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With the advancement of technology in many areas, an immense amount of data has
currently become available, and discovering patterns and trends from this data is a core
subject of interest in machine learning research. Machine learning, a form of artificial
intelligence, provides a robust set of algorithms that iteratively learn from the data to
understand and analyze data as well as predict future outcomes. The focus of this dis-
sertation is on supervised machine learning techniques—classification and regression. In
particular, the emphasis is on the fuzzy k-nearest neighbor (FKNN) algorithm that has
received substantial attention in classification problems due to its efficacy and flexibility.
In the context of classification, learning from data can be considered challenging for many
algorithms due to uncertainties and inconsistencies in the data. In particular, a typical is-
sue associated with most classification problems is that class distributions in the data
are imbalanced—meaning that data points do not equally represent the classes in class
variable, which can significantly affect classification performance. Along with class im-
balance, it is apparent that a level of class overlapping, class noise, and outliers may
also cause the degradation of the classifier’s performance. Given these issues, research
has continued to make classification algorithms—particularly the nearest neighbor-based
methods—more accurate and more competent. However, this has been a great challenge
because the performance and efficiency of learning algorithms are heavily reliant on the
correct choice of model features and data that often engages with many issues. In this
context, this research seeks to develop solution techniques based on the FKNN algorithm,
particularly for class imbalance problems.
The multi-local power mean fuzzy k-nearest neighbor (MLPM-FKNN), which uses class
prototype local mean vectors instead of individuals for creating memberships, is the first
approach presented in this dissertation. It is demonstrated that the proposed MLPM-
FKNN classifier achieves better classification results than the classical methods in real-
world data sets, often with high k (number of nearest neighbors chosen) values. In ad-
dition, the MLPM-FKNN classifier, in cooperation with feature selection, is applied to
create a hybrid feature selection model to forecast the intraday return of the S&P in-
dex. Further, this work brings a feature selection and prediction (formed by classifica-
tion) to a nexus wherein the feature selection can produce a significant impact with the
help of MLPM-FKNN classification. The second approach proposed is the Bonferroni
mean-based fuzzy k-nearest neighbor (BM-FKNN) classifier, which is an extension of
the MLPM-FKNN method by the use of the Bonferroni mean instead of the Power mean.
The findings with one artificial and six real-world data sets stress the capability and effec-
tiveness of this method in solving class imbalance problems as compared to the original
and several other competitive classifiers. The next contribution of this dissertation is a
novel regression approach called the Minkowski distance-based fuzzy k-nearest neigh-
bor regression (Md-FKNNreg) method. This is motivated by the fact that no one has
investigated the ability of the FKNN method in regression settings, although it has gained
broader attention in the classification context. Moreover, the principal advantage of this
algorithm is that it attributes importance to the nearest neighbors using fuzzy weights con-
sidering their distances to the test instance and hence makes a more accurate prediction
across a weighted average. Experimental results using real-world data show that the Md-
FKNNreg outperformed the benchmark models and thus highlight its potential in terms
of linear and non-linear regression problems.
Keywords: classification, regression, feature selection, machine learning, prediction, class
imbalance, fuzzy k-nearest neighbor, local means, performance.
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1 Introduction
Over the years, advances in technology in an increasingly digital world and comput-
erization of every part of our lives—from how we work, communicate, and access
information—have made the world data-driven. Ultimately, extracting valuable informa-
tion and knowledge from this data is at the forefront of recent research in academia and
industry (Sarker, 2021; Aggarwal, 2015; Igual and Seguı´, 2017). Here, it is noteworthy
that advantages do not come from the data itself but from the capacity to obtain hidden
patterns and information from the data. This is where the task of machine learning
comes in (Kubat, 2017). Moreover, the availability of diverse and large-scale benchmark
data sets has fueled the fast pace of expansion in machine learning research in recent
years. While machine learning is about learning from the data (Kubat, 2017), it is not a
simple process (Hurwitz and Kirsch, 2018). Specifically, it consists of various algorithms
that iteratively learn from the data to understand and analyze data as well as forecast
future outcomes (Hurwitz and Kirsch, 2018). Depending on the nature of the problem
addressed, machine learning techniques are typically categorized into the following
(i) supervised learning that learns from data containing both inputs and corresponding
outputs; (ii) unsupervised learning that uses data involving only a set of inputs without
corresponding outputs; (iii) semi-supervised learning, in which the data contains inputs
and only a part of the outputs; and (iv) reinforcement learning, which is behavioral
learning, indicating that it learns from trial and error instead of training from sample
data (Sarker, 2021; Hurwitz and Kirsch, 2018; Igual and Seguı´, 2017). This research
is devoted to supervised learning techniques, and the other types are not discussed any
further.
In supervised learning, there is a target variable that is categorical (classification prob-
lems) or numerical (regression problems), which is predicted. The model to predict this
variable is fitted using training data. After the model is fitted, it can be used to predict new
input observations. In the context of supervised learning, two types of machine learning
techniques can be distinguished:
• Classification, which refers to assigning objects into a relatively small set of (dis-
crete) categories (Bishop, 2006; Jung, 2022). These categories are often called
“classes,” “labels,” or “targets.” The primary goal in classification problems is to
identify the class to which a new object belongs. For example, given a record of
symptoms shown by a patient, the disease diagnosis system must classify whether
the patient suffers from the disease or not. Additionally, the spam filtering model
is another example of a classification task in which the goal is to classify emails
as spam or non-spam. Moreover, regarding the number of classes in the output
variable, a classification problem is typically called a binary class (when there are
only two classes) or a multi-class (when there are more than two classes) problem
(Tharwat, 2020). Both examples mentioned before are binary class problems. In
the context of classification, the objects are often referred to as “instances” that
describe different properties of associated categories. These properties, known as
“features” (or variables), are used to make the expected classification. Meanwhile,
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an instance with a corresponding class label (a labeled example) indicates its cor-
rect classification. An unlabeled example (also referred to as a “query sample” or
“test sample”) is an instance that needs to be classified. In this dissertation, the term
“query sample” is used.
• Regression is a way to fit a learning algorithm to training data in which “con-
tinuous” numerical values characterize the outcome variable (Sarker, 2021; Jung,
2022). It is deployed to make predictions of numeric outcomes for new data based
on historical data (Igual and Seguı´, 2017; Witten et al., 2011)—for example, pre-
dicting a company’s sales in the next month, the stock prices for the next day,
and expected weather (e.g., temperature, wind speed). In such cases, a regres-
sion method approaches the problem by discovering a relationship between input
features and the corresponding target variable. Generally, this relationship can be
linear or non-linear, and basic techniques [e.g., multiple linear regression (Mont-
gomery et al., 2012)] cannot learn non-linear relationships, which is a disadvantage
of using those methods (Witten et al., 2011). However, some variants, such as the
support vector regression (SVR) (Drucker et al., 1997) have been designed for data
that has a non-linear dependency.
Meanwhile, it is noteworthy that the difference between classification and regression
tasks in supervised context is somewhat ambiguous (Jung, 2022) because sometimes it
is possible to solve classification problems by converting them into regression problems
and vice versa. Nevertheless, the emphasis in this research is not only on enhanced
classification and regression algorithms but also on applications. The starting point is the
fuzzy k-nearest neighbor (FKNN) classifier by Keller et al. (1985).
The k-nearest neighbor (KNN) approach, a form of instance-based supervised learning
(Kassani et al., 2017), is used to solve both regression and classification problems
(Sarker, 2021). The KNN principle is straightforward and involves nothing more than
a similarity calculation between a new instance and the training instances, plus votes
cast for the majority class among the closest instances. It is recognized as one of the
top ten algorithms applied in data mining and machine learning due to its simplicity of
implementation and good performance (Derrac et al., 2015; Kassani et al., 2017; Biswas
et al., 2018; Gou et al., 2014, 2019; Zeraatkar and Afsari, 2021). The KNN method is
also referred to as a lazy algorithm because it requires no training phase (Hurwitz and
Kirsch, 2018) and simply uses training data to yield outcomes. Since its initial proposal
by Cover and Hart (1967), the KNN method is applied by many researchers and is still
one of the most promising techniques for pattern classification (Chen et al., 2011; Derrac
et al., 2014; Kassani et al., 2017). Additionally, it could also be a valuable tool for
implementing predictions, as shown by Zhang et al. (2017a); Cao et al. (2019) where the
KNN was used to identify historical patterns and subsequently forecast the future trends
of a stock index price. Despite its influential role, it is noteworthy that the performance
of the original KNN rule is degraded by several inherent limitations, such as assigning
equal importance to the nearest neighbors (Keller et al., 1985; Kassani et al., 2017; Rhee
and Hwang, 2003), high sensitivity to the value of k (Pan et al., 2017; Gou et al., 2014,
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2019), and the distance metric that is used (Rastin et al., 2021; Pan et al., 2017). This
method may also show poor performance when the cases have outlier effects (Gou et al.,
2019) and the data sets are not balanced in terms of class distributions (Zeraatkar and
Afsari, 2021). Given these issues, many studies have attempted to enhance the accuracy
of the KNN method by inventing advanced new variants while solving associated is-
sues with the original method (Pan et al., 2017; Rastin et al., 2021; Gou et al., 2014, 2019).
Using a degree of membership of each instance in the classes based on the fuzzy theory
(Zadeh, 1965), Keller et al. (1985) introduced a fuzzy version of the original KNN
method, namely the FKNN classifier, which is regarded as one of the most effective
KNN variants (Derrac et al., 2015; Wu et al., 2021). This method solves the issue with
the KNN method of giving equal importance to every neighboring instance regardless of
the fact that different instances may have different impacts on the new instance (Derrac
et al., 2015, 2016; Wu et al., 2021). Another interesting aspect of this method is that
it uses a class specific membership for each instance for the decision rule, enabling
the model to achieve higher performance while dealing with uncertainties associated
with feature values and class distributions (Liao and Li, 1997). Consequently, for the
aforementioned reasons, the FKNN algorithm has gained continuous interest in solving
many real-world classification problems in, to mention a few, business (Chen et al.,
2011), medicine (Cabello et al., 1991; Chen et al., 2013), manufacturing (Liao and
Li, 1997), and bio-science (Huang and Li, 2004). The present research is particularly
interested in the FKNN classifier and seeks to extend the original algorithm and improve
its performance by introducing several changes to the learning part of it.
However, even though it improves the performance of the KNN, this algorithm increases
the complexity of calculations since it introduces an additional parameter (Biswas et al.,
2018). In this case, a proper optimization of the involved parameters for optimal values
is required. Moreover, in terms of the class imbalance problems (also in cases that have
outlier effects or class overlapping issues), the uncertainty associated with the class
distributions and data could be higher, and the FKNN classifier may fail to account
for them entirely. This is because its decision rule, as in the KNN, also depends on
the individual samples in the neighborhood. Under this circumstance, an incorrect
decision may prevail if the position of some individuals is unusual relative to others or
fewer individuals represent some class(es). Specifically, in such cases, the membership
assignment is the key issue in the FKNN method (Derrac et al., 2016), and if the
observed nearest instances do not reflect accurate information, it may lead to inadequate
membership values for training instances for each class. These issues cannot be avoided
when the FKNN method is used and is one of the concerns in our research.
As already mentioned, the basic idea of the KNN method has been also used in the context
of regression, which is referred to as the k-nearest neighbor regression (KNNreg) method
(Turner, 1977; Benedetti, 1977; Stone, 1977). Here, the main focus is how to predict
an outcome for a given new instance by averaging the outputs of the nearest neighbors
of the new instance (Durbin et al., 2021). Moreover, the KNNreg method requires no
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calculation of coefficients, which makes it computationally inexpensive and easier to
interpret than other more refined regression approaches. Particularly, for situations where
the output variable and input features may indicate a non-linear relationship, the KNNreg
can be a useful choice of interest (Cai et al., 2020). Accordingly, a growing body of
literature has examined the potential of the KNNreg in various fields (for example, see Hu
et al., 2014; Huang and Li, 2004; Durbin et al., 2021; Yao and Ruzzo, 2006). In addition,
the simplicity and potential of the KNNreg have led studies (Biau et al., 2012; Song et al.,
2017; Nguyen et al., 2016) to create several improved variants. However, regarding the
FKNN method, in the literature, there is no evidence of this method providing a clear
indication in the regression setting. For this reason, the interest of this dissertation lies
in examining the capability of the FKNN method as a regression method, which is the
second emphasis of this research.
To this end, the field of KNN-based classification research is clearly active and provides
new insights. This research is not about solving something with the FKNN algorithm—
but about identifying new generalizations of it and in this way, expanding the capabilities
of KNN methods. This is further clarified with the research objectives in the following
sub-section.
1.1 Research Objectives
A machine learning algorithm does not remain fitting as it is required to be maintained
occasionally, particularly due to the recent advancement of data sources and problem
domains. The rationale of this research is that the FKNN method as a classifier as well as
a regression model in real-world data can and should be performed effectively. From the
classification perspective, the idea is to generalize the capability of the original method so
that it can perform well, particularly in class imbalance problems. In addition, the focus is
especially on the generalizability of the FKNN algorithm in terms of regression problems.
The objectives of the research in this dissertation can be summarized as follows:
• To examine the effect of using class prototype mean vectors instead of individual
neighboring instances in the learning part of the FKNN algorithm on the classifica-
tion performance in terms of imbalanced data sets.
• To examine the effect of using more general mean operator than the usual arithmetic
operator in the calculation of the mean vector.
• To study the effect of combining KNN-based classifiers with feature selection on
the classification performance.
• To generalize the FKNN algorithm so that it is able to address regression problems
and examine its performance with respect to different alternative problems.
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Overall, this research will focus on generalizing the original FKNN method. The area
of theoretical aspects and strategies used to design new KNN-based methods or expand
existing ones is vast (Derrac et al., 2014). First, several mean operators are focused on
for this research, as they can be potential in modeling class representative vectors. These
class representative mean vectors, which are theoretically observed by averaging the in-
stances in each class, are used to provide local information about the represented class
during the training. The concept of using local class representative mean vectors in the
context of KNN classification is not new, as the same or similar ideas can be seen in
previous studies (Mitani and Hamamoto, 2006; Gou et al., 2014, 2019; Pan et al., 2017).
However, before this research and the associated proposals, no one had investigated such
class prototype vectors in the FKNN classification. The underlying assumption in using
such local mean vectors is that they may be more representative than individuals in terms
of corresponding classes and can contribute to more accurate memberships. Moreover,
it has already been observed that with the rationale of the KNN method, it is possible to
characterize the problems in regression settings and obtain a high performance without
relying on data-specific assumptions and parameters. In fact, in this research, an attempt
is made to extend the FKNN method for regression problems and study its performance
on some of the most commonly used data sets from the related fields in comparison to the
KNNreg and several other competitive methods. Finally, several experiments that follow
necessary principles in machine learning are conducted to judge whether the new method
is a relevant contribution to the state-of-the-art classification and regression. In this re-
gard, different feature selection methods and distance measures are deployed with and
within classifiers to enhance their problem-solving capabilities. All the objectives of this
dissertation are fulfilled across four main publications, which will be summarized in the
next sub-section.
1.2 Background Information and Contributions
This research is considered to be contributing in two ways: enhancing the performance
of the conventional FKNN algorithm (Keller et al., 1985) for various classification
problems and generalizing its rationale so that it can also perform in terms of regression
applications. To our knowledge, the second has not been adequately addressed or has
been to a minimal degree. However, many studies have attempted to advance the efficacy
of the FKNN method in the context of classification. Thus, this study will concentrate
on the related work on enhanced FKNN classifier variants and the methods applied to
modify the original algorithm.
Using different notions and principles, some authors have used the associated characteris-
tics in the FKNN algorithm—particularly the nearest neighbor search, similarity measure,
membership assignment, and the decision rule—to make the original approach more
effective and practical (Derrac et al., 2014). The study by Hu and Xie (2005) applied
the genetic algorithm to make the FKNN classifier less sensitive to its key parameters,
and proposed a new version of the FKNN called the “genetic algorithm-based fuzzy
k-nearest neighbor” (GAFKNN) approach. Similarly, Kassani et al. (2017) presented the
20 1 Introduction
multi-objective genetic algorithm-modified fuzzy k-nearest neighbor (MOGA-MFNN)
approach by introducing two new objective functions into the optimization part. A study
by Biswas et al. (2018) also proposed a new parameter independent fuzzy class-specific
feature weighted k-nearest neighbor (PIFW-kNN) method based on a specific feature
weighting scheme. Moreover, some studies have proposed improved versions of the
original methods, particularly focusing on class imbalance problems, such as the fuzzy
weighted k-nearest neighbor (FWKNN) (Harshita and Singh, 2017) and the fuzzy
adaptive k-nearest neighbor (FADPTKNN) (Patel and Thakur, 2019) methods.
Meanwhile, type-2 fuzzy sets, an extension of the type-1 fuzzy sets, can effectively deal
with uncertainty and complexity and allow memberships to be varied in a broader range
(Kassani et al., 2017). Using type-2 fuzzy sets, Rhee and Hwang (2003) proposed the
interval type-2 fuzzy k-nearest neighbor (IT2FKNN) classifier as an extended version
of the classical method. Additionally, interval-valued fuzzy sets, a specific type of
type-2 fuzzy sets (Derrac et al., 2016), have also been utilized to design new FKNN
variants, such as the interval-valued k-nearest neighbor (IV-KNN) (Derrac et al., 2015)
and the evolutionary fuzzy k-nearest neighbors classifier using interval-valued fuzzy sets
(EF-kNN-IVFS) (Derrac et al., 2016). Moreover, fuzzy rough sets and intuitionistic fuzzy
sets have also gained attention among FKNN developers. The fuzzy rough k-nearest
neighbor approach (FRKNNA) (Bian and Mazlack, 2003), the fuzzy rough-nearest
neighbor (FRNN) (Sarkar, 2007), the fuzzy-rough k-nearest neighbor for imbalance
learning (IM FRknn) (Han and Mao, 2010), the vaguely quantified rough set based
on fuzzy-rough nearest neighbor (FRNN-VQRS) (Jensen and Cornelis, 2011), and the
imbalanced fuzzy-rough ordered weighted average nearest neighbor (IFROWANN)
(Ramentol et al., 2015) are examples of enhanced FKNN variants based on the fuzzy
rough set theory. Additionally, by introducing intuitionistic fuzzy sets to the classical
algorithm, an intuitionistic version of the FKNN method [called the intuitionistic fuzzy
k-nearest neighbor (IF-KNN)] has been established in a study by Kuncheva (1995).
From this perspective, Hadjitodorov (1995) presented another variant, the intuitionistic
fuzzy sets-nearest neighbor (IFSKNN) classifier, and later expanded this method to the
intuitionistic fuzzy version-nearest prototype (IFV-NP) method in Hadjitodorov (2001).
The objective of these methods is to improve the classification performance with the
effect of combining notions of more advanced set theories with the fuzzy set theory.
Moreover, a recent study by Zeraatkar and Afsari (2021) suggested two novel extensions
of the FKNN based on the notions of interval-valued fuzzy (IVF) sets, intuitionistic
fuzzy (IF) sets, and a resampling technique called SMOTE (Kotsiantis et al., 2006)
for imbalanced data classification problems. With the new variants, SMOTE-IVF and
SMOTE-IVIF, they mainly focused on improving the performance of minority class
classification.
Another compelling method of improving the performance of the FKNN classification
is to adopt reasonable data pre-processing methods (Derrac et al., 2014). Among them,
the prototype generation and prototype selection (Triguero et al., 2012) techniques have
been introduced in the data pre-processing steps to enhance the performance of the
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classical FKNN method (Derrac et al., 2014). Regarding prototype generation, the study
by Keller et al. (1985), besides the original FKNN method, also proposed the fuzzy
nearest prototype classifier (FuzzyNPC) as the first prototypical variant of the original
method. It functions by employing only one prototype per class, which is generated by
taking the mean of the instances in each class. However, though this method is faster
in terms of processing, it is less accurate than the original FKNN method (Keller et al.,
1985; Derrac et al., 2014). Here, it should be noted that the term “prototype” is often
used instead of “instance” (or neighbor) in the context of KNN-based classification. The
fuzzy-edited nearest neighbor (FENN) rule (Yang and Chen, 1998) and the condensed
fuzzy k-nearest neighbor (CFKNN) rule (Zhai et al., 2011) are example cases for
prototype selection-based approaches.
Figure 1.1 proposes a taxonomy of the FKNN variants discussed above, in line with
study by Derrac et al. (2014). The FKNN algorithms can generally be categorized into
classification or regression methods. In the second level of the taxonomy, classification
techniques are further divided into sub-categories depending on the central adopted
concept. The methods in the same sub-category are further differentiated by introducing
the third level. Detailed information on these categories and properties can be found in
Derrac et al. (2014) who presented a comprehensive review of available FKNN-based
methods. As indicated in Figure 1.1 (in yellow), the emphasis of our research is on
enhanced FKNN variants using class prototype multi-local mean vectors to perform
binary and multi-class classification. The use of multi-local mean vectors for the FKNN
classification was motivated by previous studies (Mitani and Hamamoto, 2006; Gou et al.,
2014; Pan et al., 2017) that have used the concept of local means to achieve reasonable
results with the KNN method. Moreover, this dissertation focuses on generalizing the
FKNN algorithm in the context of regression, which has not received considerable
attention until now. It is noteworthy that the properties illustrated in Figure 1.1 might be
very useful to understand how the existing methods work and how the contributions of
this research can be distinguished from them as well as possible links to developments in
future research.
The research underlying this dissertation focuses not only on developing enhanced fuzzy
k-nearest neighbor classifiers (Publication I, III) but also on applying implemented meth-
ods to real-world data (Publication II). Regarding the application, it also addresses a part
of feature selection (Publication II) because the methodology involved in this study is
created by incorporating the new classifier with selected feature selection algorithms. In
addition, this research has a theoretical contribution in demonstrating how the FKNN al-
gorithm can be adapted in the regression setting (Publication IV). Table 1.1 provides a
summary of the objectives and contents of publications related to this research.
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Figure 1.1: A taxonomy of the FKNN methods [modified from Derrac et al. (2014)].
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1.3 Dissertation Structure
This dissertation consists of six chapters, including this introductory chapter that de-
scribes the research topic, background information, scope of the research, and objectives.
Next, the second chapter examines relevant theoretical contexts. The subsequent chapters
(three to five) establish the new approaches for classification and regression tasks based
on the FKNN algorithm, and examine their performances in different applications. Fi-
nally, the closing chapter summarizes the contribution of each publication, the limitations
of the proposed methods and results, and discusses possible future research directions.
Table 1.2 summarizes the structure of the dissertation along with the title and contents of
each section as well as the related publication(s) number.
Table 1.2: An overview of the included sections and their contents
Section Contents Related publication(s)
1. Introduction Contextualization of research study,
scope of the research, and a summary
of objectives and contributions
2. Literature Review and
Methodology
Theoretical background of related
mean operators, distance functions,
KNN-based classifiers, and evaluation
settings machine learning
Publications I, III, IV
3. Proposed FKNN classifier
based on the Power mean
Introduction of the novel MLPM-
FKNN classification approach using
the Power mean and its application
to real-world data sets from machine
learning repositories and a real stock
market data set
Publications I–II
4. Proposed FKNN classifier
based on the Bonferroni
mean
Introduction of the novel BM-FKNN
classifier using the Bonferroni mean
and its application to one artificial and
several real-world data sets
Publication III
5. Proposed FKNN
regression with the
Minkowski distance
Introduction of the Minkowski
distance-based novel regression
approach Md-FKNNreg and its
application to real-world data sets
Publication IV
6. Conclusions, limitations,
and future work
Concluding remarks on the contri-
butions, limitations of the proposed
methods and findings, and discussions
of possible future research directions
Publications I–IV
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2 Literature Review and Methodology
This chapter introduces basic notations and definitions of the theoretical concepts and
methods involved in this dissertation. In particular, mean operators, distance measures,
related classification techniques, and evaluation settings are discussed.
2.1 Mean Operators
Aggregation is a method of fusing a significant amount of data into a single representative
value. Aggregation operators allow us to manifest how data need to be fused (Torra,
2016). Many different types of mean operators have been introduced in the literature for
averaging information. In this research, the Power mean (Bullen, 2003) and Bonferroni
mean (Bonferroni, 1950) operators, which are introduced below, have been applied.
2.1.1 Power Mean Operator
Power mean (also known as root-power mean or generalized mean) is a family of means
generalized from the arithmetic mean (Beliakov et al., 2016). As a particular case of
the Power mean, well-known expressions can be generated by changing parameter p to
one specific value. These special cases include, for example, harmonic mean (p = −1),
arithmetic mean (p = 1), quadratic mean (p = 2), and cubic mean (p = 3). Meanwhile,
when p→ 0, it approximates the geometric mean. A formal definition of the Power mean
is presented below, as indicated by Bullen (2003).
Definition 2.1 (Power mean) Let X = (x1, x2, .., xm) , xi ≥ 0 ∀i ∈ N be a vector with
at least one xi 6= 0 ∀i = 1, 2, ..,m and p ∈ R be a parameter. The Power mean of X is
defined as:
Mp(X) =

∏m
i=1 x
1/m
i if p→ 0
( 1
m
∑m
i=1 x
p
i )
1/p, if p 6= 0
(2.1)
As seen above, an important property of the Power mean is that its value can be controlled
by the exponent p ∈ (−∞,∞).
Figure 2.1 displays the principal characteristics of the Power mean function for an ex-
ample case. As depicted by Figure 2.1a, the Power mean operator can vary on a larger
scale concerning the different values of p. Specifically, Figure 2.1b shows that the Power
mean inherently changes its geometrical position with the different settings of p in the
two-dimensional feature space.
2.1.2 Bonferroni Mean Operator
Bonferroni mean, another type of generalization of the arithmetic mean, offers a class
of aggregation functions. This averaging operator was initially introduced by Bonferroni
(1950), and later extended and discussed by several authors (see, for e.g., Beliakov et al.,
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Figure 2.1: A graphical illustration of the Power mean in an example case: (a) variation of
the Power mean function vs. parameter p, (b) geometric positions of some special cases
of the Power mean in two-dimensional space.
2016, 2007; Yager, 2009a,b). Additionally, Bonferroni mean and its extensions have been
utilized in many practical applications (see, for e.g., Hait et al., 2022; Liua et al., 2019;
Qin et al., 2020; Sun and Liu, 2013). The Bonferroni mean operator includes two parts—
inner and outer. The product of one argument and the average of all the other remaining
inner arguments make up each argument in the outer part, and this combination is what
distinguishes it from others in terms of the aggregation (Beliakov et al., 2016). A formal
definition of the Bonferroni mean can be presented as follows.
Definition 2.2 (Bonferroni mean) Let X = (x1, x2, .., xm), xi ≥ 0 ∀i ∈ N be a vector
with at least one xi 6= 0 ∀i = 1, 2, ..,m and p, q ≥ 0 be parameters. The Bonferroni mean
of X is defined by Bonferroni (1950) as:
Bp,q(X) =
(
1
m
m∑
i=1
xpi
(
1
m−1
m∑
i,j=1,j 6=i
xqj
)) 1
p+q
(2.2)
The Bonferroni mean offers a parameterized class of aggregation operators, including
arithmetic, geometric, and harmonic means, to mention a few. In a certain sense, the
Power mean can also be represented as a particular case in the Bonferroni mean. More-
over, the Bonferroni mean has gained significant attention among researchers and has
been used in various applications (see. for example, Xu and Yager, 2011; Xia et al., 2013;
Fabio et al., 2016; Kurama et al., 2016) due to its ability to allow multiple comparisons
and perceive inter-relationships between input arguments (Wei et al., 2013). This dis-
sertation uses the Power mean in Publication I and the Bonferroni mean in Publication
III.
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2.2 Distance Measures
Many machine learning algorithms require the quantification of similarity or dissimilarity
between two objects (or instances) in the data (Mathisen et al., 2019; Aggarwal, 2015).
In particular, measuring the similarity (in terms of “distance”) is necessary for instance-
based techniques1 such as KNN. Here, it should be noted that a “similarity function”
(where higher values indicate higher similarity) and a “distance function” (where smaller
values indicate higher similarity) are distinct concepts for some domains (Aggarwal,
2015). Nevertheless, this chapter refers to the distance function as a methodological way
of computing similarity.
Moreover, an ideal distance measure should be able to provide an accurate estimation of
similarity between two data instances while allowing the researchers to comprehend how
to compare, classify, or cluster those cases (Bergamasco and Nunes, 2019). The distance
functions are particularly susceptible to the data type, distribution, and dimensionality
(Aggarwal, 2015). Therefore, the distance measure can significantly affect the function
of the method used, and a poor choice of distance measures can weaken the outcomes.
Hence, this research is not limited to one distance function and instead, it investigates the
performance of KNN-based regression methods with several distance functions, which
are defined in detail below.
Definition 2.3 (Euclidean distance) The Euclidean distance between two points, X =
(x1, x2) and Y = (y1, y2) in a plane is defined as d(X, Y ) =
√
(x1 − y1)2 + (x2 − y2)2
according to the Pythagorean theorem (Kubat, 2017). This expression is easy to extend
to an m-dimensional space. For the two given points X = (x1, x2, ..., xm) ∈ Rm and
Y = (y1, y2, ..., ym) ∈ Rm, the Euclidean distance (dEUC) is defined as follows (Kubat,
2017):
dEUC(X, Y ) =
√√√√ m∑
j=1
(xj − yj)2 (2.3)
The Euclidean distance typically indicates a good compromise (Witten et al., 2011) and
is the most often used distance metric for computing distances (Li et al., 2022). If it
is not explicitly specified, the Euclidean distance is the default distance measure under
normal conditions. Moreover, this distance has the property of being rotation-invariant
because the straight-line distance between two data points remains unchanged even when
the axis system is oriented (Aggarwal, 2015). This indicates that some data transforma-
tion approaches (e.g., PCA) can be applied to the data without influencing the distance
(Aggarwal, 2015).
