
1042
IN

TELLIGEN
T REFLECTIN

G SURFACES AN
D ADVAN

CED M
ULTIPLE ACCESS TECHN

IQUES FOR 
M

ULTI-AN
TEN

N
A W

IRELESS COM
M

UN
ICATION

 SYSTEM
S

Arthur Sousa de Sena

INTELLIGENT REFLECTING SURFACES AND ADVANCED
MULTIPLE ACCESS TECHNIQUES FOR MULTI-ANTENNA

WIRELESS COMMUNICATION SYSTEMS

Arthur Sousa de Sena

ACTA UNIVERSITATIS LAPPEENRANTAENSIS 1042



Arthur Sousa de Sena

INTELLIGENT REFLECTING SURFACES AND ADVANCED
MULTIPLE ACCESS TECHNIQUES FOR MULTI-ANTENNA
WIRELESS COMMUNICATION SYSTEMS

Acta Universitatis 
Lappeenrantaensis 1042

Dissertation for the degree of Doctor of Science (Technology) to be presented
with due permission for public examination and criticism in the Auditorium 
1316 at Lappeenranta–Lahti University of Technology LUT, Lappeenranta,
Finland on the 24th of October, 2022, at noon.



Supervisors Associate Professor Pedro Henrique Juliano Nardelli
LUT School of Energy Systems
Lappeenranta–Lahti University of Technology LUT
Finland

Dr. Daniel Benevides da Costa
AI and Digital Science Research Center
Technology Innovation Institute (TII)
United Arab Emirates

Professor Petar Popovski
Department of Electronic Systems
Aalborg University
Denmark

Reviewers Dr. Himal A. Suraweera
Department of Electrical and Electronic Engineering
University of Peradeniya
Sri Lanka

Associate Professor Telex Magloire N. Ngatched
Faculty of Engineering and Applied Science
Memorial University
Canada

Opponent Dr. Himal A. Suraweera
Department of Electrical and Electronic Engineering
University of Peradeniya
Sri Lanka

ISBN 978-952-335-859-1
ISBN 978-952-335-860-7 (PDF)

ISSN 1456-4491 (Print)
ISSN 2814-5518 (Online)

Lappeenranta–Lahti University of Technology LUT
LUT University Press 2022



Abstract
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Multiple-input multiple-output (MIMO) is an indispensable technology for deploying the
pervasive connectivity sought for fifth-generation (5G) and beyond communication sys-
tems. By relying on a large number of antennas, massive MIMO schemes can imple-
ment space division multiple access (SDMA) to serve spatially separated users with a
single frequency–time resource block, thus, leading to incredible spectral and latency
enhancements. Nevertheless, there are certain communication scenarios, such as ultra-
dense deployments or environments with users sharing overlapping angular positions,
where spatial multiplexing becomes unrealizable through SDMA alone. These challeng-
ing scenarios motivate the exploitation of different domains and technologies. In par-
ticular, power-domain non-orthogonal multiple access (NOMA) and rate-splitting multi-
ple access (RSMA) have appeared as strong candidates for extending the capabilities of
MIMO systems and enabling resource-efficient simultaneous transmissions even to over-
lapping users. In parallel development, a disruptive concept of an intelligent reflecting
surface (IRS) has arisen as a method to manipulate electromagnetic propagation through
reconfigurable, low-power, subwavelength reflecting elements. As their main feature, the
properties of IRSs can be dynamically tuned and harnessed to attack harsh phenomena
of wireless channels and accomplish diverse objectives, enabling communication envi-
ronments with optimized signal radiation. Driven by the promising capabilities of the
above-mentioned technologies, this doctoral dissertation focuses on studying and devel-
oping novel transmission schemes based on the synergy between NOMA, RSMA, and
IRSs, and their application to next-generation multiuser MIMO communication networks.

This research work starts by investigating practical issues of imperfect successive inter-
ference cancellation (SIC) on a downlink multicluster massive MIMO-NOMA network.
Through an in-depth theoretical analysis, exact closed-form expressions are derived for
the outage probability and ergodic rates observed by each user. By exploiting the Karush–
Kuhn–Tucker conditions, efficient dynamic power allocation strategies are also imple-
mented for improving rate fairness within each cluster in the network. Motivated by the
performance limitations identified in our seminal investigations, our research is continued
on the MIMO-NOMA topic by exploiting the powerful capabilities of IRSs to tackle the
interference issues of SIC. To broaden our optimization opportunities, a novel disruptive



dual-polarized IRS is proposed to harness the additional degree of freedom offered by
the polarization domain. By manipulating wave polarization with these promising IRSs
through interior-point and conditional gradient methods, advanced dual-polarized trans-
mission strategies are implemented, which can effectively mitigate SIC-related problems
and remarkably improve the data rates of all users, both in the downlink and uplink of
dual-polarized MIMO-NOMA networks. Among our contributions for the downlink, be-
sides optimizing the IRS reflecting elements, a closed-form expression is derived for the
ergodic rates considering large IRSs, whereas for the uplink, also a low-complexity alter-
nate power allocation policy is proposed for balancing uplink data rates.

Next, motivated by the impressive broader region of achievable rates possible with RSMA,
this research is advanced and the advantages of the amalgamation between IRSs and
MIMO-RSMA are investigated, showing that SIC issues can also degrade the perfor-
mance of RSMA-based schemes. To solve the limitations introduced with SIC once
and for all, in our last results, a novel high-performance dual-polarized massive MIMO-
RSMA scheme is proposed that does not require SIC, thereby eliminating all associated
problems. As a practical tool for assisting the design of the proposed system, a deep neural
network (DNN) model is implemented for predicting the ergodic sum-rates observed in
the network with high accuracy. Last, an intelligent DNN-aided adaptive power allocation
strategy is developed, which maximizes the sum-rate of the dual-polarized MIMO-RSMA
even under high levels of cross-polar interference and imperfect channel state information.
Our contributions and all novel transmission schemes proposed in this doctoral disserta-
tion are supported with extensive simulation results and fair performance comparisons
with state-of-the-art baseline communication systems.

Keywords: Massive MIMO, non-orthogonal multiple access, rate-splitting multiple ac-
cess, intelligent reflecting surfaces, performance analysis, resource optimization, deep
neural networks
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1 Introduction

1.1 Context and Motivation

While fifth-generation (5G) wireless systems are still gaining momentum worldwide, both
academia and industry have started the race to develop the sixth-generation (6G) [3]. Once
5G is completely deployed, it should support demanding applications from diverse verti-
cals, such as automotive, energy, manufacturing, healthcare, and entertainment, to name
but a few. In turn, 6G should extend the range of capabilities and boost the performance
of the applications already supported by 5G. Unforeseen services and use cases should
also emerge as the 6G era approaches [4]. In order to enable such an unprecedented range
of applications, a multitude of stringent requisites must be met, including ultra-dense con-
nectivity, ultra-low latency, extreme data rates, and high spectral and energy efficiencies.
In this regard, multi-antenna technologies such as massive multiple-input multiple-output
(MIMO) shall play a central role [5]. By employing a large number of antennas at the
base station (BS), a massive MIMO system is able to communicate with multiple users
simultaneously (in the same frequency and time slot) and deliver near-optimal perfor-
mance by simple linear precoding (or beamforming) techniques. Such features provide
impressive connectivity and spectrum improvements that are augmented further with the
increase of transmit and receive antennas. As a result, massive MIMO systems are capa-
ble of remarkably outperforming classical single-input single-output (SISO) schemes and
multiuser small-scale MIMO.

Nevertheless, antenna elements cannot be installed indiscriminately in size-constrained
arrays. Reducing the interantenna space to increase the number of antennas is also not
the best option because channel correlation is amplified, which can degrade the perfor-
mance of massive MIMO. A clever solution for relaxing such a constraint is achieved
by fabricating antenna arrays with pairs of co-located dual-polarized antennas, e.g., with
vertical and horizontal orientations. The strategy enables the construction of compact
arrays with twice the number of antennas of single-polarized counterparts with identical
physical dimensions. In addition to the efficient space utilization, dual-polarized antenna
arrays are standard in commercial communication systems [6], implying that the polar-
ization domain is a practical and abundant extra resource that can be exploited for perfor-
mance optimization. As demonstrated in [7], by employing proper transmission strate-
gies, dual-polarized massive MIMO systems can enable polarization diversity for users,
leading to more reliable communication and spectral gains that considerably outperform
conventional single-polarized schemes. Motivated by the above-mentioned features, this
dissertation focuses on both single-polarized and dual-polarized MIMO systems, as more
details will be provided later.

Despite the undeniable advantages of single and dual-polarized massive MIMO systems,
in scenarios where users are located in a similar angular sector or sharing the same scatter-
ing environment, it can become infeasible to establish reliable noninterfering communica-
tion by counting solely on linear precoding. To overcome this issue and ensure zero inter-
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beam interference, orthogonal multiple access (OMA) techniques, such as time-division
multiple access (TDMA), are conventionally employed in massive MIMO networks. Even
though classical OMA techniques are able to avoid interuser interference effectively, they
provide a low spectral efficiency and a high communication latency, which worsens as the
number of scheduled users grows [6]. Therefore, MIMO-OMA schemes are not suited
for meeting the demanding requirements of future 6G communication systems.

The limitations of OMA techniques motivate the use of more sophisticated multiple access
(MA) strategies. In particular, power-domain non-orthogonal multiple access (NOMA) is
one promising candidate technique for future-generation MIMO systems so that MIMO-
NOMA can serve multiple users simultaneously even when located in overlapping spatial
directions and sharing highly correlated channels [8]. When operating in the downlink
mode, NOMA superimposes the data symbols of different users in the power domain
using superposition coding (SC) at the base station (BS) and executes successive interfer-
ence cancellation (SIC) at the users’ side for recovering the transmitted information. On
the other hand, in the uplink, the BS is the entity that carries out SIC for decoding the
data messages coming from multiple users [9]. These features provide MIMO-NOMA
systems with attractive connectivity, latency, and spectral improvements, which can sig-
nificantly outperform conventional MIMO-OMA counterparts [6, 8, 9].

Rate-splitting multiple access (RSMA) has recently appeared as another robust next-
generation MA technique for the downlink of MIMO systems with the potential for re-
markable performance improvements [10, 11]. RSMA is based on the concept of rate
splitting proposed in [12], which was motivated by the goal of expanding the region of
achievable rates. At the BS, RSMA encodes the data messages of different users into
common and private symbols. The common symbol is transmitted via a common pre-
coder intended for all uses, whereas the private symbols are sent via private precoders de-
signed and intended for individual users. In the reception, users carry out SIC to retrieve
common and private symbols from the received superimposed data stream. This approach
enables RSMA to smartly adjust the amount of interference to be decoded and the amount
to be considered noise. Because of the flexible interference management, RSMA can of-
fer higher data rates and robustness to scenarios with imperfect channel state information
(CSI) [10]. Moreover, recent results have shown that RSMA, when combined with mas-
sive MIMO, can outperform all conventional MA techniques, including NOMA, TDMA,
space-division multiple access (SDMA), and orthogonal frequency-division multiple ac-
cess (OFDMA) [11, 13].

Regardless of the above advantages, both massive MIMO-NOMA and MIMO-RSMA
systems still have unsolved issues that need to be thoroughly investigated and solved. As
already discussed, NOMA and RSMA require SIC to separate the transmitted superim-
posed symbols, which, despite introducing benefits, also brings drawbacks. First, because
of the sequential decoding concept implemented by SIC, the first symbols in the decod-
ing order, i.e., the first SIC layers, will always experience interference from higher layers
[14, 7]. In RSMA, for instance, this implies that the common message will always be
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detected with interference from private messages, whereas in NOMA, all users, except
the last one in the decoding order, will recover their messages under interference. This
detrimental performance behavior can hamper the achievable data rates of the two tech-
niques. Second, the majority of existing works take for granted that SIC can be carried
out without introducing decoding errors. Such an assumption, however, is idealistic and
difficult to be realized in practice. In real-world implementations, even if users are capa-
ble of estimating the CSI accurately, hardware imperfections can cause error propagation
during the SIC decoding process [15, 16]. Third, MIMO-NOMA and MIMO-RSMA,
like any other wireless communication technology, are susceptible to the harmful uncon-
trollable phenomena of the wireless propagation environment. Specifically, the stochastic
nature of wireless channels, deep fading, blockages, and signal absorption can severely
degrade the performance of such schemes. Thus, innovative strategies and technologies
are needed to mitigate these issues and further enhance the capabilities of MIMO-NOMA
and MIMO-RSMA.

Fortunately, advances in electromagnetic metamaterials have recently brought to light
a disruptive new concept of an intelligent reflecting surface (IRS), which should pave
the way to smart propagation environments in next-generation communication networks
[17, 18]. An IRS is an engineered two-dimensional thin structure comprising multiple
reconfigurable reflecting elements, also called meta-atoms or unity cells, with the size
within the subwavelength range. The reflecting elements are made of nearly passive con-
ductive materials and can be implemented with diverse technologies and designs. PIN
diodes, varactors, liquid crystals, and graphene are among the most popular choices [18].
Independently of the design of technology, a low-power control layer smartly adjusts the
electrical currents flowing through the IRS, which enables the reflecting elements to col-
lectively forward impinging electromagnetic waves with exotic radiation patterns that are
not found in nature. This capability allows IRSs to mitigate detrimental wireless phe-
nomena and contribute to optimized (and potentially energy-efficient) signal propagation,
which unlocks countless opportunities. For instance, it is possible to improve the signal
reception in a particular user and mitigate deep fading, assist interference cancellation, or
even manipulate wave polarization [19]. All in all, the impressive features of IRSs hold
great potential for tackling the discussed limitations and unleashing the true capabilities
of MIMO-NOMA and MIMO-RSMA.

Although a number of technical contributions on the topics of IRS, MIMO-NOMA, and
MIMO-RSMA have appeared recently, most of the prior works have addressed these tech-
nologies independently, with the majority limiting their studies only to single-polarized
system models. As a result, when starting this research work, the full improvement oppor-
tunities achievable by the synergy between these promising subjects were unclear. Fur-
thermore, no attempts had been made to solve practical issues of imperfect SIC in MIMO-
NOMA and MIMO-RSMA networks through the extra degree of freedom (DoF) offered
by the polarization domain. Driven by these major literature gaps and the promising
features of the referred technologies, this dissertation provides a complete and in-depth
understanding of attractive performance gains offered by the combinations IRS-MIMO-
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NOMA and IRS-MIMO-RSMA. Furthermore, in this work, by manipulating wave po-
larization with promising dual-polarized IRSs, advanced transmissions strategies are im-
plemented, which can effectively mitigate SIC-related problems in both the downlink
and uplink of dual-polarized MIMO-NOMA networks. A disruptive novel SIC-free dual-
polarized MIMO-RSMA scheme is also proposed.

1.2 Related Works

In this section, a literature review of the most relevant recent works is presented related to
the contributions of this dissertation.

1.2.1 NOMA-Related Works

First, the focus is on works that study the effects of SIC error propagation in MIMO-
NOMA schemes, from which all consider only single-polarized system models. For in-
stance, the work in [15] investigated SIC issues in the downlink of a massive MIMO-
NOMA system. The authors implemented a single-cell communication scenario com-
prising one multi-antenna BS and multiple single-antenna users. The work investigated a
non-orthogonal channel estimation scheme and derived a lower bound expression for the
system spectral efficiency. Iterative optimization algorithms for maximizing the weighted
sum-spectral efficiency were also proposed. Simulation results were provided to validate
the theoretical analysis and algorithms. The work in [20] proposed a suboptimal itera-
tive algorithm for maximizing the sum-rate of a downlink MIMO-NOMA network. In
the proposed scenario, the authors equipped both users and the BS with two antennas
and investigated two very specific scenarios, considering only two values for the SIC er-
ror factor. The authors of [21] studied the outage probability and minimized the total
transmit power of a multicarrier NOMA system by modeling the SIC error propagation
as a complex Gaussian random variable. Complementary geometric programming and
arithmetic–geometric mean approximation techniques were employed to solve the for-
mulated optimization problems. In turn, the work in [22] concentrated on the study of
heterogeneous networks. The authors modeled various sources of interference, such as
intercell interference, power disparity, and imperfect SIC, and proposed user clustering,
power, and bandwidth optimization algorithms.

The detrimental effects of imperfect SIC in the uplink of MIMO-NOMA systems were
investigated in [23], where the concept of virtualized wireless networks (VWN) was ex-
ploited. This work proposed algorithms based on successive convex approximation and
complementary geometric programming for implementing subcarrier and power alloca-
tion policies. The work in [24] studied a massive MIMO-NOMA system with distributed
antenna arrays, in which the authors derived a closed-form expression for the ergodic
sum-rate. The presented numerical results showed that MIMO-OMA can still outper-
form MIMO-NOMA if the number of users in the network is low. The authors of [25]
proposed a full-duplex relaying MIMO-NOMA system and investigated the impacts of
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both imperfect SIC and in-phase and quadrature-phase imbalance. A full-duplex relaying
MIMO-NOMA system was also considered in [26], in which the authors optimized the
BS precoders and proposed two user selection strategies by considering inter-user inter-
ference and self-interference. The case of α-µ fading channels in cooperative NOMA
networks under hardware imperfections was studied in [27], and in [28], the authors tack-
led imperfect SIC in MIMO-NOMA systems with deep learning techniques.

The vast majority of NOMA works consider that SIC can be perfectly executed. For in-
stance, the work in [29] assumed perfect SIC decoding and investigated fairness issues
in a simple system with a single-antenna BS serving multiple single-antenna users. The
authors proposed low-complexity bisection-based iterative algorithms to solve the for-
mulated power allocation optimization problem. The authors of [30] proposed a user
clustering strategy for MIMO-NOMA networks, also considering perfect SIC. This work
implemented bisection algorithms for power allocation and presented three suboptimal
algorithms for performing user clustering. The work in [31] proposed a NOMA proto-
col for ensuring that users achieve data rates that are at least the same as those achieved
with OMA. For implementing the strategy near and cell-edge single-antenna, the users
were paired to form NOMA groups. The authors also investigated the outage probabil-
ity experienced with the proposed approach. In [32] and [33], user clustering algorithms
were proposed based on proportional fairness to balance throughput and fairness. The
work in [32] derived an optimal power allocation policy for maximizing the system sum-
rate so that the rates of weak users are at least equal to those achieved with OMA. In
[34], the authors developed dynamic resource allocation policies, which are optimally
obtained by Lagrangian dual decomposition. The millimeter-wave MIMO-NOMA case
was addressed in [35], in which spatial sparsity was exploited to propose suboptimal
power allocation protocols. However, to the present author’s knowledge, [7] was the
only dual-polarized MIMO-NOMA-related work reported before starting this research.
Specifically, the authors of [7] proposed polarization diversity and multiplexing strategies
for a dual-polarized MIMO-NOMA network. The developed dual-polarized transmission
schemes significantly outperformed conventional single-polarized counterparts in the pre-
sented simulation results.

1.2.2 RSMA-Related Works

Although the concept of splitting rates into two data streams dates back to 1978 [12], the
modern RSMA technique for MIMO systems has appeared very recently, making this re-
search area still little explored. As a result, to the best of the present author’s knowledge,
all existing MIMO-RSMA-related works prior to Publication [VI] consider only single-
polarized system models. For instance, the work in [10] studied a single-polarized MIMO
network, with a single BS communicating in the downlink mode with multiple single-
antenna users. Simulation results demonstrated that MIMO-RSMA remarkably outper-
forms conventional multiuser MIMO and MIMO-NOMA schemes considering both un-
derloaded and overloaded scenarios. The authors of [11] investigated harmful issues
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of high user mobility in single-polarized massive MIMO-RSMA networks, where lower
bound expressions for the ergodic sum-rates were derived. This work also implemented a
suboptimal allocation policy for adjusting the power coefficients of common and private
symbols. The authors provided link-level simulations, which revealed that the proposed
massive MIMO-RSMA scheme is significantly more robust to high-mobility scenarios
than conventional massive MIMO systems. The work in [36] addressed MIMO-RSMA
cooperative user-relaying networks. This work proposed an algorithm based on succes-
sive convex approximations for jointly optimizing precoders, message split, and time slot
allocation, aiming at max-min fairness. The MIMO-RSMA multibeam satellite case was
investigated in [37]. The authors of this work characterized the system DoF and devel-
oped a transmit power optimization strategy, also aiming at max-min data rate fairness.
The proposed MIMO-RSMA satellite transmission scheme delivered attractive perfor-
mance improvements against baseline systems. The application of RSMA to visible-light
communications was studied in [38], where authors considered a simple two-user sce-
nario. The work in [39] investigated the benefits of MIMO-RSMA in a cloud radio access
network, and multicarrier MIMO-RSMA schemes were considered in [40].

1.2.3 IRS-Related Works

Most of the recent works on the IRS-MIMO subject are focused on investigating single-
polarized point-to-point or OMA-based schemes. For instance, point-to-point IRS-MIMO
systems with both frequency-flat and frequency-selective fading operating with orthog-
onal frequency division multiplexing (OFDM) were investigated in [41]. The authors
of this work optimized the BS precoders and IRS reflecting elements to maximize the
ergodic data rates. Simulation results confirmed the effectiveness of the implemented
optimization algorithms and showed that the proposed IRS-assisted scheme outperforms
conventional MIMO systems with and without IRSs. The work in [42] addressed the
minimization of symbol error rate (SER) for a point-to-point IRS-MIMO system. The
authors proposed four alternate methods for optimizing the BS precoding matrix and IRS-
reflecting elements. All proposed strategies were able to deliver significantly lower SER
curves than those achieved with the considered baseline MIMO systems without an IRS.
The proposed schemes also outperformed MIMO systems assisted by full-duplex relays.
In [43], the authors minimized the total transmit power of a single-cell multiuser IRS-
MIMO network under users’ signal-to-interference-plus-noise ratio (SINR) constraints.
The authors also performed an asymptotic analysis for large IRSs. It was found through
simulations that, with fewer transmit antennas, the proposed IRS-MIMO system can reach
the same rate performance of massive MIMO-OMA systems without an IRS. The work
in [44] investigated the multicell IRS-MIMO communication scenario. The authors ex-
ploited one IRS to assist transmission to cell-edge users. To this end, two algorithms
based on majorization-minimization and the complex circle manifold methods were im-
plemented to optimize the reflecting elements. Multiuser IRS-MIMO cognitive radio sys-
tems were addressed in [45]. In this work, a block coordinate descent algorithm was
proposed to maximize the achievable weighted sum rates of the system. Furthermore, the
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study of simultaneous wireless information and power transfer (SWIPT) in IRS-MIMO
systems was considered in [46], and [47] investigated the security issues of IRS-MIMO
schemes.

A few recent papers have studied the application of IRSs to MIMO-NOMA schemes.
For example, the authors of [48] considered a simple IRS-MIMO-NOMA network with
two users per NOMA group. The authors performed a theoretical analysis and derived
a closed-form expression for the outage probability observed by each user. The per-
formance of the proposed scheme was investigated through simulation examples, where
hardware impairments were also taken into account. The work in [49] investigated a two-
user IRS-MIMO-NOMA network. The deployed IRS and the BS precoding vectors were
jointly optimized to minimize the total power consumption of the proposed system. In the
simulation results, the proposed system outperformed conventional MIMO-NOMA and
MIMO-OMA schemes in terms of energy efficiency. The impacts of employing contin-
uous and discrete reflecting coefficients were investigated in [50]. This work proposed
algorithms to maximize the sum rate of a multiuser IRS-MIMO-NOMA network, which
remarkably outperformed conventional MIMO-NOMA and MIMO-OMA baseline sys-
tems. Moreover, results showed that 3-bit phase shifters were enough to reach almost the
same performance as the ideal case with infinity resolution. The multicluster IRS-MIMO-
NOMA case was investigated in [51]. By relying solely on the deployed IRS, the authors
implemented an efficient algorithm for canceling intercluster interference. Closed-form
expressions for the outage probability and ergodic rates were derived. The proposed sys-
tem achieved a better performance than zero-forcing and signal-alignment-based schemes
in all presented simulation examples. The work in [52] studied the application of IRSs
to millimeter-wave MIMO-NOMA systems. The authors of this work developed an algo-
rithm for optimizing the transmit power coefficients, reflecting elements, and active BS
precoding matrices aiming at sum-rate maximization. The authors of [53] investigated the
application of unmanned aerial vehicles (UAV) employing IRSs to MIMO-NOMA net-
works, and the work in [54] studied and implemented a prototype of a dual-polarized IRS
to transmit quadrature amplitude modulation (QAM) symbols in a simple two-antenna
MIMO system.

With the exception of Publication [V], until the moment of writing this dissertation, only
the four works in [55], [56], [57], and [58], investigate the combination of IRS and RSMA
schemes. Specifically, the conference paper [55] maximized the energy efficiency of a
downlink multiuser MIMO-RSMA network assisted by multiple IRSs under minimum
rate constraints. To this end, the authors jointly optimized the reflecting coefficients of all
RISs, the BS precoding vectors, and the rate allocation at the BS. The presented simula-
tion results showed that the proposed IRS-MIMO-RSMA scheme delivers a higher energy
efficiency than the conventional IRS-MIMO-NOMA IRS-MIMO-OFDMA schemes. The
authors of [56] also investigated a scenario with multiple IRSs. However, the IRSs were
deployed to assist only single-antenna cell-edge users in a two-layer hierarchical MIMO-
RSMA network. By applying an on–off optimization strategy for configuring the IRSs,
the authors derived closed-form expressions for the outage probability of both near and
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cell-edge users. The proposed scheme outperformed all considered baseline systems and
significantly improved the performance of cell-edge users. The same authors investigated
a simplified version of the scenario introduced in [56], in [57], where both the users and
the BS employed a single antenna. In this IRS-assisted SISO-RSMA network, an on–off
approach was also employed to optimize the reflecting elements of the IRSs. The au-
thors presented extensive simulation results to demonstrate the superior performance of
their scheme. Last, the report in [58] deployed one IRS with fully connected reflecting
elements to assist multiple single-antenna users in a MIMO-RSMA network. The contin-
uous reflecting coefficients of the IRS were optimized to maximize the system sum-rate,
leading to attractive spectral efficiency improvements.

1.3 Overall Objectives and Dissertation Outline
This dissertation investigates and develops promising multi-antenna and MA techniques
of great potential for enabling massive access in future beyond-5G and 6G communica-
tion systems. In particular, the contributions of this dissertation provide solid answers to
the following fundamental research questions:

Q1: What are the impacts of imperfect SIC on the performance of MIMO-NOMA sys-
tems, and how can the related issues be mitigated?

Q2: What are the fundamental performance limits in terms of spectral and energy efficien-
cies achievable with the amalgamation of IRS technology and MIMO-NOMA systems?

Q3: With the help of IRSs, can future wireless communication systems become energy-
neutral, and what are the minimum necessary conditions to accomplish this feature?

Q4: Can IRSs truly control all propagation phenomena experienced in wireless channels,
e.g., even change the signal polarization, and how to implement this capability?

Q5: Can dual-polarized IRSs harness wave polarization to mitigate degrading interfer-
ence issues of imperfect SIC in MIMO-NOMA schemes?

Q6: What benefits can IRSs offer to MIMO-RSMA and, reciprocally, how can MIMO-
RSMA improve the performance of IRSs?

Q7: Are MIMO-RSMA schemes also vulnerable to imperfect SIC decoding, and how to
avoid this harmful issue definitively?

The answers to the above research questions are provided sequentially in the remainder
of this dissertation, which is structured into five chapters and can be outlined as follows:

• Chapter 1 provides a comprehensive introduction to the covered topics, giving con-
text and motivation for the development of this dissertation. A literature review
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of the most relevant state-of-the-art related works is also given, followed by the
fundamental research questions and the outline of the dissertation.

• Chapter 2 provides readers with the essential background of concepts and tech-
niques exploited throughout this research work. First, an introduction to the basics
of MIMO communication is given, where the correlated and uncorrelated and single
and dual-polarized channel models adopted in Publications [I]–[VI] are explained.
Then, standard CSI estimation strategies are discussed in brief, and a channel model
for characterizing imperfect CSI is introduced. Two important precoding strategies
for downlink and uplink communication are also presented. Last, the working prin-
ciples of NOMA, RSMA, and IRSs are explained.

• Chapters 3 and 4 concentrate on the primary results of this dissertation and answer
all the above research questions. Chapter 3, specifically, overviews the contribu-
tions provided in Publications [I]–[IV], which are focused on MIMO-NOMA and
IRS-assisted MIMO-NOMA schemes. In brief:

◦ Section 3.1 presents the results of Publication [I] and addresses question Q1,
where it is shown that SIC decoding errors can severely degrade the perfor-
mance of MIMO-NOMA.

◦ Section 3.2 introduces the contributions of Publication [II], where IRSs are
applied to MIMO-NOMA and the potential achievable spectral and energy
efficiency gains are investigated. This section aims to answer questions Q2
and Q3.

◦ Sections 3.3 and 3.4 answer questions Q4 and Q5 with the results from Publi-
cations [III] and [IV]. In these sections, a novel dual-polarized IRS is proposed
and its capabilities are exploited to tackle SIC issues in both the downlink and
uplink of MIMO-NOMA networks.

• Chapter 4 focuses on the MIMO-RSMA-based schemes proposed in Publications
[V] and [VI], as follows:

◦ Section 4.1 studies the mutual benefits generated by the synergy between IRS
technology and MIMO-RSMA, which clarifies question Q6.

◦ Last, Section 4.2 answers question Q7 with a novel dual-polarized MIMO-
RSMA scheme proposed in Publication [VI], which is free from SIC prob-
lems.

• Chapter 5 finishes this dissertation by summarizing the main scientific contributions
of the work, presenting concluding thoughts, and shedding light on promising future
research directions.

The complete details of the contributions reported in Publications [I]–[VI] are presented
in Chapters 3 and 4.
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2 Background

2.1 MIMO Communication Systems
Scattering objects present in wireless networks induce electromagnetic signals to propa-
gate via different paths toward receivers. This phenomenon is known as multipath prop-
agation and can be highly detrimental to the performance of communication systems if
not properly addressed. Fortunately, by employing multiple antennas for transmitting and
receiving information, the MIMO technology can harness and transform this unavoidable
issue into an advantage. More specifically, with the help of preprocessing and decoding
strategies, multipath propagation can be exploited to introduce data redundancy or con-
vey simultaneously distinct data streams via the space domain using the same time and
frequency resources, which enables MIMO systems to achieve impressive diversity, mul-
tiplexing, and spectral gains.

The first patent for the MIMO technology dates back to 1993 [59], which led other works
in subsequent years to study further the features of multi-antenna schemes [60, 61]. How-
ever, in most of these seminal systems, only point-to-point communication with a small
number of antennas was considered. In 2010, by relying on the law of large numbers, the
work in [62] investigated the advantages of employing a massive number of antennas for
serving multiple spatially distributed users. Specifically, in the asymptotic case, when the
number of transmit antennas goes to infinity, two appealing propagation properties can be
achieved, which are known as favorable propagation and channel hardening properties.
Favorable propagation comes from the well-known property from random matrix theory,
which states that

lim
M→∞

1

M
hHg → 0, almost surely, (2.1)

where h ∈ CM and g ∈ CM are two mutually independent random vectors with the
variances σ2

h and σ2
g , respectively, and whose entries are independent and identically dis-

tributed (i.i.d.). On the other hand, channel hardening comes from a second property that
ensures

lim
M→∞

1

M
hHh → σ2

h, almost surely. (2.2)

In the context of MIMO systems, if it is assumed that h and g are the channel vectors of
two distinct single-antenna users, the properties (2.1) and (2.2) reveal, respectively, that
the propagation channels of different users approach the orthogonality, and the channel
gains of individual users become nearly deterministic as the number of transmit antennas
increases. These performance behaviors are illustrated in Figure 2.1. The main implica-
tion of such properties is that interuser interference is naturally mitigated by increasing
the number of transmit antennas, which enables simple linear precoding techniques, such
as zero-forcing, regularized zero-forcing, and matched filter precoding, to achieve near-
optimal performance [63, 64]. Moreover, channel hardening also helps to improve chan-
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Figure 2.1: Favorable propagation and channel hardening properties. The entries of h ∈
CM and g ∈ CM are drawn from the complex standard Gaussian distribution.

nel estimation [65]. As a result, the practical implementation of massive MIMO systems
can be greatly simplified. These attractive features, combined with the high spectral effi-
ciency and the massive connectivity capabilities, made the massive MIMO technology an
indispensable component of 5G communication systems [66, 67], and it should continue
to play a central role in beyond-5G generations.

2.1.1 Single-Polarized MIMO Channel Models

In this subsection, the fundamental background of single-polarized channel models and
estimation strategies suited for both multiuser small-scale MIMO and massive MIMO
systems is provided. For illustration purposes, let us consider a simple scenario where
one BS with M antennas communicates with U users employing N antennas. By as-
suming that the MIMO system operates in a rich isotropic scattering environment with
non-line-of-sight (NLOS) propagation, each antenna will receive a superposition of sev-
eral wavefronts coming from different scatterers due to multipath phenomena [68]. As a
result, the central limit theorem can be exploited to model the wireless channels observed
by the uth user by the following random matrix:

Hu =




h11,u h12,u · · · h1N,u

h21,u h22,u · · · h2N,u

... · · · . . . ...

hM1,u hM2,u · · · hMN,u



∈ CM×N , (2.3)
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where the entries of Hu consist of i.i.d. complex Gaussian random variables with zero
mean and variance ζu, in which ζu denotes the large-scale fading coefficient. Each el-
ement of Hu, i.e., hmn,u, models the complex baseband fast-fading channel response
between the mth BS antenna and the nth antenna of the uth user. This channel repre-
sentation is known as the uncorrelated Rayleigh fading model and is widely employed in
the literature because of its simplicity. It is noteworthy that when users have line-of-sight
(LOS) channels, the Rayleigh model is no longer valid. In this case, other channel models
should be employed, such as the Rician and Nakagami fading models [69]. In particular,
in this dissertation, only NLOS scenarios are studied.

Considering wireless channels to have i.i.d. coefficients can be useful for obtaining funda-
mental performance insights. However, it is an idealistic assumption. In practical MIMO
channels, the tight separation between antenna elements, nonuniform electromagnetic ra-
diation caused by the scattering environment, and other propagation phenomena make the
entries of Hu correlated. In other words, signals transmitted from different antennas tend
to propagate through a reduced number of spatial directions and common paths. Math-
ematically, these phenomena make the spatial correlation matrix of Hu to become rank
deficient, i.e., the matrix Ru = E{HuH

H
u } ∈ CM×M will have a rank ru < M . In

such correlated scenarios, modeling the channel matrix Hu with i.i.d. random variables
can lead to unrealistic results. Therefore, it is important to take into account channel
correlation issues when designing a MIMO system. To this end, the Karhunen–Loeve de-
composition [65, 70] is recalled for incorporating the correlation characteristics into Hu,
as follows:

Hu = UuΛ
1
2
uGu ∈ CM×N , (2.4)

where Λu ∈ Rr⋆u×r⋆u
>0 is a real-valued diagonal matrix comprising r⋆u < ru nonzero eigen-

values of Ru sorted in a descending order, Uu ∈ CM×r⋆u collects the corresponding r⋆u
left eigenvectors of Ru, which can be obtained from its singular value decomposition
(SVD), and Gu ∈ Cr⋆u×N is a reduced-dimension matrix comprising the nonredundant
fast-fading channel coefficients, whose entries follow the complex Gaussian distribution
with zero mean and unity variance. Note that the model in (2.4) is also valid in the case in
which users employ a single antenna, with the only difference that instead of a matrix Gu,
each user would be associated with a reduced dimension fast-fading vector gu ∈ Cr⋆ . As
explained in Subsection 2.1.4, the possibility of decomposing the channels like in (2.4)
brings benefits to massive MIMO systems, such as a reduction in feedback overhead and
simplification of channel estimation and the precoding design.

2.1.2 Spatial Correlation Model and User Clustering

In (2.4), a generative model was introduced based on the Karhunen–Loeve decomposition
for incorporating correlation properties into the channel matrices Hu, which depends on
the eigenvalues and eigenvectors of Ru. Now, details are provided on the spatial cor-
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relation model used for generating the correlation matrices Ru, which was employed in
Publications [I], [II], [III], and [VI]. More specifically, the one-ring geometrical model is
adopted [70, 71, 72], also known as the local scattering model [65], which is adequate
for modeling NLOS-correlated Rayleigh fading channels. The one-ring model character-
izes the scenario where one BS employing isotropic antennas is elevated in relation to the
users and does not observe scatterers in its near-field. In addition, the transmitted signals
are bounced toward users once by a large number of diffuse scattering objects, in which
the actual objects are modeled by a cluster of virtual scatterers uniformly distributed in a
circumference centered at the users [72]. The model is valid for different array arrange-
ments. However, for simplicity, the BS is equipped with a uniform linear array in this
dissertation. Under such assumptions, the correlation between the channels of antennas
m and m′, from the BS to the uth user, can be calculated by [70, 71]

[Ru]m,m′ =
1

2δu

∫ δu

−δu

e−j 2π
λ
[cos(ϕ+φu),sin(ϕ+φu)](am−am′ )dϕ, (2.5)

where λ is the carrier wavelength, φu denotes the azimuth angle corresponding to the cen-
ter of the ring of scatterers that surrounds the uth user, which has a radius b and a distance
of d from the BS. The parameter ϕ represents the angle of arrival of incoming waves,
δu is the angular spread, such that δu ≈ atan(b/d), and am and am′ are the coordinate
vectors in the two-dimensional plane of antennas m and m′, for m,m′ = 1, · · · ,M . The
geometrical scenario characterized by the one-ring model is illustrated in Figure 2.2.

The impact of the interantenna space on channel correlation is illustrated in Figure 2.3,
which plots the eigenvalues of Ru sorted in a descending order. In this example, Ru

is generated with (2.5) considering a uniform linear array of M = 100 antennas and a
carrier frequency of 3 GHz. Moreover, the cluster of scatterers is located at the azimuth
angle of 30◦ and has an angular spread of 15◦. As can be seen, by decreasing the inter-
antenna space, the number of nonzero eigenvalues decreases, which implies that the rank
of Ru also decreases, and the channel correlation intensifies. Therefore, when design-
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ing antenna arrays, the number of antennas and the physical space utilization should be
carefully optimized in order to achieve satisfactory levels of correlation for the system
needs. In particular, the spacing of λ/2 between antennas is adopted as the standard in
Publications [I], [II], [III], and [VI].

In overloaded scenarios or in situations where multiple users are located in overlapping
spatial directions, possibly sharing (approximately) the same cluster of scatterers there is a
high likelihood of experiencing a strong interuser channel correlation. This phenomenon
can hamper the favorable propagation property and make MIMO precoding techniques
alone incapable of separating users in space. In these situations, the application of MA
techniques is necessary for avoiding severe interuser interference. Nevertheless, as antic-
ipated in Section 1.1, MA techniques also have limitations. In the case of NOMA, for
instance, when the number of served users grows, the interference observed in the SIC
process and the chances of experiencing decoding errors increase. In its turn, in RSMA,
the design of a single common precoder able to satisfy the requirements of a large num-
ber of users becomes quite challenging. Therefore, an indiscriminate number of users
cannot be served relying solely on MA techniques. Fortunately, user clustering strate-
gies, in which users are organized into smaller clusters, have been proposed to cope with
the above-mentioned limitations. In these approaches, MIMO precoding schemes are re-
sponsible for multiplexing the different user clusters, and MA techniques have the role of
serving users within each cluster separately. As a result, because of the smaller number
of users, the complexity of precoding and MA techniques can be considerably reduced.

Employing efficient user clustering strategies becomes then an important concern for MA
schemes in massive MIMO networks. In fact, user clustering is an active research area,
and several approaches have been provided in the literature [22, 71]. However, the study
of this subject goes beyond the scope of this dissertation. Nevertheless, one effective
strategy, which is particularly important for sustaining the assumptions made in this dis-
sertation, consists of clustering users based on the similarity of the subspace spanned
by users’ channel correlation matrices. The authors of [71], for instance, proposed a
K-means-based algorithm to partition users into G disjoint spatial groups so that the spa-
tial correlation matrices of users within each group have approximately similar dominant
eigenspaces. The proposed algorithm gave as the output G unitary matrices, each one
comprising the mean of dominant eigenvectors of users within the given group. These uni-
tary matrices were used for constructing the precoders for multiplexing different groups
in space. This possibility makes it reasonable to assume that users receiving signals from
a common cluster of scatters share approximately a single effective correlation matrix, as
assumed in [14, 7, 70]. More specifically, if the gth spatial group comprises Ug users, it
can be assumed that Rg1 ≈ Rg2 ≈ · · · ≈ RgUg ≈ Rg, where Rg is the effective channel
correlation matrix for the gth group. For mathematical tractability, this approximation has
been adopted in Publications [I]–[III] and [VI].
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Figure 2.3: Impact of the interantenna space separation on the eigenvalues of the channel
correlation matrix Ru generated with the one-ring geometrical model considering a uni-
form linear array with M = 100 antennas and a cluster of scatterers located at an azimuth
angle of 30◦, an angular spread of 15◦, and a carrier frequency of 3 GHz.

2.1.3 Dual-Polarized MIMO Channel Models

As previously discussed, by increasing the number of transmit antennas at the BS, the
channels of different users (with nonoverlapping spatial directions) become nearly orthog-
onal because of the favorable propagation property. Deploying more antennas also helps
to boost the antenna array gain and improve signal reception. However, it is not possible
to deploy an unlimited number of antennas because of physical space constraints or exces-
sively reduce the interantenna space, as it is illustrated in Subsection 2.1.2. Fortunately, by
exploiting the polarization dimension, this limitation can be efficiently mitigated. That is,
orthogonal dual-polarized antennas can be implemented, e.g., with vertical and horizontal
(0◦ and 90◦) or slant (±45◦) orientations, arranged into co-located pairs, thus, leading to
compact antenna arrays and attractive performance improvements, as anticipated in Sec-
tion 1.1. Owing to the above-mentioned advantages, dual-polarized antenna arrays are the
preferred architecture deployed in current commercial cellular systems and the standard
adopted in the Long-Term Evolution Advanced (LTE-A) and 5G New Radio (NR) speci-
fications of the 3rd Generation Partnership Project (3GPP). [73, 74].

The channel model for a dual-polarized MIMO system is slightly more complicated than
the models for the single-polarized counterpart. To explain, let us consider the scenario
where one BS with M/2 pairs of co-located dual-polarized antennas transmits information
to U users employing N/2 pairs of dual-polarized antennas. Moreover, let us assume that
the antenna pairs are installed with vertical polarization (represented by v throughout this
dissertation) and horizontal polarization (represented by h). The dual-polarized channel
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for the uth user can be represented by a matrix that models the input–output relation
between transmit and receive polarizations, i.e., v to v, v to h, h to v, and h to h, as
follows [75]:

Hu =


H

vv
u Hvh

u

Hhv
u Hhh

u


 ∈ CM×N , (2.6)

where Hab
u ∈ CM

2
×N

2 is a matrix that models the channels from transmit polarization
a to receive polarization b, in which a, b ∈ {v, h}. In ideal environments with no
cross-polarization transmissions, the channel coefficients of the off-diagonal blocks in
(2.6) should be zero, i.e., Hvh

u = Hhv
u = 0M

2
,N
2

. However, in real-world scenarios,
this condition does not hold. In practice, as a result of scattering phenomena, such as
reflection, diffraction, diffuse scattering, and others, the radiated energy can leak from
one polarization to another. Furthermore, even in scenarios without scattering, practical
antennas have a nonzero radiation pattern in the cross-polar electromagnetic field [73],
which makes antennas incapable of transmitting perfectly polarized signals. The combi-
nation of these scattering and antenna fabrication issues causes cross-polar interference,
i.e.,Hvh

u ̸= Hhv
u ̸= 0M

2
,N
2

, which can be modeled by the following power imbalance ma-
trix:

X =


 1

√
χ

√
χ 1


 , (2.7)

where χ ∈ [0, 1] denotes the inverse cross-polar discrimination (iXPD) that measures the
ratio of cross-polar to co-polar signal powers observed at receivers, i.e., the higher the
value of χ, the more cross-polar interference is experienced in the system. By recalling
the Karhunen–Loeve decomposition [65, 70] and incorporating the matrix from (2.7) in
(2.6), the full dual-polarized channel matrix for the uth user can be structured as [7, 76, 73]

Hu =

(
I2 ⊗

(
ŪuΛ̄

1
2
u

))


G

vv
u Gvh

u

Ghv
u Ghh

u


⊚




 1

√
χ

√
χ 1


⊗ 1r̄⋆×N

2






=

(
I2 ⊗

(
ŪuΛ̄

1
2
u

))
 Gvv

u

√
χGvh

u

√
χGhv

u Ghh
u


 , (2.8)

and the corresponding dual-polarized correlation matrix can be expressed as

Ru = E{HuH
H
u } =


(1 + χ)R̄u 0

0 (1 + χ)R̄u


 ∈ CM×M , (2.9)

where R̄u ∈ CM
2
×M

2 is the channel correlation matrix for each polarization with a rank
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Figure 2.4: Simplified coherence block for: (a) TDD, and (b) FDD.

denoted by r̄u, Λ̄u is the r̄⋆u × r̄⋆u diagonal matrix with the r̄⋆u nonzero eigenvalues of
R̄u, Ūu ∈ CM

2
×r̄⋆u comprises the left eigenvectors of R̄u associated with its nonzero

eigenvalues, and Gab
u ∈ Cr̄⋆u×N

2 is the reduced-dimension fast-varying channel matrix
from polarization a to b, with a, b ∈ {v, h}, whose entries follow the complex Gaussian
distribution with zero mean and unit variance.

2.1.4 Channel Estimation Strategies and Imperfect CSI Model

Channel estimation in MIMO systems can be carried out following both FDD and time
division duplex (TDD) approaches. TDD systems rely on channel reciprocity to estimate
downlink channels by uplink pilot training. To this end, the total time spent for uplink
and downlink transmissions must be shorter than the channel coherence interval, which
makes the TDD protocol more suited for low-mobility scenarios [65]. In contrast, FDD
systems separate uplink and downlink transmissions in the frequency domain. Conse-
quently, channel reciprocity cannot be exploited by FDD. Specifically, pilot sequences
are required to be transmitted in both directions, uplink and downlink, and users need to
feed back a quantized version of the downlink channel estimate to the BS for precoding
[76]. The number of downlink pilot sequences in FDD systems scale with the number of
BS antennas. As a result, the uplink feedback overhead can become overwhelming when
large antenna arrays are employed at the BS (mainly when considering i.i.d. channel coef-
ficients [77]). On the other hand, in TDD systems, the duration of the uplink pilot training
phase is independent of the number of BS antennas and depends only on the number of
connected users. For this reason, TDD is the most common protocol employed in massive
MIMO systems. Simplified diagrams for TDD and FDD protocols are provided in Figure
2.4.

Nevertheless, for commercial reasons, there is still a huge interest in developing massive
MIMO systems with the FDD protocol. Most notable strategies aim to reduce the com-
plexity of the FDD protocol by exploiting the spatial correlation structure of the chan-
nels in (2.4) [70, 78, 77]. More specifically, because the correlation matrix Ru captures
slowly varying characteristics of the channel, they can be accurately estimated by long-
term measurements after several coherence intervals. Thus, only the reduced-dimension
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fast-fading channel Gu (or Gab
u in the case of dual-polarized schemes) needs to be esti-

mated frequently, which is less demanding than estimating the full channel Hu that has
a higher dimension. As demonstrated in [70], this strategy can significantly simplify the
channel estimation and reduce the feedback overhead and precoding design, which makes
FDD also feasible to be employed in massive MIMO systems. It is noteworthy that the
MIMO schemes proposed in Publications [I]–[VI] are generic enough to operate under
both TDD and FDD protocols. Furthermore, the study of channel estimation strategies is
beyond the scope of this dissertation, arising thus as a potential future research direction.

Regardless of the channel estimation strategy and the operation mode (TDD or FDD),
because of quantization errors, outdated CSI, pilot contamination, and other issues, the
acquisition of Gu at the BS is imperfect in practice. Following the work in [76], the
corrupted estimate of Gu can be modeled by

Ĝu =
√
1− τ 2uGu + τuZu, (2.10)

where Zu is a complex standard Gaussian random matrix independent of Gu, and τu is
a factor that informs the quality of the CSI estimation for the uth user, in which τu = 0
represents the scenario with perfect CSI, and τu = 1 corresponds to the extreme case
where Ĝu is statistically independent of Gu.

The channel models adopted in Publications [I], [II], and [III] are based on the correlated
Rayleigh fading model in (2.4), where the performance of massive MIMO systems is
studied in combination with different multiple access techniques in scenarios where the
BS has perfect knowledge of the CSI. The imperfect CSI case is studied in Publication
[VI], where the model in (2.10) is adopted for capturing the imperfect estimation of the
reduced-dimension fast-varying fading channels. In turn, small-scale MIMO systems are
investigated in Publications [IV] and [V], in which the propagation channels are assumed
to follow the uncorrelated Rayleigh fading model in (2.3). Furthermore, Publications [I],
[II], and [V] consider single-polarized channels, whereas Publications [III], [IV], and [VI]
investigate dual-polarized MIMO schemes.

2.1.5 MIMO Precoding Strategies

There is a plethora of precoding strategies for MIMO systems available in the literature,
each one with its own characteristics, advantages, and drawbacks. However, providing
an extensive survey of all these strategies goes beyond the objectives of this dissertation.
Instead, in this subsection, the focus is only on the main precoding techniques that have
been proposed in Publications [I]–[VI].

Precoding for Downlink Spatial Multiplexing

First, the concepts of the precoders used for downlink transmissions in Publications [I],
[II], [III], and [VI] are introduced. These concepts are inspired by the joint spatial division
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and multiplexing (JSDM) technique proposed in [70] and its extension to dual-polarized
systems in [7] and [76]. Specifically, JSDM consists of a multistage precoding technique
of the form Bgvgu = PgWgvgu, where Pg is a precoding matrix responsible for nulling
out the interference of groups g′ ̸= g, Wg is an eigen-beamforming matrix designed to
maximize the dominant effective channel gains in the intended group g, and vgu is an
inner precoding vector usually designed to separate and further improve the performance
of users within each group. The design of Pg and Wg only depends on long-term statis-
tical information of the channels, i.e., on the spatial correlation matrices Rg. In turn, vgu

can be constructed based (or not) on the reduced-dimension fast-fading channel matrices
Ggu, whose design depends on the implemented MA strategy and the specific goals of
the communication system. Thus, more details of vgu will be provided in later chapters.
As discussed in [70], this multistage structure is beneficial to massive MIMO systems
and can help to reduce the complexity and overhead of channel estimation, making JSDM
suitable for both the TDD and FDD modes. Next, the construction of Pg and Wg is ex-
plained.

Let us start with the design of Pg. In order to explain, let us consider a downlink network
where one BS with M antennas wishes to multiplex G groups in space, and within each
group there are U users. Following the model in (2.4), the channel matrix for the uth user
in the gth group can be expressed by

Hgu = UguΛ
1
2
guGgu. (2.11)

It can be noticed in the above channel structure that intergroup interference can be can-
celed if Pg can null out the dominant eigenmodes of interfering channels g′ ̸= g. Mathe-
matically, we must achieve

[
U1, · · · ,Ug−1,Ug+1, · · · ,UG

]H
Pg = (U

−
g )

HPg = 0, ∀g = 1, · · · , G, (2.12)

where U
−
g ∈ CM×∑G

g′=1,g′ ̸=g r⋆
g′ is a tall matrix containing the dominant eigenvectors of

the interfering channels observed by the gth group. Therefore, Pg should be constructed
from the null space of U−

g . In particular, the eigendecomposition of U−
g can be exploited

to compute the desired null space. More specifically, the interference matrix for the gth
group can be decomposed as U

−
g = Eg∆gE

H
g , where Eg comprises the eigenvectors of

U
−
g . Given that the last M −∑g′ ̸=g r

⋆
g′ columns of Eg form an orthonomal basis for the

null space of U−
g , the precoding matrix for interference cancellation can be computed by

Pg = [Eg](1+∑
g′ ̸=g r⋆

g′
)
:M

∈ CM×
(
M−∑

g′ ̸=g r⋆
g′
)
, (2.13)

where the constraint M >
∑

g′ ̸=g r
⋆
g′ must be satisfied. As long as the spatial directions

of different groups are not overlapping, the precoder in (2.13) can effectively cancel the
intergroup interference.
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Further, in order to maximize the signal reception at the gth intended group, Wg should be
projected onto the direction of its dominant transformed eigenmodes, i.e, after precoded
by Pg. To this end, the eigenvectors of the transformed covariance matrix (Λ

1
2
g UH

g Pg)
HΛ

1
2
g

UH
g Pg = PH

g ΣgPg = Σ̄g ∈ C
(
M−∑

g′ ̸=g r⋆
g′
)
×
(
M−∑

g′ ̸=g r⋆
g′
)

must be computed. Specif-
ically, by applying the eigendecomposition, we achieve Σ̄g = Ēg∆̄gĒ

H
g , where Ēg and

∆̄g are, respectively, the matrices of eigenvectors and eigenvalues of Σ̄g. Because the
eigenvectors in Ēg form the basis for the column space of Σ̄g, the eigen-beamforming
matrix for the gth group can be constructed from the first M̄ columns of Ēg, as follows

Wg = [Ēg]1:M̄ ∈ C(M−∑
g′ ̸=g r̄g′)×M̄ , (2.14)

where M̄ is a design parameter that, because of the dimensions of Pg and Ēg, should

satisfy G ≤ M̄ ≤
(
M −∑g′ ̸=g r

⋆
g′

)
and M̄ ≤ r⋆g . In our studies, M̄ is configured so

that all the constraints are satisfied. The above precoding design can be easily extended to
dual-polarized systems. Thus, the dual-polarized case is not explained in this dissertation.
Interested readers are referred to Publications [III]–[IV] and references therein for a full
explanation.

Precoding for Uplink Signal Alignment

Precoding for signal alignment is explained in this subsection, which has been proposed
for uplink communication in Publication [IV]. Signal alignment techniques are efficient
methods for mitigating interference in multicluster and multicell networks [9, 79, 80]. The
concept allows us to design precoders capable of aligning the propagation channels of dif-
ferent users from a given group into a common interference subspace. In the uplink mode,
these strategies enable the BS to maintain interfering transmissions coming simultane-
ously from multiple users at tolerable levels through simple detection techniques. More
specifically, once the channels of different users are aligned, linear reception techniques
such as zero-forcing can effectively eliminate intergroup interference, which facilitates
the BS to employ MA techniques, like uplink NOMA, to decode the messages from users
within a given group [9].

For illustration purposes, let us consider an uplink scenario where one BS with M an-
tennas is receiving signals from users within G groups, so that in each group there are U
users employing N antennas. For aligning the propagation channels from the gth group
into a common subspace, the uth user should employ a precoder pgu capable of achieving
the following:

Hg1pg1 = Hg2pg2 = · · · = HgUpgU , (2.15)

where Hgu ∈ CM×N is the channel matrix for the uth user in the gth group, which in
Publication [IV] is modeled as uncorrelated Rayleigh fading, as in (2.3). The objective in
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(2.15) can be accomplished by solving the following matrix problem



IM −Hg1 0M,N . . . 0M,N

IM 0M,N −Hg2 . . . 0M,N

...
...

... . . . ...

IM 0M,N 0M,N . . . −HgU







h̄g

pg1

...

pgU



= 0(UM),1, (2.16)

where h̄g ∈ CM is the effective aligned channel vector that is observed at the BS from
users in the gth group, i.e., h̄g = Hgupgu, ∀u = 1, · · · , U . Because the matrix in the
leftmost side of (2.16) has the dimension (MU) × (M +NU), the condition NU >
M (U − 1) must be satisfied. Note that for addressing intergroup interference, the BS
only requires the knowledge of the aligned channels h̄g, for g = 1, · · · , G. As a result,
channel acquisition and signal detection can be greatly simplified at the BS. This concept
of signal alignment is extended to dual-polarized channels in Publication [IV].

2.2 Basics of Power-Domain NOMA

In this section, the NOMA technique is presented in more detail. Let us start by consid-
ering a downlink scenario where one BS employing M antennas communicates with U
single-antenna users. Let us assume that the BS wishes to deliver the data symbol xu to
the uth user by allocating a transmit power coefficient αu. Further, let hu ∈ CM denote
the uncorrelated channel vector, and pu ∈ CM an arbitrary precoder employed at the BS
for the uth user. As mentioned in Section 1.1, the relying concept of downlink NOMA
consists of applying SC to the data symbols of different users at the BS and executing
SIC on the users’ side. By convention, to implement this transmission strategy, the users
are first sorted in an ascending order by the BS based on their effective channel gains
achieved after precoding, so that |hH

1 p1|2 ≤ |hH
2 p2|2 ≤ · · · |hH

U pU |2 ≤, which implies
that the 1st user experiences the worst channel conditions, and the U th user the best con-
ditions. Then, when fixed power allocation is employed, the BS allocates to lower order
users a larger power coefficient and to higher order users a smaller coefficient, resulting
in α1 ≥ α2 ≥ · · · ≥ αU . Finally, after applying SC to the users’ symbols, the BS achieves
the following superimposed symbols

x =
U∑

u=1

pu

√
αuxu, (2.17)

which are then transmitted to all users. After the superimposed data stream x propagates
through hu, the uth user receives

yu = hH
u

U∑

u=1

pu

√
αuxu + nu ∈ C, (2.18)
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where nu is the noise observed by the uth user. Before the u user retrieves its own mes-
sage, it detects the symbol for the nth lower order user, i.e., n = 1, · · · , u − 1, while
treating the symbols intended for higher order users m > n as interference. The detected
symbol of the nth user is then subtracted through SIC from the composite signal in (2.18),
and the decoding process continues. Only after all the symbols of the users n < u have
been canceled by SIC, the uth user can decode its intended data symbol. Under ideal con-
ditions, this sequential decoding can be carried out perfectly, and the uth user is able to
recover its symbol without interference from users n < u. In practice, however, hardware
sensibility, imperfect CSI, feedback errors, and other issues can cause decoding errors,
resulting in residual SIC interference, which can be modeled by a linear function of lower
order decoded symbols. More specifically, the uth user receives

x̂u = hH
u pu

√
αuxu︸ ︷︷ ︸

Desired symbol

+ hH
u

U∑

m=u+1

pm

√
αmxm

︸ ︷︷ ︸
Interference of higher order users

+
√
µhH

u

u−1∑

n=1

pn

√
αnxn

︸ ︷︷ ︸
Residual SIC interference

+ nu︸︷︷︸
Noise

, (2.19)

where µ ∈ [0, 1] represents the SIC error propagation factor, in which µ = 1 models the
extreme scenario of maximum decoding errors, and µ = 0 represents the ideal case where
SIC can be executed perfectly. The above model is employed in Publications [I], [III],
[V], and [VI] to capture the degrading effects of imperfect SIC. Note that for enabling
correct decoding, the users need to feedback their observed effective channel gains to the
BS, and the BS is required to inform the resulting user ordering.

For the case of uplink communication, the BS executes a similar decoding procedure.
However, the symbols transmitted simultaneously by different users are superimposed
naturally at the BS, i.e., users do not need to apply SC. Moreover, the symbols coming
from different users are detected following the opposite order employed in the downlink.
Specifically, users are sorted in a descending order based on their channel gains observed
at the BS, and SIC is executed to decode the received symbols starting from the user with
the best channel conditions to the user with the worst conditions. A more in-depth ex-
planation of the decoding process for uplink NOMA is provided in Section 3.4, which
presents the results of Publication [IV].

2.3 Basics of RSMA
To explain RSMA, let us consider the same downlink communication scenario from the
previous section, with one BS equipped with M antennas and U single-antenna users.
When employing the simplest version of RSMA, the messages intended for each individ-
ual user are split by the BS into two parts. The first parts of each message are encoded into
a common supersymbol, which can be denoted by xc. In turn, the second parts of each
data message are encoded independently, resulting in U private symbols, represented by
xp
u, for u = 1, · · · , U . Then, the symbol xc is mapped to the BS antennas through a com-

mon precoder wc, which should be designed to deliver the common symbol to all users,
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while the symbols xp
u are multiplied by private precoders wp

u, constructed to deliver the
corresponding private symbol only to the intended uth user. Next, the two obtained data
streams are superimposed in the power domain, resulting in the following signal

x =
U∑

u=1

wp
u

√
αp
ux

p
u +wc

√
αcxc, (2.20)

which is then transmitted toward the users, with αc and αp
u representing the power coef-

ficients for the common and private symbols, respectively. After the transmitted symbols
have been filtered through the wireless channel, the uth user observes

yu = hH
u




wp
u

√
αp
ux

p
u︸ ︷︷ ︸

Desired private data

+
U∑

n=1,n ̸=u

wp
n

√
αp
nx

p
n

︸ ︷︷ ︸
Private data

intended to other users

+ wc
√
αcxc

︸ ︷︷ ︸
Common stream

to be decoded through SIC




+ nu︸︷︷︸
Noise

. (2.21)

Upon reception, the common stream is decoded first while treating the private streams as
interference. Next, the users execute SIC to subtract the recovered common symbol from
the received superimposed data stream in (2.21). After the SIC decoding is finalized, the
uth should be able to recover its private symbol successfully, ideally, interference-free.
However, because of practical issues, SIC can also be carried out imperfectly in RSMA,
which can be modeled as in the previous section. Specifically, the performance impacts of
imperfect SIC is investigated in our two RSMA-related publications, [V] and [VI], further
details of which will be provided later.

Due to the fact that part of the users’ messages are encoded into a single common stream,
and users execute SIC only once, the technique explained above is called single-layer
RSMA. Altough it is a relatively simple technique, single-layer RSMA has the poten-
tial to outperform all classical MA techniques, including NOMA, TDMA, OFDMA, and
SDMA, as reported in recent works [81]. RSMA strategies with multiple layers of SIC
have also been proposed recently, such as the generalized RSMA [10] and the hierarchical
RSMA [56]. Nevertheless, the focus of this dissertation is only on single-layer RSMA.
These more intricate schemes are left for future work.

