality

Let η̂d is the best linear unbiased estimate of η using a design d with variance V ar(η̂d) =

Vd. The posterior covariance matrix can be used to figure out the A-optimal design.

Definition 4.2.1 (A-optimality). A design d∗ ∈ D is said to be A-optimal in D iff

Tr(Vd∗) ≤ Tr(Vd),

for any other design d ∈ D.

In the A-optimality criterion, the trace of Vd is minimized, which implies that the average
variance of the BLUE of the components of η is minimized.

Lemma 4.2.1. If A and B are square matrices of the same size then

Tr(AB) = Tr(BA).

Proof. Let A = (aij) and B = (bij) be n× n matrices. Then

Tr(AB) =
n∑
i=1

n∑
j=1

aijbji =
n∑
i=1

n∑
j=1

bjiaij =
n∑
j=1

n∑
i=1

bjiaij = Tr(BA).
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When studying the trace of a matrix product, it is widely established that the matrix prod-
uct is invariant under cyclic permutations [70]. Tr(ABC) = Tr(CAB) = Tr(BCA) for
matrices A, B, and C, where CAB and BCA are cyclic permutations of ABC. As a
result, when evaluating their traces, these three permutations are equal.

Theorem 4.2.1. Let A1, ..., An be n× n matrices. Then

Tr(A1...An−1An) = Tr(AnA1...An−1)

Proof. Using the lemma 4.2.1, for matrices A1 and A2, Tr(A1A2) = Tr(A2A1).
Let B = A1A2...An−1, then we get

Tr(BAn) = Tr(AnB)

or

Tr(A1A2...An) = Tr(AnA1...An−1).

This is not true in the case of more generic permutations. In general, Tr(ABC) 6=
Tr(CBA).

Theorem 4.2.2. Let U(Ψ, d∗, x, y) = −||A(x − xCM(y))||22. It follows that ΦA(d∗) =

Tr(AΓpost(d
∗)A>).

Proof. A-optimality corresponds to defining the utility function U as

U(Ψ, d∗, x, y) = −||A(x− xCM(y))||22,

where xCM(y) is the posterior mean and A is a weight matrix. Now we get the minimiza-
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tion target ΦA(d∗) as [71]

ΦA(d∗) = −
∫∫

U(Ψ, d∗, x, y)ξ(y|x, d∗)ξ(x|d∗) dy dx

=

∫∫
(x− xCM(y))>A>A(x− xCM(y))ξ(y|x, d∗)ξ(x|d∗) dy dx

= Tr
[ ∫∫

(x− xCM(y))>A>A(x− xCM(y))ξ(y|x, d∗)ξ(x|d∗) dy dx
]

=

∫∫
Tr
[
A(x− xCM(y))(x− xCM(y))>A>

]
ξ(y|x, d∗)ξ(x|d∗) dy dx

= Tr
[
A

∫∫
(x− xCM(y))(x− xCM(y))>ξ(y|x, d∗) dy ξ(x|d∗) dxA>

]
[where we applied theorem (4.2.1)]

= Tr
[
A

∫
EY |x,d∗

[
(x− xCM(y))(x− xCM(y))>

]
ξ(x|d∗) dxA>

]
= Tr

[
A

∫
Γpost(d

∗)ξ(x|d∗) dxA>
]

= Tr
[
AΓpost(d

∗)A>
]

since for Gaussian prior, the posterior covariance matrix Γpost(d
∗) is independent of the

measurement x.

4.2.2 D-optimality

The logarithmic determinant of the posterior covariance matrix can be used to calculate
the D-optimal design.

Definition 4.2.2 (D-optimality). A design d∗ ∈ D is said to be D-optimal in D iff

det(Vd∗) ≤ det(Vd),

for any other design d ∈ D.

D-optimal design corresponds to defining the utility function U as

U(x, d∗) = KL
[
Y |x, d∗

∣∣∣∣∣∣Y |d∗],
which is independent of the unknown x. Here, KL

[
Y |x, d∗

∣∣∣∣∣∣Y |d∗] is the Kullback-
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Leibler (KL) divergence [72] can be defined as

KL
[
Y |x, d∗

∣∣∣∣∣∣Y |d∗] =

∫
ξ(y|x, d∗) log

(ξ(y|x, d∗)
ξprior(y)

)
dy

=

∫
ξ(y|x, d∗) log(ξ(y|x, d∗) dy −

∫
ξ(y|x, d∗) log ξprior(y) dy

=

∫
ξ(y|x, d∗) log(ξ(y|x, d∗) dy +H(Y |x, d∗),

whereH(Y |x, d∗) is the differential entropy of the distribution ξ(y|x, d∗). Since the utility
function U(x, d∗) is independent of y, then the D-optimality can be expressed as [73]

ΦD(d∗) = −
∫
U(x, d∗)ξ(x|d∗) dx

=

∫
H(Y |x, d∗)ξ(x|d∗) dx+

∫∫
ξ(x, y|d∗) log ξprior(y) dy dx.

Here ∫∫
ξ(x, y|d∗) log ξprior(y) dy dx =

∫∫
ξ(x|y, d∗) dxξprior(y) log ξprior(y) dy

=

∫
ξprior(y) log ξprior(y) dy

= −H(Y ).

Theorem 4.2.3. Let U(x, d∗) = log( ξpost(y|x,d
∗)

ξprior(y)
). It follows, that

ΦD(d∗) =
1

2
log{det Γpost(d

∗)}+ constant.

Proof. For a Gaussian random variable Y , H(Y ) has a closed form [74] given as

H(Y ) =
n

2
+
n

2
log(2π) +

1

2
log(det Γpost(d

∗)).

Then the D-optimality finally becomes

ΦD(d∗) = H(Y |x, d∗)−H(Y )

=
1

2
log
(det Γpost(d

∗)

det Γprior

)
=

1

2
log(det Γpost(d

∗)− det Γprior)

=
1

2
log(det Γpost(d

∗) + constant

Here det Γprior is constant with respect to d∗, which is neglectable.
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5 CONCLUSION

Due to the properties of Gaussian distribution, it is easy to use for likelihood function
in our posterior calculation although depending on data the distribution need to be fixed.
In this thesis, Bayesian approach has been introduced from a modeling perspective to
optimize an optimal experimental design. We have highlighted the relevant theory and
criteria for obtaining A- and D-optimal designs. A-optimality minimizes the cost while
D-optimality maximizes the cost and for that we have used both optimality for our optimal
experimental design. Despite the fact that the underlying principles of Bayesian approach
are quite old, the field is experiencing a renaissance, aided by new problems, models,
theory, and software implementations.
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