Definition 2.4 (Manhattan distance) The Manhattan distance (also referred to as L1
norm or city block distance) is defined by the sum of the absolute differences between
1In machine learning, instance-based learning refers to modeling new instances (for example, predicting
the value) directly based on training instances (Keogh, 2011).
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two points for each dimension. For the two given points X = (x1, x2, ..., xm) ∈ Rm and
Y = (y1, y2, ..., ym) ∈ Rm, the Manhattan distance (dMan) is defined as follows:
dMan(X, Y ) =
m∑
j=1
|xj − yj| (2.4)
Definition 2.5 (Minkowski distance) For the two given points X = (x1, x2, ..., xm) ∈
Rm and Y = (y1, y2, ..., ym) ∈ Rm, the Minkowski distance (dMd) is defined as follows
(Lu et al., 2015):
dMd(X, Y ) =
( m∑
j=1
|xj − yj|P
)1/P for P ≥ 1 (2.5)
The Minkowski distance (also referred to asLP norm space) is a class of different distance
measures formed by the parameter P (Igual and Seguı´, 2017). By changing the value of
P , various distance measures can be generated; for example, when P = 1, Minkowski
distance equals to the Manhattan distance [as in Equation (2.4)] and when P = 2, it cor-
responds to the Euclidean distance [as in Equation (2.3)]. Therefore, utilizing Minkowski
distance allows greater flexibility for establishing various distances on the selected cases.
However, there is no conscious rule on the accurate selection of P and it should be chosen
according to the application and based on a reasonable assessment (for example, see Lu
et al., 2015). Thus, this research uses the Minkowski distance to design a new regression
approach based on the FKNN classifier (which is associated with Publication IV).
2.3 K-nearest Neighbor Method
In instance-based classification, the similarity of each new instance to training examples
is measured using a distance metric, and the class of the closest instance is assigned to the
new one. This is known as “nearest neighbor” classification (Witten et al., 2011). When
more than one nearest neighbor is considered (say k), the new instance is assigned to the
majority class among the k closest neighbors. This is known as the k-nearest neighbor
classification (Witten et al., 2011). Fix and Hodges (1951) first introduced the rationale
of the KNN, and later Cover and Hart (1967) presented a more evolved version of it for
classification problems. In the following section, a step-by-step process underlying the
KNN algorithm for classification and regression is separately introduced.
2.3.1 KNN Classification
Let {Xj, cj}Nj=1 be a training set, formed byN instances and eachXj = {x1j , x2j , .., xDj } ∈
RD in D-dimensional feature space from S classes. The class of Xj is cj , where
cj ∈ {ω1, ω2, .., ωS}. For a given query sample Y ∈ RD, the class ωc is determined by
the KNN rule according to the following steps:
Step I of the algorithm is choosing a value for k (i.e., number of nearest neighbors),
which is the most challenging aspect of using the KNN classifier (Aggarwal, 2015).
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However, it is possible that a minimal value of k may not offer accurate classification re-
sults due to some inconsistencies and noise of the data (Liu et al., 2013; Gou et al., 2014).
In contrast, an increased value of k can lead to poor performance in the classification
in situations where there are effects of outliers, especially when the training sample is
small (Pan et al., 2017; Gou et al., 2014). In practice, a suitable value of k is determined
heuristically. More often, the KNN with different values of k is tested for accuracy using
training data, and when the accuracy is at its best, corresponding value of k is chosen
(Aggarwal, 2015). This technique reflects the cross-validation, but several other methods
are also available in the literature (see, for e.g., Ghosh, 2006).
Step II consists of measuring the similarity between Y and all training instances to iden-
tify the nearest neighbors of Y . The natural way of doing this is to calculate the Euclidean
distances from Y to all training instances, and it can be presented as follows:
dEUC(Y,Xj) =
√
(Y −Xj)T (Y −Xj) (2.6)
where dEUC(Y,Xj) is the Euclidean distance between Y and Xj for j = 1, 2, .., N . It
is noteworthy that even though the Euclidean distance is the most commonly employed
in KNN to measure the distance between two data instances, it is not always the best
choice for every practical problem (Cai et al., 2020; Nguyen et al., 2016). Several studies
(for examples, see Dettmann et al., 2011; Luukka, 2011) presented better classification
results with different distance metrics, such as the Manhattan or Minkowski distances.
Step III is to find the k nearest neighbors for Y from the sorted training instances
according to increasing Euclidean distances. In this step, the classifier searches for the
nearest training instances using the user-defined (or optimized) value of k and their
corresponding class labels.
Step IV assigns Y to the class ωc that is represented by the majority of the k nearest
neighbors. When k = 1, Y is classified into the class of its closest neighbor among all
training instances.
Figure 2.2 illustrates a simple classification problem using the KNN classifier. In the
figure, data instances in a two-dimensional space are represented by circles and squares
belonging to two classes, A and B. A plus sign (+) represents the new instance (Y ), and
the KNN is used to predict the class (A or B) to which Y belongs. In this example, the
KNN classification is considered with two cases. When k = 3, the new instance, Y , is
classified into class A by identifying the classes of the three nearest neighbors. Similarly,
the class of Y is determined using the five nearest neighbors and is predicted as class B
when k = 5.
Moreover, the KNN algorithm is efficient in its simplicity of implementation and speed
of the process (Pan et al., 2017; Gou et al., 2014; Wu et al., 2021). It is also flexible
in terms of capability in dealing with complex data where the relationships may not be
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Figure 2.2: An illustrative example of the KNN classification
readily observable (Winters-Miner et al., 2015). Given these advantages, the rationale of
the KNN classifier is also introduced for regression problems, and the k-nearest neighbor
regression (KNNreg) method (Stone, 1977; Benedetti, 1977; Turner, 1977) is proposed.
Unlike the other regression methods, the KNNreg method makes no assumptions about
underlying data (Yao and Ruzzo, 2006; Winters-Miner et al., 2015) or model components;
instead, it simply uses the training data for predictions. Now how it typically works for
regression problems is presented below.
2.3.2 KNN Regression
The basic aim of the KNNreg method is to calculate an output value of the given
input instance using the k number of its nearest neighbors, which is found from the
input-output training instances (Biau et al., 2012; Hu et al., 2014; Song et al., 2017). In
general, this method does not require an explicit training step but an initial dataset shaped
by the values of input features and a response variable (Runkler, 2016). Even though the
KNN rule is described for both classification and regression under the same umbrella,
they differ from each other in that the classifier requires an output variable with discrete
(categorical) values, while the regressor requires one with continuous values. Therefore,
the step-wise process of the KNNreg algorithm is defined using a different notation as
follows.
Let {Xj, yj}Nj=1 be a training set with N instances, where Xj = {x1j , x2j , .., xDj } ∈ RD is
the j th instance from D-dimensional input-feature space, and its output value is yj ∈ Y ,
where Y = {y1, y2, .., yN} indicates the set of output values (i.e., response variable).
Given a new data instance, say X , the goal of the KNNreg is to learn the predictor
function h(X) using the training data such that yˆ ≈ h(X), where yˆ is the predicted value
for the output y of X .
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In the KNNreg algorithm, the set of nearest neighbors, {(Xj, yj)}kj=1 of X is found as
described in Steps I-III of the KNN classifier. As the last step (which is the modification
of the classification rule), the output value y of X is estimated by taking the arithmetic
average of the output values (y1, y2, .., yk) of the nearest neighbors (Gyo¨rfi et al., 2002;
Biau et al., 2012; Song et al., 2017) as follows:
yˆ =
∑k
j=1 yj
k
(2.7)
This calculation is based on the assumptions that all training instances in the neighbor-
hood have equal importance in the prediction (Cover and Hart, 1967) as well as similar
output values to h(x) (Kramer, 2011).
So far, all the essential steps of the KNN algorithm for classification and regression and
its advantages have been explained in several different ways. Despite the breakthrough it
has enabled, it is necessary to note that this method generally has several shortcomings,
as mentioned in the introduction. One potential weakness of the KNN method is that it,
by default, gives equal importance to all nearest neighbors in the classification (Keller
et al., 1985; Pan et al., 2017), disregarding the fact that different points may have different
effects on the query sample (Wu et al., 2021). For example, let us consider the case when
k = 5 in Figure 2.2, in which the goal was to identify which class the instance Y belongs
to by choosing five nearest data points. When k = 5, the KNN classifier identifies Y
as a square because most of its nearest neighbors (three out of five) represent class B.
However, this classification appears to be inaccurate. The three nearest circle points
are relatively far away from Y , and thus they may not be entitled to the same level of
influence as the other two circle points in Y ’s neighborhood. To address this problem, a
weighted voting mechanism (Royall, 1966) is introduced to the KNN algorithm, and a
weighted-KNN algorithm (Bailey and Jani, 1978) is proposed.
In the weighted-KNN algorithm, a weight for each nearest neighbor is calculated
disproportionally to its distance from the query sample Y , accounting for the closer
instances and the higher impacts (Kubat, 2017). The simplicity and the robustness of the
weighted-KNN algorithm has motivated researchers to construct a variety of improved
methods (see, for e.g., Li et al., 2022; Rastin et al., 2021; Biswas et al., 2018) and
employ it for many applications (see, for e.g., Lei and Zuo, 2009; Bugata and Drota´r,
2019; Kuang et al., 2019). However, it is clear that the performance of this method vastly
depends on the applied distance metric (Rastin et al., 2021), class imbalance (Tan, 2005),
and also noisy and redundant features (Biswas et al., 2018), which reflect the potential
disadvantages of this method. Therefore, different weighting schemes need to be
investigated. In this respect, the FKNN approach (Keller et al., 1985) can be introduced
as an effective enhanced variant, which utilizes distance-based weights through the fuzzi-
fication. The FKNN approach assumes that a particular instance may belong to more than
one class, which is opposite to the rule of non-fuzzy approaches. This way, the FKNN
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aims to incorporate the uncertainties associated with the data points. For example, there
can be situations where it is difficult to choose the class of an unknown sample due to the
similarity of its feature information to each class information. In such cases, the fuzzy
approach makes it easier to select a suitable class by allowing degrees of memberships to
the unknown sample for each class. The FKNN approach is introduced in the next section.
2.4 Fuzzy K-nearest Neighbor Classifier
Keller et al. (1985) introduced the theory of fuzzy sets2 into the original KNN rule to
develop its fuzzy version and proposed the FKNN classifier. The underline idea of the
FKNN method is that it assigns a membership degree to each class concerning the query
sample (Y ) and then predicts the class of Y based on the highest membership degree
(Keller et al., 1985). Further, it allows partial memberships for a training instance to
different classes and considers the relative importance of each nearest neighbor in terms
of Y .
Implementing the FKNN algorithm for a given task involves five steps: parameter initial-
ization, distance calculation, finding the k nearest neighbors, memberships computation,
and class prediction. More specifically, the first three steps are essentially the same
as Steps I-III in the KNN algorithm presented in Section 2.3. However, the FKNN
algorithm uses an additional parameter called fuzzy strength value, which needs to be
initialized along with k, the number of nearest neighbors in Step I. This parameter and
the next steps are explained in detail below.
Step IV consists of assigning membership degrees, first for the nearest neighbors to each
class and next for the query instance. This membership degree implies the proportion to
the nearest neighbor or query instance belonging to each of the possible classes.
There are two types of methods that are often used for measuring the class memberships
for nearest neighbors: crisp membership, in which a full membership is assigned to the
known class and zero memberships to other classes; and fuzzy membership, in which the
memberships are assigned according to the KNN rule (Keller et al., 1985; Chen et al.,
2011; Huang and Li, 2004). If uij(Xj) represents the membership of the j th nearest
neighbor Xj ∈ RD to the ith class for i = 1, 2, ..., S, the crisp labeling approach can be
expressed as:
uij(Xj) =
{
1, if ci = cj
0, if ci 6= cj (2.8)
2Fuzzy set theory, an extension of the classical sets theory, was introduced by Zadeh (1965) to deal with
associated uncertainties, impreciseness, and vagueness in the information in decision-making problems. A
crisp set is typically expressed as a set of elements, and each element can either be, for example, 0 or 1.
In contrast, the fuzzy set theory allows the element to have a degree of membership in a set, which is a
value in a closed interval [0, 1]. Since 1965, many researchers have advanced this theory and used it to a
wide range of application areas (see, e.g., Wong and Lai, 2011; Wang, 2009; Park et al., 2012; Mesiar et al.,
2013; Derrac et al., 2014).
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where cj is the class of Xj for j = 1, 2, ..., k. The fuzzy labeling approach first finds the
K closest neighbors to each instance Xj (the nearest neighbor of the query sample), and
then allocates the degree of membership in each class as follows:
uij(Xj) =
{
0.51 + (ni/K) ∗ 0.49, if ci = cj
(ni/K) ∗ 0.49, if ci 6= cj (2.9)
where ni indicates the number of observed neighboring instances of Xj belonging to
the ith class. This fuzzy approach attempts to grade the closer neighbors with higher
memberships and the farther ones with low memberships for each class region (Chen
et al., 2011; Derrac et al., 2015).
However, it should be noticed that in both approaches, each neighboring instance is con-
sidered not limited to one class but belonging to multiple classes with different member-
ships. In this way, considering each nearest neighbor has only one class, as in the KNN
method, is avoided because in reality, it is not always the case (Wu et al., 2021). Once the
class memberships of the nearest neighbors are generated, a membership degree ui(Y ) to
the query sample Y ∈ RD in class i is then calculated according to:
ui(Y ) =
∑K
j=1 uij(1/ ‖Y −Xj‖2/(r−1))∑K
j=1(1/ ‖Y −Xj‖2/(r−1))
(2.10)
where r ∈ (1,+∞) is the fuzzy strength parameter, which is used to control the relative
importance of the distance to be weighted, when determining the neighbors’ contributions
to the membership value. The most often used value is r = 2 (Derrac et al., 2015),
but it should be noted that the performance of the FKNN classifier can be improved by
optimizing the r through various settings (see, for e.g., Jiang et al., 2008). Moreover,
‖Y −Xj‖ is the Euclidean distance between Y and its j th neighbor Xj . As can be seen
from Equation (2.10), the inverse of the distances assigns the membership of nearest
neighbors to be small if it is far and high if it is close. Further, it is noteworthy that when
compared to the KNN algorithm, Step IV of the FKNN is an extra step, which causes a
slight increase in computational complexity.
Step V is the classification of Y into class ωc with the highest membership degree among
all other classes. This can be expressed as:
ωc = arg max
ωi
ui(Y ), i = 1, 2, .., S (2.11)
The FKNN method described in this section is the baseline of invented classification and
regression methods in this research.
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2.5 Local Mean K-nearest Neighbor Classifier
The local mean k-nearest neighbor (LM-KNN) (Mitani and Hamamoto, 2006) is a simple
and reliable extension of the original KNN classifier. It is designed to overcome the
problem of existing outliers, particularly in situations where the training-set sample size
is small (Mitani and Hamamoto, 2006; Pan et al., 2017). This classifier uses a local mean
vector of k nearest neighbors from each class to predict a correct class for the query
sample. The step-by-step process underlying the LM-KNN algorithm when predicting
the class for a given query sample Y ∈ RD can be presented as follows.
Step I and Step II of the LM-FKNN algorithm are similar to the corresponding steps
of the KNN method presented in Section 2.3. However, this algorithm searches for k
nearest neighbors of Y from each class.
Step III identifies the set of k nearest neighbors of Y from each class i by ordering the
training instances corresponding to the increasing distances. Let Xnni,j represents a set of
k nearest neighbors (nn) in class ωi for i = 1, 2, .., S.
Step IV consists of the calculation of a local mean vector Li for each class ωi for i =
1, 2, .., S using the corresponding set of k nearest neighbors. It can be denoted as:
Li = 1
k
k∑
j=1
Xnni,j (2.12)
Step V classifies Y into the class ωc, in which the representative local mean vector Li has
the lowest Euclidean distance to Y . In other words,
ωc = arg min
ωi
dEUC(Y,Li), i = 1, 2, .., S (2.13)
Moreover, it has been demonstrated that the LM-KNN rule has the potential to overcome
the adverse effects on the KNN-based classification from the existing outliers in the data
(Mitani and Hamamoto, 2006). However, this method has several inherent weaknesses,
such as choosing the neighborhood size k for each class (Pan et al., 2017) and assign-
ing equal contribution for each neighbor in the classification (Gou et al., 2019). These
issues have prompted researchers to develop a range of improved classifier versions (see,
example, Gou et al., 2014; Chai et al., 2010; Sumet et al., 2018; Pan et al., 2017; Gou
et al., 2019). Thus, this dissertation has employed the rationale of the LM-KNN method
in Publications I and III, not the exact logic but a somewhat similar one.
2.6 Evaluation Settings
The key to making genuine progress in data mining and machine learning is “evaluation”
(Witten et al., 2011). From this perspective, the goal of evaluation is to not only assess
the model’s performance but also justify the selection of a particular algorithm. There
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are many ways to undertake data modeling and analyzing. However, different methods
search for different patterns and tendencies, which implies that one method cannot be the
best for all data sets. To achieve the best possible result, the best possible settings have
to be set and followed at the time of model construction and evaluation. In this sense, the
question to be answered is how to determine the most appropriate settings. It may indeed
depend on various factors, including data properties, expected solutions, parameters,
performance levels, and efficiency, to mention a few.
In this section, the evaluation of classifiers is referred to as a broader concept, which
covers the whole process from the data processing step to the evaluation of the results.
Figure 2.3 shows the applied process of developing and evaluating a supervised classifier
in this research. It consists of four essential steps: “Data preparation,” “Data sampling,”
“Model training,” and “Performance evaluation.” All these steps are discussed in detail
in the following sections. Here it should noted that our problem has to obviously be first
defined and the available data has to be identified before the process can be started.
Data preparation Model training Performance 
evaluation
Final modelData preparation sampling reparation l training
- stratified sampling
- training, validation, test
 
- prediction for test set
- analysis of the results
 
- data normalization
- feature engineering
- holdout cross-validation
- parameter optimization
- accuracy & other metrics
- statistical testData
Figure 2.3: A flowchart of the development and evaluation of a supervised classification
model.
2.6.1 Data Preparation
Data usually come from multiple sources with different characteristics. From this per-
spective, data may emerge with some issues such as inconsistencies, incompleteness,
noise, and missing information (Trousse and Tanasa, 2004). Therefore, data preparation
is required before applying machine learning techniques (Aggarwal, 2015). In particular,
data pre-processing is an essential step in preparing the data in a usable and understand-
able form. It has several necessary steps, including data cleaning, data scaling, feature
extraction or selection, or both (Garcı´a et al., 2016). Specifically, data cleaning is the pro-
cess of detecting and repairing (or removing) incorrect, incomplete, duplicate, irrelevant,
or poorly formatted data (Han et al., 2012). Thus, data must be cleaned carefully to avoid
such issues before starting any step in the mining and learning process. For example, if a
data set contains missing values, it is necessary to either correct (or impute) them using a
suitable approach or remove them entirely from the data (if there is sufficient data).
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Data Scaling
In many situations, features in the data are described using different scales. For in-
stance, a feature such as “salary” can be presented on a disparate scale as compared
to one such as “age.” This may result in the large-scale feature being considered
with high weights while others are with low weights, which affects the performance
of the applied machine learning technique, especially in distance-based learning meth-
ods such as KNN (Kubat, 2017). Consider a case where the similarity between two
points, A = (0.5, 342) and B = (0.2, 450) and they are characterized by two contin-
uous features: the first one holds the values from the interval [0, 1] and the other from
[10, 1000]. Using Equation (2.3), the distance between A and B can be obtained as
dEUC(A,B) =
√
(0.5− 0.2)2 + (342− 450)2. From this indication, it is clear that the
second feature completely dominates, making the other irrelevant. To remedy this prob-
lem, there are several methods available, but it is common to use data normalization (Ag-
garwal, 2015; Witten et al., 2011). The idea behind the normalization is to transform data
features in different scales into pre-defined intervals, usually the unit interval [0, 1]. In
this context, min-max normalization (Shalabi et al., 2006) is one of the most frequently
used approaches3 in data scaling and assures a fast generalization through distance-based
learning, especially for KNN-based models; it is thus used in this research. The formula
of the min-max normalization technique can be defined as follows:
xscaledi =
xi −min(X)
max(X)−min(X) (2.14)
where x is the ith value of vectorX ∈ RD and its scaled value is xscaledi . The minimum and
maximum of the vector X are indicated by min(X) and max(X). When xi = min(X)
the scaled value is 0 (i.e., xscaledi = 0), and when xi = max(X), the numerator is 1; thus,
this method always makes the scaled values fall within the interval [0, 1]. Moreover, min-
max scaling is specifically helpful in algorithms, such as neural networks or KNN, which
do not explicitly assume any distribution of the data used (Shalabi et al., 2006). However,
it may be worth mentioning that this method is not effective when the minimum and
maximum values are represented by extreme outliers (Aggarwal, 2015). In such cases,
using further treatments on the data, it is essential to ensure that the data distribution is
not influenced by the extreme outlier values (Namata et al., 2009). Here, it is noteworthy
that scaling the class variable in terms of the classification problem is unnecessary.
Feature Extraction and Feature Selection
In parallel with the data cleaning and scaling, a dimensionality reduction step that
commonly incorporates feature extraction or feature selection (Guyon and Elisseeff,
2003; Li et al., 2017; Kubat, 2017) is often performed. In the feature extraction process,
original data features are projected into lower-dimensional feature space across a specific
criterion, resulting in a new set of features that is less (in terms of the number of
3The most commonly applied data scaling methods in the literature are z-score standardization, decimal
scaling, and min-max normalization [more information can be found in Han et al. (2012)]
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features) than the initial one (Liu and Motoda, 1998). A standard and frequently applied
feature extraction technique is the principal component analysis (PCA), in which a
small-appropriate feature subset is extracted through a transformation of the original
features (Liu and Motoda, 1998; Chen and Hao, 2018). In contrast, feature selection
is a process of selecting a subset of available features based on a specific evaluation
(e.g., by using classification accuracy or error rate) (Liu and Yu, 2005). Using the
feature selection allows us to remove irrelevant and redundant features, which may
cause model complexity, over-fitting issues, and poor performance (Runkler, 2016;
Kubat, 2017). However, feature selection is a broader area of the research and may
involve many advanced algorithms or methodologies in the form of filter, wrapper, or
embedded methods; more information can be found in Liu and Motoda (1998); Guyon
and Elisseeff (2003); Chandrashekar and Sahin (2014); Aggarwal (2015); Runkler (2016).
Notably, feature normalization, extraction, or selection is not always a part of data prepa-
ration because these processes depend highly on the particular problem being investigated
and are also up to the analyst’s choice. In this dissertation, a hybrid feature selection ap-
proach is performed in combination with filter and wrapper methods as in Publication II
to discard linearly associated and irrelevant features from the data and achieve improved
classification performance.
2.6.2 Data Sampling
In the developing phase of the model, original data are usually divided into two inde-
pendent sets, often referred to as training and test sets (Bramer, 2016; Aggarwal, 2015).
More specifically, a data set used to build the model is called the training data set. The
performance of the developed model needs to be evaluated with another data set, called
the test data set, which must have no part in developing and training the model (Witten
et al., 2011; Bramer, 2016). In such a case, the model uses pre-defined parameters.
However, that is not always the case as sometimes parameter values have to be selected
through an iterative optimization process (Wendler and Gro¨ttrup, 2016). In order to
achieve optimal parameter values for the model, a third independent data set is required,
which is called validation set (Witten et al., 2011). Therefore, the initial data set is split
into three disjoint sets: training, validation, and test sets. This is the standard way of data
sampling in machine learning (Igual and Seguı´, 2017; Lee et al., 2019).
Particular to supervised classification, the training data are pre-classified examples,
meaning that each instance in the data has been labeled with a specific class. Hence, the
classifier uses the training data for learning to estimate the class label for a new record.
Moreover, validation data is employed to choose the model parameters and structure
with the best performance in terms of the accuracy or error rates. However, it should
be noted that training and validation are often jointly performed in an iterative process
that is often referred to as cross-validation, which will be further discussed in the next
section. Once the model is found with optimal parameters and structure, its performance
(i.e., capability of generalizing) is evaluated using the test data set.
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Training, validation, and test sets are randomly created from the original data [in most
cases, the major part of the data is used for training data, while the rest is used for valida-
tion and test data (Aggarwal, 2015)]. However, with random sampling, generated subsets
might not be well-representative in terms of the classes available in the original data. In
other words, there is no guarantee that each subset contains the same proportion of the
classes as that of the original data set. This issue heavily affects situations where the
classes presented in the data are not balanced (Kubat, 2017). For instance, suppose a data
set consists of 100 instances, in which 90 cases belong to one class and 10 to another
class. In this case, it is possible to originate a validation set of 20 instances without even
a single data instance from the minority class. In such situations, a classifier may indeed
yield inaccurate results, affecting the estimation of performance measures in the classifi-
cation. Thus, it is necessary to perform random sampling to ensure that each class has an
equal proportion in all training, validation, and test sets. The most popular way of dealing
with this issue is using the so-called stratified sampling approach (Witten et al., 2011;
Kubat, 2017), which always offers a rich coverage of the original data in divided data sets
concerning class distributions.
2.6.3 Model Training and Validation
The previous section discussed model training with its core ideas of data sampling, model
building, and parameter tuning. This section further explores how the data division and
parameter estimation are performed with the cross-validation process. More specifically,
cross-validation is a commonly used resampling technique to assess the generalization
capability of the model being tested while mitigating the over-fitting issues (Berrar,
2019). There are several types of cross-validation techniques—the most widely used
methods are holdout, k-fold, and leave-one-out cross-validation methods.
First, the holdout cross-validation is a simple approach in which a certain amount of a
given data is held for validation (sometimes it is also referred to as test), while the rest
is used for training, and the process is repeated multiple times to reduce the sample
bias and variation of the performance (Arlot and Celisse, 2010; Han et al., 2012). The
classification accuracies (and other performance measures) with all iterations are then
averaged to achieve a final accuracy value. Using this method, variance (or standard
deviation) can also be determined, which can be beneficial in making a statistical
evaluation of the performance (Aggarwal, 2015).
Second, in k-fold cross-validation (Bramer, 2016; Runkler, 2016), a given data set is
randomly split into k mutually exclusive and approximately equal-sized folds. The
training and validation process is then repeated k times. Each time, one fold is used as
the validation set, while the rest (1 − k) are used as the training set. By simply taking
an average of the set of k individual accuracy values, the cross-validation next produces
an overall measure of the model performance (Bramer, 2016). five-fold and 10-fold
cross-validations are the most common choices of this approach (Lever et al., 2016).
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Third, the leave-one-out cross-validation (Bramer, 2016; Runkler, 2016), another com-
mon variant of cross-validation, effectively works in the same way as the k-fold method,
but instead of dividing data into several subsets, it uses one instance of the data for
validation and the remainder for model training. This approach, therefore, is also referred
to as the n-fold method where n indicates the number of instances in the data set (Witten
et al., 2011). However, this approach cannot be stratified because only a single instance is
included in the validation set. In the present study, to tune the parameters of the classifier
and assess its generalization capability, the holdout method with 30 runs was preferred.
Example studies that have also used 30 runs are Luukka (2011); Koloseni et al. (2013);
Kurama et al. (2016). Figure 2.4 shows a pictorial depiction of this cross-validation
process along with the model testing on unseen (test) data.
Initial dataset
Training data Test data
Train 1 Validation 1
Train n Validation n
Holdout validation
Parameter  
optimization
Optimal parameters
Test accuracy  
with 
cross-testing
Test data
Test data
iteration 1
iteration n
Train 1
Train n
iteration 1
iteration n
Average performance
Figure 2.4: A taxonomy of the adapted validation process with the holdout method and
model testing.
Using the empirical design shown in Figure 2.4, a particular model (an invented classifier
or regression model for this research, or existing one) is validated and tested in the itera-
tive process of n = 30 runs. At the start, the entire data set is partitioned with a typical
80/20 split (Lever et al., 2016) for training and test data sets. In the holdout validation
process, the initial training data set is further divided into training and validation (here,
a 50/50 split is often adopted). Moreover, the stratified random sampling approach is
used to maintain the class balance of every sampling step. In each iteration, the classifier
is tested with different parameter settings in the validation data, and its performance in
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terms of accuracy and other measures are calculated. After the training and validation,
the final model is set with the optimal parameter settings by evaluating the validation
results in the average form.
In the testing phase, the predictive performance of the fitted model is evaluated using
the test data that were initially separated from the original data set. Subsequently,
stored training samples from the holdout cross-validation for the model test were used,
effectively assessing the model performance in multiple testing times (which is precise to
the number of training and validation runs). In this way, it is ensured that instances in the
validation set are only used to tune the parameters and obtain an unbiased evaluation of
the prediction in the test set by minimizing the model over-fitting/under-fitting issues.
It is noteworthy that parameter optimization in the training and validation step is con-
ducted through the grid search method. Grid search requires a pre-defined set of values
for each parameter involved and creates a class of trials by making every possible combi-
nation of those values (Bergstra and Bengio, 2012).
2.6.4 Performance Evaluation
Performance evaluation refers to how the results of the applied models are evaluated. It
measures the predictions generated by the trained method on the test data. There are many
performance measures, which are typically specified in different categories relying on the
problem context, such as classification, clustering, and regression. In the present study,
the evaluation metrics chosen in the classification and regression analysis are discussed in
detail below.