2.4 Basics of an IRS and its Standard Channel Model

As introduced in Section 1.1, an IRS consists of a thin planar structure comprising multi-
ple reflecting elements, each one with a size smaller than the signal wavelength and with
reconfigurable electromagnetic properties. Each element operates as a subwavelength
scatterer, which can induce phases and amplitude changes in impinging electromagnetic
signals, as illustrated in Figure 2.5. Collectively, these small tunable elements enable
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Figure 2.5: Illustration of the capabilities of an IRS considering only a reflected link.

an IRS to generate reflections with an optimized radiation pattern. Specifically, if we
consider one IRS with L reflecting elements, the transformations induced by lth element
can be represented by a complex number ωle

jϕl , in which ωl models the amplitude of
the reflected signal, and ϕl denotes the induced phase change. As a result, the collective
responses for one IRS can be represented by the following diagonal matrix

Θ =




ω1e
jϕ1 0 0 · · · 0

0 ω2e
jϕ2 0 · · · 0

...
... . . . · · · ...

0 0 0 · · · ωLe
jϕL



∈ CL×L. (2.22)

The reflection matrix in (2.22), combined with the channel matrices for the links between
the BS and the IRS, and the IRS and users, compose the standard channel representa-
tion adopted in IRS-assisted communication systems, known as the multiplicative dyadic
channel model [17]. More specifically, by considering the scenario with one BS with
M antennas, U single-antenna users, and one IRS with L elements, the full channel that
characterizes all propagation links can be represented by

hH
u = sHu ΘG+ dH

u , (2.23)

where Θ is defined in (2.22), and G ∈ CL×M , su ∈ CL, and du ∈ CM denote the channel
responses between the BS and the IRS, the IRS and the uth user, and the BS and the uth
user, respectively.

The IRS channel representation in (2.23) is used for generating the results in Publications
[II] and [V], which investigate IRS-MIMO-NOMA and IRS-MIMO-RSMA schemes, re-
spectively. It is noteworthy that this model is unaware of signal polarization. In Publica-
tion [III], this model is extended to also incorporate polarization aspects of electromag-
netic propagation and a novel dual-polarized IRS with appealing capabilities is proposed.
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3 Overview of Publications on MIMO-NOMA Networks

This chapter provides a comprehensive overview of the novel contributions achieved for
MIMO-NOMA networks, with and without the aid of IRSs, which are proposed in Publi-
cations [I]–[IV].

3.1 Massive MIMO-NOMA Networks with Imperfect SIC
This section focuses on the findings and original contributions proposed in Publication [I],
which is the starting point of this study and has provided motivation for developing the
subsequent works. Specifically, it is shown that imperfect SIC is highly detrimental to the
performance of MIMO-NOMA schemes and that individual users experience unbalanced
and unfair data rates under fixed power allocation. These important findings and the
results reported next answer the first research question Q1.

3.1.1 Motivation and Contributions

The majority of existing MIMO-NOMA-related works are underpinned by the assumption
of perfect SIC decoding, which is idealistic and difficult to realize in practice. Moreover,
no previous works have proposed power allocation strategies aiming at rate fairness in
massive MIMO-NOMA networks considering SIC error propagation. These major liter-
ature gaps motivated the development of Publication [I], which, in summary, designs, in-
vestigates, and optimizes multicluster massive MIMO-NOMA networks undergoing prac-
tical issues of imperfect SIC decoding. More specifically:

• A downlink scenario is considered where multiple users employing multiple an-
tennas are located in different spatial clusters. Within each cluster, the users are
divided by the BS into multiple NOMA groups, each one containing two users so
that the computational complexity of SIC is maintained at manageable levels. At the
BS, a multistage precoder like the one presented in Subsection 2.1.5 is employed.
Specifically, outer precoders, which are responsible for canceling out intercluster
interference and focusing transmissions on the clusters of interest, are constructed
based only on the users’ slowly varying correlation matrices. On the other hand,
inner precoders, which play the role of assigning the superimposed data symbols to
intended NOMA groups, are designed to be independent of users’ CSI.

• An analytical framework for multicluster massive MIMO-NOMA networks under
imperfect SIC is derived considering fixed power allocation policies. First, the
expression for the SINR is determined, based on which the effective channel gains
and interference terms are statistically characterized. Next, based on the achieved
SINR expression and its statistical properties, an exact closed-form expression is
derived for the outage probability. The users’ ergodic rates are also derived in
closed-form. Our novel analytical framework can be exploited as a practical tool
for assisting the design of massive MIMO-NOMA networks under imperfect SIC.
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Figure 3.1: System model studied in Publication [I]. Multiantenna users within each spa-
tial cluster are divided into multiple two-user NOMA groups.

• An adaptive power allocation policy is proposed for maximizing the minimum ob-
served instantaneous users’ data rates within each NOMA group. Our power op-
timization problem ensures that weak users (those experiencing the worst channel
conditions) can achieve at least the same data rate levels observed by strong users.
The optimal solution for the formulated problem is obtained in closed-form by the
Karush–Kuhn–Tucker (KKT) conditions [82]. To extend data rate fairness across
different NOMA groups, a simple but effective iterative algorithm is proposed for
balancing the power budget between groups so that all users within each cluster
can experience similar data rate levels, i.e., maximum fairness is provided for users
within each spatial cluster.

• Comprehensive discussions are presented alongside insightful simulation results.
In particular, the detrimental effects of imperfect SIC on the outage probability and
ergodic rate performance are revealed. The effectiveness and advantages of the
proposed fair power allocation policy also become evident in the results. Among
other insights, it is shown that, when operating with fixed power allocation, the im-
plemented baseline MIMO-OMA scheme outperforms the MIMO-NOMA counter-
part when the SIC error propagation factor is high. It is also confirmed that our fair
power allocation policy can achieve remarkable outage probability improvements
over the MIMO-NOMA system under fixed power allocation.

3.1.2 System Model, Precoding, and Reception

Now, more details are provided on the system model studied in Publication [I]. Specif-
ically, a single-cell multicluster downlink communication network is considered, com-
prising one unobstructed elevated BS and several multi-antenna users surrounded by a
large number of scattering objects so that correlated Rayleigh fading is achieved. The BS
is equipped with a uniform linear array with M single-polarized antennas separated by
half of the wavelength, i.e., λ/2, and at each user, N single-polarized receive antennas
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are employed, where M ≫ N , which represents a massive MIMO system. Moreover,
the users are assumed to be distributed within different geographical regions forming K
spatial clusters, following the one-ring geometrical model explained in Subsection 2.1.2.
As depicted in Figure 3.1, to reduce the complexity of NOMA, the users within each
spatial cluster are organized by the BS into G two-user groups. Then, MIMO precoding
is used to multiplex different clusters in space, and NOMA is exploited to serve users
within the groups via the power domain. As a result, after applying SC and transmit-
ting the precoded data symbols via the wireless medium, the users receive the following
superimposed signal

ykgu = HH
kgu

K∑

q=1

Bq

G∑

m=1

vqm

2∑

n=1

√
αqmnxqmn + nkgu, (3.1)

where Hkgu =
√

Φd−η
kg UkΛ

1
2
kGkgu denotes the correlated channel matrix for the uth user

in the gth group in the kth cluster, which has an effective correlation matrix given by
E{HkguH

H
kgu} = Φd−η

kg Rk ∈ CM×M , with a rank given by rk, and r⋆k ≤ rk nonzero
eigenvalues. The matrices Gkgu, Λk, and Uk are defined as in (2.4), which comprise,
respectively, the fast-varying channel coefficients, the r⋆k nonzero eigenvalues of Rk, and
the corresponding dominant eigenvectors. In turn, the parameter dkg represents the dis-
tance of the gth NOMA group from the BS, η is the path-loss exponent, and Φ is an array
gain parameter adjusted according to the desired users’ SINR [83]. Furthermore, note
that the users within the kth cluster are assumed to share a common effective correlation
matrix Rk, which has been generated using (2.5). The vector nkgu ∈ CN models the
additive noise, whose entries follow the complex Gaussian distribution with zero mean
and variance σ2. The parameter αqmn represents the power allocation coefficient, and
xqmn denotes the data symbol for the nth user in the mth group in the qth spatial clus-
ter. Bq ∈ CM×M̄ is the precoding matrix responsible for multiplexing the spatial clusters,
which is constructed similarly as in Subsection 2.1.5, and vqm ∈ CM̄ is the precoding vec-
tor that assigns the superimposed symbols to the corresponding NOMA groups, which is
designed as follows

vkg = [ 01,(g−1) , 1 , 01,(M̄−g) ]
T , ∀g = 1, · · · , G. (3.2)

Observe that the only capability of the precoder in (3.2) is to forward the gth effective data
stream to the gth group without applying any further processing on the data symbols. The
main advantage of such a strategy is that the BS will only need to estimate the channel
correlation matrices for constructing the precoding matrices, which is much less demand-
ing than acquiring the full CSI. Moreover, because Bk is built based on the correlation
matrices Rk, which can be estimated with a high degree of accuracy, it is assumed in
Publication [I] that the intercluster interference can be canceled perfectly. Nevertheless,
the users are still required to employ a detection technique to cope with the remaining in-
tergroup interference within each spatial cluster. To this end, at each user, a zero-forcing
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receiver is implemented, which can be computed by

H†
gu = [(HH

guB)HHH
guB]−1(HH

guB)H , (3.3)

where H†
gu is the Moore–Penrose pseudoinverse of users’ effective channels. Note that,

because the intercluster interference can be perfectly nulled out by Bk, for simplicity, the
cluster subscript is dropped. It is also noteworthy that for constructing the above detection
matrices, the BS needs to feed back the matrices B to the users, which can be realized by
imposing a low overhead.

Following the convention used in downlink NOMA explained in Section 2.2, it is as-
sumed that the BS sorts users within each group in an ascending order according to the
magnitude of the observed effective channel gains. Upon reception, the users employ SIC
to separate the transmitted superimposed data symbols, so that the user with the worst
channel condition (the weak user) recovers its data symbol directly from the received sig-
nal while treating the symbol intended for the user with the best channel condition (the
strong user) as interference. In its turn, the strong user first decodes the message for the
weak user, subtracts it from the superimposed symbol, and only then recovers its own
message. In ideal conditions, only the weak user, the first user in the decoding order,
experiences interference, whereas the strong one receives information interference-free.
However, as anticipated, in practice, even if the CSI can be estimated with precision, hard-
ware imperfections and other issues can generate SIC decoding errors, which deteriorates
the performance of the strong users. Consequently, after multiplying the signal in (3.1)
by H†

gu, the users in the gth group will retrieve the following corrupted data symbol

x̂gu =





√
αg1xg1

↑
symbol of interest

+
√
αg2xg2

↑
interference

+ [H†
g1ng1]g

↑
noise

, if u = 1,

√
αg2xg2

↑
symbol of interest

+
√
µαg1xg1

↑
residual SIC interference

+ [H†
g2ng2]g

↑
noise

, if u = 2,
(3.4)

where µ ∈ [0, 1] denotes the SIC error propagation factor, such that µ = 0 represents the
ideal scenario with perfect SIC, and µ = 1 models an extreme case with a maximum SIC
error.

3.1.3 Performance Analysis

In this subsection, the main mathematical results achieved in Publication [I] are presented;
the results are valid for massive MIMO-NOMA systems operating with fixed power al-
location and undergoing SIC error propagation. First, the SINR expression observed by
each user is introduced. Then, based on the statistical distribution of the SINR gains,
closed-form expressions for the outage probabilities are derived. Last, the ergodic rates
are also calculated in closed-form.
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SINR Analysis

By exploiting the expressions for the recovered symbols in (3.4), the SINR achieved by
the two users within a given NOMA group is provided in the following lemma.

Lemma 3.1: When users within each NOMA group are sorted by the BS in an ascending
order based on their effective channel gains, the SINR observed by the uth user, 1 ≤ u ≤
2, while decoding the symbol intended to the ith user, 1 ≤ i ≤ 2, can be expressed by

γi
gu =

ρϱguαgi

ρϱguα⋆
gi + 1

, for 1 ≤ i ≤ k ≤ 2, (3.5)

where ϱgu = 1

[H†
guH

†H
gu ]g,g

denotes the effective channel gain, ρ = 1/σ2 is the signal-to-
noise ratio (SNR), and α⋆

gi models the interference power, which is defined by

α⋆
gi =

{
αg2, for i = 1,

µαg1, for i = u = 2,
(3.6)

Proof: The reader is referred to Appendix A in Publication [I]. ■

A crucial step for deriving the closed-form expressions of the desired performance metrics
is determining the statistical distribution of the effective channel gains ϱgu = 1

[H†
guH

†H
gu ]g,g

.
To this end, a statistical characterization is carried out on ϱgu. Specifically, by first con-
sidering that the gains are unordered random variables, ϱgu can be characterized by a
Gamma distribution with the shape parameter N − V + 1 and the scale parameter given
by Φd−η

g [(BHRB)−1]g,g. However, because the users are ordered by the BS in an ascend-
ing order, it is required to apply the theory of order statistics [84] to accurately model the
referred channel gains. More specifically, the probability density function (PDF) of the
ordered effective channel gains for user 1 (the weak user) can be expressed by

fϱg1(x) =
2βϑ

g

Γ(ϑ)

[
xϑ−1e−βgx − xϑ−1e−βgx

γ(ϑ, βgx)

Γ(ϑ)

]
, (3.7)

and for user 2 (the strong user) by

fϱg2(x) =
2βϑ

g

Γ(ϑ)
xϑ−1e−βgx

γ(ϑ, βgx)

Γ(ϑ)
, (3.8)

where, for notation simplicity, it is defined that ϑ = N − V + 1 and βg = Φd−η
g

[(BHRB)−1]g,g. For the complete details of this statistical characterization, interested
readers are encouraged to go through Subsection III-B of Publication [I]. The expressions
in (3.7) and (3.8) are used for deriving the next results.
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Outage Probability

A given user is considered to be in an outage state when its instantaneous data rate is
less than the target rate required for decoding its received symbol. For the considered
system model, this implies that the weak user (user 1) will experience an outage event
when log2(1+ γ1

g1) < Tg1 and the strong user (user 2) either when log2(1+ γ1
g2) < Tg1 or

when log2(1+ γ2
g2) < Tg2, where Tgu denotes the target data rates. As a result, the outage

probability observed by the uth user in the gth NOMA group can be computed by [14, 7]

Pgu = P [log2(1 + γi
gu) < Tgi], ∀i = 1, · · · , u. (3.9)

Note that the SIC error propagation term in (3.6) will deteriorate the outage probability
performance of the strong user. Proposition 3.1, next, derives closed-form expressions for
the outage probability achieved by weak and strong users within each group.

Proposition 3.1: When users within each NOMA group are sorted in an ascending order,
i.e., ϱg1 < ϱg2, and the strong user is susceptible to SIC error propagation, the outage
probability can be derived in closed-form as follows:

• Weak user:

Pg1 =





2γ(ϑ,ρ−1βgLg1)

Γ(ϑ)
−
[
γ(ϑ,ρ−1βgLg1)

Γ(ϑ)

]2
, if Lg1 ≥ 0,

1, otherwise.
(3.10)

• Strong user:

Pg2 =





[
γ(ϑ,ρ−1βg max{Lg1,Lg2})

Γ(ϑ)

]2
, if min {Lg1,Lg2} ≥ 0,

1, otherwise,
(3.11)

where Lg1 =
2Tg1−1

αg1−αg2(2
Tg1−1)

, and Lg2 =
2Tg2−1

αg2−µαg1(2
Tg2−1)

.

Proof: The reader is referred to Appendix B in Publication [I]. ■

Ergodic Rate

For deriving the ergodic rates experienced by users within each NOMA group, it is as-
sumed that the strong user is unable to decode perfectly the message intended for the
weak user as a result of imperfect SIC. Consequently, the instantaneous data rate of the
strong user, which is computed based on the SINR achieved when decoding its own sym-
bol, is degraded by residual SIC errors. Under such assumptions, their data rates can be
expressed by

Rg1 = log2(1 + γ1
g1) = log2

(
1 +

ρϱg1αg1

ρϱg1αg2 + 1

)
, (3.12)
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and

Rg2 = log2(1 + γ2
g2) = log2

(
1 +

ρϱg2αg2

ρϱg2µαg1 + 1

)
. (3.13)

By calculating the statistical expectation of (3.12) and (3.13), Proposition 3.2 provides
exact closed-form expressions for the ergodic rates of the two users.

Proposition 3.2: Closed-form expressions for the ergodic rates observed by weak and
strong users, when the strong user experiences SIC error propagation, can be derived by:

• Weak user:

R̄g1 = ξ1(κg1)− ξ1(κ̃g1), (3.14)

where κg1 = ρ(αg1 + αg2), κ̃g1 = ραg2, and

ξ1(κ) =





∑ϑ−1
i=0

1
2ϑ+i−1 ln(2)Γ(ϑ)i!

∑ϑ+i−1
m=0

(ϑ+i−1)!
(ϑ+i−m−1)!

[
(−1)ϑ+i−m−2

(
κ

2βg

)ϑ+i−m−1 e
2βg
κ Ei

(
−2βg

κ

)

+
∑ϑ+i−m−1

n=1
(n−1)!(

− κ
2βg

)ϑ+i−m−n−1

]
, if ϑ > 1,

− 1
ln(2)

e
2βg
κ Ei

(
−2βg

κ

)
, if ϑ = 1.

• Strong user:

R̄g2 =

{
ξ2(κg2)− ξ2(κ̃g2), if µ > 0,

ξ2(κg2), if µ = 0,
(3.15)

where κg2 = ρ(µαg1 + αg2), κ̃g2 = ρµαg1, and

ξ2(κ) =





2
ln(2)

∑ϑ−1
m=0

1
(ϑ−m−1)!

[
(−1)ϑ−m−2

(
κ
βg

)ϑ−m−1 e
βg
κ Ei

(
−βg

κ

)

+
∑ϑ−m−1

n=1
(n−1)!(

− κ
βg

)ϑ−m−n−1

]
− ξ1(κ), if ϑ > 1,

− 2
ln(2)

e
βg
κ Ei

(
−βg

κ

)
− ξ1(κ), if ϑ = 1.

Proof: The reader is referred to Appendix C in Publication [I]. ■

3.1.4 Fair Power Allocation

To satisfactorily meet the data rate requirements of multiple users in wireless communica-
tion networks, limited resources such as transmit power need to be allocated with fairness.
Several recent NOMA-related works have employed fixed power allocation policies fol-
lowing the convention of assigning more power to weak users and less to strong ones as
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an attempt to provide a certain degree of fairness to the network [85, 14, 7]. However,
fixed strategies cannot cope with the dynamic behavior of wireless propagation. More-
over, weak users under fixed power allocation will always experience limited data rates as
a result of interference from strong users, which causes unbalanced and unfair rate perfor-
mance that is undesirable in applications with strict fairness requirements. This limitation
motivated us to develop in Publication [I] fair dynamic policies for allocating the transmit
power both within and among different groups.

First, within each NOMA group, an optimization problem is formulated to maximize the
rate of the strong user under the constraint that the weak user achieves a data rate not less
than the observed by the strong one. In practice, this approach ensures that the two users
will obtain the same data rate. More specifically, the power allocation for providing fair
data rates to users within each group is achieved by solving the following problem:

max
αg1,αg2

{Rg2} (3.16a)

s.t. Rg1 ≥ Rg2, (3.16b)
αg1 + αg2 = ᾱg, (3.16c)
αg1 ≥ 0, αg2 ≥ 0, (3.16d)

in which ᾱg is defined as the transmit power budget available for the gth NOMA group.
After some manipulations, (3.16) can be simplified to a convex problem, which allows
us to apply the KKT conditions. The optimal solution for the problem in (3.16) is then
provided in closed-form in Proposition 3.3, as shown next.

Proposition 3.3: The optimization problem in (3.16) can be transformed into an equivalent
convex problem, which has a global optimal solution given in closed-form by

α∗
g2 =





−(ϱg1ρ−1+ϱg2ρ−1+2µϱg1ϱg2ᾱg)

2(ϱg1ϱg2−µϱg1ϱg2)

+

√
(ϱg1ρ−1+ϱg2ρ−1+2µϱg1ϱg2ᾱg)2+4ϱg1ϱg2(1−µ)(ϱg1ρ−1ᾱg+µϱg1ϱg2ᾱ2

g)

2(ϱg1ϱg2−µϱg1ϱg2)
, if µ ∈ [0, 1),

ϱg1ρ−1ᾱg+µϱg1ϱg2ᾱ2
g

ϱg1ρ−1+ϱg2ρ−1+2µϱg1ϱg2ᾱg
, if µ = 1,

(3.17)

for the strong user, and

α∗
g1 = ᾱg − α∗

g2, (3.18)

for the weak user.
Proof: The reader is referred to Appendix D in Publication [I]. ■
Observe that, for carrying out the above power allocation, the BS needs to have access to
the users’ channel gains ϱgu and the SIC error factor µ. Recall that the effective gains ϱgu
are exploited by the BS for sorting users and implementing NOMA. Thus, no additional
complexity is added for using ϱgu in the power allocation policy. On the other hand, as
explained in Publication [I], the error factor µ can be estimated by users by long-term
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Algorithm 1: Iterative Algorithm for Enabling Fairness Among NOMA Groups
Input: ϵ, ρ, ϱg1, ϱg2.

1 Set the initial available power to ᾱg = 1, ∀g;
2 do
3 for g = 1 to G do
4 Calculate α∗

g2 and α∗
g1 using (3.17) and (3.18), respectively;

5 Calculate the subgroup’s sum-rate by Rg = Rg1 +Rg2;
6 end
7 ĝ = argmax(Rg : ∀g ∈ {1, 2, · · · , G});
8 ǧ = argmin(Rg : ∀g ∈ {1, 2, · · · , G});
9 Calculate ∆α using (3.19);

10 Update ᾱĝ = ᾱĝ −∆α;
11 Update ᾱǧ = ᾱǧ +∆α;
12 ϵ∗ = Rĝ −Rǧ;
13 while ϵ∗ > ϵ;

measurements and informed back to the BS, imposing a small additional feedback over-
head.

For enabling rate fairness also across different NOMA groups, i.e., in order for all users
in all groups within a spatial cluster to achieve the same data rate, an iterative algorithm
is also proposed to redistribute the transmit power budgets among different groups. The
underlying idea of the algorithm is to iteratively transfer part of the power budget, repre-
sented by ∆α, from the best to the worst NOMA group, and to exploit the adaptive power
allocation in (3.17) and (3.18) to readjust the rates of each user. The proposed iterative
intergroup allocation strategy is presented in Algorithm 1, and the power fraction ∆α is
computed in Proposition 3.4, as follows.

Proposition 3.4: The power fraction ∆α required to be transferred from the group with
the highest sum-rate to the group with the lowest sum-rate is given by

∆α =
−A2 ±

√
A2

2 − 4A1A3

2A1

, (3.19)

where

A1 = 4ϱ2ǧ1ϱǧ2ρ
−1 + 4K1, A2 = 2A1K3 + 16K2K1,

A3 = K2
3 − 4K2

ϱ2ǧ1
ϱ2ĝ1

(ϱĝ1ρ
−1 + ϱĝ2ρ

−1)2 − 16K2K1ᾱĝ,

and

K1 =
ϱ2ǧ1
ϱ2ĝ1

ϱ2ĝ1ϱĝ2ρ
−1, K2 = (ϱǧ1ρ

−1 + ϱǧ2ρ
−1 − ϱǧ1

ϱĝ1
(ϱĝ1ρ

−1 + ϱĝ2ρ
−1))2,
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Figure 3.2: Impact of imperfect SIC on the users’ ergodic rates for different numbers of
receive antennas [I], ©2020 IEEE.

K3 = (ϱǧ1ρ
−1 + ϱǧ2ρ

−1)2 + 4ϱ2ǧ1ϱǧ2ρ
−1ᾱǧ −K2 −

ϱ2ǧ1
ϱ2ĝ1

(ϱǧ1ρ
−1 + ϱǧ2ρ

−1)2 − 4K1ᾱĝ.

Proof: The reader is referred to Appendix E in Publication [I]. ■

For the complete description and complexity analysis of Algorithm 1, interested readers
are referred to Subsection IV-B of Publication [I].

3.1.5 Main Results

This subsection focuses on the main simulation and numerical results presented in Publi-
cation [I], which are the most relevant ones for this dissertation. The implemented mas-
sive MIMO-NOMA network comprises one BS equipped with a uniform linear array of
M = 90 antennas and multiple multi-antenna users uniformly distributed across K = 4
spatial clusters, with each cluster having 50 m of diameter. The simulation results are gen-
erated considering the first cluster, which has a center located at a distance of 141 m from
the BS and an azimuth angle of φ = 7°, corresponding to an angular spread of δ = 10°.
In addition, within the spatial cluster of interest there are G = M̄ = 2 NOMA groups,
where each group contains U = 2 users. The focus is on the performance of users from
the first group that is located at 115 m from the BS. The path-loss exponent is adjusted to
η = 2, and the gain parameter to Φ = 404. In the results with fixed power allocation, the
power coefficients of users 1 and 2 are set to α1 = 5/8 and α2 = 3/8, respectively. The
presented results are generated by averaging a large number of Monte Carlo iterations.

Figure 3.2 presents simulated and analytical ergodic rates (generated with (3.14) and
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Figure 3.3: Simulated ergodic sum-rate curves for a massive MIMO-NOMA system with
imperfect SIC and the conventional massive MIMO-OMA counterpart [I], ©2020 IEEE.

(3.15)), measured in bits per channel use (BPCU), experienced by the weak and strong
users under fixed power allocation, where different SIC error factors and numbers of re-
ceive antennas are considered. As can be seen, independent of the system parameters, a
perfect agreement between simulated and analytical curves is achieved, which validates
the ergodic rate analysis. This result also reveals that imperfect SIC can be very harmful
to the performance of the strong user, such that when µ = 0.5, its ergodic rate becomes
inferior to the one achieved by the weak user. Another important insight that can be ob-
served in Figure 3.2 is that the rate performance of the two users is highly unbalanced, so
that independently of the number of transmit antennas, the rate of the weak user is always
limited to moderate to high SNR values, which confirms that fixed power allocation in
NOMA leads to unfair performance.

In Figure 3.3, the performance of MIMO-NOMA under imperfect SIC is put into per-
spective with conventional MIMO-OMA, which implements TDMA. As can be noticed,
even for a low value of SIC error propagation factor, e.g., µ = 0.005, the MIMO-NOMA
scheme is outperformed by the MIMO-OMA counterpart in the high-SNR regime, re-
gardless of the number of receive antennas. Such a performance behavior sheds light on
a serious issue, which implies that, in real-world conditions where users are experiencing
a considerable number of SIC decoding errors, MIMO-NOMA alone may not be the best
option. In fact, we can see that when µ = 0.1, for both N = 2 and N = 6, the adoption
of OMA always delivers the highest performance.

Our theoretical analysis is further corroborated in Figure 3.4, where the analytical outage
probability curves match perfectly the simulated ones. The detrimental effects of imper-
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Figure 3.4: Impact of imperfect SIC on the outage probability for different numbers of
receive antennas (T1 = T2 = 1.4 BPCU) [I], ©2020 IEEE.

fect SIC on the users’ outage performance become evident in this figure. As can be seen,
when the SIC error factor reaches values superior to 0.36, the outage probability curve for
the strong user rapidly deteriorates. For instance, when the strong user employs N = 4
antennas and the SIC error grows to µ = 0.366, even the weak user employing N = 2
receive antennas achieves the best performance for SNRs less than 36 dB. This accentu-
ated performance degradation is explained by the fact that when the SIC error propagation
becomes elevated, the data rate achieved by the strong user becomes limited, as revealed
in Figure 3.2, which increases the probability of experiencing outage events.

Previous results have shown that fixed power allocation hampers the performance of both
the data rate and outage probability of weak users, confirming unfair resource sharing.
Figures 3.5 and 3.6 reveal the potential of our dynamic power allocation strategy pro-
posed in Subsection 3.1.4 to overcome such a limitation and enhance fairness within the
NOMA groups. Specifically, Figure 3.5 shows that the fair power allocation balances the
data rate of the two users at the cost of decreasing the rate of the strong user. This dy-
namic approach allows the weak user to achieve a data rate considerably higher than that
achievable with the fixed policy, which results in a lower but still satisfactory performance
for the strong user. For example, under perfect SIC, the fair power allocation policy de-
livers an ergodic rate of 4.82 BPCU to the two users when the SNR is 22dB, which is an
impressive improvement of more than 3.4 BPCU to the weak user when compared with
1.39 BPCU achieved with the fixed policy counterpart.

Last, Figure 3.6 presents the remarkable improvements offered by the fair power alloca-
tion to the outage probability of the two users. As it was observed in Figure 3.5, despite
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the fact that the ergodic rate of the strong user is decreased to improve the performance
of the weak one, the outage probability of the strong user is significantly improved when
operating under the fair policy. For instance, when the strong user employs N = 4 an-
tennas and is served with the fair power allocation, it can achieve an outage probability
performance that is approximately the same as the one observed with the fixed policy but
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with 12 dB less SNR. The performance improvements delivered to the weak user by the
fair allocation are even more expressive, where a gain of more than 20dB in terms of SNR
can be achieved when N = 4. For the full list of results and further discussions, readers
are referred to Section V in Publication [I].

3.1.6 Summary

This section presented a comprehensive overview of the main results and important dis-
coveries of Publication [I]. Specifically, for the first time in the literature, the impact of
practical issues of imperfect SIC on the performance of multicluster massive MIMO-
NOMA networks was investigated, considering both fixed and dynamic power allocation
policies (aiming at enhancing rate fairness). Furthermore, a novel analytical framework
with closed-form expressions for the outage probability and ergodic rates was derived,
which provides practical tools for assisting the design of MIMO-NOMA systems. Repre-
sentative simulation results validate the proposed analytical and power allocation frame-
works. In particular, our results show that fair power allocation enables remarkable per-
formance improvements for the weak user. Among other important insights, Publication
[I] also confirms that imperfect SIC is highly detrimental to the data rates and outage prob-
abilities of MIMO-NOMA schemes, so that when SIC error propagation is high, classical
MIMO-OMA outperforms MIMO-NOMA. Such a limitation calls for innovative solu-
tions and provided motivation for developing our subsequent Publications [II], [III], and
[IV], which are described in the following sections.
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3.2 Roles of IRSs in Massive MIMO-NOMA Networks
In the previous section, it was demonstrated that despite the numerous advantages of
massive MIMO-NOMA systems, they still have certain limitations. Furthermore, like
any wireless communication system, MIMO-NOMA schemes are also susceptible to the
degrading effects of wireless propagation, such as fast-varying channels, blocking, atmo-
spheric absorption, deep fading, and more. Fortunately, as introduced in Section 2.4, IRSs
have arisen as disruptive devices for harnessing and tuning these harsh wireless phenom-
ena. The appealing capabilities of IRSs have motivated us to investigate their application
to massive MIMO-NOMA systems and led us to write the magazine article in Publication
[II], which is our seminal work on the IRS subject, the focus of this section. Specifically,
this section answers questions Q2 and Q3 by revealing that IRSs can deliver attractive
spectral and energy efficiency improvements to MIMO-NOMA schemes.

3.2.1 Motivation and Contributions

At the moment of writing Publication [II], the roles that IRSs are able to play in MIMO-
NOMA networks were still not completely clarified. Moreover, surveys and tutorials
studying the combination of the subjects IRS and massive MIMO-NOMA were, until
then, nonexistent. This lacuna has driven the development of Publication [II], where a
thorough investigation is performed and the true potential of the amalgamation of these
featured technologies is unveiled. Specifically, an insightful report is provided on promis-
ing energy and spectral improvements that can be enabled by massive IRS-MIMO-NOMA
systems in future 5G and 6G wireless networks. Light is also shed on important challenges
that need to be solved before these systems can be deployed in practice. Further details
and our key contributions can be summarized as follows:

• An introduction to the IRS subject is provided. The working principles of IRSs
and present typical architectures, materials, and the main technologies used for
their fabrication are explained. The standard dyadic channel representation used in
IRS-assisted communication is also presented, which is followed by an illustrative
comparison between the main features of IRSs and other related technologies.

• Four promising potential performance improvements offered by IRS-MIMO-NOMA
systems are identified and comprehensively discussed, supported with insightful
simulation examples generated by extensive Monte Carlo iterations. As the main
results, it is demonstrated that IRSs can enable MIMO-NOMA to achieve more
flexible control of the channel gains and order of connected users. Further, it is
shown that the performance of the fair power allocation, proposed in Publication
[I], can be further enhanced and that signal coverage to cell-edge users served with
NOMA can be improved. It is also shown that if the IRS hardware has a neutral or
low energy consumption, IRS-MIMO-NOMA networks can contribute to remark-
able energy efficiency gains.

• Potential use case scenarios that IRS-MIMO-NOMA can enable in beyond-5G sys-
tems are presented and discussed. The pervasive coverage is proposed through mul-
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Figure 3.7: System model studied in Publication [II]. Each user is assisted by one IRS
comprising L reflecting elements.

tiple IRSs, 3D coverage in UAV networks, and massive grant-free transmissions as
three promising applications that can be unlocked by IRS-MIMO-NOMA in the
future.

• Last, discussions on unsolved issues, technological challenges, and future research
directions related to IRS-MIMO-NOMA networks are provided to conclude the
article.

In this section, the focus is on presenting the four above-mentioned performance improve-
ments enabled by IRS-MIMO-NOMA, which are related to spectral efficiency, signal
coverage, and energy consumption.

3.2.2 System Model

The system model implemented in Publication [II] is based on the one proposed in the
previous section. However, it is assumed that SIC is carried out perfectly in the presented
simulation examples. More specifically, the focus of study is on a single-cell network
containing one BS equipped with a uniform linear array of M transmit antennas, sepa-
rated by half of the carrier wavelength, i.e., by λ/2. The BS communicates in the down-
link mode with multiple users equipped with N receive antennas, which are distributed
among K spatial clusters, where, within each cluster, the users are organized by the BS
into G NOMA groups containing U users each. Furthermore, to enable the anticipated
performance improvements, in the vicinity of each user, one IRS comprising L reflecting
elements is deployed, as illustrated in Figure 3.7. Under this communication scenario,
following the model introduced in Section 2.4, the full composite channel matrix is rep-
resented for the uth user in the gth group in the kth cluster by

HH
kgu = SH

kguΘkgu

√
Φd−η

kguGkgu +
√
Φd−η

kguD
H
kgu, (3.20)
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where Θkgu ∈ CL×L is the diagonal matrix modeling the reflections induced by the L
reflecting elements of the IRS serving the uth user, and the matrices Gkgu ∈ CL×M ,
Skgu ∈ CL×N , and Dkgu ∈ CM×N denote the channel responses between the BS and the
IRS, the IRS and the users, and the BS and the users, respectively. The parameter dkgu
represents the distance from the BS to the uth user, which is the same distance configured
to its serving IRS, η is the path-loss exponent, and Φ is the gain parameter adjusted based
on the desired performance of the receivers. Note that because the IRSs are considered
to be close to their connected user, path-loss in the link between IRSs and users is not
modeled, and the channel matrix Skgu is assumed to be uncorrelated. However, because
of the scattering environment and the closely spaced antennas, the channels between the
BS and the users and the BS and the IRSs are considered to be correlated, where the
correlation matrices of Gkgu and Dkgu are generated following the one-ring geometrical
model explained in Subsection 2.1.2.

After the superimposed signal transmitted by the BS has propagated through the wireless
channels, the uth user in the gth group in the kth cluster observes the following

ykgu = HH
kgu

K∑

q=1

Bq

G∑

m=1

vqm

U∑

n=1

√
αqmnxqmn + nkgu, (3.21)

where nkgu ∈ CN is the noise vector with entries following the complex Gaussian distri-
bution with zero mean and variance σ2. The variable αqmn denotes the power coefficient,
and xqmn is the symbol intended for the nth user in the mth NOMA group at the qth
cluster. Bq ∈ CM×M̄ is the beamforming matrix responsible for eliminating the inter-
cluster interference, which is designed based on the null space spanned by the nonzero
eigenmodes of the correlation matrices of interfering clusters like in Subsection 2.1.5,
and vqm ∈ CM̄ is the precoding vector for assigning the superimposed symbols to corre-
sponding NOMA groups designed as in (3.2).

By assuming that the beamforming matrix Bq can successfully null out all intercluster in-
terference, the superposed signal observed by the uth user in the gth group can be rewrit-
ten as

ykgu = HH
kguBk

G∑

m=1

vkn

U∑

n=1

√
αknmxknm + nkgu. (3.22)

To eliminate the remaining intergroup interference, as in (3.3), the users employ the fol-
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lowing zero-forcing receiver

H†
kgu =[(HH

kguBk)
HHH

kguBk]
−1(HH

kguBk)
H

=

[((
SH
kguΘkgu

√
Φd−η

kguGkgu +
√
Φd−η

kguD
H
kgu

)
Bk

)H

×
(
SH
kguΘkgu

√
Φd−η

kguGkgu +
√
Φd−η

kguD
H
kgu

)
Bk

]−1

×
((

SH
kguΘkgu

√
Φd−η

kguGkgu +
√
Φd−η

kguD
H
kgu

)
Bk

)H

. (3.23)

After the received signal in (3.21) has been filtered through the zero-forcing receiver in
(3.23), the uth user in the gth group at the kth cluster will recover the following corrupted
data vector

x̂kgu =




∑U
n=1

√
αk1nxk1n

...
∑U

n=1

√
αkGnxkGn


+H†

kgunkgu. (3.24)

Observe that each element in the vector in (3.24) is intended for a distinct NOMA group.
Thus, users within the gth NOMA group carry out SIC on the gth element of the detected
data vector. As a result, by assuming that the users are sorted in an ascending order based
on their effective channel gains, the SINR observed at the uth user when decoding the
symbol belonging to the ith user, 1 ≤ i ≤ u ≤ U , can be expressed as follows

γi
kgu =

ρϱkguαkgi

ρϱkguα⋆
kgi + 1

, for 1 ≤ i ≤ u ≤ U, (3.25)

where ϱkgu = 1

[H†
kguH

†H
kgu]g,g

, ρ = 1/σ2, and the interference α⋆
kgi is defined by

α⋆
kgi =

{∑U
j=i+1 αkgj, for 1 ≤ i ≤ u < U,

0, for i = u = U.
(3.26)

The above expression is obtained similarly as in Lemma 3.1, in Subsection 3.1.3, and
thus, the proof is omitted.

3.2.3 IRS Optimization

For generating the simulation results in Publication [II], IRSs are implemented consid-
ering both fixed and optimized reflection coefficients. In the simulation examples where
IRSs are claimed to be optimized, at each channel coherence interval, the reflecting ele-
ments are dynamically tuned to either maximize or attenuate the instantaneous data rates
achieved by each user so that different system objectives can be achieved. In order to
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implement such capabilities, an exhaustive search is carried out to find the best set of
reflection coefficients. In contrast, when fixed reflecting elements are deployed, all phase
coefficients are adjusted to 0◦, and all reflection amplitudes are set to the maximum, i.e.,
to 1. Even though these configuration strategies are straightforward, they can satisfac-
torily illustrate the desired performance capabilities. More sophisticated optimization
techniques are proposed and implemented in Publications [III], [IV], and [V].

3.2.4 Performance Metrics

Two important performance metrics are presented and discussed in the provided simula-
tion results. First, the achievable data rates observed by each user, which are measured in
BPCU, are studied, and second, the energy efficiency curves, in BPCU/Watts, achieved
by the considered NOMA group, are plotted. More specifically, the achievable rate for
the uth user in the gth group at the kth cluster is calculated by

Rkgu = log2(1 + γu
kgu), (3.27)

with γu
kgu given in (3.25). In turn, the energy efficiency for the gth group in the kth cluster

is defined by the ratio between sum-rate and the total energy consumption, as follows

Ekg =

∑U
n=1Rkgn

ᾱT + ᾱS + ULᾱIRS
, (3.28)

where ᾱT denotes the total power budget available at the BS, ᾱS is a static power dissipated
in the system, and ᾱIRS is the power consumed by each IRS reflecting element.

3.2.5 Main Results

Now that the essential details for the considered system model have been provided, the
four most relevant improvements identified in Publication [II] delivered by IRS-MIMO-
NOMA networks are presented. To this end, a BS is implemented employing M = 80
transmit antennas and multiple users employing N = 4 receive antennas, which are dis-
tributed in different regions forming K = 4 spatial clusters, so that within each cluster,
the users are divided into G = 4 NOMA groups. In Figures 3.8, 3.9, and 3.11, each group
is formed containing two users, whereas in Figure 3.10, it is assumed that there are three
users per group, and nearby each user, and one IRS with L = 20 reflecting elements is
installed. Moreover, in Figures 3.8, 3.10, and 3.11, the users are served only with fixed
power allocation. On the other hand, in Figure 3.9, the users are served with both fixed
and the dynamic fair power allocation policy from Publication [I]. Other specific simula-
tion parameters are informed in the legends of the corresponding figure, and without loss
of generality, the presented results are generated focusing on the first NOMA group in the
first cluster.

Figure 3.8 illustrates the first interesting property that IRSs can enable in MIMO-NOMA
systems, which is related to the improved control of users’ effective channel gains. As
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explained, the knowledge of the channel strengths of individual users is crucial for ex-
ecuting SIC successfully in NOMA, as users are ordered based on this information by
the BS. Moreover, the way user ordering is performed influences the level of interference
experienced by each user. However, in classical wireless environments, users’ channel
gains are highly stochastic and difficult to be controlled, which has a direct impact on the
performance of MIMO-NOMA systems. In this regard, Figure 3.8 shows that IRSs can
help to smartly adjust the propagation environment and change the effective strengths of
users’ channels, which enables a more flexible user ordering and new opportunities for
performance improvements. For instance, as can be seen, user 1, located 200 m from the
BS, is served as the weak user in the conventional MIMO-NOMA, which, because of the
SIC protocol, has a rate limited to a value way below its required target data rate as a
result of interference from user 2. Consequently, user 1 faces a high outage probability
under the conventional MIMO-NOMA. In turn, by deploying IRSs close to the users and
properly optimizing the reflecting elements, the order of the user’s effective channel gains
can be changed, which allows the user 1 (previously achieving low data rates) to surpass
its target rate of 4 BPCU and, at the same time, user 2 can still satisfy its requirements.

The dynamic power allocation strategy proposed in Subsection 3.1.4 enabled users with
different channel conditions to experience the same data rates in the considered MIMO-
NOMA network. However, it also became clear that, in order to achieve this property,
the data rates of strong users need to be decreased. Such a characteristic is detrimental
to the system sum-rate and can lead to unsatisfactory network-wide performance in situ-
ations where the weak user is undergoing severe channel attenuation. Figure 3.9 shows
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that IRSs are highly beneficial for mitigating such an issue. This figure presents the users’
achievable rates achieved with fixed and fair power allocation policies, and in the IRS-
assisted results, only fixed reflecting coefficients are implemented. As can be seen, in
the conventional MIMO-NOMA, the dynamic policy can successfully bring the data rates
of the two users to similar levels. However, the curve for the strong one is significantly
lowered for achieving fairness, a limitation not observed in the IRS-MIMO-NOMA coun-
terpart. Specifically, it can be seen that both users under IRS-MIMO-NOMA can achieve
higher data rates than that observed by the strong user in the conventional MIMO-NOMA
scheme, almost in the entire SNR range.

In conventional MIMO-NOMA networks, users with excessively low SINRs are com-
monly disconnected to avoid heavy losses in the network sum rate, which is particularly
detrimental to cell-edge users and limits the practical communication range. Figure 3.10
illustrates the capability of IRSs for overcoming this problem and extending signal cov-
erage in MIMO-NOMA systems, where fixed power allocation and an SNR value of
26 dBm are considered. As informed in the referred figure, there are three users in the
studied NOMA group, in which one of the users is at a far 1500 m distance from the BS.
It is depicted that, because of the high path-loss, the distant user can achieve only 0.188
BPCU of data rate when served with MIMO-NOMA alone. On the other hand, when
deploying an IRS, the same user can achieve an impressive rate of 1.185 BPCU, which
is nearly the same performance observed by the second closest user and represents a rate
improvement of more than six times.
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As illustrated in the previous result, the performance of weak users can be improved with
the aid of IRSs without directly requiring the BS to allocate a higher transmit power. If
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the hardware components of the IRSs are efficient enough so that the additional energy
consumption required for their configuration is maintained at moderate levels, the energy
efficiency of the network can be considerably improved. This potential benefit is depicted
in the curves in Figure 3.11, which compares the energy efficiencies of both conventional
MIMO-NOMA and IRS-MIMO-NOMA systems under fixed power allocation and con-
sidering different energy consumption behaviors for elements of the IRSs. For instance,
under the assumption of energy neutrality, the proposed IRS-MIMO-NOMA system re-
quires almost 20 dBm less transmit power than the conventional MIMO-NOMA counter-
part requires to achieve its maximum energy efficiency of only 159.6 BPCU/Watt. To put
into perspective, the maximum efficiency value of the energy-neutral IRS-assisted scheme
is incredibly 427.2 BPCU/Watt. However, as can be seen, if the energy consumption of the
reflecting elements is increased, the energy efficiency improvements diminish. By consid-
ering that each element consumes 0.5 mW, for instance, the maximum energy efficiency
reaches only 253 BPCU/Watt, whereas with 3 mW per element, the IRS-MIMO-NOMA
scheme outperforms the conventional MIMO-NOMA system only in the low or very high
transmit power regime.

3.2.6 Summary

This section focused on the contributions of Publication [II], covering four main per-
formance improvements that the IRS technology should enable in future massive MIMO-
NOMA networks. Specifically, an extension of the massive MIMO-NOMA system model
proposed in Section 3.1 was implemented, where the users were assisted with multiple
IRSs. The increased control of the users’ effective channel gains, high-performance adap-
tive fair power allocation, enhanced cell-edge NOMA user performance, and (possibly)
high energy efficiency were identified and comprehensively discussed as promising im-
provement oppotunities. Readers are invited to go through our complete work in Pub-
lication [II], where further discussions are provided and promising use case scenarios
foreseen for 6G are presented.

It is noteworthy that perfect SIC was assumed in all the scenarios studied in Publication
[II]. However, it was found that imperfect SIC is also an important detrimental issue
in MIMO-NOMA networks, which deserves to be studied and tackled. Such a task is
performed in Publications [III], and [IV], where the polarization domain is exploited with
the help of IRSs to mitigate SIC error propagation.
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3.3 IRSs for Downlink Dual-Polarized Massive MIMO-NOMA
Networks

In previous sections, the studies were limited to single-polarized system models only.
Moreover, the reflecting elements of the IRSs were optimized through exhaustive search
strategies for illustrative purposes. In this section, our contributions to the IRS-MIMO-
NOMA topic are further elaborated. Our studies are extended to more general dual-
polarized models, and more sophisticated optimization algorithms are developed to un-
leash the full potential of IRS technology. The results presented in this section were
proposed in Publication [III] and are dedicated to answering the research questions Q4
and Q5.

3.3.1 Motivation and Contributions

Our seminal work in Publication [II] has enlightened us on a few major improvements
that can be enabled in massive MIMO-NOMA systems with the aid of IRSs. However,
the detrimental issue of imperfect SIC identified in Publication [I] remained unsolved.
Furthermore, all related technical works were limited to single-polarized systems, and
there were no works exploiting the capabilities of IRSs for harnessing the extra DoF of-
fered by the polarization domain in dual-polarized MIMO-NOMA networks undergoing
SIC error propagation. These literature gaps were identified as a great research opportu-
nity and provided motivation for developing the innovative ideas proposed in Publication
[III]. In this section, the properties of disruptive dual-polarized IRSs are optimized for
unlocking users to enjoy polarization diversity and mitigating the degrading effects of
imperfect SIC decoding in a massive dual-polarized MIMO-NOMA network. Additional
details and main contributions of Publication [III] can be summarized as follows:

• By modeling imperfect SIC decoding as in Publication [I], a multicluster down-
link communication network is implemented where users and the BS are equipped
with multiple co-located pairs of dual-polarized antennas. In this scenario, multiple
NOMA groups within different spatial clusters are reorganized by the BS into two
subsets. Then, we rely on IRSs with appealing polarization manipulation capabili-
ties and propose a novel transmission approach for multiplexing the two subsets of
users in the polarization domain. More specifically, at the BS, antennas with vertical
polarization are assigned to serve one subset and antennas with horizontal polariza-
tion to serve the other subset. Because each subset counts with a lower number of
users, our strategy offers a simplified SIC decoding process and reduced levels of
interference. Furthermore, cross-polar transmissions, which usually are a source of
interference in conventional dual-polarized MIMO systems, are harnessed by the
proposed IRSs to unleash polarization diversity and further mitigate the detrimental
effects of imperfect SIC on users.

• Each user is assisted with one dual-polarized IRS. Moreover, it is assumed that
users and their serving IRSs within a given geographical region are receiving sig-
nals propagating through a common cluster of scatterers. Then, inspired by our
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previous publications, multistage precoders are proposed based on the spatial cor-
relation information of the multiple clusters for multiplexing both users and IRSs
in space. The precoding matrices for canceling intercluster interference are then
concatenated with precoders of low computational complexity for performing the
polarization multiplexing of user subsets.

• With the objective of nulling out interfering polarized transmissions arriving at un-
intended subsets, a generalized least squares problem for matrix equations is formu-
lated for optimizing the reflecting coefficients of the dual-polarized IRSs. Achiev-
ing a solution for the original problem is challenging because of its complicated
form. After some transformations, the formulated problem is simplified into con-
vex quadratic constrained quadratic subproblems. By performing an analysis, it
is confirmed that the simplified problems are convex and thus have global optimal
solutions that can be computed iteratively. To find the desired solutions, the interior-
points method is implemented, which counts with polynomial time complexity.

• By taking practical issues into consideration, such as cross-polar transmissions and
SIC error propagation, an in-depth theoretical study is performed on the proposed
dual-polarized IRS-MIMO-NOMA network. First, after determining expressions
for the SINR observed by each user, a comprehensive statistical characterization of
the achieved channel gains is performed. Due to the fact that the IRS reflecting co-
efficients are optimized dynamically at each coherence interval of the fast-varying
channels, determining their statistical properties for arbitrary IRS sizes turns out
to be a convoluted task. To overcome this mathematical challenge, asymptotic
scenarios where large IRSs comprise massive numbers of reflecting elements are
studied. The asymptotic statistical distributions of the effective channel gains are
determined, which are then exploited for deriving closed-form expressions for the
users’ ergodic rates. The developed analytical framework can be used to achieve
important insights on fundamental performance limits when large IRSs are em-
ployed in the considered dual-polarized scheme.

• To conclude our contributions in Publication [III], illustrative numerical and simula-
tion examples are provided that confirm the accuracy of our theoretical analysis and
demonstrate impressive performance capabilities of the proposed dual-polarized
massive IRS-MIMO-NOMA system. It is revealed that in the asymptotic case
when the number of reflecting elements is large, our novel dual-polarized system
is capable of outperforming the considered massive MIMO-NOMA and MIMO-
OMA baseline schemes even in scenarios with significant levels of SIC decoding
errors. The attractive capabilities of dual-polarized IRSs for recycling cross-polar
transmissions and transforming them into polarization diversity for users are also
demonstrated.
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Figure 3.12: Toy example with one IRS employing a single dual-polarized reflecting ele-
ment. A vertically polarized signal is split into two beams with orthogonal polarizations.

3.3.2 Fundamentals of a Dual-Polarized IRS

Before introducing the actual system model studied in Publication [III], it is important
to understand the working principles and fundamental capabilities of a dual-polarized re-
flecting element. It was explained in Section 2.4 that one element of a conventional IRS
can induce phase and amplitude changes in impinging signals, which can be modeled by
a complex number ωe−jϕ, with ω representing the reflection amplitude and ϕ the induced
phase shift. A dual-polarized reflecting element can perform the same capabilities and
be modeled in an analogous fashion. However, more than phase and amplitude control,
reflecting elements with polarization manipulation capabilities can realize functions such
as independent control of impinging polarizations, polarization conversion, and polariza-
tion beam splitting [86]. For example, when considering a linear scheme with vertical
and horizontal polarizations, signals impinging at a dual-polarized IRS with vertical po-
larization can be converted and forwarded in the horizontal polarization (or vice versa) or
just forwarded without changing impinging polarizations [87, 88]. More specifically, the
functionalities of a single dual-polarized reflecting element can be characterized by the
following matrix:

Ψ =

[
ωvve−jϕvv

ωhve−jϕhv

ωvhe−jϕvh
ωhhe−jϕhh

]
, (3.29)

where the coefficients ωab ∈ [0, 1] and ϕab ∈ [0, 2π] model the reflection amplitude and
phase change, respectively, induced in impinging signals from the polarization a to b, in
which a, b ∈ {v, h}.

To better illustrate the proposed concept, consider the following toy example. Assume an
idealistic scenario with no depolarization phenomena where one transmitter employing
one antenna, installed with vertical polarization, communicates with one receiver em-
ploying one co-located pair of dual-polarized antennas, i.e., two antenna elements in-
stalled with vertical and horizontal orientations. In the scenario without an IRS, the ver-
tically polarized transmitted signals only reach the receiver in its matching antenna of
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vertical polarization, and this disables the receiver to exploit diversity. In contrast, in a
scenario with a dual-polarized IRS, transmitted signals with vertical polarization can be
transformed into two independent beams with vertical and horizontal polarizations, as il-
lustrated in Figure 3.12. This implies that a dual-polarized IRS can enable polarization
diversity in the receiver, which can be exploited for improving the communication per-
formance in practical systems. For illustration purposes, assume that the IRS deployed in
this example comprises a single dual-polarized element. Then, by recalling the reflection
matrix in (3.29), and considering only the reflected link via the IRS, the dual-polarized
noiseless signal observed by the receiver can be expressed by:


y

v

yh


 =

1√
2


(s

vv)
′

0

0 (shh)
′




ω

vve−jϕvv
ωhve−jϕhv

ωvhe−jϕvh
ωhhe−jϕhh




g

vv

0


x

=




1√
2
(svv)

′
ωvve−jϕvv

gvvx

1√
2
(shh)

′
ωvhe−jϕvh

gvvx


 , (3.30)

where x represents the data message intended for the receiver, gvv denotes the channel
gain for the link between the transmitter and the IRS, and sab is the channel gain for the
link between the IRS and the receiver, which models the propagation path of signals re-
flected with the polarization a and received with the polarization b, with a, b ∈ {v, h}.
For ensuring only passive transformations at the IRS, the normalization factor 1√

2
is in-

troduced. The signal in (3.30) shows that, through polarization beam splitting, the dual-
polarized IRS can enable the delivery of the data message (originally from the vertical
polarization) to the two receive polarizations. This example illustrates an interesting fea-
ture, but it also makes evident that a number of other possibilities can be realized by
optimizing the polarization properties of dual-polarized IRSs. As we will see, by com-
bining multiple reflecting elements in a larger IRS, countless more advanced capabilities
are unleashed.

Given that the amplitude and phase changes induced by one dual-polarized reflecting
element can be represented by a 2 × 2 reflection matrix as in (3.29), one IRS with L
dual-polarized reflecting elements can be modeled by a 2L× 2L reflection matrix, with a
block structure containing four L× L matrices, each one consisting of a diagonal matrix
modeling a distinct polarization transformation, as follows:

Θ =

[
Φvv Φhv

Φvh Φhh

]
∈ C2L×2L, (3.31)

where Φab = diag{[ωab
1 e−jϕab

1 , ωab
2 e−jϕab

2 , · · · , ωab
L e−jϕab

L ]} ∈ CL×L, in which ωab
l and

ϕab
l denote, respectively, the reflection amplitude and phase-shift coefficients for the lth

element from the polarization a to b, with a, b ∈ {v, h}, so that |ωab
l |2 ≤ 1 must be

satisfied for modeling passive IRSs. The representation in (3.31) is the base model used
to derive the results in Publication [III], where a more complex scenario with multiple
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Figure 3.13: System model investigated in Publication [III]. Users within different groups
are organized into two polarization subsets with the aid of dual-polarized IRSs.

dual-polarized IRSs across several clusters and large numbers of reflecting elements is
studied.

3.3.3 System Model

Here, a single-cell MIMO-NOMA network is considered, containing one BS that carries
out downlink transmissions to multiple users, where the BS and users employ multiple
co-located pairs of linearly polarized vertical/horizontal antennas. The BS is equipped
with a uniform linear array with M/2 pairs of dual-polarized antennas, each pair spaced
by λ/2, and the users employ N/2 pairs of dual-polarized receive antennas. In this work,
a spatially correlated scenario is also implemented where users are uniformly distributed
across K different spatial clusters. Moreover, within each cluster, the users are partitioned
by the BS into G groups of U users, and each user is assisted by one dual-polarized IRS
comprising L reflecting elements, as depicted in Figure 3.13.

In classical NOMA schemes (considered in our previous works), when the u user within
any gth NOMA group executes SIC, this user is required to cope with interference from all
remaining U − 1 users in the given group. This characteristic makes SIC an interference-
limited technique and can result in performance degradation if the number of users within
the group is increased. Moreover, imperfect SIC can make such a limitation even more
prominent. Our novel dual-polarized IRS-assisted transmission strategy efficiently miti-
gates this problem by harnessing the polarization domain, which can be explained as fol-
lows. First, each group is further partitioned into two subsets, called vertical subset and
horizontal subset, with each polarization subset comprising Ua users, where a ∈ {v, h}
and U v + Uh = U . Then, the BS is configured to serve the U v users within the vertical
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subset with vertically polarized antennas and the remaining Uh users within the horizontal
subset with horizontally polarized antennas. To reduce the probability of signals coming
from one polarization causing interference at users in subsets assigned to the orthogonal
polarization, the appealing properties of dual-polarized IRSs are optimized to minimize
unwanted transmissions. For example, all IRSs connected to users in vertical subsets are
configured to null out incoming transmissions from BS antennas of horizontal polarization
and vice versa. With our IRS-MIMO-NOMA scheme, users are enabled to experience a
reduced interference load when carrying out SIC, less impact from imperfect SIC, and
exploit polarization diversity, imposing a low computational complexity on users.

For implementing the above scheme, the BS applies SC to the data symbols of users
from each subset separately and transmits the superimposed data streams through their
respective polarizations, resulting in the following signal

x =
K∑

k=1

Pk


x

v

xh


 =

K∑

k=1

Bk

G∑

g=1

U∑

u=1

vkgu
√
αkguxkgu ∈ CM , (3.32)

where the vector xa comprises the superimposed symbols transmitted in antennas with po-
larization a ∈ {v, h}, αkgu denotes the power allocation coefficient, and xkgu is the sym-
bol intended for the uth user in the gth group in the kth cluster. The matrix Bk ∈ CM×M̄

is the precoder for multiplexing the spatial clusters, which has the following structure

Bk =


 B̃k 0M

2
, M̄
2

0M
2
, M̄
2

B̃k


 ∈ CM×M̄ , (3.33)

in which B̃k ∈ CM
2
× M̄

2 is the precoding matrix for each polarization designed based on
the correlation matrices of spatial clusters, following the same steps of Subsection 2.1.5,
and vkgu is the precoding vector for assigning the data symbols to the corresponding po-
larization subsets, which will be explained later.

By using the reflection model for a dual-polarized IRS introduced in (3.31), we can ex-
press the full dual-polarized channel matrix for the uth user in the gth group in the kth
cluster by

HH
kgu =

√
ζBS-IRS
kgu ζ IRS-U

kgu

1√
2


 S̄

vv
kgu 0L,N

2

0L,N
2

S̄hh
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kgu

Φvh
kgu Φhh
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kgu
√
χBS-IRSḠvh
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χBS-UD̄vh
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kgu D̄hh
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H

∈ CN×M , (3.34)

where the matrices S̄pq
kgu ∈ CL×N

2 , Ḡpq
kgu ∈ CL×M

2 , and D̄pq
kgu ∈ CM

2
×N

2 comprise the
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channel coefficients, respectively, for the links between the given IRS and its connected
user (link IRS-U), the BS and the IRS (link BS-IRS), and the BS and the user (link BS-U),
from the polarization a to b, with a, b ∈ {v, h}. Moreover, χBS-U and χBS-IRS ∈ [0, 1] denote
the iXPD parameters that inform the levels of cross-polar transmissions experienced in
the links BS-U and BS-IRS, 1√

2
is the normalization factor for ensuring passive polariza-

tion transformations, and ζBS-U
kgu , ζ IRS-U

kgu , and ζBS-IRS
kgu model, respectively, the large-scale fading

observed in the links BS-U, IRS-U, and BS-IRS.

Note in (3.34) that depolarization phenomena in the link IRS-U are not considered. This
implies that the cross-polar interference experienced in the channels between users and
their serving IRSs is zero. Although such a condition cannot be exactly verified in prac-
tice, it was necessary in order to avoid a more intricate mathematical formulation and to
ease the interpretation of our results. Nevertheless, it is noteworthy that our contributions
can be easily extended to the more general case with depolarization in all propagation
links.

The matrices D̄pq
kgu and Ḡpq

kgu are assumed to be correlated. Thus, they are generated
following the model in (2.4). On the other hand, the matrix S̄pq

kgu is considered to be
uncorrelated, i.e., full rank. With such considerations, we can express the correlation
matrices of D̄pq

kgu and Ḡpq
kgu by

RBS-IRS
k = ζBS-IRS

kgu (χBS-IRS + 1)I2 ⊗Rk, (3.35)

RBS-U
k = ζBS-U

kgu(χ
BS-U + 1)I2 ⊗Rk, (3.36)

where Rk represents the spatial correlation matrix for each polarization, with a rank de-
noted by rk. Note that, with the models in (3.35) and (3.36), it is assumed that the links
BS-U and BS-IRS share the same correlation matrices. Such a condition is achievable
when users and IRSs are irradiated by identical scattering clusters, which is a reasonable
assumption in Publication [III], given that IRSs and connected users are close by in the
implemented communication model.

By applying the Karhunen–Loeve decomposition to (3.34), the full channel for the uth
user in the gth group in the kth cluster can be restructured as
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where the matrices Λk ∈ Rr⋆k×r⋆k
>0 , and Uk ∈ CM

2
×r⋆k are defined similarly as in (2.4), with

Λk collecting the r⋆k nonzero eigenvalues of Rk, and Uk the corresponding dominant
eigenvectors. In turn, Sab

kgu ∈ CL×N
2 , Dab

kgu ∈ Cr⋆k×N
2 and Gab

kgu ∈ CL×r⋆k denote the full
rank fast-fading channel matrices for the links IRS-U, BS-U, and BS-IRS, respectively,
from the polarization a to b, in which a, b ∈ {v, h}, with entries following the complex
Gaussian distribution with zero mean and unit variance. For the sake of simplicity, the
normalization factor, path-loss, and iXPD have been incorporated into the channel matri-
ces. Thus, from now on, these coefficients are omitted. As a result, after the transmitted
data streams have traveled through both direct and reflected propagation links, the uth
user in the gth group in the kth cluster receives the following signal

ykgu =
(
SH
kguΘkguGkgu +DH

kgu
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×
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vqmn
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αqmnxqmn +


n

v
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nh
kgu


 ∈ CN , (3.38)

where na
kgu ∈ CN

2 is the noise vector achieved in the polarization a ∈ {v, h}, with zero
mean complex Gaussian distributed entries and variance σ2.

3.3.4 Precoding, IRS Optimization, and Reception Matrices

Polarization Assignment and Formation of Subsets

This subsection explains the strategy proposed for creating and multiplexing the subset
of users in the polarization domain as well as the design of the precoder vkgu. As the
first step executed at the BS, the users within each group are sorted in an ascending order
based on the path-loss coefficients of the direct link BS-U, i.e., ζBS-U

kg1 < ζBS-U
kg2 < · · · < ζBS-U

kgU .
Next, based on the ordered list of users, and supposing that U is even, the users with odd
indices are assigned to vertically polarized antennas, and the users with even indices to
horizontally polarized antennas. As the output, the BS achieves two disjoint polarization
subsets: Uv = {1, 3, · · · , U−1}, with U v = U/2 users, defined as the vertical subset, and
Uh = {2, 4, · · · , U}, with Uh = U − U v = U/2 users, defined as the horizontal subset.
Last, in order to transmit the superimposed data symbols for users in their corresponding
polarization subsets, the BS implements the following precoder

vkgu =


v

v
kgu

vh
kgu


 =




[
01,g−1,1Uv(u),0

1, M̄
2
−g

]T

[
01,g−1,1Uh(u),0

1, M̄
2
−g

]T


 , (3.39)
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where 1A(i) is the indicator function of a subset A, which is defined by

1A(i) =

{
1 if i ∈ A,

0 if i /∈ A.
(3.40)

Because of the dimension of the precoding vector vkgu, G ≤ M̄/2 must be satisfied.

IRS Optimization

By relying on the effectiveness of the precoders Bk, it is assumed from this point onward
that the intercluster interference has been perfectly eliminated. As a result, by focusing
on the first cluster, the cluster subscript is omitted and (3.38) is expanded as follows
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It can be seen that the data streams transmitted from vertically polarized antennas at the
BS, indented for vertical subsets, propagate through the left channel blocks in (3.41),
whereas transmissions from horizontally polarized BS antennas, intended for horizontal
subsets, propagate via the right channel blocks. This implies that the IRSs for the users
within vertical subsets should be configured to eliminate the right blocks, and the IRSs for
the users within horizontal subsets should cancel out the left channel blocks. To this end,
optimization problems should be formulated so that, for the users within vertical subsets,
we can achieve:
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and in users within horizontal subsets:
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For accomplishing the above goals, the IRSs from both vertical and horizontal subsets
should be configured similarly, that is, the reflecting elements of the IRSs must be opti-
mized aiming at eliminating cross-polar and co-polar interfering transmissions. Because
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of the similar objectives, without loss of generality, the optimization problem is next for-
mulated only for IRSs within vertical subsets. More specifically, the goal in (3.42) can be
achieved by solving the following problem

min
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(3.44a)

s.t. |ωab
gu,l|2 ≤ 1, ∀l ∈ [1, L], ∀a, b ∈ {v, h}, (3.44b)

Φvv
gu,Φ

vh
gu,Φ

hv
gu,Φ

hh
gu diagonal. (3.44c)

where the constraint in (3.44b) ensures passive reflections. The problem in (3.44) consists
of a generalized least squares problem for matrix equations, in which some results have
been provided in [89] for simpler cases. However, because of the elementwise quadratic
constraint in (3.44b), and the constraint for diagonal matrices in (3.44c), solving (3.44)
with its original formulation becomes highly complicated. To overcome this mathematical
challenge, a series of transformations are applied and simplified (3.44) into equivalent
convex problems. In short, the Khatri–Rao identity (CT ⊙ A)vecd{B} = vec{ABC}
[1] is used to define:
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gu} ∈ CL, (3.45)
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gu)
T⊙(Svv

gu)
H ] ∈ C

N
2
r⋆k×L, (3.49)

Khv,hh
gu = [(Ghv

gu)
T⊙(Shh

gu)
H ] ∈ C

N
2
r⋆k×L, (3.50)

Khh,hh
gu = [(Ghh

gu)
T⊙(Shh

gu)
H ] ∈ C

N
2
r⋆k×L. (3.51)

Then, after some simplifications and expansions, the original problem in (3.44) is trans-
formed into the following two subproblems

min
θvv
gu,θ

hv
gu






θ

vv
gu

θhv
gu



H

C̄gu


θ

vv
gu

θhv
gu


+ 2ℜ



(dhv

gu)
HK̄gu


θ

vv
gu

θhv
gu





+ (dhv

gu)
Hdhv

gu





(3.52a)

s.t.


θ

vv
gu

θhv
gu




H

Bl


θ

vv
gu

θhv
gu


 ≤ 1, (3.52b)
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min
θvh
gu ,θ

hh
gu






θ

vh
gu

θhh
gu



H

C̃gu


θ

vh
gu

θhh
gu


+ 2ℜ



(dhh

gu)
HK̃gu


θ

vh
gu

θhh
gu





+ (dhh

gu)
Hdhh

gu





(3.53a)

s.t.


θ

vh
gu

θhh
gu



H

Bl


θ

vh
gu

θhh
gu


 ≤ 1. (3.53b)

where Bl = diag{el}, l = 1, · · · , L, in which el represents the standard basis vector
computed as

el = [ 01,(l−1) , 1 , 01,(L−l) ]
T , l = 1, · · · , L, (3.54)

and the following have been defined:

K̄gu =
[
Khv,vv

gu Khh,vv
gu

]
, (3.55)

K̃gu =
[
Khv,hh

gu Khh,hh
gu

]
, (3.56)

C̄gu = K̄H
guK̄gu, (3.57)

C̃gu = K̃H
guK̃gu. (3.58)

It can be checked that the problems in (3.52) and (3.53) consist of quadratically con-
strained quadratic problems. Due to the fact that the entries of the matrices K̄gu and K̃gu

are independent and identically distributed complex Gaussian random variables, the ma-
trices C̄gu and C̃gu will be positive semidefinite matrices almost surely. In addition, given
that zHBlz = |[z]l|2 ≥ 0,∀z ∈ CL, Bl is also a positive semidefinite matrix. These
properties confirm that (3.52) and (3.53) are convex optimization problems. As result,
their global optimal solutions exist and can be computed through interior-point methods
iteratively in polynomial time [90]. Specifically, by representing the vector solutions of
problems (3.52) and (3.53) by θ̇ab

gu, the diagonal matrices with the optimal set of reflec-

tion coefficients that minimize (3.44) are computed by Φab
gu = diag

{
θ̇ab
gu

}
, ∀a, b ∈ {v, h}.

Signal Reception

For notation simplicity, the channels of the links BS-U, BS-IRS, and IRS-U are absorbed
into a single matrix, which allows us to simplify (3.37) into the following compact channel
representation

HH
gu =


H̃

vv
gu H̃vh

gu

H̃hv
gu H̃hh

gu



H

, (3.59)
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where H̃ab
gu comprises the effective channel coefficients resulting from the superposition

of transmissions propagating via direct and reflected links from the polarization a at the
BS to the polarization b on the users’ side, in which a, b ∈ {v, h}. To exemplify, the
channel matrix comprising effective vertical-to-vertical channel coefficients is computed
by H̃vv

gu = UkΛ
1
2
k

[
(Svv

gu)
HΦvv

guG
vv
gu + (Svv

gu)
HΦhv

guG
vh
gu

]H
+UkΛ

1
2
kD

vv
gu. By using this sim-

plified notation, the signal in (3.41) can be rewritten as

ygu =


(H̃

vv
gu)

HB̃ (H̃hv
gu)

HB̃

(H̃vh
gu)

HB̃ (H̃hh
gu)

HB̃




G∑

m=1

U∑

n=1


v

v
mn

vh
mn


√

αmnxmn +


n

v
gu

nh
gu


 . (3.60)

To explain the employed detection strategy, in this subsection, the focus continues to be
on the vertical subsets. Recall that the IRSs of users in vertical subsets are configured to
cancel transmissions from horizontally polarized BS antennas. By knowing this, we rely
on the IRSs to address interference between subsets of different polarizations and design
our detection matrices to cancel the remaining interference between subsets assigned to
the same polarization. To this end, the users in vertical subsets exploit the left blocks of
the channel matrix in (3.60) to build the desired detection matrix, as follows

H†
gu =


 H†v

gu 0 M̄
2
,N
2

0 M̄
2
,N
2

H†h
gu


 =


[(H

vv
gu)

HHvv
gu]

−1(Hvv
gu)

H 0 M̄
2
,N
2

0 M̄
2
,N
2

[(Hvh
gu)

HHvh
gu]

−1(Hvh
gu)

H


 , (3.61)

where Hvv
gu = (H̃vv

gu)
HB̃ and Hvh

gu = (H̃vh
gu)

HB̃ denote the virtual channels for the uth
user in the gth vertical subset, with H†a

gu representing left Moore–Penrose pseudoinverse
for the polarization a, such that N ≥ M̄ must be satisfied. By filtering the signal in (3.60)
with H†

gu, the uth user in the gth vertical subset recovers the following vector

x̂gu =


x̂

v
gu

x̂h
gu


 =


x

v +H†v
guH

hv
gux

h

xv +H†h
guH

hh
gux

h


+


H

†v
gun

v
gu

H†h
gun

h
gu


 , (3.62)

with xv obtained as

xv =




∑
n∈Uv

√
α1nx1n

...
∑

n∈Uv

√
αGnxGn


 . (3.63)

As can be seen in (3.62), as a result of our transmission and detection strategies, the users
are able to recover in both polarization replicas of their intended superimposed data sym-
bols, which have been transmitted from the vertically polarized antennas of the BS. More
specifically, the users within the gth vertical subset can recover their transmitted messages
by executing SIC on the gth element of either x̂v

gu or x̂h
gu, which allows users to exploit

diversity. In particular, users are configured to retrieve their symbol from the polarization
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with the highest effective channel gain, which is represented as the polarization ä. With
this approach, before executing SIC, the uth user in the gth vertical subset will achieve

[x̂ä
gu]g =

∑

n∈Uv

√
αgnxgn + [H†ä

guH
hä
gux

h]g + [H†ä
gun

ä
gu]g. (3.64)

The same strategy is implemented for the users in the horizontal subsets. However, in
contrast to the detection matrices for vertical subsets, H†

gu is built by exploiting the right
blocks of the effective channel matrix in (3.60).

Now that the main details of our proposed IRS-MIMO-NOMA scheme have been ex-
plained, we are ready to dive into the main results provided in Publication [III], starting
with the primary outcomes of our theoretical studies in the next subsection.

3.3.5 Performance Analysis

To start our contributions in this section, first, all sources of interference are modeled,
including the standard interference from the SIC decoding process, error propagation re-
sulting from imperfect SIC, and polarization interference, and an expression is determined
for the SINR experienced by users. Then, through a thorough statistical characterization,
the asymptotic distributions are derived for the SINR effective gains in the regime where
L → ∞. Finally, based on the determined PDFs, a closed-form expression for the users’
asymptotic ergodic rate is derived.

SINR Analysis

In order to finally retrieve the indented individual messages, each user carries out SIC
on the detected superimposed data symbol in (3.64). More specifically, as a result of the
scheme proposed for the formation of subsets presented in Subsection 3.3.4, the users in
vertical subsets are ordered as ζBS-U

kg1 < ζBS-U
kg3 < · · · < ζBS-U

kg(U−1), and in horizontal subsets
as ζBS-U

kg2 < ζBS-U
kg4 < · · · < ζBS-U

kgU . Then, the uth user within the subset Ua, with a ∈ {v, h},
first decodes the symbol intended for the mth lower order user, ∀m < u, m ∈ Ua, while
considering symbols intended for the nth higher order user as interference, ∀n > u, n ∈
Ua. Because of practical issues, it is assumed that SIC cannot be carried out perfectly,
which implies that the uth user also experiences residual interference from the users m <
u, following the imperfect SIC model proposed in Publication [I]. Consequently, at the
end of the SIC process, the uth user in the gth group in the subset Ua, recovers the
following corrupted data symbol

x̂gu =
√
αguxgu︸ ︷︷ ︸

Desired symbol

+
∑

m∈{i| i>u, i∈Ua}

√
αgmxgm

︸ ︷︷ ︸
Interference of stronger users

+
√
ξ
∑

n∈{j| j<u, j∈Ua}

√
αgnxgn

︸ ︷︷ ︸
Residual SIC interference

+ [H†ä
guH

tä
gux

t]g︸ ︷︷ ︸
Polarization interference

+ [H†ä
gun

ä
gu]g︸ ︷︷ ︸

Noise

, (3.65)
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where ξ ∈ [0, 1] denotes the error factor that models imperfect SIC, and t informs the
polarization that causes interference, which is computed as t = h, if u ∈ Uv, or t = v, if
u ∈ Uh. The SINR experienced by users within each subset is derived in the following
lemma.

Lemma 3.2: Under the proposed IRS-MIMO-NOMA scheme, when the uth user in the
gth group within the subset Ua detects the symbol intended for the ith user, ∀i ≤ u,
i ∈ Ua, it observes the following SINR

γi
gu =

ρḧguαgi

ρḧguIgi + ρḧguXgu + 1
, (3.66)

where ρ = 1/σ2 is the SNR, ḧgu = max{hv
gu, h

h
gu} denotes the effective channel gain,

with ha
gu = [1/H†a

gu(H
†a
gu)

H ]g,g corresponding to the gain achieved in polarization a ∈
{v, h}, the term Xgu =

∣∣[H†ä
guH

tä
gux

t]g
∣∣2 accounts for the polarization interference not

canceled by the IRS, so that if u ∈ Uv, t = h, and if u ∈ Uh, t = v. In turn, Igi is the
total interference resulting from the SIC process, which is defined by

Igi =





∑max{Ua}
m=i+1 αgm, if i = min{Ua},

∑max{Ua}
m=i+1 αgm + ξ

∑i−1
n=min{Ua} αgn, if min{Ua} < i ≤ u < max{Ua},

ξ
∑i−1

n=1 αgn, if i = u = max{Ua},
(3.67)

Proof: The reader is referred to Appendix A in Publication [III]. ■

Statistical Characterization of Channel Gains

This subsection presents the statistical characterization performed for the SINR interfer-
ence and channel gains. To this end, the focus is on the gains for the uth in the gth group
assigned to the vertical subset, i.e., ḧgu = max{1/[H†v

gu(H
†v
gu)

H ]g,g, 1/[H
†h
gu(H

†h
gu)

H ]g,g}
and Xgu =

∣∣[H†ä
guH

tä
gux

h]g
∣∣2. First, the matrices in [H†v

gu(H
†v
gu)

H ]g,g are expanded as fol-
lows

H†v
gu(H

†v
gu)

H = [B̃HH̃vv
gu(H̃

vv
gu)

HB̃]−1

=
(
B̃HUΛ

1
2 (Gvv

gu)
H(Φvv

gu)
HSvv

gu(S
vv
gu)

HΦvv
guG

vv
guΛ

1
2UHB̃

+ B̃HUΛ
1
2 (Gvh

gu)
H(Φhv

gu)
HSvv

gu(S
vv
gu)

HΦhv
guG

vh
guΛ

1
2UHB̃

+ B̃HUΛ
1
2Dvv

gu(D
vv
gu)

HΛ
1
2UHB̃

)−1

. (3.68)

Because Spq
gu is full rank, its covariance matrix is the identity matrix, i.e., E{Svv

gu(S
vv
gu)

H} =
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ζ IRS-U
gu IL,L. With this property, and recalling (3.34), (3.68) can be simplified as follows

H†v
gu(H

†v
gu)

H =

(
1

2
ζBS-IRS
gu ζ IRS-U

gu B̃H(Ḡvv
gu)

H(Φvv
gu)

HΦvv
guḠ

vv
guB̃

+
1

2
ζBS-IRS
gu ζ IRS-U

gu B̃H(Ḡvh
gu)

H(Φhv
gu)

HΦhv
guḠ

vh
guB̃

+ ζBS-U
gu B̃HD̄vv

gu(D̄
vv
gu)

HB̃
)−1

. (3.69)

It can be noticed that the entries of the matrix in (3.69) result from the inverse of the super-
position of the channel matrices of the three propagation links, which are statistically in-
dependent. This implies that H†v

gu(H
†v
gu)

H can be completely characterized if we can deter-
mine the individual distributions of B̃HD̄vv

gu, B̃H(Ḡvv
gu)

H(Φvv
gu)

H , and B̃H(Ḡhv
gu)

H(Φhv
gu)

H ,
which, unfortunately, turns out to be a challenging task. Specifically, because the entries
of Φvv

gu and Φhv
gu change rapidly with the fast-varying channels as a result of the compli-

cated problem in (3.52), identifying the exact statistical distribution of (3.69) for arbitrary
values of L becomes infeasible.

Alternatively, by relying on the asymptotic property of (Φab
gu)

HΦab
gu exhibited when L →

∞, which is revealed in Lemma 3.3, we will continue our analysis by focusing on the
scenario where IRSs comprise arbitrarily large numbers of reflecting elements. Lemma
3.3 is presented next.

Lemma 3.3: When the matrices Φab
gu, a, b ∈ {v, h} are tuned based on the optimization

problem in (3.44), the magnitude of their entries becomes arbitrarily small as the number
of reflecting elements L grows toward infinity, so that

(Φab
gu)

HΦab
gu → 0L,L as L → ∞, ∀a, b ∈ {v, h}. (3.70)

Proof: The reader is referred to Appendix B in Publication [III]. ■

Lemma 3.3 reveals that the channel matrices for the links BS-IRS and IRS-U present in
(3.69) vanish for a number sufficiently large of reflecting elements. As a result, in the
asymptotic regime with L → ∞, the matrix in (3.69) can be approximately given by

H†v
gu(H

†v
gu)

H ≈
(
ζBS-U
gu B̃HD̄vv

gu(D̄
vv
gu)

HB̃
)−1

, (3.71)

in which its statistics properties are easier to determine. Specifically, it is shown in Publi-
cation [III] that when L grows to infinity, the matrix H†v

gu(H
†v
gu)

H converges in distribution
to the inverse Wishart distribution with N

2
degrees of freedom, and the covariance matrix

computed by E{H†v
gu(H

†v
gu)

H} =
(
ζBS-U
gu B̃HRB̃

)−1

. Consequently, the effective channel

gain 1/[H†v
gu(H

†v
gu)

H ]g,g follows approximately the Gamma distribution with the shape pa-
rameter (N − M̄)/2 + 1 and the rate parameter (ζBS-U

gu [B̃HRB̃]g,g)
−1, for L sufficiently
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large. Then, we rely on the independence of the channel gains achieved in the two polar-
izations and derive the cumulative distribution function (CDF) of ḧgu for users in vertical
subsets as follows

Fḧgu
(x) = Fhvgu

(x)Fhhgu
(x) =

γ (κ, (χBS-U)−1λgux) γ (κ, λgux)

Γ (κ)2
, (3.72)

Thus, the PDF of ḧgu is achieved by calculating the derivative of Fḧgu
(x), which results

in

fḧgu(x) =
(λgu)

κxκ−1

Γ (κ)2

[
e−λguxγ

(
κ, (χBS-U)−1λgux

)

+ (χBS-U)−κe−(χBS-U)−1λguxγ (κ, λgux)
]
, (3.73)

where we have defined λgu = (ζBS-U
gu [B̃HRB̃]g,g)

−1 and κ = (N − M̄)/2 + 1.

Users within horizontal subsets share identical CDFs and PDFs as the ones derived above.
Thus, their expressions are not provided in this dissertation to avoid redundancy. It
is noteworthy that when L is large enough, Lemma 3.3 ensures that the matrices Φab

gu,
a, b ∈ {v, h}, have entries with amplitude always less than one. This implies that the
constraints in (3.52b) and (3.53b) are always satisfied when L → ∞, and the solutions
of (3.52) and (3.53) approach that achievable with a standard unconstrained least-squares
problem. As a result, the polarization interference in the denominator of the SINR in
(3.66) can be eliminated for large values of L, i.e., limL→∞Xgu → 0. This property is
exploited in the next subsection for deriving a closed-form asymptotic expression for the
ergodic rate.

Ergodic Rates for Arbitrarily Large IRSs

This subsection presents the closed-form asymptotic expression for the users’ ergodic
rates, which is the main result of the theoretical analysis derived in Publication [III]. To
this end, we rely on Lemma 3.3 and consider that IRSs with a sufficiently large number
of reflecting elements are deployed so that all polarization interference is canceled. Con-
sequently, the SINRs of users are degraded only by SIC error propagation. With these
assumptions, the ergodic rates are derived in the following proposition.

Proposition 3.5: When an IRS with an arbitrarily large number of reflecting elements,
i.e., L → ∞, is deployed to assist the uth user in the gth group within the polarization
subset Ua, a ∈ {v, h}, which is undergoing SIC error propagation, this user achieves the
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following ergodic rate

R̄gu =
1

ln(2)Γ (κ)

{
G 1,3

3,2

(
1−κ,1,1

1,0

∣∣∣∣
ᾱgu

λgu

)
+G 1,3

3,2

(
1−κ,1,1

1,0

∣∣∣∣
χBS-Uᾱgu

λgu

)

−G 1,3
3,2

(
1−κ,1,1

1,0

∣∣∣∣
α̃gu

λgu

)
−G 1,3

3,2

(
1−κ,1,1

1,0

∣∣∣∣
χBS-Uα̃gu

λgu

)

−
κ−1∑

n=0

(χBS-U)κ + (χBS-U)n

n!(χBS-U + 1)κ+n

[
G 1,3

3,2

(
1−κ−n,1,1

1,0

∣∣∣∣
χBS-Uᾱgu

(χBS-U + 1)λgu

)

−G 1,3
3,2

(
1−κ−n,1,1

1,0

∣∣∣∣
χBS-Uα̃gu

(χBS-U + 1)λgu

)]}
, 1 ≤ u ≤ U, (3.74)

where ᾱgu = ρ(α2
gu + Igu), and α̃gu = ρIgu.

Proof: The reader is referred to Appendix C in Publication [III]. ■

The expression in (3.74) seems complicated, but by knowing the behavior of the achieved
Meijer’s G-functions, some insights can be obtained. More specifically, it has been ver-
ified through numerical simulations that the terms with Meijer’s G-functions consist of
monotone increasing functions of the SNR ρ. The first implication of this characteris-
tic is that the negative terms in (3.74) will likely contribute to performance degradation.
This insight is reinforced by the fact that the Meijer’s G terms that have α̃gu as the input
are negative, and such terms model only interference. In contrast, positive terms that are
functions of χBS-U and ᾱgu, suggest that cross-polar transmissions have a positive contri-
bution to the users’ ergodic rates. These performance behaviors are expected given that
our proposed IRS-MIMO-NOMA scheme recycles cross-polar transmissions to enable
polarization diversity at users. These insights are also confirmed in our simulation results,
which are presented next.

3.3.6 Main Results

The main performance improvements unlocked by our dual-polarized IRS-MIMO-NOMA
scheme are now revealed. Specifically, this section introduces relevant simulation re-
sults from Publication [III], where insightful performance comparisons with the proposed
IRS-assisted system and other conventional communication schemes are performed. As
the baseline schemes, the traditional MIMO-OMA employing the TDMA technique, the
single-polarized MIMO-NOMA scheme based on the implementation of Publication [I],
and the dual-polarized MIMO-NOMA scheme proposed in [7] are considered. Numerical
results validating our mathematical analysis are also presented.

To ensure fair comparisons in the results, the BS is equipped in all systems with a uni-
form linear array comprising the same number of transmit antennas. To be specific, the
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Figure 3.14: Simulated and analytical ergodic sum-rates considering perfect SIC. Effect
of the increase in the number of dual-polarized reflecting elements (N = 4, χ = 0.5, ξ =
0) [III], ©2021 IEEE.

dual-polarized schemes are configured with M
2

= 45 pairs of dual-polarized antennas,
i.e., M = 90 antenna elements in total, which is the same number configured for the
single-polarized counterparts. The spatial clusters and their corresponding correlation
matrices in (3.35) and (3.36) are generated using the one-ring correlation model as in
Subsection 2.1.2. To this end, K = 4 spatial clusters are implemented with 30 m of ra-
dius. In the simulated scenario, the clusters are spatially distributed in a circumference
surrounding the BS at a distance of 120 m to their center and positioned at different az-
imuth angles. Within each cluster, the users are organized into G = M̄ = 4 groups, with
U = 4 users each. Moreover, for generating our results, the focus is on the first group
within the first cluster, which is located at the azimuth angle of 30◦. Within the group
of interest, users 1, 2, 3 and 4 are located at d1 = 135 m, d2 = 125 m, d3 = 115 m,
and d4 = 105 m, respectively, from the BS, in which their serving IRSs are considered
to be nearby. Thus, it is assumed that IRSs 1, 2, 3, and 4 are deployed at the same dis-
tances d1, d2, d3, and d4. With these considerations, inspired by our previous publications,
the path-loss coefficients of the links BS-IRS and BS-U for the uth user are adjusted as
ζBS-IRS
u = ζBS-U

u = Φd−η
u , setting Φ = 204 and the path-loss exponent to η = 2. For the

link IRS-U, because IRSs operate passively, the gain parameter Φ is not included in the
path-loss model and compute ζ IRS-U

gu = d̃−η, where d̃ = 20 m for all IRSs, which implies
that the IRSs and the connected users are separated by 20 m. Furthermore, in Publication
[III] only fixed power allocation is considered, where the users’ power coefficients are
adjusted as α2

1 = 0.4, α2
2 = 0.35, α2

3 = 0.2, α2
4 = 0.05.

Figure 3.14 compares the analytical ergodic sum-rate curve (generated with (3.74)) and
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Figure 3.15: Simulated and analytical ergodic sum-rates for various levels of SIC error
propagation (L = 500, χ = 0.5) [III], ©2021 IEEE.

simulated ones for increasing values of L, in the ideal scenario with ξ = 0, i.e., under
perfect SIC. This figure shows the impact of the number of reflecting elements on the ca-
pability of the IRSs to cancel polarization interference by solving (3.52) and (3.53). That
is, for a small number of reflecting elements, the IRSs are unable to cancel the interfer-
ence completely, which ends up limiting the sum-rates, as can be observed. In contrast,
when L grows, the IRSs become capable to cope with the interference more effectively,
which contributes to increasing the sum-rate, so that when L = 500, a perfect agreement
between the simulated and asymptotic sum-rates is obtained. These results validate our
theoretical analysis and satisfy the performance behavior described by Lemma 3.3.

To consolidate the accuracy of our asymptotic theoretical analysis, the number of reflect-
ing elements is fixed to L = 500; the analytical and simulated ergodic sum-rates are
plotted in Figure 3.15 and the analytical and simulated individual ergodic rates consid-
ering various interference parameters in Figure 3.16. For instance, different values of
the SIC error factor ξ are tested in Figure 3.15. As can be observed, the performance
of the proposed IRS-MIMO-NOMA scheme is also deteriorated by SIC error propa-
gation. However, as shown in the following figures, our scheme can still remarkably
outperform the baseline counterparts. Further, Figure 3.16 reveals the performance ef-
fects generated by increasing the levels of cross-polar transmissions χ when considering
perfect SIC. This figure shows that our dual-polarized IRS-MIMO-NOMA scheme can
indeed transform depolarization phenomena into an advantage, where we can see users
significantly improving their performance with the increase of χ. Moreover, the IRS-
MIMO-NOMA scheme can remarkably outperform the single-polarized MIMO-NOMA
counterpart. These results also confirm that our analytical expression derived in (3.74)
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Figure 3.16: Simulated and analytical ergodic rates for different values of iXPD (L =
500, N = 4, ξ = 0) [III], ©2021 IEEE.

is capable of modeling with high fidelity the ergodic rates of the proposed scheme when
L → ∞, which, once again, validates our analysis.

Figure 3.17 plots the simulated ergodic sum-rates achieved with the proposed scheme and
baseline systems, considering different numbers of reflecting elements and a high level
of cross-polar interference. For instance, Figure 3.17 shows that when L = 80 reflecting
elements are employed, the IRS-MIMO-NOMA scheme can be outperformed even by the
classical MIMO-OMA in the high-SNR regime. Nevertheless, by adding ten additional el-
ements, i.e., by setting L = 90, our proposed scheme outperforms all baseline systems in
the entire SNR range. Last, Figure 3.18 confirms the performance superiority of the pro-
posed IRS-MIMO-NOMA scheme over the baseline systems in practical scenarios with
high levels of SIC decoding errors. These results reaffirm that all NOMA-based systems
are susceptible to the degrading effects of imperfect SIC. However, it is also demonstrated
that the dual-polarized IRS-MIMO-NOMA scheme shows more robustness to the issue,
so that from L = 90 elements onward, our scheme can outperform all benchmark systems
even with a moderate SIC error factor.

3.3.7 Summary

In Publication [I], it was found that imperfect SIC has the potential to severely degrade
the performance of MIMO-NOMA networks, making them less spectrally efficient than
MIMO-OMA. In Publication [III], the focus of this section, this major problem was tack-
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led from a perspective that was still missing in the literature. The additional DoF of-
fered by the polarization domain via appealing dual-polarized IRSs was exploited to mit-
igate the degrading effects of imperfect SIC in dual-polarized massive MIMO-NOMA
networks. Publication [III] proposed, optimized, and thoroughly studied a novel dual-
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polarized downlink transmission strategy that enabled users to exploit diversity and expe-
rience reduced levels of interference, leading them to achieve attractive improvements. In
our theoretical studies, the statistical behaviors of users’ channel matrices were identified
and a closed-form asymptotic expression was derived for the ergodic rates considering
arbitrarily large IRSs. To wrap up, insightful results were presented, which validated
the mathematical analysis and confirmed the effectiveness of the optimization algorithm
implemented for configuring the IRSs. Among other important insights, the presented
numerical results demonstrated that our dual-polarized IRS-MIMO-NOMA scheme pro-
vides impressive performance gains to users, which remarkably outperforms conventional
dual-polarized and single-polarized MIMO-NOMA and MIMO-OMA systems. In the
next section, our studies are extended and the features of dual-polarized IRSs are ex-
ploited to mitigate the limitations of SIC also in the uplink of MIMO-NOMA networks.
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3.4 IRSs for Uplink Dual-Polarized MIMO-NOMA Networks
From Publications [I] to [III], MIMO-NOMA schemes operating only in the downlink
mode were investigated. However, it is equally important to understand the limitations
experienced in the uplink of MIMO-NOMA as well as to develop strategies to solve re-
lated problems. Publication [IV] presents promising results toward this goal, which are
now discussed. Specifically, this section overviews the main outcomes of Publication
[IV], which is focused on the study of uplink IRS-MIMO-NOMA networks and comple-
ments the answers to questions Q4 and Q5.

3.4.1 Motivation and Contributions

It was demonstrated in Publication [I] that, under fixed power allocation, downlink NOMA
always limits the rate of weak users because of interference from strong ones. In the up-
link, the opposite performance behavior is observed. As explained in Section 2.2, in the
uplink, the BS is the entity that executes SIC, with the convention of decoding first the
data symbols of strong users and considering symbols from weak ones interference. As a
consequence, the strong users are the ones to have their data rates limited, which has an
even greater impact on the network sum-rate. Furthermore, the rates of individual users
end up unequal, a characteristic not desired in applications that demand a balanced per-
formance.

In Publication [II], it was demonstrated that IRSs can help to implement robust dynamic
power allocation strategies for balancing user data rates, whereas in Publication [III], it
was shown that dual-polarized IRSs can be exploited to mitigate SIC limitations in down-
link MIMO-NOMA networks. It is clear that these attractive opportunities can be com-
bined and harnessed to address also the issues experienced in the uplink MIMO-NOMA
described above, and this has motivated the development of Publication [IV]. More specif-
ically, in this section, the capabilities of dual-polarized IRSs are exploited for minimizing
interference levels experienced by the BS when executing SIC in a dual-polarized uplink
MIMO-NOMA network. Other specific details and main contributions are summarized
as follows:

• Differently from previous works, in Publication [IV], a small-scale MIMO system
is studied, where both users and the BS employ a small number of dual-polarized
antennas, with users undergoing uncorrelated Rayleigh fading, following the model
in (2.3). Moreover, the users are assumed to be organized into multiple uncorrelated
groups. Then, inspired by the strategy proposed in Publication [III], the users within
each group are partitioned into two disjoint subsets so that incoming transmissions
from users in a given subset are detected only in one of the receive polarizations pre-
assigned by the BS, i.e., using either vertically polarized or horizontally polarized
BS antennas.

• To enable our proposed strategy, each group is assisted with one dual-polarized IRS.
The reflecting elements of the IRSs are optimized to ensure that transmissions com-
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ing from a given subset impinge only antennas with the predetermined polarization
at the BS. After some transformations, the original formulated problem is simpli-
fied into least squares subproblems with ℓ∞ norm constraints. Then, it is proven
that the achieved problems are convex, and an iterative algorithm is proposed based
on the Conditional Gradient method to compute their optimal solutions.

• Based on the concept of signal alignment introduced in Subsection 2.1.5, precod-
ing and detection strategies are developed to project the channels of users within
each subset into a common interference subspace. The approach enables the BS to
efficiently cope with the remaining intergroup interference observed in each polar-
ization.

• Inspired by Publication [I], an efficient dynamic power allocation strategy is also
proposed for balancing the uplink data rates of the users within each subset. To this
end, a low-complexity alternate approach is proposed to compute the users’ power
coefficients adaptively.

• To conclude our contributions, numerical results are presented together with com-
prehensive discussions. Among other insightful remarks, it is shown that the pro-
posed dual-polarized IRS-MIMO-NOMA scheme can remarkably improve the up-
link data rates of all users and outperform the considered baseline systems.

3.4.2 System Model

Here, we consider a single-cell communication scenario where one BS, employing M/2
co-located pairs of dual-polarized antennas, receives uplink transmissions simultaneously
from multiple users equipped with N/2 pairs of dual-polarized antennas, in which M and
N are even and satisfy M ≥ 2 and N ≥ 2. In contrast to our previous publications, spa-
tial correlation is not modeled. However, for employing NOMA and implementing our
uplink transmission strategy, it is assumed that the users are organized into G groups, with
each group containing U users. As illustrated in Figure 3.19, to assist the BS coping with
polarization interference, each group of users is associated with one dual-polarized IRS,
so that a total of G IRSs are deployed in the network. To reduce the interference levels ex-
perienced in the SIC decoding process, like in Publication [III], instead of implementing
NOMA considering the entire group, the BS subdivides each group into two subsets and
applies NOMA to each subset separately. To this end, the BS sets its vertically polarized
antennas to receive information signals from one subset, called the vertical subset, which
comprises U v users, and its horizontally polarized antennas to receive signals from the
other subset, called the horizontal subset, with Uh users, in which U v + Uh = U . To
enable our reduced-interference MIMO-NOMA scheme, IRSs are configured associated
with each group to mitigate all transmissions arriving at unsigned polarizations at the BS.
Note that imperfect SIC is not tackled in Publication [IV] but only problems related to the
uplink NOMA technique itself under ideal decoding conditions are addressed.
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Figure 3.19: Uplink scenario investigated in Publication [IV]. Each dual-polarized IRS
serves one group of users. IRSs mitigate polarization interference and assist the BS to
multiplex user subsets in the polarization domain.

With the described system model, and recalling the model proposed in Publication [III],
the reflection matrix for the dual-polarized IRS associated with the gth group can be
written as

Θg =


Φ

vv
g Φhv

g

Φvh
g Φhh

g


 ∈ C2L×2L, (3.75)

where Φab
g represents the diagonal matrix with the IRS coefficients that model the reflec-

tions from the polarization a to the polarization b, with a, b ∈ {v, h}, defined identically
as in (3.31). As a result, the full dual-polarized channel matrix achieved by the BS can be
represented by

Hgu =


 Fvv

g 0L,M
2

0L,M
2

Fhh
g



H 
Φ

vv
g Φhv

g

Φvh
g Φhh

g




 Gvv

gu

√
χU-IRSGhv

gu

√
χU-IRSGvh

gu Ghh
gu




+


 Dvv

gu

√
χU-BSDhv

gu

√
χU-BSDvh

gu Dhh
gu


 ∈ CM×N , (3.76)

where Dab
gu =

√
ζU-BS
gu D̃ab

gu ∈ CM
2
×N

2 , Gab
gu =

√
ζU-IRS
gu

2
G̃ab

gu ∈ CL×N
2 , and Fab

g =
√
ζ IRS-BS
gu F̃ab

g ∈
CL×M

2 , with D̃ab
g , G̃ab

g and F̃ab
g representing, respectively, the full-rank channel matrices

for the links between the uth user and the BS (link U-BS), the uth user and the gth IRS
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(link U-IRS), and the gth IRS and the BS (link IRS-BS), from the polarization a to b.
Moreover, the channel coefficients in the matrices D̃ab

g , G̃ab
g and F̃ab

g follow the complex
Gaussian distribution with zero mean and unity variance, and the coefficients ζU-BS

gu , ζU-IRS
gu ,

and ζ IRS-BS
gu denote the path-loss observed in the links U-BS, U-IRS, and IRS-BS, respec-

tively. The normalization factor 1√
2

is introduced for ensuring a passive polarization beam
splitting, as explained in Subsection 3.3.2, and χU-IRS, and χU-BS ∈ [0, 1] are the iXPD
parameters that model the power imbalance between polarizations in the corresponding
propagation link. For mathematical simplicity, like in Publication [III], depolarization in
the link IRS-BS is not modeled.

Under the above considerations, after the data streams transmitted by the users have trav-
eled through all propagation links, the BS receives the following superimposed signal

y =
G∑

m=1

U∑

n=1

Hmnxmn + n ∈ CM , (3.77)

where xmn = pmn

√
Pβmnxmn ∈ CN represents the precoded data stream transmitted

by the nth user within the mth group, with pmn representing the precoding vector for
signal alignment, P denotes the total transmit power available at the user, βmn ∈ [0, 1]
denotes the power allocation coefficient, xmn is the user data message, and the vector
n = [(nv)T , (nh)T ]T ∈ CM models the thermal noise experienced by the BS, with entries
following the complex Gaussian distribution with zero mean and variance σ2.

3.4.3 IRS Optimization, Precoding, and Reception

IRS Optimization

This subsection explains the strategy for optimizing the dual-polarized reflecting elements
of IRSs proposed in Publication [IV]. First, to achieve a more compact channel represen-
tation, we make the following definitions:

Gv
gu =

[
Gvv

gu

√
χU-IRSGhv

gu

]
, Gh

gu =
[√

χU-IRSGvh
gu G

hh
gu

]

Dv
gu =

[
Dvv

gu

√
χU-IRSDhv

gu

]
, Dh

gu =
[√

χU-IRSDvh
gu D

hh
gu

]
.

With the above notation, we can rewrite the superimposed signal in (3.77) as follows

y =
G∑

m=1

[
U∑

n=1




(F

vv
m )HΦvv

mGv
mn

(Fhh
m )HΦvh

mGv
mn


+


(F

vv
m )HΦhv

mGh
mn

(Fhh
m )HΦhh

m Gh
mn




xmn

+
∑

s∈Gv
m


D

v
ms

Dh
ms


xms +

∑

t∈Gh
m


D

v
mt

Dh
mt


xmt

]
+ n, (3.78)

where the index sets Ga
g = {1, 2, · · · , Ua}, represent the subset of users assigned to the
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polarization a ∈ {v, h} within the gth group.

It has been explained that to reduce the levels of interference in the SIC process, the BS
employs NOMA to each subset separately. By analyzing the signal in (3.78), it becomes
clear that for our strategy to be effective, the dual-polarized IRSs should ensure that mes-
sages transmitted by users in vertical subsets, Gv

g , reach the BS only via the upper channel
blocks of the matrices in (3.78), whereas messages from horizontal subsets, Gh

g , should
propagate through the lower channel blocks only. This implies that the IRS serving the
gth group should eliminate signals transmitted from the subset Gv

g that arrive at horizon-
tally polarized BS antennas and from the subset Gh

g that arrive at vertically polarized BS
antennas. More specifically, for vertical subsets Gv

g , the gth IRS has to be programmed in
such a way that the following is achieved:

U∑

n=1

[
(Fhh

g )HΦvh
g Gv

gn + (Fhh
g )HΦhh

g Gh
gn

]
xgn +

∑

s∈Gv
g

Dh
gsxgs ≈ 0, (3.79)

and for horizontal subsets Gh
g :

U∑

n=1

[
(Fvv

g )HΦvv
g Gv

gn + (Fvv
g )HΦhv

g Gh
gn

]
xgn +

∑

t∈Gh
g

Dv
gtxgt ≈ 0. (3.80)

The objectives in (3.79) and (3.80) can be accomplished by solving the following opti-
mization problem

argmin
Θg

∥∥∥∥∥∥


(F

vv
g )HΦvv

g

∑U
n=1 G

v
gnxgn

(Fhh
g )HΦvh

g

∑U
n=1G

v
gnxgn


+


(F

vv
g )HΦhv

g

∑U
n=1 G

h
gnxgn

(Fhh
g )HΦhh

g

∑U
n=1G

h
gnxgn


+



∑

t∈Gh
g
Dv

gtxgt

∑
s∈Gv

g
Dh

gsxgs



∥∥∥∥∥∥

2

(3.81a)

s.t. |ωab
g,l|2 ≤ 1, ∀l ∈ [1, L], ∀a, b ∈ {v, h}, (3.81b)

Φvv
g ,Φvh

g ,Φhv
g ,Φhh

g diagonal. (3.81c)

Because of the matrix objective function and the constraint for diagonal matrices, com-
puting the solution for (3.81) in its current form is complicated. In order to simplify the
above problem, we exploit the Khatri–Rao identity (CT⊙A)vecd{B} = vec{ABC} and
define:

θab
g = vecd{Φab

g }, zvg =
∑

t∈Gh
g

Dv
gtxgt, zhg =

∑

s∈Gv
g

Dh
gsxgs,

Wvv
g =

[
U∑

n=1

Gv
gnxgn

]T
⊙ (Fvv

g )H , W̃vv
g =

[
U∑

n=1

Gh
gnxgn

]T
⊙ (Fvv

g )H ,
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Whh
g =

[
U∑

n=1

Gh
gnxgn

]T
⊙ (Fhh

g )H , W̃hh
g =

[
U∑

n=1

Gv
gnxgn

]T
⊙ (Fhh

g )H .

With the above transformations, we can decompose (3.81) into two subproblems as fol-
lows

argmin
θvv
g ,θhv

g

∥∥∥∥∥∥

[
Wvv

g W̃vv
g

]

θ

vv
g

θhv
g


+ zvg

∥∥∥∥∥∥

2

(3.82a)

s.t.

∣∣∣∣∣∣


θ

vv
g

θhv
g



∣∣∣∣∣∣
∞

≤ 1, (3.82b)

argmin
θvh
g ,θhh

g

∥∥∥∥∥∥

[
W̃hh

g Whh
g

]

θ

vh
g

θhh
g


+ zhg

∥∥∥∥∥∥

2

(3.83a)

s.t.

∣∣∣∣∣∣


θ

vh
g

θhh
g



∣∣∣∣∣∣
∞

≤ 1. (3.83b)

Note that the objective functions in (3.82) and (3.83) have the following form f(θ) =
∥Wθ + z∥2. The gradient of f(θ) can be computed by ∇f(θ) = 2WH(Wθ + z), and
thus, its Hessian can be expressed by 2WHW, which consists of a positive semidefinite
matrix. As a result of this condition, it can be affirmed that the expressions in (3.82a) and
(3.83a) are convex objective functions. Furthermore, it can be verified that the constraints
with ℓ∞ norms in (3.82b) and (3.83b) form convex compact subsets. These properties im-
ply thay the optimal solutions of (3.82) and (3.83) exist, and can be efficiently computed
by the Conditional Gradient method, which is implemented in Algorithm 2.

Precoding for Intragroup Channel Alignment

In Subsection 2.1.5, an uplink precoding technique was introduced that can align the
channels of users from a given group into a common subspace, orthogonal to the channels
from other groups, which, among other advantages, enables the BS to address intergroup
interference more efficiently. In this subsection, this interesting capability is exploited and
the precoders pgu are built to align the channels of users within each subset into a common
interference subspace. To this end, we rely on the effectiveness of the dual-polarized IRSs
to tackle polarization interference, and, for users within each subset, we construct pgu to
align only the channels of the link U-BS corresponding to the polarization assigned to
the given subset. For implementing this strategy, we first define D̃v

gu = (
√
ζU-BS
gu )−1Dv

gu
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Algorithm 2: Algorithm for optimizing the dual-polarized IRSs based on the
Conditional Gradient method

Input: K, zvg, z
h
g , [W

vv
g W̃vv

g ], [W̃hh
g Whh

g ].

Output: Φvv
g ,Φhv

g ,Φvh
g ,Φhh

g .
1 Initialize c = 1,θ

(1)
g = 02L,1, θ̃

(1)
g = 02L,1;

2 for k = 1 to K − 1 do
3 Compute the gradients of (3.82a) and (3.83a):

∇f
(
θ
(k)
g

)
= 2

[
Wvv

g W̃vv
g

]H ([
Wvv

g W̃vv
g

]
θ
(k)
g + zvg

)
,

∇f
(
θ̃
(k)
g

)
= 2

[
W̃hh

g Whh
g

]H ([
W̃hh

g Whh
g

]
θ̃
(k)
g + zhg

)
;

4 Construct the direction-finding vectors s(k) and s̃(k) by computing:
[
s(k)
]
i
= −c · ∇f

(
θ
(k)
g

)
,

[
s̃(k)
]
i
= −c · ∇f

(
θ̃
(k)
g

)
;

5 Compute the step size: ν(k) = 2
2+k

;
6 Update the vectors of reflecting coefficients:

θ
(k+1)
g =

(
1− ν(k)

)
θ
(k)
g + ν(k)s(k),

θ̃
(k+1)
g =

(
1− ν(k)

)
θ̃
(k)
g + ν(k)s̃(k);

7 end
8 Obtain the final set of coefficients:

Φvv
g = diag

{[
θ
(K)
g

]
1:L

}
, Φvh

g = diag
{[

θ̃
(K)
g

]
1:L

}
,

Φhv
g = diag

{[
θ
(K)
g

]
(L+1):2L

}
, Φhh

g = diag

{[
θ̃
(K)
g

]
(L+1):2L

}
.

and D̃h
gu = (

√
ζU-BS
gu )−1Dh

gu, which correspond to the block channel matrices modeling,
respectively, the signals impinging at vertically and horizontally polarized antennas at the
BS. With this notation, the precoding vector pgu for the uth user within the subset Ga

g ,
where a ∈ {v, h}, is constructed such that:

D̃a
g1pg1 = D̃a

g2pg2 = · · · = D̃a
gUapgUa , (3.84)

which can be accomplished identically as in Subsection (2.1.5) based on the matrices
D̃a

gu, for u = 1, 2, · · · , Ua. Thus, the detailed steps are omitted. As the output of the
problem in (2.16), we achieve the precoding vectors pgu and an aligned channel vector
d̄a
g ∈ CM

2 , which is observed by the BS in its polarization a associated with users in the
subset Ga

g , i.e., d̄a
g = D̃a

gupgu,∀u ∈ Ga
g . Moreover, because of the dimensions of the

channel matrices, the constraint 2NUa > M (Ua − 1) must be satisfied.
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Signal Reception

By employing the precoders designed in the previous subsection, users within each sub-
set can effectively align their channels corresponding to the assigned polarization. This
implies that all the users within the gth group in the subset Ga

g will achieve the same ef-
fective channel vector d̄a

g at the BS. As a result, the intergroup interference generated by
subsets sharing the same polarization a ∈ {v, h} can be efficiently tackled by the BS with
the following detection vector

qa
g = null

{[
d̄a
1, · · · , d̄a

(g−1), d̄
a
(g+1), · · · , d̄a

G

]H} ∈ C
M
2 , (3.85)

where, for the existence of the above null space, M > 2(G − 1) must be satisfied. By
multiplying the superimposed signals in (3.78) received in the vertical and horizontal
polarizations by qv

g and qh
g , respectively, the inter-subset interference vanishes and the BS

detects the following data vector

x̂g =


(q

v
g)

Hd̄v
g

∑
s∈Gv

g

√
ζU-BS
gs Pβgsxgs

(qh
g)

Hd̄h
g

∑
t∈Gh

g

√
ζU-BS
gt Pβgtxgt


+


I

v
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 ∈ C2, (3.86)

where the term Iag models the residual polarization interference leaked from the gth IRS,
which is given by
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 . (3.87)

Note that when the transmissions impinging in unintended polarizations are nulled out by
the IRSs perfectly, the interference modeled by (3.87) disappears.

SINR Analysis

We can see in (3.86) that the combination of our transmission and detection strategies
has enabled the BS to receive the superimposed symbols from the subsets Gv

g and Gh
g in

the BS antennas with the matching polarizations v and h, respectively. As a result, the
messages from users in each subset can be detected by executing SIC to each polarization
separately. To implement this decoding approach, following the convention for uplink
NOMA explained in Section 2.2, the users in each subset are sorted in a descending order
based on their path-loss coefficients of the direct channel link U-BS, and SIC is carried
out following the order ζU-BS

g1 > ζU-BS
g2 > · · · > ζU-BS

gUa . More specifically, the BS decodes
the data symbol transmitted by the uth user within the subset Ga

g considering the symbols
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coming from the Ua − u higher-order users as interference, which results in

x̂a
gu = (qa

g)
Hd̄a

g

√
ζU-BS
gu Pβguxgu

︸ ︷︷ ︸
Desired symbol

+ (qa
g)

Hd̄a
g

Ua∑

n=u+1

√
ζU-BS
gn Pβgnxgn

︸ ︷︷ ︸
Interference from weaker users

+ Iag︸︷︷︸
Polarization interference

+ (qa
g)

Hna

︸ ︷︷ ︸
Noise

. (3.88)

Because the detection vector qa
g is isotropically distributed on the unit sphere, we have

that |(qa
g)

Hna|2 = (qa
g)

Hna(na)Hqa
g = σ2. Consequently, the symbol from the uth user

in the subset Ga
g is detected with the following the SINR:

γa
gu =

|(qa
g)

Hd̄a
g|2ζU-BS

gu βgu

|(qa
g)

Hd̄a
g|2
∑Ua

n=u+1 ζ
U-BS
gn βgn + |Iag |2/P + 1/ρ

, (3.89)

where ρ = P
σ2 is defined as the SNR. Next, the expression in (3.89) is used for developing

the power allocation strategy.

3.4.4 Power Allocation for Rate Fairness

In this section, the concept of fair power allocation proposed in Publication [I] is extended
to uplink MIMO-NOMA communication. A low-complexity alternate adaptive strategy
is developed for balancing the uplink data rates achieved by users in each polarization
subset. Our main goal in implementing this strategy is to demonstrate that our uplink
dual-polarized IRS-MIMO-NOMA scheme can deliver high performance even when op-
erating with fair power allocation policies, corroborating the IRS improvements illustrated
in Publication [II].

Because of the interference-limited behavior of SIC, small groups are preferred in prac-
tical NOMA systems. Under this motivation, our power allocation strategy is developed
by considering U = 4 users per group, i.e., two users per subset. Moreover, it is assumed
that only negligible polarization interference is left by the IRSs. As a result, the term in
(3.88) is considered Iag ≈ 0. With these assumptions, the symbol for the first user in the
subset Ua

g is detected with the following data rate

Ra
g1 = log2

(
1 +

|(qa
g)

Hd̄a
g|2ζU-BS

g1 ρβg1

|(qa
g)

Hd̄a
g|2ζU-BS

g2 ρβg2 + 1

)
, (3.90)

and for the second user, with

Ra
g2 = log2

(
1 + |(qa

g)
Hd̄a

g|2ζU-BS
g2 ρβg2

)
. (3.91)

Given the above expressions, the power allocation for uplink rate fairness can be imple-
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mented with the following optimization problem:

argmax
βg1,βg2

Ra
g1 (3.92a)

s.t. Ra
g2 ≥ Ra

g1, (3.92b)

0 ≤ βg1 ≤ 1, (3.92c)
0 ≤ βg2 ≤ 1, (3.92d)

The above problem seeks to maximize the data rate for the user with the best channel con-
ditions under the constraint that the user with the worst conditions achieves at least the
same rate, i.e., the problem balances the data rates. Moreover, the constraints in (3.92c)
and (3.92d) ensure the power coefficients to be within the unity range.

After analyzing and identifying some useful properties in (3.92), βg1 is assumed to be a
constant and the original problem is reformulated considering βg2 as our only decision
variable, as follows

argmax
βg2

log2

(
1 +

|(qa
g)

Hd̄a
g|2ζU-BS

g1 ρβg1

|(qa
g)

Hd̄a
g|2ζU-BS

g2 ρβg2 + 1

)
(3.93a)

s.t.
(
|(qa

g)
Hd̄a

g|2ζU-BS
g2 ρ

)2
β2
g2 +

(
|(qa

g)
Hd̄a

g|2ζU-BS
g2 ρ

)
βg2

−
(
|(qa

g)
Hd̄a

g|2ζU-BS
g1 ρ

)
βg1 ≥ 0, (3.93b)

0 ≤ βg2 ≤ 1. (3.93c)

Then, by further investigating the behaviors of the objective function and constraints in
(3.93), the optimal power coefficients for balancing the user data rates are computed with
the following low-complexity strategy:

• First, aiming the maximization of Ra
g1, βg1 is initialized with 1.

• Second, the positive root of (3.93b) is calculated as follows:

∆g2 =

√(
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g2 ρ

)2
+ 4

(
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2
(
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)2

− 1

2|(qa
g)

Hd̄a
g|2ζU-BS

g2 ρ
, (3.94)

• Last, the optimal power coefficients are determined as follows:

◦ If ∆g2 ≤ 1, then β∗
g2 = ∆g2, and β∗

g1 = 1;
◦ Otherwise, β∗

g2 = 1, and β∗
g1 is computed with (3.94) by setting ∆g2 = 1.

A complete explanation of the above development and how to reach the proposed solution
is provided in Publication [IV].
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3.4.5 Main Results

Now, the impressive performance improvements that can be achieved with our IRS-
MIMO-NOMA uplink transmission strategy are illustrated. In particular, the sum-rates
and individual user rates experienced with our scheme are compared with those of conven-
tional single-polarized MIMO-NOMA and MIMO-TDMA baseline systems. Our results
are generated with all systems configured with eight users organized into G = 2 groups,
i.e., U = 4 users per group, and the BS and users equipped with the same number of an-
tenna elements M = N = 4. The focus is only on one group where the distances from the
BS to users 1, 2, 3, and 4 are set to d1 = 20 m, d2 = 40 m, d3 = 80 m, and d4 = 120 m,
respectively. Then, following the proposed polarization multiplexing strategy, users 1 and
2 are paired into the vertical subset Uv, and users 3 and 4 into the horizontal subset Uh.
In the simulated scenario, the IRS associated with the studied group close to the BS is
deployed. As a result, it is assumed that the distances between the IRS and the connected
users are identical to the distances of the BS to the respective users. In contrast, different
distances between the IRS and the BS, represented by d̄, are investigated for performance
illustration purposes. Moreover, the path-loss coefficients observed in the links U-BS and
U-IRS are computed as ζU-BS

u = ζU-IRS
u = Φd−η

u , whereas in the link IRS-BS we model by
ζ IRS-BS
u = d̄−η, with Φ denoting the gain parameter adjusted to 30 dB and η the path-loss

exponent adjusted to 2. In all results, we consider χU-BS = χU-IRS = 0.5 and P = 1. Fur-
thermore, when fixed power allocation is employed, we adjust β1 = β2 = β3 = β4 = 1,
i.e., all users allocate their full transmit power.

In Figure 3.20(a), the distance from the IRS to the BS is fixed to 15 m, and the ergodic
sum-rates of our proposed dual-polarized IRS-MIMO-NOMA scheme are investigated
considering different numbers of reflecting elements. As can be seen, by implementing
just L = 10 dual-polarized elements, our IRS-assisted scheme can already outperform
both the conventional MIMO-NOMA and MIMO-TDMA baseline schemes in the en-
tire considered SNR range. For L = 30, the gains are even more remarkable, so that
an impressive improvement of almost 6 BPCU can be achieved over the single-polarized
MIMO-NOMA counterpart when the SNR is 40 dB. In Figure 3.20(b), the SNR is set
to 26 dB and the ergodic sum-rate is plotted versus different distances between the IRS
and the BS. We can see that the sum-rate achieved by the IRS-MIMO-NOMA scheme is
reduced by increasing the distance. This is indeed an expected behavior because a higher
path-loss coefficient deteriorates the capability of the IRS to mitigate interfering trans-
missions, leading to lower data rates. Nevertheless, even when the IRS is d̄ = 30 m apart
from the BS, the proposed scheme can still outperform all baseline systems, as long as
the IRS is large enough.

By implementing L = 30 reflecting elements, Figure 3.21(a) confirms the capability of
the IRS-MIMO-NOMA scheme to offer high sum-rate performance even when operating
with fair power allocation. As can be seen, the fair policy causes a slight degradation on
the sum-rate curve, but impressive performance gains can still be achieved. For exam-
ple, when the SNR is 40 dB, the IRS-MIMO-NOMA system with fair power allocation
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Figure 3.20: Ergodic sum-rates with fixed power allocation when the IRS is located at
d̄ = 15 m from the BS (a), and when ρ is fixed to 26 dB (b) [IV], ©2021 IEEE.

still delivers a sum rate of more than 16 BPCU. Such a throughput represents a signif-
icant improvement of more than 6 BPCU over the single-polarized MIMO-NOMA and
9 BPCU over the MIMO-TDMA counterparts. Lastly, Figures 3.21(b) and 3.21(c) in-
vestigate more closely the performance behavior of individual users when operating with
fixed and fair power allocation. As we can see, the IRS-MIMO-NOMA scheme enables
all users within the two polarization subsets to achieve data rates considerably higher than
those achievable with the conventional single-polarized MIMO-NOMA counterpart. The
observed improvements mainly result from the reduced interference levels in the SIC pro-
cess, which is enabled by multiplexing the subsets of users in the polarization domain. It
is also shown that the adaptive power allocation benefits the users with the best channel
conditions, i.e., user 1 within the subset Uv and user 3 within the subset Uh. When the
SNR is 40 dB, for instance, the IRS-MIMO-NOMA scheme with the fair policy unleashes
a data rate of impressive 3.39 BPCU for user 3, who, with the fixed allocation, can achieve
only 1.63 BPCU.

3.4.6 Summary

This section overviewed promising results provided in Publication [IV], focusing specif-
ically on uplink communication. The ideas from Publication [III] were extended and a
novel IRS-assisted dual-polarized transmission scheme was developed for mitigating up-
link interference in dual-polarized MIMO-NOMA systems. To this end, the powerful
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capabilities of signal alignment techniques and dual-polarized IRSs were combined for
multiplexing subsets of users in the polarization domain. Our innovative strategy signif-
icantly reduced the interference levels of the SIC decoding process at the BS, which led
to impressive performance improvements. An adaptive power allocation strategy of low
computational complexity was also developed for balancing the individual rates of users
within each subset, thereby leading to enhanced levels of fairness within the network.
Representative simulation examples were provided to illustrate the performance improve-
ments enabled by our scheme. Among the discussed insights, it was demonstrated that
our dual-polarized IRS-MIMO-NOMA uplink scheme can deliver a high data rate perfor-
mance to all users even under the proposed fair power allocation regime.

Now that also MIMO-NOMA networks operating in the uplink mode have been studied,
all the primary use cases and issues identified throughout the development of our Publi-
cations [I] to [IV] can be considered covered. Thus, this section concludes our results on
the MIMO-NOMA topic, and we can head to our next chapter, which investigates novel
RSMA-based schemes.
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4 Overview of Publications on MIMO-RSMA Networks
This chapter is dedicated to overviewing our main results and findings on the promising
RSMA technique presented in the last two papers included in this dissertation, Publica-
tions [V] and [VI]. Specifically, in Publication [V], the focus of study is on the synergy
between the IRS technology and RSMA, and the paper identifies the attractive improve-
ment opportunities offered by the combination of the two subjects, whereas in our final
Publication [VI], a novel robust dual-polarized RSMA technique for massive MIMO net-
works is proposed, which can efficiently overcome some of the limitations unveiled in
Publication [V]. Further details are provided in the two upcoming sections.