Related performance measures for classifiers
As mentioned previously, the basic and the most frequently used performance measure
for a classifier is accuracy (Rhee and Hwang, 2003; Chen et al., 2011; Derrac et al., 2015),
which expresses the percentage of correct predictions concerning the total number of
tested instances (Bramer, 2016). Specifically, the accuracy is the complement of the error
rate that represents the misclassified instances from all classes. This metric can be com-
puted as 1 − accuracy. However, in practice, measuring the classification performance
with accuracy (or error rate) alone is often not enough to verify a particular classifier is
appropriate for a given problem. Further, these metrics do not explicitly describe the
cost of wrong classifications or wrong decisions, which may lead to false conclusions
(Witten et al., 2011). Another issue with the accuracy is that it challenges comparing the
performance of several classifiers for a particular problem because they may produce the
same accuracy but perform differently in terms of correct and incorrect classifications
(Garcı´a et al., 2010). Moreover, there might be cases where the number of correct
predictions of a particular class differs from that of another class. In such cases, accuracy
may not be a reasonable metric (Igual and Seguı´, 2017) and additional performance
measures and detail analysis are required. Given these issues, a confusion matrix al-
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lows us to derive different essential measures to describe the performance of the classifier.
The confusion matrix is generated using the actual classes of test data and classifier
predictions. It often engages with binary class and multi-class classification problems.
Binary class problems. There are only two classes in the binary classification, and sup-
pose that one is a positive (P ) and the other is a negative (N ). In this case, there are
four possible outcomes from the classification model, which can be represented by the
elements of a 2× 2 contingency table (confusion matrix) as in Table 2.1.
Table 2.1: A typical example of the 2× 2 confusion matrix for a binary class problem.
Actual class
Positive (P ) Negative (N )
Predicted class
Positive (P ) TP FP
Negative (N ) FN TN
Here, it can be seen that true positive (TP ), true negative (TN ), false positive (FP ), and
false negative (FN ) are elements of the table, while P and N in the rows are formed by
the predicted class and P and N in columns are formed by the actual class. TP and TN
represent the correct classifications (represented by a gray diagonal), while false positive
(FP ) represents the outcome when it is incorrectly determined as positive when it is truly
negative. Meanwhile, false-negative (FN ) represents the outcome when it is incorrectly
determined as negative when it is truly positive. Using the elements of this confusion
matrix, the performance measures, accuracy, sensitivity, specificity, and precision can be
computed as (Tharwat, 2020; Wendler and Gro¨ttrup, 2016):
Accuracy =
TP + TN
TP + FP + TN + FN
(2.15)
Sensitivity (or Recall) =
TP
TP + FN
(2.16)
Specificity =
TN
FP + TN
(2.17)
Precision =
TP
TP + FP
(2.18)
These metrics enable us to assess how often a classifier predicts a particular class
(Igual and Seguı´, 2017) and to gain better understanding of the performance of the used
classifier. This can be shown using a simple example: consider a 2× 2 confusion matrix
with the elements TP = 0, TN = 95, FP = 0, and FN = 5, where accuracy = 95%
and specificity = 100% and both precision and sensitivity are zero. Undoubtedly, the
model has high accuracy, but having zero sensitivity implies that the corresponding
model is too weak to be applied in real-world applications. Moreover, when dealing with
classification problems using imbalanced class data, it is essential to be employed these
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performance metrics4 along with the accuracy measure (Tharwat, 2020; Igual and Seguı´,
2017).
Multi-class problems. Consider a confusion matrix with S (> 2) classes, represented by
{al,m}Sl=1,m=1, where al,m is an element of a row l and a column m for l,m = 1, 2, .., S
in the matrix. When l = m, al,m indicates the number of samples classified correctly to
the corresponding class, and when l 6= m indicates the number of misclassified samples
of class ωl as class ωm. Then, the number of TP , TN , FP , and FN for each class ωi for
i = 1, 2, ..., S can be measured according to Tharwat (2020) as follows:
TP (ωi) = ai,i (2.19)
TN(ωi) =
S∑
l=1
S∑
m=1
l,m6=i
(al,m) (2.20)
FP (ωi) =
S∑
m=1,m 6=i
(ai,m) (2.21)
FN(ωi) =
S∑
l=1,l 6=i
(al,i) (2.22)
Now, these estimates can be used to calculate the sensitivity, specificity, and precision
with the help of formulas (2.16), (2.17), and (2.16) for each class. The average of each
of these measures is considered the final performance measure for the classifier as stated
in Ferri et al. (2009); Flach (2012). Here, consider an example case of a three-class
classification problem. Table 2.2 shows the resultant confusion matrix of the classifier. In
this example, suppose that there are three classes, ω1, ω2, and ω3, and each class has 31,
30, and 39 test instances, respectively.
Table 2.2: The resultant confusion matrix of a multi-class classification problem: an ex-
ample case with three classes, ω1, ω2, and ω3.
Actual class
ω1 ω2 ω3
Predicted class
ω1 24 3 9
ω2 5 26 0
ω3 2 1 30
From Table 2.2, it is clear that TP (ω1) = 24, TP (ω2) = 26, and TP (ω3) = 30. Thus,
the accuracy of the classifier is (24 + 26 + 45)/100 = 0.80. Additionally, TN(ω1) =
4MATLAB codes created for sensitivity, specificity, and precision for binary and multi-class classifica-
tion problems in this research can be found at: https://github.com/MahindaMK/Specificity-Sensitivity-and-
Precision-for-multi-class-classification-problems.
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57, TN(ω2) = 65, and TN(ω3) = 58. According to Equations (2.17) and (2.18), the
false positive in the class ω1 is FP (ω1) = 3 + 9 = 12. Similarly, FP (ω2) = 5 and
FP (ω3) = 3. The false negatives for each class, FN(ω1), FN(ω2), and FN(ω3) are 7,
4, and 9, respectively. Using these values, the per-class sensitivity can be computed for
classes ω1, ω2, and ω3 as 24/31 = 0.77, 26/30 = 0.87, and 30/39 = 0.77, respectively.
In a similar way, per-class specificity and precision can be calculated, and a single value
of each sensitivity, specificity, and precision for the classifier can be obtained by simply
taking the average of these measures for all classes. For example, the final sensitivity
score of the classifier is (0.77 + 0.87 + 0.77)/3 = 0.80.
Related performance measures for regression analysis
Root mean square error (RMSE) and coefficient of determination (R2) are the most
commonly used approaches to evaluate the prediction performance of regression meth-
ods. Generally, lower RMSE and higher R2 values reflect the better performance of a
regression model (Pham, 2019).
Specifically, RMSE calculates the square root of the average of the square of the differ-
ences between the predicted and actual values of each data point. It is typically applied
with supervised learning techniques, as it requires the actual value of each predicted data
point. The mathematical expression of RMSE can be defined as:
RMSE =
√√√√ 1
n
n∑
i=1
(Yˆi − Yi)2 (2.23)
where n is the number of instances in the test data, Yˆi is the predicted value, and Yi is the
true value of the ith test instance.
Meanwhile, R2 is a proportion of the variability in the response variable, which is “ex-
plained” by the regression model in comparison to the mean (Kurz-Kim and Loretan,
2014). It is a statistical measure that indicates how closely the values of the regression
model fit the data points in the response variable. The general formula of R2 can be
defined as:
R2 =
(
1−
∑n
i=1(Yi − Yˆi)2∑n
i=1(Yi − Y¯ )2
)× 100% (2.24)
As Equation 2.24 depicts, percentages are considered for R2.
2.6.5 The Test of Statistical Significance
In machine learning applications, it is expected that the performances of methods applied
for a given problem will be compared, after which the final model will be chosen based
on the highest performance. However, when it is required to show that one method
outperforms another for a particular task, it is necessary to employ a statistical test of
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significance and validate the claim of improved performance (Borovicka et al., 2012).
The mean performances of the classifiers across all iterations from the validation and
testing provide an excellent advantage in identifying the performance (e.g., accuracy) of
one classifier as significantly better than the performance of another. This task is usually
achieved by using a statistical analysis approach called the paired t-test or t-test (Witten
et al., 2011).
To evaluate whether there is a statistically significant difference between the mean ac-
curacies, Z¯1 and Z¯2 of two classifiers, the mean of the accuracy differences, (d¯) such as
d¯ = Z¯1 − Z¯2, can be considered by assuming the differences as per the Student’s distri-
bution with m − 1 degrees of freedom (where m is the number of different validation or
test sets). Accordingly, the t-test is performed to verify whether the mean difference is
significantly different from zero, which is defined as the null hypothesis (H0). The test
statistic tm−1 (the subscript m − 1 indicates the value of degree of freedom) for H0 at
significance level α is computed according to:
tm−1 =
d¯− 0
S/√m (2.25)
where S is the standard deviation of the differences. If the corresponding P -value of the
test statistic is less than 0.05, the test suggests rejecting the H0 in favor of the alternative
hypothesis (H1), and if the P -value is higher than 0.05, vice versa. More specifically, the
t-test applied in this research involves comparing the performances between two different
classifiers used during the validation and test. In other words, the t-test is utilized to
test whether the target classifier (usually the proposed one) significantly outperforms
the benchmark methods in terms of the mean accuracy in the classification (Chen et al.,
2011; Borovicka et al., 2012).
Additionally, confidence interval can also be analyzed to assess the significance of the
mean difference. In this case, if the measured confidence interval (CI) does not include
the observed statistic, then H0 is rejected at the significance level α, indicating that there
is a 100(1−α)% CI that delivers the exact conclusion as the t-test (Heumann and Shalabh,
2016). For some analyses in this research, the confidence intervals are used to understand
the statistical significance of the outcomes.
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3 Proposed Fuzzy K-nearest Neighbor Classifier Based
on the Power Mean
A novel FKNN classifier is developed and tested in this chapter. To begin, the motivation
for the new classifier is described with a brief literature review. Next, the new method and
its step-by-step process is discussed in the implementation section. Finally, how the new
classifier can be used to classify data from real-world applications is demonstrated.
3.1 Class Imbalance and Related Issues
A classification data set is called “imbalanced” if its observations do not represent the
classes in the target variable equally (in other words, the number of observations of
one class is significantly different from that of another class) (Liu and Chawla, 2011).
Moreover, learning from imbalanced data has been one of the most challenging problems
in machine learning research (Liu and Chawla, 2011; Johnson and Khoshgoftaar, 2019).
If the training set is imbalanced, the models may tend to over-classify the majority class
because of its higher prior probability. Consequently, instances in the minority class
are incorrectly classified more frequently than those of the majority class (Johnson and
Khoshgoftaar, 2019). More specifically, in these situations, some performance measures,
such as accuracy, are not necessarily reasonable measures of the classifier’s performance
(Kubat and Matwin, 1997). For example, consider a binary classification task with a
negative class distribution of 0.5%. In this case, if the model classifies all samples in
the positive class for query instances, it will achieve an accuracy of 99.5%. This implies
that even a classifier with accuracy not far from 100% may be useless, and more suitable
measures thus need to be used in such situations.
Meanwhile, the class imbalance problem exists in many real-world applications (Zhang
et al., 2017b; Sun and Chen, 2021)—a typical example is medical diagnoses [such as
thyroid data in the UCI repository (Dheeru and Taniskidou, 2017)] where the task of
interest was detecting disease, but most of the patients were healthy (Johnson and Khosh-
goftaar, 2019). Additionally, imbalanced classification has often been a considerable
challenge for existing classifiers, especially KNN-based methods. The voting principle
that uses the majority class from the k neighborhood leads to the poor performance of
KNN methods in imbalanced class problems. Therefore, enhancing the performance of
KNN-based classifications on imbalanced data has been an important topic of interest in
machine learning research (Sun and Chen, 2021).
The existent techniques that have been introduced to deal with class imbalance problems
belong to three categories5: data-oriented6, algorithm-oriented, and hybrid methods
5A detailed analysis of these methods with examples can be found in Kotsiantis et al. (2006) and
Krawczyk (2016).
6The algorithm-oriented methods are further categorized into generality- and specificity-oriented algo-
rithms (Zhang et al., 2017b). Generality-oriented methods include abstract classifiers derived based on
training data (for example, support vector machine and decision tree methods). In contrast, specificity-
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(Kotsiantis et al., 2006; Krawczyk, 2016). The focus of data-oriented approaches is to
decrease the degree of class imbalance using different sampling techniques (Krawczyk,
2016), while algorithm-oriented methods are the extensions and enhancements of
standard classification algorithms that can effectively handle imbalanced class problems
(Liu and Chawla, 2011). Finally, the hybrid approaches are derived by integrating both
data- and algorithm-oriented methods (Kotsiantis et al., 2006; Krawczyk, 2016).
There are many enhanced KNN classifiers proposed in the literature for imbalanced
classification problems. Most can be understood from the study by Sun and Chen
(2021), in which a comprehensive survey of KNN methods for solving class imbalance
problems is presented. However, while all the examined approaches aimed to achieve
improved performance with the KNN on the imbalanced data, none considered the issue
of uncertainties that often emerge with most data sets. In this regard, the FKNN (Keller
et al., 1985) method that was designed to tackle data uncertainty issues can be a great
alternative. In fact, little attention has been paid to further improve the performance of
the FKNN classifier in terms of the imbalanced class problems. For example, to learn
from the imbalanced data and enhance the performance of minority class classification,
the IM FRknn (Han and Mao, 2010), IFROWANN (Ramentol et al., 2015), and FWKNN
(Harshita and Singh, 2017) methods have been proposed by introducing different settings
to the standard FKNN algorithm. Although these methods have demonstrated better
performance in the selected imbalanced classification problems, they may not be suitable
for data where the features of one class cannot be easily differentiated from those of
another class (Patel and Thakur, 2019). Particularly, the FWKNN method (Harshita and
Singh, 2017) itself encounters the problem of measuring accurate class memberships for
training instances concerning class imbalance (Sun and Chen, 2021). In this context, by
addressing these problems, Patel and Thakur (2019) introduced the FADPTKNN method
that utilizes a self-adaptive k strategy for imbalanced binary class problems. However,
since this approach requires different k values for different classes, its classification
performance seems to be heavily influenced by different neighborhood sizes. It implies
that if at least one neighborhood is represented by a noisy and imprecise instance, it can
cause poor classification decisions.
Furthermore, it is apparent that class imbalance is not the only reason responsible for
degrading the performance of classifiers. Kotsiantis et al. (2006) provided evidence that
classifier performance is not influenced solely by class imbalance but also by the level
of “class overlapping” in the data. According to Kubat and Matwin (1997), imbalanced
data can also suffer from “class-label noise” that needs to be taken into consideration
before any learning algorithm is utilized. As noted by some studies (for example, see Gou
et al., 2014, 2019; Pan et al., 2017), existing outliers among classes can severely harm
classification performance, especially for KNN classification. This issue can also arise
due to imbalanced data and can consequently make classifier learning more challenging
(Garcı´a et al., 2006). Figure 3.1 attempts to exhibit these issues using example cases from
oriented methods are the classifiers that do not explicitly require training with training data. Instance-based
learning methods such as KNN are examples of this method (Zhang et al., 2017b).
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a binary class problem, where the classes are represented by (orange) circles and (blue)
squares. As seen from the figure, class-label noise is indicated by three square points [see
Figure 3.1(a)], which are in the circle class region and thus relatively far from the class
boundary. The presence of outliers in both classes is depicted in Figure 3.1(b), while the
nature of class overlapping is exhibited in Figure 3.1(c).
(b)(a) (c)
Class 1 Class 2 Class 1 Class 2 Class 1 Class 2
Figure 3.1: An illustration of imbalanced data with (a) class-label noise, (b) outliers,
and (c) overlapping classes—the dashed line in sub-figures (a) and (b) indicates a class
boundary.
Considering the above, it is clear that along with focusing on the class imbalance, it is
necessary to pay attention to other issues (such as class-label noise, overlapping, and out-
liers) in the data distribution while performing model learning. However, this has been
a great challenge since learning algorithms’ performance and efficiency remain heavily
dependent on the correct choice of model features and the data that often engage with
many issues. Thus, there is a great demand for new ideas and practices that yield more ef-
fective and robust learning algorithms that can cope with the difficulties accompanied by
the existing methods. In this context, this research seeks to develop solution techniques
based on the FKNN algorithm (Keller et al., 1985) for the issues mentioned above while
dealing with the class imbalance. To design the novel classifiers, the concept of the local
mean—which was initially utilized by Mitani and Hamamoto (2006) and subsequently
used in studies by Pan et al. (2017) and Gou et al. (2014, 2019)—is displayed. In Pub-
lications I and III, the FKNN algorithm was extended by deploying class representative
local means in the learning part. The attempt in Publication I is discussed in detail in the
next section.
3.2 Introduction
Here, a novel classification approach called “the multi-local power mean fuzzy k-nearest
neighbor (MLPM-FKNN) method” is introduced. It is a supervised learning approach
that theoretically works based on the previously described FKNN (Keller et al., 1985)
classifier. The proposed method aims to advance the classification performance of the
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FKNN classifier by using “multi-local” mean vectors7 that can represent each class in
the training data. To generalize these multi-local mean vectors further, the Power mean
(Bullen, 2003) is used, and the resulting mean vectors are called “multi-local power mean
vectors,” which are deployed to measure the similarity of the query sample to each class.
Because the Power mean is applied to calculate class representative mean vectors, it is
necessary to determine the type of mean that is appropriate for a given data set by finding
a proper value for the Power mean parameter. This adjustable mean-controlling parameter
allows for the obtaining of an optimal mean value that can improve performance because
a suitable mean type is data-dependent. As stressed in Section 2.1.1, it is also clear that
by changing the Power mean parameter, several well-known means such as harmonic,
geometric, and arithmetic means, can be selected.
The basic idea behind the use of local means is to disregard the class imbalance and
associated inconsistencies in the training data without changing the class distribution and
eliminating noisy instances and outliers. This allows prototypes of the minority class to
have a significant contribution similar to those of the majority class in the neighborhood
of the query sample. Moreover, class memberships are assigned to the query sample based
on the distances between the query sample and class representative local mean vectors,
unlike in the FKNN method. In this way, the local mean vectors are deployed instead of
the individual instances in the neighborhood. Eventually, the classification of the query
sample is accomplished by picking the class with the highest membership degree assigned
by a representative multi-local mean vector.
3.3 Description
The MLPM-FKNN method consists of the following six steps, which are discussed in
detail in this section. Before describing the algorithm as proposed in Publication I, it
should be noted that the first steps until the search of k nearest neighbors are similar
to what was discussed regarding the standard FKNN method. Thus, for simplicity of
exposition, the second step of the new algorithm is described as a composition of steps
two and three of the FKNN algorithm. The key steps of the proposed algorithm are the
local mean computation and membership assignment steps.
Step I involves the settings of model parameters. The MLPM-FKNN requires initializing
three parameters: the fuzzy strength parameter, r ∈ (1,+∞), the number of nearest
neighbors, k ∈ [1, N ] (N is the number of instances in the training set), and the Power
mean parameter, p ∈ R. The values of p and k can vary along with the predefined
ranges, and r is assigned a fixed8 value. The key question here is what would be the most
7The concept of “multi-local” mean vectors was initially introduced by Pan et al. (2017) to the k-
harmonic mean nearest neighbor (MLM-KHNN) classifier. However, the definition of ”multi-local mean”
in our study differs from what is used in Pan et al. (2017), in which it has been defined as a mean of the top
nearest neighbors from 1 to k in each class. In the present work, a local mean vector is calculated by taking
the average of nearest neighbors in a particular class by considering the whole set of k nearest neighbors.
8If needed, r can also be passed as an adjustable parameter, but for simplicity of computation, a fixed
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suitable combination of parameters p and k values that can produce better accuracy in the
classification.
Step II involves finding a set of k nearest neighbors denoted by nnk(Y ) for a given query
sample Y from the training set {Xj, cj}Nj=1, where ci ∈ {ω1, ω2, .., ωS}. In this case, the
Euclidean distances dEUC(Y,Xj) between Y and each instance Xj ∈ RD are calculated,
and ordered training instances according to increasing distances are then used to search
for the nearest neighbors.
Step III is the key step of the MLPM-FKNN algorithm, which encompasses calculating
local mean vectors for each class among the k nearest neighbors. The idea here is that
instances in nnk(Y ) are categorized into each class first, and the resultant class-subsets
{Xnnij }nij=1 for i = 1, 2, .., Sk (where ni is the number of instances that belong to the ith
class, and Sk ∈ [1, S] is the number of classes available in nnk(Y )) are then used to
obtain the class representative local mean vectors. In this case, the Power mean operator
(Bullen, 2003) is used to aggregate the neighboring instances over each class. The multi-
local power mean vectorMpi ∈ RD from the ith class can be defined for p 6= 0 as follows:
Mpi = (
1
ni
ni∑
j=1
(Xnnij )
p)1/p (3.1)
Here, it should be noted that when p → 0, Mpi approximates
∏ni
i=1(X
nn
ij )
1/ni (the
geometric mean). It is clear that altering parameter p pushes the local-mean prototype in
the neighborhood closer to the query sample (this is clarified in Figure 2.1b).
To gain a clear perspective of local mean computation, Figure 3.2 displays an example
case in which the local means for each class is calculated from the k = 10 neighborhood.
It exhibits a classification problem with three classes: the (orange) circles (which appear
to be the majority class), the (green) triangles (seemingly, the minority class), and the
(blue) squares (the instances of the other class). The set of 10 nearest neighbors for a
given query point Y (denoted by “+”) consists of four instances (n1, n2, n3, and n4) from
the circle class, three (n5, n6, and n7) from the square class, and three (n8, n9, and n10)
from the triangular class. By aggregating them in each class using the Power mean, local
mean vectors (M1, M2, and M3) can be computed as depicted in the (right side) sub-
figure. It is important to note that if the standard KNN method is applied in this example,
the query point could be classified as a circle according to the majority voting rule, which
seems to be an incorrect classification.
Further, it is also noteworthy that having class representative local means allow for
mitigation of other problems caused by the distributions of data, including class noise,
outlier effects, and overlapping class problems. For instance, as seen in Figure 3.2,
n4 and n5 could be noisy examples of their corresponding classes. However, the local
value of 2 is used as per suggestions by Keller et al. (1985) and Derrac et al. (2015).
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neighborhood (k = 10) local means: M1, M2, and M3
n3
n5 n6
n4
n7n8
n9
n2n1
n10
Y
M3
M1
M2
Y
Figure 3.2: An illustrative example of local means computation for k = 10.
means M1 and M2 have treated them while disregarding their negative influences and
representing the distributions of their local instances. In this way, multi-local means in
the proposed approach effectively contribute to better learning.
Step IV computes the Euclidean distances dEUC(Y,Mpi ) from Y to multi-local mean
vectorsMpi for i = 1, 2, ..., Sk according to
dEUC(Y,Mpi ) =
√
(Y −Mpi )T (Y −Mpi ) (3.2)
where T indicates the vector’s transpose. This differs from the usual FKNN method in
the sense that here distance is computed from multi-local mean vectors instead of the
nearest neighbors, which is a unique property of the new method.
Step V is the assignment of membership (ui) to the representing class i using the distances
dEUC(Y,Mpj) for j = 1, 2, ..., Sk. This can be expressed as:
ui(Y ) =
∑Sk
j=1 uij(1/dEUC(Y,Mpj)2/(r−1))∑Sk
j=1(1/dEUC(Y,Mpj)2/(r−1))
(3.3)
where, uij is the membership of the j th multi-local mean vector in the ith class, and it is
measured using crisp membership as:
uij =
{
1, if ci = cj
0, if ci 6= cj for j = 1, ..., Sk. (3.4)
In the proposed method, membership degrees are assigned to the multi-local mean vectors
instead of allocating memberships directly to the training instances in the neighborhood
as per the FKNN rule.
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Step VI classifies the query sample Y into class ωc with the highest membership degree
among all classes. It can be denoted as:
ωc = arg max
ωi
ui(Y ) (3.5)
Furthermore, the value selected for k is potentially important in generating local mean
sub-samples and, ultimately, the classification accuracy. The performance of the proposed
MLPM-FKNN classifier tends to be high when the higher values for k are chosen. If
the class subset sizes rise with high k values, the multi-local mean vectors can be said
to become more comprehensive representations or more realistic in terms of the classes
they represent. This may lead to higher performances with the MLPM-FKNN classifier
than the classical KNN and FKNN methods when the value of k increases. The best
classification performance is obtained when the optimal values for k and p are found. A
pseudo-code of the MLPM-FKNN method is presented below in Algorithm 1.
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Algorithm 1: MLPM-FKNN Algorithm (adapted from Publication I)
Input: training data {Xj, cj}Nj=1, query sample Y , k, and p
Output: class label ωc for Y
1 Begin
2 for j ← 1 to N do
3 calculate dEUC(Y,Xj)← ‖Y −Xj‖
4 if j < k then
5 add Xj to nnk(Y )
6 else if Xj is closer to Y than any of neighbors in nnk(Y ) then
7 remove the farthest neighbor from the set nnk(Y ) and add Xj
8 end
9 end
10 for i← 1 to Sk do
11 findMpi ← ( 1ni
∑ni
j=1(X
nn
ij )
p)1/p
12 calculate dEUC(Y,Mpi )← ‖Y −Mpi ‖
13 end
14 for i← 1 to Sk do
15 compute class memberships for Y ,
ui(Y )←
∑Sk
j=1 uij(1/dEUC(Y,Mpj)2/(r−1))∑Sk
j=1(1/dEUC(Y,Mpj)2/(r−1))
where, uij =
{
1, if ci = cj
0, if ci 6= cj for j = 1, ..., Sk
16 end
17 return ωc such that
ωc = arg max
ωi
ui(Y )
Figure 3.3 demonstrates a simple example that depicts how the MLPM-FKNN algorithm
finds reasonable class prototype vectors by varying the parameters k and p. In this
example, the data set includes two classes [class A (+) and class B (−)], and the idea is
to determine which class the query point (Y ) belongs to. When the geometric position
of the query sample is considered, class A might be the correct choice for Y . Figure
3.3a and 3.3b show the geometric positions of the computed multi-local mean vectors
(MA andMB) when the Power mean parameter p = 5 and p = 20, respectively. In this
case, the value of neighborhood (k) is set to 28. As shown in Figure 3.3a and 3.3b, it
is clear that when the p value is increased, the local mean of class A tends to be closer
to Y , which might make degrees of membership more accurate and, finally, the correct
class decision. The new classifier searches for more suitable class prototypes than the
arithmetic mean-based local mean vectors, which can be observed when Figure 3.3d
(that shows an example case k = 9 for the LM-KNN method) is compared with others.
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As Figure 3.3d shows, the LM-KNN algorithm results class B prototype being closer
to Y than the class A prototype, leading to a choice that might not be the correct case.
However, when the MLPM-FKNN classifier (with a similar k value) is applied (see
Figure 3.3c), it shows this method can produce class prototypes that lead to an accurate
classification. Moreover, the MLPM-FKNN classifier is also based on the distances
between mean vectors and the query sample—therefore, the geometric positions of those
mean vectors are essential. For this reason, the new approach is special, particularly
compared to other local mean-based KNN methods, such as the LM-KNN.
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(c) when p = 5 (and k = 10)
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(d) LM-KNN classifier with k = 9
Figure 3.3: Example cases of class prototypes around the query sample (Y ) for different
values of the parameters k and p.
The novelty of the proposed method is three-fold in nature:
• Introduction of a local mean computation in the learning part of the FKNN algo-
rithm, which extracts the information of each class (represented by the instances in
the k neighborhood) into a single vector (see Figure 3.2).
• Application of the Power mean in the local mean computation, which expands the
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region for the mean, thus providing greater flexibility to obtain more reasonable
class representative local mean vectors.
• Utilization of the inverse of the distance between the query sample and each multi-
local power mean vector to calculate the class memberships for the query sample.
3.4 Application to Machine Learning Repositories Data
3.4.1 Data and Testing Methodology
To assess the performance of the proposed classifier in Publication I, data sets that are
publicly available at the KEEL (knowledge extraction based on evolutionary learning)
(Alcala-Fdez et al., 2011) and UCI (Dheeru and Taniskidou, 2017) machine learning
repositories were utilized. Four data sets were chosen, including two binary class prob-
lems (Vehicle and Ionosphere) and two multi-class problems (Car and Thyroid). As Table
3.1 shows, each data set has different properties in terms of the number of instances, fea-
tures, and classes. The corresponding field of each data set is described by “Domain” in
the table.
Table 3.1: Properties of the data sets used—all features are continuous.
Data set Database Instances Features Classes Domain
Car KEEL 1728 7 4 Engineering
Vehicle KEEL 846 18 2 Engineering
Ionosphere UCI 351 34 2 Physics
Thyroid UCI 215 6 3 Medicine
The study design to solve the selected classification problems included the following as-
pects: data normalization, test/validation/train splits, cross-validation, and a statistical
significance test. All of these steps were performed as described in Section 2.6. It is nec-
essary for our method that all features data fed in the analysis be in the unit interval when
negative values appear. This is because the Power mean function with an odd value of p
will produce the local mean vectors with complex numbers when some features include
negative values. Furthermore, the performance of the proposed MLPM-FKNN classifier
was benchmarked against the standard KNN (Cover and Hart, 1967) and FKNN (Keller
et al., 1985) algorithms. Next, the number of nearest neighbors, k, was chosen from the set
{1, 2, ..., 25}. Here, we assumed when the value of k increases, the classification perfor-
mance of the MLPM-FKNN classifier also increases because more instances make local
mean vectors better representative of the corresponding classes. This assumption was sup-
ported by the evidence in the study by Pan et al. (2017) that showed that the multi-local
mean-based k-harmonic nearest neighbor (MLM-KHNN) achieved improved accuracy in
the classification with higher k values. The Power mean parameter, p, was selected from
the range {−8,−7, ..., 7, 8}. Here, it should be noted that the MLPM-FKNN algorithm
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itself does not adjust its parameters—in which case, an external technique such as the
grid search needs to be performed. To achieve statistically reliable results, a 30-fold hold-
out cross-validation was applied (see Figure 2.4), whereby training and validation sets
were repeatedly sampled and deployed to tune model parameters using the grid search
and assess the validation performance. Next, the average validation performance of the
proposed model (and the benchmarks) were evaluated and the optimal parameter values
were obtained. Eventually, the classifier was tested by fitting it with the validation data to
assess its generalization and predictive capability with the test data.
3.4.2 Results
Classification performance on the validation sets. First, the performance of this
study’s new method was compared to each of the benchmarks in the validation data.
Table 3.2 summarizes the mean accuracies and related results achieved with each of
classifiers on all four data sets.
Table 3.2: The average performance of the proposed approach and the benchmarks in the
classification of validation data. The terms “Op. Parameters” and “CI” refer to optimal
parameter values and confidence intervals, respectively [modified from Publication I].
Data Measure MLPM-FKNN FKNN KNN
Car
Mean accuracy 0.9230 0.8823 0.8740
Variance 1.13e-04 6.19e-05 6.09e-05
CI [0.9191, 0.9270] [0.8794, 0.8853] [0.8711, 0.8769]
Opt. Parameters k = 25, p = 0 k = 4 k = 3
Vehicle
Mean accuracy 0.9412 0.9291 0.9274
Variance 1.46e-04 1.92e-04 1.98e-04
CI [0.9367, 0.9457] [0.9239, 0.9343] [0.9222, 0.9327]
Opt. Parameters k = 11, p = 1 k = 4 k = 1
Ionosphere
Mean accuracy 0.8881 0.8443 0.8431
Variance 5.57e-04 4.24e-04 4.66e-04
CI [0.8793, 0.8969] [0.8366, 0.8520] [0.8350, 0.8512]
Opt. Parameters k = 16, p = 1 k = 4 k = 3
Thyroid
Mean accuracy 0.9229 0.9167 0.9101
Variance 5.92e-04 6.16e-04 6.05e-04
CI [0.9138, 0.9320] [0.9074, 0.9259] [0.9009, 0.9193]
Opt. Parameters k = 7, p = 3 k = 3 k = 1
The table results demonstrate that the novel MLPM-FKNN classifier achieved the highest
mean accuracy (marked in bold), outperforming the KNN and FKNN methods in all
cases. Moreover, the confidence interval results remained narrow, and the variances
were relatively low—implying reasonable repeatability of the proposed approach.
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Meanwhile, regarding parameter p, it is clear that arithmetic mean (p = 1) yielded the
best performance with the proposed method for Vehicle and Ionosphere data sets, while
geometric (p = 0) and cubic (p = 3) means reflected the optimum for Car and Thyroid
data sets, respectively. Moreover, it is apparent from Table 3.2 that the MLPM-FKNN
classifier performs considerably better when using a high value of parameter k. This
is remarkable because low k values appear to be working better for the baseline
methods, and specifically, k = 1 has been shown as optimum for the KNN with two
data sets. This finding is consistent with what was obtained earlier by Derrac et al. (2015).
Moreover, Figure 3.4 makes it easier to understand the influence of different settings
of p and k on the performance of the MLPM-FKNN classifier with the Vehicle data
during training and validation. Publication I provides a detailed analysis of the proposed
approach and its performance on the selected data.
Figure 3.4: Classification performance of the MLPM-FKNN classifier for different com-
binations of parameters p ∈ [−8, 8] and k ∈ [1, 25] with the Vehicle data. [reproduced
from Publication I]
Classification performance on the test sets. Regarding the results on the test sets
(Table 3.3), essentially the same pattern was found in terms of the mean accuracy of the
proposed method and benchmarks for all four data sets. As the table shows, the proposed
MLPM-FKNN model achieved the highest accuracy and improved sensitivity and
specificity results in all cases as compared to the KNN and FKNN classifiers. Here, the
utilization of the local mean with the proposed approach appears to be reducing variances.
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However, the proposed MLPM-FKNN approach takes a slightly longer time (average
computation time in testing) for computation than the classical KNN and FKNN methods.
Table 3.3: Classification results of the proposed approach and the benchmarks with the
test data (CI = confidence interval, Comp. time = computation time in seconds) [adapted
from Publication I].
Data set Measure MLPM-FKNN FKNN KNN
Car
Mean accuracy 0.9246 0.8742 0.8632
Mean sensitivity 0.8105 0.6704 0.6085
Mean specificity 0.9667 0.9119 0.9014
CI [0.9204, 0.9288] [0.8688, 0.8796] [0.8577, 0.8687]
Variance 1.26e-04 2.08e-04 2.15e-04
Comp. time 0.0466 0.0174 0.0159
Vehicle
Mean accuracy 0.9294 0.9051 0.9006
Mean sensitivity 0.8568 0.7907 0.7910
Mean specificity 0.9521 0.9432 0.9355
CI [0.9241, 0.9347] [0.8966, 0.9136] [0.8932, 0.9080]
Variance 2.03e-04 5.18e-04 3.95e-04
Comp. time 0.0194 0.0059 0.0050
Ionosphere
Mean accuracy 0.8381 0.7957 0.7952
Mean sensitivity 0.8212 0.7686 0.7694
Mean specificity 0.8925 0.9215 0.9113
CI [0.8281, 0.8481] [0.7875, 0.8039] [0.7869, 0.8036]
Variance 7.237e-04 4.81e-04 4.97e-04
Comp. time 0.0100 0.0076 0.0026
Thyroid
Mean accuracy 0.9434 0.9279 0.9233
Mean sensitivity 0.9256 0.8520 0.8449
Mean specificity 0.9584 0.9254 0.9214
CI [0.9316, 0.9552] [0.9171, 0.9387] [0.9138, 0.9327]
Variance 9.95e-04 8.34e-04 6.40e-04
Comp. time 0.0037 0.0014 0.0009
Subsequently, a paired t-test (Section 2.6.5) was used to evaluate whether there is a sig-
nificant difference between the mean accuracy of the proposed MLPM-FKNN and that
of each benchmark method at a significance level of 0.05. Table 3.4 presents the results
obtained from the t-test with the test data. The table results provide strong support to the
claim that the accuracy of the MLPM-FKNN classifier is statistically significantly higher
than the accuracies of traditional KNN methods (t-test p < 0.05 in all cases except for the
Thyroid data with FKNN, but it also has a comparative significance value of p).
To further demonstrate the effectiveness of the proposed MLPM-FKNN classifier, we
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Table 3.4: Results of the t-test at 0.05 significance on the performance of the MLPM-
FKNN classifier vs. benchmarks for the test data [adapted from Publication I].
Dataset Paired with MLPM-FKNN
(p-value)
Test-statistic
Car FKNN 1.64e−18 significant
KNN 2.88e−25 significant
Vehicle FKNN 6.73e−06 significant
KNN 2.41e−08 significant
Ionosphere FKNN 4.95e−08 significant
KNN 1.06e−12 significant
Thyroid FKNN 0.051 not-significant
KNN 0.008 significant
selected four additional data sets: Balance (n = 625), Landset (n = 2000), Monk-2
(n = 432), and Ringnorm (n = 7400) from UCI (Dheeru and Taniskidou, 2017) and
KEEL(Alcala-Fdez et al., 2011) repositories and tested the classifiers. The classification
results for each classifier over the test data sets are presented in Table 3.5. According to
the results in the table, it is clear that the proposed MLPM-FKNN method has produced
statistically significantly higher accuracies than the KNN and FKNN methods over all
data sets. The new approach also has reasonable mean sensitivity and specificity values
and small variances compared to the classical methods. The P value from t-test indicates
the statistical significance of the higher performance of the MLPM-FKNN method in
comparison to the classical methods. All in all, these results further confirm the potential
of the proposed MLPM-FKNN method for classification problems.
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Table 3.5: Test results of the proposed approach and the benchmarks over additional high-
dimensional data.
Data set Measure MLPM-FKNN FKNN KNN
Balance
Mean accuracy 0.8651 0.8611 0.8500
Mean sensitivity 0.7230 0.6236 0.6164
Mean specificity 0.9293 0.9146 0.9074
Variance 5.9947e-04 2.0743e-04 1.9266e-04
P value (α = 0.05) 0.4473 0.0048
Satimage
Mean accuracy 0.9089 0.9013 0.8979
Mean sensitivity 0.8828 0.8764 0.8720
Mean specificity 0.9813 0.9799 0.9792
Variance 7.0495e-06 1.5857e-05 2.9535e-05
P value (α = 0.05) 1.7484e-08 6.6191e-10
Monk-2
Mean accuracy 0.9812 0.9670 0.9483
Mean sensitivity 0.9810 0.9654 0.9453
Mean specificity 0.9810 0.9654 0.9453
Variance 2.5953e-04 3.0736e-04 4.1685e-04
P value (α = 0.05) 0.0019 3.7048e-09
Ringnorm
Mean accuracy 0.8176 0.7245 0.7862
Mean sensitivity 0.9994 0.9925 0.9874
Mean specificity 0.7348 0.6476 0.7046
Variance 3.5351e-05 8.6012e-05 4.7906e-05
P value (α = 0.05) 1.0365e-20 8.2772e-13
3.5 Application to the S&P 500 Intraday Returns Forecast
3.5.1 Introduction and Objectives
In the previous section, it was demonstrated how the new MLPM-FKNN classifier could
perform better than classical KNN and FKNN methods in terms of several real data sets
from machine learning repositories. In Publication II, the capability of the proposed
model for a challenging real-world problem was further explored—predicting the S&P
500 stock index return.
Stock market prediction, which often refers to forecasting the future price or return
of a stock index (or stock), is typically a more challenging task due to non-stationary
behavior and numerous uncertainties in the data. A precise prediction of the future
pattern of a particular stock market variable allows investors to make effective decisions
and investments (Barak et al., 2017). Choosing representative and relevant features is
essential for accurate stock market prediction (Tsai and Hsiao, 2011; Zhang et al., 2014).
Accordingly, many studies (for example, see Tsai and Hsiao, 2011; Zhang et al., 2014;
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Barak et al., 2017; Lohrmann and Luukka, 2019) in stock market prediction research have
focused on determining features that could produce improved accuracy while maintaining
the model efficiency at a sufficient level. However, most of them have restricted their
analysis to a lower number of features selected from a specific domain. In Publication
II, the aim was to investigate potentially relevant features from a large input feature set
(containing technical indicators (TIs), exchange rates, commodities, macro-economy,
and stock indices as well as stocks features) for predicting the open-to-close (intraday)
returns of the S&P 500 index. To deal with the curse of dimensionality while fitting
classification models to high-dimensional data, a hybrid feature selection approach
was developed in Publication II by integrating filter and wrapper methods to identify a
relevant feature subset for stock market prediction. The idea was to first apply a simple
filter method to discard highly correlated features before utilizing the wrapper method
that is known to be more computationally expensive.
In the literature, many different prediction models using machine learning have been de-
veloped and applied for stock market forecasting (Cao et al., 2019; Kumbure et al., 2022).
Among them, the KNN-based approaches have been demonstrated to perform well in
several studies (for example, see Zhang et al., 2017a; Cao et al., 2019). The KNN-based
classification methods generally consider all features equally when measuring the simi-
larity between data points, which might not be optimal for all situations. In this study,
a novel MLPM-FKNN classifier (and the classical KNN and FKNN methods) was inte-
grated with a hybrid feature selection approach to mitigate the possibly harmful influence
of irrelevant features on this form of classification.
3.5.2 Data
For this analysis, historical time series data was obtained free of charge from Federal
Reserve Economic Data9 and Yahoo Finance10 websites, which covered the trading
period from 10/10/2007 to 10/10/2020. The initial data set included daily prices of the
S&P 500 stock index and a set of relevant expanding variables that were considered to be
suitable for predicting this index return. These variables consisted of TIs, exchange rates,
commodity prices, and other stocks and stock indices.
Input features. In our review research (Kumbure et al., 2022), we collected and
examined the most commonly used input features for predicting the stock market from
earlier studies. By taking advantage of it, 302 features that were at the top of the list,
found by us in our study (Kumbure et al., 2022) in terms of the frequency of usage in
stock market forecasting studies were chosen for the present study. An overview of the
selected features, along with their category and the corresponding number of features
(“No. of features”) used from each category is provided in Table 3.6. The meanings of
commonly used abbreviated forms of the features in Table 3.6 can be found in Kumbure
9FRED is a database of economic time series data, which is available at https://fred.stlouisfed.org.
10Yahoo Finance provides a vast range of financial data, news, and information, which are freely available
at https://finance.yahoo.com.
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et al. (2022). As shown in the table, TIs are further categorized into “Basic TIs” that
represent Open, Low, High, and Close prices and Volume of the S&P 500 index, and
“Other TIs” that represent all other types of TIs that had to be calculated using Closing
prices of the S&P 500 and other variables. Next different variants of TIs were created by
varying the time window (n in days) and some other parameters (for example, n1 and n2
for EMA, slow, fast, sign for MACD). For other time series, all their basic TIs were
considered.
Table 3.6: Information on the initial list of features [adapted from Publication II].
Category Feature names No. of features
Basic TIs Open, High, Low, Close, Volume (n) 14
Other TIs RSI(n), EMA(n), MACD(slow,fast,sign), Bias
(n), Disparity(n), SMA(n), OBV, Williams %R(n),
Return(n), CCI(n), MFI(n), Stochastic %K(n),
Momentum(n), Stochastic %D(n), Bollinger bands
(H/M / L), Chaikin Volatility, TMA(n), Price oscillator
(n1, n2), TRIX, Typical price
140
Macro-economy Treasury Bills, Treasury Constant Maturity Rate, Term
Spread, Treasury Yields, AAA Corporate Bond, BAA
Corporate, Bond, Default Spread
27
Commodities Gold, Silver, Crude Oil 18
Exchange rates USD/ NTD, USD/ GBP, USD/JPY, USD/ CAD, USD/
CNY
25
stock indices / Microsoft, Amazon, Apple Inc., General Electric, 78
Other stocks Hang Seng, DJIA, SSE, CAC40, JPM, NASDAQ,
Wells Fargo, Exxon Mobil, JNJ
Target variable. The intraday (open-to-close) return of the S&P 500 index was selected
as the target (i.e., class) variable and established as a multi-class variable across four
classes (“1,” “2,” “3,” and “4”) by considering the daily magnitude of the return according
to the study by Lohrmann and Luukka (2019). In this variable, class label “1” indicates
the intraday returns that are larger than 0.5% (i.e., strong positive), “2” between 0.0% and
0.5% (i.e., slightly positive), “3” between −0.5% and 0.0% (i.e., slightly negative), and
“4” smaller than −0.5% (i.e., strong negative). In this way, the problem was set up as a
classification task to forecast the return class instead of predicting actual return values.
3.5.3 Hybrid Feature Selection
Feature selection to choose potential variables to forecast the intraday return of the S&P
500 included two parts: (1) a correlation coefficient-based analysis (filter method), which
was performed with all features to identify variables that were highly linearly dependent
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on other variables and then removing such variables; (2) DEFS (wrapper method) with
KNN-based classifiers, which was applied to discard the remaining irrelevant features.
The Pearson correlation coefficient is a simple and popular filter approach in the context
of feature selection, which is typically employed to estimate a linear dependence between
an input feature and the response variable (Chandrashekar and Sahin, 2014). In this case,
a high (absolute) correlation typically signifies the relevance of the input feature for the
response (class variable). On the contrary, a high (absolute) correlation between two
different input features may imply that using both features instead of a single one may
not provide new information, implying that one of them may potentially be redundant.
In the present analysis, the Pearson correlation coefficients between feature pairs (fi, fj)
for i, j ∈ {1, 2, .., 302} were first calculated. A threshold of 0.95 was used for a very
high absolute correlation between two features, and one of the two features had to be
eliminated. Next, the correlation coefficients between each feature and class variable
(y) were considered and eventually, feature removal was performed in a way that if
corr(fi, fj) ≥ 95 and corr(fi, y) < corr(fj, y) then fi was removed, otherwise fj was
removed.
Meanwhile, differential evolution (DE), introduced by Price et al. (2005), is a population-
based heuristic optimization technique (Yang et al., 2019). DE has been used in numer-
ous applications due to its easy implementation, efficiency, fast convergence, and robust-
ness (Khushaba et al., 2011; Bisoi et al., 2019). It iteratively optimizes a given problem
across an evolutionary process that consists of four main phases: initialization, mutation,
crossover, and evaluation of objective function (Yang et al., 2019). By introducing sev-
eral advancements to its search process, Khushaba et al. (2011) extended the DE to be
applied as a wrapper method for feature selection. This enhanced version is referred to as
differential evolution feature selection (DEFS), which was implemented and applied with
KNN-based classifiers in Publication II. A detailed process of the DEFS method can be
found in Khushaba et al. (2011).
3.5.4 Testing Methodology and Parameter Settings
The empirical process conducted in this study included four main phases subject to data
preparation, relevant feature selection, and the forecasting S&P 500 intraday stock return.
The first step was the data pre-processing. Initially, the missing values that arose when
the S&P 500 data variable was merged with other variables were replaced using linear
interpolation. Thereafter, underlying distributions of input features were scaled into the
unit interval. TIs are typically used to infer trading signals for when a market or stock is
overbought or oversold, and corresponding buying and selling decisions might be prof-
itable. Thus, continuous data of TIs were transformed into discrete data (trading signals)
to represent accurate trading signals instead of the numeric values for the TIs that they
could be deduced from. Subsequently, to convert the commodity channel index (CCI)
and relative strength index (RSI) values into trading signals, the approaches introduced
by Patel et al. (2015) were used.
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In the feature selection step, the data set was first manually divided into two sets: one
for training (10/01/2007–18/01/2018) and the other for testing (19/01/2018–10/10/2020).
The training set was further repeatedly split into 80% for training and 20% for validation
to tune the model parameters and perform feature selection. As for the DEFS model
parameters, the crossover rate was set to 0.5, and both population size and number of
iterations to 50. Here, {5, 10, 15, ..., 50} was also specified as the desired number of
features to be chosen (i.e., the number of features in the resulting feature subset). The rest
of the parameters involved in the DEFS were provided in line with the study by Khushaba
et al. (2011). Here, it should be noted that as a wrapper method, DEFS typically requires
considerably high computation time since it uses an iterative process that includes a
classifier for feature selection. Therefore, considering the computational simplicity, the
parameters of the nearest neighbor classifiers in the DEFS were purposely fixed in this
study, keeping the number of nearest neighbors (k), fuzzy strength parameter (r), and the
Power mean parameter (p) constant at 20, 2, and 1.5, respectively.
The next phase of the analysis aimed to demonstrate whether the features selected in the
previous step were relevant and thus helpful in predicting the intraday S&P 500 return.
Here, the same classifiers and training and test sets were used, but they were included only
the selected features. In this experimental setup, the parameter search, cross-validation,
and model evaluation with the test set were performed as described in Section 2.6. During
training and validation, the parameters of each classifier were optimized using 30 runs of
holdout cross-validation. The optimal value for k was explored from the set {1, 2, ..., 30}
for each KNN method. The Power mean parameter p was selected and optimized from
the range {0, 0.5, 1, ..., 5} for the MLPM-FKNN method. The best values for parameters
were chosen, considering the maximum validation accuracy. Finally, the classifiers with
optimal parameters were tested on the test data set. Also, it is worth mentioning that
the learning part of the original MLPM-FKNN method presented by Algorithm 1 was
slightly updated before using it for this study. Initially, the training data was categorized
into classes, and then the sets of k nearest neighbors of the query sample were found
from each class. Next, the multi-local power mean vectors are calculated for each set
of k nearest neighbors in each class. The rest of the steps were the same as presented
in Algorithm 1. The methodology used here for model construction and prediction is
discussed in detail in Publication II. A summary of the workflow process for the hybrid
feature selection and KNN-based prediction is shown in Figure 3.5
3.5.5 Results and Discussion
Results in the feature selection. The findings from the correlation coefficient-based filter
method suggested the removal of some features because of linear dependency effects.
Notably, this analysis reduced the dimensionality of the data set by eliminating potentially
redundant features, retaining 207 out of 302 initial features for the subsequent DEFS
with classifier learning. As the second part of the hybrid feature selection approach, the
wrapper DEFS was utilized along with each KNN-based classifier. Figure 3.6 shows the
frequency of the 50 best features corresponding to the DEFS with each classifier within
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Figure 3.5: The process of hybrid feature selection and intraday S&P return prediction
using KNN-based classifiers.
the 10-fold holdout validation.
Here, it is apparent that the majority of the selected features in the top 50 features for
each classifier are TIs. The five-day moving average [SMA(5)] and the low price of
Silver seem to be the most essential features through all three models, continuously
ranking among the top 10 higher rated features. Other features that appeared at least
twice in the top 10 contain TIs that were formed based on the last 5–15 days, such as
SMA (15), Williams R(10), RSI(6), Disparity(10), and Chaikin Volatility(10). Finally, it
is worth mentioning that no exchange rate or macro-economic variables were retained in
any of the top 50 ranked features.
Figure 3.7 shows the mean classification error rates (%) of each classifier in the DEFS
for each feature-subset size. It can be seen from the figure that when the size of the
optimal feature subset with DEFS grows, the MLPM-FKNN classifier performs better
than the classical KNN methods. This is to be expected since the instances with more
features make local mean vectors explicitly representative and effective. Regarding the
classification performance, it is clear that mean errors appear to be considerably high
in this case as compared to other classification problems, with the accuracies for each
classifier only being in the mid-thirties. However, it should be noted that this problem
was approached as a four-class problem, and lower classification accuracies do not
necessarily mean that a trading strategy based on these findings would not be able to yield
excess returns (Lohrmann and Luukka, 2019; Teixeira and de Oliveira, 2010). When
the four-class [strong negative (4), slightly negative (3), slightly positive (2), and strong
positive (1)] prediction is aggregated to a binary class level by arranging predictions of
class 3 and class 4 as “negative” and class 1 and class 2 as “positive,” the results tend to
be informative and can be easily comparable with other binary tasks.
Results in the prediction. The aggregated test accuracies for the positive and negative
classes for each classifier per feature subset size are provided in Table 3.7.
According to the results in Table 3.7, it can bee seen that the positive class has offered
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Figure 3.6: The frequency results of the top 50 features ranked (descending order) in the
DEFS with each classifier [adapted from Publication II].
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Figure 3.7: Average classification error (%) within a 10-fold holdout cross-validation for
each feature subset size [adapted from Publication II].
more accurate predictions (about 70%) than the negative class (around 20–30%). This
pattern appears to be consistent for all classification models when the feature subset
size increases. This finding indicates that the prediction of the negative class is more
challenging and therefore less accurate for the used KNN models. It is also noteworthy
that the forecast of “positive” movement of the S&P 500 with higher accuracy than in the
“negative” direction is consistent with the results reported in the study by Lohrmann and
Luukka (2019). Moreover, test set accuracy with all features (see the last row in Table
3.7) appears to be the highest for all classifiers in the positive class but the lowest in the
negative class. This confirms the efficacy of employing relevant features with DEFS
because it enhances or, at a minimum, does not deteriorate the accuracy of classification
of the negative intraday return of the S&P 500 even when a significant number of input
features have been eliminated.
In summary, the generalizability of the study’s proposed method across the feature selec-
tion has been demonstrated along with the possibility of performing it for the classification
and prediction of a stock market index. The novelty of this work is the use of the MLPM-
FKNN classifier with a (filter + wrapper) feature selection to identify potentially relevant
features for forecasting the intraday returns of the S&P 500 index. Additionally, pre-
diction performance of the applied classifiers were further investigated by using optimal
feature subsets according to each classifier.
3.6 Conclusion and Limitations
A novel MLPM-FKNN classifier was introduced as an enhanced variant of the FKNN
(Keller et al., 1985) method. The objective of the MLPM-FKNN classifier was to
improve the performance of the FKNN in terms of imbalanced data sets. In this new
variant, the Power mean was used to measure multi-local mean vectors that serve as
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Table 3.7: Classification performance (mean accuracy % + standard deviation) in the
positive and negative classes with the test set for all three classifiers and each feature
subset [modified from Publication II].
MLPM-FKNN KNN FKNN
Subset Positive Negative Positive Negative Positive Negative
5 70.55 ± 4.99 30.14 ± 4.4 79.18 ± 3.89 21.71 ± 5.3 67.87 ±2.78 35.49 ±3.02
10 68.71 ±4.9 32.42 ±3.76 77.53 ±3.96 21.45 ±4.56 75.97 ±3.57 29.48 ±3.55
15 73.35 ±4.41 28.08 ±4.04 80.23 ±3.73 24.56 ±3.4 76.64 ±4.04 25.77 ±4.12
20 73.78 ±3.24 26.48 ±3.02 73.78 ±2.96 27.77 ±3.12 77.59 ±4.01 26.38 ±4.49
25 78.00 ±3.85 20.16 ±3.3 78.22 ±3.15 25.98± 3.45 74.85 ±4.2 28.48 ±4.2
30 75.31 ±3.86 21.05 ±4.34 73.71 ±3.45 27.77± 3.55 71.95 ±3.37 30.73 ±3.47
35 74.38 ±3.31 23.12 ±3.51 74.73±3.19 27.80 ±3.82 77.14 ±3.2 26.90 ±4.05
40 73.00 ±4.35 25.02 ±4.3 77.01 ±4.35 24.86± 4.43 75.97 ±3.49 28.66 ±3.64
45 70.60 ±3.68 26.60 ±4.07 77.26 ±4.48 24.56 ±4.75 73.83 ±4.27 28.15 ±4.2
50 72.08 ±3.82 24.81 ±3.72 76.91 ±4.25 26.43± 5.25 73.06 ±3.88 27.02 ±3.68
302 82.24 ±3.92 16.64 ±4.15 90.18 ±3.55 13.17 ±4.28 88.38 ±4.08 14.63 ±4.16
representatives for the existing classes around the query sample. Having the parametric
Power mean allows the new classifier to be adapted to the context (of different situations)
across a test to find an optimal parameter value that enhances classification accuracy.
Here, the performance of the MLPM-FKNN model on four data sets selected from
several different domains was evaluated, and empirical evidence that the new method can
achieve significantly higher performance than the standard KNN and FKNN methods
was presented. It was also highlighted that the proposed approach obtained the best
accuracy with high k values; in contrast, the benchmark methods always produced better
performances with relatively small k. Furthermore, a stock market prediction model
for intraday S&P 500 index return was implemented using the MLPM-FKNN across
the DEFS. Thus, this work brings a feature selection and prediction (formed by the
classification) to a nexus in which the feature selection can produce a significant impact
with the aid of MLPM-FKNN classification.
However, it should be emphasized that this approach comes with several limitations.
It is clear that the newly defined classifier includes numerous calculations caused by
the increase in parameters, thus testing more possible parameter combinations to obtain
optimal values. Consequently, the computation time required for fitting the new method
is longer than that of the baseline methods. However, it should be noted that using
this method does not take much time, but fitting the model is more time-consuming.
Moreover, the performance comparison was limited only to the standard KNN and
FKNN methods. In response to this limitation, the performance of the proposed approach
should be evaluated in comparison to some generalized versions of KNN [e.g., LM-KNN
(Mitani and Hamamoto, 2006), IV-KNN (Derrac et al., 2015)] or other effective machine
learning techniques [e.g., SVM (Cortes and Vapnik, 1995)]. Additionally, there is a
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risk of poor performance on small samples of data because the generated multi-local
means for each class may not be well-representative due to the lack of training samples.
Moreover, particularly with the stock prediction study, it was observed that even though
the MLPM-FKNN achieved a somewhat higher performance than the benchmarks in the
feature selection part, the findings of the S&P 500 intraday return prediction showed
comparatively similar performances for all classifiers. However, this does not necessarily
mean that there is no difference in the performance between the proposed method and
benchmarks; to show this difference comprehensively, a performance analysis with
trading strategies derived from the results of each classifier is required.
Despite the limitations, it is believed that the results demonstrate the potential of the
MLPM-FKNN classifier for binary- and multi-class classification tasks. Particularly,
more challenging and imbalanced classification problems in machine learning can be
modeled to extend the applicability of the used classifier. This work also provides a
better understanding of the principles of the Power mean in terms of its applicability for
fusing data in machine learning applications. In fact, possible future work can also fo-
cus on testing the impact of integrating the Power mean with other KNN variants, such
as MLM-KHNN (Pan et al., 2017), IV-KNN (Derrac et al., 2015), and PNN (Gou et al.,
2014).
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4 Proposed Fuzzy K-nearest Neighbor Classifier Based
on the Bonferroni Mean
This chapter presents a new generalized version of the FKNN classifier, which was intro-
duced and tested in Publication III. It starts with a short introduction to the new classifier,
its process, and then presents a performance analysis of the proposed classifier using arti-
ficial and real-life data sets that consist of binary and multi-class problems.
4.1 Introduction
This new classifier is an extension of the previously introduced MLPM-FKNN method
(Publication I) that uses multi-local mean vectors and the Power mean. The importance
of utilizing class representative local mean vectors in the FKNN (Keller et al., 1985)
learning has emerged in the previous chapter. Typically, the classification in the FKNN
method is based on the most common class and distance between the query sample and
its nearest neighbors. The distance that can be regarded as imprecision in terms of the
similarity of individual instances has a clear impact on the classification. The problems
with “individual imprecision” can be overcome using averaging operators—this can also
be interpreted as “wisdom of the crowd,” and Aristotle (Aristotle, 4th century BC) was
the first to discuss this problem. Later, this notion was made famous by Galton (1949)
through a notable example of a country-fair contest of weight estimation. According to
these forerunners, it can be expected that the use of local means should provide a better
predictive capability than the individuals alone.