4.1 RSMA and its Interplay with IRSs
RSMA is a robust downlink MA technique for MIMO systems that counts with appealing
advantages and can provide a broader region of achievable data rates not possible with
other classical MA strategies. Despite the attractiveness of RSMA, the technique is also
vulnerable to fast-varying wireless phenomena and SIC error propagation, like NOMA.
In this regard, Publications [II]–[IV] have demonstrated that IRSs can be efficiently con-
figured to mitigate channel and SIC-related problems in MIMO-NOMA networks, which
implies that MIMO-RSMA can likewise benefit from the IRS capabilities. The promising
improvements reported in our previous papers have encouraged us to investigate the ap-
plication of IRS also to RSMA, which is the topic of our second magazine article of this
dissertation, i.e., Publication [V], the focus of this section. The potential benefits enabled
by the combination IRS-MIMO-RSMA presented in this section answer question Q6.

4.1.1 Motivation and Contributions

As explained in Section 2.3, by relying on SIC to decode common and private data streams
on the receiver’s side, RSMA unlocks new opportunities for optimizing interference mit-
igation, which provides the technique with optimal DoF and high spectral efficiency even
in scenarios with imperfect CSI. Regardless of such robustness, wireless communication
is nonreliable in essence, and its randomness can inevitably deteriorate the performance
of RSMA. Moreover, even in ideal environments where the CSI is perfect, users can ex-
perience performance degradation due to SIC decoding errors. Fortunately, Publications
[II]–[IV] have shown that the properties of IRSs can be tuned to alleviate these undesired
issues. However, before writing Publication [V], only a few works on the topic of IRS-
RSMA had been reported, and the full improvement opportunities of the synergy between
IRS and RSMA were yet to be clarified. This research opportunity motivated the proposal
of the ideas and contributions presented in this section, which are summarized as follows:

• First, light is shed on the basic background, operating principles, and features of
the RSMA technique. The motivation for its development is explained and the
main employed precoding strategies and the decoding process of the technique are
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introduced. The features and capabilities of the IRS technology are also addressed.
Further, the main IRS functionalities, fabrication practices, and the standard chan-
nel model commonly employed by the wireless communication theory community
are presented.

• In our studies, attractive potential enhancements are identified that IRSs can enable
to RSMA and, reciprocally, that RSMA can bring to IRSs. Our insightful dis-
cussions are supported by illustrative simulation examples, which confirm our im-
provement hypotheses and demonstrate the performance superiority of IRS-MIMO-
NOMA schemes over conventional MIMO-RSMA, MIMO-NOMA, and MIMO-
TDMA systems.

• It is shown that IRSs can contribute to reducing the complexity of BS precoding
and improving the reception of the common stream at all users, which is a design
challenge in RSMA. As demonstrated in the previous chapter for MIMO-NOMA,
it is also confirmed that IRSs can efficiently tackle the problems of imperfect SIC
in RSMA. As our last potential improvement, it is shown that RSMA can make
IRSs more robust to inaccurate CSI, contributing to less demanding IRS channel
estimation and acquisition.

• Last, this section discusses three exciting communication scenarios foreseen in
beyond-5G networks that IRS-MIMO-RSMA schemes can help to bring to real-
ity, namely CSI-robust UAV networks, enhanced high-frequency communication
(e.g., up to the terahertz spectrum), and seamless satellite communication. Publica-
tion [V] finishes by enlightening readers about important unsolved challenges and
future research directions.

The content of this section is limited to the three main mutual benefits that IRS and
MIMO-RSMA can achieve combined. For the full contributions, interested readers are
encouraged to consult Publication [V].

4.1.2 System Model

Publication [V] addresses a single-cell scenario where one BS equipped with M antennas
communicates in the downlink mode with two single-antenna users, each one assisted by
one IRS comprising L reflecting elements. Similarly as assumed in our previous works,
the users and their corresponding IRSs are deployed at a common distance from the BS.
More specifically, user 1 and its IRS 1 are located at a distance denoted by d1, and user
2 and IRS 2 at d2, so that d1 > d2, i.e., user 2 has the best channel conditions and
user 1 the worst. Moreover, the two IRSs are deployed close to their connected users
separated by a distance d̄. This communication scenario is presented in Figure 4.1, which,
although simple, is enough to illustrate the fundamental performance gains offered by
IRS-MIMO-NOMA. For implementing our simulations, it is assumed that all channels
are uncorrelated and that the IRS from one user does not interfere with the other. To this
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Figure 4.1: IRS-MIMO-RSMA scenario considered in Publication [V]. The IRSs assist
two single-antenna users.

end, the composite channel for the uth user is modeled by

hH
u =

√
ζ̄sHu Θu

√
ζuGu +

√
ζud

H
u , (4.1)

where Θu ∈ CL×L is the diagonal matrix with reflection coefficients of the uth IRS with
L reflecting elements, and Gu ∈ CL×M , su ∈ CL, and du ∈ CM denote the channel
responses between the BS and the IRS, the IRS and the users, and the BS and the users,
respectively. Moreover, ζ̄ = d̄−η and ζu = Φd−η

u model the path-loss coefficients of the
links from the IRSs to the users and from the BS to the users and the IRSs, in which η is
the path-loss exponent, and Φ is the array gain parameter adjusted at the BS.

Following the RSMA protocol explained in Section 2.3, after the transmitted signal has
propagated through all wireless channels, the uth user receives

yu = hH
u

(
2∑

n=1

wp
n

√
αp
nx

p
n +wc

√
αcxc

)
+ nu, (4.2)

where xc and xp
n denote the common symbol intended to all users and the private symbol

intended to the nth user, respectively, and αc and αp
n are the corresponding power allo-

cation coefficients, satisfying αc +
∑2

n=1 α
p
n = 1. In turn, wc ∈ CM and wp

n ∈ CM

denote the precoding vectors responsible for conveying the common and private symbols,
respectively, and nu ∈ C is the complex Gaussian distributed noise observed by the uth
user, which has zero mean and variance σ2. In the upcoming subsections, the adopted
precoding and IRS optimization strategies are presented.
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4.1.3 Precoding for Common and Private Symbols

For illustration purposes, in all RSMA-based schemes implemented in this section, wc is
constructed as a random precoder with entries following the standard complex Gaussian
distribution. On the other hand, for conveying the private messages, zero-forcing pre-
coders constructed based only on the channel estimate of the direct link are employed.
More specifically, by denoting the imperfect estimate of the channel vector du by d̂u,
modeled as in (4.7), we can define D̂ = [d̂1, d̂2] ∈ CM×2. Then, the private precoder for
the uth user is computed by

wp
u =

[
D̂
(
D̂HD̂

)−1
]
:u
, (4.3)

where M ≥ 2 should be satisfied.

4.1.4 IRS Optimization

For achieving the simulation results in Publication [V], the IRS for each user was opti-
mized based on the estimate of its effective channels of the direct and reflected links after
precoding, using two main approaches. In the first approach, which was employed for
generating Figure 4.2, the reflecting elements of the IRSs are optimized to add construc-
tively the channel gains of the common stream in the reflected link with the gains of the
direct link. Further, in Figures 4.3 and 4.4, the IRSs are optimized to boost the effec-
tive channel gains of private streams while mitigating interference. Following the steps of
Publications [III] and [IV], the optimizations of the reflecting elements were implemented
exploiting the Khatri–Rao property (CT⊙A)vecd{B} = vec{ABC} and the constrained
least-squares method from [82].

4.1.5 SNR Analysis

With the given IRS optimization and precoding strategies, the uth user detects the com-
mon symbol directly from the signal in (4.2) without any further processing. As a result,
the following SINR is achieved

γc
u =

|hH
u w

c|2ραc

∑2
n=1 |hH

u w
p
n|2ραp

n + 1
, (4.4)

where ρ = 1/σ2 represents the SNR, and the first term in the denominator models the
interference generated by the private symbols, which are decoded only after SIC.

Following the model from Publication [I], it is considered that both users experience SIC
error propagation. As a result, after the common message is detected and subtracted
through SIC from the superimposed data stream, the uth user observes the following SNR
when decoding its private message

γp
u =

|hH
u w

p
u|2ραp

u

ξ|hH
u w

c|2ραc +
∑2

n=1,n ̸=u |hH
u w

p
n|2ραp

n + 1
. (4.5)
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Figure 4.2: Ergodic rates vs. SNR for the common message in RSMA schemes (αc =
0.9, α1 = α2 = 0.05) [V], ©2022 IEEE.

where ξ is the SIC error propagation factor and the second term in the denominator mod-
els the residual interference from imperfect CSI. The above SINR expressions are used
for computing the users’ individual rates and sum-rates plotted in Figures 4.2 to 4.4, dis-
cussed in the next subsection.

4.1.6 Main Results

Now, the three main performance improvements unleashed by the combination of IRS
and MIMO-RSMA are finally presented. To this end, the scenario described in Subsec-
tion 4.1.2 is implemented and the performance of our IRS-MIMO-RSMA scheme is com-
pared with various baseline systems, including the conventional MIMO-TDMA, MIMO-
NOMA, and MIMO-RSMA schemes. The distance for user 1 is adjusted to d1 = 50 m
and for user 2 to d2 = 30 m. The number of BS antennas is set to M = 4, and each
user is assisted by one IRS with L = 50 reflecting elements, where each IRS is deployed
10 m apart from its connected user. Moreover, in all simulation examples, only fixed
power allocation policies are considered. Specifically, the power allocation coefficients
for users 1 and 2 in the MIMO-NOMA schemes are set to α1 = 7/8 and α2 = 1/8, in
the MIMO-TDMA we adjust α1 = α2 = 1, and in the MIMO-RSMA systems, the power
coefficients for the private messages are computed by α1 = α2 = (1 − αc)/2, in which
different values for αc are tested in the simulation examples.

The strategy implemented by RSMA of splitting downlink transmissions into two data
streams provides IRSs with new opportunities for improvements that are not achievable
with other conventional communication schemes. More specifically, the reflecting ele-
ments of IRSs can be optimized to improve the performance and simplify the design of
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precoders for common symbols, which is one of the challenges in MIMO-RSMA. Fur-
thermore, designing a single precoder for satisfying the data rate requisites of all users in
the network is not always possible. The capability of IRSs to cope with such an issue is
depicted in Figure 4.2, which brings the individual ergodic rates for the common symbol
observed with MIMO-RSMA and IRS-MIMO-RSMA. In this example, the conventional
MIMO-RSMA is unable to deliver for the two users the minimum rate needed for recover-
ing the common data symbol, leading users to experience rate outage. On the other hand,
with the IRS-MIMO-RSMA scheme, users achieve improved data rates that can satisfy
the requisites of the common message for SNR values above 5 dB. For instance, when
users are in the high-SNR regime and are served with IRS-MIMO-RSMA, an impressive
rate of nearly 7 BPCU can be obtained, representing a gain of more than 3 BPCU gainst
that achieved with the baseline scheme in the same SNR regime.

As explained, conventional RSMA employs SIC to separate private and common symbols
upon reception. However, even though effective, it has been demonstrated that SIC counts
with interference limitations. Moreover, in practical conditions, the technique can lead to
decoding error propagation, which certainly is detrimental to the performance of RSMA.
In this regard, IRSs find a great opportunity for improvement. The benefits delivered by
IRS-MIMO-RSMA under imperfect SIC are illustrated in Figure 4.3. As can be observed,
the IRS-MIMO-RSMA system can achieve a high sum-rate even in a scenario with SIC
error propagation. On the other hand, the two considered NOMA-based baseline schemes
have their performance severely degraded by SIC errors, with sum-rate curves saturating
at the low value of only 6.9 BPCU. It is also evident that the RSMA schemes are affected
by imperfect SIC. Nevertheless, we can see that by properly allocating the power coeffi-
cient αc, both IRS-MIMO-RSMA and MIMO-RSMA can outperform the other schemes.
For instance, when allocating to the common message the coefficient αc = 0.5 and con-
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sidering an SNR value of 25 dB, the IRS-MIMO-RSMA scheme can offer an impressive
sum-rate of 14 BPCU, which outperforms the sum-rate achieved by the other baseline
schemes, including the conventional MIMO-RSMA system for all considered power co-
efficients αc.

The accurate acquisition of reflected channels remains a major challenge in IRS-assisted
communication. Because IRSs are engineered solely with nearly passive electronic el-
ements, channel estimation turns out to be a complicated task, making imperfect CSI
almost unavoidable. Fortunately, the robustness to inaccurate CSI is one of the main
advantages of RSMA, a feature that is of great help to IRS technology. This benefit
is confirmed in Figure 4.4, our last result of Publication [V]. This simulation example
demonstrates the ergodic sum-rates achieved with various IRS-assisted systems in scenar-
ios with perfect and imperfect CSI. As can be seen, the IRS-MIMO-RSMA scheme can
offer high sum-rates in the two CSI conditions, surpassing the performance of all other
systems from moderate to high values of SNR. With 30 dB, for example, the proposed
IRS-MIMO-RSMA scheme delivers a sum-rate of more than 20.2 BPCU despite under-
going imperfect CSI. This rate corresponds to a remarkable gain of more than 6 BPCU
over the IRS-MIMO-NOMA counterpart under the same CSI conditions and 15 BPCU
over the conventional IRS-TDMA.

4.1.7 Summary

This section presented our first results on the MIMO-RMSA subject. It was demonstrated
that the synergy between the disruptive IRS technology and the robust RSMA technique
can generate mutual benefits, in which three promising performance gains were identified.
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Through illustrative simulation examples, it was shown that IRSs have the potential to im-
prove the transmission performance of both common and private data streams even under
adverse conditions, such as when undergoing imperfect CSI and SIC error propagation.
Reciprocally, it was demonstrated that the flexible interference management framework
enabled with RSMA can provide for IRSs robustness to imperfect CSI, an attractive and
desired feature given that IRSs cannot estimate the reflected channels actively, which
likely leads to inaccurate channel estimates.

Our results made evident that IRSs can bring further robustness and improve the data rates
to RSMA, which can remarkably outperform classical systems. However, it also became
clear that, even though IRSs can alleviate some performance degradation, imperfect SIC
inevitably limits the data rates of even IRS-MIMO-RSMA schemes. It is crucial then to
find more effective strategies to tackle this harmful limitation once and for all. In Publi-
cation [VI], more drastic measures are taken to completely remove the need for executing
SIC in a novel dual-polarized RSMA transmission technique.
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4.2 Dual-Polarized RSMA for Massive MIMO Systems
This section provides the last results of the dissertation, addressing our recent discover-
ies from Publication [VI] on a new promising dual-polarized MIMO-RSMA transmission
strategy that does not rely on SIC. As a result, our dual-polarized MIMO-RSMA scheme
is free from the harmful problems introduced by SIC, which addresses our last research
question Q7.

4.2.1 Motivation and Contributions

The results from Publication [V] presented in the previous section revealed that even
with the help of IRSs, the interference limitations and practical issues of SIC degrade
the performance of MIMO-RSMA. More specifically, even if SIC is perfect, the common
symbols are always detected with interference from the private ones. Moreover, imper-
fect SIC inevitably introduces errors that impair the decoding of private symbols. These
two major SIC limitations saturate the achievable data rates of RSMA, which led us to
investigate new innovative solutions. In particular, Publications [III] and [IV] showed
that, with the help of IRSs, wave polarization can be exploited to mitigate the limitations
of SIC and implement improved user multiplexing. Motivated by the extra DoF offered
by the polarization domain, but differently from these two previous papers, in Publication
[V], the IRSs are discarded and a novel RSMA technique is proposed for the downlink of
dual-polarized massive MIMO networks, relying solely on the polarization domain and
without requiring SIC. Specific details and our main contributions are summarized as fol-
lows:

• We rely on the strategy of splitting the rates into two data streams and propose a
promising new dual-polarized RSMA technique. However, in contrast to the orig-
inal RSMA concept, common and private symbols are multiplexed in the polar-
ization domain with a simple dynamic approach for maximizing the instantaneous
sum-rates of different user groups. Our dynamic polarization multiplexing strategy
unlocks users to detect both symbols simultaneously from independent polariza-
tions imposing low computational complexity and being SIC-free. As a result, with
a slight additional cross-polar noise, users can experience an overall reduced inter-
ference without the degrading limitations of SIC.

• The proposed dynamic polarization multiplexing strategy complicates the statisti-
cal characterization of the users’ fast-fading channel coefficients. Consequently,
carrying out a classical theoretical performance analysis becomes an intricate task.
As an alternative, to overcome the mathematical challenge, a deep neural network
(DNN) model is implemented for predicting the ergodic sum-rates of the network.
Our proposed DNN sum-rate framework is capable of providing accurate predic-
tions. Thus, it provides an efficient alternative to conventional methods, which can
be exploited to assist the practical implementation of the proposed dual-polarized
RSMA scheme.
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Figure 4.5: Dual-polarized massive MIMO network considered in Publication [VI]. The
novel dual-polarized RSMA technique is employed to serve users within different spatial
groups.

• To fully unleash the performance potentials of the proposed dual-polarized MIMO-
RSMA scheme, our original DNN framework is extended and an efficient dynamic
DNN-aided power allocation strategy is implemented, which adaptively allocates
the power coefficients of common and private symbols based on observed system
parameters.

• Last, extensive simulation results are presented that confirm the advantages of our
novel dual-polarized MIMO-RSMA scheme. Our results show that the dual-polar-
ized MIMO-RSMA can impressively outperform all conventional baseline sys-
tems, including single and dual-polarized MIMO-NOMA, MIMO-RSMA, MIMO-
TDMA, and MIMO-SDMA schemes. The results also reveal that our DNN adaptive
power allocation provides further improvements and robustness to both imperfect
CSI and cross-polar interference.

4.2.2 System Model

For developing the new dual-polarized RSMA strategy, in Publication [VI] a geometri-
cal scenario based on the one-ring model is implemented, like in Publications [I]–[III].
More specifically, as depicted in Figure 4.5, the target is to study a single-cell network
with one BS carrying out downlink transmissions to multiple users organized into G spa-
tial groups comprising Ng users each. Under this scenario, the BS is configured with
a uniform linear array containing M/2 pairs of dual-polarized antennas, whereas each
user employs a single pair of dual-polarized antennas. Moreover, it is assumed that
users within a specific group share a common cluster of scatterers. Thus, each group
shares a common spatial correlation matrix, which, in Publication [VI], is denoted by
Rg = I2 ⊗ Σg = I2 ⊗ (Qg∆gQ

H
g ), where Σg ∈ CM

2
×M

2 is the correlation matrix with
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a rank rg corresponding to one polarization, which is generated using (2.5). In turn, ∆g

denotes the real-valued r̄g × r̄g diagonal matrix with r̄g < rg nonzero eigenvalues of Σg,
and Qg is the matrix collecting the corresponding dominant eigenvectors.

By combining the correlated and dual-polarized channel representations in (2.4) and (2.6),
a channel matrix is modeled for the nth user in the gth group as follows

Hgn =


h

vv
gn hvh

gn

hhv
gn hhh

gn


 =

[
I2 ⊗

(
Qg∆

1
2
g

)]
 gvv

gn

√
χgvh

gn

√
χghv

gn ghh
gn


 , (4.6)

where gab
gn ∈ Cr̄g represents the reduced-dimension fast-varying channel vector from the

polarization a to the polarization b, with a, b ∈ {v, h}, and χ ∈ [0, 1] is the inverse cross-
polar discrimination.

CSI Estimation and Acquisition

We consider that the proposed MIMO system operates in the FDD mode. Thus, the
reduced dimension fast-fading channels, gab

gn, are estimated by downlink training and fed
back to the BS through an uplink control link imposing a low overhead. However, as
explained in Subsection 2.1.4, quantization errors and other issues make the acquisition of
gab
gn imperfect at the BS. Following the model in (2.10), the imperfect channel estimation

is characterized through

ĝij
gn =

√
1− τ 2gij

gn + τzijgn, (4.7)

where zabgn is a complex standard Gaussian random vector independent of gab
gn, and τ is the

factor informing the CSI estimation quality.

On the other hand, because the correlation matrices are slowly varying, they can be esti-
mated with accuracy by long-term measurements. Therefore, it is assumed that a perfect
estimate of Σg is available at the BS.

4.2.3 Dual-Polarized Rate-Splitting Multiple Access

Now, the details of the proposed dual-polarized RSMA technique are introduced. First,
following the encoding process of RSMA, the original data messages intended for users
within each group are divided into two parts. The first parts of each user within the gth
group are encoded into a common supersymbol, represented by xc

g, whereas the second
parts are encoded individually into private symbols, which are denoted by xp

gn. For suc-
cessful decoding, all users in the gth group should receive the common symbol xc

g, while
only the intended nth user should decode xp

gn. In the conventional RSMA, after applying
linear precoding techniques to xc

g and xp
gn, the achieved data streams are superimposed in
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Figure 4.6: Dual-polarized MIMO-RSMA transceiver. Private and common streams are
transmitted in parallel via the polarization domain [VI], ©2022 IEEE.

the power domain, which demands users to execute SIC, thereby introducing degrading
issues. To avoid the limitations of RSMA revealed in our previous publication, a differ-
ent approach is proposed, which relies on the polarization domain without requiring SIC.
Specifically, common and private symbols are transmitted in parallel to linearly precoded
data streams using orthogonal antenna polarizations. To this end, the following signal is
transmitted

x =
G∑

g=1

Pg

(
Ng∑

n=1

wp
gn

√
Pζgnα

p
gnx

p
gn+wc

g

√
Pζgnαc

gx
c
g

)
, (4.8)

where P denotes the power budget available at the BS, ζgn represents the path-loss co-
efficient for the nth user within the gth group, and the coefficients αc

g and αp
gn repre-

sent the power coefficients for the common and private symbols, respectively, satisfying
αc
g +

∑Ng

n=1 α
p
gn = 1. The matrix Pg =

(
I2 ⊗ P̄g

)
∈ CM× ¯̄M is the precoder for spatial

multiplexing, with P̄g ∈ CM
2
×M̄ representing the precoding matrix for one polarization,

such that M̄ ≜ ¯̄M/2 is the parameter that determines the dimension of the transformed
channel. The matrix P̄g is constructed identically as the first stage precoder in (2.13),
i.e., designed only to cancel spatial interference based on the correlation matrices of in-
terfering groups. In turn, the vectors wc

g ∈ C ¯̄M and wp
gn ∈ C ¯̄M denote the precoders

designed for multiplexing common and private symbols in polarizations icg and ipg, with
icg ̸= ipg ∈ {v, h}, having the following structure

wc
g =


w

c,v
g

0


 , wp

gn =


 0

wp,h
gn


 , if icg = v, and ipg = h, (4.9)

wc
g =


 0

wc,h
g


 , wp

gn =


w

p,v
gn

0


 , if icg = h, and ipg = v. (4.10)

The polarizations icg and ipg at each channel coherence interval are determined through a
dynamic strategy aiming at maximizing the instantaneous sum-rates of each group. More
specifically, based on the imperfect CSI model in (4.7), the BS estimates the instantaneous
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rates of the common and private symbols observed at each user, defined by R̂c
gn and R̂p

gn,
and computes the polarizations icg and ipg as follows

arg
icg ,i

p
g

max

Ng∑

n=1

[
R̂p

gn + min
l∈{1,··· ,Ng}

R̂c
gl

]
. (4.11)

Then, to enable the decoding of the transmitted symbols, the assigned polarizations icg and
ipg are informed back to the users. Upon reception, the uth user in the gth group recovers
its private message from the predetermined polarization ipg and the common message from
icg. This strategy removes the need for SIC and, as we are going to see, leads to impressive
performance improvements. A schematic diagram of the proposed dual-polarized RSMA
scheme is presented in Figure 4.6.

SINR Analysis

By assuming that all intergroup interference has been cancelled by the precoders P̄g, the
signal received by the nth user in the gth group can be expressed by

ygn =


 (gvv

gn)
H∆

1
2
g QH

g P̄g
√
χ(ghv

gn)
H∆

1
2
g QH

g P̄g

√
χ(gvh

gn)
H∆

1
2
g QH

g P̄g (ghh
gn)

H∆
1
2
g QH

g P̄g




×
(

Ng∑

u=1

wp
gu

√
Pζguα

p
gux

p
gu +wc

g

√
Pζguαc

gx
c
g

)
+


n

v
gn

nh
gn


 , (4.12)

where na
gn represents noise achieved by the nth user in its antenna element with the po-

larization a ∈ {v, h}, following the complex Gaussian distribution with zero mean and
variance σ2.

With the above signal model, the SINR observed by the nth user within the gth group
when detecting the common symbol can be expressed as follows

γc
gn =

|(gicic

gn )H∆
1
2
g QH

g P̄gw
c,icg
g |2ρζgnαc

g

χ
∑Ng

u=1 |(g
ipgicg
gn )H∆

1
2
g QH

g P̄gw
p,ipg
gu |2ρζgnαp

gu + 1
, (4.13)

where ρ = P/σ2 is the SNR, and the first denominator term corresponds to the cross-polar
interference originating from the polarization ipg at the BS to polarization icg at the user.
In its turn, the SINR for the private message achieved by the uth user within the gth group
can be given by

γp
gn =

|(gipgi
p
g

gn )H∆
1
2
g QH

g P̄gw
p,ipg
gn |2ρζgnαp

gn

χ|(gicip
gn )H∆

1
2
g QH

g P̄gw
c,icg
g |2ρζgnαc

g +Ψ
ipg
gn + 1

. (4.14)
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where the first denominator term represents the cross-polar interference, and the factor
Ψ

ipg
gn =

∑Ng

u=1,u ̸=n |(g
ipgi

p
g

gn )H∆
1
2
g QH

g P̄gw
p,ipg
gu |2ρζgnαp

gu models the residual interference of
imperfect CSI.

Precoding for the Common and Private Symbols

More information on the common and private precoders is provided in this subsection.
First, the precoder wp,ipg

gn ∈ CM̄ is explained, which is designed to tackle interuser inter-
ference of private streams within each spatial group in the polarization ipg ∈ {v, h}. For

accomplishing this goal, the private precoder must ensure
[
(g

ipgi
p
g

gn′ )H∆
1
2
g QH

g P̄g

]
w

p,ipg
gn ≈ 0,

for ∀n′ ̸= n ∈ {1, · · · , Ng}. To this end, first, we define

Ĥipg
g =

[
P̄H

g Qg∆
1
2
g ĝ

ipgi
p
g

g1 , · · · , P̄H
g Qg∆

1
2
g ĝ

ipgi
p
g

gNg

]
∈ CM̄×Ng . (4.15)

Then, we can construct wp,ipg
gn as a zero-forcing precoder, as follows

wp,ipg
gn =

[
Ĥipg

g

((
Ĥipg

g

)H
Ĥipg

g

)−1]
:n
, (4.16)

where M̄ ≥ Ng must be satisfied.

Now, the focus is on the design of the precoding vector w
c,icg
g ∈ CM̄ , which is responsible

for broadcasting the common symbol in the polarization icg. Because the common sym-

bol should be delivered to all users within each group, w
c,icg
g should be constructed as a

multicast precoder. As stated in [91], the main issue that limits the sum-rate of multicast
systems is the performance of the weakest users. Therefore, w

c,icg
g should be designed

aiming at maximizing the worst observed SINR, which can be achieved as follows:

max
wg

c,icg

min
∀l∈{1,··· .Ng}

γc
gn, (4.17)

s.t. ∥wc,icg
g ∥2 = 1.

However, for arbitrary numbers of antennas, (4.17) is a nonconvex NP-hard problem [91].
As a result, (4.17) can only be solved suboptimally through iterative methods, which
usually have high computational complexity, e.g., semidefinite relaxation and successive
convex approximation-based methods [92]. Fortunately, a low-complexity solution can
be achieved when large antenna arrays are employed. Specifically, when M → ∞, the
asymptotic solution for the problem in (4.17) is given by a linear combination of the
effective channel vectors of users within each group, which is given by [13]

w
c,icg
g =

Ng∑

n=1

µgnP̄
H
g Qg∆

1
2
g ĝ

icic

gn , (4.18)
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which can be seen as a weighted matched filter (MF) precoding vector for the assigned
polarization icg ∈ {v, h}, with µgn representing the weight corresponding to the nth user
in the gth group. In Publication [VI], equal weights are allocated to all users, i.e., µg1 =
· · · = µgNg = µg. More specifically, the weight µg is computed by

µ2
g =

1

N2
g

(
ωH

g P̄H
g P̄gωg

) , (4.19)

where ωg =
1
Ng

∑Ng

n=1 P̄
H
g Qg∆

1
2
g ĝicic

gn , which meets the magnitude constraint in (4.17).

4.2.4 Ergodic Sum-Rate and Power Allocation with DNNs

Ergodic Sum-Rate

The ergodic sum-rate is an important performance metric for designing a wireless com-
munication system, as it informs the maximum throughput that can be transmitted with re-
liability, i.e., with a negligible error probability. For the proposed MIMO-RSMA scheme,
the instantaneous rate achieved by the nth user within the gth group is defined by the sum
of the common and private data rates, computed, respectively, by

Rc
gn = min

∀l∈{1,··· ,Ng}
{log2(1 + γc

gl)}, (4.20)

and

Rp
gn = log2(1 + γp

gn). (4.21)

As a result, the ergodic sum-rate for the gth group can be derived analytically by averaging
the sum

∑Ng

n=1(R
p
gn +Rc

gn) as follows

R̄g =

Ng∑

n=1

(∫ ∞

0

log2(1 + x)fγp
gn
(x)dx+

∫ ∞

0

log2(1 + y)fγc
g(1)

(y)dy

)
, (4.22)

where fγp
gn
(x) represents the PDF of γp

gn, and fγc
g(1)

(y) corresponds to the PDF of the
first order statistic of the gain γc

gn, i.e., min∀l{γc
gl}. The first challenge for solving (4.22)

is to obtain these PDFs. Because of the imperfect CSI, the cross-polar interference, the
employed precoders, and the correlated gains in the SINRs in (4.13) and (4.14), deriv-
ing exactly fγp

gn
(x) and fγc

g(1)
(y) is highly complicated. The incapability of obtaining

these PDFs, combined with the dynamic policy employed for polarization multiplexing
in (4.11), makes it impossible to solve (4.22). As an alternative, efficient DNNs are im-
plemented to predict the ergodic sum-rates of the proposed system, more details of which
are provided in the next subsection.
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DNN for Ergodic Sum-Rate Prediction

For predicting the ergodic sum-rates, a DNN model containing L fully-connected layers,
with Ql neurons in the lth layer, is implemented. Moreover, the convention that the 1st
layer represents the input layer is used, and the Lth layer corresponds to the output layer.
To reduce the model complexity and speed up the training phase, the groups are addressed
independently, i.e., one DNN is implemented for each group. Under such considerations,
the training dataset for the gth spatial group is represented by Dg = {(xg,i, R̄g,i)|xg,i ∈
Xg, R̄g,i ∈ R, i = 1, · · · , |Dg|}, where R̄g,i denotes the target ergodic sum-rate in the ith
sample of Dg, and xg,i represents the ith feature vector with bXg = 2Ng + 7 parameters,
which is organized as xg,i = [M, M̄,Ng, χ, τ, α

c
g, [α

p
g1, · · · , αp

gNg
], [ζg1, · · · , ζgNg ], ρ]

T .

To avoid an unstable and slow convergence in the training phase, both input and out-
put samples are scaled to the unity range. Specifically, for a data sample xi ∈ X, the
following entrywise transformation is applied:

TX{xi} =
xi −min∀j∈{1,··· ,|X|}(xj)

max∀j∈{1,··· ,|X|}(xj)−min∀j∈{1,··· ,|X|}(xj)
. (4.23)

As a result, the underlying function of the DNN for ergodic sum-rate prediction for the
gth group can be written as

ˆ̄Rg(xg,i) = T−1
Rg

{
rL−1 ◦ rL−2 ◦ · · · ◦ r1(TXg{xg,i})

}
, (4.24)

where T−1
Rg

{·} is the inverse of (4.23), with Rg and Xg denoting, respectively, the subsets
of target outputs and input parameters for the gth group, and rl(·) models the transforma-
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tion applied to the input data in the lth layer, which can be defined by

rl(x) = πl (Wlx+ bl) ,∀l ∈ {1, · · · , L− 1}, (4.25)

with x representing the data input for the lth layer. Moreover, Wl ∈ RQl×Ql−1 denotes the
matrix of weights between the lth and (l− 1)th layers, and bl ∈ RQl and πl : RQl → RQl

are the bias vector and the activation function employed in the lth layer, respectively.
Specifically, in the L− 2 hidden layers, the rectified linear unity (ReLU) activation func-
tion is adopted, which is defined by πl(x) = max(0,x), ∀l ∈ {1, · · · , L − 2}, whereas
in the output layer, a linear activation function is employed. The proposed DNN model is
illustrated in Figure 4.7.

Furthermore, the mean-squared error (MSE) loss is adopted as our cost function, and the
samples in the dataset Dg are partitioned into J random batches for training. Thus, the
MSE loss function for the jth batch, ∀j ∈ {1, · · · , J}, can be expressed by

LDg,j
(Λg) =

1

S

S∑

s=1

∣∣∣ ˆ̄Rg(xg,s)− R̄g,s

∣∣∣
2

, (4.26)

where Dg,j = {(xg,s, R̄g,s)|s = 1, · · · , S} ⊆ Dg corresponds to the subset associated
with the jth data batch, with S denoting the batch size, i.e., the carnality of Dg,j .

DNN-Aided Adaptive Power Allocation

Following Publication [V], a uniform power allocation policy for the private symbols is
employed, which is computed as a function of the coefficient for the common message,
based on the formula αp

gu = (1 − αc
g)/Ng. With this approach, even though simple, it

is still necessary to employ a strategy to determine the most suited power coefficient αc
g.

Because the target is to maximize the ergodic sum-rates observed within each group, αc
g

can be computed by solving the following optimization problem

arg
αc
g

max

Ng∑

n=1

E
[
log2(1 + γp

gn) + min
∀l

{log2(1 + γc
gl)}
]
, (4.27)

s.t. αc
g ≤ 1.

However, owing to the complications in the SINR gains, as pointed out in Subsection
(4.2.4), and the dynamic nature of the proposed scheme, solving optimally (4.27) is un-
wieldy. To overcome this challenge, in this subsection, once more, advantage is taken of
the powerful capabilities of DNNs, and an intelligent framework is proposed for approxi-
mating the desired power allocation coefficient. More specifically, an adaptive power allo-
cation strategy is implemented with a second DNN model comprising D fully-connected
layers, with the dth layer containing Vd neurons.
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The power allocation aided-DNN is trained using a new dataset Mg = {(zg,i, αc∗
g,i)|zg,i ∈

Zg, α
c∗
g,i ∈ R, i = 1, · · · , |Mg|}, with αc∗

g,i representing the target optimal allocation co-
efficient, i.e., which maximizes the sum-rate, of the ith feature vector zg,i ∈ Zg ⊆ RbZg ,
structured as zg,i = [M, M̄,Ng, χ, τ, [ζg1, · · · , ζgNg ], ρ]

T . For determining the parameters
in zg,i and the associated optimal coefficients αc∗

g,i, an exhaustive search is performed on
the existing datasets Dg. Moreover, the vectors zg,i are scaled to the unity range. How-
ever, because the target outputs αc∗

g,i are already within the range [0, 1], they are not scaled.
With these specifications, the underlying function of the DNN for power allocation can
be represented by

Λ̂g(zg,i) = rD−1 ◦ rD−2 ◦ · · · ◦ r1(TZg{zg,i}), (4.28)

where rd(·) models the transformations applied to the input data and is defined identically
as in (4.25), so that ReLU activation functions are adopted in the hidden layers and a
linear function in the output layer. Moreover, the MSE loss function is also employed in
this DNN model. Thus, the optimal power allocation coefficient for the common message
intended for the gth group is computed by

α̂c∗
g = min{1, Λ̂g(zg,i)}, (4.29)

for satisfying the constraint in (4.27). After the training is properly performed, this DNN
strategy should be able to accurately estimate the optimal power coefficient at each chan-
nel coherence interval. For more details on this power allocation strategy, readers are
referred to Publication [VI].

Complexity Remarks

Our strategy of addressing each group of users in a separate manner removes the need
for using as an input the high-dimensional M × M spatial correlation matrices in the
implemented DNNs, which considerably reduces the complexity of the model design and
training. Regarding computational complexity, however, the training phase of DNNs is
usually more computationally intensive. However, highly efficient hardware oriented to
artificial intelligence applications, such as tensor processing units (TPUs) and graphics
processing units (GPUs), are available and can be used for training. As a result, the com-
plexity of one forward pass after the DNNs have been trained becomes more relevant for
practical implementations, which can be measured by floating-point operations [93]. In
particular, the computational complexity of one forward pass for the DNN model imple-
mented for sum-rate prediction can be given by O(

∑L
l=1 Ql−1Ql).

For the case of the DNN for power allocation, the computational complexity for gener-
ating the datasets Mg also deserves attention. Recall that Mg is generated through an
exhaustive search on the samples of Dg. Like any brute-force approach, performing such
a search can be complex. Fortunately, this is not a frequent task because we need to con-
struct (or update) Mg once before the training phase starts. After the DNN for power
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allocation has been properly trained, it is possible to efficiently predict the optimal power
coefficients imposing a computational complexity of only O(

∑D
d=1 Vd−1Vd).

Datasets Generation and DNN Implementation

For achieving datasets of manageable sizes, the number of spatial groups is limited to
G = 3 and the number of users is set to N1 = · · · = Ng = 3 in each group. As a result,
the input vectors xg,i and zg,i with the lengths bXg = 13 and bZg = 9, respectively, are
achieved. Furthermore, a large number of Monte Carlo simulations were run for generat-
ing the data samples of Dg and Mg, for g = 1, · · · , G, so that, for each group, a total of
6, 561, 000 samples for Dg, and 72, 900 samples for Mg were obtained. To this end, the
communication scenario and the dual-polarized RSMA scheme proposed in subsections
4.2.2 and 4.2.3, respectively, were implemented in the open-source high-performance Ju-
lia Programming Language [94].

The DNNs proposed in the two previous subsections were implemented and trained in
Python 3.9.11 using Tensor Flow Metal 2.8.0 on a MacBook Pro computer with an M1
Max 10-core processor, 32-core GPU, and 32 GB of memory. The number of layers in
the DNN for sum-rate prediction was adjusted to L = 7, in which the first and last hidden
layers were configured with Q2 = Q6 = 128 neurons, and the rest of the hidden layers
with Q3 = Q4 = Q5 = 256 neurons each one. In the case of power allocation, a DNN
model was implemented containing D = 6 layers in total, with the number of neurons in
the first and last hidden layers set to V2 = V5 = 128 and, in the rest of the hidden layers, to
V3 = V4 = 256. The adaptive moment estimation (ADAM) optimizer was adopted, where
batch sizes of 1000 and 100 samples were adjusted for the sum-rate prediction and power
allocation DNNs, respectively. Moreover, both DNNs were trained during 80 epochs. In
this regard, Figure 4.8 shows the root mean squared error (RMSE) achieved over time
during the training phase of the two DNNs. Because the learning rate of 0.001 provided
the lowest RMSE, the value was configured as the standard in the results presented in the
following subsection.

4.2.5 Main Results

The most relevant background now being explained, our main results can be presented.
To illustrate the performance advantages of the proposed dual-polarized MIMO-RSMA
transmission scheme, the conventional single-polarized MIMO-RSMA, MIMO-TDMA,
MIMO-SDMA, MIMO-NOMA, and the dual-polarized MIMO-NOMA approach pro-
posed in [7] are considered as our baseline systems. All simulated systems are configured
with M = 64 BS antennas, meaning that the dual-polarized schemes employ M/2 = 32
pairs of dual-polarized antennas. Moreover, a total of G = 3 spatial groups are imple-
mented, each one containing N = 3 users. The focus is on the first group, which exhibits
an angular spread of 11◦ and is positioned at the azimuth angle of 20◦. Within the group
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Figure 4.8: Training convergence behavior in terms of RMSE for: (a) DNN for ergodic
sum-rate prediction, and (b) DNN for adaptive power allocation [VI], ©2022 IEEE.

of interest, users 1, 2, and 3 are located d1 = 115 m, d2 = 100 m, and d3 = 85 m from
the BS, and the path-loss coefficients is modeled similarly as in our previous publications,
i.e., ζn = Φd−η

n , where the parameters δ and η are adjusted to 40 dB and 2.7, respectively.
In addition, we set M̄ = 6, P = 1 W, and, when fixed power allocation is employed,
αc = 0.5 and αp

n = (1 − αc)/N ≈ 0.17 for the MIMO-RSMA schemes. In turn, the
power coefficients of users 1, 2, and 3 are adjusted to 5/8, 2/8, and 1/8,respectively, in
the MIMO-NOMA systems, whereas a uniform allocation policy is used in the MIMO-
SDMA schemes, and for the classical MIMO-TDMA counterpart, the full transmit power
P is allocated to each user.

The effectiveness of the DNN model implemented for predicting the ergodic sum-rates
is corroborated in Figure 4.9, where the users are served with fixed power allocation. As
can be noticed, the DNN model can approximate the curves generated by the Monte Carlo
simulations with high accuracy for all the tested parameters. These simulation examples
also shed light on the important performance characteristics of the proposed system. For
example, Figure 4.9(a) shows the performance influence of the power allocation coeffi-
cient for the common message in that, depending on the SNR value, a different power
coefficient maximizes the sum-rate. In its turn, Figure 4.9(b) demonstrates the degrading
effects of imperfect CSI on the performance of the dual-polarized RSMA scheme. We
can see that the sum-rate diminishes by increasing the factor τ . Nevertheless, a high data
rate can still be achieved even when τ = 0.4, which shows that the robustness to im-
perfect CSI is maintained in the proposed strategy. In Figure 4.9(c), on the other hand,
the ergodic sum-rates suffer severe degradation by increasing the cross-polar interference
levels. However, it is noteworthy that such behavior is observed only under fixed power
allocation, an issue efficiently addressed by our adaptive DNN power allocation strategy,
as discussed next.
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Figure 4.9: Simulated and predicted ergodic sum-rates: (a) for different values of αc,
with χ = 0 and τ = 0, (b) for different values of τ , with αc = 0.5 and χ = 0, and (c) for
different values of χ, with αc = 0.5 and τ = 0 [VI], ©2022 IEEE.

The results in Figure 4.10 demonstrate that our dual-polarized MIMO-RSMA strategy
can achieve impressive gains over the considered baseline schemes. For instance, in Fig-
ure 4.10(a), the sum-rate performance of our scheme is tested with both fixed and the
DNN-aided power allocation methods. As can be seen, in the ideal scenario with zero
cross-polar interference, the dual-polarized MIMO-RSMA can achieve a sum-rate of a
remarkable 40 BPCU, which is more than twice the sum-rates provided by the conven-
tional single-polarized MIMO-SDMA and MIMO-RSMA counterparts. Nevertheless,
when the level of cross-polar transmissions is high, the dual-polarized MIMO-RSMA
undergoes noticeable performance degradation, so that under fixed power allocation, the
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Figure 4.10: Simulated ergodic sum-rates: (a) versus SNR for different levels of χ, with
τ = 0.1, (b) versus τ for a SNR of 25 dB and different levels of χ, and (c) versus SNR
for different levels of SIC error, with χ = 0.01 and τ = 0 [VI], ©2022 IEEE.

single-polarized MIMO-SDMA and MIMO-RSMA systems can outperform the proposed
scheme. On the other hand, we can see that the DNN power allocation can smartly
mitigate the limitations caused by cross-polar interference, enabling the dual-polarized
MIMO-RSMA to achieve the best performance even with χ = 0.2, which reinforces the
efficiency of our DNN strategy.

The advantages of the proposed scheme are further revealed in Figure 4.10(b), where its
robustness is tested against imperfect CSI considering different values of the quality fac-
tor τ . As can be noticed, the dual-polarized MIMO-RSMA employing the DNN approach
can outperform the baseline systems even under high cross-polar interference in all the
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considered range of τ , which confirms another attractive advantage of our scheme. Last,
Figure 4.10(c) shows the advantages of being free from detrimental SIC issues. This fig-
ure puts into perspective the sum-rates achieved with our dual-polarized MIMO-RSMA
scheme and with conventional SIC-based systems considering different values of SIC
error factors. As can be seen, the single-polarized MIMO-RSMA and the single and dual-
polarized MIMO-NOMA schemes, which carry out SIC, have their sum-rate performance
levels severely diminished by SIC error propagation. Meanwhile, in contrast, the novel
dual-polarized MIMO-RSMA system is not impacted by SIC-related problems, which
enables it to keep high sum-rates and remarkably outperform the baseline schemes for all
the investigated error factors.

4.2.6 Summary

This section presented a novel low-complexity dual-polarized massive MIMO-RSMA
scheme, which was proposed in our most recent Publication [VI]. Our promising trans-
mission strategy unlocked users to detect common and private symbols from their or-
thogonally polarized antennas in parallel. As a beneficial consequence, the users were
freed from the degrading effects of SIC-related issues, allowing them to operate under
an overall reduced interference. Efficient DNN frameworks were also implemented for
ergodic sum-rate prediction and adaptive power allocation, which provided further ro-
bustness to both imperfect CSI and cross-polar interference. Our insightful simulation
results and discussions corroborated the capabilities of the dual-polarized MIMO-RSMA
scheme and revealed its performance superiority. The effectiveness of the proposed DNNs
was also validated. Among other highlighted remarks, our results showed that the dual-
polarized MIMO-RSMA offers impressive performance gains that outperform all conven-
tional baseline systems even when undergoing high cross-polar interference levels.
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5 Conclusions and Future Directions

This doctoral dissertation investigated and implemented promising multi-antenna and
MA techniques of great potential for enabling massive access in future beyond-5G and
6G communication systems. Our work generated six primary publications in prestigious
journals of high impact factors, which provided answers to our seven research questions,
from Q1 to Q7. Our research started with Publication [I], where a major limiting issue of
massive MIMO-NOMA systems was identified. Specifically, it was found that decoding
errors generated by imperfect SIC can cause severe performance degradation in MIMO-
NOMA systems, causing users in the network to experience limited data rates that are
lower than those achievable with classical MIMO-OMA schemes. It was also shown that
users can experience highly unbalanced data rates when the system operates under fixed
power allocation policies, indicating an unfair performance of NOMA. This fairness prob-
lem was efficiently solved with a closed-form adaptive power allocation strategy achieved
through KKT conditions. In the same work, the practical issues of imperfect SIC were
modeled, and a new analytical framework with accurate closed-form expressions was de-
veloped for the users’ outage probabilities and ergodic rates, composing an effective tool
for assessing the performance of MIMO-NOMA.

The limitations of MIMO-NOMA schemes found in Publication [I] steered our research
work toward the study of the featured IRS technology, resulting in three subsequent Pub-
lications [II]–[IV]. In our magazine article, Publication [II], in particular, by considering
only scenarios with perfect SIC decoding, appealing performance improvements that IRS
can offer to massive MIMO-NOMA were presented, including a more flexible ordering of
users, fair power allocation protocols with enhanced performance, extended communica-
tion range, and potentially a better utilization of energy resources. These seminal findings
were exploited and extended in Publication [III], where a more practical study case with
users experiencing SIC error propagation was considered. More specifically, with the
help of advanced dual-polarized IRSs, advantage was taken of the extra DoF offered by
the polarization domain to mitigate the detrimental issues of imperfect SIC in a dual-
polarized massive MIMO-NOMA network operating in the downlink mode. Through a
clever collaborative strategy, dual-polarized IRSs were optimized by interior-point meth-
ods to assist the BS in multiplexing subsets of users in the polarization domain. The novel
dual-polarized IRS-MIMO-NOMA scheme enabled users to detect transmitted symbols
with the benefits of polarization diversity and experiencing reduced interference levels.
A closed-form expression was also derived for the asymptotic ergodic rates considering
large IRSs. Our results showed that the proposed dual-polarized IRS-MIMO-NOMA
scheme is substantially more robust to imperfect SIC and can deliver remarkable spectral
gains to all connected users.

In Publication [IV], the IRS-assisted polarization multiplexing concept from Publication
[III] was further elaborated on and applied also to the uplink of MIMO-NOMA networks.
To mitigate interference issues of SIC in the uplink, the powerful capabilities of dual-
polarized IRSs and advanced signal alignment techniques were combined, which gener-
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ated impressive performance improvements. To avoid unequal data rates and improve
fairness in the MIMO-NOMA scheme, our ideas from Publication [I] were extended and
a low-complexity alternate power allocation policy was developed, which efficiently bal-
anced the uplink rates of individual users. Our insightful simulation results showed that
our uplink IRS-MIMO-NOMA strategy can provide impressive data rate gains and that all
users can experience a high uplink performance with the help of the proposed fair power
allocation protocol. These contributions concluded Chapter 3.

In Chapter 4, our final two publications were presented, which focused on the promising
RSMA technique. The chapter was started by presenting the mutual benefits that IRSs and
RSMA can generate for one another, which were reported in Publication [V], our second
magazine article. Attractive improvements enabled by the synergy IRS-RSMA were iden-
tified and discussed. For instance, on the one hand, it was shown that IRSs can contribute
to improved transmissions of common and private data streams even under high levels
of SIC error propagation and, on the other hand, that RSMA can enable IRSs to become
more robust to imperfect CSI. The results provided in Publication [V] made clear that
the combination IRS-MIMO-RSMA is highly advantageous and can remarkably outper-
form conventional systems, such as MIMO-TDMA, MIMO-SDMA, MIMO-NOMA, and
MIMO-RSMA.

Nevertheless, the results from Publication [V] also showed that imperfect SIC can be
detrimental even to IRS-MIMO-RSMA schemes. This undesirable characteristic moti-
vated, instead of trying to mitigate SIC decoding errors, to develop in our last publication
a novel RSMA-inspired technique that is SIC-free. Specifically, in Publication [VI], a
promising dual-polarized MIMO-RSMA scheme was proposed with the potential to free
users completely from the harmful SIC interference problems. An efficient DNN-aided
power allocation policy was also implemented, which offered the technique with relia-
bility even in scenarios with high cross-polar interference and imperfect CSI, remarkably
outperforming the conventional baseline system. With the results reported in Publication
[VI], we can conclude this dissertation and leave the readers with a few closing thoughts
on our next research steps, as follows.

The performance improvements unleashed by the dual-polarized RSMA technique in
Publication [VI] are clearly promising. The presented advantages give us the motivation
to investigate the topic further and pave the way for numerous future research directions.
For instance, it was discussed in Publication [VI] that a classical theoretical analysis has
not been possible because of the complicated system model. However, what if we study a
different system model or consider some simplification? Can we derive closed-form ex-
pressions of important performance metrics in these cases? Moreover, which benefits can
we achieve by combining IRSs with dual-polarized RSMA? And how can we unlock fur-
ther improvements? These still unsolved questions are exciting topics for our upcoming
future works. Stay tuned.
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Abstract— This paper addresses multi-user multi-cluster
massive multiple-input-multiple-output (MIMO) systems with
non-orthogonal multiple access (NOMA). Assuming the downlink
mode, and taking into consideration the impact of imperfect
successive interference cancellation (SIC), an in-depth analytical
analysis is carried out, in which closed-form expressions for
the outage probability and ergodic rates are derived. Subse-
quently, the power allocation coefficients of users within each
sub-group are optimized to maximize fairness. The considered
power optimization is simplified to a convex problem, which
makes it possible to obtain the optimal solution via Karush-
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Kuhn-Tucker (KKT) conditions. Based on the achieved solution,
we propose an iterative algorithm to provide fairness also
among different sub-groups. Simulation results alongside with
insightful discussions are provided to investigate the impact
of imperfect SIC and demonstrate the fairness superiority of
the proposed dynamic power allocation policies. For example,
our results show that if the residual error propagation levels
are high, the employment of orthogonal multiple access (OMA)
is always preferable than NOMA. It is also shown that the
proposed power allocation outperforms conventional massive
MIMO-NOMA setups operating with fixed power allocation
strategies in terms of outage probability.

Index Terms— Fairness maximization, imperfect SIC, massive
MIMO, NOMA.

I. INTRODUCTION

ADVANCES in technologies and the rise of new applica-
tions, such as unmanned vehicles, smart homes, smart

grid, and massive sensor networks, are triggering an acceler-
ated growth in the number of devices connected to communi-
cation systems. As an attempt to support this explosive trend,
the 5th generation of wireless networks (5G) is being devel-
oped, and the first commercial systems have been deployed
worldwide. 5G and beyond networks are expected to support
a variety of demanding requisites, going from massive connec-
tivity and ultra-low latency to improved user fairness [1]. Mas-
sive multiple-input-multiple-output (MIMO) is being credited
as one of the key enabling components of 5G [2]. In particular,
by employing a very large number of antennas and exploiting
the space domain to multiplex different users, the massive
MIMO technology has the potential to reduce system latency
and to provide remarkable connectivity gains. Power-domain
non-orthogonal multiple access (NOMA) is another promising
technology for the future-generation wireless systems that
allow multiple users to be served in parallel within the same
frequency and time slot. The relying concept of NOMA
consists of superposing the data symbols of different users in
the power domain at the base station (BS) and employing suc-
cessive interference cancellation (SIC) at the receivers. With
such features, NOMA can also provide massive connectivity
capabilities and a reduction in latency to the network.

If the NOMA technique is applied to massive MIMO,
the achievable spectral and connectivity improvements are
shown to be even greater [3]–[5]. However, if the transmission
power is not well allocated within the MIMO-NOMA network,
the performance of some users can be severely compromised.

1536-1276 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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For instance, the adoption of fixed power allocation policies
in NOMA can be very beneficial to users with good channel
conditions, however, it can be extremely disadvantageous to
users that suffer from strong channel attenuation [6]. To
improve the average performance of the weaker users, one
could decrease as much as possible the power allocated to
the strong ones so that a certain degree of fairness could be
achieved [7]. However, such a strategy can severely impact
the system sum-rate, and, due to the random behavior of the
wireless channels, it will also result in unequal data rates.
This characteristic can be detrimental to certain emerging
applications. For example, in the upcoming industrial internet
of things, it can be very important that all terminals experience
similar data rates [8]. In such scenarios, the employment of
fixed allocation policies can make some of the terminals not
able to meet their minimum requirements and result in a poor
network performance. Besides, 5G and beyond are expected
to support the concept of network slicing, which is to create
isolated logical networks, i.e., slices, each dedicated to a subset
of terminals with specific requirements [9]. Since within each
slice users are expected to share identical requisites, it will be
crucial to perform a fair distribution of resources, which is a
feature that fixed power allocation is not capable of providing.
Therefore, more sophisticated and adaptive power allocation
strategies are important and necessary to guarantee fairness in
future MIMO-NOMA networks. In addition, the majority of
existing works make the strong assumption that SIC can be
carried out perfectly, which is idealistic and difficult to hold
in practice. In real-world deployments, various impairments
such as fast varying channels, atmospheric absorption, strong
channel correlation, and hardware issues, can degrade the
signal reception and introduce errors during the detection
of transmitted symbols [10], [11]. As a result, since the
recovery of each symbol with SIC depends on previous decod-
ings, errors will inevitably propagate and impact the system
performance. This makes SIC residual error propagation an
important parameter that must be considered while designing
realistic massive MIMO-NOMA systems.

A. Related Works

A few NOMA-related works have considered the impact of
imperfect SIC. For instance, in [10], a massive MIMO-NOMA
system with non-orthogonal channel estimation and SIC
error propagation was investigated. The work considered a
single-cell downlink scenario, where a single multi-antenna BS
communicates with multiple single-antenna users. In particu-
lar, the authors derived a lower bound expression for the spec-
tral efficiency and developed iterative optimization algorithms
for maximizing the weighted sum spectral efficiency. The pro-
vided numerical results validated the analytical approximation,
although the gap between the bounds and simulation curves
were not very tight. The work in [12] proposed a sub-optimum
iterative algorithm for maximizing the sum-rate of a downlink
MIMO-NOMA network. By equipping both BS and users with
two antennas, the paper provided results for two very specific
scenarios, in which a high and a low value of SIC residual error
was considered. However, intermediate error levels were not
investigated. In [13], the authors analyzed the outage probabil-

ity and minimized the total transmit power of a multi-carrier
NOMA system by modeling the SIC error propagation as a
complex Gaussian random variable. Complementary geometric
programming and arithmetic geometric mean approximation
techniques were used to transform the non-convex formulated
problem into a convex one. The heterogeneous networks
case was considered in [14]. By taking into consideration
various sources of interference, such as inter-cell interference,
power disparity, and imperfect SIC, the work proposed user
clustering and power-bandwidth allocation algorithms. The
impact of imperfect SIC in the uplink of MIMO-NOMA
systems employing the concept of virtualized wireless net-
works (VWN) was studied in [15], in which algorithms based
on successive convex approximation and complementary geo-
metric programming were proposed for power and sub-carrier
allocation. A massive MIMO-NOMA system with distributed
antenna arrays was investigated in [16]. In this contribution,
a closed-form expression for the ergodic sum-rate was derived.
In [17], by taking into consideration SIC error propagation
and in-phase and quadrature-phase imbalance, the performance
of a full-duplex relaying system was investigated. The study
of α-μ fading channels in cooperative NOMA networks with
hardware impairments was considered in [18], and the work
in [19] addressed the application of deep learning techniques
to MIMO-NOMA systems with imperfect SIC decoding.

Some contributions have addressed fairness in NOMA
systems, although none of them have considered the effects
of imperfect SIC. For example, by assuming that SIC can
be carried out perfectly, the work in [20] investigated the
impact of power allocation on the fairness of a simple system
where a single-antenna BS serves multiple single-antenna
users. The authors developed low-complexity bisection-based
iterative algorithms to optimally solve the optimization prob-
lem. In [21], the fairness of user clustering in a multi-user
MIMO-NOMA setup was considered. Bisection algorithms
were also adopted to optimize the power of users within
each cluster. In addition, three sub-optimum clustering algo-
rithms have been proposed. A fair NOMA protocol, in which
the user capacity is always at least equal to the capacity
achieved with orthogonal multiple access (OMA), was pro-
posed in [22]. The referred work pairs near and cell-edge
single-antenna users to form NOMA groups, based on which
the power allocation coefficients are determined. The outage
probability was also investigated. The authors of [23] and [24]
proposed user clustering algorithms based on proportional
fairness to balance between throughput and fairness. [23]
also presented an optimal power allocation for maximizing
the system sum-rate such that the rate of weak users is
guaranteed to be equal to that achieved with OMA. In [6],
the authors developed dynamic resource allocation policies,
which are optimally obtained via Lagrangian dual decomposi-
tion. The millimeter-wave MIMO-NOMA case was addressed
in [25], in which spatial sparsity was exploited to propose
sub-optimum power allocation solutions.

B. Motivation and Contributions

Even though there are numerous contributions showing
that massive MIMO-NOMA systems can provide remarkable
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spectral gains and outperform the massive MIMO-OMA coun-
terpart, the majority of these works do not consider the impact
of imperfect SIC decoding. In addition, to the best of the
authors’ knowledge, only a very limited number of works
investigates fairness in massive MIMO-NOMA networks,
and none of them have considered SIC error propagation.
Given the aforementioned research gap, this paper aims to
design, analyze, and optimize the performance of a massive
MIMO-NOMA network under the impact of residual error
propagation from imperfect SIC. More details and the main
original contributions provided in this work are summarized
as follows.

• Inspired by the works in [3], [4], and assuming that the
users are confined within multiple clusters of scatterers,
we employ at the BS a two-stage precoder. Specifically,
the first-stage precoder, which is intended to eliminate
inter-cluster interference, is designed based only on the
slowly varying covariance matrices of interfering clusters.
By its turn, the second-stage precoder is responsible for
directing the superposed symbols to the corresponding
NOMA sub-groups, where each sub-group is formed by
two users so that the computational complexity of SIC is
reduced. This strategy provides attractive advantages to
massive MIMO-NOMA setups, such as less processing
overload and reduced feedback overhead.

• Assuming first a fixed power allocation policy, a novel
analytical framework for the proposed massive
MIMO-NOMA network is developed. In particular,
by considering the impact of residual error from
imperfect SIC, we derive the system signal-to-
interference-plus-noise ratio (SINR) expression and
carry out a statistical characterization of the effective
channel gains. Then, based on this initial analysis, exact
closed-form expressions for the outage probability and for
the users’ ergodic rates are derived, whose accuracies are
validated through numerical and simulation examples.
The obtained analytical results provide a practical
alternative for designing massive MIMO-NOMA
systems with imperfect SIC decoding.

• Next, we develop a more sophisticated dynamic power
allocation that maximizes the achievable rates of users
with worst channel conditions within each NOMA sub-
group. More specifically, the optimization problem is
formulated to guarantee that weaker users never expe-
rience a rate less than what is achieved by the stronger
ones, and the optimal solution is obtained via Karush-
Kuhn-Tucker (KKT) conditions. Then, to balance the data
rates also among different sub-groups, we propose an
iterative algorithm that extends the fairness concept to
all users within the spatial clusters so that all terminals
can reach identical performance levels, i.e., maximum
fairness is provided.

• Simulation results alongside with insightful discussions
are provided to investigate the impact of imperfect SIC
and demonstrate the fairness superiority of the pro-
posed dynamic power allocation policies. For example,
our results show that if the residual error propagation
levels are high, the employment of OMA is always

preferable than NOMA. It is also shown that the pro-
posed power allocation outperforms conventional massive
MIMO-NOMA setups operating with fixed power alloca-
tion strategies in terms of outage probability.

Notation and Special Functions: Bold-faced lower-case
letters denotes vectors and upper-case represent matrices. The
ith element of a vector a is denoted by [a]i and the (ij) entry
of a matrix A by [A]ij . The Hermitian transposition of A
is represented by AH and the trace by tr{A}. In addition,
0M×N denotes the M × N matrix with all zero entries,
E[·] denotes expectation, Γ(·) is the Gamma function [26,
eq. (8.310.1)], γ(·, ·) is the lower incomplete Gamma function
[26, eq. (8.350.1)], and Ei(·) corresponds to the exponential
integral [26, eq. (8.211.1)].