The focus of present work is to strengthen the local means-based learning in the original
FKNN method by using a powerful averaging operator, the so-called Bonferroni mean
(Bonferroni, 1950). Thus, the local mean is needed to be better than any of its compo-
nents (i.e., training instances) in terms of the similarity to new instance. Accordingly, the
MLPM-FKNN (Publication I) algorithm is expanded by the use of the Bonferroni mean
instead of the Power mean for local mean computation and hence propose a new classifier
called the “Bonferroni mean-based fuzzy k-nearest neighbor (BM-FKNN) classifier”.
The objective of the new classifier is to show that the Bonferroni mean vectors provide
better learning than any other type of mean (e.g., the generalized mean) and improve
classification accuracy.
The Bonferroni mean (Bonferroni, 1950) is probably the most advanced aggregation
operator for fusing data within an extensive range of possibilities. Additionally, some
studies have reported that the arithmetic mean may not always be ideal for producing
the optimal results with classification models; instead, the model performance can be
improved by using alternative mean operators, for instance, harmonic (Pan et al., 2017),
generalized (Luukka et al., 2001), and ordered weighted average (OWA) (Luukka and
Kurama, 2013) means. Moreover, as the arithmetic mean is a particular case of the Power
mean, it can be observed that the results achieved with the Power mean are at least as
good as with the arithmetic mean and often better. In the same way, as the Power mean is
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a special case of the Bonferroni mean, the results achieved with the Bonferroni mean are
expected to be at least as good as with the Power mean and can be even better. When the
Bonferroni mean is utilized to create the class prototype local mean vectors, it should be
noted that there is a possibility of optimizing the parameters to fit a particular situation
(a data set). Here, adjusting the Bonferroni mean parameters allows for the search of
optimal parameter values, which will lead to better classification performance.
The performance of the proposed BM-FKNN classifier was evaluated using one artificial
data set to show how the proposed method performs with respect to the class imbalance
ratio and then some real-world data sets chosen from machine learning repositories to
assess its efficacy in the real-world applications. It was remarked in Publication I that
the new MLPM-FKNN classifier could be a valuable alternative for dealing with class
imbalance problems. However, how the local means-based FKNN method performs con-
cerning the imbalance ratio was not shown explicitly. Given this issue, in Publication
III, a special attention was paid to validate the ability of the BM-FKNN classifier in a
complete range of class imbalance problems by using one artificial data set generated in
controlled settings.
4.2 Description
In this section, the underlying process of the BM-FKNN algorithm is established.
However, this process is similar (but not identical) to that of the MLPM-FKNN algorithm
(Publication I). Therefore, every step of this algorithm is not discussed in detail, but
in short, in line with Section 3.3, where a detailed procedure of the MLPM-FKNN
algorithm is presented.
Formally, the MLPM-FKNN algorithm is modified to the present context, which comes
in that class representative vectors in the learning part are computed using the Bonfer-
roni mean. Consider a training set {Xj, cj}Nj=1, where Xj = {x1j , x2j , .., xDj } ∈ RD and
ci ∈ {ω1, ω2, .., ωS}. Given a query sample Y ∈ RD, corresponding class ωc is de-
termined in the BM-FKNN algorithm as in the following. In the first step, the distances
{dEUC(Y,Xj)}Nj=1 between Y and each training instanceXj ∈ RD are estimated and next,
a set of k nearest neighbors nnk(Y ) is found. This is followed by grouping the set nnk(Y )
into subsets based on the classes {ωi}Ski=1, which is represented by the nearest neighbors.
These subsets are then used to calculate the Bonferroni mean vectors {Bp,qi }Ski=1. This can
be expressed using the Equation (2.2) as:
Bp,qi =
(
1
ni
ni∑
j=1
Xpj
(
1
ni−1
ni∑
j,l=1,l 6=j
Xql
)) 1
p+q
for i = 1, 2, ..., Sk (4.1)
where ni is the number of instances in the ith class, and Xj and Xl represent the jth and
lth instances, respectively. The parameters p and q matter greatly because these two key
choices will typically push the class averaging vector to be fitted properly to the problem
at hand. Moreover, it is clear that the number of the Bonferroni mean vectors depends on
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the number of classes that are represented by the k nearest neighbors.
Next, the Euclidean distances {dEUC(Y,Bj)}Skj=1 between Y and each local Bonferroni
mean vector Bj are calculated. Using these distances, membership degrees (ui) to the
query sample Y for the classes {ωi}Ski=1 are assigned according to
ui(Y ) =
∑Sk
j=1 uij(1/dEUC(Y,Bp,qj )2/(r−1))∑Sk
j=1(1/dEUC(Y,Bp,qj )2/(r−1))
(4.2)
where, uij =
{
1, if ci = cj
0, if ci 6= cj for j = 1, ..., Sk and r ∈ (1,+∞) is the fuzzy strength
parameter. Practically, this step maps the set of responses to a membership degree by
computing a dot product of the inverse of the distances and crisp memberships of the
neighboring instances. In the final step, the query sample Y is assigned to the class ωc
with that the local mean vector has the highest membership degree. That is,
ωc = arg max
ωi
ui(Y ) (4.3)
This process is summarized as a pseudo-code in Algorithm 2. The main contribution of
the proposed method is that it uses the local mean vectors inspired by the Bonferroni
mean for all classes which are represented by the k nearest neighbors. The locally created
prototype vectors for each class are expected to be well-positioned in perceiving class
information in the similarity calculation to the query sample. In this way, the local mean
computation was improved in the proposed method in Publication III to solve the class
imbalance problems. Additionally, it also aims to remedy the issues that come with impre-
cise data in which the observations from different classes have very similar characteristics
(Liu et al., 2013).
4.3 Data and Testing Methodology
The empirical study consisted of two separate phases: first, the performance of the
proposed method was examined with “artificially generated data” to understand how well
new classifier might perform on the imbalanced data. For the task, the imbalance ratio
of the data (a binary problem) was progressively changed and the model’s performance
was assessed in each case. In the second phase, in addition to presenting performance
with the artificial data, the proposed model was also tested with several real-life data sets
acquired from the well-known machine learning repositories. More details of the data
used and applicable study can be found in Publication III.
The generated data set consisted of two classes: class 1 ∼ N (9, 42) with 10 features and
a sample size of 100, and class 2 ∼ N (10, 62) with 10 features and a sample size of n that
was adapted from the set {100, 90, 80, ..., 20, 10}. In this way, the data was adjusted with
imbalance ratio {1/1, 1/0.9, 1/0.8, ..., 1/0.1} in increasing order and the performance of
each classifier was evaluated for each case. In the subsequent analysis, six real-world data
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Algorithm 2: BM-FKNN algorithm (adapted from Publication III)
Input: training data {Xj, cj}Nj=1, query sample Y , k, and p
Output: class label ωc for Y
1 Begin
2 for j ← 1 to N do
3 calculate dEUC(Y,Xj)← ‖Y −Xj‖
4 if j < k then
5 add Xj to nnk(Y )
6 else if Xj is closer to Y than any of neighbors in nnk(Y ) then
7 drop the farthest neighbor from the set nnk(Y ) and add Xj
8 end
9 end
10 for i← 1 to Sk do
11 find Bp,qi ← ( 1ni
∑ni
j=1(X
nn
ij )
p)1/p
12 calculate dEUC(Y,Bp,qi )← ‖Y − Bp,qi ‖
13 end
14 for i← 1 to Sk do
15 calculate class memberships for Y according to:
ui(Y )←
∑Sk
j=1 uij(1/dEUC(Y,Bp,qj )2/(r−1))∑Sk
j=1(1/dEUC(Y,Bp,qj )2/(r−1))
where, uij =
{
1, if ci = cj
0, if ci 6= cj for j = 1, ..., Sk
16 end
17 return ωc such that
ωc = arg max
ωi
ui(Y )
sets were obtained from the public UCI (Dheeru and Taniskidou, 2017) and KEEl (Alcala-
Fdez et al., 2011) machine learning repositories to test whether the proposed classifier can
effectively solve conventional classification problems. The properties of these data sets
are summarized in a condensed way in Table 4.1 with a particular focus on the last column
representing the relevant area of each data set used.
The evaluation was based on the standard performance measures, including accuracy,
sensitivity, and specificity. In addition to them, variance and confidence interval (CI)
were also reported. To ensure a fair comparison, the performances of the proposed
approach was benchmarked with the classical KNN (Cover and Hart, 1967) and FKNN
(Keller et al., 1985) methods and several more competitive methods, including LM-KNN
(Mitani and Hamamoto, 2006), SVM (Cortes and Vapnik, 1995), Naive Bayes (Lewis,
1998), and similarity classifier (Luukka et al., 2001). In addition to them, an enhanced
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Table 4.1: Information on the real-life data obtained from the machine learning reposito-
ries [modified from Publication III].
Data set Database Instances Features Classes Domain
Car KEEL 1728 6 4 Engineering
Ionosphere UCI 351 34 2 Physics
Vehicle KEEL 846 18 2 Engineering
Mammography UCI 961 6 2 Medicine
Wine UCI 178 13 3 Chemistry
Page Blocks KEEL 548 10 5 Computer Science
variant of the LM-KNN (Mitani and Hamamoto, 2006) method was implemented based
on the Bonferroni mean and its performance was also examined. This was the second
new variant (referred as BM-KNN) introduced in this work (as requested by the reviewers
for Publication III).
The number of nearest neighbors k was presented from the set {1, 2, ..., 25} under the as-
sumption that the performance of the new introduced methods would (relatively) increase
when the k-value increases. The values of the parameters p and q for the Bonferroni
mean were varied from the range {0, 1, ..., 10}. Moreover, all model parameters were
tuned by cross-validated performance in terms of the accuracy across the grid search (for
the complete process see Figure 2.4). Along the way, the best classifiers with the optimal
parameters were set up for testing using the test sets in the final step.
4.4 Results
4.4.1 Artificial Data
An artificial data set was used to assess the sensitivity of classifiers’ performance to class
imbalance. Figure 4.1 illustrates the curves of mean accuracies among the six classifiers
with class imbalance ratios. It is important to note that the mean accuracies shown in the
figure were taken in the testing phase for all KNN-based classifiers. The imbalance ratio
(X-label) given in Figure 4.1 indicates a sample percentage of the majority class with
respect to the minority class. For example, “1/0.5” indicates a ratio that class 1 has a
sample size of 100 and class 2 has a sample size of 50.
At first glance, it is apparent that both proposed BM-FKNN and BM-KNN classifiers
yielded the same performance. Further, the performance of each classifier is at its best
when the lowest number of instances represents one class as compared to the other class.
It can also be seen the mean accuracy of each classifier gradually increases when the
imbalance ratio rises. Additionally, it is apparent that both proposed methods achieved
better performances than the benchmarks concerning all imbalance ratios. Altogether,
this result implies that the new BM-FKNN and BM-KNN classifiers are less sensitive to
the class imbalance than the benchmarks.
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Figure 4.1: Classification accuracy with respect to the class imbalance ratio [adapted from
Publication III].
4.4.2 Real-world Data
Now, the classification performances with the data sets from real-world applications are
discussed. A 30-fold holdout cross-validation was performed to optimize the parameters
of new classifiers and the benchmarks in the training and validation phase. The results
in terms of the performance metrics and optimal parameter values are summarized as an
example for the proposed methods in Table 4.2. In the table, the accuracy, sensitivity,
and specificity represent their mean values from the 30-fold sample corresponding to the
optimal parameter values. It should be noted that both proposed approaches produced the
same results.
It is apparent that both proposed methods performed well in the validation sets (yielding
the mean accuracy of 92.71%, 87.75%, 93.4%, 79.39%, 74.14%, and 93.58% for Car,
Ionosphere, Vehicle, Mammogram, Wine, and Page Blocks data sets, respectively). The
sensitivity and specificity scores also appear reasonable; these values matter greatly to
ensure that classifications made by new approaches are meaningful and advocate in terms
of each class available. Moreover, it is visible that the values of sensitivity are lower than
the specificity for all cases except the Page Blocks data. As for the optimal parameter
values, it can be seen that the proposed approach achieved the highest accuracy with the
settings p ∈ {1, 2, 3} and q ∈ {0, 1, 2} in all data sets used.
Table 4.3 compares the classification results of all methods on the test sets that were
initially separated from the original data. The performances are demonstrated in terms of
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Table 4.2: Average classification performance of the BM-FKNN and BM-KNN classifiers
in the training and validation step [modified from Publication III].
Data set Accuracy Sensitivity Specificity Optimal parameters
Car 0.9271 0.8079 0.9637 k = 3 p = 1 q = 1
Ionosphere 0.8775 0.8611 0.9245 k = 7 p = 1 q = 0
Vehicle 0.9340 0.8557 0.9591 k = 4 p = 3 q = 1
Mammogram 0.7939 0.7901 0.7984 k = 21 p = 2 q = 1
Wine 0.7414 0.7388 0.8730 k = 25 p = 2 q = 2
Page Blocks 0.9358 0.9775 0.8679 k = 3 p = 2 q = 2
the mean values of accuracy, sensitivity, specificity, and the variances as well as CIs. The
test results for the BM-FKNN and BM-KNN are shown in the same column because they
obtained exact results for all data sets.
The results in Table 4.3 illustrate that the proposed classifiers outperformed all bench-
marks with two data sets (Car and Mammogram) and achieved the second-best perfor-
mance with three data sets (Vehicle, Ionosphere, and Page Blocks). The mean sensitivity
and specificity values remained high for all data sets, showing good selectivity. Interest-
ingly, the results for both BM-FKNN and BM-KNN methods were the same for all test
sets. This indicates that using the Bonferroni mean within learning part of the classifier
has a substantial impact in comparison to calculating the membership degree in the FKNN
rule. Moreover, as compared to the FKNN, KNN, and LM-KNN approaches, the BM-
KNN and BM-KNN classifiers significantly improved the classification accuracy. This
exhibits that by introducing the notions of local mean vectors based on the Bonferroni
mean as nearest prototypes instead of k nearest neighbors, reasonable class representative
vectors can be created and the performance can be enhanced. Additionally, even though
the SVM, NB, and Similarity classifiers obtained relatively higher accuracy in some cases,
the BM-FKNN and BM-KNN still outperformed them on most data sets. Overall, it is
clear based on the test results that newly proposed classifiers offered improved perfor-
mance in comparison to the benchmarks. To empirically verify the significance of this
improvement, a paired t-test at 0.05 level of significance was performed to compare their
classifications with the best cases of the benchmarks. Table 4.4 shows the test results
confirming a statistically significant difference between the performances in cases where
the proposed approaches produced the best accuracy. Regarding computational complex-
ity, the proposed BM-FKNN and BM-KNN classifiers required a longer time than the
benchmarks. For example, the average computational time of BM-FKNN, BM-KNN,
FKNN, KNN, LM-KNN, SVM, BM, and Similarity classifier on the test data of Page-
blocks were {0.0812, 0.0756, 0.0043, 0.0041, 0.0099, 0.0072, 0.0181, 0.0354} in seconds,
respectively. Similar results were observed with the rest of data sets, indicating that the
computational complexities of the new methods are higher than the standard classifiers.
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4.5 Conclusion and Limitations
This chapter introduced a new variant of the FKNN method, called the BM-FKNN,
which uses the local mean vectors based on the Bonferroni mean. Introducing new
parameters with the Bonferroni mean may allow the model to maintain classification
performance in a broader range; thus, the proposed classifier can be readily fitted to
numerous contexts and applications. To demonstrate the capability of the BM-FKNN
classifier, it was tested with one artificial and six real-world data sets in comparison to
the selected state-of-the-art methods, including the FKNN, KNN, LM-KNN, SVM, NB,
and similarity classifiers. Additionally, an improvement of the LM-KNN method based
on the Bonferroni mean was also proposed and tested. This new version was called the
BM-KNN classifier. Interestingly, both new BM-FKNN and BM-KNN methods showed
exactly the same performance with all data sets used.
The findings with artificial data verified that new methods can effectively solve class
imbalance problems as compared to the standard classifiers. Further, it was observed
that the performance of each classifier was at its best when the imbalance ratio was
at its possible highest level (i.e., when one class has the smallest number of instances
in comparison to the other). In the analysis with real-world data sets, the BM-FKNN
and BM-KNN algorithms illustrated improved performance (obtaining overall average
accuracy of 88.75%) compared to the six benchmarks used. Another most notable finding
engaged with the proposed classifiers was that the best accuracy was attained with a
relatively high value of k.
In this work, even though several weaknesses of the MLPM-FKNN (Publication I)
method were addressed, the proposed BM-FKNN approach still has several limitations. A
key limitation of the proposed BM-FKNN method is the number of parameters that need
to be optimized for proper values before using the model in an actual problem case. This
may increase the computational complexity of the new model compared to the standard
classifiers. In fact, the question is, can the proposed approach be robust and efficient for
solving problems with the large data sets (e.g., Big data), which remains open for future
research. However, it is possible that a suitable parameter search technique can be in-
volved (or developed) instead of the grid search. Despite that, this study paves the way to
explore new areas of research in the FKNN classification in terms of several different per-
spectives. For example, it would be interesting to examine how the Bonferroni means can
be used in other local means-based nearest neighbor variants, for example, MLM-KHNN
(Pan et al., 2017), a generalized mean distance-based KNN classifier (GMDKNN) (Gou
et al., 2019), and the pseudo nearest neighbor (PNN) method (Gou et al., 2014).
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Table 4.4: Results of the t-test at 0.05 significance on the performance of the proposed
methods vs. baseline models for the test data [adapted from Publication III].
Data set Paired-t with
BM-FKNN / BM-KNN
P-value Test-statistic
Car FKNN
LM-KNN
KNN
SVM
NB
Similarity classifier
2.4770e-12
6.3027e-10
3.8770e-14
6.7520e-22
1.1173e-25
1.5717e-37
significant
significant
significant
significant
significant
significant
Ionosphere FKNN
LM-KNN
KNN
SVM
NB
Similarity classifier
3.4829e-04
1
3.4829e-04
0.0025
5.6239e-07
0.4808
significant
not significant
significant
significant
significant
not significant
Vehicle FKNN
LM-KNN
KNN
SVM
NB
Similarity classifier
0.0042
1.2410e-05
0.0042
0.9317
5.6328e-41
4.3005e-42
significant
significant
significant
not significant
significant
significant
Mammogram FKNN
LM-KNN
KNN
SVM
NB
Similarity classifier
0.0387
0.5970
0.0055
0.5443
0.0190
9.3774e-06
significant
not significant
significant
not significant
significant
significant
Wine FKNN
LM-KNN
KNN
SVM
NB
Similarity classifier
0.0871
1
0.0839
1.0465e-22
3.3440e-34
2.3069e-32
not significant
not significant
not significant
significant
significant
significant
Page Blocks FKNN
LM-KNN
KNN
SVM
NB
Similarity classifier
0.0096
3.7653e-06
1.023e-04
6.5585e-20
0.6917
1.4920e-21
significant
significant
significant
significant
not significant
significant
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5 Proposed Fuzzy K-nearest Neighbor Regression with
the Minkowski Distance
As mentioned at the beginning, one objective of this dissertation is to view the FKNN
method (Keller et al., 1985) from the regression perspective. Accordingly, this chapter
focuses on the FKNN regression and hence proposes a novel regression approach, as
presented in Publication IV.
5.1 Introduction
The KNNreg (Stone, 1977; Benedetti, 1977; Turner, 1977) is an old and simple but
widely used regression method (Nguyen et al., 2016). This approach is suitable and
effective for both linear and non-linear regression tasks (Cai et al., 2020). However, this
method also suffers from the underlying weaknesses of the KNN classifier (Cover and
Hart, 1967), questioning its effectiveness from one problem to another. Moreover, in
terms of the enhanced variants of the KNN method, the FKNN classifier is known to be
one of the best-performing classifiers to solve the problems of original method. Even
though the FKNN method has been widely used in classification tasks, little attention has
been paid to it in the context of regression. Nikoo et al. (2018) used the FKNN classifier
to a regression problem without adjusting its original algorithm expressly (in other words,
the experiment was conducted as a classification problem). Apart from that, as far as
we know, no one had tried to use the FKNN approach in the context of regression. This
encouraged to establish a regression version of the FKNN method in Publication IV,
which is referred to as the fuzzy k-nearest neighbor regression (FKNNreg) method.
In this work, the emphasis is to examine the performance of the FKNNreg method in
terms of different types of regression tasks, and the goal is to formally demonstrate that
using the Minkowski distance in the FKNNreg algorithm offers better predictions than
using the Euclidean distance. Meanwhile, the efficacy of combining the FKNNreg and
Minkowski distance is examined and a new Minkowski distance-based fuzzy k-nearest
neighbor regression (Md-FKNNreg) algorithm is introduced. The principal advantage of
this algorithm is that it attributes the importance to the nearest neighbors using “fuzzy”
weights considering their distances to the query sample and hence obtains a more
accurate prediction across a weighted average.
Moreover, a distance metric is a pivotal component of distance-based algorithms, such
as the FKNN and KNN methods (Rastin et al., 2021). Regarding these methods, the
Euclidean distance measure is the most commonly used distance metric in calculating the
similarity between two instances (Nguyen et al., 2016). However, using the Euclidean
distance may not always be optimal for every problem because it naturally has several
limitations (Cai et al., 2020; Nguyen et al., 2016). For example, even though two instances
have no attribute values in common, they may have a shorter distance than other pairs of
instances, including the exact attribute values (Shirkhorshidi et al., 2015). Moreover,
several studies have achieved better results for their applications with a more general
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choice of the distance measure (for example, see Chang et al., 2006; Koloseni et al., 2012;
Dettmann et al., 2011). This study focuses on the Minkowski distance and examines its
usefulness in the FKNN method from the regression perspective.
5.2 Description
The Md-FKNNreg algorithm can be divided into four steps: computing distances, finding
nearest neighbors, observing fuzzy weights, and making predictions. All these steps are
discussed in detail below.
Step I is the calculation of distances between a new instance and training instances using
the Minkowski distance [Equation (2.5)]. Consider X = {x1, x2, .., xD} ∈ RD is a new
instance and its output value (y) that needs to be estimated. The algorithm starts with
calculating the Minkowski distances dMd(X,Xj) between X and Xj according to
dMd(X,Xj) =
( D∑
t=1
|xt − xtj|P
)1/P (5.1)
where Xj = {x1j , x2j , .., xDj } ∈ RD is the j th instance of the training set {Xj, yj}Nj=1
given and its output value is yj ∈ Y = {y1, y2, .., yN}. P ≥ 1 is the parameter of the
Minkowski distance metric.
Step II finds a set of k nearest neighbors nnk(X) of X from the ordered training
instances according to increasing Minkowski distances. Here, a grid-based search is
performed to determine optimal values for k and the Minkowski distance parameter P to
a particular data set.
Step III consists of computing fuzzy weights (wj) for each nearest neighbor Xj using
dMd(X,Xj) for j = 1, 2, ..., k as follows:
wj =
1(
1/dMd(X, Xj)
) 2
r−1
(5.2)
where r ∈ (1,+∞) is the fuzzy strength parameter and ( 2
r−1) is the fuzziness exponent.
When the r is close to one, it produce larger weights. The intuition behind these weights
is to define a proper linear predictor for the output value y such that h(X) = W TY . Each
weight value wjindicates a relative importance of each nearest neighbor Xj to Y .
Step IV is the prediction of output value for the new instance. By taking (fuzzy) weighted
averaged of the outputs {y1, y2, ..., yk} of the nearest neighbors, the output value y of X
is estimated as follows:
yˆ =
∑k
j=1wjyj∑k
j=1wj
(5.3)
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where yˆ is the estimated value of y. In the KNNreg method, a uniform weighting scheme
(Cheng, 1984) is used to perform the prediction. In other words, it predicts the output of
the new instance by taking the arithmetic average of the outputs of the nearest neighbors
selected. However, it does not consider the distances from the new instance to the nearest
neighbors, giving equal contributions to all nearest instances, which is the main drawback
of the KNNreg method (Kramer, 2011). On the contrary, an inverse weighting strategy
that allocates higher weights to the nearest training instances is used in the Md-FKNNreg
method. In this way, a fuzzy version allows closer instances more influence in the
prediction.
Furthermore, the Minkowski distance in the Md-FKNNreg method is worked not only
to calculate the distances between each training instance and new instance but also to
observe the weights for nearest neighbors. Therefore, it is clear that the Minkowski
distance measure plays a significant role in the proposed approach. The Md-FKNNreg
method has two important parameters: k, the number of nearest neighbors and p, the
parameter of the distance metric. These allow the model to extend the search area to a
broader region and adapt to a particular situation with optimal conditions. A pseudo-code
for the Md-FKNNreg process is provided in Algorithm 3. Additionally, Algorithm 4
presents the pseudo-code of applied grid search method for parameter optimization.
The main contributions of this work can be summarized as follows:
• The original FKNN (Keller et al., 1985) method is extended so that it can be applied
in the regression context.
• A novel regression approach is proposed by introducing the Minkowski distance
into the nearest neighbor search in the FKNN method.
• The efficiency and robustness of the proposed method are examined in terms of
linear and non-linear regression problems using several low- and high-dimensional
real-world data sets.
5.3 Data and Testing Methodology
To study the performance of the proposed Md-FKNNreg method, eight real-life data
sets in low- and high-dimensional spaces were selected, which are publicly available at
the KEEL (Alcala-Fdez et al., 2011) and UCI (Dheeru and Taniskidou, 2017) machine
learning repositories. Table 5.1 summarizes the characteristics of each data set used,
including the number of instances (“Instances”), the number of features (“Features”), and
the related area of each data set (“Domain”).
The experimental context involved in Publication IV to evaluate the performance of the
proposed regression approach is summarized in Figure 5.1. All the aspects shown in the
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Algorithm 3: Md-FKNNreg algorithm (adapted from Publication IV)
Input: {Xj, yj}Nj=1 (training set), X (test instance), k (1 ≤ k ≤ N), P ≥ 1
Output: predicted output value, yˆ for X
1 Begin
2 for j ← 1 to N do
3 Compute dMd(X,Xj) between X and Xj according to
dMd(X,Xj) =
(∑D
t=1 |xt − xtj|P
)1/P
4 if j < k then
5 Add Xj to NkX
6 else if Xj is closer to X than any of neighbors in nnk(X) then
7 Drop the farthest neighbor from the set nnk(X) and add Xj
8 end
9 end
10 for j ← 1 to k do
11 Compute wj = 1(
1/dMd(X,Xj)
) 2
r−1
12 end
13 Estimate yˆ by taking weighted average such as yˆ =
∑k
j=1 wjyj∑k
j=1 wj
14 return yˆ
flow chart were performed as explained in Section 2.6. In particular, testing of the pro-
posed method using the real-life data consisted of two phases—training and validation—
and testing. The model was optimized for optimal parameter values in the training and
validation step, and the generalizability of the finalized model was then assessed with the
test data.
Training data 
Test data
Data sampling
Developing 
regression model
Model evaluation and 
parameter optimization
Cross-validation
Model selection
Predictions with 
test data
Input 
Data
Data Pre-
processing Best model Test results
Figure 5.1: A flowchart of the Md-FKNNreg model development and evaluation.
The performance of the proposed Md-FKNNreg method was compared with the origi-
nal KNNreg, as well as SVR (Drucker et al., 1997), least absolute shrinkage and selec-
tion (LASSO) (Tibshirani, 1996), and multiple linear regression (MLR) (Montgomery
et al., 2012) methods. In addition to them, the Manhattan distance-based fuzzy k-nearest
neighbor regression (Man-FKNNreg) and the Euclidean distance-based fuzzy k-nearest
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Algorithm 4: The grid search algorithm (adapted from Publication IV)
Input: P-values: {Pi}nPi=1, k-values: {ki}nki=1, n-runs for cross-validation
Output: Optimal P∗ and k∗
1 Begin
2 for j ← 1 to n do
3 Split the training data randomly into training and validation sets
4 for j ← 1 to nk do
5 for s← 1 to nP do
6 Perform Md-FKNNreg model with k(j) and P(s) and save the RMSE
7 end
8 end
9 end
10 for j ← 1 to nk do
11 for s← 1 to nP do
12 Average the RMSE over n-runs
13 end
14 end
15 Estimate the minimum RMSE average and corresponding P∗ and k∗ values
16 return P∗ and k∗
neighbor regression (Euc-FKNNreg) methods were also developed and the results were
compared to examine the effectiveness of using the Minkowski distance. The number
of k nearest neighbors was chosen from the set {1, 2, ..., 15} for all KNN-based re-
gression methods. The Minkowski distance parameter P was selected from the range
{1, 1.5, ..., 5}. For all Md-FKNNreg, Man-FKNNreg, and Euc-FKNNreg methods, fuzzy
strength parameter r was remained constant at 1.5 as per suggestion by Arif et al. (2010).
In addition, three different kernel functions (linear, radial basis function, polynomial)
with the SVR model, five different values {0.001, 0.01, 1, 10, 100} for the regularized pa-
rameter of the LASSO method, and four different regression types (linear, interaction,
pure-quadratic, and quadratic) with the MLR model were tested to fit the best version of
benchmarks. Finally, the evaluation of performances was based on RMSE and R2 values.
Detailed information about the experimental process and parameter settings can be found
in Publication IV.
5.4 Results
5.4.1 Training and Validation Phase
Table 5.2 illustrates the regression results (in terms of the average RMSEs and standard
deviations) of the proposed method and each benchmark for all data sets. From the error
results in Table 5.2, it is apparent that the proposed Md-FKNNreg model outperformed
all other state-of-the-art methods in six data sets (see the bold ones) and obtained the
second-best results for two data sets (Servo and Laser). The standard deviation values
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Table 5.1: Information on the data sets used.