II. SYSTEM MODEL

We consider a single-cell scenario where one elevated BS is
communicating in downlink mode with L multi-antenna users.
The BS is equipped with a uniform linear array of M transmit
antenna elements, which are separated by half a wavelength,
i.e., λ/2. Moreover, each user is equipped with N receive
antennas, in which we assume that M is much greater than N ,
i.e., M � N , which characterizes a typical massive MIMO
setup. The users are considered to be uniformly distributed
within S spatial clusters of scatterers, modeled by the one-ring
scattering model [27]. Within each cluster, the BS subdivides
the users into G smaller sub-groups, each one containing
2 users,1 as illustrated in Fig. 1. Then, power-domain NOMA
is employed within each sub-group. Given the described
scenario, and applying the Karhunen-Loeve transform [27],
the channel matrix for the kth user in the gth sub-group in the
sth cluster, can be expressed by

Hsgk =

�
Φd−η

sg UsΛ
1
2
s Gsgk ∈ CM×N , (1)

which has covariance matrix given by E{HsgkH
H
sgk} =

Φd−η
sg Rs ∈ CM×M , with rank denoted by rs. Λs ∈ Rr∗

s×r∗
s

>0

represents a diagonal matrix formed by the first r∗
s dominant

eigenvalues of Rs, sorted out in decreasing order, in which
r∗
s ≤ rs. Us ∈ CM×r∗

s is a matrix of eigenvectors correspond-
ing to the dominant eigenvalues of Rs, and Gsgk ∈ Cr∗

s×N is
the fast varying channel matrix, which has complex Gaussian
distributed entries with zero-mean and unit-variance. dsg is the
distance of the gth sub-group from the BS, η is the path-loss
exponent, and Φ is a gain parameter that is adjusted based
on the desired performance of the receivers [28]. Moreover,
all users confined within the sth cluster are assumed to
share identical2 covariance matrices Rs, whose entries can

1Given that SIC is an interference-limited technique, the consideration of a
large number of users per sub-group can lead to performance degradation
(due to decoding error propagation), increase in detection and hardware
complexities, and higher energy consumption. Therefore, small sub-groups
(usually of two users) are preferable in practical downlink NOMA systems [7].

2The assumption of users sharing identical covariance matrices cannot be
exactly satisfied in real-world scenarios. However, as stated in [27], if users
within the same cluster of scatterers are grouped properly, this condition can
be efficiently approximated. Even though user grouping is an important topic
and an active area of research [14], it goes beyond the scope of this work.
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Fig. 1. System model. Users within each spatial cluster are organized into
multiple sub-groups.

be generated by [27]

[Rs]mm� =
1

2δs

� δs

−δs

e−j 2π
λ [cos(φ+ϕs),sin(φ+ϕs)](am−am�)dφ,

(2)

where δs and ϕs are, respectively, the angular spread and
the azimuth angle of the sth spatial cluster, φ corresponds
to the angle of arrival of incident planar waves at the BS, and
am,am� are the Cartesian coordinates of the antenna elements
m and m�, for 1 ≤ m, m� ≤ M .

At the BS, the symbols for users within each sub-group
are superposed and transmitted through the wireless channels.
Then, the kth user in the gth sub-group receives the following
signal

ysgk = HH
sgk

S�

n=1

Bn

G�

i=1

vni

2�

j=1

√
αnijxnij + nsgk, (3)

where ngk ∈ CN×1 is a noise vector with entries following the
complex Gaussian distribution with zero-mean and variance
σ2

n. The variable αnij denotes the power coefficient, and xnij

is the symbol intended for the jth user in the ith sub-group
at the nth cluster. Bn ∈ CM×V is the beamforming matrix
responsible for eliminating the interference from other clusters,
where V is a parameter that defines the number of parallel
effective transmissions, and vni ∈ CV ×1 is the precoding
vector designed to assign the superposed symbols to the
corresponding sub-groups.

A. Beamforming Design

The beamforming matrix Bs is designed to focus the signal
transmission to a desired spatial cluster s, such that everywhere
else outside the area of interest the propagation is nulled out.
To achieve this spatial directivity, Bs is constructed based
on the null space spanned by the nonzero eigenmodes of
the covariance matrices of interfering clusters [27]. To this
end, we define U−

s = [U1, · · · ,Us−1,Us+1, · · · ,US ] and
denote its last M − (S − 1)r∗

s left eigenvectors by E0
s ∈

CM×M−(S−1)r∗
s , which corresponds to the vanishing eigen-

modes of U−
s . As a result, due to the dimension of E0

s,
the constraint M > (S − 1)r∗

s must be satisfied.
Given that (E0

s)
HU−

s = 0, the matrix H̃sgk =

(E0
s)

HUsΛ
1
2
s Gsgk is orthogonal to the r∗

s dominant eigen-
modes of interfering clusters, and it has covariance matrix

given by R̃s = H̃sgkH̃
H
sgk = (E0

s)
HRsE

0
s = FsRsF

H
s ,

where Fs represents the left eigenvectors of R̃s. Then,
by defining the first V eigenvectors of Fs by F1

s ∈
CM−(S−1)r∗

s×V , the beamforming matrix Bs is finally
obtained, as follows

Bs = E0
sF

1
s ∈ CM×V , (4)

where S ≤ V ≤ (M − (S − 1)r∗
s) and V ≤ r∗

s ≤ rs.
It is noteworthy that the number of dominant eigenvalues

r∗
s will determine the amount of interference that will leak

from other clusters.3 Specifically, the inter-cluster interference
will approach zero as r∗

s approaches to the rank rs, such that,
when r∗

s = rs, HH
sgkBs� = 0, ∀s �= s�. However, since part

of the eigenvalues can be very small, i.e., ≈ 0, the extreme
choice r∗

s = rs is usually not efficient, and it does not result in
significant performance improvements [4], [27]. In addition,
given that S < M/r∗

s + 1, increasing r∗
s will reduce the

maximum number of clusters S. In particular, due to the
beamforming constraints, we set the dominant eigenvalues
parameter to r∗

s = min {rs, 	(M − V )/(S − 1)
}.
More clarifications for the precoding vector vsg are now

provided. We design vsg to assign the superimposed symbols
to each corresponding NOMA sub-group, such that it should
not introduce additional power, i.e., �vsg�2 = 1. This can be
accomplished by defining vsg as

vsg = [ 01×(g−1) , 1 , 01×(V −g) ]T , ∀g = 1, · · · , G. (5)

Note that the above design associates the gth effective
data stream to the gth NOMA sub-group, and it does not
modify by any form the data messages. Besides, to construct
the beamformers, it is not necessary to acquire the fast
fading channel matrices Gsgk at the BS, that is, only the
channel covariance matrices are required. And given that Rs

varies slowly, the users only need to measure it once after
several coherence intervals. Once this statistical information is
obtained, users can feed it back to the BS with low feedback
overhead [27]. As a result, it is reasonable to assume that
all the channel information can be accurately estimated at the
users’ side through downlink training techniques.4 Therefore,
as in [3]–[5], we consider that Rs is known in the system (at
both BS and users), and that Gsgk can be estimated perfectly5

by the users’ terminals. Also, since Bs only addresses the
inter-cluster interference, the users still need to employ some
reception technique for canceling the remaining intra-cluster
interference. Details for signal reception are provided next.

3As discussed in [4] and [27], finding the optimum value of r∗
s depends on

the parameters and requisites of each specific system, such as the number of
antennas, desired number of clusters, and maximum interference level, which
is not a trivial task and goes beyond the scope of this work. We configure this
parameter not aiming its optimally, but to achieve a good system performance
and to satisfy the beamforming design constraints.

4Channel estimation and acquisition are critical in massive MIMO and are
topics of ongoing interest in the literature (see [29] and references therein, for
example). However, the investigation of such topics goes beyond the scope
of this work.

5In practice, the estimation of the fast varying channel matrices, Gsgk ,
is usually not perfect. Therefore, the investigation of the impact of channel
estimation errors on our proposed massive MIMO-NOMA design arises as an
interesting future direction.
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B. Signal Reception

For simplicity, from this point forward, we drop the sub-
script corresponding to the spatial cluster, e.g., we represent
ysgk as ygk. Accordingly, assuming that the beamforming
matrix Bs successfully suppresses all inter-cluster interfer-
ences, the superposed signal observed by the kth user, k ∈
{1, 2}, in the gth sub-group can be rewritten as

ygk = HH
gkB

G�

i=1

vi

2�

j=1

√
αijxij + ngk. (6)

To eliminate the remaining inter-group interference,
the users employ a zero-forcing receiver. Therefore,
the detection matrix can be defined by H†

gk =

[(HH
gkB)HHH

gkB]−1(HH
gkB)H , which corresponds to

the pseudo-inverse of the virtual channel. Note that, in order
to construct the zero-forcing receiver, the users need to
have access also to the beamforming matrices. Since, in our
design, B is built based only on the channel covariance
matrices, which vary slowly, such beamforming information
can be efficiently informed back to the users, imposing low
overhead.

After the received signal has been filtered through H†
gk,

the kth user in the gth group achieves the following data vector

x̂gk =

⎡
⎢⎣

√
α11x11 +

√
α12x12

...√
αG1xG1 +

√
αG2xG2

⎤
⎥⎦ + H†

gkngk. (7)

Note that the zero-forcing receiver has decoupled the signal
in (6) into G parallel symbols, each one belonging to a differ-
ent sub-group. This enables the users within the gth NOMA
sub-group to apply SIC to their corresponding superposed
symbol, i.e., the gth element of x̂gk .

III. PERFORMANCE ANALYSIS FOR FIXED

POWER ALLOCATION

In this section, the performance of the proposed massive
MIMO-NOMA system operating under fixed power allocation
policy is investigated. Specifically, by considering the impact
of residual error from imperfect SIC decoding, we derive the
SINR experienced by the users and identify the statistical
distributions of the effective channel gains, based on which
closed-form analytical expressions for the outage probability
and for the users’ ergodic rates are obtained.

A. SINR Analysis

In our design, the users within each sub-group are organized
by the BS in ascending order based on their effective channel
gains, that is, the first user has the lowest gain and the second
user the highest one. Following the SIC protocol, the weak
user retrieves its data symbol directly from (7) and treats the
message intended for the second user as interference, so no
further processing is required. On the other hand, the second
user, which has the best channel condition, first decodes the
message intended for the first user and, subsequently, recovers
its own data symbol [3]–[5]. Ideally, the strong user can
recover its information without interference, but, as previously

discussed, this is difficult to happen in practice. In real deploy-
ments, due to many impairments, the strong users may achieve
an imperfect estimation of the symbols intended to the weak
users and suffer from residual interference. On these grounds,
as in [10], [14], [15], we model the effects of imperfect SIC as
a function of the interfering power. More specifically, the kth
user in the gth sub-group will recover the following symbol

x̂gk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
αg1xg1

↑
symbol of interest

+
√

αg2xg2
↑

interference

+ [H†
g1ng1]g

↑
noise

,

if k = 1,
√

αg2xg2
↑

symbol of interest

+
√

μαg1xg1
↑

residual SIC interference

+ [H†
g2ng2]g

↑
noise

,

if k = 2,

(8)

in which μ ∈ [0, 1] is the error propagation factor that models
the impact of imperfect SIC, where μ = 1 represents the
scenario of maximum interference, and μ = 0 corresponds to
the ideal case of perfect SIC. As demonstrated in [30], [31],
the error factor μ can be easily calculated at the receivers
by dividing the variance of the interference term, which can
be obtained by averaging a large number of samples, by the
power allocated to the interfering user, e.g., supposing that
x̃g1 is the symbol intended for the user 1 estimated at user
2 during the SIC process, the error factor can be computed
as6 μ = E{|√αg1(x1 − x̃1)|2}/αg1. In practice, the value of
μ will depend on factors such as the type of the receiver,
channel characteristics, and hardware sensibility [14], [15].
Considering the signal model in (8), the SINR achieved by
each user during each NOMA decoding is defined in the
following Lemma.

Lemma I: Supposing that the users within each sub-group
are sorted out in increasing order based on their effective
channel gains, the SINR achieved at the current kth user,
1 ≤ k ≤ 2, when decoding the symbol that belongs to the
ith user, 1 ≤ i ≤ 2, is obtained by

γi
gk =

ρ�gkαgi

ρ�gkα�
gi + 1

, for 1 ≤ i ≤ k ≤ 2, (9)

where �gk = 1

[H†
gkH

†H
gk ]gg

is the effective channel gain,

ρ = 1/σ2
n denotes the signal-to-noise ratio (SNR), and α�

gi

corresponds to the interference power, which is given by

α�
gi =

�
αg2, for i = 1,

μαg1, for i = k = 2,
(10)

Proof: Please, see Appendix A.
Observe that, since users are ordered based on their effective

channel gains, to enable NOMA, they are required to feed the
gains �gk back to the BS at each coherence interval. However,
since �gk is just a scalar parameter, such a task will result in
low additional overhead only [32].

6Note that in our analysis, we model µ as a deterministic parameter.
However, since the residual SIC interference term in (8) can be approximated
by a Gaussian distribution [30], µ can also be modeled as a chi-squared
random variable, as in [13]. This possibility arises as a potential extension of
this work.
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B. Statistical Characterization of the Effective Channel Gains

Before obtaining the desired outage probability and ergodic
rate expressions, we need to statistically characterize the
effective channel gains. As one can observe in (A-1), �gk is
the inverse of the gth element on the main diagonal of the
following matrix

H†
gkH

†H
gk = [(HH

gkB)HHH
gkB]−1(HH

gkB)HHH
gkB

× ([(HH
gkB)HHH

gkB]−1)H =(BHHgkH
H
gkB)−1

=
�
BHΦd−η

g (UΛ
1
2Ggk)(UΛ

1
2Ggk)HB

�−1

=
1

Φd−η
g

�
BHRB

�−1 ∈ CV ×V . (11)

As demonstrated in [3], [4], since Ggk consists of a complex
Gaussian distributed matrix, the resulting matrix

�
BHRB

�−1

is inverse Wishart distributed with N ≥ V − 1 degrees
of freedom. Consequently, the unordered effective channel
gain �gk = 1

[H†
gkH

†H
gk ]gg

follows a Gamma distribution with

shape parameter N − V + 1 and scale parameter given by
Φd−η

g [(BHRB)−1]gg . However, since the BS sorts the users
out in ascending order, we need to find the probability density
function (PDF) of the ordered effective channel gains. To this
end, we use the theory of order statistics, which allow us to
achieve the desired PDF in the following way [33]

f�gk
(x) = K

�
K − 1

k − 1

� K−k�

i=0

(−1)i

�
K − k

i

�
f̃�gk

(x)

× F̃�gk
(x)k−1+i, (12)

where f̃�gk
(x) and F̃�gk

(x) are, respectively, the PDF and
the cumulative distribution function (CDF) of unordered gains,
which are provided in [3], [4]. Then, by using the fact that in
our considered scenario K = 2, the PDF for the ordered gain
of user 1 can be achieved as

f�g1(x) = 2[f̃�gk
(x) − f̃�gk

(x)F̃�gk
(x)]

=
2βϑ

g

Γ(ϑ)

�
xϑ−1e−βgx − xϑ−1e−βgx γ(ϑ, βgx)

Γ(ϑ)

�
,

(13)

and for user 2 as

f�g2(x) = 2f̃�gk
(x)F̃�gk

(x) =
2βϑ

g

Γ(ϑ)
xϑ−1e−βgx γ(ϑ, βgx)

Γ(ϑ)
,

(14)

in which, for notation simplicity, we have defined ϑ = N −
V + 1 and βg = Φd−η

g [(BHRB)−1]gg .

C. Outage Probability

The outage probability for the kth user, in the gth sub-group,
represented by Pgk , is the probability of achieving a data rate
less than the target rate, Tgi, required to decode the message
intended to the ith user, i ≤ k ∈ {1, 2}, and it can be defined
as [3], [4]

Pgk = P [log2(1 + γi
gk) < Tgi], ∀i = 1, · · · , k. (15)

Note from (15) that user 1 (weak user) will face an outage
event only when its achieved data rate is not enough to satisfy
its own target rate, i.e., when log2(1 + γ1

g1) < Tg1. While
user 2 (strong user) will experience outage either if log2(1 +
γ1

g2) < Tg1 or log2(1+γ2
g2) < Tg2. Also see that, due to (10),

the outage probability of the strong user will be also impacted
by residual SIC interference. Closed-form expressions for the
outage probability are provided in the following proposition.

Proposition I: Assuming that �g1 < �g2, and considering
imperfect SIC, the exact closed-form expressions for the
outage probability achieved by users 1 and 2, can be derived as
follows:

• For user 1:

Pg1 =

⎧
⎨
⎩

2γ(ϑ,ρ−1βgLg1)
Γ(ϑ) −

�
γ(ϑ,ρ−1βgLg1)

Γ(ϑ)

�2

, if Lg1 ≥ 0,

1, otherwise.

(16)

• For user 2:

Pg2 =

⎧
⎨
⎩

�
γ(ϑ,ρ−1βg max{Lg1,Lg2})

Γ(ϑ)

�2

, if min{Lg1, Lg2} ≥ 0,

1, otherwise,

(17)

where Lg1 = 2Tg1−1
αg1−αg2(2Tg1−1)

, and Lg2 = 2Tg2−1
αg2−μαg1(2Tg2−1)

.
Proof: Please, see Appendix B.

D. Ergodic Rates

In this subsection, we analyze the ergodic rates experienced
by each user within the sub-groups. In particular, it is consid-
ered that the strong user cannot decode perfectly the symbol
intended to the weak user. As a consequence, its achievable
rate, which is resulted from the SINR observed while decoding
its own data symbol, will be impacted by residual interference.
Under this consideration, the instantaneous data rate achieved
by the first user can be written as

Rg1 = log2(1 + γ1
g1) = log2

�
1 +

ρ�g1αg1

ρ�g1αg2 + 1

�
, (18)

and, for the second user, the data rate is given by

Rg2 = log2(1 + γ2
g2) = log2

�
1 +

ρ�g2αg2

ρ�g2μαg1 + 1

�
. (19)

From (18) and (19), exact closed-form expressions for the
users’ ergodic rates will be derived, which are presented in
Proposition II.

Proposition II: In presence of residual error propagation
from imperfect SIC, exact closed-form expressions for the
ergodic rates of users 1 and 2 can be obtained as follows:

• For user 1:

R̄g1 = ξ1(κg1) − ξ1(κ̃g1), (20)
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where κg1 = ρ(αg1 + αg2), κ̃g1 = ραg2, and

ξ1(κ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�ϑ−1
i=0

1
2ϑ+i−1 ln(2)Γ(ϑ)i!

�ϑ+i−1
m=0

(ϑ+i−1)!
(ϑ+i−m−1)!

×
�

(−1)ϑ+i−m−2

�
κ

2βg

�ϑ+i−m−1 e
2βg
κ Ei

�
− 2βg

κ

�

+
�ϑ+i−m−1

n=1
(n−1)!�

− κ
2βg

�ϑ+i−m−n−1

�
,

if ϑ > 1,

− 1
ln(2)e

2βg
κ Ei

�
− 2βg

κ

�
, if ϑ = 1.

• For user 2:

R̄g2 =

�
ξ2(κg2) − ξ2(κ̃g2), if μ > 0,

ξ2(κg2), if μ = 0,
(21)

where κg2 = ρ(μαg1 + αg2), κ̃g2 = ρμαg1, and

ξ2(κ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
ln(2)

�ϑ−1
m=0

1
(ϑ−m−1)!

�
(−1)ϑ−m−2

�
κ
βg

�ϑ−m−1 e
βg
κ Ei

�
−βg

κ

�

+
�ϑ−m−1

n=1
(n−1)!�

− κ
βg

�ϑ−m−n−1

�
− ξ1(κ),

if ϑ > 1,

− 2
ln(2)e

βg
κ Ei

�
−βg

κ

�
− ξ1(κ), if ϑ = 1.

Proof: Please, see Appendix C.
Note that as long as we have SIC error propagation, there

will be a negative term in (21), i.e., −ξ2(κ̃g2), which indicates
degradation in the rate of the strong user. In fact, numerical
results show that ξ2(κ) is an increasing function of the SNR
ρ. However, when ρ → ∞, the negative term in (21) will
make the expression to converge to a saturation point, which
means that the achievable data rate at the strong user will be
always capped if μ �= 0. Similar behavior can be observed in
the expression for the weak user, in (20). Nevertheless, since
it does not perform SIC, its rate ceiling will be independent of
μ. More details are provided in Section V, where we perform
an insightful numerical analysis.

IV. ENHANCING USER FAIRNESS THROUGH

DYNAMIC POWER ALLOCATION

Even though fixed power allocation policy, which was
considered in the previous section, is simpler to employ and
has been widely adopted in several previous works [3], [4],
[32], it can lead to low data rates at the weaker users.
As mentioned before, such an unbalanced performance can be
very detrimental to certain 5G applications with strict fairness
requirements. Therefore, in this section, we develop dynamic
power allocation protocols for enhancing user fairness within
the proposed massive MIMO-NOMA network. More details
are provided next.

A. Power Allocation Within the NOMA Sub-Groups

First, we focus on enhancing user fairness only within each
NOMA sub-group. Specifically, the BS needs to distribute the
power resources between the two users within the sub-groups
in such a way that their rates become balanced. Given that

the weak users face the worst channel conditions, we must
ensure that their rates are greater than or equal to that
achieved by the stronger ones, i.e., log2

�
1 +

ρ�g1αg1

ρ�g1αg2+1

�
≥

log2

�
1 +

ρ�g2αg2

ρ�g2μαg1+1

�
. With this in mind, our objec-

tive can be accomplished with the following optimization
problem

max
αg1,αg2

{Rg2} (22a)

s.t. Rg1 ≥ Rg2, (22b)

αg1 + αg2 = ᾱg, (22c)

αg1 ≥ 0, αg2 ≥ 0, (22d)

where ᾱg denotes the total transmit power available for the
gth sub-group.

Given that log2(·) is a monotonic increasing function, from
the constraint (22b), it follows that ρ�g1αg1

ρ�g1αg2+1 ≥ ρ�g2αg2

ρ�g2μαg1+1 .
As a result, the problem (22) can be simplified to

max
αg1,αg2

�
log2

�
1 +

ρ�g2αg2

ρ�g2μαg1 + 1

��
(23a)

s.t. �g1�g2α
2
g2 − μ�g1�g2α

2
g1 + �g2αg2ρ

−1 ≤ �g1αg1ρ
−1,

(23b)

αg1 + αg2 = ᾱg, (23c)

αg1 ≥ 0, αg2 ≥ 0. (23d)

Then, by letting αg1 = ᾱg − αg2, the constraint in (23b)
becomes α2

g2(�g1�g2 − μ�g1�g2) + αg2(�g1ρ
−1 + �g2ρ

−1 +
2μ�g1�g2ᾱg) − (�g1ρ

−1ᾱg + μ�g1�g2ᾱ
2
g) ≤ 0, and (23) can

be rewritten as

max
αg2

�
log2

�
1 +

ρ�g2αg2

ρ�g2μ(ᾱg − αg2) + 1

��
(24a)

s.t. α2
g2(�g1�g2 − μ�g1�g2) + αg2(�g1ρ

−1 + �g2ρ
−1

+ 2μ�g1�g2ᾱg) − (�g1ρ
−1ᾱg + μ�g1�g2ᾱ

2
g) ≤ 0,

(24b)

αg2 ≥ 0. (24c)

By using the fact that log2

�
1 +

ρ�g2αg2

ρ�g2μ(ᾱg−αg2)+1

�

increases monotonically with αg2, the problem (24) can be
reduced to the optimization of only αg2, as follows

min
αg2

− {αg2} (25a)

s.t. α2
g2(�g1�g2 − μ�g1�g2) + αg2(�g1ρ

−1 + �g2ρ
−1

+ 2μ�g1�g2ᾱg) − (�g1ρ
−1ᾱg + μ�g1�g2ᾱ

2
g) ≤ 0,

(25b)

− αg2 ≤ 0, (25c)

The optimal solution for (25) is given in the following
proposition.

Proposition III: The optimization problem in (25) is convex
and, consequently, has a global optimal solution, which is
given in closed-form by (26), shown at the bottom of the next
page, and

α∗
g1 = ᾱg − α∗

g2. (27)

Proof: Please, see Appendix D.
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Algorithm 1 Iterative Algorithm for Fairness Among Sub-
Groups
Input: �, ρ, �g1, �g2.

1 Set the initial available power to ᾱg = 1, ∀g;
2 do
3 for g = 1 to G do
4 Calculate α∗

g2 and α∗
g1 using (26) and (27),

respectively;
5 Calculate the sub-group’s sum-rate by

Rg = Rg1 + Rg2;
6 end
7 ĝ = argmax(Rg : ∀g ∈ {1, 2, · · · , G});
8 ǧ = argmin(Rg : ∀g ∈ {1, 2, · · · , G});
9 Calculate Δα using (28);

10 Update ᾱĝ = ᾱĝ − Δα;
11 Update ᾱǧ = ᾱǧ + Δα;
12 �∗ = Rĝ − Rǧ;
13 while �∗ > �;

Note that the calculation of the solution above requires
knowledge of the error propagation factor μ and the effective
channel gains �gk, ∀g, k. Since the gains �gk are already
needed at the BS for enabling NOMA, they can be directly
used in power allocation. On the other hand, as clarified
in Subsection III-A, μ can be estimated at the receiver’s
side through long-term measurements. Therefore, this scalar
parameter can be fed back to the BS with little impact on the
feedback overhead, and the optimum power allocation in (26)
and (27) can be computed.

B. Providing Fairness Among Sub-Groups

In the last subsection, we have developed a dynamic power
allocation policy for providing fairness to the users within
each NOMA sub-group. However, users located at different
sub-groups can still experience different performance levels.
This represents an unfair distribution of resources since some
groups can achieve high data rates while others can be almost
in a state of outage. In view of this, in this subsection,
we develop a strategy for improving fairness also among
different sub-groups. For achieving this goal, we propose an
iterative algorithm that enables the BS to provide a fair power
allocation for all users in all sub-groups within each cluster
so that all terminals can reach identical data rates. The basic
idea is to, at each iteration, transfer a certain amount of
power, denoted by Δα, from the best to the worst sub-group,
and to use the dynamic power allocation derived in the last
subsection to iteratively rebalance each user’s individual rate.
This iterative solution is shown in Algorithm 1. As one can
observe, in the first stage of the algorithm, we calculate the

users’ power allocation coefficients by using (26) and (27) and
compute the resulting sum-rate, Rg , for each sub-group. Then,
in lines 7 and 8, the indexes of sub-groups with the highest
and lowest sum-rate are selected, which are represented by
ĝ and ǧ, respectively. After that, we calculate the amount of
power Δα that needs to be reallocated from the group ĝ to
the group ǧ. This process repeats until the sum-rate difference
between the best and worst sub-group reaches a value lower
than a predefined threshold �. Observe that, since this iterative
approach is computed based on the effective channel gains,
�gk, ∀g, k, the BS will be required to execute Algorithm 1 at
each coherence interval.

The value of Δα is determined by the amount of power
that is required to balance the data rates of the strongest users
from the best and worst sub-groups, in which, in this section,
we assume that μ = 0, i.e., SIC is carried out perfectly. Δα

is calculated in the following proposition.
Proposition IV: The amount of power Δα needed to balance

the rates of the strongest users from the sub-groups with the
highest and lowest sum-rate, assuming perfect SIC,7 is given
by

Δα =
−A2 ±

�
A2

2 − 4A1A3

2A1
, (28)

where

A1 = 4�2
ǧ1�ǧ2ρ

−1 + 4K1, A2 = 2A1K3 + 16K2K1,

A3 = K2
3 − 4K2

�2
ǧ1

�2
ĝ1

(�ĝ1ρ
−1 + �ĝ2ρ

−1)2 − 16K2K1ᾱĝ,

and

K1 =
�2

ǧ1

�2
ĝ1

�2
ĝ1�ĝ2ρ

−1,

K2 = (�ǧ1ρ
−1 + �ǧ2ρ

−1 − �ǧ1

�ĝ1
(�ĝ1ρ

−1 + �ĝ2ρ
−1))2,

K3 = (�ǧ1ρ
−1 + �ǧ2ρ

−1)2 + 4�2
ǧ1�ǧ2ρ

−1ᾱǧ

− K2 − �2
ǧ1

�2
ĝ1

(�ǧ1ρ
−1 + �ǧ2ρ

−1)2 − 4K1ᾱĝ.

Proof: Please, see Appendix E.

C. Computational Complexity of Algorithm 1

In this subsection, we provide the worst-case computational
complexity of the proposed power allocation solution shown in
Algorithm 1. As in [34], we consider summations, multipli-
cations, comparisons, and square-roots as the most relevant

7Due to the complicated expression in (26), obtaining a closed-form solution
for Δα considering imperfect SIC becomes a very challenging task. Thus,
a different approach for computing Δα is necessary when µ �= 0, but this is
left for future works.

α∗
g2 =

⎧
⎪⎪⎨
⎪⎪⎩

1
2(�g1�g2−μ�g1�g2)

 
−(�g1ρ

−1 + �g2ρ
−1 + 2μ�g1�g2ᾱg)

+
�

(�g1ρ−1 + �g2ρ−1 + 2μ�g1�g2ᾱg)2 + 4�g1�g2(1 − μ)(�g1ρ−1ᾱg + μ�g1�g2ᾱ2
g)

�
, if 0 ≤ μ < 1,

(�g1ρ
−1ᾱg + μ�g1�g2ᾱ

2
g)/(�g1ρ

−1 + �g2ρ
−1 + 2μ�g1�g2ᾱg), if μ = 1.

(26)
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and time-consuming operations. The proposed algorithm is
iterative, and the number of iterations, denoted here by I ,
depends on the predefined threshold �. This shows a clear
trade-off between the accuracy of the solutions and the com-
putational complexity. Between lines 3 and 6 of Algorithm 1,
at each iteration, the power allocation coefficients for strong
and weak users are computed for each sub-group according
to equations (26) and (27) and, then, the sum-rate of each
sub-group is calculated. Note that, in (26), the variables �g1 ,
�g2 , μ and ρ do not change along the iterations. In fact,
only the sub-group’s power budget, ᾱ, changes. As a result,
the number of summations, multiplications, and square-root
operations performed at each algorithm iteration are 6G, 8G,
and G, respectively. In line 5, we have G summations per
iteration. In lines 7 and 8, we have the search for the maximum
and minimum sub-group’s data rate, respectively. Thereby,
in each line, the algorithm performs G−1 comparisons. In the
calculation of (28), in line 9, the number of summations,
multiplications, and square-root operations are 7, 8, and 1 per
iteration, respectively. Lastly, in lines from 10 to 12, we have
3 summations per iteration. To sum up, the total number of
operations for a given number of iterations, I , is 17IG+17I .
Consequently, we can conclude that the worst-case computa-
tional complexity of Algorithm 1 is O (IG).

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we investigate the performance of the
proposed massive MIMO-NOMA system under the impact
of imperfect SIC employing both fixed and dynamic power
allocation policies. We also present performance compar-
isons with conventional massive MIMO-OMA scheme, whose
implementation details can be found in [4]. We configure the
BS with a uniform linear array of M = 90 antennas, which
is transmitting information to users that are distributed among
S = 4 spatial clusters, each one having a diameter of D = 50
m and an angular spread of δ = 10◦, which corresponds to
a distance of L = D

2 tan(δ)
∼= 141 m from the BS to the

center of the cluster. In addition, we configure the direction
of the antenna array to the cluster that is being analyzed,
i.e., the first cluster, which is located at the azimuth angle
of ϕ = 7◦, so that the array gain is maximized. Within
each cluster, if not stated otherwise, there are G = V = 2
NOMA sub-groups with K = 2 users each, and we focus
on the first sub-group, which is located at 115 m from the
BS. The path-loss exponent is set to η = 2, and the array
gain parameter to Φ = 4 × 104. Moreover, when fixed power
allocation is considered, the power coefficients of users 1 and
2 are configured as α1 = 5/8 and α2 = 3/8, respectively.
All provided simulation results are generated by averaging
extensive random channel realizations.

A. Fixed Power Allocation Results

In this subsection, the performance analysis derived in
Section III is validated, in which, in all figures, a perfect
agreement between analytical and simulated curves can be
visualized. Besides, all results provided in this subsection are
generated by employing a fixed power allocation policy.

Fig. 2. Impact of imperfect SIC on the users’ ergodic rates for different
number of receive antennas.

Fig. 2 shows the ergodic rates in terms of transmit SNR for
different levels of SIC error propagation and various numbers
of receive antennas. As one can notice, when perfect SIC
is considered, by increasing the number of receive antennas,
the performance of the strong user is improved for all consid-
ered SNR range. However, when there is some residual error
from imperfect SIC, the maximum achievable rate decreases
as μ gets higher. For instance, for an error factor of μ = 0.005,
when ρ = 30dB and N = 2, the strong user’s rate reaches a
limit of 6.82 bits per channel use (BPCU), which represents a
reduction of 4.4 BPCU if compared with the perfect SIC case
considering the same value of transmit SNR. When μ = 0.5,
the impact on the performance of the strong user is even more
severe, where regardless of how many antennas are employed,
a rate of only 1.14 BPCU can be reached, which is lower than
that achievable by the weak user. This behavior is justified by
the fact that when ρ → ∞, if μ > 0, Rg2 → log2

�
1 +

αg2

μαg1

�
.

Therefore, if there is some residual SIC error and αg1 > 0,
there will be always a rate ceiling for the strong user, as
anticipated in the Subsection III-D.

In Fig. 3, the ergodic sum-rate performance achieved with
the proposed massive MIMO-NOMA system is compared with
conventional massive MIMO-OMA counterpart, in which the
impact of imperfect SIC is investigated. One can see that
when the error factor is greater than zero, at some point
the MIMO-OMA system outperforms the MIMO-NOMA
design. This behavior show us that employing NOMA is not
always advantageous when SIC imperfection is significant.
For example, when μ = 0.005 and N = 2, from 16dB
onward, the OMA sum-rate performance becomes superior
to that achieved by the NOMA scheme, which saturates at
8.33 BPCU. When μ = 0.1, either for N = 2 and N = 6,
the MIMO-OMA system always achieves higher performance
than the massive MIMO-NOMA system, meaning that when
error propagation is high, the employment of OMA is always
preferable.

Figs. 4 and 5 show the outage probability curves for
different numbers of receive antennas, target rates, and error
propagation factors. In Fig. 4, by fixing the target rates of weak
and strong users at 1.4 BPCU, one can see that when the error
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Fig. 3. Simulated ergodic sum-rate curves for massive MIMO-NOMA system
with imperfect SIC and conventional massive MIMO-OMA counterpart.

Fig. 4. Impact of imperfect SIC on the outage probability for different
number of receive antennas (T1 = T2 = 1.4 BPCU).

factor gets higher than 0.36, with just a tiny error increase,
the performance of the strong user is severely degraded.
In particular, when N = 4 and μ is increased from 0.363 to
0.366, the outage probability of the strong user becomes worse
even than that achieved by the weak user employing N = 2
receive antennas for SNR values lower than 36dB. This fast
degradation happens because the maximum achievable rate of
the strong user shifts very close to its target data rate when μ

reaches values above 0.36, i.e., Rg2 → log2

�
1 +

αg2

0.36αg1

�
≈

1.4 BPCU when ρ → ∞. As a result, from low to moderate
SNR ranges, the strong user will face an increased probability
of achieving a throughput lower than its target rate, which
explains the observed behavior. In Fig. 5, we can observe the
impact of SIC error propagation for different sets of target
rates. One can realize that for higher target values, the outage
probability performance becomes more sensible to imperfect
SIC. For example, by setting the target rates of both users to
1 BPCU, when μ is increased from 0 to 0.5, the outage curve
of the strong user shifted only 6dB to the right. On the other
hand, when T1 = 1.4 and T2 = 2.8 BPCU, for an error factor
of only μ = 0.1, the strong user requires approximately 12dB
more SNR to reach the same performance of that achieved
when perfect SIC is considered.

Fig. 5. Outage probability versus transmit SNR for different SIC interference
levels and different target rates (N = 4).

Fig. 6. Ergodic rates for strong and weak users in massive MIMO-NOMA
system with dynamic and fixed power allocation policies (N = 2).

B. Dynamic Power Allocation Results

Now, the dynamic power allocation policies achieved in
Section IV are investigated. Fig. 6 demonstrates the effec-
tiveness of the optimum solution obtained in Proposition III,
in which the ergodic rates of weak and strong users employing
fixed and dynamic power allocation are shown. One can see
that, with fixed power allocation, the performance of the weak
user is strongly impacted, such that its ergodic rate reaches a
very low limit for higher values of transmit SNR. In contrast,
the strong user experiences high data rates even when SIC
error propagation is present. This illustrates an unfair resource
allocation. On the other hand, the dynamic policy provides
great benefits to the weak user, improving fairness within the
sub-group. As one can observe, the rates of the two users are
balanced so that both achieve an acceptable performance. For
instance, for an SNR of 22dB when perfect SIC is considered,
both users can reach a rate of 4.82 BPCU with dynamic power
allocation, what represents an improvement of 3.43 BPCU to
the weak user if compared with that achieved with fixed policy
of only 1.39 BPCU.

Considering perfect SIC, Fig. 7 brings the ergodic rate
curves for various values of receive antennas, exclusively for
the weak user within the considered sub-group. As one can
see, in the fixed power allocation, regardless of how many
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Fig. 7. Ergodic rates for the weak user in massive MIMO-NOMA system
with dynamic and fixed power allocation policies (µ = 0).

Fig. 8. Ergodic sum-rate curves for massive MIMO-NOMA and
MIMO-OMA systems with dynamic and fixed power allocation policies
(µ = 0).

receive antennas are employed or how much the transmit SNR
is improved, the achievable rate approaches a common limiting
value. This does not happen with the proposed dynamic
allocation. As it can be observed, the performance continues to
increase even for higher SNR values. For example, considering
a transmit SNR of 24dB and N = 10 receive antennas,
the dynamic allocation can achieve a rate of 6.92 BPCU, which
is almost 5 times greater than the achieved with the fixed
policy. Fig. 8 compares the ergodic sum-rate curves achieved
in MIMO-NOMA and MIMO-OMA systems. One can realize
that dynamic allocation causes a slight decrease in the perfor-
mance of the MIMO-NOMA scheme. This is because, in order
to enhance fairness, the optimization problem in (22) decreases
the strong users’ rates, which impacts the system sum-rate.
However, it is noteworthy that, for all values of receive anten-
nas, the performance achieved in the MIMO-NOMA system
employing dynamic power allocation can still outperform the
conventional MIMO-OMA counterpart.

Fig. 9 demonstrates the benefits of the dynamic power
allocation on the outage probability. It is interesting to observe
that, in addition to the fairness improvements, the outage
performance of both weak and strong users is remarkably
improved. For instance, with N = 4 receive antennas, when
employing the dynamic policy, the strong user requires roughly

Fig. 9. Outage probabilities achieved with dynamic and fixed power allo-
cation policies in massive MIMO-NOMA systems (T1 = T2 = 1.4 BPCU;
µ = 0).

Fig. 10. Ergodic rates for users in different sub-groups employing different
power allocation policies (d1 = 115m; d2 = 150m; N = 4; µ = 0).

12dB less SNR to reach the same outage level of that achieved
with fixed power allocation. The performance gains obtained
by the weak user with dynamic allocation are even more
impressive, in which a remarkable gain of 20dB can be
achieved.

At last, by considering different power allocation protocols,
Fig. 10 plots the ergodic rates for users within two different
sub-groups, one located at 115m and other at 150m from
the BS. It becomes clear that, even though the optimization
problem in (22) is capable of providing fairness to users
within the same sub-group, users from other sub-groups can
still experience different performance levels, which, in some
applications, might not be desirable. This figure also illus-
trates the performance of the iterative algorithm proposed in
Section IV-B, which provides fairness also among different
sub-groups. We see that, when the referred algorithm is
adopted, the rates of users from the worst sub-group are
improved at the cost of reducing the performance of users
from the best one. However, if we compare with fixed power
allocation, Algorithm 1 is very beneficial to the weak users
independently of the group. For example, for an SNR of 24dB,
all users employing the iterative algorithm can reach a rate
of 4.9 BPCU, which represents a gain of 3.5 BPCU for all
weak users when adopting the fixed policy.
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VI. CONCLUSION

In this paper, by modeling residual error propagation from
imperfect SIC, the performance of a massive MIMO-NOMA
network was investigated. In particular, the detailed design
of beamformers and detection matrices were presented,
an in-depth analytical analysis was carried out, and optimum
power allocation for maximizing the rates of weak users
within each sub-group was derived. An iterative algorithm
for providing fairness among different sub-groups was also
proposed. The simulation results demonstrated that the devel-
oped dynamic power allocation provides remarkable fairness
enhancements and, at the same time, enormous performance
gains in terms of outage probability. It also became evident
that when SIC error propagation is present, the employment
of NOMA is not always advantageous.

APPENDIX A
PROOF OF LEMMA I

From (8), it is straightforward to see that the current kth
user, 1 ≤ k ≤ 2, decodes the first message, i.e., the message
intended to the first user, with the following SINR

γ1
gk =

|√αg1xg1|2

|√αg2xg2|2 + |[H†
gkngk]g|2

=

1

[H†
gkH

†H
gk ]gg

αg1

1

[H†
gkH

†H
gk ]gg

αg2 + σ2
n

. (A-1)

For convenience, let �gk = 1

[H†
gkH

†H
gk ]gg

be the effective

channel gain, and let ρ = 1/σ2
n represent the transmit SNR.

Given these definitions, (A-1) can be rewritten as

γ1
gk =

ρ�gkαg1

ρ�gkαg2 + 1
, for 1 ≤ k ≤ 2. (A-2)

Note that, since user 2 is the strongest one, it will decode
its own message with some residual interference, resulting in
the following SINR

γ2
g2 =

ρ�g2αg2

ρ�g2μαg1 + 1
. (A-3)

Then, for achieving a general SINR expression valid for
both users, the following is defined

α�
gi =

�
αg2, for i = 1,

μαg1, for i = k = 2.
(A-4)

Lastly, by combining (A-2), (A-3), and (A-4), the final SINR
expression is obtained, as follows

γi
gk =

ρ�gkαgi

ρ�gkα�
gi + 1

, for 1 ≤ i ≤ k ≤ 2, (A-5)

which completes the proof.

APPENDIX B
PROOF OF PROPOSITION I

The outage probability expression in (15) can be rewritten
as follows

Pgk = P

�
log2

!
1 +

ρ�gkαgi

ρ�gkα�
gi + 1

"
< Tgi

�

= P

�
�gk <

2Tgi − 1

ρ(αgi − α�
gi(2

Tgi − 1))

�
, (B-1)

in which, for user 1 (the weak user), (B-1) can be simplified
as

Pg1 = P

�
�g1 <

ρ−1(2Tg1 − 1)

αg1 − αg2(2Tg1 − 1)

�

= P
 
�g1 < ρ−1Lg1

#
, (B-2)

while, for user 2 (the strong user), (B-1) becomes

Pg2 = P

�
�g2 < ρ−1 max

�
2Tg1 − 1

αg1 − αg2(2Tg1 − 1)
,

2Tg2 − 1

αg2 − μαg1(2Tg2 − 1)

��

= P
 
�g2 < ρ−1 max {Lg1, Lg2}

#
, (B-3)

in which, for simplicity, we have defined Lg1 =
2Tg1−1

αg1−αg2(2Tg1−1)
and Lg2 = 2Tg2−1

αg2−μαg1(2Tg2−1)
.

As one can observe, (B-2) and (B-3) are equivalent to
the CDF of the effective channel gains of users 1 and 2,
respectively. Consequently, the outage probability expressions
can be obtained by integrating the PDFs in (13) and (14),
in which, for user 1, it results in

Pg1 =
2βϑ

g

Γ(ϑ)

�� ρ−1Lg1

0

xϑ−1e−βgxdx

−
� ρ−1Lg1

0

xϑ−1e−βgx γ(ϑ, βgx)

Γ(ϑ)
dx

�

=

⎧
⎨
⎩

2γ(ϑ,ρ−1βgLg1)
Γ(ϑ) −

�
γ(ϑ,ρ−1βgLg1)

Γ(ϑ)

�2

, if Lg1 ≥ 0,

1, otherwise,

(B-4)

while, for user 2, the following is obtained

Pg2 =

⎧
⎪⎪⎨
⎪⎪⎩

�
γ(ϑ,ρ−1βg max{Lg1,Lg2})

Γ(ϑ)

�2

,

if min {Lg1, Lg2} ≥ 0,

1, otherwise,

(B-5)

which completes the proof.

APPENDIX C
PROOF OF PROPOSITION II

The ergodic rates for users 1 and 2, can be obtained by
calculating the expected value of their instantaneous rates.
Then, firstly, let us rewrite the rate expression of user 1,
in (18), as follows

Rg1 = log2

�
1 + ρ(αg1 + αg2)�g1

1 + ραg2�g1

�

= log2 (1 + κg1�g1) − log2 (1 + κ̃g1�g1) , (C-1)

and, for user 2, as

Rg2 = log2

�
1 + ρ(μαg1 + αg2)�g2

1 + ρμαg1�g2

�

= log2 (1 + κg2�g2) − log2 (1 + κ̃g2�g2) , (C-2)

in which, for notation convenience, it has been defined κg1 =
ρ(αg1 + αg2), κ̃g1 = ραg2,
κg2 = ρ(μαg1 + αg2), and κ̃g2 = ρμαg1.
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Given the expression in (C-1), the ergodic rate for user 1 can
be expressed as

R̄g1 =

� ∞

0

log2 (1 + κg1x) f�g1 (x)dx

−
� ∞

0

log2 (1 + κ̃g1x) f�g1(x)dx

= ξ1(κg1) − ξ1(κ̃g1). (C-3)

Then, by invoking the PDF of �g1, provided in (13), ξ1(κ)
can be calculated as follows

ξ1(κ) =
2βϑ

g

Γ(ϑ)

�� ∞

0

log2 (1 + κx) xϑ−1e−βgxdx

−
� ∞

0

log2 (1 + κx) xϑ−1e−βgx γ(ϑ, βgx)

Γ(ϑ)
dx

�
.

(C-4)

Next, by applying the series representation of the incomplete
gamma function to the second integral in (C-4), we obtain

ξ1(κ) =

ϑ−1�

i=0

2βϑ+i
g

Γ(ϑ)i!

� ∞

0

log2 (1 + κx) xϑ+i−1e−2βgxdx.

(C-5)

Lastly, after some algebraic manipulation and apply-
ing results from [26], we achieve the desired solution,
as follows

ξ1(κ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�ϑ−1
i=0

1
2ϑ+i−1 ln(2)Γ(ϑ)i!

�ϑ+i−1
m=0

(ϑ+i−1)!
(ϑ+i−m−1)!

×
�

(−1)ϑ+i−m−2

�
κ

2βg

�ϑ+i−m−1 e
2βg
κ Ei

�
− 2βg

κ

�

+
�ϑ+i−m−1

n=1
(n−1)!�

− κ
2βg

�ϑ+i−m−n−1

�
,

if ϑ > 1,

− 1
ln(2)e

2βg
κ Ei

�
− 2βg

κ

�
, if ϑ = 1.

Now, we focus on the second user, in which, from (C-2),
its ergodic rate can be obtained as

R̄g2 =

� ∞

0

log2 (1 + κg2x) f�g2 (x)dx

−
� ∞

0

log2 (1 + κ̃g2x) f�g2(x)dx

= ξ2(κg2) − ξ2(κ̃g2), (C-6)

where ξ2(κ) can be derived as

ξ2(κ) =
2βϑ

g

ln(2)Γ(ϑ)

� ∞

0

ln (1 + κx) xϑ−1e−βgxdx

−
ϑ−1�

i=0

2βϑ+i
g

ln(2)Γ(ϑ)i!

� ∞

0

ln (1 + κx) xϑ+i−1e−2βgxdx

=
2βϑ

g

ln(2)Γ(ϑ)

� ∞

0

ln (1 + κx) xϑ−1e−βgxdx − ξ1(κ).

(C-7)

Finally, by doing some manipulations in (C-7), and also
using results from [26], we obtain the following solution

ξ2(κ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
ln(2)

�ϑ−1
m=0

1
(ϑ−m−1)!

�
(−1)ϑ−m−2

�
κ
βg

�ϑ−m−1 e
βg
κ Ei

�
−βg

κ

�

+
�ϑ−m−1

n=1
(n−1)!�

− κ
βg

�ϑ−m−n−1

�
− ξ1(κ),

if ϑ > 1,

− 2
ln(2)e

βg
κ Ei

�
−βg

κ

�
− ξ1(κ), if ϑ = 1,

which completes the proof.

APPENDIX D
PROOF OF PROPOSITION III

Clearly, the objective function in (25a) is linear and the
function on the left-hand-side of constraint (25b) consists in
a quadratic polynomial. As �gk ≥ 0, ∀ g, k, the constraint
in (25b) is convex. This makes (25) a convex optimization
problem. Therefore, the KKT conditions are necessary and
sufficient to determine the global optimal solution of the
considered problem [35]. The Lagrangian function of (25) can
be written as

L(αg2, ω, ν) = −αg2 + ω[α2
g2(�g1�g2 − μ�g1�g2)

+ αg2(�g1ρ
−1 + �g2ρ

−1 + 2μ�g1�g2ᾱg)

− (�g1ρ
−1ᾱg + μ�g1�g2ᾱ

2
g)] − ναg2,

(D-1)

where ω ≥ 0 and ν ≥ 0 are, respectively, the Lagrangian
multipliers associated with the constraints (25b) and (25c).
The KKT conditions are summarized as follows

∇L(αg2, ω, ν) = 0, (D-2a)

ω[α2
g2(�g1�g2 − μ�g1�g2)

+ αg2(�g1ρ
−1 + �g2ρ

−1 + 2μ�g1�g2ᾱg)

− (�g1ρ
−1ᾱg + μ�g1�g2ᾱ

2
g)] = 0, (D-2b)

− ναg2 = 0. (D-2c)

Assuming that αg2 > 0, from (D-2c) it can be concluded
that ν = 0. Then, from (D-2a), the value of ω is easily
determined as follows

ω = (2αg2(�g1�g2 − μ�g1�g2) + �g1ρ
−1 + �g2ρ

−1

+ 2μ�g1�g2ᾱg)
−1. (D-3)

Considering that the expression in (D-3) never reaches zero,
and that 0 ≤ μ < 1, the solution for (D-2b) can be obtained
from the following quadratic equation

α2
g2(�g1�g2 − μ�g1�g2) + αg2(�g1ρ

−1 + �g2ρ
−1

+ 2μ�g1�g2ᾱg) − (�g1ρ
−1ᾱg + μ�g1�g2ᾱ

2
g) = 0. (D-4)

If μ = 1, (D-4) becomes the following linear
equation

αg2(�g1ρ
−1 + �g2ρ

−1 + 2μ�g1�g2ᾱg)

− (�g1ρ
−1ᾱg + μ�g1�g2ᾱ

2
g) = 0. (D-5)
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α∗
g2 =

⎧
⎪⎪⎨
⎪⎪⎩

1
2(�g1�g2−μ�g1�g2)

 
−(�g1ρ

−1 + �g2ρ
−1 + 2μ�g1�g2ᾱg)

+
�

(�g1ρ−1 + �g2ρ−1 + 2μ�g1�g2ᾱg)2 + 4�g1�g2(1 − μ)(�g1ρ−1ᾱg + μ�g1�g2ᾱ2
g)

�
, if 0 ≤ μ < 1,

(�g1ρ
−1ᾱg + μ�g1�g2ᾱ

2
g)/(�g1ρ

−1 + �g2ρ
−1 + 2μ�g1�g2ᾱg), if μ = 1,

(D-6)

Therefore, the optimal power allocation for user 2 can be
obtained by calculating the zeros of (D-4), if 0 ≤ μ < 1,
or solving (D-5), if μ = 1, as in (D-6), shown at the top of
this page, which completes the proof.

APPENDIX E
PROOF OF PROPOSITION IV

The amount of power Δα can be calculated by equalizing
the rate expressions of the two strongest users of interest,
in which, by considering that μ = 0, the following is obtained

Rĝ2 = Rǧ2 =⇒ log2

�
1 + ρ�ĝ2α

∗
ĝ2

�
= log2

�
1 + ρ�ǧ2α

∗
ǧ2

�

=⇒ α∗
ĝ2�ĝ2 = α∗

ǧ2�ǧ2. (E-1)

Next, by replacing α∗
ĝ2 and α∗

ǧ2 by their corresponding
closed-form expressions, (E-1) becomes

− 2�ǧ1�ĝ1ρ
−1 − 2�ǧ1�ĝ2ρ

−1

+ 2�ǧ1

�
(�ĝ1ρ−1 + �ĝ2ρ−1)2 + 4�2

ĝ1�ĝ2ρ−1(ᾱĝ − Δα)

= −2�ĝ1�ǧ1ρ
−1 − 2�ĝ1�ǧ2ρ

−1

+ 2�ĝ1

�
(�ǧ1ρ−1 + �ǧ2ρ−1)2 + 4�2

ǧ1�ǧ2ρ−1(ᾱǧ + Δα).

(E-2)

Then, after some algebraic manipulation, and defining K1 =
�2
ǧ1

�2
ĝ1

�2
ĝ1�ĝ2ρ

−1, K2 = (�ǧ1ρ
−1 + �ǧ2ρ

−1 − �ǧ1

�ĝ1
(�ĝ1ρ

−1 +

�ĝ2ρ
−1))2, K3 = ((�ǧ1ρ

−1 + �ǧ2ρ
−1)2 + 4�2

ǧ1�ǧ2ρ
−1ᾱǧ −

K2 − �2
ǧ1

�2
ĝ1

(�ǧ1ρ
−1 +�ǧ2ρ

−1)2 −4K1ᾱĝ), A1 = 4�2
ǧ1�ǧ2ρ

−1 +

4K1, A2 = 2A1K3 + 16K2K1, and A3 = (K2
3 −

4K2
�2
ǧ1

�2
ĝ1

(�ĝ1ρ
−1 + �ĝ2ρ

−1)2 − 16K2K1ᾱĝ), we achieve the
following quadratic equation

A1Δ
2
α + A2Δα + A3 = 0. (E-3)

The final result is obtained by calculating the zeros of (E-3).
This completes the proof.
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AbstrAct
Massive multiple-input multiple-output (MIMO) 

and non-orthogonal multiple access (NOMA) are 
two key techniques for enabling massive connectivity 
in future wireless networks. A massive MIMO-NO-
MA system can deliver remarkable spectral improve-
ments and low communication latency. Nevertheless, 
the uncontrollable stochastic behavior of the wireless 
channels can still degrade its performance. In this 
context, the idea of an intelligent reflecting surface 
(IRS) has emerged as a promising technology for 
smartly overcoming the possibly detrimental effects 
of the wireless environment. The disruptive IRS con-
cept of controlling the propagation channels via soft-
ware can provide attractive performance gains to 
the communication networks, including higher data 
rates, improved user fairness, and possibly higher 
energy efficiency. In this article, we demonstrate the 
main roles of IRSs in MIMO-NOMA systems. Spe-
cifically, we identify key challenges and perform a 
comprehensive discussion of the main performance 
gains that can be achieved in IRS-assisted massive 
MIMO-NOMA (IRS-NOMA) networks. We outline 
exciting futuristic use case scenarios for IRS-NOMA 
and expose the main related challenges and future 
research directions. Furthermore, throughout the 
article, we support our in-depth discussions with rep-
resentative numerical results.

IntroductIon
The fifth generation (5G) of wireless cellular sys-
tems will enable the deployment of demanding 
applications such as autonomous cars, massive 
sensor networks, telemedicine, smart homes, and 
more. To make these applications possible, strin-
gent requirements such as massive connectivity, 
improved spectrum efficiency, and low communi-
cation latency must be fulfilled. Massive multiple-in-
put multiple-output (MIMO) is one of 5G’s key 
technologies for accomplishing these requirements. 
By exploiting the spatial domain with transmit 
beamforming techniques, and employing a large  
number of antennas, massive MIMO schemes 
enable resource-efficient parallel transmissions to 
multiple users using the same frequency and time 
slot. Non-orthogonal multiple access (NOMA) is 

another important technology envisioned to be 
part of future wireless systems. In particular, by 
employing superposition coding (SC) at the base 
station (BS) and successive interference cancella-
tion (SIC) at the receivers, power-domain NOMA 
can simultaneously serve more than one user with 
a single resource block. This makes NOMA capa-
ble of providing significant connectivity improve-
ments to communication networks. If massive 
MIMO and NOMA are properly combined, the 
features of the two techniques can be exploited to 
reach even higher spectral gains, which can out-
perform conventional systems employing orthogo-
nal multiple access (OMA) [1].

Nevertheless, despite its potential advantage, a 
MIMO-NOMA system has several limitations. The 
random fluctuation of wireless channels, signal path 
loss, high user mobility, and atmospheric absorption 
are just a few examples of issues that can strongly 
impact the performance of MIMO-NOMA systems 
[2]. The impact of such impairments becomes even 
more severe at higher frequencies, that is, frequen-
cies above 6 GHz, which are a key feature of 5G 
systems and beyond. Although an increase in the 
number of antennas can help overcome such kinds 
of performance degradation, this comes at the cost 
of increased energy consumption when the num-
ber of antenna elements becomes high. In view of 
this, while 5G is still being deployed, engineers and 
researchers have already started looking at new 
energy-efficient technologies to go beyond 5G and 
build the sixth generation (6G) [3]. In particular, due 
to recent advances in the field of electromagnetic 
metamaterials, the appealing concept of an intelli-
gent reflecting surface (IRS) has been drawing signif-
icant attention from both academia and industry [4].

An IRS is an ultra-thin planar structure com-
posed of a large number of reflecting elements, 
known as meta-atoms, whose size is smaller than 
the signal wavelength [5]. The key advantage 
of IRS structures is that each meta-atom can be 
dynamically tuned by software with distinct phases 
and amplitudes of reflection so that they can col-
laboratively forward the impinging waves with, 
ideally, any desired radiation pattern, like a holo-
gram. This capability enables the deployment of 
smart wireless environments with optimized and 
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possibly energy-efficient signal propagation, thus 
paving the way toward a new wireless communi-
cation paradigm. For instance, by properly optimiz-
ing the IRS’s reflection coefficients, signal beams 
can be formed to achieve goals such as enhancing 
the performance of a specific terminal, mitigating 
interference coming from other devices, or even 
completely nulling out information leakage at an 
eavesdropper [6, 7]. In addition to these advan-
tageous features, an IRS has potential to exhibit 
near-zero energy consumption since it does not 
comprise the power-hungry components of con-
ventional radio frequency chains. In general, an 
IRS design contains passive metamaterial parts 
and active control components with only ultra-low-
power electronic circuitry that can be powered 
by energy harvesting wireless modules [4]. These 
features make IRSs a promising plug-and-play tech-
nology for improving the performance of future 
communication networks.

Although a number of surveys on the topic of 
IRS have recently appeared [4, 6, 8], and a few 
technical works on IRS and MIMO-NOMA exist 
[5, 9], there are no tutorials or surveys that over-
view and study these two subjects combined. As 
a result, it is still not completely clear what roles 
can IRSs play in MIMO-NOMA networks. There-
fore, further studies for an in-depth understanding 
of the combination of these two promising tech-
nologies are required. In view of this, the main 
contribution of this article is to investigate the 
potential spectral and energy efficiency gains of 
IRS-assisted massive MIMO-NOMA (IRS-NOMA) 
systems in future wireless networks, as presented 
in Fig. 1. We also discuss the fundamental chal-
lenges pertaining to their effective deployment. 
In summary, this article makes the following key 
contributions:

• Four attractive potential achievements of
IRS-NOMA networks are identified. Specifically,
we show that IRS-NOMA can enable flexible
control on users’ channel gains, enhanced user
fairness, enhanced scalability, and improved
energy efficiency.

• Pervasive coverage via multiple IRSs, 3D cov-
erage in unmanned aerial vehicle (UAV) net-
works, and massive grant-free transmissions are
introduced as three promising applications that
IRS-NOMA has potential to enable in future
wireless systems beyond 5G.

• A comprehensive discussion of the main open
problems, technical challenges, and possible
future directions of IRS-NOMA is provided.

An overvIew of Irs technology
To shed light on the operation of an IRS system, 
in this section, we provide a fundamental back-
ground on the IRS hardware architecture and 
channel model, and a comparison with two differ-
ent related technologies.

fundAmentAls of Irs ArchItecture
There is no consensus on the most appropriate IRS 
architecture. Indeed, the available literature pro-
poses a variety of IRS designs with different num-
bers of layers and different technologies, including 
liquid crystals, microelectromechanical systems, 
doped semiconductors, and electromechanical 
switches [4]. However, the majority of those archi-
tectures share at least three common layers: 
• A meta-atom layer, comprising a larger number

of passive conductor elements and low-power
active switches

• A control layer, which is responsible for adjust-
ing the amplitude and phase shift of each
meta-atom element

FIGURE 1. Illustration of potential achievements of IRS-NOMA networks: a) the IRSs can tune the channel gains to meet the data rate 
requirements of both near and far users; b) the IRSs can boost the performance of the network under fair resource allocation;  
c) by deploying an IRS at the cell edge, more users can be served with NOMA; d) the IRS-NOMA system can achieve similar rate
performance as conventional MIMO-NOMA with less transmit power.
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• A gateway layer (or communication layer) that
establishes the communication between the
control layer and the BS

Each meta-atom acts as a sub-wavelength scatter-
er with reconfigurable electromagnetic properties. 
Such a feature enables them to collectively change 
the induced current patterns in the IRS so that a 
desired electromagnetic field response can be gen-
erated. This allows the IRS to manipulate the wave-
fronts to achieve objectives like steering, absorption, 
polarization, filtering, and collimation [8].

Irs’s chAnnel model, estImAtIon strAtegIes, And 
AssocIAted trAde-offs

Propagation channels via an IRS behave differently 
from those observed in conventional communica-
tion systems. First, in a classical cellular network, 
users are usually considered to be located far from 
the transmit antennas. As a result, most conven-
tional channel models rely on the assumption that 
the system is operating in the far-field regime (i.e., 
the impinging signals at the receive antennas are 
approximated as plane wavefronts). On the other 
hand, in IRS-assisted communication systems, one 
cannot guarantee that users are positioned far 
enough from an IRS, and the far-field assumption 
may not always hold. More specifically, depending 
on the distance between the user and its serving 
IRS, as well as on the size of the IRS, the system 
might operate instead in the near-field radiative 
regime. The mutual coupling effect among IRS ele-
ments is another important effect that differentiates 
IRS systems from classical counterparts. All of these 
characteristics make classical multi-path and path 
loss channel models not suitable and inaccurate for 
modeling IRS-assisted communications. Therefore, 
the development of more realistic models is neces-
sary to capture the fundamental performance limits 
of IRS systems in practice. This is in fact known to 
be an important open problem in this area.

In a general IRS-aided MIMO design, the chan-
nel matrix from the BS to the user, via an IRS, con-
ventionally includes the channel responses from the 
BS to the IRS, a diagonal matrix that models the 
IRS’s signal reflection, and the channel responses 
between the IRS and the user. Specifically, the IRS 
receives the signal from the BS, and then reflects 
the impinging signal by inducing the amplitude and 
phase changes adjusted by the control layer. As a 
result, the BS-IRS-user link can be represented by a 
multiplicative channel model, which can be added 
coherently with the direct link from the BS to either 
boost or attenuate the signal strength at the receiver 
[6]. For a practical channel model, propagation phe-
nomena as discussed above, that is, far-field effect, 
mutual coupling, path loss, and multi-path, should all 
be incorporated in these channel matrices.

To enable the real-time capabilities of an IRS, 
its control layer needs to optimize the meta-atom 
elements based on the channel state information 
(CSI) of the entire system, including all propaga-
tion links. To obtain this global CSI, different strate-
gies with different trade-offs can be employed. For 
instance, it is possible to estimate the BS-IRS-user 
link directly on the IRSs, allowing them to reconfig-
ure their elements autonomously. To accomplish 
this feature, each IRS needs to comprise at least 
low-power sensors and must have some processing 
capabilities. This distributed design can facilitate, 
to some extent, the channel estimation process if 

compared to other strategies. However, the IRS 
optimization complexity increases as the number 
of elements becomes high, which can result in high 
energy consumption at the IRSs. Moreover, hard-
ware complexity and costs will also increase. Equip-
ping the BS with a central controller and employing 
sophisticated channel estimation protocols is anoth-
er common approach used to optimize the IRSs. 
In this centralized design, the estimation and opti-
mization protocols are executed at the BS, which 
can afford high computational power. Once the 
estimation and optimization are completed, the BS 
only needs to send the result with the optimal set 
of coefficients to the IRS’s control layer. The main 
advantage of a centralized design is that, without 
the need for sensing components, the IRS hardware 
can be further simplified, which can potentially lead 
to lower energy consumption. The downside is that, 
when the number of IRS elements grows, the chan-
nel estimation complexity and the signaling over-
head from the BS to the IRSs will increase, which 
can be challenging in practical implementations.

Irs And relAted technologIes
Next, we discuss some important features that 
distinguish IRSs from related technologies like 
amplify-and-forward (AF) relaying and ambient 
backscatter radio systems.

In AF relaying networks, when a relay node 
amplifies the received signals (which can be ener-
gy-consuming), it also amplifies noise, which con-
sequently can degrade the system performance. 
Moreover, AF relays can only operate in full-duplex 
mode if efficient self-interference cancellation tech-
niques are employed. This impairment can increase 
the implementation cost and system complexity [6]. 
In contrast, IRSs operate in passive reflecting mode 
and do not require a dedicated energy source to 
retransmit the impinging signals. This characteristic 
enables the IRSs to work in full-duplex mode with-
out generating self-interference and noise amplifi-
cation. Ambient backscatter communication [10] 
is another technology that operates recycling the 
impinging electromagnetic waves. However, the 
working principle and objectives of such systems 
are very distinct from the IRS concept. While IRSs 
are designed to only reflect transmitted signals, pas-
sive backscatter devices harvest energy from the 
received analog waves coming from different active 
sources to transmit its own information. Further-
more, backscatter systems are susceptible to strong 
direct interference generated from active sources, 
an issue that is not present in IRS networks. A com-
parison of the features of IRS and the aforemen-
tioned technologies is summarized in Table 1.

Irs-nomA networks: PotentIAl ImProvements
In this section, we identify four important perfor-
mance gains that IRS-NOMA systems can potential-
ly provide, namely tuned channel gains, improved 
fair resource allocation, enhanced coverage 
range, and high energy efficiency. These attractive 
achievements are illustrated in Fig. 1. For each of 
the illustrated gains, we perform a comprehensive 
and in-depth discussion that is supported by numer-
ical results generated from IRS-NOMA Monte Carlo 
simulations. In particular, we consider the down-
link transmissions of a cellular network having a sin-
gle BS equipped with a uniform linear array of 80 
transmit antennas that serves users with 4 receive 
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antennas. Unless stated otherwise, an IRS with 20 
reflecting elements is installed nearby to each user. 
Given that an IRS can forward the impinging sig-
nals with high directivity and considering that users 
are separated far enough, we assume that the IRS 
of a given user does not interfere with other IRSs. 
Furthermore, we present results considering both 
fixed and optimized reflection coefficients. In the 
optimized IRS results, depending on the system 
objectives, we dynamically tune the reflecting ele-
ments to either maximize or attenuate the instan-
taneous rates achieved by each user, and, on the 
fixed setups, all reflection phases and amplitudes 
are adjusted to 0° and 1, respectively. To realize 
these capabilities, we assume a centralized archi-
tecture where the IRSs are coordinated by a central 
controller installed at the BS, which can accurate-
ly estimate the CSI of all propagation links. More-
over, analogous to [1, 2], the multi-antenna users 
are considered to be distributed among multiple 
clusters, in which the users are sub-divided into mul-
tiple NOMA groups. In order to cancel inter-cluster 
interference, the BS employs a precoder that is con-
structed based on the null-space spanned by the 
channel matrices of interfering clusters, and each 
user adopts a zero-forcing receiver to eliminate the 
remaining inter-group interference. More details 
about this transmission and reception strategy can 
be found in [1].

tuned chAnnel gAIns
In order for NOMA to be effective, during the SC 
process at the BS, the users are sorted in an ascend-
ing or descending order based on their channel 
gains so that, relying on this information, the users 
can successfully employ SIC to recover the trans-
mitted messages. This renders the performance of 
MIMO-NOMA systems highly dependent on the 
users’ channel conditions. In particular, it has been 
shown that NOMA can achieve higher spectral effi-
ciency than OMA only if the channel gains of differ-
ent users are significantly distinct and if their spatial 
directions are not orthogonal to each other [9]. The 
challenge of these constraints in conventional net-
works is that they cannot be always satisfied. This 
is because the highly stochastic propagation paths 
are determined almost exclusively by the scattering 
environment and the location of the receivers, in 
which classical communication systems have no 
control. This scenario completely changes when 
it comes to IRS-assisted networks. By deploying 
IRSs, the propagation environment can be smartly 
tuned according to the desired objectives, poten-
tially enabling the network to finely adjust its users’ 
channel gains so that NOMA can always achieve 
good spectral efficiency. For instance, the recent 
work in [9] has shown that, with the help of IRSs, 
it is possible to force the channels to become qua-
si-degraded — a condition in which MIMO-NOMA 
can achieve the same performance of dirty paper 
coding (DPC), that is, where it can approach the 
capacity region of the downlink channel.

The IRS technology introduces a new paradigm 
to MIMO-NOMA networks by providing it with flex-
ibility in multiplexing users. By employing IRSs, it can 
become possible even to change the original order 
of the users’ channel gains. This capability enables 
the network to sort its users based on their particular 
data rate requirements rather than on the uncontrol-
lable random environment of classical communica-

tion systems. For instance, in conventional NOMA 
deployments with fixed power allocation, when a 
user with high capacity requirements faces highly 
unfavorable channel conditions (e.g., when the user 
is very far from the  BS), it will inevitably fall in an out-
age state (a state where its minimum performance 
requirements are not met). This is a difficult situation 
to be solved by traditional approaches since, inde-
pendent of the power allocated, the weak user’s 
rate will always be limited due to interference from 
the strong user. Figure 2 shows the simulation results 
for the scenario illustrated in Fig. 1a, where user 1 is 
located at 200 m and user 2 at 100 m from the BS. 
We see that the conventional MIMO-NOMA sys-
tem is not able to deliver the required rate of 4 bits 
per channel use (BPCU) for user 1. By employing 
IRSs in this scenario, the system performance can be 
efficiently optimized. As one can notice, by properly 
adjusting the reflection coefficients of the IRSs, user 
1, which was originally experiencing bad channel 
conditions, can achieve high performance and meet 
its required data rate. In contrast, the channel gains 
of the nearer user 2 are optimized to provide just 
the necessary capacity.

ImProved fAIr Power AllocAtIon
In some emerging applications, such as the Indus-
trial Internet of Things, it can be important that all 
devices experience similar data rates. It has been 
demonstrated that, by properly performing power 
allocation, MIMO-NOMA systems can achieve this 
interesting capability. Specifically, the performance 
of different devices can be balanced by maximizing 
the minimum achievable rate in the network so 
that everyone can experience similar rate levels. 
The main disadvantage of such approaches is that 
to increase the performance of a weak device, the 
ones with good channel conditions can be exces-
sively penalized. In addition, if the channel con-
ditions of the weak device are too degraded, the 
data rates achieved under fair power allocation 
can be not enough to meet the quality of service 
requirements of other devices, leading to poor 
network performance. As illustrated in Fig. 1b, 
installing IRSs in such deployments can be very 
beneficial. Theoretically, all devices could reach the 
same data rate with the help of dynamic fair power 
allocation, while the IRSs could boost the channel 
gains to guarantee high network performance.

This above achievement can be visualized in 
the simulation results presented in Fig. 3, where we 
employ to MIMO-NOMA and IRS-NOMA both 
fixed and the fair power allocation policy developed 
in [11]. Here, we consider the existence of two 
users per NOMA group, one located at 100 m and 
another at 200 m from the BS. One can see that the 

TABLE 1. Comparison of IRS with other technologies.

Technology Operation mode Characters Drawbacks

IRS Full duplex 
Low hardware cost  
Potential to exhibit low 
energy consumption

Short range of implementation  
Difficult to estimate CSI

AF relay Half/full duplex 
Actively regenerate and 
transmit signals 

High hardware cost  
High energy consumption

Ambient 
backscatter

Half duplex
Low hardware cost   
Low energy consumption

Limited data rate  
Strong interference from active 
source
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fair power allocation in the MIMO-NOMA system 
can successfully balance the users’ rates. However, 
the strong user pays a high price for enabling this 
capability. For instance, when the SNR is 36 dB, the 
rate achieved by both users in MIMO-NOMA under 
fair power allocation is 4 BPCU. This represents an 
expressive reduction of almost 3 BPCU to the strong 
user’s rate. On the other hand, IRS-NOMA, in which 
we consider fixed reflection coefficients, can pro-
vide high data rate performance for all users. The 
rate curves become superior even to that achieved 
by the strong one with fixed allocation for the 
majority of the considered SNR range. This confirms 
that IRS-NOMA can bring high-performance fair 
networks to reality in the future.

enhAnced coverAge rAnge
In conventional MIMO-NOMA networks, it is diffi-
cult to provide uniform signal coverage to all exist-
ing devices. Users that are far from a BS or are 

suffering heavy blockage may experience poor 
or no signal reception. This issue becomes more 
relevant at the higher frequency bands of 5G, 6G, 
and beyond. The short wavelengths of the milli-
meter-wave and terahertz spectrum can resonate 
with atmospheric oxygen and water molecules, 
causing a significant part of the radiated energy to 
be dissipated through kinetic absorption, bringing 
about strong signal attenuation. Such a harmful 
characteristic can be detrimental to the practical 
implementation of MIMO-NOMA. Specifically, 
serving users that are facing too degraded sig-
nal reception with NOMA can lead to a substan-
tial decrease in the system sum-rate. One could 
increase the power allocated to strong users to 
improve the sum-rate, but this strategy intensifies 
the interference at weak users, making their per-
formance even worse. Consequently, users that 
are suffering from severe channel attenuation usu-
ally end up being disconnected, which limits the 
coverage range of practical MIMO-NOMA net-
works. Fortunately, IRSs are capable of enabling 
long-range communication to NOMA systems. As 
shown in Fig. 1c, an IRS could be installed close 
to users that are located in regions with no signal 
reception. As a result, more users are allowed to 
be served with NOMA, thereby enhancing the 
connectivity capacity of such systems.

A practical demonstration of the aforemen-
tioned IRS capability can be seen in Fig. 4 This 
simulation example shows the achievable rates for 
MIMO-NOMA and IRS-NOMA networks under 
fixed power allocation when the SNR is 26 dBm. 
Here, we consider three users in the group of inter-
est. Two users are closer to the BS, with the nearest 
user located at 100 m and the intermediate one 
at 200 m, while the third user is very far from the 
BS, located at 1500 m. As one can observe, in the 
conventional MIMO-NOMA system, due to the 
long distance from the BS, the far user experiences 
a weak signal reception that allows a data rate of 
only 0.188 BPCU. When the same user is assist-
ed by an IRS, its rate is improved to 1.185 BPCU, 
which represents a gain of more than 6 times 
when compared to that achieved in MIMO-NO-
MA and incredibly almost the same rate obtained 
by the intermediate user. This result clearly demon-
strates another attractive improvement that can be 
achieved with IRS-NOMA systems.

hIgh energy effIcIency
Because NOMA exploits the power domain, the 
achievable rates of served users become highly 
coupled with their power allocation coefficients. 
For example, a direct way to improve the data rate 
of a weak user in a conventional MIMO-NOMA 
system can be achieved by increasing its power 
coefficient and decreasing the coefficients of other 
users. However, since too much power can be 
spent to achieve just a modest increase in the data 
rate of one particular user, and since the system 
sum-rate is actually decreased, this strategy renders 
low energy efficiency to MIMO-NOMA systems.

On the other hand, as demonstrated in the pre-
vious subsection, IRSs can improve the data rates of 
weak users without requiring more transmit power. 
Achieving this benefit and not increasing the energy 
consumption of the network is another potential 
advantage of IRS-NOMA systems. Specifically, if we 
consider a centralized IRS deployment as explained 

FIGURE 2. Achievable rates vs. signal-to-noise ratio (SNR) for MIMO-NOMA 
and IRS-NOMA systems under fixed power allocation where user 1 is locat-
ed at 200 m and user 2 at 100 m from the BS. The power allocation coeffi-
cients of users 1 and 2 are 7/10 and 3/10, respectively.

0302010
SNR [dB]

1

3

4

1.5

5

7

9

Ac
hi

ev
ab

le
 ra

te
 [B

PC
U

]

User 1 - High data-rate requirements - without IRS
User 1 - High data-rate requirements - with optmized IRS
User 2 - Low data-rate requirements - without IRS
User 2 - Low data-rate requirements - with optmized IRS

Required rate of User 1

Required rate of User 2

FIGURE 3. Achievable rates vs. SNR for MIMO-NOMA and IRS-NOMA sys-
tems under fixed and fair power allocation, where the weak user is located 
at 200 m and the strong one at 100 m from the BS. When fixed allocation 
is employed, the power coefficients for the weak and strong users are 7/10 
and 3/10, respectively.

0 5 10 15 20 25 30 35 40
SNR [dB]

0

1

2

3

4

5

6

7

8

Ac
hi

ev
ab

le
 ra

te
 [B

PC
U

]

MIMO-NOMA - Strong user - Fixed power allocation
MIMO-NOMA - Weak user - Fixed power allocation
MIMO-NOMA - Weak user - Fair power allocation
MIMO-NOMA - Strong user - Fair power allocation
IRS-NOMA - Weak user - Fair power allocation
IRS-NOMA - Strong user - Fair power allocation



IEEE Wireless Communications • October 2020 29

earlier, the only energy required will be to enable 
the IRS’s reconfigurability capability, which can be 
implemented with the help of ultra-low-power elec-
tronics. In consequence, the use of energy harvest-
ing components can be enough to supply all the 
necessary power, providing the IRS technology with 
an opportunity to become truly energy-neutral. As 
shown in Fig. 1d, if this attractive feature becomes 
a reality, we can achieve higher performance gains 
with less transmit power, significantly improving the 
energy efficiency of IRS-NOMA networks. Never-
theless, it is noteworthy that if the energy neutrality 
assumption cannot be satisfied, the energy efficien-
cy will inevitably be decreased.

In Fig. 5, we present the energy efficiency curves 
vs. transmit power for MIMO-NOMA and IRS-NO-
MA schemes. In order to show how energy-efficient 
IRSs can become, we consider the scenario in which 
energy neutrality can be achieved, as well as scenari-
os where the IRS contributes to the power consump-
tion of the  network. As one can see, when energy 
neutrality is considered, the IRS-NOMA system can 
offer remarkable energy efficiency improvements 
that outperform the conventional MIMO-NOMA 
counterpart. For example, when the transmit power 
is 10 dBm, the conventional MIMO-NOMA system 
can reach a maximum energy efficiency of 159.6 
BPCU/W, while with the IRS-NOMA scheme, the 
maximum energy efficiency increases up to an 
incredible 427.2 BPCU/W, and at the same time, the 
transmit power required to reach this point decreas-
es to 6 dBm. However, when the IRS’s energy con-
sumption is taken into account, the energy efficiency 
is strongly impacted. For instance, if we consider that 
each reflecting element introduces an additional 0.5 
mW to the total power consumption, the maximum 
energy efficiency is decreased to approximately 253 
BPCU/W, and when the power consumption per 
element is 3 mW, the energy efficiency becomes 
inferior to that achieved in the conventional 
MIMO-NOMA system.

scenArIos And oPPortunItIes
In this section, we identify and discuss potential 
IRS-NOMA use case scenarios for future wireless 
networks.

multIPle Irss for PervAsIve coverAge
With the continuous growth of the global pop-
ulation, crowded environments are expected to 
become ever more common in the upcoming 
years. However, the majority of the existing IRS-NO-
MA related works consider system models where 
users are assisted by a single IRS, which are not 
suitable for these crowded scenarios of future net-
works. It can be extremely difficult, or even imprac-
tical, to optimize the meta-atoms of a single IRS to 
assist a large number of NOMA users with different 
channel gains and diverse requirements. Also, since 
users can be highly mobile, they might not always 
dispose of an IRS in range. To address this challeng-
ing use case scenario, one can envision a widescale 
deployment of multiple IRSs for pervasive cover-
age. In such scenarios, the IRSs could be jointly 
coordinated to deliver multiple independent beams 
to each user so that their channel gains could be 
flexibly tuned. This would enable the formation of 
small NOMA groups in crowded environments (a 
difficult task to accomplish relying solely on conven-
tional MIMO-NOMA schemes), rendering low SIC 

complexity to the users’ devices. This large-scale 
IRS-NOMA network could provide massive access, 
ultra-high data rates, and ubiquitous signal cover-
age, enabling the deployment of futuristic applica-
tions such as holographic augmented reality and 
telepresence. For instance, in the future, large-scale 
IRS-NOMA can be deployed in crowded environ-
ments, like shopping malls, to attend the massive 
number of connections and provide ultra-high 
throughput to the users’ sophisticated holographic 
enabled smartphones.

3d coverAge In nomA-uAv networks
The deployment of UAVs as aerial BSs is anoth-
er appealing approach for improving signal cov-
erage of communication networks. The intelligent 
arrangement of multiple UAVs combined with 
the use of high operating altitude enables them 
to enhance the coverage area through efficient 
dynamic 3D beamforming. UAV networks can offer 

FIGURE 4. Achievable rates when the SNR is 26 dBm for MIMO-NOMA and 
IRS-NOMA systems serving three users with fixed power allocation. The 
near user is located at 100 m, the intermediate user at 200 m, and the far 
user at 1500 m from the BS. The power coefficients for the near, intermedi-
ate, and far users are 1/10, 3/10, and 6/10, respectively.
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many advantages, such as flexibility in increasing 
the number of transmit antennas (with any array 
pattern), the ability to avoid obstacles (avoiding sig-
nal blockage), and more [12]. In addition to that, 
if NOMA is applied to UAV networks, it becomes 
possible to serve multiple devices with a single 
3D beam, which is attractive for enabling massive 
access in ultra-dense dynamic environments.

Despite the above advantages, it can be 
challenging for a NOMA-enabled UAV to serve 
multiple geographically dispersed user groups. Spe-
cifically, if the NOMA groups are separated far 
apart, providing satisfactory performance to every-
one can demand an excessive amount of ener-
gy. This can be a major impairment since a UAV 
hasonly a limited power supply (i.e., an onboard 
battery). Therefore, strategies for reducing energy 
consumption in NOMA-UAV networks are crucial 
for their successful implementation. The employ-
ment of IRSs can be very effective for accomplish-
ing this objective as well. For instance, instead 
of deploying all UAVs as active transmitters, we 
could implement hybrid networks where some of 
the UAVs work as active, and others operate as 
smart reflective devices equipped with only light-
weight passive IRSs. A UAV-assisted IRS-NOMA 
system would provide extended signal coverage 
by exploiting a combination of passive and active 
3D beamforming, enabling enhanced communica-
tion performance even to NOMA groups far from 
active UAVs. By relaxing the need for high trans-
mit power, such systems could present low energy 
consumption (if IRS energy neutrality is satisfied), 
prolonging the UAVs’ lifetimes.

mAssIve nomA-bAsed grAnt-free trAnsmIssIons
Grant-free protocols have emerged as efficient 
approaches for reducing the high signaling over-
head faced by traditional cellular networks [13]. In 
particular, NOMA-based grant-free transmissions 
allow multiple devices to transmit information in 
the uplink using the same spectrum, and with-
out requiring grant to radio resources from the 
BS. Such schemes can efficiently tackle collision 
issues and reduce communication delays, mak-
ing them ideal for enabling critical applications 
with ultra-low latency requirements. However, 
when the number of connected devices grows, 
the probability of achieving similar channel gains 
at the BS also increases. This characteristic can 
lead to poor multiuser detection performance. For 
example, in massive machine-type communica-
tion applications like in a car factory, such impair-
ment could lead to a failure in the production 
line. The installation of IRSs in this scenario can 
reduce the likelihood of this serious issue arising. 
IRS-NOMA-based grant-free transmissions could 
guarantee that the BS is always able to distinguish 
different devices so that the network can operate 
with stable performance even when the number 
of connections becomes large.

reseArch chAllenges And future dIrectIons
Previously, we have shown with a simple two-user 
example that the order of users in IRS-NOMA net-
works can be controlled by properly configuring 
the IRS’s meta-atoms, providing more flexibility 
for optimizing the network performance. Despite 
the advantages of this capability, determining 
the optimal user ordering in a multi-user NOMA 

scenario can be challenging. This is because the 
IRSs must be dynamically optimized based on the 
instantaneous realizations of combined channels 
of direct and BS-IRS-user links, which are also 
dependent on the current set of meta-atoms. As 
a result, the users’ effective channel gains (and 
consequently the user ordering) become coupled 
with the IRS coefficients. The resulting optimi-
zation problem becomes highly complex as the 
number of users and the number of reflecting ele-
ments increase, which imposes major challenges 
for the practical implementation of IRS-NOMA 
networks. Therefore, the development of efficient 
low-complexity algorithms for jointly optimizing 
the IRS coefficients and user ordering is mandato-
ry, and therefore a promising research direction.

User clustering schemes also play an important 
role in the performance of IRS-NOMA systems. For 
instance, in [9], it was shown that if users with cer-
tain channel conditions are grouped, IRS-NOMA 
can be outperformed by the IRS-OMA counter-
part. This demonstrates that the design of efficient 
user clustering algorithms is also essential to exploit 
at maximum the benefits of IRS-NOMA systems. 
Given that only a few works have investigated this 
subject, there are excellent opportunities for future 
work in this domain. Furthermore, the fact that 
IRS-OMA can outperform IRS-NOMA also raises 
another issue: when should we use NOMA, and 
when should we use OMA? Such a fundamental 
question is not yet totally clarified and deserves 
further investigation.

Most of the contributions of this article are 
focused on the downlink. However, as demonstrat-
ed above with the practical example of NOMA-
based grant-free transmissions, IRSs can also find 
useful applications in uplink MIMO-NOMA sce-
narios. For example, IRSs could be installed close 
to the users to amplify uplink transmissions, and as 
well as at the BS to ensure that the channel gains 
of the different users are always distinct. One could 
also deploy IRSs at BSs in shield mode to mitigate 
inter-cell interference in multi-cell uplink NOMA 
scenarios. Nevertheless, the challenges and trade-
offs associated with these tempting use case sce-
narios are still unclear and demand further studies.

The idea of a large-scale deployment of IRSs, 
as suggested earlier, can also bring challenges to 
the network. Transmissions coming from one IRS 
can leak to others and cause strong inter-IRS inter-
ference, impacting network performance. Such 
impairment could be mitigated if those IRSs with 
exceeding levels of interference could work in 
cooperative mode, as in [14], instead of operating 
independently. However, the joint coordination of 
multiple IRSs can trigger an explosion in signaling 
and processing overhead, which can potentially 
impact communication latency. In addition, since 
the channel gains observed at the receivers will 
be the result of the combination of all links from 
all IRSs, achieving the optimal set of reflection 
coefficients for determining the best user ordering 
for the entire IRS-NOMA network can become 
extremely difficult. Nevertheless, this is an interest-
ing topic worth studying that is still lacking in the 
literature.

Finally, the concept of hybrid IRS-NOMA UAV 
networks (with some of the UAVs active and some 
passive) is another subject that can find attractive 
applications in 5G and beyond, but that also leads 
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to new unsolved problems. For example, UAV-
to-ground and UAV-to-UAV channels are highly 
dynamic and have specific features that differ from 
those of conventional systems [15]. As a result, the 
channels of IRSs mounted on UAVs will also exhib-
it unique characteristics that are still unknown. The 
accurate channel characterization of IRSs in the 
air, the development of specialized optimization 
frameworks, and the in-depth understanding of the 
application of NOMA in such scenarios arise as 
promising research possibilities.
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Abstract— A dual-polarized intelligent reflecting surface (IRS)
can contribute to a better multiplexing of interfering wireless
users. In this paper, we use this feature to improve the perfor-
mance of dual-polarized massive multiple-input multiple-output
(MIMO) with non-orthogonal multiple access (NOMA) under
imperfect successive interference cancellation (SIC). By consid-
ering the downlink of a multi-cluster scenario, the IRSs assist the
base station (BS) to multiplex subsets of users in the polarization
domain. Our novel strategy alleviates the impact of imperfect SIC
and enables users to exploit polarization diversity with near-zero
inter-subset interference. To this end, the IRSs are optimized to
mitigate transmissions originated at the BS from the interfering
polarization. The formulated optimization is transformed into
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quadratically constrained quadratic sub-problems, which makes
it possible to obtain the optimal solution via interior-points
methods. We also derive analytically a closed-form expression for
the users’ ergodic rates by considering large numbers of reflecting
elements. This is followed by representative simulation examples
and comprehensive discussions. The results show that when the
IRSs are large enough, the proposed scheme always outperforms
conventional massive MIMO-NOMA and MIMO-OMA systems
even if SIC error propagation is present. It is also confirmed that
dual-polarized IRSs can make cross-polar transmissions benefi-
cial to the users, allowing them to improve their performance
through diversity.

Index Terms— Multi-polarization, intelligent reflecting sur-
faces, massive MIMO, NOMA.

I. INTRODUCTION

THE fifth-generation (5G) wireless systems are already
being deployed worldwide. The novel technologies and

infrastructures of 5G provide support to unprecedented appli-
cations with diverse requirements, such as high data rates, high
reliability, and low latency. One key technology is massive
multiple-input multiple-output (MIMO), where a large number
of antennas at the base station (BS) is used to transmit parallel
data streams to multiple users through spatially separated
beams. Conventionally, orthogonal multiple access (OMA)
techniques are combined with massive MIMO to guarantee
zero inter-beam interference in scenarios where it is difficult to
multiplex users solely in the space domain. Even though such
schemes can effectively cope with the interference issue, they
may perform poorly in terms of spectral efficiency and latency
as the number of users increases. Therefore, MIMO-OMA
systems are not ideal for ultra-dense deployments, and this
motivates the use of non-orthogonal multiple access (NOMA),
such that MIMO-NOMA can serve simultaneously several
users with non-separable beams.

The performance of a massive MIMO-NOMA network
scales up with the increase of transmit and receive anten-
nas. However, due to physical space constraints, the num-
ber of antennas installed in practical systems is limited at
both the BS and user’s devices. One efficient strategy to
alleviate such a limitation can be achieved by arranging
the antenna elements into co-located pairs with orthogonal
polarizations, forming a dual-polarized antenna array. With
such an approach, it becomes possible to install twice the
number of antennas of a single-polarized array utilizing the

1536-1276 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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same physical space. In addition, since antennas with orthog-
onal polarizations exhibit a low correlation, dual-polarization
enables massive MIMO-NOMA systems to exploit diversity
in the polarization domain, which can significantly outper-
form conventional single-polarized schemes [1]. Due to these
attractive features, dual-polarized antenna arrays have been
adopted as standard in the 3rd generation partnership project
(3GPP) long-term evolution advanced (LTE-A) and 5G New
Radio (NR) specifications [2].

Despite the mentioned advantages, a dual-polarized mas-
sive MIMO-NOMA system still has numerous limitations.
For instance, the mutual coupling between antennas and the
stochastic nature of the scatterer environment can depolarize
the transmitted signals and generate cross-polar interference at
the receivers. As demonstrated in [1], these depolarization phe-
nomena can deteriorate the system performance. Furthermore,
in power-domain NOMA, the users need to employ successive
interference cancellation (SIC) to decode their received data
symbols, which also has some drawbacks. An increase in the
number of users leads to higher interference and a more com-
plex SIC decoding process, potentially resulting in excessive
decoding errors, lowered system throughput, and increased
usage of the device battery. It was shown in [3] that SIC errors
severely impact the performance of massive MIMO-NOMA
systems, making them less spectrally efficient than massive
MIMO-OMA schemes. This harmful characteristic limits the
maximum number of users served with NOMA in practical
systems.

This implies that the benefits of dual-polarized
MIMO-NOMA systems can be harvested if there is an
increased control of the (de)polarization properties of the
propagation environment. In this sense, the recent concept
of an intelligent reflecting surface (IRS) [4]–[7] holds
a great potential. An IRS is an engineered device that
comprises multiple sub-wavelength reflecting elements with
reconfigurable electromagnetic properties. The phases and
amplitudes of reflections induced by the IRS elements
are controlled independently via software, which enables
them to, collectively, forward the impinging waves with
an optimized radiation pattern and reach diverse objectives
like beam steering, collimation, absorption, and control of
polarization [8]. Such appealing features unlock countless
new possibilities for manipulating the random phenomena of
electromagnetic propagation, a critical issue in any wireless
communication system. This is discussed in several recent
works, some of them dealing specifically with MIMO-OMA
and MIMO-NOMA.

A. Related Works

The majority of recent IRS-MIMO related works are
concentrated on the study of point-to-point or OMA-based
schemes. For example, the authors of [9] investigated the
performance of IRS-assisted point-to-point narrow-band and
orthogonal frequency division multiplexing (OFDM) MIMO
systems. Specifically, transmit beamforming and IRS reflecting
elements were optimized to maximize the ergodic rates of the
considered systems. In the simulation examples, the proposed

optimization algorithms outperformed conventional MIMO
schemes with and without IRSs. The minimization of the
symbol error rate (SER) of an IRS-assisted point-to-point
MIMO system was addressed in [10]. The IRS reflecting
elements and beamforming matrix were optimized alterna-
tively, in which four different methods were investigated.
All methods achieved superior performance than conventional
systems without IRS in terms of SER. A single-cell multi-user
OMA-based network was considered in [11]. The authors of
this work minimized the total transmit power of an IRS-MIMO
system under users’ individual SINR constraints. An asymp-
totic analysis with a large number of reflecting elements was
also performed. The multi-cell IRS-MIMO case was addressed
in [12]. In this work, an IRS was exploited to improve the
performance of cell-edge users, in which two algorithms based
on majorization-minimization and the complex circle mani-
fold methods were proposed to optimize the IRS reflecting
elements. The authors of [13] employed an IRS to assist
multi-user MIMO cognitive radio systems, where a block
coordinate descent algorithm was proposed to maximize the
achievable weighted sum rate. The employment of IRSs for
improving the performance of simultaneous wireless infor-
mation and power transfer (SWIPT) in MIMO systems was
investigated in [14], and for addressing security issues in [15].

A few contributions have investigated IRSs in
MIMO-NOMA schemes. For instance, the work in [16]
addressed a simple IRS-assisted MIMO-NOMA network,
in which near and far users were paired to be served with
NOMA with the aid of IRSs. The energy efficiency of
a two-user IRS-MIMO-NOMA network was investigated
in [17]. In this work, the IRS reflecting elements and the
beamforming vectors at the BS were jointly optimized to
minimize the total power consumption of the system. In [18],
by considering both continuous and discrete phase shifters,
the authors maximized the sum-rate of a IRS-MIMO-NOMA
system in a scenario with multiple users. The proposed
scheme outperformed conventional NOMA and OMA-based
systems in the presented simulation examples. A multi-cluster
IRS-assisted MIMO-NOMA network was considered in [19].
By relaxing the need for active beamforming at the BS,
the authors focused on the design of an IRS for canceling
inter-cluster interference. The application of IRSs to
millimeter-wave NOMA systems was studied in [20]. With
the objective of maximizing the system sum-rate, this work
developed an algorithm for optimizing power allocation,
reflecting elements, and active beamforming. The scenario
with IRSs mounted on unmanned aerial vehicles (UAV) to
assist a MIMO-NOMA network was investigated in [21].
In this work, by optimizing the position of the UAV,
the transmit beamforming, and the IRS reflecting elements,
the rate of the strong user was maximized while guaranteeing
the target rate of the weak user.

B. Motivation and Contributions

To the best of our knowledge, all related works are limited
to only single-polarized systems, and there are no works
that exploit the capabilities of IRSs for manipulating wave
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polarization in dual-polarized MIMO-NOMA networks. Moti-
vated by this, and given the great potential of IRSs for improv-
ing the performance of communication systems, we harness
the attractive features of dual-polarized IRSs for tackling the
interference limitation issue of NOMA from a perspective
that has not been addressed so far. Specifically, in this work,
multiple dual-polarized IRSs are optimized to reduce the
interference observed during the SIC decoding process of
users in a massive dual-polarized MIMO-NOMA network. The
study of interference mitigation via an IRS in MIMO-NOMA
systems was only considered in [19]. However, [19] opti-
mized a single IRS to diminish inter-cluster interference in
a small-scale single-polarized MIMO-NOMA system, which
is different from the objectives and system model of this work.
Furthermore, the approach in [19] imposes strict restrictions
on the minimum number of reflecting elements, which makes
it not scalable for massive MIMO-NOMA systems, whereas
our scheme is compatible with IRSs of any size (at the cost
of an IRS optimization with higher complexity than in [19]).
In addition to alleviating the impact of imperfect SIC, our
novel scheme enables users to exploit polarization diversity.
Further details and the main contributions of this work are
summarized as follows:

• By considering a scenario where the BS and the users
employ multiple dual-polarized antennas and assuming
imperfect SIC, we propose a novel strategy that exploits
the functionalities of dual-polarized IRSs to assist the BS
to subdivide each group of users into two polarization
subsets. For users in the first subset, the BS transmits
the data symbols using vertically polarized antennas and,
for users in the second one, the BS transmits using the
horizontally polarized antennas. With this strategy, SIC
can be executed by users from each subset separately.
As a result, each user will experience less SIC inter-
ference when decoding its message. Moreover, the IRSs
transform depolarization phenomena into an advantage
and enable the users to exploit polarization diversity with
near-zero inter-subset interference.

• By assuming that the users and the IRSs are distributed
among different spatial clusters and aiming to focus
the transmissions to the users and IRSs of interest and
null out anywhere else, we first exploit the second-order
statistics of the channels, i.e., the channel covariance
matrices, to construct the active beamforming matrices at
the BS. We then concatenate the beamforming matrix for
spatial interference cancellation with a low-complexity
precoding vector that is designed to multiplex the users
and form the polarization subsets.

• The dual-polarized reflecting elements of each IRS are
optimized to mitigate the transmissions originated at the
BS from the interfering polarization. The formulated
optimization problem is challenging to solve. To over-
come the complex formulation, we transform the original
problem into quadratically constrained quadratic sub-
problems, and we show that their optimal solutions can be
obtained via interior-points methods in polynomial time.

• An in-depth performance analysis is carried out, where,
by modeling polarization interference and errors from

imperfect SIC, we derive the signal-to-interference-
plus-noise ratio (SINR) experienced by the users and
investigate the statistical distributions of the effective
channel gains. Because the reflecting elements of the
IRSs change rapidly with the fast fading channels, iden-
tifying the exact distributions for arbitrary numbers of
reflecting elements becomes difficult. As an alterna-
tive, we characterize the approximate distributions for
the asymptotic case with a large number of reflecting
elements. Based on this asymptotic statistical analysis,
we derive a closed-form expression for the ergodic rates
observed by each user, which provides a practical tool for
verifying the fundamental limits of the proposed system
when large IRSs are employed.

• Last, by presenting representative numerical simulation
results, we validate the analysis and supplement it with
discussions. We show that when the IRSs are large
enough, the proposed scheme always outperforms con-
ventional massive MIMO-NOMA and MIMO-OMA sys-
tems even if SIC error propagation is present. We also
confirm that the dual-polarized IRSs can make cross-polar
transmissions beneficial to the users, allowing them to
improve their performance through diversity.

Notation and Special Functions: Bold-faced lower-case
letters denote vectors and upper-case represent matrices. The
ith element of a vector a is denoted by [a]i, the (ij) entry
of a matrix A by [A]ij , and the transpose and the Hermitian
transpose of A are represented by AT and AH , respectively.
The symbol ⊗ represents the Kronecker product, � is the
Khatri-Rao product [22], IM represents the identity matrix of
dimension M × M , and 0M,N denotes the M × N matrix
with all zero entries. The operator vec{·} transforms a matrix
of dimension M × N into a column vector of length MN ,
the operator vecd{·} converts the diagonal elements of an
M × M square matrix into a column vector of length M ,
and diag{·} transforms a vector of length M into an M × M
diagonal matrix. In addition, �{·} returns the real part of a
complex number, (·)∗ is the complex conjugate, E[·] denotes
expectation, Γ(·) is the Gamma function [23, eq. (8.310.1)],
γ(·, ·) is the lower incomplete Gamma function [23, eq.
(8.350.1)], and Gm,n

p,q ( a
b | x) corresponds to the Meijer’s

G-function [23, eq. (9.301)].

II. FUNDAMENTALS OF A DUAL-POLARIZED IRS

The design of dual-polarized IRSs and their potential
capabilities have been well studied in the field of anten-
nas and electromagnetic theory [24]–[26]. In addition to
phase/amplitude control, also possible with a single-polarized
IRS, a dual-polarized IRS can perform polarization beam
splitting, independent control of impinging polarizations, and
polarization conversion [26]. For instance, by properly tun-
ing the IRS reflecting elements, it is possible to convert
a vertically polarized wave into a horizontally polarized
one, and vice-versa, or reflect it with its original polariza-
tion [24], [25]. These features can find useful applications in
dual-polarized communication systems, such as interference
mitigation or polarization diversity. Specifically, by consider-
ing linear vertical-horizontal polarization, the transformations
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Fig. 1. Simplified capabilities of a dual-polarized IRS. Linearly polarized impinging signals are split into two beams with orthogonal polarizations.

induced by each reflecting element of a dual-polarized IRS
can be modeled by a reflection matrix:

Ψ =

�
ωvve−jφvv

ωhve−jφhv

ωvhe−jφvh

ωhhe−jφhh

�
, (1)

where φpq
l ∈ [0, 2π] and ωpq

l ∈ [0, 1] represent, respectively,
the phase and amplitude of reflection induced by the IRS ele-
ment from polarization p to polarization q, with p, q ∈ {v, h},
in which v stands for vertical and h for horizontal. A simpli-
fied illustration of the capabilities of the dual-polarized IRS
considered in this work is shown in Fig. 1.

We illustrate these concepts through a simple example.
Suppose that a transmitter that is equipped with a single ver-
tically polarized antenna sends information to a receiver that
employs a pair of dual-polarized antennas, with a vertically
and a horizontally polarized antenna element, respectively.
In an ideal scenario without any depolarization, the trans-
mitted information would only be received in the matching
vertically polarized receive antenna, becoming impossible to
explore polarization diversity at the receiver. By deploying a
dual-polarized IRS, the transmitted vertically polarized wave
can be split into two independent beams, one with vertical
polarization and another with horizontal polarization, as shown
in Fig. 1. This would enable the receiver to exploit polar-
ization diversity and improve its performance. Specifically,
assume that the IRS has only a single dual-polarized reflecting
element. Then, by recalling the dyadic backscatter channel
model [7], [27], and using the reflection matrix in (1),
the noiseless signal propagated through the reflected IRS link,
observed at the vertically and horizontally polarized receive
antennas is:
�
yv

yh

�
=

1√
2

�
(svv)∗ 0

0 (shh)∗

� �
ωvve−jφvv

ωhve−jφhv

ωvhe−jφvh

ωhhe−jφhh

�

×
�
gvv

0

�
x =

�
1∘
2
(svv)∗ωvve−jφvv

gvvx
1∘
2
(shh)∗ωvhe−jφvh

gvvx

�
, (2)

where x is the transmitted data symbol, gvv is the channel
coefficient between the transmitter and the IRS, and spq is
the channel coefficient between the IRS and the receiver
corresponding to the signal that was reflected with polarization
p and arrived with polarization q, in which p, q ∈ {v, h}.
Since an IRS is a passive device, we introduce a normalization
factor of 1∘

2
. As one can observe in (2), by performing

polarization beam splitting, the IRS was capable of delivering
two replicas with independent phases and amplitudes of the

transmitted data symbol. Hence, a range of new possibilities
can be enabled by properly optimizing the IRS reflecting
elements. For instance, if the transmitter in this example is
instead sending interference, one could easily switch the IRS
to an absorption mode, i.e., set the coefficients ωvv and ωvh

to zero, so that no interfering transmissions would arrive at
the receiver.

In this work, we consider a generalization of the signal
model in (2) in a more complex setup containing several IRSs
with a large number of dual-polarized reflecting elements.
Despite the more complex system model and the greater
number of reflecting elements, the capabilities of the larger
IRSs considered in the proposed scheme are the same as
the presented in this section, i.e., capabilities of manipulating
wave polarization, clearly illustrated in Fig. 1. Since the basic
background for understanding this work’s proposal has been
provided, we can now dive into the detailed system model.

III. SYSTEM MODEL

Consider a single cell MIMO-NOMA network where a
single BS is communicating in downlink mode with multiple
users. Both users and the BS comprise dual-polarized antenna
elements that are arranged into multiple co-located pairs, each
one containing one vertically and one horizontally polarized
antenna element. More specifically, users are equipped with
N/2 pairs of dual-polarized receive antennas, and the BS
with M/2 pairs of dual-polarized transmit antennas that are
organized in a uniform linear array. It is considered that
M and N are even, and that M � N . Moreover, within
the cell, users are assumed to be distributed among different
geographical areas, forming K spatial clusters with Q users
each. Users within each cluster are organized into G groups,
each one containing U users, i.e, Q = GU . In conventional
MIMO-NOMA systems, the uth user from a given group
performs SIC by considering interference from all the other
U − 1 users within the same group. However, since SIC is an
interference-limited technique, such an approach can lead to
performance degradation, which here is tackled by a novel
strategy that exploits the polarization domain. Specifically,
we program the BS to further subdivide each of the G groups
into two polarization subsets, namely vertical subset and
horizontal subset, each one containing Up users, p ∈ {v, h},
i.e., Uv users are served with vertically polarized transmit
antennas, and Uh users are served with horizontally polarized
antennas, such that Uv + Uh = U . To enable this scheme,
we exploit the capabilities of dual-polarized IRSs to ensure
that signals transmitted from one polarization impinge only
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Fig. 2. System model. Dual-polarized IRSs enable users to exploit polariza-
tion diversity by mitigating polarization interference.

at users assigned to that specific polarization. For instance,
if a user is assigned to the vertical polarization, its serving
IRS should cancel out all signals coming from horizontally
polarized BS antennas. For this, we assume that there are U
IRSs with L dual-polarized reflecting elements installed within
each group and that each IRS assists exactly one user,1 as illus-
trated in Fig. 2. A comparison of the main characteristics and
highlights between our proposal and those from conventional
schemes is provided in Fig. 3. As more details will be provided
later, in addition to reducing interference and SIC decoding
errors, our IRS-MIMO-NOMA scheme naturally enables users
to exploit polarization diversity with only a low computational
complexity.

Following the proposed strategy, after the users have been
properly grouped, the BS applies superposition coding to each
polarization subset and transmit the superimposed messages
through the assigned polarization. More specifically, the BS
sends the following signal

x=
K�

k=1

Pk

�
xv

xh

�
=

K�

k=1

Pk

G�

g=1

U�

u=1

vkguαkguxkgu ∈CM×1,

(3)

where xp is the data vector transmitted in the polarization
p ∈ {v, h}. xkgu and αkgu are, respectively, the symbol and
the power coefficient for the uth user in the gth group within
the kth cluster. Pk ∈ CM×M̄ is a precoding matrix intended to
eliminate inter-cluster interference, in which M̄ is a parameter
that controls the number of effective data streams transmitted
from the BS, and vkgu =

�
(vv

kgu)T , (vh
kgu)T

�T
∈ CM̄×1 is an

inner precoding vector responsible for multiplexing the users
in the polarization domain, satisfying �vkgu�2 = 1.

1In practice, more than one user can be connected simultaneously to an
IRS. However, as stated in [8], as the number of connected users increases,
the complexity for optimizing the IRS reflecting elements also increases.
Because of this, the number of users is usually maintained small. Despite
that, investigating the performance of the proposed system with multiple users
connected to each IRS is also interesting, but this possibility is left for future
works.

As the phases and amplitudes of reflections induced by a
single dual-polarized reflecting element can be modeled by
the 2 × 2 matrix in (1), the reflection matrix for an IRS
with L reflecting elements can be generalized to a 2L × 2L
matrix. This matrix is partitioned into four L×L diagonal sub-
matrices.2 Thus, the reflection matrix for the dual-polarized
IRS that assists the uth user in the gth group of the kth spatial
cluster is:

Θkgu =

�
Φvv

kgu Φhv
kgu

Φvh
kgu Φhh

kgu

�
∈ C2L×2L, (4)

where Φpq
kgu = diag{[ωpq

kgu,1e
−jφpq

kgu,1 , ωpq
kgu,2e

−jφpq
kgu,2 , · · · ,

ωpq
kgu,Le−jφpq

kgu,L ]} ∈ CL×L, with φpq
kgu,l and ωpq

kgu,l represent-
ing, respectively, the phase and amplitude of reflection induced
by the lth IRS element from polarization p to polarization q,
with p, q ∈ {v, h}, in which we must have |ωpq

kgu,l|2 ≤ 1 for
passive reflection. By using the multi-polarized and the dyadic
backscatter channel models [1], [7], [27], the composite full
dual-polarized channel matrix for the uth user in the gth group
of the kth cluster can represented by

HH
kgu

=
	

ζ BS-IRS
kgu ζ IRS-U

kgu

1√
2

�
S̄vv

kgu 0L,N2
0L,N2

S̄hh
kgu

�H �
Φvv

kgu Φhv
kgu

Φvh
kgu Φhh

kgu

�

×
�

Ḡvv
kgu



χ BS-IRSḠhv

kgu

χ BS-IRSḠvh

kgu Ḡhh
kgu

�

+
	

ζ BS-U
kgu

�
D̄vv

kgu



χ BS-UD̄vh

kgu

χ BS-UD̄hv

kgu D̄hh
kgu

�H

∈ CN×M , (5)

where D̄pq
kgu ∈ CM

2 × N
2 , S̄pq

kgu ∈ CL×N
2 , and Ḡpq

kgu ∈ CL×M
2

model, respectively, the fast fading channels between the
BS and the uth user (link BS-U), the uth IRS and the
uth user (link IRS-U), and the BS and the uth IRS (link
BS-IRS), from the polarization p to the polarization q, in which
p, q ∈ {v, h}, with χ BS-U and χ BS-IRS ∈ [0, 1] denoting the
inverse of the cross-polar discrimination parameter (iXPD)
that measures the power leakage between polarizations in
the links BS-U and BS-IRS. Moreover, 1∘

2
is the energy

normalization factor, and ζ BS-U
kgu , ζ IRS-U

kgu , and ζ BS-IRS
kgu represents

the large-scale fading coefficients for the links BS-U, IRS-
U, and BS-IRS, respectively. Observe that, the channel in (5)
consists of a generalization of that introduced in Section II,
with the difference that now both the transmitter, i.e., the BS,
and receivers employ multiple dual-polarized antennas. Also,
notice that we model depolarization phenomena in the links
BS-U and BS-IRS, but not in the link IRS-U.3 This means

2The proposed system model considers that the IRSs’ reflecting elements
are uncoupled and that the induced phases and amplitudes of reflections do not
depend on the inter-element distance. This ideal consideration is reasonable
when the reflecting elements are spaced by at least half of the wavelength [28],
i.e., ≥ λ/2, which is the case assumed in this paper. The study of more
realistic models arises as a possible extension of this work.

3Although depolarization phenomena are not considered in the link IRS-U,
we would like to emphasize that the proposed model can be easily extended
to this more general case. However, such consideration would lead to a
more intricate mathematical formulation of difficult interpretation. Therefore,
we choose not to address this issue in this work.
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Fig. 3. Main differences between the proposed dual-polarized IRS-MIMO-NOMA and other conventional schemes.

that only negligible power leaks between polarizations in the
propagation channels between the IRSs and users.

Furthermore, due to the closely spaced antennas at the BS
and due to the scattering environment surrounding each spatial
cluster, we assume that D̄pq

kgu, and Ḡpq
kgu are correlated, i.e., are

rank deficient. On the other hand, we model S̄pq
kgu as a full

rank channel matrix. Under such assumptions, the covariance
matrices of the links BS-IRS and BS-U can be calculated as [1]

R BS-IRS
k = ζ BS-IRS

kgu (χ BS-IRS + 1)I2 ⊗ Rk, (6)

R BS-U
k = ζ BS-U

kgu (χ BS-U + 1)I2 ⊗ Rk, (7)

where Rk is the covariance matrix observed in each polariza-
tion, with rank denoted by rk . Note that, we have assumed
that the links BS-U and BS-IRS share the same covariance
matrix Rk. This is valid for the scenario where both IRS and
users are located within the same cluster of scatterers, which
in our model is reasonable since the user is located nearby its
serving IRS.

Recalling the Karhunen–Loève representation [29],
the channel in (5) can be rewritten as

HH
kgu =

⎛
⎝
�
Svv

kgu 0L,N2
0L,N2

Shh
kgu

�H �
Φvv

kgu Φhv
kgu

Φvh
kgu Φhh

kgu

� �
Gvv

kgu Ghv
kgu

Gvh
kgu Ghh

kgu

�

+

�
Dvv

kgu Dvh
kgu

Dhv
kgu Dhh

kgu

�H
�

I2 ⊗
�
Λ

1
2

k U
H
k

��

=
�
SH

kguΘkguGkgu + DH
kgu

��
I2 ⊗

�
Λ

1
2

k U
H
k

��
, (8)

where Λk ∈ Rr�
k×r�

k
>0 is a diagonal matrix that collects

r�
k nonzero eigenvalues of Rk, sorted in descending order,
Uk ∈ CM

2 ×r�
k is a unitary matrix containing the first r�

k left
eigenvectors of Rk, corresponding to the eigenvalues in Λk,
Spq

kgu ∈ CL×N
2 is the full rank channel matrix of the link

IRS-U, and Dpq
kgu ∈ Cr�

k× N
2 and Gpq

kgu ∈ CL×r�
k represent,

respectively, the reduced-dimension fast fading channels of
the links BS-U and BS-IRS, from the polarization p to the
polarization q, with p, q ∈ {v, h}, whose entries follow
the complex Gaussian distribution with zero mean and unit
variance. Note that, for notation simplicity, the iXPD, the large
scale fading coefficients, and the normalization factor 1∘

2
have

been absorbed in the corresponding channel matrices.
With the above channel model, after the superimposed

symbols have propagated through all wireless links, the

uth user in the gth group within the kth cluster observes the
following signal

ykgu =
�
SH

kguΘkguGkgu + DH
kgu

� �
I2 ⊗

�
Λ

1
2

k U
H
k

��

×
K�

m=1

Pm

G�

n=1

U�

i=1

vmniαmnixmni +

�
nv

kgu

nh
kgu

�
, (9)

where np
kgu ∈ CN

2 ×1 is the noise vector observed at the
receive antennas of polarization p ∈ {v, h}, whose entries
follow the complex Gaussian distribution with zero mean and
variance σn.

Next, we provide details on the design of the precoding
matrices, IRS optimization, and detection strategy.

IV. PRECODING, IRS OPTIMIZATION, AND

RECEPTION MATRICES

A. Spatial Interference Cancellation

As mentioned before, the precoding matrix Pk is intended
to remove the interference of different spatial clusters. From
the signal model in (9), it is clear that this objective can

be accomplished if
�
I2 ⊗

�
Λ

1
2

k U
H
k

��
Pk = 0, ∀k� �= k,

i.e., Pk should be orthogonal to the subspace spanned by
the left eigenvectors of interfering clusters. Therefore, Pk can
be computed from the null space of the matrix Ωk =

[U1, · · · ,Uk−1,Uk+1, · · · ,UK ] ∈ C
M
2 ×�k� �=k r�

k� . This task
can be performed by exploiting the singular value decom-
position (SVD) of Ωk. Specifically, the left eigenvectors of
Ωk obtained from its SVD can be partitioned as Ũk =�
Ũ

(1)
k Ũ

(0)
k

�
, with Ũ

(0)
k ∈ C

M
2 × M

2 −�k� �=k r�
k� being a unitary

matrix composed by the left eigenvectors of Ωk associated
with its last M

2 −�k� �=k r�
k� vanishing eigenvalues. Since the

columns of Ũ
(0)
k form a set of orthonormal basis vectors for

the null space of Ωk, we have that HH
k�gu(I2 ⊗ Ũ

(0)
k ) = 0,

∀k� �= k. Therefore, the goal of nulling out inter-cluster
interference can be already fulfilled by constructing Pk from
the columns of Ũ

(0)
k . However, following the strategy pro-

posed in [30], and given (9), we can further improve the
performance of the system by matching Pk to the dominant

eigenmodes of the matrix Πk = I2 ⊗
��

Ũ
(0)
k

�H �
UkΛ

1
2

k

��
.

This can be accomplished by multiplying Ũ
(0)
k by a unitary

matrix constructed from the dominant eigenvectors of the
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covariance matrix of Πk, i.e., from Πk(Πk)H = I2 ⊗��
Ũ

(0)
k

�H

RkŨ
(0)
k

�
= I2 ⊗ Ξ̃k. To be more specific, by rep-

resenting the left eigenvectors of Ξ̃k by Ūk =
�
Ū

(1)
k Ū

(0)
k

�
,

with Ū
(1)
k ∈ C(M

2 −�k� �=k r�
k�)× M̄

2 collecting the first M̄
2

columns of Ūk, the desired precoding matrix can be finally
computed by Pk = I2 ⊗

�
Ũ

(0)
k Ū

(1)
k

�
= I2 ⊗ P̃k ∈ CM×M̄ ,

in which, due to the dimensions of Ũk and Ūk , the constraints
K ≤ M̄ ≤

�
M − 2

�
k� �=k r�

k�

�
and M̄ ≤ 2r�

k must be
satisfied.

B. Polarization Assignment and Formation of Subsets

In this subsection, we provide details on the strategy adopted
for the formation of the polarization subsets and on the
construction of the inner precoding vector vkgu. First, the BS
divides arbitrarily the users within each spatial cluster into
G groups. Then, the users within each group are sorted in
ascending order based on their large-scale fading coefficients
observed in the link BS-U, such that ζ BS-U

kg1 < ζ BS-U
kg2 < · · · <

ζ BS-U
kgU . Then, without loss of generality, by assuming that U

is an even number, and aiming to form subsets with relatively
balanced performance, users associated with odd indexes are
assigned to the vertical polarization, and users associated with
even indexes to the horizontal polarization, resulting in two
disjoint subsets, the vertical subset Uv = {1, 3, · · · , U − 1},
containing Uv = U/2 users, and the horizontal subset Uh =
{2, 4, · · · , U}, containing Uh = U − Uv = U/2 users.
As a result, users within vertical subsets will be sorted as
ζ BS-U
kg1 < ζ BS-U

kg3 < · · · < ζ BS-U
kg(U−1), and the ones within

horizontal subsets as ζ BS-U
kg2 < ζ BS-U

kg4 < · · · < ζ BS-U
kgU . In order

to implement this strategy, for 1 ≤ g ≤ G and 1 ≤ u ≤ U ,
the BS employs the following precoding vector

vkgu =

�
vv

kgu

vh
kgu

�
=

⎡
⎢⎣

�
01,g−1,1Uv(u),01, M̄2 −g

�T
�
01,g−1,1Uh(u),01, M̄2 −g

�T

⎤
⎥⎦ , (10)

where 1A(i) is the indicator function of a subset A, which
results 1 if i ∈ A, and 0 if i /∈ A. Note that, due to
the structure of vkgu, the constraint G ≤ M̄/2 must be
satisfied.

Note that more sophisticated strategies for creating the
polarization subsets can be easily employed with the above
precoding choice. In addition, it is noteworthy that the investi-
gation of advanced approaches for forming the NOMA groups
goes beyond the scope of this paper. Although user grouping
in NOMA has been widely studied in the literature [31], [32],

this paper does not aim to develop an optimal user grouping
strategy but to shed light on the fundamental performance
gains that our proposed scheme can render.

C. IRS Optimization

With the precoding matrix designed in the Section IV-A,
all inter-cluster interference can be effectively eliminated.
Therefore, from now on, by focusing on the first cluster,
we can drop the cluster subscript and simplify the signal in (9)
as in (11), shown at the bottom of the page.

As can be observed in (11), in both the BS-U and the
BS-IRS-U links, the symbols intended to the subsets assigned
to the vertical polarization propagate through the channels
modeled by the left blocks of the channel matrices, while the
symbols for subsets assigned to the horizontal polarization
propagate through the right blocks. Therefore, the IRSs of
users assigned to the vertical polarization should be optimized
to null out the right channel blocks, and the IRSs for users
assigned to the horizontal polarization should null out the left
channel blocks. More specifically, we aim to achieve in subsets
assigned to the vertical polarization:

�
(Svv

gu)HΦvv
guG

hv
gu + (Svv

gu)HΦhv
guG

hh
gu

(Shh
gu )HΦvh

guG
hv
gu + (Shh

gu)HΦhh
guG

hh
gu

�
+

�
(Dhv

gu)H

(Dhh
gu )H

�

≈
�
0N

2 ,r�
k

0N
2 ,r�

k

�
, (12)

and in subsets assigned to the horizontal polarization:

�
(Svv

gu)HΦvv
guG

vv
gu + (Svv

gu)HΦhv
guG

vh
gu

(Shh
gu)HΦvh

guG
vv
gu + (Shh

gu)HΦhh
guG

vh
gu

�
+

�
(Dvv

gu)H

(Dvh
gu)H

�

≈
�
0N

2 ,r�
k

0N
2 ,r�

k

�
. (13)

Note that, by mitigating the transmissions originated from
the interfering polarization, we can transform depolarization
phenomena, which usually are harmful, into an advantage.
More specifically, this strategy should enable users to receive
their intended messages, transmitted from a single polariza-
tion (or vertical, or horizontal), in both receive polarizations,
ideally, interference-free. Take a user within a vertical subset,
for instance. If all interference from the horizontal subset can
be canceled, the message transmitted from the vertical polar-
ization at the BS will reach this user through both vertical-
to-vertical co-polar transmissions and vertical-to-horizontal

ygu =

⎛
⎝
⎡
⎣

�
(Svv

gu)HΦvv
guG

vv
gu + (Svv

gu)HΦhv
guG

vh
gu

� �
(Svv

gu)HΦvv
guG

hv
gu + (Svv

gu)HΦhv
guG

hh
gu

�

�
(Shh

gu )HΦvh
guG

vv
gu + (Shh

gu)HΦhh
guG

vh
gu

� �
(Shh

gu)HΦvh
guG

hv
gu + (Shh

gu)HΦhh
guG

hh
gu

�

⎤
⎦+

�
(Dvv

gu)H (Dhv
gu)H

(Dvh
gu)H (Dhh

gu)H

�⎞
⎠

×

⎡
⎣
Λ

1
2UHP̃ 0M

2 , M̄2

0M
2 , M̄2

Λ
1
2UHP̃

⎤
⎦

G�

n=1

U�

i=1

�
vv

ni

vh
ni

�
αnixni +

�
nv

gu

nh
gu

�
. (11)
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cross-polar transmissions.4 In other words, the proposed
scheme enables polarization diversity, as anticipated in pre-
vious sections.

Given that the objectives for the IRSs of vertical and
horizontal polarization subsets are similar, i.e., to null out
co-polar and cross-polar transmissions from interfering sub-
sets, the optimization procedure for both subsets will be also
similar. For this reason, and also due to space constraints,
we focus on the optimization of IRSs for subsets assigned for
vertical polarization. Specifically, based on (12), the reflecting
coefficients for users assigned to the vertical polarization can
be optimized by solving the problem in (14), as shown at the
bottom of the page,5 where (14b) is the constraint for ensuring
a passive reflection. The problem above can be seen as a
generalization of the unconstrained least squares problem for
matrix equations, in which some studies have been carried out
in [33]. However, due to the element-wise quadratic constraint
and the diagonal matrices constraint, it becomes difficult to
solve (14) in its current form. To overcome this challenge,
next, we transform (14) in an equivalent tractable problem.