Data set Database Instances Features Domain
Stock KEEL 950 9 Business
Airfoil UCI 1503 5 Physics
Laser KEEL 993 4 Physics
AutoMPG KEEL 392 6 Engineering
Baseball KEEL 337 16 Sociology
Parkinson UCI 5875 26 Medicine
Servo UCI 167 4 IT
Qsar Fish UCI 908 6 Biology
also remained reasonable, indicating consistency of the proposed method during the
cross-validation. Additionally, it is visible that both Md-FKNNreg and Man-FKNNreg
models yielded the same results in six data sets. It can be also seen that the Md-FKNNreg
method performed better than the Euc-FKNNreg method in all data sets, though the
results were comparable in some cases. This reflects the usefulness of using the
Minkowski distance for distance calculation in the FKNN regression. Regarding R2
values (see Figure 5.2), the same indications (as shown in Table 5.2) can be observed
about the regression performance of all methods in all data sets. Notably, with higher R2
values, the proposed method indicated a good overall fit to the data.
Considering optimal parameter values, it was observed that P = 1 (i.e., Manhattan dis-
tance) produced a better performance with the proposed method for most data sets. This
is clearly indicated by the results in Table 5.2 and Figure 5.2, in which the Man-FKNNreg
shared the same results with the Md-FKNNreg method for six data sets. This finding is
somewhat consistent with the study by Aggarwal et al. (2001) that showed the Manhattan
distance could be the most suitable option for high-dimensional data. Moreover, relatively
high k values (ranging from 2–25) were better suited to the FKNNreg versions, while low
k values (ranging from 1–13) were better for the original KNNreg method. Meanwhile,
the RBF kernel seemed to be the most suited for the SVR model with most data sets,
and λ = 0.001 showed the optimum for LASSO model (see Publication IV for more
information about the optimal parameter values resulted in each method).
5.4.2 Testing Phase
The models fitted with optimal parameter values were evaluated using test data sets in
the testing phase. The results of average RMSEs and standard deviations (STDs) of each
method are summarized for all data sets in Table 5.3. The average computational time
(“Comp. time,” in seconds) taken by each regression model during the testing is also
reported.
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(h) Qsar Fish
Figure 5.2: R2 values of each model for each data set. The bars in orange color repre-
sent the highest R2, while other (blue) bars represent the rest of values [modified from
Publication IV].
The results in Table 5.3 demonstrate that the proposed method outperformed all bench-
marks in all data sets, proving the ability of the Md-FKNNreg model for regression ap-
plications. In the Airfoil and Qsar Fish data sets, regression error was lower with the
Md-FKNNreg method than any other regression model, and with six data sets, the low-
est error was shared with the Man-FKNNreg method. Moreover, it can be seen from the
table results that the proposed method offered significantly higher performance than the
Euc-FKNNreg model with all data sets. Altogether, this implies that using Minkowski
distance in the part of learning can obtain more appropriate nearest neighbors and lead to
a better performance than using the Manhattan or Euclidean distance. Moreover, though
the KNNreg and SVR models showed the lowest error in several data sets during the train-
ing and validation, they were outperformed by the proposed Md-FKNNreg method in all
test cases. Regarding the testing times, it is apparent that the proposed method has taken
a relatively higher time than the other models. This might be because of an additional
calculation part with the Minkowski distance in the learning part of the Md-FKNNreg.
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Furthermore, a paired t-test was applied to validate the significance of the results in the
testing, and the test results showed a statistically significant difference between the aver-
age RMSEs of the proposed method and each of the benchmark methods. This indicates
that the proposed method achieved statistically significantly better performance than the
other regression methods. However, t-test did not find evidence in favor of a significant
difference between the test results of the Md-FKNNreg and Man-FKNNreg in all data
sets. More information about the test results can be found in Publication IV.
5.5 Conclusion and Limitations
This chapter introduced a novel generalized regression approach based on the FKNN
method. The generalization comes in that the Minkowski distance is used instead of
Euclidean distance for the distance calculation. Using the Minkowski distance allows
the new method to find an appropriate set of k nearest neighbors for the test sample
because the Euclidean distance may not always be the optimum for every problem. The
performance of the proposed method was examined using eight real-life data sets from
different domains and benchmarked to the KNNreg, SVR, LASSO, and MLR models.
In addition, the Euclidean distance- and Manhattan distance-based FKNNreg methods
(referred to as Euc-FKNNreg and Man-FKNNreg) were also implemented, and the
performances were compared.
The experimental results with the real-world data demonstrated that the proposed
Md-FKNNreg method outperformed the baseline models and confirmed its effectiveness
for various regression problems. Notably, the Md-FKNNreg method achieved the
lowest overall average RMSE of 0.0769 in the testing in comparison to other regression
models. Additionally, the Minkowski distance with P = 1 appeared to be optimal in
most cases for the Md-FKNNreg method, offering the best performance in the testing.
In other words, the Man-FKNNreg model demonstrated outstanding performance for
the regression at large, corroborating indications in the research by Aggarwal et al. (2001).
During the experiment, it was observed that the computational complexity of the pro-
posed model was somewhat higher than the Man-FKNNreg, Euc-FKNNreg, and KNNreg
methods. This can be expected because an extra computation part with the Minkowski
distance is involved in the new algorithm. However, the results of the proposed method
are encouraging, and the performance should be validated further by using large data sets
(i.e., with different levels of complexities). In such cases, it would also be interesting to
investigate the performance of the newly proposed method when it is incorporated with
a feature selection or feature extraction method, which remains open for future research.
Another exciting application of the Md-FKNNreg method could be an utilization of it in
regression applications where the KNNreg method had been used (for example, see Yao
and Ruzzo, 2006; Hu et al., 2014; Cai et al., 2020; Zhou et al., 2020).
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6 Conclusion, Limitations, and Future Work
The objective of this dissertation was to develop enhanced FKNN methods to be applied
in classification and regression problems. To achieve this, the effect of using class
prototype mean vectors instead of individual neighbors in the learning part of the original
FKNN algorithm was first examined. As a result, the novel MLPM-FKNN classifier
(Publication I) was proposed. In particular, the influence of using a more general mean
operator, the Power mean, instead of usual arithmetic mean for mean calculation was
explored. As previously discussed in detail, the imbalance ratio of the classes has a
significant influence on the performance of the classification algorithms, and in reality,
classification problems are often imbalanced. Therefore, this dissertation primarily
focused on several imbalanced data sets to study the capability of the new method for
class imbalance problems. The observed results showed that the MLPM-FKNN classifier
outperformed the KNN and FKNN methods, achieving the best accuracy in all data sets
used. To further demonstrate the MLPM-FKNN algorithm’s efficacy, it was successfully
integrated with a (filter + wrapper) feature selection approach as a hybrid framework
to predict S&P 500 intraday stock return (Publication II). However, even though the
expected results were not found from this study in terms of the multi-class classification,
it was observed that the MLPM-FKNN method could be valuable for wrapper feature
selection approaches and produce improved results.
Additionally, this study has extended the MLPM-FKNN classifier based on the Bon-
ferroni mean instead of Power mean in local mean computation and proposed the new
BM-FKNN classifier (Publication III). The objective of this method was to demonstrate
that Bonferroni mean-based class prototype vectors offer better learning than the Power
mean and also improve classification accuracy. This method was then tested on one
artificial data set generated in controlled settings and six real-world data sets compared
to six competitive classifiers. The findings with both artificial and real-world data sets
highlighted the capability and effectiveness of this method in terms of class imbalance
problems. Furthermore, it is worth mentioning that the justification of the performance
of classifiers was not based only on the accuracy measure but also on sensitivity and
specificity values. From the theoretical and empirical perspectives, using these measures
along with the accuracy (or error rate) is necessary because accuracy itself does not reveal
the appropriateness of a particular model (which has already been discussed in Section
2.6.4). However, many studies (for example, see Gou et al., 2019; Pan et al., 2017;
Biswas et al., 2018; Gou et al., 2014; Derrac et al., 2016, 2015) have not considered this
factor.
In addition to the classification context, the rationale underlying the FKNN algorithm
for regression problems was successfully generalized, and concurrently, a novel Md-
FKNNreg method was proposed using the Minkowski distance instead of Euclidean
distance for computing distances (Publication IV). This method was tested on several
real-world data sets, and the results highlighted that it achieved a better performance than
the several other regression methods.
90 6 Conclusion, Limitations, and Future Work
Regarding the limitations, the shortcomings of each proposed method (and study) have al-
ready been discussed at the end of each related chapter. Overall, it should be highlighted
that the computation complexity of the proposed methods seemed to be high in fitting
to the data, but their execution on the test sets was not slow as compared to the applied
benchmarks. Moreover, regardless of the limitations, this research paves a way to inves-
tigate new areas of research in FKNN classification from several different perspectives.
From a methodological perspective, the findings of this study demonstrate the robustness
and efficacy of the proposed approaches for class imbalance problems. In principle, any
application that involves KNN and FKNN classifications can be reconsidered with the
developed classifiers, particularly the BM-FKNN approach proposed in this study. For
example, a diagnosis system presented in Chen et al. (2013) based on the FKNN classifier
for detecting Parkinson’s disease can be easily extended with the proposed BM-FKNN
algorithm. Meanwhile, from a theoretical perspective, examining the impact of using dif-
ferent distance measures in the MLPM-FKNN (or BM-FKNN) algorithm on classification
problems would be interesting. In this regard, it also remains an interesting open problem
as to how the proposed classifiers perform when the “distance approximation” approach
is adopted as in Maillo et al. (2020) instead of direct distance calculation, particularly in
large data sets. Moreover, future work can also focus on examining new methods in type-
2 fuzzy set settings. Finally, another direction for future research can also include testing
the effect of integrating the Md-FKNNreg model with some other competitive methods,
such as the SVM (Chen and Hao, 2018), in a hybrid framework.
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Abstract
This study introduces a new method to the
family of fuzzy k-nearest neighbor (FKNN)
classifiers that is based on the use of power
means in the calculation of multi-local means
that are used in classification of samples. The
proposed new classifier is called multi-local
power means fuzzy k-nearest neighbor classi-
fier (MLPM-FKNN). The proposed method
can be adapted to the context (of different
data sets), due to the power mean being
parametric and thus allowing for testing to
find the parameter value that can be opti-
mized for the classification accuracy. Fur-
thermore, we can find optimal value for the
number of local observations used in calcu-
lation of the multi-local mean. The pro-
posed method is usable for example in sit-
uations, where class distribution is signifi-
cantly different and there is only few observa-
tions in some classes. The performance of the
MLPM-FKNN classifier is studied by test-
ing it with four datasets. The performance
is benchmarked against that of the original
k-nearest neighbor and the fuzzy k-nearest
neighbor classifiers. We find that MLPM-
FKNN classifier is able to reach a statisti-
cally significantly higher classification accu-
racy than the benchmarks used and has rea-
sonable performance metrics.
Keywords: Accuracy, Classification, Fuzzy
k-nearest neighbor, Performance, Power
mean.
1 Introduction
The ability to classify samples to classes is a key prop-
erty in a variety of scientific and engineering systems
that range throughout human activities. Methods
used in classification are typically divided into either
supervised classification methods (with classes prede-
fined) and unsupervised classification methods (with
classes not pre-defined) [17]. In this research we con-
centrate on the k-nearest neighbor algorithm (KNN)
[3] and the family of classification algorithms built
around it. The KNN is a well-known supervised clas-
sification method that has been applied in many fields
and is among the more popular techniques used in
classification. The KNN is based on calculating the
distance between already classified (labeled) samples
and the sample to be classified (unlabeled) in deter-
mining the class membership [4]. Many enhancements
to the original algorithm have been proposed, see, e.g.,
[2, 11].
One of the variants of the original KNN is the fuzzy
k-nearest neighbor (FKNN) algorithm that was in-
troduced by Keller in 1985 [8]. FKNN models the
uncertainty in the data by introducing membership
degrees to classes. In this research we develop the
FKNN classifier further by using multi-local mean vec-
tors (originally introduced by Pan et al. [11] to k-
harmonic mean nearest neighbor classifier) to repre-
sent the known classes. These multi-local means are
further generalized by using power mean and result-
ing mean vectors are used to calculate the distance of
the unlabeled sample from the classes. Examples on
such a prototype selection that was used to obtained
better accuracy in the nearest classification have been
reported in [14, 13, 9]. Moreover, since power mean is
used in the calculation of the class representative mean
vectors, we need to find what kind of mean is suitable
for the particular data set by finding proper parameter
value for power mean. By varying the mean control-
ling parameter in the power mean allows one to find
the parameter value (and the mean) that can enhance
the classification accuracy since suitable mean value
is data dependent. We observe that by adjusting the
parameter of the power mean one can arrive at several
well-known means like the arithmetic, the geometric,
and the harmonic means. The classification is done in
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a way that an un-labeled sample is assigned member-
ship in the class that has the representative multi-local
power mean vector that has the highest membership
degree to it.
The performance of the proposed method is studied
with four data sets that include binary and multi-class
data and compared with the performance of the clas-
sical KNN and the FKNN. We also test whether there
is a statistically significant difference between the clas-
sification results from the MLPM-FKNN and the two
benchmark classifiers. In addition to accuracy also
performance measures, such as sensitivity and speci-
ficity are reported.
The rest of this paper is structured into five sections.
Section 2 discusses the theoretical points of departure,
the KNN, the FKNN, and the power mean, which all
underlie this research study. The proposed MLPM-
FKNN approach is described in section 3. Section 4
introduces the data and then goes through the test-
ing of the proposed method and section 5 presents the
results obtained with a comprehensive discussion. Sec-
tion 6 shortly summarizes the findings and some con-
clusions are drawn.
2 Preliminaries
The FKNN and KNN classifiers, and the power mean
are briefly described in this section.
2.1 The k-nearest neighbor and the fuzzy
k-nearest neighbor classifiers
The k-nearest neighbor classification is one of the
most well-known data mining techniques and has been
widely applied for data classifications in many real-
world applications. The KNN algorithm starts with
the estimation of similarity (distance) of a new query
sample (sample to be classified) with the samples in
the training set (already classified). A set of k nearest
neighbors for the query sample are identified, regard-
less of the class they belong to. Each neighbor ”casts
a vote” about to which class the query sample should
belong. In the end of the process, the query sample
is assigned to a class by way of counting the votes -
the query sample is assigned to the class that has the
most votes (from the k neighbors). To give a simple
example, if k = 1, then the query sample is classified
to the class of its closest neighbor.
A formal definition of the above procedure can be
given as follows: Suppose a training set X shaped by
N samples as X = x1, x2, ..xN and C classes. Each
sample xj = x
1
j , x
2
j , .., x
S
j , x
S
t is described by S input
variables and an output class variable t (t ∈ C). The
nearest neighbor classifier finds the k nearest neighbors
in X for a new query sample Q by using a distance
function (Euclidean distance is widely used). Then,
the class label for Q is assigned by taking into account
the class labels t of the k nearest neighbors [4].
Studies have identified and addressed several weak-
nesses with the original KNN model. One identified
problem is that the KNN model considers each of the
k nearest neighbors to have the same importance in
the classification [12]. Another observed issue with
the KNN model is that once a sample is assigned to
a particular class, the strength of the membership in
the class is not indicated [8]. To remedy these issues
Fuzzy k-nearest neighbor (FKNN) model has been in-
troduced as an extension of the KNN [8]. Compared to
the KNN, the range of k in FKNN is often wider and
the classification results depend on the membership
degree value of the unlabeled samples in the labeled
classes in FKNN [16].
In the FKNN, for the query sample a degree of mem-
bership is assigned for each class and the decision is
based on the highest membership degree [8]. In the
membership function membership degrees are weighed
by the inverse of distance between query sample and k
nearest neighbors. In addition to this a fuzzy strength
parameter m is used. The allocated degree of member-
ships of the query sample Q in the classes represented
by the k nearest neighbors is measured as:
ui(Q) =
∑K
j=1 uij(1/ ‖Q− xj‖2/(m−1))∑K
j=1(1/ ‖Q− xj‖2/(m−1))
(1)
where, uij is the membership of the j
th sample in the
ith class in the training set, and m > 1 is the fuzzy
strength parameter that influences to the membership
degree. Often used value is m = 2. To define uij ,
there are two main approaches, one is through the
crisp membership and other is through the fuzzy mem-
bership [2]. One way to define the fuzzy membership
degree is introduced in [8], where k nearest neighbors
are found for each training sample (xj) and, the de-
gree of membership of xj in each represented class is
computed as:
uij(xj) =
{
0.51 + (nj/K) ∗ 0.49, if j = i
(nj/K) ∗ 0.49, if j 6= i (2)
where, nj indicates the number of neighbors observed
to belong in the jth class. Once all the degrees of mem-
berships are calculated for the query sample, the class
that has the highest degree of membership is assigned
to the query sample.
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2.2 Power mean used in local mean
computation
The power mean, also called generalized mean, is a
function of a family of means. If x1, x2, ..., xn is a set
of real numbers, and p is a parameter (∈ <) then power
mean (Mp) can be defined as follows.
Mp =
{ ∏n
i=1 x
1/n
i , if p = 0
( 1n
∑n
i=1 x
p
i )
1/p, if p 6= 0 (3)
The formula is defined generally for the two cases,
one is when p = 0 (it is equal to geometric mean1)
and other is p 6= 0. With the power mean we can
get other well-known means, when parameter p is ad-
justed. These special cases can be defined as harmonic
mean (p = −1), geometric mean (p = 0), arithmetic
mean (p = 1), quadratic mean (p = 2), cubic mean
(p = 3), and so on.
3 Fuzzy k-nearest neighbor classifier
based on the multi-local power
mean vectors
As in the FKNN method, the MLPM-FKNN de-
termines first the distance from the labeled sam-
ples {Xi, Ci}Ntri=1 to the query sample Q and the
k nearest neighbors nnk(Q) are identified (where
Ci ∈ (ω1, ω2, .., ωT : class labels)). Each sample Xi
(X1i , X
2
i , .., X
n
i ) contains n attributes. The k near-
est neighbors are grouped, based on the class they
represent into sub-samples. Then power mean vec-
tors for the sub-samples representing each class are
computed, these are called ”multi-local power mean
vectors”. That is, if the nnk(Q) is {Xi, Ci}ki=1 and
Ci ∈ (ω1, ω2, ..ωT ), then the local power mean vectors
for the corresponding classes are {Mp,r, ωr}tr=1, 1 ≤
t ≤ T . This also means that the number of local mean
vectors depends on the number of classes that can be
found from among the k nearest neighbors. Then the
Euclidean distance between the local power mean vec-
tors, representing the corresponding classes, and the
the query sample is calculated (for each local power
mean vector). The distance dEUC (Q, {Mp,r}tr=1) be-
tween each local power mean vector and the query
sample is weighted by the degree of membership in
each represented class {Mp,r, ωr}tr=1. Finally, the
query sample is assigned membership in the class ω∗.
Algorithm 1 summarizes the MLPM-FKNN method in
pseudo-code.
One motivation for building the MLPM-FKNN is that
it is well-known [10] that the KNN method encoun-
ters problems, when there is a clear imbalance in the
1It is well known that Mp →
∏n
i=1
x
1/n
i when p→ 0
Algorithm 1 MLPM-FKNN classifier
Inputs:
labeled(classified) samples: {Xi, Ci}Ntri=1, unlabeled
(query) sample: Q, k: number of neighbors and p:
power mean scale.
Outputs:
predicted class: ω∗ (∈ ω1, ω2, .., ωT ) for the query sam-
ple.
procedure
step 1: Compute the Euclidean distance between
{Xi}Ntri=1 and Q and sort them in an ascending or-
der.
step 2: Set the k nearest neighbors: nnk of Q
considering sorted distances as:
nnk(Q) = {Xi, Ci}ki=1.
step 3: Find the local power mean sub-samples:
{Mp,r}tr=1 from among the k nearest neighbors:
nnk(Q) for each class: {ωr}tr=1, 1 ≤ t ≤ T by
using eq. (3).
step 4: Calculate the Euclidean distance between
Q and {Mp,r}tr=1.
step 5: Assign the membership to {ωr}tr=1 by
using the weighted distance with the help of eq.
(1) and crisp method for computing uij .
step 6: Classify Q to the corresponding class (ω∗)
with which it has the highest degree of member-
ship.
quantity of labeled samples in the represented classes
in the ”proximity” of the query sample. The class
with more samples tends to dominate the prediction
of the query sample. This undesirable dominance can
be guided by using the local mean vectors instead of
using the k nearest neighbors directly. In the proposed
method, the local sub-samples are used to create a lo-
cal mean vector for all classes that are represented
within the k nearest neighbors and thus one vector
represents the whole neighborhood of the sub-sample
that represents each class. The value chosen for k has
potentially a great importance, when producing the
local power mean samples, and ultimately in the ac-
curacy of the classification. The classification results
might be inadequate, if the chosen k is too small. In
contrast, also a too high value of k may cause problems
with classification, because then outliers that may be
quite dissimilar to the nearest neighbors can become a
part of the k nearest neighbors [7]. It seems that the
performance of the proposed new model is quite high,
even when high k values are used. When the sub-
samples size increases with higher k the multi-local
power mean vectors can be said to become more re-
alistic or more comprehensive representations of the
classes they represent, this accordingly leads to the
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MLPM-FKNN classifier acquiring higher classification
accuracies compared with KNN and FKNN classifiers,
when value of the parameter k grows. Best classifica-
tion performance is achieved, when proper parameter
values for k and p are search.
4 Data and testing the proposed
model
In this section, the used data sets are shortly intro-
duced and the testing methodology is presented.
4.1 Datasets used in testing
Testing the method is carried out by using four
data sets all of which are freely available at the
UCI Machine learning repository[5] and at the KEEL
repository[1]. Table 1 summarizes the fundamental
properties of the data sets.
Dataset Database Samples Attributes Classes
Car KEEL 1728 7 4
Vehicle KEEL 846 18 2
Ionosphere UCI 351 34 2
Thyroid UCI 215 6 3
Table 1: Information and properties of the data sets.
Before using the data we studied it for entry errors
and quality issues and corrected any found problems.
The data sets do not contain missing values or nominal
variables.
4.2 Testing methodology and determining
the parameter values
The proposed new method and the benchmark meth-
ods were coded and implemented using MATLAB
2018. In the code, basic calculations have been done
using built-in MATLAB functions.
In the all data sets, the data were divided into 40%
for training, 40% for validation, and 20% for testing.
Stratified random sampling method was applied to en-
sure that all samples have the same proportions of
units representing the different classes present as the
whole data set. For cross validation we used hold out
method where division between training samples and
validation samples was randomly sampled 30 times.
The testing (and the data) was divided into two main
phases training & validation and testing. The train-
ing & validation in the context of this research means
using the training and the validation data subsets to
optimize the parameter values for the number of near-
est neighbors used k and the mean used p. The value
of the fuzzy strength parameter m was kept constant
at m = 2 for both MLPM-FKNN and FKNN methods.
This value was chosen based on the recommendations
given in [8, 4].
The number of neighbors k was selected from the range
{1, 2, .., 25}. The assumption here was when the k is
increasing the performance of proposed MLPM-FKNN
classifier would increase. Evidence in favor of this ex-
pectation can be found in the paper by Pan et al.[11],
where a k-nearest neighbor based on the multi-local
means reached a drop in the error rate of classifica-
tion with a higher k. The parameter value for the
power mean, p, was chosen (and optimized) from the
set {−8,−7, .., 7, 8}. When the optimal parameter val-
ues were found through iteration with the training and
validation subsets the performance was tested with the
test subset. The results presented for the proposed
new method and the benchmarks are the mean results
from the thirty runs made, e.g., the mean accuracy
((Mp)1×30) and the variance of accuracy of the thirty
runs with the optimal p and k.
4.3 Performance measures used
The key measure we used for the evaluation is accu-
racy [2, 4, 12], but in practice, presenting classification
results with accuracy alone is often not enough to be
able to fully understand the suitability of a method
for a given task. For this reason, we compute also ad-
ditional performance measures such as sensitivity and
specificity and we employ the following definitions [15].
Accuracy =
TP + TN
TP + TN + FP + FN
(4)
Sensitivity =
TP
TP + FN
(5)
Specificity =
TN
TN + FP
(6)
Where, TP (true positive), TN (true negative), FP
(false positive), and FN (false negative) are on the
2× 2 confusion matrix as follows.
(Positive(P ) Negative(N)
True(T ) TP TN
False(F ) FP FN
)
These performance measures aid to further understand
the performance of the the proposed method (or any
method). Illustrating this issue, let us look at a sim-
ple example: suppose that a confusion matrix exists,
where TP = 0, TN = 95, FP = 0, and FN = 5.
In this matrix accuracy= 95% and specificity= 100%,
but the precision and the sensitivity are zero. It is
easy to understand that any model with zero precision
is too weak to be used in any real-world purposes and
this highlights the importance of including also other
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performance measures than prediction accuracy, when
model performance is reported. To compute these per-
formance measures for the binary class problems (Ve-
hicle and Ionosphere), equations (4), (5), and (6) were
used. For the multi-class problems (Car and Thyroid)
we applied performance measure computations, such
as they are proposed in [15]. Accordingly, TN , TP
FP , and FN first and then sensitivity and specificity
were computed for each class. The average of sensitiv-
ities and specificities for each class were considered to
the final performance measures of the classifier exactly
as suggested in [6].
A paired t-test was used, in vein with [2] to test,
whether the difference of the (best) mean accuracies
achieved with 1) MLPM-FKNN and FKNN and 2)
MLPM-FKNN and KNN significantly differs from zero
under a 0.05 significance level. This is to say, we tested
for whether a statistically significant difference in the
classification accuracy of the different methods can be
found.
5 Results and discussions
The first results presented here are from the training
& validation step of testing the method. The values
of the accuracy and performance measures achieved in
the training & validation step are presented in Table 2.
In the table ”Max.Acc.” refers to the the maximum of
means of accuracy and ”sensitivity” and ”specificity”
the means of these values. As mentioned earlier, opti-
mal values for the parameters (Opt.param.val.) k and
p were being picked for when the mean accuracy was
at maximum.
Dataset Max Acc. Sensitivity Specificity Opt.param.val.
Car 0.9230 0.7903 0.9654 p = 0, k = 25
Vehicle 0.9412 0.8723 0.9628 p = 1, k = 11
Ionosphere 0.8881 0.8744 0.9265 p = 1, k = 16
Thyroid 0.9229 0.8813 0.9367 p = 3, k = 7
Table 2: Accuracy and related results for MLPM-
FKNN in the training & validation step.
We can see from the Table 2, that using arithmetic
mean, p = 1 has produced the maximum accuracy
with the Vehicle and Ionosphere data sets, while geo-
metric and cubic mean where optimal w.r.t. accuracy
with the Car and Thyroid data sets respectively. It
can be noted that the specificity is higher than the
sensitivity in all cases considered.
By observing Figures 1 and 2 one can visually inspect
the impact that different combinations of the param-
eters p and k have on selected performance measures
for the Vehicle data set in the training & validation
step.
Figure 1: Variance and accuracies for different (p, k)
parameter combinations with the Vehicle data
Figure 2: Mean accuracy and performance measures
for different (p, k) parameter combinations with the
Vehicle data
To understand how well the proposed new method per-
forms in comparison with the two benchmark methods
during the training & validation step, we show classi-
fication results for the three classifiers with all four
data sets in Table 3. In addition to the maximum of
the mean accuracy (Mean Acc.), variance, confidence
interval (CI), and the optimal parameter k value (Op.
K) is presented. As observed above, the mean accu-
racy and the variance are the result of the hold out
method with 30 repetition.
It is visible from Table 3 that the proposed MLPM-
FKNN method can outperform the FKNN and the
KNN in mean classification accuracy, while the con-
fidence intervals remain narrow. It seems that using
high values for the parameter k significantly increases
the performance of the classification. This is interest-
ing, because low values of k seem to be working better
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Data Measure MLPM-FKNN FKNN KNN
C
a
r
Mean Acc. 0.9230 0.8823 0.8740
Variance 1.13e-04 6.19e-05 6.09e-05
CI [0.9191, 0.9270] [0.8794, 0.8853] [0.8711, 0.8769]
Op. K k = 25 k = 4 k = 3
V
e
h
ic
le
Mean Acc. 0.9412 0.9291 0.9274
Variance 1.46e-04 1.92e-04 1.98e-04
CI [0.9367, 0.9457] [0.9239, 0.9343] [0.9222, 0.9327]
Op. K k = 11 k = 4 k = 1
Io
n
o
sp
h
e
re Mean Acc. 0.8881 0.8443 0.8431
Variance 5.57e-04 4.24e-04 4.66e-04
CI [0.8793, 0.8969] [0.8366, 0.8520] [0.8350, 0.8512]
Op. K k = 16 k = 4 k = 3
T
h
y
ro
id Mean Acc. 0.9229 0.9167 0.9101
Variance 5.92e-04 6.16e-04 6.05e-04
CI [0.9138, 0.9320] [0.9074, 0.9259] [0.9009, 0.9193]
Op. K k = 7 k = 3 k = 1
Table 3: Classification results for all three classifiers
for the four datasets. CI = confidence interval
Dataset Paired
with
MLPM-FKNN
(p-value)
test-
statistic
Car FKNN 5.06e−24 significant
KNN 4.15e−28 significant
Vehicle FKNN 6.28e−04 significant
KNN 1.42e−04 significant
Ionosphere FKNN 2.26e−10 significant
KNN 1.91e−10 significant
Thyroid FKNN 0.333 not-
significant
KNN 0.043 significant
Table 4: T-test results on the statistical significance in
classification accuracy of the proposed new method.
for the benchmark methods and k = 1 has been the
optimum for the KNN method with two of the data
sets used. This finding corroborates what was found
previously by Derrac at el.[4].