Using the Khatri-Rao identity (CT � A)vecd{B} =
vec{ABC} [22], we define:

θpq
gu = vecd{Φpq

gu} ∈ CL×1,

dhv
gu = vec

�
(Dhv

gu)H
�

∈ C
N
2 r�

k×1,

dhh
gu = vec

�
(Dhh

gu )H
�

∈ C
N
2 r�

k×1,

Khv,vv
gu = [(Ghv

gu)T � (Svv
gu)H ] ∈ C

N
2 r�

k×L,

4Given the randomness of scatterers in real-world scenarios, it is possible
(even though very unlikely) that the cross-polarized transmissions superimpose
destructively at the receivers, making them unable to exploit polarization
diversity with the proposed scheme. Such a research direction goes beyond the
scope of this paper and is left to future works, where an in-depth investigation
can be carried out.

5Note that the IRSs are optimized in this work only to cancel polarization
interference. It is possible, however, to further improve the system perfor-
mance by jointly maximizing the system data rates (see [18] and [20] for
instance). This interesting possibility shall be considered in future works.

Khh,vv
gu = [(Ghh

gu )T � (Svv
gu)H ] ∈ C

N
2 r�

k×L,

Khv,hh
gu = [(Ghv

gu)T � (Shh
gu)H ] ∈ C

N
2 r�

k×L,

Khh,hh
gu = [(Ghh

gu )T � (Shh
gu)H ] ∈ C

N
2 r�

k×L.

Then, we can transform (14) into the following two sub-
problems

min
θvv
gu,θhv

gu

����
�
Khv,vv

gu Khh,vv
gu

� �
(θvv

gu)T , (θhv
gu)T

�T
+dhv

gu

����
2

(15a)

s.t.

����
�
(θvv

gu)T , (θhv
gu)T

�T����
2

∞
≤ 1, (15b)

min
θvh
gu,θhh

gu

����
�
Khv,hh

gu Khh,hh
gu

� �
(θvh

gu)T , (θhh
gu)T

�T
+dhh

gu

����
2

(16a)

s.t.

����
�
(θvh

gu)T , (θhh
gu)T

�T����
2

∞
≤ 1. (16b)

which consist of least squares problems with L∞ norm
constraints. Before we can solve the problems above, let
us denote K̄gu =

�
Khv,vv

gu Khh,vv
gu

�
, C̄gu = K̄H

guK̄gu, and
K̃gu =

�
Khv,hh

gu Khh,hh
gu

�
, C̃gu = K̃H

guK̃gu, and rewrite
the left-hand side of the constraints in (15b) and (15c),
respectively, as
����
�
(θvv

gu)T , (θhv
gu)T

�T����
2

∞

=
�
(θvv

gu)H , (θhv
gu)H

�
Bl

�
(θvv

gu)T , (θhv
gu)T

�T
,

and
����
�
(θvh

gu)T , (θhh
gu)T

�T����
2

∞

=
�
(θvh

gu)H , (θhh
gu)H

�
Bl

�
(θvh

gu)T , (θhh
gu)T

�T
,

where Bl = diag{el}, l = 1, · · · , L, with el representing the
standard basis vector that contains 1 in the lth position and
zeros elsewhere. Then, by expanding the objective functions

min
Φvv

gu,Φvh
gu,

Φhv
gu,Φhh

gu

����
�
(Svv

gu)HΦvv
guG

hv
gu

(Shh
gu )HΦvh

guG
hv
gu

�
+

�
(Svv

gu)HΦhv
guG

hh
gu

(Shh
gu)HΦhh

guG
hh
gu

�
+

�
(Dhv

gu)H

(Dhh
gu)H

�����
2

(14a)

s.t. |ωpq
gu,l|2 ≤ 1, ∀l ∈ [1, L], ∀p, q ∈ {v, h}, (14b)

Φvv
gu,Φvh

gu,Φhv
gu,Φhh

gu diagonal. (14c)

min
θvv
gu,θhv

gu

 �
θvv

gu

θhv
gu

�H

C̄gu

�
θvv

gu

θhv
gu

�
+ 2�

!
(dhv

gu)HK̄gu

�
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θhv
gu

�"
+ (dhv

gu)Hdhv
gu

#
(17a)

s.t.

�
θvv

gu

θhv
gu

�H

Bl

�
θvv

gu

θhv
gu

�
≤ 1, (17b)

min
θvh
gu,θhh

gu
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θvh

gu

θhh
gu

�H

C̃gu

�
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+ 2�
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(dhh

gu)HK̃gu
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gu
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s.t.

�
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θhh
gu

�H
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�
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θhh
gu

�
≤ 1. (18b)
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in (15a) and (15c), we obtain (17) and (18), as shown at the
bottom of the previous page.

It is straightforward to see that (17) and (18) are quadrati-
cally constrained quadratic problems. Given that the entries
of K̄gu and K̃gu are independent complex Gaussian ran-
dom variables, C̄gu and C̃gu will be positive semidefinite
matrices with probability one. Furthermore, since zHBlz =
|[z]l|2 ≥ 0, ∀z ∈ CL×1, the matrix Bl is also positive
semidefinite. As a result, the problems (17) and (18) are
convex and, consequently, have global optimal solutions that
can be efficiently computed via interior-points methods in
polynomial time [34]. Then, by denoting the optimal vectors
of reflection coefficients by θ̇

pq

gu, obtained by solving (17) and
(18), the reflection matrices that minimizes (14) are obtained
as Φpq

gu = diag
$
θ̇

pq

gu

%
, ∀p, q ∈ {v, h}.

Since the optimization problems in (17) and (18) depend on
the fast fading channel matrices observed in all propagation
links, one can wonder how the IRSs can be configured in
a real-time manner in practical systems. In fact, there are
different approaches to perform such optimizations, which
may require the knowledge of the channel stated informa-
tion (CSI) on the IRSs, as explained in [8]. For instance,
if the installed IRSs have sensing capabilities, i.e., if the
IRSs comprise also active sensor elements, the channels in
the reflected link BS-IRS-U can be estimated directly on
them. Channel estimation approaches based on augmented
Lagrangian methods, channel quantization, compressive sens-
ing, and deep learning techniques have been recently pro-
posed considering these hybrid active/passive IRSs [35],
[36]. In such architectures, the optimization can run in the
IRSs’ local controllers in a distributed fashion. To this end,
the BS needs to inform the CSI of the direct link BS-U
to the IRSs. The disadvantage is that when the number of
transmit/receive antennas and reflecting elements increases,
the optimization becomes excessively complex for the limited
processing power of the IRSs. Moreover, since these IRSs have
also active components, the energy efficiency of the network
can be impacted, and the IRSs’ hardware becomes more
complex.

As an alternative, it is possible to simplify the IRSs’
hardware by removing the sensing components and move
the computation of the channel estimations and the IRSs
optimization entirely to the BS, which disposes of abundant
computational resources. Time-division duplexing (TDD) is
usually employed in these centralized setups, in which the CSI
of both BS-IRS-U and BS-U links are obtained through uplink
training at the BS. Different strategies exist for estimating
the composite reflected channel BS-IRS-U, including sequen-
tial element-wise estimation, discrete Fourier transform-based
estimation, minimum mean squared error-based estimation,
among others [37]–[39]. Obtaining the global CSI in this
centralized fashion allows the BS itself to compute the optimal
sets of reflection coefficients, which are later sent to the IRSs
through an ultra-fast backhaul link. Such centralized channel
estimation and optimization demand a simpler IRS hardware
than the distributed counterpart. However, it may lead to an
excessive signaling overhead at the BS when the number of

users and IRSs gets larger.6 Therefore, there are pros and cons
with both architectures. Choosing the best one will depend on
factors such as the numbers of transmit and receive antennas,
the size of the IRSs, and the network load, which require
further studies on this topic. In particular, since we consider
an IRS to be a nearly passive device with low computational
capabilities, here we assume a centralized approach.7

D. Signal Reception

Since we have already provided details on the optimization
of the IRSs, for the sake of simplicity, hereinafter the links
BS-IRS-U and BS-U are absorbed into a single channel matrix,
and (8) is rewritten in a more compact structure, as follows

HH
gu =

�
H̃vv

gu H̃vh
gu

H̃hv
gu H̃hh

gu

�H

, (19)

where H̃pq
gu accounts for both direct and reflected transmissions

that depart the BS from polarization p and arrive at the
user’s devices on polarization q, with p, q ∈ {v, h}, e.g.,
the effective vertical-to-vertical channel matrix is defined
by H̃vv

gu = UkΛ
1
2

k

�
(Svv

gu)HΦvv
guG

vv
gu + (Svv

gu)HΦhv
guG

vh
gu

�H

+ UkΛ
1
2

k D
vv
gu. With this notation, the signal in (11) can be

simplified to

ygu =

�
(H̃vv

gu)HP̃ (H̃hv
gu)HP̃

(H̃vh
gu)HP̃ (H̃hh

gu)HP̃

� G�

n=1

U�

i=1

�
vv

ni

vh
ni

�
αnixni

+

�
nv

gu

nh
gu

�
. (20)

Then, in order to explain our detection strategy, without
loss of generality, we focus on subsets assigned to the vertical
polarization. Remember that the IRSs of users assigned to the
vertical polarization are optimized to mitigate all transmissions
originated at the BS from the horizontal polarization. There-
fore, by relying on the effectiveness of the IRS, we exploit
the left blocks of the channel matrix in (20) to construct our
detection matrix. More specifically, in order to remove the
remaining interference from other subsets also assigned to the
vertical polarization, the uth user exploits the virtual channels
Hvv

gu = (H̃vv
gu)HP̃ and Hvh

gu = (H̃vh
gu)HP̃ to construct the

following detection matrix

H†
gu

=

�
H†v

gu 0 M̄
2 , N2

0 M̄
2 ,N2

H†h
gu

�

=

�
[(Hvv

gu)HHvv
gu]−1(Hvv

gu)H 0 M̄
2 ,N2

0 M̄
2 , N2

[(Hvh
gu)HHvh

gu]−1(Hvh
gu)H

�
,

(21)

6Configuring IRSs with polarization capabilities may be relatively more
complex than configuring conventional single-polarized counterparts. How-
ever, further investigations are still necessary on this topic, which goes beyond
the scope of this paper.

7Note that, in order for the proposed scheme to be effective, the channels
must be estimated and the IRSs optimized at least at each coherence interval.
Channel estimation in IRS-assisted communication systems is an important
and active topic of research [35]–[39], which arises as an interesting subject
to be investigated in future works.
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where H†p
gu is a left Moore–Penrose inverse intended to detect

the signals impinging on the receive antennas with polarization
p, in which it is assumed that N ≥ M̄ . Then, after multipliying
the signal in (20) by H†

gu, the uth user obtains the following
data vector

x̂gu =

�
x̂v

gu

x̂h
gu

�
=

�
xv + H†v

guH
hv
gux

h

xv + H†h
guH

hh
gux

h

�
+

�
H†v

gun
v
gu

H†h
gun

h
gu

�
, (22)

where, due to the precoding vector in (10), xv is given by

xv =

⎡
⎢⎣

�
i∈Uv α1ix1i

...�
i∈Uv αGixGi

⎤
⎥⎦ . (23)

Note in (22) that, by employing H†
gu, users will obtain

in both receive polarizations corrupted replicas of the vector
of superimposed symbols that was transmitted by the BS
from the vertical polarization. Moreover, as one can observe
in (23), each element of xv consists of a superimposed symbol
intended to a specific user subset. Therefore, a user within the
gth vertical subset is able to decode its symbol from the gth
element of both x̂v

gu and x̂h
gu. In particular, inspired by the

strategy proposed in [1], the data symbols will be decoded
from the polarization that renders the highest effective channel
gain, denoted in this work as the polarization p̈. As a result,
the superimposed symbol recovered by the uth user in the gth
vertical subset before carrying out SIC is given by

[x̂p̈
gu]g =

�

i∈Uv

αgixgi + [H†p̈
guH

hp̈
gux

h]g + [H†p̈
gun

p̈
gu]g. (24)

Users within horizontal subsets employ the same strategy.
However, differently from vertical subsets, the matrix H†

gu is
constructed based on the right blocks of the channel matrix
in (20).

V. PERFORMANCE ANALYSIS

In this section, we carry out an in-depth study of the perfor-
mance of the proposed system. By taking into account polar-
ization interference and errors from imperfect SIC, we first
provide a general expression for the SINR observed by each
user during the SIC process. A statistical analysis is then
performed to identify the distribution of the channel gains,
which turns out to be challenging to find for general values of
reflecting elements. We then investigate the limiting case for
L → ∞, in which the asymptotic distribution is determined.
Lastly, by considering large values of L, a closed-form ana-
lytical expression for the ergodic rates is derived.

A. SINR Analysis

Before the users can read their messages, they still need to
decode the superimposed symbol in (24) through SIC. Recall
that due to the polarization assignment strategy proposed
in the Section IV-B, users within each subset are sorted
in ascending order based on their large scale coefficients,
e.g., in vertical subsets ζ BS-U

kg1 < ζ BS-U
kg3 < · · · < ζ BS-U

kgUv .
As a result, following the NOMA protocol, before the uth
user in the polarization subset Up, p ∈ {v, h}, can retrieve

its own message, it carries out SIC to decode the symbol
intended for the mth weaker user, ∀m < u, m ∈ Up, and
treats the message to the nth stronger user as interference,
∀n > u, n ∈ Up. Ideally, the symbols intended for weaker
users can be perfectly removed by SIC. However, as clarified
in Section I, due to many factors, SIC errors are inevitable in
practice. Therefore, users suffer from SIC error propagation in
the proposed system, and this is modeled as a linear function
of the power of decoded symbols, as in [3]. Then, after all SIC
decodings, the uth user assigned to the polarization subset Up

in the gth group observes the following symbol

x̂gu = αguxgu& '( )
Desired symbol

+
�

m∈{a|a>u,a∈Up}
αgmxgm

& '( )
Interference of stronger users

+



ξ
�

n∈{b|b<u,b∈Up}
αgnxgn

& '( )
Residual SIC interference

+ [H†p̈
guH

tp̈
gux

t]g& '( )
Polarization interference

+ [H†p̈
gun

p̈
gu]g& '( )

Noise

, (25)

where the superscript t represents the interfering polarization
that is defined by t = h, if u ∈ Uv , or t = v, if u ∈ Uh, and
ξ ∈ [0, 1] is the SIC error propagation factor, in which ξ = 0
corresponds to the perfect SIC case, and ξ = 1 represents the
scenario of maximum error. Moreover, note that if the IRS
of the uth can completely eliminate the transmissions coming
from the horizontally polarized BS antennas, the polarization
interference term in (25) will disappear.

The SINR observed during each SIC decoding is defined in
the following lemma.

Lemma I: Under the assumption of imperfect SIC, the uth
user in the gth group decodes the data symbol intended to the
ith user, ∀i ≤ u, i ∈ Up, with the following SINR

γi
gu =

ρ�̈guα2
gi

ρ�̈guIgi + ρ�̈guXgu + 1
, (26)

where �̈gu = max{�v
gu, �h

gu}, with �p
gu = [1/H†p

gu(H†p
gu)H ]gg

being the effective channel observed in the polarization p,
Xgu =

**[H†p̈
guH

tp̈
gux

t]g
**2 represents the residual polarization

interference left by the IRS, in which, if u ∈ Uv , t = h, and
if u ∈ Uh, t = v. The symbol ρ = 1/σ2

n represents the SNR,
and Igi is the total SIC interference given by (27), as shown
at the bottom of the next page.

Proof: Please, see Appendix A. �

B. Statistical Analysis of Channel Gains

In order to proceed with the theoretical analysis, it is crucial
to identify the statistical distribution of the gains �̈gu =
max{1/[H†v

gu(H†v
gu)H ]gg, 1/[H†h

gu(H†h
gu)H ]gg} and Xgu =**[H†p̈

guH
tp̈
gux

t]g
**2. This task will be performed in this subsec-

tion. By turning our attention to the uth user in the gth vertical
subset, let us identify the distribution of [H†v

gu(H†v
gu)H ]gg .

In particular, by recalling (8) and (19), the matrix H†v
gu(H†v

gu)H
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can be expanded as

H†v
gu(H†v

gu)H

= [P̃HH̃vv
gu(H̃vv

gu)HP̃]−1

=
�
P̃HUΛ

1
2 (Gvv

gu)H(Φvv
gu)HSvv

gu(Svv
gu)HΦvv

guG
vv
guΛ

1
2UHP̃

+P̃HUΛ
1
2(Gvh

gu)H(Φhv
gu)HSvv

gu(S
vv
gu)HΦhv

guG
vh
guΛ

1
2UHP̃

+ P̃HUΛ
1
2Dvv

gu(Dvv
gu)HΛ

1
2UHP̃

�−1

. (28)

Given that Spq
gu is a full rank channel matrix, we have that

E{Svv
gu(Svv

gu)H} = ζ IRS-U
gu IL,L. Then, by using (5), the matrix

in (28) is further simplified as

H†v
gu(H†v

gu)H

=

+
1

2
ζ BS-IRS
gu ζ IRS-U

gu P̃H(Ḡvv
gu)H(Φvv

gu)HΦvv
guḠ

vv
guP̃

+
1

2
ζ BS-IRS
gu ζ IRS-U

gu P̃H(Ḡvh
gu)H(Φhv

gu)HΦhv
guḠ

vh
guP̃

+ ζ BS-U
gu P̃HD̄vv

gu(D̄vv
gu)HP̃

�−1

. (29)

As can be observed, the entries of the matrix above will be
the result of the inverse of the sum of three independent matri-
ces. Therefore, one could fully characterize H†v

gu(H†v
gu)H by

identifying the distributions of the virtual channels P̃HD̄vv
gu,

P̃H(Ḡvv
gu)H(Φvv

gu)H , and P̃H(Ḡhv
gu)H(Φhv

gu)H . However, since
the elements of Φvv

gu and Φhv
gu result from the optimization

problem in (17), which change rapidly with the fast fading
channels, determining the exact distribution of (29), with L
assuming any value in N>0, becomes a difficult task.

In face of this mathematical challenge, we study next
the limiting case with large number of reflecting elements,
i.e., L → ∞, which is also important since it provides a bound
to the maximum achievable performance of the proposed
system. As one can observe in (29), the key step to proceed
with the analysis is to study the behavior of (Φpq

gu)HΦpq
gu in

the large-scale regime of L. The following lemma performs
this task.

Lemma II: If the matrices Φpq
gu, p, q ∈ {v, h}, are optimized

to cancel out co-polar and cross-polar interference, like in (14),
when the number of reflecting elements L becomes large,
the magnitude of the reflection coefficients becomes arbitrarily
small, i.e., (Φpq

gu)HΦpq
gu → 0L,L as L → ∞, ∀p, q ∈ {v, h}.

Proof: Please, see Appendix B. �
Based on Lemma II, it becomes clear that the channel

matrices corresponding to the reflected link BS-IRS-U in (29)
will be attenuated with the increase of the number of reflecting

elements L. Therefore, in the limiting case with L → ∞, (29)
can be approximated by

H†v
gu(H†v

gu)H ≈
�
ζ BS-U
gu P̃HD̄vv

gu(D̄vv
gu)HP̃

�−1

, (30)

which can be characterized as follows. First, remember that P̃
is an unitary matrix and D̄vv

gu follows a complex Gaussian

distribution. Consequently, the product P̃HD̄vv
gu ∈ C M̄

2 × N
2

will also follow a complex Gaussian distribution. This leads
us to conclude that, when L → ∞, H†v

gu(H†v
gu)H will

converge in distribution to an inverse Wishart distribution
with N

2 degrees of freedom, and covariance matrix given

by E{H†v
gu(H†v

gu)H} =
�
ζ BS-U
gu P̃HRP̃

�−1

, which is a diag-

onal matrix. Therefore, given the dimensions of P̃HD̄vv
gu,

the channel gain 1/[H†v
gu(H†v

gu)H ]gg will converge to the
Gamma distribution with shape parameter (N − M̄)/2 + 1
and rate parameter (ζ BS-U

gu [P̃HRP̃]gg)
−1. A similar analysis

can be carried out for the effective channel gain observed
in the horizontal polarization. However, its corresponding
covariance matrix will be also multiplied by the iXPD fac-
tor experienced in the link BS-U, i.e., E{H†h

gu(H†h
gu)H} =�

ζ BS-U
gu χ BS-UP̃HRP̃

�−1

. Before we continue, for the sake

of simplicity, let λgu = (ζ BS-U
gu [P̃HRP̃]gg)

−1 and κ =
(N−M̄)/2+1. Then, by recalling that the channel coefficients
observed in both polarizations are independent, the cumulative
distribution function (CDF) for the effective channel gain �̈gu

can be derived as

F�̈gu(x) = F�vgu(x)F�hgu (x)

=
γ
�
κ, (χ BS-U)−1λgux

�
γ (κ, λgux)

Γ (κ)
2 , (31)

and the respective probability density function (PDF) can be
obtained from the derivative of F�̈gu(x), resulting in

f�̈gu(x) =
(λgu)κxκ−1

Γ (κ)
2

�
e−λguxγ

�
κ, (χ BS-U)−1λgux

�

+ (χ BS-U)−κe−(χ BS-U)−1λguxγ (κ, λgux)
�

. (32)

Note that the effective channel gains of users from hori-
zontal subsets will also have an identical distribution as the
above.

Another implication of Lemma II is that, for large
values of L, the magnitude of the reflection coefficients
required for cancelling out all polarization interference will

Igi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max{Up}�

m=i+1

α2
gm, if i = min{Up},

max{Up}�

m=i+1

α2
gm + ξ

i−1�

n=min{Up}
α2

gn, if min{Up} < i ≤ u < max{Up},

ξ

i−1�

n=1

α2
gn, if i = u = max{Up}.

(27)
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be always less than one. Therefore, when L → ∞, the solu-
tion obtained through the optimization problems (17) and
(18) should converge to that obtained via standard uncon-
strained least squares problem, as in (B-1), and, consequently,
the polarization interference term in (26) will be extinguished,
i.e., limL→∞ Xgu → 0. The ergodic rates for this limiting case
are derived in the next subsection.

C. Ergodic Rates for the Large-Scale Regime of L

Now, we derive the ergodic rates for users within each
polarization subset. Specifically, we consider a scenario in
which the users are assisted by IRSs with a large number of
reflecting elements. Therefore, as a consequence of Lemma II,
the data rates will not be impacted by polarization interference,
but only from errors due to imperfect SIC. Under such
considerations, a closed-form expression for the ergodic rates
is derived in the following proposition.

Proposition I: When the uth user in the gth polarization
subset is assisted by an IRS with a large number of reflecting
elements, i.e., L → ∞, and considering degradation from
imperfect SIC, it will experience the ergodic rate in (33), as
shown at the bottom of the page, where ᾱgu = ρ(α2

gu +Igu),
and α̃gu = ρIgu.

Proof: Please, see Appendix C. �
Even though (33) may look complex to interpret, by know-

ing that all terms with Meijer’s G-functions are increasing
functions of the SNR ρ, which have been numerically verified,
we can still extract some insights. First, note that the terms that
are functions of α̃gu, which accounts only for interference, are
negative. This suggests that such terms are expected to degrade
the ergodic rates of the users as long as they experience some
interference. On the other hand, the positive term that depends
on χ BS-U and ᾱgu indicates that the cross-polar transmissions
will improve the rate performance of the users. This behavior
is indeed expected since the IRSs enables polarization diversity
by recycling cross-polar transmissions.

VI. SIMULATION RESULTS AND DISCUSSIONS

In this section, by presenting representative numerical simu-
lation examples, we validate the theoretical analysis carried out
in the last section and demonstrate the potential performance
gains that the proposed dual-polarized IRS-MIMO-NOMA
scheme can achieve over conventional systems. Specifically,
the theoretical results have been obtained through (33), while
the simulation ones have been generated by averaging a
large number random channel realizations, in which we

use as baseline schemes the classical MIMO-OMA system,
where users are served via time division multiple access,
and the conventional single-polarized and dual-polarized
MIMO-NOMA systems, whose implementation details can be
found in [1].

For a fair performance comparison, in both single and
dual-polarized schemes, we employ at the BS a linear array
with M = 90 transmit antennas. However, as explained
in the System Model Section, the antenna elements in the
dual-polarized systems are arranged into co-located pairs,
thereby, resulting in M

2 = 45 pairs of dual-polarized antennas
spaced by half of the wavelength, i.e., λ/2 (the inter-antenna
spacing in the single-polarized systems is also set to λ/2). The
operating frequency is set up to 3 GHz, and for modeling the
scattering environment and the correlation between transmit
antennas, we generate the covariance matrices in (6) and (7)
through the one-ring geometrical model [1], [29], [30], where
we consider the existence of K = 4 spatial clusters, each with
30 m of radius and located at 120 m from the BS. In addition,
the BS’s antenna array is directed to the center of the first
cluster that is positioned at the azimuth angle of 30◦. This is
the cluster from which the simulation results are generated,
which comprises G = M̄ = 4 groups, each one containing
U = 4 users.8 For simplicity, we assume that users within
each group share a common spatial direction, in which users
in groups 1, 2, 3 and 4 have azimuth angles of 20◦, 24◦,
36◦, and 40◦, respectively. In particular, we focus on the first
group, where the users 1, 2, 3 and 4 are located, respectively,
at 135 m, 125 m, 115 m, and 105 m from the BS, resulting
in an inter-user distance of 10 m. A fixed power allocation
is adopted, in which we set α2

1 = 0.4, α2
2 = 0.35, α2

3 =
0.2, α2

4 = 0.05. Moreover, we assume that the distances from
the BS to each IRS are the same as that from the BS to its
connected user, and that χ BS-U = χ BS-IRS = χ. Under these
assumptions, the fading coefficients for the links BS-U and
BS-IRS are configured as ζ BS-U

u = ζ BS-IRS
u = �d−η

u , where du

is the distance between the BS and the uth user and its serving
IRS, � = 2×104 is an array gain parameter that is configured
at the BS according to the desired receivers’ performance [3],
and η = 2 is the path-loss exponent. Regarding the link IRS-U,
since an IRS is a passive device, we discard the array gain and
model the corresponding fading coefficient as ζ IRS-U

gu = d̃−η,
where d̃ = 20 m for all IRSs, i.e., users are positioned 20 m
apart from its serving IRS. Other parameters that have not

8Due to the interference-limited behavior of NOMA-based schemes,
the number of users served in practical systems is usually maintained small [3].

R̄gu =
1

ln(2)Γ (κ)

 
G1,3

3,2

+
1−κ,1,1

1,0

****
ᾱgu

λgu

0
+ G1,3

3,2

+
1−κ,1,1

1,0

****
χBS-Uᾱgu

λgu

0
− G1,3

3,2

+
1−κ,1,1

1,0

****
α̃gu

λgu

0

−G1,3
3,2

+
1−κ,1,1

1,0

****
χ BS-Uα̃gu

λgu

0
−

κ−1�

n=0

(χ BS-U)κ + (χ BS-U)n

n!(χ BS-U + 1)κ+n

�
−G1,3

3,2

+
1−κ−n,1,1

1,0

****
χ BS-Uᾱgu

(χ BS-U + 1)λgu

0

−G1,3
3,2

+
1−κ−n,1,1

1,0

****
χ BS-Uα̃gu

(χ BS-U + 1)λgu

0�#
, 1 ≤ u ≤ U. (33)
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Fig. 4. Simulated and analytical ergodic sum-rates considering perfect SIC.
Effect of the increase in the number of dual-polarized reflecting elements
(N = 4, χ = 0.5, ξ = 0).

Fig. 5. Simulated and analytical ergodic sum-rates for various levels of SIC
error propagation (L = 500, χ = 0.5).

been mentioned will assume different values throughout the
simulation examples.

Fig. 4 brings the simulated and analytical ergodic sum-rate
curves, generated by

�U
i=1 R̄gi, for various values of

dual-polarized reflecting elements L, and considering perfect
SIC decoding. As one can see, for small numbers of reflecting
elements, when optimizing the IRSs through (17) and (18),
the simulated ergodic sum-rate curves reach values lower than
that from the analytical curve obtained by solving (33). This
behavior is explained by the fact that the IRS cannot eliminate
all polarization interference when the number of reflecting ele-
ments is small, which degrades the system sum-rate. However,
as the number of reflecting elements increases, the polarization
interference decreases, and the sum-rate improves, approach-
ing the analytical one. For instance, when 500 dual-polarized
elements are considered, the simulated sum-rate matches
perfectly the analytical curve. Such performance is in total
agreement with Lemma II and the analytical derivation of
Section V-C, therefore, providing the first validation to our
analysis.

To further corroborate the analysis for large values of L,
we present in Fig. 5 the sum-rates and in Fig. 6 the individual

Fig. 6. Simulated and analytical ergodic rates for different values of iXPD
(L = 500, N = 4, ξ = 0).

ergodic rates for 500 reflecting elements, in which, in all
considered cases, a perfect agreement between simulated and
analytical curves can be observed. Specifically, Fig. 5 shows
the effects of SIC error propagation on the system performance
for different numbers of receive antennas. As one can notice,
when the users face imperfect SIC, their sum-rate curves
become limited to a saturation point that deteriorates with the
increase of the error factor ξ. This happens due to the fact that
all users, even the strongest one, experience interference when
ξ �= 0, thereby, leading to the observed limited performance.
Such behavior confirms the insights raised in the last paragraph
of Section V-C.

Fig. 6 depicts the impact of the level of cross-polar trans-
missions in the users’ ergodic rates considering perfect SIC,
in which results for different values for the iXPD parameter
χ are shown. In addition to validating the theoretical analysis,
this figure shows how beneficial the proposed scheme can be
to improve the performance of each user. It also becomes
clear that, with the help of IRSs, depolarization phenomena
can be transformed into an advantage, e.g., the higher the
iXPD, the greater the performance gains. For instance, in the
conventional single-polarized system, when the SNR is 30 dB,
the rate of user 3 is limited to only 2.27 bits per channel
use (BPCU). On the other hand, when this same user is
served via the IRS-MIMO-NOMA scheme, for a low iXPD
of χ = 0.05, and an SNR of 30 dB, its rate can reach
8.44 BPCU, which is more than three times greater than that
achieved in the single-polarized scheme. When we consider a
high iXPD of χ = 1, the achievable ergodic rate of the user 3
becomes even more remarkable, reaching up to 9.42 BPCU.
Impressive performance gains can be also observed in all
the other users, with their rates remarkably outperforming
those achievable in the conventional single-polarized scheme.
These improvements are mainly due to two features of the
proposed IRS-MIMO-NOMA system, already explained in
previous sections. That is, firstly, the IRSs enable the users
to exploit polarization diversity, and, secondly, the users are
able to perform SIC considering interference only from their
own polarization subset. Therefore, in addition to benefit
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Fig. 7. Simulated ergodic sum-rates. Comparison between proposed
dual-polarized IRS-MIMO-NOMA and conventional schemes (N = 4, χ =
0.5, ξ = 0).

Fig. 8. Simulated ergodic sum-rates. Comparison between proposed
dual-polarized IRS-MIMO-NOMA and conventional schemes under imperfect
SIC (N = 4, χ = 0.5).

from diversity, users in the IRS-MIMO-NOMA system are
impacted by less interference than they are in the conventional
MIMO-NOMA counterpart.

In Fig. 7, we compare the sum-rate performance of the pro-
posed IRS-MIMO-NOMA scheme and other conventional sys-
tems assuming perfect SIC. As one can notice, when L = 80,
from 21 dB onward, the proposed scheme is outperformed by
the dual-polarized MIMO-NOMA counterpart, and when the
SNR reaches 30 dB, the MIMO-OMA system is the one that
achieves the best performance. However, with a slight increase
in the number of reflecting elements, from L = 80 to L = 90,
the IRS-MIMO-NOMA scheme can already outperform all the
other baseline schemes, in all considered SNR range. Finally,
Fig. 8 shows how well the dual-polarized IRS-MIMO-NOMA
system performs in comparison with the single-polarized
MIMO-OMA and MIMO-NOMA counterparts in the presence
of SIC error propagation. As can be seen, even though
the sum-rate of all NOMA-based schemes are caped in
the high-SNR regime, the proposed IRS-MIMO-NOMA sys-
tem is significantly more robust to SIC errors than the
conventional single-polarized MIMO-NOMA. For instance,

for a SIC error factor of ξ = 0.005, the single-polarized
MIMO-NOMA can only slightly outperform the MIMO-OMA
scheme for SNR values lower than 15 dB. When the error
is ξ = 0.01, the sum-rate degradation becomes so severe
that, in the whole SNR range, the MIMO-OMA system
outperforms the MIMO-NOMA counterpart. On the other
hand, even when considering L = 80 reflecting elements,
and an error of ξ = 0.01, the IRS-MIMO-NOMA can reach
sum-rates remarkably higher than those achieved by the con-
ventional schemes, being outperformed by the MIMO-OMA
scheme only in SNR values above 20 dB. Moreover, for
L = 90 and L = 100, the IRS-MIMO-NOMA scheme
always achieves the best performance. For example, when
ξ = 0.005, L = 100 and the SNR is 18 dB, the
IRS-MIMO-NOMA scheme reaches an expressive sum-rate
of 9.81 BPCU, which is an increase of 3.86 BPCU over the
MIMO-OMA system and 4.17 BPCU over the single-polarized
MIMO-NOMA.

VII. CONCLUSION

In this work, by exploiting the capabilities of dual-polarized
IRSs, we proposed and investigated a novel strategy
for improving the performance of dual-polarized massive
MIMO-NOMA networks under the impact of imperfect SIC.
The detailed construction of the beamforming and reception
matrices was provided, and an efficient procedure for opti-
mizing the IRS reflecting elements was developed. More-
over, we carried out an insightful mathematical analysis,
in which the ergodic rates for large numbers of reflect-
ing elements were derived. Our numerical results revealed
that the proposed dual-polarized IRS-MIMO-NOMA scheme
can achieve remarkable performance gains over conven-
tional single-polarized and dual-polarized systems and that
cross-polar transmissions can further improve the ergodic rates
of the users.

APPENDIX A
PROOF OF LEMMA I

Given the data symbol in (25), when the uth user in the
polarization subset Up, p ∈ {v, h}, of the gth group decodes
the message intended to the ith user, min{Up} < i < u,
i ∈ Up, it experiences the following SINR

γi
gu

= |αgixgi|2
1 �

m∈{a| a>i, a∈Up}
|αgmxgm|2 + ξ

�

n∈{b| b<i, b∈Up}
|αgnxgn|2

+
**[H†p̈

guH
tp̈
gux

t]g
**2 + |[H†p̈

gun
p̈
gu]g|2

−1

= α2
gi

1 �

m∈{a| a>i, a∈Up}
α2

gm + ξ
�

n∈{b| b<i, b∈Up}
α2

gn +
**[H†p̈

guH
tp̈
gux

t]g
**2

+σ2
n[H†p̈

gu(H†p̈
gu)H ]gg

−1

. (A-1)

By defining ρ = 1/σ2
n as the SNR, and denoting the

effective channel gain by �̈gu = max{�v
gu, �h

gu} = max
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{1/[H†v
gu(H†v

gu)H ]gg, 1/[H†h
gu(H†h

gu)H ]gg}, the SINR can be
rewritten as

γi
gu = ρ�̈guα2

gi

�
ρ�̈gu

1
max{Up}�

m=i+1

α2
gm + ξ

i−1�

n=min{Up}
α2

gn

+
**[H†p̈

guH
tp̈
gux

t]g
**2


+ 1

�−1

. (A-2)

Note that when the weakest user, i.e., the 1st user corre-
sponding to min{Up}, detects its symbol, it will experience
interference from everyone else, but it will not face imperfect
SIC. On the other hand, when the user with the best channel
gain, i.e., the user corresponding to the maximum index
in Up, decodes its symbol, there will be no interference
from higher-order users, but only from imperfect SIC. Under
these observations, we denote the polarization interference
by Xgu =

**[H†p̈
guH

tp̈
gux

t]g
**2, and the total SIC interference

by (A-3), as shown at the bottom of the page. Then, by apply-
ing these definitions in (A-2), we can achieve the final SINR
expression, as in (26), which completes the proof. �

APPENDIX B
PROOF OF LEMMA II

First, note that (Φpq
gu)HΦpq

gu is a diagonal matrix whose
entries are the squared magnitude of the reflection coefficients,
i.e., (ωpq

gu,l)
2. Therefore, we aim to investigate the behavior of

(ωpq
gu,l)

2 when L → ∞. For this, let us start by relaxing the
unity L∞ norm constraint (15b), and rewriting the problem
in (15) as

min
θvv
gu,θhv

gu

����K̄gu

�
(θvv

gu)T , (θhv
gu)T

�T
+ dhv

gu

����
2

, (B-1)

which consists of a standard least squares problem that,
by assuming L ≥ Nr�

k, has optimal solution given by
�
(θ̇

vv

gu)T , (θ̇
hv

gu)T
�T

= K̄H
gu(K̄guK̄

H
gu)−1dhv

gu, (B-2)

which is the solution with minimum L2 norm. Then, it follows

that K̄gu

�
(θ̇

vv

gu)T , (θ̇
hv

gu)T
�T

+ dhv
gu = 0, which implies

2L�

l=1

[K̄gu]il

�
θ̇

vv

gu

θ̇
hv

gu

�

l

= −
�
dhv

gu

�
i
, ∀i = 1, · · · ,

N

2
r�
k. (B-3)

Recall that
�
dhv

gu

�
i

is a complex Gaussian random variable
with zero mean and unit variance. Consequently, the sum on
the left-hand side of (B-3) will also have zero mean and unity

variance ∀L ≥ Nr�
k ∈ N>0. Therefore, we can exploit the

independence of [K̄gu]il and

��
(θ̇

vv

gu)T , (θ̇
hv

gu)T
�T �

l

and write

2L�

l=1

E
$**[K̄gu]il

**2
%

E

⎧
⎨
⎩

*****

�
θ̇

vv

gu

θ̇
hv

gu

�

l

*****

2
⎫
⎬
⎭ = E

!***
�
dhv

gu

�
i

***
2
"

= 1.

(B-4)

As long as the reflection coefficients are optimized based
on (B-2), the sum in (B-4) will always converge to 1,
independently of L. By knowing this beforehand, we need
to check the convergence behavior of each term of the
above sum separately. First, recall that the entries of K̄gu

also result from independent complex Gaussian random vari-
ables with unity variance. Because of this, we have that
limL→∞

�2L
l=1 E{|[K̄gu]il|2} → ∞. Therefore, the sum

in (B-4) will only converge if

****
��

(θ̇
vv

gu)T , (θ̇
hv

gu)T
�T�

l

****
2

=

(ωpq
gu,l)

2 → 0, ∀l = 1, · · · , 2L, and we can conclude that
(Φpq

gu)HΦpq
gu → 0L,L, as L → ∞, ∀p, q ∈ {v, h},, which

completes the proof. �

APPENDIX C
PROOF OF PROPOSITION I

By relying on Lemma II, when L → ∞, the uth user
experiences the following data rate

Rgu = log2

�
ρ�̈gu(α2

gu + Igu) + 1
�

− log2

�
ρ�̈guIgu + 1

�
, 1 ≤ u ≤ U. (C-1)

The ergodic rate can be then derived from the expectation
of Rgu, i.e.,

R̄gu =

5 ∞

0

�
log2

�
ρ(α2

gu + Igu)x + 1
�

− log2 (ρIgux + 1)
�
f�̈gu(x)dx. (C-2)

Next, by denoting ᾱgu = ρ(α2
gu + Igu) and α̃gu = ρIgu,

and replacing the PDF of �̈gu in (C-2), we obtain

R̄gu

=
(λgu)κ

Γ (κ)
2

5 ∞

0

�
log2 (ᾱgux + 1)

− log2 (α̃gux + 1)
�
xκ−1e−λguxγ

�
κ, (χ BS-U)−1λgux

�
dx

+
(λgu)κ

Γ (κ)
2
(χ BS-U)κ

5 ∞

0

�
log2 (ᾱgux + 1)

Igi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max{Up}�

m=i+1

α2
gm, if i = min{Up},

max{Up}�

m=i+1

α2
gm + ξ

i−1�

n=min{Up}
α2

gn, if min{Up} < i ≤ u < max{Up},

ξ

i−1�

n=1

α2
gn, if i = u = max{Up}.

(A-3)
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− log2 (α̃gux + 1)
�
xκ−1e−(χ BS-U)−1λguxγ (κ, λgux) dx

� I1 + I2. (C-3)

First, let us focus on solving I1. By applying the Meijer’s
G-function representation for ln(x + 1) [40, eq. (2.6.6)] and
exploiting the series representation of the incomplete gamma
function in [23, eq. (8.352.6)], we can rewrite I1 as follows

I1 =
(λgu)κ

ln(2)Γ (κ)

� 5 ∞

0

�
G1,2

2,2

� 1,1
1,0

**ᾱgux
�

−G1,2
2,2

� 1,1
1,0

**α̃gux
� �

xκ−1e−λguxdx

−
κ−1�

n=0

(λgu)n

n!(χ BS-U)n

5 ∞

0

�
G1,2

2,2

� 1,1
1,0

**ᾱgux
�

−G1,2
2,2

� 1,1
1,0

**α̃gux
� �

xκ+n−1e−λgu(1+(χ BS-U)−1)xdx

�
.

(C-4)

Then, by exploiting the Laplace transform property for
Meijer’s G-functions [41, eq. (5.6.3.1)], and performing some
manipulations in (C-4), I1 can be derived as

I1 =
1

ln(2)Γ (κ)

 +
1−κ,1,1

1,0

****
ᾱgu

λgu

0

−G1,3
3,2

+
1−κ,1,1

1,0

****
α̃gu

λgu

0
−

κ−1�

n=0

(1 + (χ BS-U)−1)−κ−n

n!(χ BS-U)n

×
�
G1,3

3,2

+
1−κ−n,1,1

1,0

****
ᾱgu

λgu(1 + (χ BS-U)−1)

0

−
+

1−κ−n,1,1
1,0

****
α̃gu

λgu(1 + (χ BS-U)−1)

0�#
. (C-5)

A similar analysis can be carried out to solve I2, which is not
shown here due to space constraints. Then, after replacing I1

and I2 in (C-3), and performing some manipulations, the final
ergodic rate expression can be obtained as in (33), which
completes the proof. �
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Abstract—In this work, intelligent reflecting surfaces (IRSs)
are optimized to manipulate signal polarization and improve the
uplink performance of a dual-polarized multiple-input multiple-
output (MIMO) non-orthogonal multiple access (NOMA)
network. By multiplexing subsets of users in the polarization
domain, we propose a strategy for reducing the interference
load observed in the successive interference cancelation (SIC)
process. To this end, dual-polarized IRSs are programmed to mit-
igate interference impinging at the base station (BS) in unsigned
polarizations, in which the optimal set of reflecting coefficients
are obtained via conditional gradient method. We also develop
an adaptive power allocation strategy to guarantee rate fairness
within each subset, in which the optimal power coefficients are
obtained via a low-complexity alternate approach. Our results
show that all users can reach high data rates with the proposed
scheme, substantially outperforming conventional systems.

Index Terms—IRS, multi-polarization, MIMO, NOMA.

I. INTRODUCTION

DUAL-POLARIZED antenna arrays are effective for over-
coming physical space limitations in multiple-input

multiple-output (MIMO) systems [1]. Dual-polarized MIMO
systems can also deliver improved user multiplexing and
higher spectral efficiency than that achieved in single-
polarized counterparts [2]. Power-domain non-orthogonal
multiple access (NOMA) is another promising technique
envisioned for enabling massive access in future wireless
systems. In the uplink, through successive interference can-
celation (SIC), NOMA enables the base station (BS) to
decode the messages coming simultaneously from differ-
ent users, thereby leading to latency and spectral improve-
ments. NOMA and dual-polarized MIMO combined render
even larger gains that substantially outperform conventional
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systems [3]. Nevertheless, the rates of strong users are always
capped due to interference from the weak ones. Besides limit-
ing the sum-rate, this behavior leads to unbalanced individual
rates, which is not suitable for applications where multiple
devices require a uniform performance. One can alleviate
this issue by balancing the users’ rates through adaptive
power allocation [4]. However, since these schemes usually
lead to excessive penalties for some users, the sum-rate is
also impacted. Therefore, new strategies for alleviating SIC
interference are necessary.

Fortunately, a dual-polarized intelligent reflecting surface
(IRS) has recently emerged as a disruptive technology for
optimizing the propagation environment [5]. In this work, we
exploit dual-polarized IRSs to propose a novel approach for
reducing the interference levels of the SIC process in the
uplink. Our results show that all users can reach high data
rates with the proposed scheme, substantially outperforming
conventional systems.

Notation: Bold-faced lower-case letters denote vectors and
upper-case denote matrices. The transpose and the Hermitian
transpose of A are represented by AT and AH , respectively.
The symbol � represents the Khatri-Rao product [6], IM is the
identity matrix of dimension M × M, and 0M ,N is the M × N
matrix with all zero entries. The operator vec(·) transforms a
M × N matrix into a column vector of length MN, vecd(·)
converts the diagonal elements of an M × M square matrix
into a column vector of length M, and diag(·) transforms a
vector of length M into an M × M diagonal matrix.

II. SYSTEM MODEL

Consider that multiple users are communicating in uplink
mode with a single BS in a MIMO-NOMA network. The BS
and the users employ multiple antennas organized into co-
located pairs, with each pair comprising antenna elements with
orthogonal polarizations, i.e., vertical and horizontal polar-
izations. The number of antenna pairs at the BS is denoted
by M/2, and at the users by N/2, in which, due to the dual-
polarized antenna structure, we assume that M and N are even
and greater than 2. Moreover, the users are clustered into G
groups with U users each. As mentioned, the performance of
NOMA is limited by interference. To alleviate this major issue,
we exploit the concepts of a dual-polarized IRS to propose a
novel strategy. First, we assume that one IRS with L dual-
polarized reflecting elements is installed between each group
and the BS, i.e., there are G IRSs. Second, the BS subdivides
each group into 2 subsets, in which vertically polarized anten-
nas are assigned to receive the messages from the first subset,
that contains U v users, and horizontally polarized antennas
are assigned to the second subset, that contains U h users,
such that U v + U h = U . Then, the IRSs are optimized to
ensure that the signals coming from each subset impinge only

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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Fig. 1. System model. Each dual-polarized IRS mitigates polarization
interference from one group of users.

at antennas corresponding to the assigned polarization. This
scheme is illustrated in Fig. 1.

The phases and amplitude of reflection induced by the
dual-polarized IRS for the gth group can be organized in the
following block diagonal matrix [5]

Θg =

[
Φvv

g Φhv
g

Φvh
g Φhh

g

]
∈ C2L×2L, (1)

where Φ
pq
g = diag{[α

pq
g,1e

−jφpq
g,1 , . . . , α

pq
g,Le−jφpq

g,L ]} ∈
CL×L, with φ

pq
g,l and α

pq
g,l representing, respectively, the phase

and amplitude of reflection induced by the lth IRS element1

from polarization p to polarization q, with p, q ∈ {v , h} (v
stands for vertical and h for horizontal). Given the matrix
in (1), we can represent the full channel matrix obtained at
the BS by

Hgu =

[
Fvv
g 0L, M

2

0L, M
2

Fhh
g

]H[
Φvv

g Φhv
g

Φvh
g Φhh

g

][
Gvv

gu

√
χU-IRSGhv

gu√
χU-IRSGvh

gu Ghh
gu

]

+

[
Dvv

gu

√
χU-BSDhv

gu√
χU-BSDvh

gu Dhh
gu

]
∈ CM×N , (2)

where Dpq
gu =

√
ζU-BS
gu D̃pq

gu ∈ C
M
2

×N
2 , Gpq

gu =√
ζU-IRS
gu

2 G̃pq
gu ∈ CL×N

2 , and Fpq
g =

√
ζIRS-BS
gu F̃pq

g ∈ CL×M
2 ,

with D̃
pq
g , G̃

pq
g and F̃

pq
g modeling, respectively, the fast-fading

channels between the uth user and the BS (link U-BS), the
uth user and the gth IRS (link U-IRS), and the gth IRS
and the BS (link IRS-BS), from the polarization p to the
polarization q, in which the entries of D̃

pq
g , G̃

pq
g and F̃

pq
g fol-

low the complex Gaussian distribution with zero mean and
unity variance. Moreover, ζU-BS

gu , ζU-IRS
gu , and ζIRS-BS

gu rep-
resent, respectively, the large-scale fading coefficients for the
links U-BS, U-IRS, and IRS-BS, the normalization factor 1√

2

ensures a passive beam splitting at the IRS, and χU-IRS, and
χU-BS ∈ [0, 1] denote the inverse of the cross-polar discrim-
ination parameter (iXPD) that measures the power leakage
between polarizations. Note that, for mathematical conve-
nience, depolarization phenomena are not considered in the
link IRS-BS. Further details for the channel modeling of
dual-polarized IRSs can be found in [5].

Given the channel model in (2), the signal received at BS
coming from all user groups can be expressed by

y =

G∑

m=1

U∑

n=1

Hmnxmn + n ∈ CM , (3)

where xmn = pmn
√

Pβmnxmn ∈ CN , in which pmn is
a precoding vector to be explained later, P is the transmit

1Discrete reflection coefficients shall be considered in future works.

power budget, βmn ∈ [0, 1] is the power allocation coeffi-
cient, xmn represents the transmitted data symbol, and n =
[(nv )T , (nh )T ]T ∈ CM is the noise vector observed at the
BS, whose entries follow the complex Gaussian distribution
with zero mean and variance σn .

III. IRS OPTIMIZATION, PRECODING, AND RECEPTION

A. IRS Optimization

In this section, we focus on the optimization of the IRSs.
Firstly, let us represent each subset by the index set Gp

g =
{1, 2, . . . ,U p}, in which p ∈ {v , h}, and let:

Gv
gu =

[
Gvv

gu

√
χU-IRSGhv

gu

]
, Gh

gu =

[√
χU-IRSGvh

guGhh
gu

]

Dv
gu =

[
Dvv

gu

√
χU-IRSDhv

gu

]
, Dh

gu =

[√
χU-IRSDvh

guDhh
gu

]
.

Then, we can expand the signal model in (3) as follows

y =

G∑

m=1

[
U∑

n=1

([
(Fvv

m )H Φvv
m Gv

mn(
Fhh
m

)H
Φvh

m Gv
mn

]
+

[
(Fvv

m )H Φhv
m Gh

mn(
Fhh
m

)H
Φhh

m Gh
mn

])
xmn

+
∑

s∈Gv
m

[
Dv

ms

Dh
ms

]
xms +

∑

t∈Gh
m

[
Dv

mt

Dh
mt

]
xmt

⎤
⎦+ n. (4)

Following the proposed strategy, the messages transmitted
from users in subset Gv

g should arrive at the BS only through
the channels modeled by the upper blocks of the matrices
in (4), while the messages from Gh

g should arrive only through
the lower blocks, in both reflected, U-IRS-BS, and direct,
U-BS, links. To this end, the IRS associated with the gth group
must mitigate all transmissions from subset Gv

g that impinges
the BS with horizontal polarization, and all transmissions from
Gh
g that impinges the BS with vertical polarization.
Therefore, we can formulate the optimization problem as

in (5), shown at the bottom of the page. Due to the compli-
cated matricial objective function, and the diagonal matrices
constraint, solving problem (5) in its original form is chal-
lenging. Therefore, we recall the Khatri-Rao property (CT �
A)vecd(B) = vec(ABC) [6] to transform (5) into a simpler
equivalent problem. More specifically, we define:

θpq
g = vecd

(
Φpq

g

)
, zvg =

∑

t∈Gh
g

Dv
gtxgt , z

h
g =

∑

s∈Gv
g

Dh
gsxgs ,

Wvv
g =

[
U∑

n=1

Gv
gnxgn

]T

�
(
Fvv
g

)H
, W̃vv

g =

[
U∑

n=1

Gh
gnxgn

]T

�
(
Fvv
g

)H
,

Whh
g = [

U∑

n=1

Gh
gnxgn ]T � (Fhh

g )H , W̃hh
g = [

U∑

n=1

Gv
gnxgn ]T � (Fhh

g )H .

Then, (5) is transformed into the following sub-problems

arg min
θvv
g ,θhv

g

∥∥∥∥
[
Wvv

g W̃vv
g

][θvv
g

θhv
g

]
+ zvg

∥∥∥∥
2

(6a)

s.t.

∣∣∣∣
[
θvv
g

θhv
g

]∣∣∣∣
∞

≤ 1, (6b)

arg min
θvh
g ,θhh

g

∥∥∥∥∥
[
W̃hh

g Whh
g

][
θvh
g

θhh
g

]
+ zhg

∥∥∥∥∥

2

(7a)

s.t.

∣∣∣∣∣

[
θvh
g

θhh
g

]∣∣∣∣∣
∞

≤ 1. (7b)
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The objective functions of the problems above are of the
form f (θ) = ‖Wθ + z‖2, which has gradient ∇f (θ) =
2WH (Wθ +z), and Hessian given by 2WH W. Consequently,
since the Hessian matrix of f (θ) is positive semidefinite, the
functions in (6a) and (7a) are convex. Moreover, the �∞ norm
constraints in (6b) and (7b) define convex compact subsets
in the Hilbert space. As a result, problems (6) and (7) can
be solved via the Conditional Gradient method [7], which is
implemented in Algorithm 1. The algorithm converges to the
optimal solutions at a rate of O( 1

k ), with k representing its
iterations. Furthermore, since the optimization happens over
the �∞ space, each iteration has linear time complexity [8].

In this letter, the BS is responsible for executing Algorithm 1
and sending the optimized reflecting coefficients to the IRSs
(e.g., through a backhaul link). To this end, we assume perfect
knowledge of the global channel state information (CSI).

B. Precoding for Intra-Group Channel Alignment

We build pgu to align the channels of users within each
subset. Specifically, we design pgu to align only the chan-
nels corresponding to the assigned polarization of the link

U-BS. For notation simplicity, let D̃v
gu = (

√
ζU-BS
gu )−1Dv

gu

and D̃h
gu = (

√
ζU-BS
gu )−1Dh

gu be the block matrices corre-
sponding to the fast-fading arriving at the BS antennas with
vertical and horizontal polarizations, respectively. Then, for
users in subset Gp

g , with p ∈ {v , h}, the following must be
achieved

D̃
p
g1pg1 = D̃

p
g2pg2 = · · · = D̃

p
gU ppgU p . (8)

This goal can be obtained by solving the following problem
⎡
⎢⎢⎢⎢⎢⎣

IM
2

−D̃p
g1 0M

2 ,N . . . 0M
2 ,N

IM
2

0M
2 ,N −D̃p

g2 . . . 0M
2 ,N

...
...

...
. . .

...

IM
2

0M
2 ,N 0M

2 ,N . . . −D̃p
gUp

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

d̄p
g

pg1

...

pgUp

⎤
⎥⎥⎥⎥⎦

= 0(Up M
2 ),1,

(9)

where d̄p
g ∈ C

M
2 is the aligned channel vector obtained by

the BS at polarization p from users in subset Gp
g , i.e., d̄p

g =

D̃
p
gupgu , ∀u ∈ Gp

g . Moreover, note that since the matrix in the
leftmost side of (9) has dimension (M

2 U p) × (M
2 + NU p),

the constraint 2NU p > M (U p − 1) must be obeyed.

C. Inter-Group Interference Cancelation

Since the channels of users assigned to the same polarization
have been aligned, now we can compute the reception vec-
tor intended to remove inter-group interference. The desired

vector for the receive polarization p ∈ {v , h} can be derived as

qp
g = null

{[
d̄p

1 , . . . , d̄p
(g−1), d̄

p
(g+1), . . . , d̄

p
G

]H
}

∈ C
M
2 , (10)

where, to ensure the existence of a nontrivial null space, M >
2(G − 1) must be satisfied.

D. Signal Reception

After filtering the signals received in both polarizations
through the vector in (10), all inter-group interference van-
ishes. Therefore, from (4), the superimposed symbol from the
gth group detected by the BS can be written as

x̂g =

⎡
⎣

(
qv
g

)H
d̄v
g

∑
s∈Gv

g

√
ζU-BS
gs Pβgsxgs(

qh
g

)H
d̄h
g

∑
t∈Gh

g

√
ζU-BS
gt Pβgtxgt

⎤
⎦ +

[
I v
g

I h
g

]

+

[
(qv

g )H nv

(qh
g )H nh

]
∈ C2, (11)

where I p
g is the polarization interference left by the gth IRS,

which is defined by

[
I v
g

I h
g

]
=

U∑

n=1

⎡
⎣

(
qv
g

)H (
Fvv

g

)H
Φvv

g Gv
gnxgn(

qh
g

)H (
Fhh

g

)H
Φvh

g Gv
gnxgn

⎤
⎦

+

U∑

n=1

⎡
⎣

(
qv
g

)H (
Fvv

g

)H
Φhv

g Gh
gnxgn(

qh
g

)H (
Fhh

g

)H
Φhh

g Gh
gnxgn

⎤
⎦

+

⎡
⎣

(
qv
g

)H ∑
t∈Gh

g
Dv

gtxgt(
qh
g

)H ∑
s∈Gv

g
Dh

gsxgs

⎤
⎦. (12)

As one can observe, after filtering the received signals
through the detection vectors, the BS retrieves two super-
imposed symbols, i.e., one symbol from each polarization.
Observe that, if the IRSs completely eliminate the signals in
unassigned polarizations, the interference term in (12) will
vanish. Next, the BS employs SIC to recover the messages
of users assigned to their corresponding polarization.

IV. SINR ANALYSIS

Since both inter-group and inter-subset interference have
been addressed, now the BS can securely apply SIC to
each polarization separately. For this, the BS first sorts users
from each subset in a descending order based on their large
scale fading coefficient observed in the link U-BS, such that
ζU-BS
g1 > ζU-BS

g2 > · · · > ζU-BS
gU p . Then, the SIC decoding pro-

cess is carried out following this order, i.e., the symbol from
the uth user received in polarization p is decoded by treating

arg min
Φvv

g ,Φvh
g ,

Φhv
g ,Φhh

g

∥∥∥∥∥∥

⎡
⎣

(
Fvv

g

)H
Φvv

g
∑U

n=1 Gv
gnxgn(

Fhh
g

)H
Φvh

g
∑U

n=1 Gv
gnxgn

⎤
⎦ +

⎡
⎣

(
Fvv

g

)H
Φhv

g
∑U

n=1 Gh
gnxgn(

Fhh
g

)H
Φhh

g
∑U

n=1 Gh
gnxgn

⎤
⎦ +

[∑
t∈Gh

g
Dv

gtxgt∑
s∈Gv

g
Dh

gsxgs

]∥∥∥∥∥∥

2

(5a)

s.t.
∣∣∣ωpq

g,l

∣∣∣
2

≤ 1, ∀l ∈ [1,L], ∀p, q ∈ {v , h} (5b)

Φvv
g , Φvh

g , Φhv
g , Φhh

g diagonal (5c)
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Algorithm 1: Algorithm for Optimizing the Dual
Polarized IRSs Based on the Conditional Gradient Method

Input: K , zvg , zhg , [Wvv
g W̃vv

g ], [W̃hh
g Whh

g ].
Output: Φvv

g , Φhv
g , Φvh

g , Φhh
g .

1 Initialize c = 1, θ
(1)
g = 02L,1, ~θ(1)

g = 02L,1;
2 for k = 1 to K − 1 do
3 Compute the gradients of (6a) and (7a):

∇f (θ
(k)
g ) = 2[Wvv

g W̃vv
g ]H ([Wvv

g W̃vv
g ]θ

(k)
g + zvg ),

∇f (~θ(k)
g ) = 2[W̃hh

g Whh
g ]H ([W̃hh

g Whh
g ]~θ(k)

g + zhg );

4 Construct the direction-finding vectors s(k) and s̃(k) by

computing: [s(k)]i = −c · ∇f (θ
(k)
g ), and

[̃s(k)]i = −c · ∇f (~θ(k)
g );

5 Compute the step size: ν(k) = 2
2+k ;

6 Update the vectors of reflecting coefficients:

θ
(k+1)
g = (1 − ν(k))θ

(k)
g + ν(k)s(k),

~θ(k+1)
g = (1 − ν(k))~θ(k)

g + ν(k) s̃(k);
7 end

8 Obtain the final set of coefficients: Φvv
g = diag

([
θ
(K )
g

]
1:L

)
,

Φvh
g = diag

([
~θ(K )
g

]

1:L

)
, Φhv

g =diag

([
θ
(K )
g

]
(L+1):2L

)
,

Φhh
g =diag

([
~θ(K )
g

]

(L+1):2L

)
.

the messages from the U p − u weaker users as interference.
More specifically, the recovered symbol that was transmitted
from the uth user in subset Gp

g , can be written as

x̂
p
gu =

(
q
p
g

)H
d̄
p
g

√
ζU-BS
gu Pβguxgu

︸ ︷︷ ︸
Desired symbol

+
(
q
p
g

)H
d̄
p
g

Up∑

n=u+1

√
ζU-BS
gn Pβgnxgn

︸ ︷︷ ︸
Interference from weaker users

+ I
p
g︸︷︷︸

Polarization interference

+
(
q
p
g

)H
n
p

︸ ︷︷ ︸
Noise

. (13)

By knowing that |(qp
g )H np |2 = (q

p
g )H np(np)H q

p
g = σ2

n , and
defining ρ = P

σ2
n

, the SINR for the uth in Gp
g is given by

γp
gu =

∣∣∣
(
qp
g

)H
d̄p
g

∣∣∣
2
ζU-BS
gu βgu

∣∣∣
(
qp
g

)H
d̄p
g

∣∣∣
2∑Up

n=u+1 ζU-BS
gn βgn +

∣∣I p
g

∣∣2/P + 1/ρ

. (14)

V. POWER ALLOCATION FOR RATE FAIRNESS

In this section, we develop an adaptive power allocation pol-
icy for balancing the data rates of users within each subset. Our
aim is to show that the proposed dual-polarized IRS-MIMO-
NOMA scheme can achieve a high throughput even when fair
power allocation is employed.