In Table 4, the results from paired t-test for testing the
statistical significance of the classification accuracies
between the proposed new classifier and the bench-
marks are presented. The test results show that the
claim that MLPM-FKNN has higher performance over
the benchmarks finds statistical corroboration. One
can observe that only in the case of the thyroid data
the proposed new classifier cannot be said to produce
statistically significantly better results in comparison
with the result obtained from FKNN.
5.1 Performance with the testing data
This section presents the results obtained with the
testing data (constituting of 20% of the data set size)
on the classifiers, whose parameter values have been
optimized in the training & validation phase. In this
testing phase, the test sample set was evaluated with
training set samples which were saved during the hold-
out crossvalidation to get optimal parameter values
from validation results. Then mean accuracies and
other performance measures were computed. Table 5
shows the results obtained for the proposed new clas-
sifier and for the benchmark classifiers for mean clas-
sification accuracies (Mean Acc.), sensitivity (Mean
Sen.), specificity (Mean Spe.) and confidence inter-
val (CI) and variance for all the four data sets. The
results from the test set show that MLPM-FKNN clas-
sifier has a higher classification accuracy in all cases
compared to the benchmarks.
Data Measure MLPM-FKNN FKNN KNN
C
a
r
Mean Acc. 0.9246 0.8742 0.8632
Mean Sen. 0.8105 0.6704 0.6085
Mean Spe. 0.9667 0.9119 0.9014
CI [0.9204, 0.9288] [0.8688, 0.8796] [0.8577, 0.8687]
Variance 1.26e-04 2.08e-04 2.15e-04
V
e
h
ic
le
Mean Acc. 0.9294 0.9051 0.9006
Mean Sen. 0.8568 0.7907 0.7910
Mean Spe. 0.9521 0.9432 0.9355
CI [0.9241, 0.9347] [0.8966, 0.9136] [0.8932, 0.9080]
Variance 2.03e-04 5.18e-04 3.95e-04
Io
n
o
sp
h
e
re Mean Acc. 0.8381 0.7957 0.7952
Mean Sen. 0.8212 0.7686 0.7694
Mean Spe. 0.8925 0.9215 0.9113
CI [0.8281, 0.8481] [0.7875, 0.8039] [0.7869, 0.8036]
Variance 7.237e-04 4.81e-04 4.97e-04
T
h
y
ro
id
Mean Acc. 0.9434 0.9279 0.9233
Mean Sen. 0.9256 0.8520 0.8449
Mean Spe. 0.9584 0.9254 0.9214
CI [0.9316, 0.9552] [0.9171, 0.9387] [0.9138, 0.9327]
Variance 9.95e-04 8.34e-04 6.40e-04
Table 5: Classification results for all three classifiers
for the four datasets. CI = confidence interval
Also mean sensitivity and specificity values show im-
proved results compared to FKNN and KNN. Using lo-
cal means in this manner also seem to lower variances
a bit compared to the benchmark methods. Table 6
illustrates the results of the statistical t-test on the ac-
curacies of the proposed method and benchmarks over
the test sample. From Table 6, it is also confirmed
that the MLPM-FKNN method has produced signif-
icantly higher accuracies in classification for the test
set than accuracies of FKNN and KNN classifiers.
Dataset Paired
with
MLPM-FKNN
(p-value)
test-
statistic
Car FKNN 1.64e−18 significant
KNN 2.88e−25 significant
Vehicle FKNN 6.73e−06 significant
KNN 2.41e−08 significant
Ionosphere FKNN 4.95e−08 significant
KNN 1.06e−12 significant
Thyroid FKNN 0.051 not-
significant
KNN 0.008 significant
Table 6: T-test results on the statistical significance
for test set in classification accuracy of the proposed
new method with benchmarks.
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6 Conclusions
The aim of this paper was to present a new classifica-
tion method in the k-nearest neighbor family of clas-
sification algorithms that is based on using the power
mean to calculate a multi-local mean that serves as
a representative for the representative classes near the
to-be-classified sample. The proposed new classifier in-
cludes also elements of the previously presented fuzzy
KNN algorithm in that the strength of class member-
ship of the to-be-classified sample is also taken into
consideration in the classification. The results of this
research show that the proposed MLPN-FKNN classi-
fier offered improved classification accuracy compared
to the KNN and the FKNN classifiers with the bench-
mark data sets. The performance was tested by using
four different data sets and the improvement in classi-
fication accuracy was found to be statistically signifi-
cant.
It can be observed in connection with the new pro-
posed method that the best classification accuracy is
found with, high k values (number of nearest neighbors
considered). This we attribute to the use of multi-local
power mean. We note that the computation time re-
quired for using the proposed MLPM-FKNN method
is also longer than that of the benchmarks, it is clear
that this is a result of the more numerous calcula-
tions needed caused by the increase in parameters and
thus testing of more possible parameter combinations
to find optimal parameters.
Future research possibilities include, e.g., testing the
effect including power means would have together with
other variants of KNN algorithms, such as IV-KNN [4],
MLM-KHNN [11], and PTVPSO-FKNN [2].
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Abstract. This paper investigates relevant features for the prediction
of intraday S&P 500 returns. In contrast to most previous research,
the problem is approached as a four class classification problem to ac-
count for the magnitude of the returns and not only the direction of
price movements. A novel framework for feature selection using a hy-
brid approach is developed that combines correlation as a fast filter
method, with the wrapper method differential evolution feature selec-
tion (DEFS) that deploys distance-based classifiers (k-nearest neighbor,
fuzzy k-nearest neighbor, and multi-local power mean fuzzy k-nearest
neighbor) as evaluation criterion. The experimental results show that
feature selection successfully discarded features for this application to
improve the test set accuracies or, at a minimum, lead to similar accu-
racies than using the entire feature subset. Moreover, all setups in this
study ranked technical indicators such as 5-day simple moving average
as the most relevant features in this application. In contrast, the features
based on other stock indices, commodities, and simple price and volume
information were a minority within the top 10 and top 50 features. The
prediction accuracies for the positive return class considerably higher
than the negative class predictions with over 70% accuracy compared to
30%.
Keywords: Classification · Financial market · Machine learning · K-
nearest neighbor · Supervised feature selection
1 Introduction
Forecasting future stock prices or returns is considered an essential subject in
finance research, but it has been a challenging task due to the non-linear and
non-stationary behavior of the stock market [1]. Having representative and infor-
mative input features is crucial for attempting to predict movements of the stock
market in the prediction [2]. Many studies in the stock market literature have
attempted to determine which features can be used to forecast the market (see
eg., [2–4]). However, most of those studies have been limited to a small number
of features. In this study, we focus on examining possibly relevant features from a
large set of input features, including areas such as the macro-economy, technical
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indicators, commodities, exchange rates and the stocks as well as stock indices.
To address the case of dimensionality associated with fitting machine learning
models to high-dimensional data, this paper develops an approach based on
feature selection to identify a subset of relevant features for the stock market
forecasting. Supervised “feature selection” refers to the process of selecting a
subset of the relevant features from the set of the existing features [5], which
will improve the classification accuracy or, at a minimum, not deteriorate it con-
siderably [6]. Feature selection methods can be categorized into filter methods,
which are used for pre-processing, wrapper methods that use a classifier for the
selection, and embedded methods, which include feature selection already in the
classifier itself [7]. Within this study, a hybrid approach is pursued where ini-
tially a filter method is applied to discard linearly associated features before a
computationally more expensive wrapper method is provided with this subset
to obtain a final feature subset.
Among the various classification methods in machine learning, k-nearest
neighbor classifiers are adopted for this investigation due to their simplicity,
easy implementation [8], and remarkable achievements in some stock market
prediction applications [9, 10]. We selected k-nearest neighbor (KNN) [11], fuzzy
k-nearest neighbor (FKNN) [12], and also the multi-local power means fuzzy
k-nearest neighbor (MLPM-FKNN) [8] classifier, which was introduced recently
[8]. We used this new FKNN method (MLPM-FKNN) since it has shown more
robust to outliers and random variables than original ones according to [8].
Distance-based classifiers generally account for all features equally when calcu-
lating the distances between points. Thus, we combine the KNN classifiers with a
hybrid feature selection approach to address the potentially detrimental impact
of irrelevant features on this type of classification.
The remainder of the paper is organized as follows. Section 2 shortly discusses
the theoretical concepts applied in this research. A detailed description of the
data set used and the empirical process developed are provided in Section 3.
The empirical results of the feature selection and stock return prediction are
presented in Section 4 and the concluding remarks on our study are presented
in Section 5.
2 Preliminaries
2.1 Differential Evolution Feature Selection
Differential evolution (DE) was originally proposed in [13] and is a well-known
population-based heuristic optimization method [14]. It has been applied in many
disciplines due to its simplicity in implementation, fast convergence, and robust-
ness [15, 16]. In the DE method, optimal solutions are searched across four main
steps: initialization, mutation, crossover, and evaluation of objective function
[17]. To make DE more reliable as a wrapper method for feature selection (FS),
the study in [15] has introduced several modifications to its search strategy, refer-
ring to the enhanced version as DEFS. This method is applied and implemented
in our study, and the complete feature selection process can be found in [15].
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2.2 K-Nearest Neighbor Classifier
The idea behind the k-nearest neighbor methods is simple and is based on mea-
suring the distance of a query sample (the sample to be classified) to the la-
beled samples in the training data. Formally speaking, it starts with computing
distances from the query sample (y) to the training set X that is composed
of N samples X = x1, x2, ..., xN that belong to C classes. Also each sample
xi = {x1i , x2i , ..., xMi }, xci is characterized by M feature values and one class label
c (c ∈ C). Several distance functions are available to be used for this step, but
the one that is often used is the Euclidean distance metric. Next, a set of k
nearest neighbors of y together with corresponding class labels is found. In the
final step, the class for y is predicted by assigning the most common class among
the set of k nearest neighbors.
2.3 Fuzzy K-Nearest Neighbor Classifier
In the FKNN, for the query sample y, a membership degree for each class is
assigned, and the class decision is made based on the highest membership degree
[12]. In particular, the allocated membership degree of y for each class indicated
by the k nearest neighbors is calculated using the following membership function:
ui(y) =
∑k
j=1 uij(1/ ‖y − xj‖2/(m−1))∑k
j=1(1/ ‖y − xj‖2/(m−1))
(1)
where, m ∈ (1,+∞) is a fuzzy strength parameter and uij is the membership of
the jth sample in the ith class of the training set X. To compute uij , we used
a crisp labeling approach [12] in which full membership is assigned to a known
class of each labeled sample and zero membership for all other classes. The fuzzy
strength parameter m influences the membership degree by providing relative
importance to the distance from y to k nearest neighbors to be weighted. For
this parameter a common choice is a value of 2.
2.4 MLPM-FKNN Classifier
As another variant of the KNN, the multi-local power mean fuzzy k-nearest
neighbor (MLPM-FKNN) classifier that was introduced in [8] is particularly
preferable to the standard KNN and FKNN methods in situations where highly
imbalanced classes are present (i.e., there are only a few samples in some classes).
In the MLPM-FKNN, the obtained set of k nearest neighbors of y is further
grouped into each of the classes they belong to, and then r (≤ C) number of
multi-local power mean vectors (Mrt=1) are computed (r is the number of classes
presented in the set of nearest neighbors) using following formula:
Mt =
{∏n
i=1 x
1/n
i , if p = 0
( 1n
∑n
i=1 x
p
i )
1/p, if p 6= 0 (2)
where, p is a real-valued parameter.
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In the next step, the distances of y to multi-local power mean vectors are
measured using a suitable distance function (e.g., Euclidean distance). These
distances are then used to find the class memberships for y, utilizing eq. (1), and
a decision on the class is made according to the highest membership degree. In
this study, however, we slightly updated the learning part of the MLPM-FKNN
algorithm before applying it. First, the training data is grouped into classes, and
then the sets of k nearest neighbors of y are found from each class. After this,
for each k nearest neighbor set in each class, the multi-local power mean vectors
are computed. The next steps are the same as in the MLPM-FKNN algorithm.
We noticed that the updated version1 of the MLPM-FKNN outperforms the
original one in the classification of the intraday return of the S&P 500—thus, we
report the results only for the updated classifier together with the benchmark
algorithms in this study.
3 Data and Hybrid Feature Selection
3.1 Data Description
The data set employed in this study contains daily S&P 500 stock index prices
and a set of expanding variables that are assumed to be relevant for the predic-
tion of this index. Similar types of variables based on commodity prices, exchange
rates, technical indicators, and other stock indices have also been used in pre-
vious studies [4, 18, 19]. Historical time series with 4182 samples were obtained
from Yahoo Finance [20] and FRED Economic Data [21] during the period from
January 10th, 2007 to October 10th, 2020.
Input Features. We considered and collected 302 features summarized by
[22] as frequently used for stock market predictions in previous studies. These
selected 302 features were at the top of the list concerning the frequency of usage
in stock market forecasting applications according to the study of [22]. The list of
features across their categories and the corresponding number of input features
used in this study are summarized in Table 1. Technical indicators (TIs) are
further categorized into “Basic TIs,” which refers to Open, High, Low, and Close
prices and Volume of the S&P 500 index and “Other TIs” refers to all other TIs
that had to be computed based on the Closing price of the S&P 500, and their
variants. From [22], one can find the definitions of commonly known abbreviated
forms of the features in Table 1. The different variants of TIs were created by
changing the time-period (n in days) and other parameters (n1, n2 for EMA,
high(H), low(L), middle(M) for Bollinger bands, slow, fast, sign in MACD).
For the other time series where it was possible we collected all their basic TIs.
Also, % changes of the selected TIs (e.g., Williams R, Stochastic K) and other
time series were used.
1 The MATLAB code of the updated MLPM-FKNN algorithm can be found from
https://github.com/MahindaMK/Multi-local-Power-means-based-fuzzy-k-nearest-
neighbor-algorithm-MLPM-FKNN
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Table 1. Information of the input features.
Category Feature list No. of features
Basic TIs Open, High, Low, Close, Volume (n) 14
Other TIs RSI(n), MACD(slow,fast,sign), EMA(n), Bias (n), 140
SMA(n), Disparity(n), OBV, Return(n),
Williams %R(n), CCI(n), Momentum(n), MFI(n),
Stochastic %K(n), Stochastic %D(n), TMA(n),
Bollinger bands (H/M/ L), Chaikin Volatility,
Price oscillator (n1, n2), Typical price, TRIX
Macro-economy Treasury Bills, Term Spread, AAA Corporate Bond, 27
Treasury Constant Maturity Rate, BAA Corporate
Bond, Treasury Yields, Default Spread
Commodities Crude Oil, Gold, Silver 18
Exchange rates USD/ NTD, USD/JPY, USD/ GBP, 25
USD/ CAD, USD/ CNY
Other stocks/ Hang Seng, SSE, CAC40, DJIA, NASDAQ 78
stock indices Microsoft, Amazon, JPM, General Electric, JNJ,
Apple Inc., Wells Fargo, Exxon Mobil
In the data, other technical indicators (“Other TIs”) were generated using
closing prices of the S&P 500 stock index—for some indicators, high, low, and
open prices were also used. Since some indicators require initial data before their
value can be calculated, we started our data after such a period (e.g., 5-day
moving average MA(5)). Next, the missing values that occurred when the time
series data of the S&P 500 was concatenated with other time series were replaced
using linear interpolation. All features in the data were scaled into the interval
[0, 1]. Technical indicators are commonly used to infer trading signals for when a
stock or market is overbought or oversold, and corresponding selling and buying
decision may be profitable. Therefore, the continuous data of technical indicators
was converted into discrete data (trading signals) to represent actual trading
signals rather than the numeric values for the technical indicators they can be
inferred from. For the relative strength index (RSI) and commodity channel
index (CCI), we followed the techniques presented in [19] to convert them into
trading signals. To create the signals from other technical indicators, a quartile-
based approach was applied. That is, if the TI > Q3 then set to 1, if Q3 >=
TI > Q2 then set to +0.33, if Q2 >= TI > Q1 then set to −0.33, and if the
TI =< Q1 then set to −1. Thus, four discrete equally-spaced categories were
created, which corresponds to the number of classes.
Output Variable. As in [4], in this paper, the intraday (open-to-close) return
of the S&P 500 index was selected as target and set up as a multi-class variable
within four classes (“1”, “2”, “3” and “4”) according to daily magnitude of the
return. In this variable, class label “4” represents the intraday returns that are
smaller than −0.5% (i.e., strong negative), “3” between −0.5% and 0.0% (i.e.,
slightly negative), “2” between 0.0% and 0.5% (i.e., slightly positive) and “1”
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larger than 0.5% (i.e., strong positive). The cut-off using +/- 0.5% was selected
since it results in quite balanced classes (class 1: 27.42%, class 2: 28.08%, class
3: 23.92%, and class 4: 20.58%) and was also deployed in [4].
3.2 Hybrid Feature Selection
We first split the data set into two data sets, one for training (from January 10th,
2007 to January 18th, 2018) and the other for testing (from January 19th, 2018
to October 10th, 2020). The training sample was further repeatedly divided into
80% for the training and 20% for the validation sets, and these subsets were used
in the feature selection and parameter optimization processes. The test sample
was kept to evaluate the predictive performance of the trained classifiers with
the selected features and optimized parameters in the last phase.
Feature Removal by Pearson Correlation Coefficients. Wrapper meth-
ods, especially those including optimization such as the DEFS, require com-
parably high computational time since they use an iterative process including
a classifier for feature selection. Thus, the methodology in this paper includes
Pearson correlation, which is used as a filter method before DEFS. The aim is
to efficiently remove linearly dependent features initially in order to reduce the
number of features and the computational complexity for the DEFS wrapper
method.
The Pearson correlation coefficient is a simple filter method that is used in the
context of feature selection to measure the linear dependence between a variable
and the target (class label) [7], where higher (absolute) correlation is a sign of
the relevance of a variable for the target. In contrast to that, a high (absolute)
correlation between different explanatory variables may indicate that keeping
both variables instead of a single one may not add information, thus potentially
being redundant. Here, we followed the second approach and calculated the
Pearson correlation coefficient between pairs of features fi, fj for i, j ∈ {1, .., 302}
to measure how much information they potentially have in common. A threshold
of 0.95 for the absolute correlation between two features fi and fj was set so
that for two variables that have a very high absolute correlation, one of these
two variables can be removed. If corr(fi, y) > corr(fj , y) then remove fj , else
remove fi, where y is the class variable.
Parameter Settings and Exploring Relevant Features with DEFS. In
this step, the DEFS with each selected classifier was deployed to find the most
relevant features for forecasting the intraday return of the S&P 500 index. As
parameters in the DEFS, we set both population size and the number of iter-
ations to 50 and the crossover rate to 0.5. Also, we provided 5, 10, 15, ..., 50 as
the desired number of features to be selected (i.e., number of the features in
the resulting feature subset). Other parameters involved in the DEFS algorithm
were specified according to the previous study in [15]. For the nearest neighbor
classification methods, the number of nearest neighbors k was kept constant at
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20, the fuzzy strength parameter m was set to 2, and the power mean parameter
p was 1.5, as in the previous studies [8, 12, 23]. We received the selected feature
subsets (i.e., feature indices) and classification error rates across the different it-
erations as outputs from the DE function. This process was cross-validated using
the holdout method where the training and the validation sets were generated
10 times randomly.
4 Experiment Results
4.1 Results in the Correlation Analysis
The evidence from the correlation coefficients based analysis suggests eliminating
some features due to linear dependence effects. Some pairs of features, such as
the low price of the Hang Seng and of the SSE composite index were even
perfectly correlated. Overall, in this analysis, the dimensionality of the data set
was reduced by discarding potentially redundant features, keeping 207 out of the
302 original features for the subsequent DEFS and classifier training.
4.2 Results in the DEFS
The wrapper DEFS that is the second component in the hybrid feature selec-
tion (filter+wrapper) was applied together with each nearest neighbor classifier.
Fig. 1 illustrates the frequency of the top 50 features according to the DEFS
algorithm in combination with each of the classifiers during the holdout cross-
validation.
At first glance, it is apparent that for each of the classifiers, the majority of
selected features are technical indicators in the list of the top 50 features. The
most important features across all these classifiers appear to be the 5-day moving
average (SMA (5)) and the Silver low price both being consistently within the top
10 higher ranked features. Other features that were at least contained twice in the
top 10 include technical indicators representing model classification of the last
5-15 days such as the SMA (15), Williams R(10), Disparity(10), RSI(6), Chaikin
Volatility(10). Finally, it is noteworthy that no macro-economic or exchange rate
variations are contained in any of the top 50 features.
4.3 Prediction Performance
In the training and validation step, the parameters of the classification models
were optimized by using 30 runs of cross-validation with the holdout method. The
best value for k was searched from the range {1, 2, ...., 30} during the training
& validation. The value for the parameter p in power mean was chosen and
optimized from the set {0, 0.5, 1, ..., 5} for the MLPM-FKNN model. Accordingly,
the optimal parameter values selected were those corresponding to the maximum
validation accuracy. Fig. 2 illustrates the mean classification errors (%) of each
model in the DEFS for each feature subset size.
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Fig. 1. The frequency of the 50 best features (descending order) based on the DE
feature selection with each classifier.
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Fig. 2. Mean classification error (%) across ten runs of cross-validation for each feature
subset size.
According to the results in Fig. 2, we can see that when the size of the op-
timal feature subsets with DEFS increases, the MLPM-FKNN model achieves
better performance than the KNN and FKNN classifiers. This can be expected
because the samples with more features make local power mean vectors more
robust (and representative) in the learning. Looking at the classification perfor-
mance, the mean errors appear quite high compared to other classification tasks
with the real accuracies for each model only being in the mid-thirty accuracies.
However, it should be kept in mind that this task is a four class problem and
that low classification accuracies do not necessarily mean that a trading strategy
based on these results would not be able to generate excess returns [4, 24]. When
aggregating the four-class prediction (1: strong positive, 2: slightly positive, 3:
slightly negative, and 4: strong negative) to a binary class level by counting
class 1 and class 2 prediction as “positive” and class 3 and class 4 prediction
as “negative”, the results become clear and can more easily be compared with
other binary studies.
Table 2 presents the aggregated accuracies on the positive and negative
classes by classifier on subset size.
According to the results in Table 2, it is clear that the positive class can
be predicted more accurately (around 70%) than the negative class (around
20 − 30%). This pattern appears consisted for all classifiers and feature subset
rises. It is interesting to highlight that this result is not based on the class
imbalance, which is not very high (57% positive, 43% negative observations).
This result suggests that negative predictions are more challenging and, thus,
less accurate for each of the KNN classifiers. This finding that the prediction of
“negative” direction of the S&P 500 with less accuracy than “positive” upward
movement appears consistent with the prediction results presented by the study
of [4], which investigated the intraday S&P 500 return during the period (Oct
2010 to March 2018) using a different classifier (Random Forest).
10 M. M. Kumbure et al.
Table 2. Prediction performance (%) on positive and negative classes with test sample
for all classifiers and for each feature subset.
MLPM-FKNN KNN FKNN
Subset Positive Negative Positive Negative Positive Negative
5 70.55 (4.99) 30.14 (4.4) 79.18 (3.89) 21.71 (5.3) 67.87 (2.78) 35.49 (3.02)
10 68.71 (4.9) 32.42 (3.76) 77.53 (3.96) 21.45 (4.56) 75.97 (3.57) 29.48 (3.55)
15 73.35 (4.41) 28.08 (4.04) 80.23 (3.73) 24.56 (3.4) 76.64 (4.04) 25.77 (4.12)
20 73.78 (3.24) 26.48 (3.02) 73.78 (2.96) 27.77 (3.12) 77.59 (4.01) 26.38 (4.49)
25 78.00 (3.85) 20.16 (3.3) 78.22 (3.15) 25.98 (3.45) 74.85 (4.2) 28.48 (4.2)
30 75.31 (3.86) 21.05 (4.34) 73.71 (3.45) 27.77 (3.55) 71.95 (3.37) 30.73 (3.47)
35 74.38 (3.31) 23.12 (3.51) 74.73 (3.19) 27.80 (3.82) 77.14 (3.2) 26.90 (4.05)
40 73.00 (4.35) 25.02 (4.3) 77.01 (4.35) 24.86 (4.43) 75.97 (3.49) 28.66 (3.64)
45 70.60 (3.68) 26.60 (4.07) 77.26 (4.48) 24.56 (4.75) 73.83 (4.27) 28.15 (4.2)
50 72.08 (3.82) 24.81 (3.72) 76.91 (4.25) 26.43 (5.25) 73.06 (3.88) 27.02 (3.68)
302 82.24 (3.92) 16.64 (4.15) 90.18 (3.55) 13.17 (4.28) 88.38 (4.08) 14.63 (4.16)
Furthermore, we can see from Table 2, the last row that shows the test
set accuracies with all features are the highest on the positive return but the
lowest on the negative return for all classifiers. This indicates that the predictors
with all features preferred more to predict positive return but not much on the
negative return. This verifies the effectiveness of using relevant features with
DEFS since it improves, or at a minimum, does not deteriorate the classification
accuracy on the negative return of the intraday return of the S&P 500 even when
a substantial amount of the input features is removed.
5 Conclusion
This paper examined potentially relevant features for the prediction of the intra-
day S&P 500 return in a four-class classification problem. A hybrid feature se-
lection approach consisting of Pearson correlation (filter) and a DEFS algorithm
(wrapper) was deployed to select only relevant features for the classification.
Three distance-based classifiers (KNN, FKNN, and MLPM-KNN) were used as
an evaluation criterion for the DEFS, and all three classifiers almost exclusively
ranked technical indicators among the most relevant features for the intraday
return S&P 500 predictions. The 5-day simple moving average (SMA (5)) and
the Silver low price appear particularly relevant in this study given that all three
classifiers include them in their top 10 features out of the more than 207 fea-
tures included in the DE feature selection. Moreover, macro-economic features
are weakly correlated to many technical indicators - however, those features do
not appear in the top 50 feature subsets for all classifiers. This remains an open
question in our study and is required for further investigations. The aggregated
results in this study highlighted that prediction for “negative” movements was
much less accurate than for “positive” movements of the S&P 500. This may
suggest that the features in this study are related for the prediction of “posi-
tive” but other additional features, may be relevant for the predicting “negative”
Relevant features for stock market prediction 11
development in the S&P 500. In the future, this finding can be further investi-
gated for the S&P 500 index with different time horizons and classifiers and on
different global stock markets.
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a b s t r a c t 
We present a new generalized version of the fuzzy k -nearest neighbor (FKNN) classifier that uses lo- 
cal mean vectors and utilizes the Bonferroni mean. We call the proposed new method Bonferroni-mean
based fuzzy k -nearest neighbor (BM-FKNN) classifier. The BM-FKNN classifier can be easily fitted for vari- 
ous contexts and applications, because the parametric Bonferroni mean allows for problem-based param- 
eter value fitting. The BM-FKNN classifier can perform well also in situations where clear imbalances in
class distributions of data are found. The performance of the proposed classifier is tested with six real- 
world data sets and with one artificial data set. The results are benchmarked with classification results
obtained with the classical k -nearest neighbor-, the local mean-based k -nearest neighbor-, the fuzzy k -
nearest neighbor- and other three selected classifiers. In addition to this, an enhancement of the local
mean-based k -nearest neighbor classifier by using the Bonferroni means is also proposed and tested. The
results show that the proposed new BM-FKNN classifier has the potential to outperform the benchmarks
in classification accuracy and confirm the usefulness of using the Bonferroni mean in the learning part of
classifiers.
© 2020 Elsevier B.V. All rights reserved.
1. Introduction
In this paper, we focus on the k -nearest neighbor (KNN) clas- 
sification method and its generalizations. The objective of classifi- 
cation (algorithms) is to identify the class to which a new unclas- 
sified object or sample belongs to. In supervised machine-learning 
based algorithms the classification is done based on previous train- 
ing of the algorithm with pre-classified data. The KNN algorithm 
introduced in [1] is a well-known supervised machine-learning 
based classification technique that is used in a wide range of ap- 
plications and is one of the most used methods in classification to- 
day. The KNN classifier confronts the classification problem by first 
measuring the similarity (distance) between a new to-be-classified 
sample and training samples, to observe the k nearest neighbors 
for the new sample, and then determines the membership of the 
new sample to the class that has the largest number of neighbors 
with the new sample [2] . 
The performance of the KNN classifier is generally good, how- 
ever, it is well known that the prediction accuracy of the method 
can be negatively influenced by outliers, which are likely to distort 
∗ Corresponding author.
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mahinda.mailagaha.kumbure@student.lut.fi (M. Mailagaha Kumbure),
pasi.luukka@lut.fi (P. Luukka), mikael.collan@lut.fi (M. Collan).
the class-distribution [3] . To deal with this problem, a local mean- 
based k -nearest neighbor (LM-KNN) classifier was introduced in 
[4] . The LM-KNN variant utilizes the local mean vectors for each
class to classify a query sample to a particular class. The LM-KNN
algorithm first finds the local mean vectors in each class in terms
of all k nearest neighbors and then allocates the query sample to
the class represented by the local mean vector that has the low- 
est Euclidean distance from the query sample [5,6] . The robust- 
ness and the simplicity of the LM-KNN algorithm has invited re- 
searchers to develop a variety of enhanced method variants (see
examples in [2,6–10] ) and to construct variant-based classification
systems [11] .
One propellant for the development of new KNN variants has 
been the observation that the original method has weaknesses. For 
example, in the original KNN algorithm, the already classified sam- 
ples are assumed to have the same importance in the classifica- 
tion process of a new sample [12] . This simplification can harm 
the classification performance especially in situations, where class 
distributions are not in balance [13] . Another difficulty with the 
KNN model is that once the new sample is allocated to a partic- 
ular class, the “strength” of membership in the class of the clas- 
sified sample is not considered [14] . To remedy these problems, 
Keller [14] applied idea of including membership degrees [15] in 
the KNN approach, to produce a fuzzy version of the algorithm. 
https://doi.org/10.1016/j.patrec.2020.10.005
0167-8655/© 2020 Elsevier B.V. All rights reserved.