Since in practical systems only small groups of users are
served with NOMA, we assume that each subset is formed
by only two users, i.e., there is a total of 4 users per group.
Moreover, we consider that the polarization interference term
in (13) is negligible so that I

p
g ≈ 0. As a result, the data rate

observed when decoding the symbol of the first user from the
gth subset assigned to polarization p can be written as

R
p
g1 = log2

⎛
⎜⎝1 +

∣∣∣
(
qp
g
)H

d̄p
g

∣∣∣
2
ζU-BS
g1 ρβg1

∣∣∣
(
q
p
g
)H

d̄
p
g

∣∣∣
2
ζU-BS
g2 ρβg2 + 1

⎞
⎟⎠, (15)

and for the second user as

R
p
g2 = log2

(
1 +

∣∣∣
(
qp
g

)H
d̄p
g

∣∣∣
2
ζU-BS
g2 ρβg2

)
. (16)

Then, our goal can be accomplished by solving the follow-
ing optimization problem:

arg max
βg1,βg2

R
p
g1 (17a)

s.t. R
p
g2 ≥ R

p
g1, (17b)

0 ≤ βg1 ≤ 1, (17c)

0 ≤ βg2 ≤ 1, (17d)

where the objective function in (17a) aims at the maximization
of the rate of the strong user, while the constraint (17b) ensures
that the rate of the weak user does not drop below that achieved
for the strong one, i.e., it guarantees fairness. Moreover, con-
straints (17c) and (17d) define the feasible set for the power
allocation coefficients βg1 and βg2.

Since the objective function in (17a) is an increasing func-
tion of βg1, if we consider a fixed βg2, (17) will be maximized
when βg1 reaches the maximum value in the feasible set. Also,
since log2(·) is a monotonic increasing function of its argu-
ment, the constraint (17b) can be equivalently represented by

|(qp
g )H d̄p

g |2ζU-BS
g2 ρβg2 ≥ |(qp

g )H d̄p
g |2ζU-BS

g1 ρβg1

|(qp
g )H d̄p

g |2ζU-BS
g2 ρβg2+1

. With these

observations, first, we consider βg1 to be a constant and
optimize (17) in terms of only βg2. More specifically, after
simplifying (17b), we can write

arg max
βg2

log2

⎛
⎜⎝1 +

∣∣∣
(
qp
g

)H
d̄p
g

∣∣∣
2
ζU-BS
g1 ρβg1

∣∣∣
(
qp
g

)H
d̄p
g

∣∣∣
2
ζU-BS
g2 ρβg2 + 1

⎞
⎟⎠ (18a)

s.t.

(∣∣∣
(
qp
g

)H
d̄p
g

∣∣∣
2
ζU-BS
g2 ρ

)2

β2
g2 +

(∣∣∣
(
qp
g

)H
d̄p
g

∣∣∣
2
ζU-BS
g2 ρ

)
βg2

−
(∣∣∣
(
qp
g

)H
d̄p
g

∣∣∣
2
ζU-BS
g1 ρ

)
βg1 ≥ 0, (18b)

0 ≤ βg2 ≤ 1. (18c)

One can verify that the second derivative of the objective
function in (18a) is positive ∀βg2 > 0, which means convex-
ity. Moreover, (18a) is a decreasing function of βg2, which
tells us that, if the constraint (18b) is relaxed, the global max-
imum within the feasible set is reached when βg2 → 0. Also,
note that (18b) is a concave upward quadratic function that
increases with βg2. Therefore, the solution for (18) can be
obtained by computing the minimum possible value for βg2,
which clearly can be accomplished through the roots of (18b).
However, for computing the desired roots, we need first to
determine the value of βg1 in a way that βg2 can satisfy (18c).

Δg2 =

⎛
⎝−

∣∣∣∣
(
qp
g

)H
d̄p
g

∣∣∣∣
2

ζU-BS
g2 ρ +

√(∣∣∣
(
qp
g
)H

d̄p
g

∣∣∣
2
ζU-BS
g2 ρ

)2

+ 4

(∣∣∣
(
qp
g
)H

d̄p
g

∣∣∣
2
ζU-BS
g2 ρ

)2∣∣∣
(
qp
g
)H

d̄p
g

∣∣∣
2
ζU-BS
g1 ρβg1

⎞
⎠
⎛
⎝2

(∣∣∣∣
(
qp
g

)H
d̄p
g

∣∣∣∣
2

ζU-BS
g2 ρ

)2
⎞
⎠

−1

(19)
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Fig. 2. Ergodic sum-rates with fixed power allocation when the IRS is located
at d̄ = 15 m from the BS (a), and when ρ is fixed to 26 dB (b).

By noticing that (18b) is a decreasing function of βg1, we
optimize both coefficients with a simple alternate approach:
first, aiming the maximization of R

p
g1, we initialize βg1 with 1.

Then, we calculate the positive root of (18b) as in (19), shown
at the bottom of the page, and test if Δg2 ≤ 1. If this is satis-
fied, then β∗

g2 = Δg2, and β∗
g1 = 1. Otherwise, β∗

g2 = 1, and
β∗
g1 is computed with (19) by setting Δg2 = 1.

VI. SIMULATION RESULTS AND DISCUSSIONS

In this section, we evaluate the performance of the proposed
IRS-MIMO-NOMA system. The conventional single-polarized
MIMO-NOMA and MIMO with time division multiple access
(TDMA) are used as baseline schemes. We consider a scenario
with G = 2 groups of U = 4 users, in which, in both dual-
polarized and single-polarized systems, the BS and the users
employ M = N = 4 antennas. Given that the signal alignment
approach from Section III successfully eliminates all inter-
group interference, without loss of generality, we focus on the
first group, and we assume that users 1, 2, 3, and 4 are located,
respectively, at d1 = 20 m, d2 = 40 m, d3 = 80 m, and d4 =
120 m from the BS. Users 1 and 2 are assigned to the vertical
polarization, and users 3 and 4 to the horizontal polarization.
For simplicity, we assume that the distances between the users
and the connected IRS are the same as that from the users
to the BS. On the other hand, the distance between the IRS
and the BS, denoted by d̄ , varies throughout the simulation
examples. As a result, the large scale fading coefficients for
the links U-BS and U-IRS are obtained by ζU-BS

u = ζU-IRS
u =

δd−η
u , and for the link IRS-BS by ζIRS-BS

u = d̄−η , where
δ is a gain set to 30 dB, and η is the path-loss exponent
set to 2. Moreover, we set χU-BS = χU-IRS = 0.5, P = 1,
and, in results with fixed power allocation, we assume that
all users transmit using their total power, i.e., β1 = β2 =
β3 = β4 = 1.

Fig. 2(a) compares the ergodic sum-rates of conven-
tional MIMO-NOMA and MIMO-TDMA systems with those
obtained with the dual-polarized IRS-MIMO-NOMA scheme
for different numbers of reflecting elements when the IRS is
deployed at 15 m from the BS. We can see that impressive
gains can be achieved over the baseline schemes when the IRS
becomes large enough. Fig. 2(b) shows the impact of the dis-
tance between the IRS and the BS on the system sum-rate for
ρ = 26 dB. As can be noticed, the sum-rate of the IRS-MIMO-
NOMA system decreases with the increase of the distance.
Such behavior is explained by the fact that the IRS’s ability
to cancel polarization interference worsens when the distance
increases. Despite that, for L = 20 and L = 30, the proposed

Fig. 3. Ergodic sum-rates (a) and rates (b)–(c) with fixed and fair power
allocation for L = 30 and d̄ = 10 m.

scheme is able to outperform the conventional systems even
when d̄ = 30 m.

Fig. 3(a) shows how the fair power allocation policy per-
forms in terms of sum-rate. As one can see, because the fair
policy decreases the data rates of some users to improve the
rates of others, the fair IRS-MIMO-NOMA scheme experi-
ences a sum-rate slightly inferior to the achieved with the
fixed policy. Nevertheless, the fair scheme can still outperform
all the baseline systems. For instance, the proposed scheme
under fair power allocation surpasses 16 bits per channel use
(BPCU) when ρ = 40 dB, which is more than 6 BPCU higher
than that achieved by the single-polarized MIMO-NOMA,
and incredibly 9 BPCU above that of MIMO-TDMA. Finally,
Figs. 3(b) and 3(c) reveal the behavior of the rates observed
for each user with fixed and fair power allocation. One can
see that, in the IRS-MIMO-NOMA scheme, the rates of all
users are improved, remarkably outperforming the conven-
tional systems. The main reason for these improvements is
that SIC is employed in each subset separately, which leads
users to experience less interference in the decoding process.
We can also verify that fair power allocation is highly bene-
ficial to strong users. For instance, when ρ = 40 dB, while
the rate of user 3 is limited to 1.63 BPCU in the IRS-MIMO-
NOMA scheme with fixed policy, with fair power allocation,
the same user can improve its rate to 3.39 BPCU.
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AbstrAct

Rate-splitting multiple access (RSMA) has 
recently appeared as a powerful technique for 
improving the downlink performance of multiple-in-
put multiple-output systems. By flexibly managing 
interference, RSMA can deliver high spectral and 
energy efficiency, as well as robustness to imper-
fect channel state information. In another devel-
opment, an intelligent reflecting surface (IRS) has 
emerged as a method to control the wireless envi-
ronment through software-configurable, near-pas-
sive, sub-wavelength reflecting elements. This 
article presents the potential of synergy between 
IRS and RSMA. Three important improvements 
achievable by IRS-RSMA schemes are identified, 
supported by insightful numerical examples, and 
mapped to beyond 5G use cases, along with future 
research directions.

IntroductIon
A multiple-input multiple-output (MIMO) system 
can implement spatial-division multiple access 
(SDMA) to communicate with multiple spatial-
ly separated users simultaneously and at the 
same frequency. This can improve system rate, 
scalability, reliability, and latency, making MIMO 
an indispensable technology for fifth-generation 
(5G) communication systems. Nevertheless, by 
relying solely on SDMA, severe inter-user inter-
ference can be experienced when users have 
overlapping spatial directions or are located close 
to one another in overload scenarios. To tackle 
this issue, strategies exploiting different domains 
have been combined in MIMO systems, from 
conventional orthogonal multiple access (OMA) 
techniques, such as time-division multiple access 
(TDMA) and orthogonal frequency-division multi-
ple access (OFDMA), to non-orthogonal multiple 
access (NOMA) techniques, such as power-do-
main and code-domain NOMA. Under ideal con-
ditions, all these techniques efficiently mitigate 
inter-user interference. However, they are under-
pinned by an assumption of perfect channel state 
information (CSI), which is difficult to achieve in 
real-world deployments. In practice, CSI inaccura-
cies can diminish the data rates of MIMO, MIMO-
OMA, and MIMO-NOMA schemes [1, 2].

Rate-splitting multiple access (RSMA) address-
es the drawbacks of OMA and NOMA under 
imperfect CSI [1]. Unlike SDMA and OMA tech-

niques, which treat residual multi-user interfer-
ence as noise, or NOMA, which, by relying on 
successive interference cancellation (SIC), fully 
decodes the interference, the innovative RSMA 
technique combines the two approaches and 
flexibly treats one fraction of the interference as 
noise and addresses the other fraction through 
SIC. The RSMA technique unlocks a flexible inter-
ference management framework that can deliver 
high spectral and energy efficiencies, optimality in 
terms of degrees of freedom (DoF), and robust-
ness to imperfect CSI [2].

Even though RSMA has numerous benefits, 
establishing reliable communication links through 
fast-varying wireless channels continues to be a 
challenge. As an attempt to overcome channel 
issues, a promising technology called an intelli-
gent reflecting surface (IRS) has been proposed 
[3]. An IRS can be seen as a cluster of controlla-
ble scatterers, where each scatterer (i.e., a reflect-
ing element) can be configured independently to 
generate distinct amplitude and phase responses. 
Collectively, the reflecting elements of an IRS are 
able to manipulate and reflect impinging electro-
magnetic waves with an optimized radiation pat-
tern, creating a large number of possibilities for 
tuning the propagation medium. Conventionally, 
these reflections are performed without active 
amplification. As a result, an IRS does not require 
amplifiers or other components of convention-
al radio frequency (RF) chains, which gives IRSs 
the potential to enable ubiquitous connectivity in 
beyond 5G at low energy costs. Furthermore, sev-
eral other advantages have been reported, includ-
ing advanced control of users’ channel gains, 
extended coverage range, and improved fairness 
[4]. Due to these features, several works investi-
gating the application of IRS to diverse systems 
have appeared recently, some of which have 
focused on the IRS-RSMA topic [5].

Nevertheless, few technical contributions have 
been presented, and the full possibilities of the 
combination of IRS and RSMA remain to be inves-
tigated. This major literature lacuna motivates the 
work reported in this article. Specifically, we per-
form an in-depth investigation of the possible ben-
efits that combined RSMA and IRS can provide. 
On one hand, we show that IRSs can enable a 
more flexible precoding design and make RSMA 
resilient to imperfect SIC. On the other hand, 
we show that RSMA can contribute to robust 
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IRS optimizations even under imperfect CSI. We 
demonstrate through simulations that these fea-
tures unleash performance gains unreachable 
with other multiple access (MA) techniques. We 
also present future use case scenarios enabled 
by IRS-RSMA in beyond 5G networks. The article 
concludes by considering existing challenges and 
promising research directions.

An overvIew of rsMA And Irs technology

IntroductIon to the rsMA technIque
The work in [6] can be seen as one of the first 
studies to demonstrate that superior rate regions 
are achievable through rate-splitting (RS) strat-
egies in broadcast channels of single-antenna 
systems. The goal of achieving new rate regions 
motivated subsequent works investigating further 
RS approaches. For instance, the RS strategies 
presented in [7, 8] indicated that if users are 
being served through interfering channels, it can 
be beneficial to convey part of the information in 
a shared common stream and decode part of the 
inter-user interference. This feature was recently 
found useful for improving the performance of 
modern MIMO systems.

Practical MIMO-OMA systems conventionally 
rely on linear precoding, such as zero-forcing (ZF) 
precoding, to mitigate inter-user interference. The 
adoption of these precoding techniques is mainly 
motivated by their low computational complexity 
and their optimality in terms of DoF under perfect 
CSI. In practice, however, the CSI estimate is inev-
itably imperfect, which makes linear precoding 
unable to cancel the interference completely and 
ultimately results in residual noise at the receivers. 
Such an issue can reduce the system’s DoF and 
limit the achievable data rates. As an attempt to 
alleviate this limitation, researchers have recently 
exploited the RS concepts proposed in [6–8] to 
develop a new robust MA technique for MIMO 
systems, called RSMA. The technique can be seen 
as an implementation of the divide-and-conquer 
concept where part of the inter-user interference 
is addressed at the base station (BS), for exam-
ple, through ZF precoding, and part by the users, 
through SIC. Consequently, it becomes possible 
to manage how much interference (not canceled 
by precoding due to imperfect CSI) is treated as 
noise and how much is decoded. This flexibility 
makes the technique powerful even in scenarios 
with inaccurate CSI.

In its simplest form, RSMA splits the data mes-
sages of different users into two parts. One part 
of each message is encoded into a common sym-
bol and the remaining part into private symbols. 
The common symbol is multiplied by a common 
precoder (intended for all users), and the private 
symbols are multiplied by private precoders (each 
designed for a particular user). The obtained 
streams are superimposed in the power domain 
and then transmitted towars the users. At the 
receivers’ side, all users first decode the common 
stream, while treating the private streams as noise, 
and perform SIC to subtract the retrieved mes-
sages from the superimposed stream. After SIC, 
the data in the private streams is finally decoded, 
ideally interference-free. Note that unlike NOMA, 
in which the number of SIC layers increases with 
the increase of users, RSMA requires that all users 

(independent of the number) execute SIC only 
once. Due to this feature, the technique is com-
monly called single-layer RSMA. Recent results 
have demonstrated that single-layer RSMA can 
outperform all conventional OMA, NOMA, and 
SDMA counterparts [2]. Advanced techniques 
with multiple common streams and multiple layers 
of SIC have also been proposed (e.g., called gen-
eralized RSMA [1]). However, more complicated 
schemes are beyond the scope of this article.

bAsIcs of the Irs technology
An IRS consists of a thin two-dimensional struc-
ture that comprises multiple reflecting elements 
with adjustable electromagnetic properties. The 
reflecting elements, made of passive conduc-
tive materials, are tuned by a low-power control 
layer, which can be implemented through diverse 
technologies. Existing designs propose the use of 
PIN diodes, varactors, graphene, and liquid-crys-
tal-based solutions [3]. Moreover, the reflecting 
elements usually have dimensions much small-
er than the carrier wavelength [9]. Comprising 
such tiny components enables IRSs to steer sig-
nals ideally in any direction and achieve various 
goals, such as to maximize signal-to-noise ratio 
(SNR), assist interference cancellation, or operate 
in absorption mode for security purposes. 

The fast-fading channels of an IRS-assisted 
system can be represented by the addition of a 
matrix modeling the direct link between the BS 
and users and a channel matrix corresponding 
to the reflected link via the IRS, which in turn is 
usually represented by the dyadic channel model 
[10]. The dyadic model is a multiplicative channel 
representation containing three matrices: a matrix 
for the link between the BS and IRS, a matrix for 
the link between the IRS and users, and a diag-
onal matrix with complex-valued elements that 
model the induced reflections, with amplitudes 
and phases limited to [0, 1] and [0, 2p], respec-
tively. This model is used in the simulation exam-
ples given in this article.

Irs-rsMA: PotentIAl IMProveMents
In this section, we discuss three potential per-
formance improvements that the combined use 
of IRSs and RSMA offers. Each improvement is 

FIGURE 1. IRS-RSMA setup. Single-antenna users are assisted by IRSs..
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supported by representative simulation examples, 
where we compare the downlink performance of 
MIMO systems in combination with diff erent MA 
solutions, including TDMA, NOMA, and RSMA. 
In all implemented systems, we consider a nar-
rowband block-fading channel model, where the 
channel coeffi  cients remain constant during a time 
slot but change independently over diff erent time 
slots, such that time dispersion and fading cor-
relation are not modeled. For illustration purpos-
es, in the RSMA schemes, random precoders are 
employed for broadcasting the common messag-
es, and ZF precoding is used for transmitting the 
private ones. In the baseline schemes, matched fi l-
ter (MF) precoding is adopted in the NOMA sys-
tems and ZF precoding in the TDMA counterpart. 
We consider a scenario with two single-antenna 
users, where user 1 is located at 50 m and user 2 
at 30 m from a BS equipped with 4 antennas, as 
shown in Fig. 1. Each user is assisted by one IRS 
containing 50 refl ecting elements, with each IRS 
located 10 m apart from its connected user. For 
simplicity, the distances from the IRSs to the BS 
are the same as those from the connected users 
to the BS, and the path loss exponent is set to 2.5 
in all links. Moreover, the precoders are normal-
ized to unity, and fi xed power allocation policies 
are employed in all systems. The power coeffi-
cients for users 1 and 2 in the NOMA schemes 
are confi gured as 1 = 7/8 and 2 = 1/8, whereas 
in TDMA all available power is allocated in each 
time slot to the scheduled user (i.e., 1 = 2 = 1). 
In turn, in the RSMA systems, the power coeffi-
cients for the private messages are set as 1 = 2
= (1 - c)/2, where c represents the coefficient 
for the common message. It is noteworthy that 
even though we consider a narrowband channel 
model in the simulations, the gains presented in 
this section should also be applicable to other 
system setups. We recognize, though, that new 
insights could be achieved with diff erent models, 
such as frequency-selective channels. However, 
this possibility is left for future work where an 
in-depth investigation can be carried out.

enhAnced rAte of the coMMon MessAge
The concept introduced by RSMA of convey-
ing part of the information through a common 
stream brings a novel DoF for configuring IRSs, 
which makes this synergy unique and distinct 
from what is achievable with classic MA solutions. 
Specifi cally, IRSs can assist the design of effi  cient 

precoders for broadcasting common messages, 
which is known to be a challenge in RSMA. Sev-
eral approaches have been proposed for address-
ing this issue in conventional RSMA systems [1]. 
However, most strategies usually favor some users 
more than others or result in complex optimiza-
tion problems. Moreover, constructing a single 
precoder capable of meeting the rate require-
ment for the common message for all users may 
be an infeasible task. On the other hand, by assist-
ing common stream transmissions with IRSs, it 
could be possible to deliver strong signal beams 
to users even when employing simple precoders 
at the BS. 

The above gain is illustrated in Fig. 2, where 
the ergodic rates for the common message 
achieved with RSMA and IRS-RSMA are present-
ed. The IRS of each user is optimized to match 
(to add constructively) the channel gains of the 
common stream achieved in the reflected link 
with the gains observed in the direct link. As can 
be seen, due to the interference generated by 
the private streams, the data rates of the com-
mon message become limited in the high-SNR 
regime in both RSMA and IRS-RSMA schemes. 
Note, however, that only the two users served 
via conventional RSMA are not able to meet the 
minimum rate required to decode the common 
message. In contrast, when the IRSs are optimized 
to boost the common message, the users in the 
IRS-RSMA system become able to achieve a rate 
higher than the requirement of 4 bpcu (ergodic 
rate) after 5 dB, reaching almost 7 bpcu at 30 dB. 
This higher rate represents an impressive improve-
ment of more than 3 bpcu when compared to the 
rate observed in the RSMA counterpart for the 
same SNR value. 

robustness to IMPerfect sIc
One key feature shared by NOMA and RSMA is 
that both techniques rely on SIC to decode part 
of the transmitted messages. In ideal conditions, 
it is possible to decode the messages perfectly 
through SIC without any errors. In practice, how-
ever, as a result of hardware imperfections and 
other impairments, even if the CSI can be per-
fectly estimated, decoding errors may still occur 
during the SIC process. It has been demonstrat-
ed in the literature [11] that imperfect SIC can 
severely harm the performance of NOMA sys-
tems and make them less spectrally effi  cient than 
conventional OMA schemes. An in-depth investi-
gation of the impacts of imperfect SIC on RSMA 
schemes is still missing in the literature. Never-
theless, it is evident that despite the benefits of 
RSMA, its performance can deteriorate as a result 
of SIC errors. The deployment of IRSs could be 
highly beneficial to alleviate this issue in RSMA. 
Specifically, by assisting the RSMA scheme with 
IRSs and properly splitting the data symbols 
between common and private messages, high 
performance can be achieved even under the 
constraint of imperfect SIC.

The robustness of IRS-RSMA to residual SIC 
errors is illustrated in Fig. 3, where the IRSs are 
optimized to boost the users’ channel gains and 
mitigate interference through a constrained least-
squares approach. As in [11, Sec. III], a deter-
ministic error factor is used to model the residual 
interference left by imperfect SIC. It can be seen 

FIGURE 2. Ergodic rates vs. SNR for the common message in RSMA schemes 
(c = 0.9, 1 = 2 = 0.05).
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that both the NOMA and IRS-NOMA systems 
are strongly impacted by residual SIC errors, with 
sum-rates limited to only 6.9 bpcu in the high-SNR 
regime, which is inferior to that achieved by the 
TDMA counterpart after 20 dB. In contrast, despite 
the presence of SIC errors, the sum-rates of the 
RSMA schemes can outperform the TDMA coun-
terpart in the entire considered SNR range. For 
SNR values below 10 dB, the RSMA system can, 
however, still be outperformed by its NOMA and 
IRS-TDMA counterparts. On the other hand, the 
IRS-RSMA system can overcome this issue and 
boost the sum-rate over almost all the SNR range. 
For instance, when the SNR is 25 dB and the power 
allocated to the common message is c = 0.5, the 
IRS-RSMA scheme can achieve a sum-rate of 14 
bpcu, which is superior to that achieved by the 
RSMA counterpart for all values of c, and more 
than 6 bpcu higher than the sum-rate achieved by 
the TDMA and NOMA-based schemes.

robustness to IMPerfect csI
As IRSs comprise only nearly passive compo-
nents, accurately estimating the channels of the 
cascade-refl ected link (i.e., the channels between 
the BS and the IRS, and the IRS and users) has 
been one of the main challenges of IRS-assisted 
systems, and different strategies have been pro-
posed. Most common approaches try to estimate 
the full concatenated channel entirely at the BS 
through uplink training techniques, and some 
other approaches try to simplify the estimation 
process by installing scattered active sensors in 
the IRS [9]. Nevertheless, independent of the IRS 
hardware or estimation strategy, perfectly obtain-
ing the global CSI remains a complicated task. 
Consequently, in practice, the optimization of the 
IRSs is usually performed based on imperfect CSI, 
which might result in sub-optimal performance. 
Fortunately, unlike other conventional MA tech-
niques, RSMA has the advantage of being robust 
in scenarios with inaccurate channel estimation. 
Therefore, RSMA is a good fi t for realistic IRS-as-
sisted systems with imperfect CSI.

Figure 4 plots the ergodic sum-rates of vari-
ous IRS-assisted systems under perfect and imper-
fect CSI. In this fi gure, the refl ecting elements of 
the IRSs are also optimized to boost the users’ 
channel gains and mitigate interference. Note 
that because ZF precoding is unable to cancel 
the inter-user interference completely when the 
CSI is imperfect, IRS-TDMA is the most impacted 
scheme, with its sum-rate saturating slightly above 
5 bpcu at high SNR, which is almost 10 bpcu 
lower than the IRS-TDMA scheme can reach at 
40 dB under perfect CSI. On the other hand, the 
IRS-RSMA system can achieve high sum-rate lev-
els with perfect and imperfect CSI, outperform-
ing all the baseline schemes. For instance, when 
the SNR is 30 dB, the IRS-RSMA scheme with 
perfect CSI can obtain a sum-rate of 21.7 bpcu, 
while under imperfect CSI it can still achieve an 
impressive 20.2 bpcu, which is approximately 6 
bpcu higher than that achieved by the IRS-NO-
MA counterpart with imperfect CSI, and 15 bpcu 
higher than that of the IRS-TDMA counterpart 
with imperfect CSI. These results confi rm that by 
combining RSMA and IRS technology, it becomes 
possible to deploy robust communication systems 
even when the channel estimation is poor. 

PotentIAl use cAses In beyond 5g
In this section, we present use case scenarios 
that can be enabled with the aid of IRS-RSMA 
schemes.

csI-robust uAv networks
Unmanned aerial vehicles (UAVs) will play an 
important role in beyond 5G [12]. UAVs have 
been envisioned as executing diverse tasks, rang-
ing from goods deliveries, surveillance and mili-
tary applications, to working as BSs, where UAVs 
can provide flexible and dynamic coverage. For 
instance, with the help of UAVs, it will be pos-
sible to temporarily support high-performance 
connectivity in hyper-crowded environments, 
such as in stadiums and at festivals, or extend sig-
nal coverage to remote rural areas and during 
natural disasters. The deployment of swarms of 
UAVs is another promising application for future 
communication systems. In a swarm, by sensing 
the environment, a large number of UAVs can 
intercommunicate, reorganize, and adapt autono-
mously in the air, allowing them to execute even 
the most complex tasks.

Nevertheless, there are unsolved issues that 
need to be tackled before UAV networks become 
everyday reality. IRS-RSMA schemes can effi  cient-
ly address some of these challenges. In particular, 
channel interference and the overhead generated 
by multiple UAVs and their fast 3D motion make 
channel estimation a complicated process, which 
can potentially result in imperfect CSI. As noted 
earlier, in addition to being eff ective at managing 
interference, IRS-RSMA schemes are robust to 
imperfect CSI, which makes them very suitable 

FIGURE 3. Impact of imperfect SIC on the ergodic sum-rates of various MA 
systems (SIC error factor = 0.01).
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for employment in UAV networks. For instance, 
RSMA could enable multiple UAVs to commu-
nicate efficiently with multiple ground users, 
whereas IRSs pointed to the sky could guarantee 
a strong communication link between users and 
UAVs. One can also envision a CSI-robust swarm 
of UAVs equipped with IRSs, with some UAVs 
active and others passive, interacting with each 
other via RSMA. As illustrated in Fig. 5a, in both 
examples, the UAVs would be able to deliver high 
data rates seamlessly with low impact from a pos-
sibly degraded CSI.

enhAnced hIgh-frequency coMMunIcAtIon
5G has expanded its operating bandwidth by adopt-
ing higher frequency bands above 6 GHz, known 
as the millimeter-wave (mmWave) spectrum. While 
5G is expected to operate at frequencies not high-
er than 100 GHz, 6G and beyond generations 
are foreseen to go further and operate from the 
upper band of the mmWave spectrum (100 GHz 
to 300 GHz), up to the terahertz (THz) spectrum 
(up to 3 THz) [13]. However, due to the high signal 
attenuation and absorption, operating at such high 
frequencies becomes very challenging. The cover-
age range of mmWave and THz communication 
can be improved by deploying a large number of 
transmit antennas (hundreds or thousands). Never-
theless, the large number of RF chains required in 
these large-scale arrays may lead to complicated 
precoding design, excessive feedback overhead, 
and increased energy consumption. 

On the other hand, by deploying IRSs to 
induce sharp beams directed toward the users, it 
becomes possible to mitigate signal attenuation 
and extend signal coverage. In turn, by leverag-
ing the RSMA technique, due to its robustness 
to imperfect CSI, the required CSI feedback 
overhead can be reduced without significant-
ly deteriorating the system performance. These 
capabilities suggest that IRS-RSMA schemes can 

help to reduce the required number of active 
antennas and RF chains at the BS and still deliv-
er good communication performance with the 
benefits of reducing the BS hardware complexity. 
Moreover, since IRSs comprise only low-power 
components, the energy required for optimizing 
the reflecting elements should be less than the 
energy savings achieved with a lower number 
of power-hungry RF chains at the BS. Therefore, 
as another benefit, IRS-RSMA could also reduce 
the overall energy consumption of mmWave and 
THz systems. As illustrated in Fig. 5b, a BS of an 
indoor THz IRS-RSMA system could support real-
time 3D holographic meetings in multiple rooms 
of a commercial building and, at the same time, 
stream 16K resolution video to users’ laptops and 
advanced smartphones.

seAMless sAtellIte coMMunIcAtIon
Enabling seamless connectivity across the entire 
Earth’s surface, from high altitude mountain 
ranges to the middle of the oceans, by relying 
on terrestrial and UAV networks alone may be 
unrealizable or too costly. On the other hand, low 
Earth orbit (LEO) satellite networks can cover vast 
geographical areas and potentially deliver high 
data rates to the most remote and inhospitable 
regions of the globe [14, 15]. However, LEO net-
works come with some drawbacks. Specifically, 
due to atmospheric gases, rain, and cloud cover-
age, the signals transmitted and received by satel-
lites can suffer strong attenuation. Moreover, due 
to long-distance signal travel, the CSI available in 
satellites can become outdated.

IRS-RSMA strategies are also suited to cope 
with these satellite-related communication issues. 
First, by employing the RSMA technique, LEO sat-
ellites become able to deliver high data rates to 
multiple users even when the CSI is outdated. Sec-
ond, by deploying IRSs to boost the signal trans-
missions, it is possible to mitigate the effects of 
atmospheric phenomena. For example, high-alti-

FIGURE 5. Potential use case scenarios enabled by IRS-RSMA in future wireless networks beyond 5G.
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tude UAVs equipped with IRSs could be deployed 
near cloud cover to assist a LEO network to serve 
multiple alpinists via RSMA in remote mountain-
ous regions. This IRS-assisted RSMA-LEO network 
would ensure high data rates and reduce the 
probability of alpinists finding themselves out of 
coverage. Such capabilities would enable alpin-
ists to stream their climb in real time even under 
adverse weather conditions. These features could 
also save lives following accidents. Figure 5c illus-
trates this extreme scenario. 

chAllenges, future dIrectIons, 
And concludIng reMArks

We have demonstrated that the use of IRSs 
and RSMA can bring mutual benefits, in that 
IRSs can help to address issues related to pre-
coding design and imperfect SIC in RSMA, and 
reciprocally, RSMA can bring robustness to the 
imperfect CSI that is unavoidable in IRS-assisted 
communications. However, both RSMA and IRS 
technology are still in their infancy, and there 
are still several open problems that need to be 
solved before practical deployment can hap-
pen. Specifically, more extensive studies need 
to be carried out to determine the best opti-
mization strategies, the most appropriate IRS 
architecture, and associated trade-offs. Frequen-
cy-selective fading in IRS-RSMA still needs to 
be better investigated. Furthermore, due to the 
more complex encoding, IRS-RSMA schemes 
require new signaling strategies to coordinate 
users, IRSs and the BS, and extensive tests need 
to be performed in real-world testbeds to con-
firm the claimed gains.

The combination of IRS and RSMA is a 
research area with exciting possibilities for future 
work. IRS-RSMA contributions investigating the 
application of different modulation techniques, 
aerial networks, and THz communications, span-
ning from performance analysis and resource 
allocation to channel estimation strategies, are 
interesting and exciting future directions. All in 
all, the full potential of the interplay of IRSs and 
RSMA has yet to be realized.
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Abstract—This letter proposes a novel dual-polarized rate-
splitting multiple access (RSMA) technique for massive multiple-
input multiple-output (MIMO) networks. The proposed strategy
transmits common and private symbols in parallel through
dynamic polarization multiplexing, and it does not require succes-
sive interference cancellation (SIC) in the reception. For assisting
the design of dual-polarized MIMO-RSMA systems, we pro-
pose a deep neural network (DNN) framework for predicting
the ergodic sum-rates. An efficient DNN-aided adaptive power
allocation policy is also developed for maximizing the ergodic
sum-rates. Simulation results validate the effectiveness of the
DNNs for sum-rate prediction and power allocation and reveal
that the dual-polarized MIMO-RSMA strategy can impressively
outperform conventional baseline schemes.

Index Terms—Dual-polarized MIMO, RSMA, deep learning.

I. INTRODUCTION

RATE-SPLITTING multiple access (RSMA) has recently
appeared as a powerful downlink transmission technique

for multiple-input multiple-output (MIMO) systems. At the
base station (BS), RSMA encodes the data messages of
different users into common and private symbols and trans-
mits them through linear precoding. Upon reception, users
rely on successive interference cancellation (SIC) to recover
the original message. The features of RSMA enable attrac-
tive performance improvements, such as higher data rates
and robustness to imperfect channel state information (CSI).
When RSMA is combined with massive MIMO systems,
with a large number of antennas at the BS, further improve-
ments can be achieved, outperforming conventional techniques
like time-division multiple access (TDMA), space-division
multiple access (SDMA), and non-orthogonal multiple access
(NOMA) [1], [2].

Despite the advantages of RSMA, there are still unsolved
issues and room for improvement. In particular, SIC intro-
duces interference in the decoding process of RSMA, which
is detrimental to the system spectral efficiency. Moreover,
SIC error propagation can happen in practice, which also
deteriorates the system performance. The recent work in [3]
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has shown that dual-polarized antenna arrays can be har-
nessed to alleviate SIC issues and improve user multiplexing.
Moreover, dual-polarized antenna arrays are widely employed
in commercial cellular systems and have been adopted as
the standard in the 3rd generation partnership project (3GPP)
long-term evolution advanced (LTE-A) and 5G New Radio
(NR) specifications [3]. These facts imply that the polar-
ization domain is a practical resource that is abundantly
available and offers promising opportunities for enhancing
the performance of next-generation communication systems.
Under such motivations, we propose an appealing dual-
polarized RSMA strategy for dual-polarized massive MIMO
systems, a concept not yet reported in the technical liter-
ature. With the goal of maximizing the system sum-rate,
common and private symbols are multiplexed dynamically in
the polarization domain. Our low-complexity strategy enables
users to detect common and private symbols simultaneously
from orthogonal polarizations without SIC, which reduces the
overall interference experienced in the system. Due to the
dynamic nature of the system model, classical performance
analysis and optimization become unfeasible. Alternatively,
we propose a deep neural network (DNN) framework for
predicting the ergodic sum-rates of the proposed scheme.
The DNN sum-rate prediction framework can be used as
an efficient tool for assisting the design of dual-polarized
MIMO-RSMA systems. To improve the ergodic sum-rate
further, we also develop a DNN-aided adaptive power allo-
cation framework, which smartly splits the transmit power
between common and private symbols. Simulation results vali-
date the effectiveness of the DNN frameworks and confirm that
remarkable performance improvements are achievable with the
dual-polarized MIMO-RSMA strategy.

Notation: The transpose and the Hermitian transpose of a
matrix A are represented by AT and AH , respectively. IM is
the M × M identity matrix, 0M ,N is the M × N matrix with
all zero entries, and ⊗ is the Kronecker product. Moreover,
the cardinality of a set A is represented by |A|, ◦ represents
the function composition, and E[·] denotes expectation.

II. SYSTEM MODEL

We consider a downlink single-cell scenario in which one
base station (BS) employing M/2 co-located pairs of dual-
polarized antennas (with vertical (v) and horizontal (h) polar-
izations) communicates with multiple users equipped with a
single pair of dual-polarized antennas. The BS clusters the
users into G groups, with each group containing Ng users.
Users within a given group are assumed to share a common
covariance matrix given by Rg = I2⊗Σg = I2⊗(QgΔgQH

g ),

where Σg ∈ C
M
2

×M
2 denotes the covariance matrix of rank rg

observed in each polarization, Δg is a real-valued r̄g×r̄g diag-
onal matrix containing r̄g < rg nonzero eigenvalues of Σg ,
and Qg is a matrix comprising its corresponding eigenvectors.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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As a result, the dual-polarized channel matrix for the nth user
in the gth group can be structured as

Hgn =

[
hvv
gn hvh

gn

hhv
gn hhh

gn

]
=

[
I2 ⊗

(
QgΔ

1
2
g

)][
gvv
gn

√
χgvh

gn√
χghv

gn ghh
gn

]
, (1)

where g
ij
gn ∈ Cr̄g denotes the reduced-dimension fast-fading

channel vector from polarization i to j, with i , j ∈ {v , h},
and χ ∈ [0, 1] is the inverse cross-polar discrimination which
measures the ratio of cross-polar to co-polar signal powers.

A. CSI Estimation and Acquisition

Due to quantization errors and other issues, the acquisi-
tion of gij

gn at the BS is imperfect. As in [2], we model the
corrupted estimate of g

ij
gn by

ĝij
gn =

√
1 − τ2gij

gn + τzijgn , (2)

where zijgn is a complex standard Gaussian random vector inde-
pendent of g

ij
gn , and τ is a factor that informs the quality of

the CSI estimation, such that τ = 0 corresponds to the perfect
CSI case, and τ = 1 models the extreme scenario where the
estimate ĝ

ij
gn is statistically independent of g

ij
gn .

On the other hand, we assume that Σg is perfectly known
at the BS. In particular, the one-ring model [3] is adopted for
generating Σg in this letter.

B. Dual-Polarized Rate-Splitting Multiple Access

The proposed dual-polarized MIMO-RSMA strategy can be
explained as follows. First, each user’s message is split into a
common and a private part. Then, the BS encodes the com-
mon parts into a single super-symbol, which we denote by x c

g ,
and the private parts into private symbols, denoted by xp

gn .
The symbol x c

g is intended for all users within the gth group,
whereas xp

gn should be decoded by the intended nth user only.
In the original RSMA technique, x c

g and xp
gn are linearly pre-

coded and superimposed in the power domain for transmission,
which requires SIC in the reception. In contrast to conventional
RSMA, our proposed technique transmits common and private
symbols in parallel data streams via the polarization domain.
More specifically, the BS transmits

x =

G∑

g=1

Pg

⎛
⎝

Ng∑

n=1

wp
gn

√
Pζgnαp

gnxp
gn + wc

g

√
Pζgnαc

gxc
g

⎞
⎠, (3)

where Pg ∈ CM× ¯̄M is the precoding matrix for cancelling
inter-group interference, in which ¯̄M determines the dimension
of the transformed channel. The parameter P denotes the total
transmit power, ζgn is the large-scale fading coefficient for the
nth user in the gth group, and αc

g and αp
gn are the power allo-

cation coefficients for the common and private symbols, with
the constraint αc

g +
∑Ng

n=1 αp
gn = 1. In turn, wc

g ∈ C
¯̄M and

wp
gn ∈ C

¯̄M are precoding vectors responsible for multiplexing
the common and private symbols in polarizations icg and ipg ,
respectively, such that icg �= ipg ∈ {v , h}, which are defined by

wc
g =

[
w

c,v
g
0

]
, wp

gn =

[
0

wp,h
gn

]
, if icg = v , and ipg = h, (4)

wc
g =

[
0

w
c,h
g

]
, wp

gn =

[
wp,v

gn
0

]
, if icg = h, and ipg = v . (5)

The polarizations icg and ipg are assigned dynamically at
each coherence interval by the BS. To this end, based on the
estimated CSI modeled by (2), the BS predicts the instantaneous

Fig. 1. Dual-polarized MIMO-RSMA transceiver. Private and common
streams are transmitted in parallel via the polarization domain.

rates of the common and private symbols experienced by the
users, denoted by R̂c

gn and R̂
p
gn , and determines the desired

polarizations based on the following criteria

arg
icg ,ipg

max

Ng∑

n=1

[
R̂p

gn + min
l∈{1,...,Ng}

R̂c
gl

]
. (6)

After computing (6), the BS feeds back icg and i
p
g to the

users. In the reception, users within the gth group detects
the common message from polarization icg and the private
messages from polarization ipg . A simplified diagram of the
proposed scheme is presented in Fig. 1.

C. Precoding for Inter-Group Interference Cancellation

After the signal in (3) has passed through the channel in (1),
the nth user in the gth group receives:

ygn =

[
gvv
gn

√
χgvh

gn√
χghv

gn ghh
gn

]H [
I2 ⊗ (Δ

1
2
g QH

g )

] G∑

k=1

Pk

×
( Ng∑

u=1

wp
ku

√
Pζkuαp

kuxp
ku + wc

k

√
Pζkuαc

kx
c
k

)
+

[
nv
gn

nh
gn

]
, (7)

where ni
gn denotes the additive noise observed by the nth

user in polarization i ∈ {v , h}, which follows the complex
Gaussian distribution with zero mean and variance σ2.

From (7), it is clear that the inter-group interference can be
cancelled if, ∀g �= g ′, the following is satisfied[

I2 ⊗
(

Δ
1
2

g′Q
H
g′

)]
Pg =

[
I2 ⊗

(
Δ

1
2

g′Q
H
g′

)](
I2 ⊗ P̄g

)
= 0, (8)

where P̄g ∈ C
M
2

×M̄ is the precoding matrix for each polar-
ization, in which M̄ � ¯̄M /2. To this end, P̄g can be
constructed by concatenating M̄ basis vectors of the null
space of the matrix Q = [Q1, . . . ,Qg−1, Qg+1, . . . ,QG ] ∈
C

M
2

×∑G
g′=1,g′ �=g

r̄g′ , where M̄ < M /2−∑G
g ′=1,g ′ �=g r̄g ′ . With

this design, the signal in (7) can be simplified as

ygn =

⎡
⎣ (gvv

gn )H Δ
1
2
g QH

g P̄g
√

χ(ghv
gn )H Δ

1
2
g QH

g P̄g

√
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gn )H Δ
1
2
g QH
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gn )H Δ
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2
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×
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√
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guxp
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g

√
Pζguαc
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c
g

)
+

[
nv
gn

nh
gn

]
. (9)

As a result, the nth user decodes the common message with
following signal-to-interference-plus-noise ratio (SINR)

γc
gn =

|(gicic
gn )H Δ

1
2
g QH

g P̄gw
c,icg
g |2ρζgnαc

g

χ
∑Ng

u=1 |(gipg icg
gn )H Δ

1
2
g QH

g P̄gw
p,ipg
gu |2ρζgnαp

gu + 1
, (10)

where ρ = P/σ2 denotes the signal-to-noise ratio (SNR),
and the first term in the denominator models the cross-polar
interference from polarization ipg to polarization icg .

In turn, the SINR observed by the nth user in the gth group
when decoding its private message can be represented by

γp
gn =

|(gipg ipg
gn )H Δ

1
2
g QH

g P̄gw
p,ipg
gn |2ρζgnαp

gn

χ|(gicip
gn )H Δ

1
2
g QH

g P̄gw
c,icg
g |2ρζgnαc

g + Ψ
ipg
gn + 1

. (11)
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where the first term in the denominator corre-
sponds to the cross-polar interference, and the term

Ψ
ipg
gn =

∑Ng

u=1,u �=n |(gipg ipg
gn )H Δ

1
2
g QH

g P̄gw
p,ipg
gu |2ρζgnαp

gu is
the interference generated by imperfect CSI.

D. Precoding for the Common and Private Symbols

The precoding vector w
p,ipg
gn ∈ CM̄ should be designed

to cancel the remaining inter-user interference observed in
the assigned polarization ipg ∈ {v , h} within each group.

Mathematically, we must have [(g
ipg ipg
gn ′ )H Δ

1
2
g QH

g P̄g ]w
p,ipg
gn ≈

0, for ∀n ′ �= n ∈ {1, . . . ,Ng}, i.e., the private precoder
for one user must be near-orthogonal (orthogonal with per-
fect CSI) to the effective channels of other users. By defining

Ĥ
ipg
g = [P̄H

g QgΔ
1
2
g ĝ

ipg ipg
g1 , . . . , P̄H

g QgΔ
1
2
g ĝ

ipg ipg
gNg

] ∈ CM̄×Ng , the
private precoder for the nth user can be computed as the zero-

forcing precoder w
p,ipg
gn = [Ĥ

ipg
g ((Ĥ

ipg
g )H Ĥ

ipg
g )−1]:n , where

M̄ ≥ Ng should be satisfied.
In turn, aiming at maximizing the worst observed SINR,

w
c,icg
g can be obtained as follows:

max
wg

c,icg

min
∀l∈{1,...,Ng}

γc
gn ,

s.t. ‖w
c,icg
g ‖2 = 1. (12)

However, the problem in (12) is non-convex and NP-hard for
general numbers of transmit antennas [4]. Fortunately, when

M → ∞, the asymptotic optimal w
c,icg
g is given by a linear

combination of the effective channel vectors, as follows [5]

w
c,icg
g =

Ng∑

n=1

μgn P̄H
g QgΔ

1
2
g ĝic ic

gn , (13)

which consists of a weighted matched filter (MF) precoder
for the channels of polarization icg ∈ {v , h}, where μgn is
the weight for the nth user in the gth group. As in [5], we
employ an equally-weighted MF precoder, i.e., μg1 = · · · =

μgNg
= μg . By defining ωg = 1

Ng

∑Ng

n=1 P̄H
g QgΔ

1
2
g ĝic ic

gn , μg

is computed as μ2
g = 1/N 2

g (ωH
g P̄H

g P̄gωg ), which satisfies the
unity norm constraint in (12).

III. ERGODIC SUM-RATE ANALYSIS AND ADAPTIVE
POWER ALLOCATION WITH DEEP NEURAL NETWORKS

A. Ergodic Sum-Rate

The instantaneous data rate for the nth user in the gth
group is given by the sum of its private and common rates,
which are calculated as R

p
gn = log2(1 + γ

p
gn ) and Rc

gn =
min∀l∈{1,...,Ng}{log2(1+γc

gl )}, respectively. Thus, the ergodic
sum-rate for the gth group can be obtained analytically through

R̄g =

Ng∑

n=1

(∫ ∞

0
log2(1 + x)fγp

gn
(x)dx +

∫ ∞

0
log2(1 + y)fγc

g(1)
(y)dy

)
,

(14)
where fγp

gn
(x ) is the probability density function (PDF) of γ

p
gn ,

and fγc
g(1)

(y) denotes the PDF of the first order statistic of γc
gn ,

i.e., the PDF of min∀l{γc
gl}. However, due to the correlated

gains in the SINRs in (10) and (11), obtaining the exact expres-
sions of fγp

gn
(x ) and fγc

g(1)
(y) becomes a convoluted task.

This complication makes the derivation of (14) intractable.
Alternatively, we exploit the powerful capabilities of DNNs to
approximate the desired sum-rate.

Given that the input parameters for R̄g form a compact
subset, denoted by Xg , and that R̄g is a real-valued continu-
ous function, the universal approximation theorem [6, Th. 2.2]
ensures that a DNN with at least one hidden layer can
approximate R̄g to any degree of accuracy, i.e.,

sup
xg∈Xg

| ˆ̄Rg − R̄g | < ε, (15)

for every ε > 0, where ˆ̄Rg is the function that models the
DNN, and xg ∈ Xg ⊆ RbXg represents the feature vector
with bXg

input parameters of the sum-rate function. This the-
orem provides theoretical support for the adoption of DNNs
as predictors for the intricate multivariate expression in (14).

B. DNN for Ergodic Sum-Rate Prediction

We consider a DNN model with L dense layers, in which
there are one input layer, one output layer, and L − 2 hidden
layers, where the lth layer has Ql neurons. For reducing
the training complexity, we address the ergodic sum-rate for
each spatial group separately. More specifically, the training
dataset for users within the gth group is represented by
Dg = {(xg,i , R̄g,i )|xg,i ∈ Xg , R̄g,i ∈ R, i = 1, . . . , |Dg |},
where R̄g,i is the target output, i.e., the actual ergodic
sum-rate, of the ith training sample in Dg , and xg,i is
the ith input sample vector containing bXg

= 2Ng + 7
system parameters, which are structured as xg,i =
[M , M̄ ,Ng , χ, τ, αc

g , [αp
g1, . . . , α

p
gNg

], [ζg1, . . . , ζgNg
], ρ]T .

Note that the entries of xg,i are within different ranges and
that R̄g,i can assume values from a broad interval, which can
lead to an unstable and slow training convergence. To avoid
this limitation, the training samples are scaled to the unity
range. Under such considerations, ergodic sum-rate prediction
function for the gth group can be expressed by

ˆ̄Rg (xg,i ) = rL−1 ◦ rL−2 ◦ · · · ◦ r1(xg,i ), (16)
where rl (·) maps the transformation applied to the input data
in the lth layer, which is defined by

rl (x) = πl (Wlx + bl ), ∀l ∈ {1, . . . ,L − 1}, (17)

in which x is the input for the lth layer, Wl ∈ RQl×Ql−1 is
the weight matrix connecting the lth and (l − 1)th layers, and
bl ∈ RQl and πl : RQl → RQl represent, respectively, the bias
vector and activation function for the lth layer. In the hidden
layers, we use as the activation function the rectified linear
unity (ReLU), i.e., πl (x) = max(0, x), ∀l ∈ {1, . . . ,L − 2},
and in the output layer, a linear activation function is adopted.

For training, the data samples in Dg are randomly selected
and partitioned into J batches. As a result, the mean-squared
error (MSE) loss function for the jth batch, ∀j ∈ {1, . . . , J},
to be minimized, can be written as

LDg,j
(˜g ) =

1

S

S∑

s=1

| ˆ̄Rg (xg,s ) − R̄g,s |2, (18)

where Dg,j = {(xg,s , R̄g,s )|s = 1, . . . ,S} ⊆ Dg represents
the subset corresponding to the jth data batch, in which S
denotes the carnality of Dg,j , i.e., the batch size.

C. DNN-Aided Adaptive Power Allocation

Following the work in [5], the power allocation adopted for
the private symbols is computed by αp

gu = (1−αc
g )/Ng , which

consists of a uniform allocation policy given as a function of
the power coefficient for the common symbol. Therefore, the
challenge with this strategy remains in determining the coef-
ficient αc

g . In particular, our goal is to maximize the ergodic
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Fig. 2. Training convergence behavior in terms of RMSE for: (a) DNN for
ergodic sum-rate prediction, and (b) DNN for adaptive power allocation.

sum-rate, which can be formulated as

arg
αc

g

max

Ng∑

n=1

E[ log2(1 + γp
gn ) + min

∀l
{log2(1 + γc

gl )}],

s.t. αc
g ≤ 1. (19)

However, due to the dynamic polarization multiplexing, the
coupled SNRs in (10) and (11), and the coupled coefficients
αc

g and α
p
gu , a closed-form optimal solution for (19) cannot

be obtained. Determining the desired coefficient through an
exhaustive search is also a possibility. However, brute-force
strategies can be computationally expensive, which is not ideal
for real-time communication. On the other hand, DNNs offer a
short run-time after trained. With this motivation, we propose
a DNN framework for approximating the optimal power coef-
ficient. To this end, for each spatial group, we train a DNN
model with one input layer, one output layer, and D − 2 hidden
layers, with the dth layer having Vd neurons.

Specifically, for training the DNN for power allocation,
we use the dataset Mg = {(zg,i , α

c∗
g,i )|zg,i ∈ Zg , αc∗

g,i ∈
R, i = 1, . . . , |Mg |}, where αc∗

g,i is the target power coeffi-
cient that maximizes the ergodic sum-rate for the ith input
vector zg,i ∈ Zg ⊆ RbZg , which is defined by zg,i =
[M , M̄ ,Ng , χ, τ, [ζg1, . . . , ζgNg

], ρ]T . Both zg,i and αc∗
g,i are

achieved by exploiting the existing datasets Dg . That is, for
each sample zg,i , we select the power coefficient that maxi-
mizes the corresponding sum-rate in Dg and create the new
dataset Mg . As in Section III-B, the vectors zg,i are scaled
to the unity range. As a result, the function that predicts the
optimal power allocation coefficient can be written as

Λ̂g (zg,i ) = rD−1 ◦ rD−2 ◦ · · · ◦ r1(zg,i ), (20)
where rd (·) is defined as in (17), in which ReLU activation
functions are employed in the hidden layers and a linear func-
tion in the output layer. We also adopt the MSE loss function
in this model. Moreover, for satisfying the constraint in (19),
the power coefficient is computed by α̂c∗

g = min{1, Λ̂g (zg,i )}.

D. Complexity Remarks

Note that we implement one DNN model for each spatial
group. The main implication of this choice is that the covari-
ance matrices, which have large dimensions, are not required
for designing and training the DNNs. Consequently, we can
considerably simplify the model architecture and decrease the
training complexity. In practice, DNNs can be trained very
efficiently in specialized hardware. Therefore, the complex-
ity of the testing phase is more relevant for the practical
operation of the proposed scheme. Specifically, the compu-
tational complexity of one forward pass can be expressed
in terms of floating-point operations [7]. Under this anal-
ysis, the DNN for sum-rate prediction has a complexity
of O(

∑L
l=1 Ql−1Ql ). For the DNN-aided power allocation

strategy, on the other hand, it is also important to mention
the complexity associated with the generation of the dataset
with optimal power coefficients. More specifically, we need to
perform an exhaustive search on the dataset Dg to construct
Mg , which imposes additional complexity. Nevertheless, this
search needs to be executed only once before the train-
ing, thus, it is a computationally affordable task. After the
dataset Mg is properly generated and the DNN is trained, the
desired power coefficient is computed with a complexity of
O(

∑D
d=1 Vd−1Vd ) in the testing phase.1

E. Datasets Generation and DNN Implementation

Due to the unknown PDFs of γp
gn and min∀l{γc

gl}, we
cannot generate the datasets Dg and Mg , g ∈ {1, . . . ,G},
with the expression in (14). Due to this reason, instead, we
used Monte Carlo simulations for obtaining the required data
samples, in which the high-performance Julia Programming
Language [8] has been used for implementing the proposed
MIMO-RSMA network. For generating the training data, we
adjusted the number of groups to G = 3, and the number of
users within each group to N1 = · · · = Ng = 3. Consequently,
the resulting number of features in the ith input vectors xg,i
and zg,i were bXg

= 13 and bZg
= 9, respectively. Then, we

have extensively varied the system parameters and generated
for each group a total of 6,561,000 samples for Dg , and 72.900
samples for Mg , where each sample was generated by aver-
aging 2×103 random channel realizations. Moreover, 90% of
the samples were used for training and 10% for testing.

The DNN models were implemented and trained in Python
3.9.11 using Tensor Flow Metal 2.8.0. The DNN for sum-
rate prediction was implemented with five hidden layers,
with the first and last hidden layers comprising 128 neurons
and the remaining layers comprising 256 neurons each. In turn,
the DNN for power allocation was implemented with four hid-
den layers, with the first and last hidden layers also containing
128 neurons and the remaining layers containing 256 neu-
rons. For training the DNNs, we adopted the adaptive moment
estimation (ADAM) optimizer. Moreover, the batch sizes for
sum-rate prediction and power allocation were adjusted to
1000 and 100 samples, respectively, and both DNNs were
trained for 80 epochs. Fig. 2 presents the training conver-
gence in terms of root mean squared error (RMSE) for the two
DNNs. As can be seen, the learning rate of 0.001 achieves the
lowest RMSE. Thus, this value is adopted in the next section.

IV. SIMULATION RESULTS

The DNNs for sum-rate prediction and power allocation
are evaluated in this section. The performance superiority of
the proposed dual-polarized MIMO-RSMA scheme is also
demonstrated over conventional baseline systems, including
the single-polarized MIMO-RSMA, MIMO-TDMA, MIMO-
SDMA, MIMO-NOMA, and the dual-polarized MIMO-
NOMA approach proposed in [9]. In all systems, we configure
the BS with M = 64 transmit antennas, and we consider that
users are distributed within G = 3 spatial groups. Without loss
of generality, we present results for the first group, which con-
tains N = 3 users, is located at the azimuth angle of 20◦, and
has an angular spread of 11◦. Moreover, the distances from the
BS to users 1, 2, and 3 are set to d1 = 115 m, d2 = 100 m,
and d3 = 85 m, respectively. Under this setting, the large-scale

1The complexity trade-offs between the proposed dual-polarized MIMO-
RSMA with the DNN-aided power allocation and the conventional MIMO-
RSMA still need to be better investigated, which arises as a potential future
research direction.
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Fig. 3. Simulated and predicted ergodic sum-rates: (a) for different values
of αc , with χ = 0 and τ = 0, (b) for different values of τ , with αc = 0.5
and χ = 0, and (c) for different values of χ, with αc = 0.5 and τ = 0.

fading coefficient for each user is modeled by ζn = δd
−η
n ,

where δ is an array gain parameter adjusted to 40 dB, and η is
the path-loss exponent set to 2.7. Furthermore, we set M̄ = 6
and adjust the total transmit power to P = 1 W. Unless oth-
erwise stated, when fixed power allocation is employed, we
set αc = 0.5 and αp

n = (1 − αc)/N ≈ 0.17 for the MIMO-
RSMA schemes, whereas, for the MIMO-NOMA counterpart,
we set the coefficients of users 1, 2, and 3 to 5/8, 2/8, and 1/8,
respectively. In turn, a uniform power allocation is employed
in the MIMO-SDMA systems, and in the MIMO-TDMA, the
full transmit power, P, is used at each time slot.

Fig. 3 validates the DNN framework for ergodic sum-rate
prediction under fixed power allocation. As can be seen, the
predicted curves can follow the simulated ones with high accu-
racy in all considered cases. This figure also provides the first
insights into the performance behavior of the proposed dual-
polarized MIMO-RSMA scheme. Fig. 3(a), for instance, shows
that the power coefficient for the common message plays an
important role in the ergodic sum-rate performance and that
the optimal power coefficient changes with the observed SNR.
Fig. 3(b) reveals how imperfect CSI impacts the sum-rate of
the proposed strategy. As can be seen, even though the system
performance deteriorates with the increase of τ , a remarkable
sum-rate of more than 30 bits per channel use (bpcu) can be
achieved even when τ = 0.4, which confirms robustness to
imperfect CSI. On the other hand, as can be seen in Fig. 3(c),
the dual-polarized MIMO-RSMA is more severely impacted
by polarization interference (with fixed power allocation).

The ergodic sum-rates achieved with the dual-polarized
MIMO-RSMA scheme and with the conventional systems
are compared in Fig. 4. As we can see in Fig. 4(a), when
χ = 0, the dual-polarized MIMO-RSMA systems always
achieve the best performance. However, with χ = 0.2,
the dual-polarized MIMO-RSMA scheme with fixed power
allocation becomes less spectrally efficient than the single-
polarized MIMO-RSMA and MIMO-SDMA counterparts. In
contrast, by smartly splitting the transmit power between
private and common streams, the proposed dual-polarized
approach with the DNN-aided power allocation can impres-
sively outperform all conventional baseline schemes despite
the high interference. The effectiveness of our proposal is
further corroborated in Fig. 4(b), where we plot the ergodic
sum-rates versus the CSI quality factor τ . As can be seen, the
dual-polarized MIMO-RSMA scheme with the DNN power

Fig. 4. Simulated ergodic sum-rates: (a) versus SNR for different levels of
χ, with τ = 0.1, (b) versus τ for a SNR of 25 dB and different levels of
χ, and (c) versus SNR for different levels of SIC error, with χ = 0.01 and
τ = 0.

allocation achieves the highest sum-rates for all values of τ and
χ. The reason for such robustness is that the DNN mitigates
the effects of both imperfect CSI and cross-polar interference
by smartly adjusting αc

g . For instance, the DNN assigns power
only to one polarization if χ becomes excessively high for
tackling cross-polar interference or allocates more power to
the common stream when the CSI becomes degraded. Last,
Fig. 4(c) compares the sum-rate performance of the dual-
polarized MIMO-RSMA and of SIC-based schemes under the
effects of SIC error propagation. The sum-rates of the schemes
that rely on SIC are strongly degraded when the SIC error
factor increases. On the other hand, the robust dual-polarized
MIMO-RSMA is unaffected by SIC issues.

V. CONCLUSION

We have proposed a novel low-complexity dual-polarized
massive MIMO-RSMA scheme, which is free from the
interference issues of SIC and robust to imperfect CSI. We
have also developed DNN frameworks for ergodic sum-rate
prediction and efficient power allocation, which ensured high
performance even under strong cross-polar interference.
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