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Consequently, the fuzzy k -nearest neighbor (FKNN) classifier was 
created and is one of the most popular directions of the KNN de- 
velopments. The FKNN technique performs the classification by in- 
troducing membership degrees to classes, while dealing with the 
uncertainty in the data. In this study, we extend the FKNN clas- 
sifier further, by utilizing local mean vectors, which are formed 
by using the known classes of k nearest neighbor sample vec- 
tors. To generalize these local mean vectors, the Bonferroni mean 
operator is used and the resulting local Bonferroni mean vectors 
are used to measure the similarity of the new sample to the 
classes. 
KNN is based on the majority voting principle, where the class 
of a new sample is based on nearest neighbors and their major- 
ity class. In the case that a data set is clearly imbalanced an ob- 
served drawback of majority voting principle is that the classified 
samples of the class or classes with a large number of samples 
tend to dominate the prediction of the new sample simply due to 
the fact that they often are more numerous among the k nearest 
neighbors [16] . A way to overcome this drawback is to use local 
means calculated from the classes that are represented within the 
nearest neighbors instead. Class assignment is then done based on 
the closest local mean vector rather than based on the number of 
nearest neighbors. In this way the classes with the highest num- 
ber of samples will not have such domination over the less nu- 
merous classes. The FKNN bases the classification on the most fre- 
quent class and also the distance of the unclassified sample to the 
nearest neighbors. The distance that can be interpreted as impre- 
cision with regards to similarity of individual samples also affects 
classification. Averaging operators also are able to overcome prob- 
lems with “individual imprecision” - this can be understood also as 
the “wisdom of the crowd” and the first one to discuss this issue 
was Aristotle [17] . Later Francis Galton made this notion popular 
by his famous example of a country-fair contest of weight estima- 
tion [18] . Based on these precursors one can expect that using lo- 
cal means should have a better predictive power than individuals 
alone. 
The Bonferroni mean is an aggregation operator that was origi- 
nally introduced in [19] and further developments were discussed, 
e.g., in [20,21] . It can be defined as a function of means and it 
has been used as a very useful indicator in many applications 
[see [22,23] ]) due to its capability to perceive inter-relationships 
and to allow multiple comparisons between input arguments 
[24] . 
Some previous studies have noted that using the arithmetic 
mean is not producing optimal results with classifiers, instead 
performance could be improved by using alternative averaging 
operators, for example, generalized means [25] , ordered weighted 
means (OWA) [26] , and harmonic mean [6] . We note that as 
the generalized mean is a special case of the Bonferroni mean 
and results gained with generalized mean are at least as good 
as with arithmetic mean and often better, we can expect that 
results gained using Bonferroni mean are at least as good as with 
generalized mean and in some cases better. As the Bonferroni 
mean operator is applied to compute the class-representative 
local-mean vectors, one must be aware of the possibility to op- 
timize the parameters to fit the context (particular data sets). 
Changing the parameters of the Bonferroni mean allows us to find 
good (optimal) parameter values, which will enhance the classi- 
fication accuracy. By altering the parameters, one can “choose”
several well-known means through the Bonferroni mean oper- 
ator, such as the geometric, arithmetic, quadratic, and power 
means. 
We study the performance of the proposed variant by using 
both artificial and real-life data sets containing binary and multi- 
class classification problems. To compare the performance of the 
proposed BM-FKNN method we benchmark its performance with 
the performances of FKNN, LM-KNN, KNN, SVM, NB, and the simi- 
larity classifier. In addition to this, we also investigate the classifi- 
cation performance of an improved variant of the LM-KNN classier 
that uses the Bonferroni mean - this is the second new variant pro- 
posed in this research. To evaluate the performance we use accu- 
racy, sensitivity, and specificity as our performance measures. Be- 
sides this we also test whether differences between the classifica- 
tion accuracy of the BM-FKNN and the benchmarks is statistically 
significant. 
2. K -nearest neighbor classifier variants and the Bonferroni 
mean 
In this section, we briefly present the theoretical underpinnings 
of the KNN, LM-KNN, FKNN classifiers, and the Bonferroni mean 
operator. 
2.1. K-nearest neighbor, fuzzy KNN and local mean based k -nearest 
neigbor classifiers 
A formal definition of the KNN method is presented below. 
Let X ( x 1 , x 2 , . . . , x N ) be a training set, formed by N samples, and 
C ( ω 1 , ω 2 , . . . , ω C ) classes (that is, X = { x j , c j } N j=1 , where c j ∈ C ). 
Each sample x j ( x 
1 
j 
, x 2 
j 
, . . . , x S 
j 
, x c j ) contains S features. If a new 
query sample y is given, then it is assigned into a class ( ω ∗) cor- 
rectly by using the following steps: 
1 Choose the number of k nearest neighbors (1 ≤ k ≤ N ) to the 
new sample 
2 Compute the Euclidean distances from y to x j for all j . Also 
other distance measures can be used. 
3 Find the set of k nearest neighbors from the X by using sorted 
distances in an ascending order. 
4 Identify the classes represented by the k nearest neighbors. 
5 Classify y into the class to which the largest number of k near- 
est neighbors belong to. 
LM-KNN algorithm is a simple and robust extension of the KNN 
method [4] . In this method, a local mean vector of k nearest neigh- 
bors in each class is used to assign the correct class for the query 
sample. The process of the LM-KNN algorithm can be summarized 
as follows: 
1 Find the k nearest neighbors from the training set X for each 
class ω i by using the Euclidean distance in an ascending order. 
2 Compute the local mean vector for each class using the k near- 
est neighbors found in the step 1. 
3 Assign y into the class in which the local mean vector has the 
minimum Euclidean distance from y . 
Underlying idea in the FKNN method is that a membership de- 
gree to each class is assigned to the new query sample and the 
highest membership degree dominates the decision about classifi- 
cation [14] . Membership degree indicates the proportion to which 
the query sample belongs to each one of the available classes. 
These membership degrees are weighted by the inverse of the dis- 
tance of the query sample to its k nearest neighbors in the mem- 
bership function. Along with this, a fuzzy strength parameter m is 
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employed to provide the relative importance to the distance to be 
weighted, when determining the contribution of the neighbors to 
the membership degree. The assigned membership degree of the 
query sample y in each class i is labeled by the k nearest neigh- 
bors and is measured as follows: 
u i (y ) = 
∑ k 
j=1 u i j (1 / 
∥∥y − x j ∥∥2 / (m −1) ) ∑ k 
j=1 ( 1 / 
∥∥y − x j ∥∥2 / (m −1) ) (1) 
where, u ij is the membership of the j th sample in the i th class of 
the training set and m ∈ (1 , + ∞ ) ( m = 2 is often used). 
2.2. The Bonferroni mean operator 
The Bonferroni aggregation operator was introduced by Bonfer- 
roni [19] in the1950’s and later extended by other researchers (see 
[20,27–29] , and [30] ). The Bonferroni mean consists of two parts, 
outer and inner part. Each argument of the outer part is the prod- 
uct of one argument and the average of all the other remaining 
inner arguments, this combination is what makes it a unique in 
terms of aggregation, [27] . The Bonferroni mean is defined as: 
Let x = (x 1 , x 2 , . . . , x n ) , x i ∈ [0 , 1] ∀ i ∈ N be a vector with at 
least one x i � = 0 ∀ i = 1 , 2 , . . . , n and α, q ≥ 0 be parame- 
ters. The general Bonferroni mean of x i is defined by Bonferroni 
[19] : 
B p,q (X ) = 
(
1 
n 
n ∑ 
i =1 
x p 
i 
(
1 
n −1 
n ∑ 
i, j =1 , j �= i 
x q 
j 
)) 1 
p+ q 
(2) 
As an averaging operator Bonferroni mean satisfies all necessary 
axioms (see [20] ) that an averaging operator is typically required 
to satisfy. 
3. Proposed fuzzy k -nearest neighbor classifier, based on 
Bonferroni mean vectors 
By adding a computation of the local Bonferroni mean vec- 
tors into the learning (training) part of the FKNN algorithm, we 
introduce the new BM-FKNN classifier. As in the FKNN method, 
the BM-FKNN classifier starts with the estimation of the distances 
from the query sample y to the labeled samples { x j , c j } N j=1 and 
the set of k nearest neighbors nn k ( y ) is observed. The idea is 
then to group the k nearest neighbors into sub-samples based on 
the classes they belong to. These sub-samples representing each 
class are used in the calculation of the Bonferroni mean vectors. 
That is, if the nn k ( y ) is { x j , c j } k j=1 and c j ∈ (ω 1 , ω 2 , . . . ω C ) , then 
the local Bonferroni mean vectors with the corresponding classes 
are { B r , ω r } t r=1 , 1 ≤ t ≤ C . This also implies that the number 
of local mean vectors relies on the number of classes that ap- 
pear in the set of k nearest neighbors. Then the Euclidean dis- 
tances ( d EUC ) between the query sample y and the local Bonfer- 
roni mean vectors are computed. These distances d EUC (y, { B r } t r=1 ) 
are used to measure the membership degrees of the query sam- 
ple with the classes the mean vectors represent { ω r } t r=1 by using 
the Eq. (1) . Finally, the query sample y is classified to the class 
ω ∗ with which the sample has the highest membership degree 
with. 
The pseudo code for the BM-FKNN algorithm is summarized 
as in Figure Algorithm 1 : 
The proposed method uses the local sub-samples to create lo- 
cal mean vectors for all classes that are represented by the k near- 
est neighbors. In other words, in BM-FKNN the locally created rep- 
resentative vectors for each class, well-positioned to perceive the 
class-information, are used instead of comparing the query sample 
directly to the original k nearest neighbors. The class imbalance- 
problems which have found to be difficult to original KNN, due to 
domination of majority class, can this way be overcomed by using 
the local means. Moreover, problems that appear when using im- 
precise data in situations, where the samples from different classes 
are very close to each other [31] , can also be remedied. 
Selection of the k value (number of nearest neighbors used) has 
typically a critical role in classification accuracy. A very low k may 
produce inadequate classification results, while a too high k may 
cause outliers to affect the classification [5] . In connection with the 
proposed method, the k values selected can be quite high, because 
this allows the method to capture larger class-representative sub- 
samples and to create more accurate local Bonferroni mean vec- 
tors. 
3.1. LM-KNN classifier with Bonferroni means 
In addition to the main contribution of introducing a new BM- 
FKNN classifier, we also investigated how using the Bonferroni 
mean influences the performance of the LM-KNN classifier, specifi- 
cally the application to the computation of the local mean vectors. 
In other words, we present and test a new LM-KNN classifier vari- 
ant with Bonferroni means. For the purpose of simplification, we 
address this method as BM-KNN in the following sections. 
4. Data sets and testing methodology 
This section briefly introduces the used data sets and presents 
the testing methodology of the proposed new methods. 
4.1. Artificial data with imbalance rate modifications 
In most of the classification problems, we have to deal with im- 
balanced classes that is, the number of samples per class is not 
the same or even similar [32] . Typically imbalance is defined as a 
ratio between the number of samples in the larger class and the 
smaller class(es) [33] . As already discussed, this can be a problem 
for the classical KNN and means that the more frequently present 
class may tend to dominate the prediction of the new samples, be- 
cause they are often more common among the k nearest neighbors. 
Because of this we also test how imbalance between classes af- 
fects the performance of BM-FKNN and the benchmarks. The test- 
ing data included two classes: class 1 ∼ N (9 , 4 2 ) with 10 features 
and a sample size of 100, and class 2 ∼ N (10 , 6 2 ) with 10 fea- 
tures and a sample size of n that was variable from the set (100, 
90, 80, 70, 60, 50, 40, 30, 20, 10). In this way, data with the imbal- 
ance ratio (1/1,1/0.9,....,1/0.1) was adjusted in ascending order and 
the tested classifiers’ performance measured for each case. 
4.2. Real-world data 
In addition to the artificial data, this study uses also six real- 
world data sets: Car data, Vehicle data, Ionosphere data, Mam- 
mogram, Wine data, and Page Blocks data, all of which are freely 
available at the KEEL repository [34] and the UCI Machine Learning 
repository [35] . Vehicle, Ionosphere, and Mammogram data repre- 
sent binary class problems and Car, Wine, and Page Blocks data 
multi-class problems. The entry errors and quality issues on the 
data were studied and fixed before using them. The characteristics 
of each of data set are summarized in Table 1 . 
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Table 1 
Information on the data sets used. 
Data set Database Instances Features Classes 
Car KEEL 1728 6 4 
Vehicle KEEL 846 18 2 
Ionosphere UCI 351 34 2 
Mammogram UCI 961 6 2 
Wine UCI 178 13 3 
Page Blocks KEEL 548 10 5 
4.3. Performance measures used 
Next, we shortly go through the performance metrics we used 
in this study. Since we have multi-class classification problems in 
our study, we also shortly present their multi-class analogs. To 
evaluate classification methods the most common metric used is 
accuracy [2,12,36] as a percentage of correct predictions with re- 
spect to the total number of original tested samples. Reporting 
accuracy results alone is often not enough to conclude that that 
the performance of a classifier is useful for a given task. Hence, 
additional performance measures such as the sensitivity and the 
specificity are also needed to more comprehensively evaluate the 
performance of classifiers. Here we use all three measures to bet- 
ter understand the “goodness” of the proposed classifiers and their 
benchmarks. 
4.3.1. Binary-class problem 
In the binary classification, there are only two classes, one is a 
positive ( P ) and other is a negative ( N ) class. There are four pos- 
sible outcomes from the classification model such as true positive 
( TP ), true negative ( TN ), false positive ( FP ), and false negative ( FN ), 
and T and F are shaped by predicted class and P and N are shaped 
by the actual class. Using these metrics, the performance measures 
in the classification are defined as Accuracy = T P + T N 
T P + F P + T N + F N , 
Sensit i v it y = T P 
T P + F N and Speci f icity = 
T N 
F P + T N . 
4.3.2. Multi-class problems 
Multi-class classification refers to classification tasks, where 
there are more than two classes. In this research, we utilize the 
performance measures computation for the multi-class problems 
proposed in [37] . General notation for performance metrics for the 
multi-class classification is defined in the following way: 
Suppose a confusion matrix with C ( > 2) classes, repre- 
sented by { a l,m } C l=1 ,m =1 , and a l,m is an element of a row l and 
a column m in a matrix. When l = m, a l,m indicates the num- 
ber of samples classified correctly to the correspond class and 
when l � = m indicates the number of misclassified samples of 
class ω l as class ω m . Then the number of true positives, true 
negatives, false positives, and false negatives for each class ω i 
( i ∈ C ) can be measured as follows: T P (ω i ) = a i,i , ∀ i ∈ C, T N(ω i ) = ∑ C 
l=1 
∑ C 
m =1 l,m �= i (a l,m ) , F P (ω i ) = 
∑ C 
l=1 (a l,i ) − T P (ω i ) and F N(ω i ) = ∑ C 
m =1 (a i,m ) − T P (ω i ) . The accuracy, sensitivity, and specificity are 
computed for each class using above measures. The averages of 
these measures for all classes are considered as the final perfor- 
mance measures, in vein with [38] . 
4.4. Experimental setting and evaluation 
In each selected data set (including artificial data set), the data 
sets were separated into a 40% training set, a 40% validation set, 
and a 20% testing set. The stratified random sampling technique 
was used in the sampling to ensure that class proportions in each 
of the divided sets are the same as they are in the whole data set. 
The hold out method was used for the cross-validation, in which 
30 splits of the training and validation sets were randomly gener- 
ated (30-fold cross validation). 
We considered the number of neighbors k from the set {1, 
2 , . . . , 25 } . This was due to our assumption that the performance 
of the proposed BM-FKNN method would increase (and relatively 
increase), when the value of k increases. Pan et al [6] had provided 
evidence in favor of this assumption by showing that a multi-local 
means based k harmonic nearest neighbor classifier achieved bet- 
ter performance in the classification with high k values. The values 
for the parameters p and q of the Bonferroni mean were chosen 
from the range { 0 , 1 , . . . , 9 , 10 } . We first optimized the parameter 
values with the training & validation step and the gained optimal 
values were then used to test the performance of the new method 
with the testing sample. Following the recommendations in [2,14] , 
the fuzzy strength parameter m was kept at m = 2 for both BM- 
FKNN and FKNN classifiers. The results are presented in terms of 
mean values for all performance measures. 
To validate the performance of the proposed new methods, we 
compare the classification results of BM-FKNN and BM-KNN classi- 
fiers with the original KNN, FKNN, and LM-KNN and also with sup- 
port vector machines (SVM) [39] , naive Bayes classifier (NB) [40] , 
and similarity based classifier (Similarity) [41] . The same training 
and validation samples were used for these classifiers for all data 
sets and their classification performance was registered for the op- 
timized model with the test samples. We carried out the compar- 
ative test essentially on the real-world data sets in terms of the 
accuracy and other performance measures discussed above. 
A paired t -test, in vein with [36] was also performed to reveal 
whether the performance difference of the proposed methods is 
statistically significant when compared to the benchmarks, a 0.05 
level of significance was used. For this analysis, the samples from 
the hold out method (size of 1 × 30) were considered for each 
classifier, when the optimal parameters were used. In addition, the 
confidence interval and variances were calculated. 
5. Results and discussion 
In this section we first present the findings obtained for the 
artificial case that was generated to investigate the difference be- 
tween the new proposed classifiers and the benchmark classifiers. 
This is followed by a presentation of the results for the real-world 
data sets for the training & validation step and the testing step 
separately. 
5.1. Results for the artificial data 
The artificial data was used to test the class imbalance. For this 
data we present a mean classification accuracy plot, taken in the 
testing phase for the proposed two classifiers and the three KNN- 
based benchmarks. From Fig. 1 one can see how the mean classi- 
fication accuracy develops with respect to the imbalance ratio. We 
point out that the performance of both the new proposed method 
is the same. 
In Fig. 1 , imbalance ratio is presented as the sample percent- 
age of the larger class in terms of the smaller class. For example, 
“1/0.3” denotes a ratio that class 1 has the sample size of 100 and 
class 2 has the sample size of 30. It is evident from the Fig. 1 that 
classifier performance is at its best, when one class has the lowest 
number of instances in comparison to other class (in binary class 
problems). A gradual increase in the mean accuracy for all clas- 
sifiers can be seen with the increase of the imbalance ratio. It is 
clearly visible that over all imbalance ratios the BM-FKNN and BM- 
KNN classifiers have achieved higher accuracies than the bench- 
marks, the difference is most pronounced with the high imbal- 
ances. In general, this result indicates that the proposed methods 
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Fig. 1. Classifier performance with respect to imbalance ratio of classes. 
Table 2 
BM-FKNN and the BM-KNN classifier results in the validation part. 
Data set Mean Acc. Sensitivity Specificity Opt. parameters 
Car 0.9271 0.8079 0.9637 k = 3 , p = 1 , q = 1 
Vehicle 0.9340 0.8557 0.9591 k = 4 , p = 3 , q = 1 
Ionosphere 0.8775 0.8611 0.9245 k = 7 , p = 1 , q = 0 
Mamm 0.7939 0.7901 0.7984 k = 21 , p = 2 , q = 1 
Wine 0.7414 0.7388 0.8730 k = 25 , p = 2 , q = 2 
Page Blocks 0.9358 0.9775 0.8679 k = 3 , p = 2 , q = 2 
are less sensitive to the class imbalance problem than the bench- 
marks. 
5.2. Results for the real-world data 
The obtained results for accuracy, sensitivity, and specificity as 
well as for the difference between the classification accuracies of 
the new methods and the benchmarks are presented. 
5.2.1. Performance with the training & validation data 
The parameters of the proposed new approaches and the 
benchmarks were optimized with the training and validation steps 
by using the holdout method for ensuring sample similarity. A 
thirty-fold cross validation was performed with the data. The ob- 
tained results for performance measures and the optimal parame- 
ter values are presented as an example for the proposed BM-FKNN 
classifier in Table 2 . In the table, “Mean Acc.” indicates the mean 
accuracy from the 30 sample folds gained by using the optimal pa- 
rameters. Sensitivity and specificity results are also reported with 
mean values accordingly. The highest mean accuracy was used to 
determine the optimal parameter values for p, q and k . 
From the Table 2 , we can see that the highest mean accuracy 
was reached with settings p ∈ {1, 2, 3} and q ∈ {0, 1, 2} for all data 
sets considered. 
Also the sensitivity and specificity values indicate reasonable 
results. In addition, it is also apparent that for all cases, the speci- 
ficity is higher than the sensitivity. Fig. 2 illustrates the impact of 
the different combinations of the parameters p and q (with the op- 
timal k ) on the selected performance measures for the Vehicle data 
in the training & validation step. 
5.2.2. Performance with the test samples 
In this sub-section, we present the classification results of the 
classifiers with the testing data samples, which were initially sep- 
arated from the original data sets. We also include the comparison 
to other classifiers. Optimized parameter values and saved training 
samples in the validation step were used to test the classifiers with 
the previously unused test samples. Table 3 summarizes the results 
for mean classification accuracy, mean sensitivity, mean specificity, 
variance, and confidence interval (CI) obtained for the proposed 
Fig. 2. Variance and performance measures for different parameter combinations 
( p, q ) with Vehicle data for the BM-FKNN. 
Algorithm 1 BM-FKNN. 
Input: { x j , c j } N j=1 (labeled set), y (query sample), k (1 ≤ k ≤
N) , p, q ( p, q > 0 ) 
Output: The class label for y 
Begin 
1: for j = 1 to N do 
2: Compute d EUC (y, x j ) from y to x j 
3: if j < k then 
4: Add x j to nn 
k (y ) 
5: else if x j is closer to y than any of neighbors in 
nn k (y ) then 
6: Drop the farthest neighbor from the set nn k (y ) 
and add x j 
7: end if 
8: end for 
9: for r = 1 to t do 
10: Find B r in the set nn 
k (y ) using using equation (2) 
and set the correspond class ω r . 
11: Compute d EUC (y, B r ) from y to B r . 
12: Assign membership u r (y ) to ω r in terms of weighed 
distanceaccording to: 
u r (y ) = 
∑ t 
r=1 u rr (1 / ‖ y − B r ‖ 2 / (m −1) ) ∑ t 
r=1 ( 1 / ‖ y − B r ‖ 2 / (m −1) ) 
(3) 
where u rr is 1 for known class and 0 for other classes. 
13: end for 
14: return ω ∗ (predicted class that has the highest mem- 
bership degree) for y , ω ∗ ∈ (ω 1 , ω 2 , . . . , ω t ) . 
End 
BM-FKNN and BM-KNN methods and for the benchmarks over all 
considered data sets. The results for the BM-FKNN and the BM- 
KNN are the same and they are presented in the same column. 
The results from the test sets show that the proposed classifiers 
have high classification accuracy compared to the benchmarks. 
From Table 3 one can observe that the proposed new methods 
outperform all benchmarks with two data sets and that the per- 
formance is second-best with three data sets. The mean sensitivity 
and specificity remains high for all data sets. Besides this, interest- 
ingly BM-KNN classifier obtained the exact results which were also 
obtained with BM-FKNN for all data sets. This reveals that the in- 
fluence of Bonferroni mean inside the learning part of the classifier 
has dominating effect compared to membership degree computa- 
tion in fuzzy KNN. In particular BM-KNN and BM-KNN classifiers 
significantly improved the accuracy compared to KNN, FKNN and 
LM-KNN methods. This indicates that introducing the concepts of 
Bonferroni mean local vectors as nearest representatives instead of 
k nearest samples one can generate more reasonable class repre- 
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Table 3 
Classification results with the testing samples. 
Data set Measure BM-FKNN/ BM-KNN FKNN LM-KNN KNN SVM NB Similarity classifier 
Car Mean Accuracy 0.9292 0.8905 0.8956 0.8845 0.8506 0.8158 0.6984 
Variance 1.37E-04 1.56E-04 1.98E-04 1.49E-04 1.67E-04 2.50E-04 2.29E-04 
CI [0.9237 0.9347] [0.8846 0.8963] [0.8890 0.9022] [0.8795 0.8895] [0.8445 0.8566] [0.8083 0.8232] [0.6913 0.7055] 
Mean Sensitivity 0.8251 0.658 0.6345 0.6173 0.7 0.4005 0.6599 
Mean Specificity 0.9659 0.9291 0.9197 0.9142 0.9133 0.8946 0.9017 
Vehicle Mean Accuracy 0.9556 0.9456 0.9371 0.9456 0.9562 0.7015 0.6988 
Variance 1.38E-04 7.96E-05 2.77E-04 7.96E-05 8.01E-04 2.27E-04 8.81E-05 
CI [0.9501 0.9611] [0.9414 0.9497] [0.9309 0.9434] [0.9414 0.9497] [0.9430 0.9695] [0.6944 0.7085] [0.6944 0.7032] 
Mean Sensitivity 0.8852 0.879 0.8695 0.879 0.9077 0.4351 0.4315 
Mean Specificity 0.9796 0.967 0.9594 0.967 0.9714 0.94 4 4 0.9359 
Ionosphere Mean Accuracy 0.8914 0.8529 0.8914 0.8529 0.8906 0.9164 0.8621 
Variance 4.60E-04 0.0013 4.60E-04 0.0013 4.83E-04 9.30E-04 0.0026 
CI [0.8814 0.9015] [0.8362 0.8695] [0.8814 0.9015] [0.8362 0.8695] [0.8813 0.9009] [0.9022 0.9307] [0.8382 0.8861] 
Mean Sensitivity 0.8562 0.824 0.8562 0.824 0.8601 0.9446 0.8737 
Mean Specificity 0.9523 0.9541 0.9523 0.9541 0.9649 0.8762 0.8596 
Mammogram Mean Accuracy 0.7927 0.7844 0.7909 0.7833 0.7906 0.7844 0.7789 
Variance 1.16E-04 1.87E-04 1.18E-04 8.68E-05 1.16E-04 1.15E-04 2.99E-05 
CI [0.7877 0.7977] [0.7780 0.7908] [0.7858 0.7960] [0.7790 0.7877] [0.7856 0.7957] [0.7793 0.7894] [0.7763 0.7815] 
Mean Sensitivity 0.7528 0.7275 0.7437 0.7303 0.7819 0.7457 0.7054 
Mean Specificity 0.8343 0.8535 0.8434 0.8456 0.8058 0.827 0.885 
Wine Mean Accuracy 0.8306 0.8097 0.8306 0.8069 0.8833 0.9722 0.9681 
Variance 0.002 0.0028 0.002 0.0028 0.0022 2.08E-31 1.04E-04 
CI [0.8095 0.8516] [0.7850 0.8344] [0.8095 0.8516] [0.7822 0.8317] [0.8616 0.9051] [0.9722 0.9722] [0.9633 0.9728] 
Mean Sensitivity 0.811 0.7897 0.811 0.7897 0.8712 0.9722 0.9724 
Mean Specificity 0.9105 0.9012 0.9105 0.9012 0.9379 0.9848 0.9846 
Page Blocks Mean Accuracy 0.9255 0.92 0.915 0.9191 0.8918 0.9259 0.6586 
Variance 3.74E-05 2.74E-05 3.72E-05 2.56E-04 2.52E-05 3.07E-04 0.0018 
CI [0.9219 0.9290] [0.9165 0.9235] [0.9121 0.9179] [0.9165 0.9235] [0.8895 0.8942] [0.9211 0.9307] [0.7185 0.7579] 
Mean Sensitivity 0.9597 0.9619 0.9597 0.9615 0.9337 0.989 0.9954 
Mean Specificity 1 1 1 1 NaN 0.7366 0.4735 
Average (overall) 0.8875 0.8672 0.8767 0.8654 0.8772 0.8527 0.7775 
Table 4 
Results of the t -test on the performance of the proposed methods vs. the six 
benchmarks on the test sample data. 
Data set Paired-t with P-value test-statistic 
BM-FKNN / BM-KNN 
Car FKNN 2.4770e-12 significant 
LM-KNN 6.30E-10 significant 
KNN 3.88E-14 significant 
SVM 6.75E-22 significant 
NB 1.12E-25 significant 
Similarity classifier 1.57E-37 significant 
Vehicle FKNN 0.0042 significant 
LM-KNN 1.24E-05 significant 
KNN 0.0042 significant 
SVM 0.9317 not significant 
NB 5.63E-41 significant 
Similarity classifier 4.30E-42 significant 
Ionosphere FKNN 3.48E-04 significant 
LM-KNN 1 not significant 
KNN 3.48E-04 significant 
SVM 0.0025 significant 
NB 5.62E-07 significant 
Similarity classifier 0.4808 not significant 
Mammogram FKNN 0.0387 significant 
LM-KNN 0.597 not significant 
KNN 0.0055 significant 
SVM 0.5443 not significant 
NB 0.019 significant 
Similarity classifier 9.38E-06 significant 
Wine FKNN 0.0871 not significant 
LM-KNN 1 not significant 
KNN 0.0839 not significant 
SVM 1.05E-22 significant 
NB 3.34E-34 significant 
Similarity classifier 2.31E-32 significant 
Page Blocks FKNN 0.0096 significant 
LM-KNN 3.77E-06 significant 
KNN 1.02E-04 significant 
SVM 6.56E-20 significant 
NB 0.6917 not significant 
Similarity classifier 1.49E-21 significant 
sentative vectors. Regarding SVM, NB and similarity classifiers even 
though in some cases they are able to achieve little higher accu- 
racies BM-FKNN and BM-KNN classifiers still outperform them on 
majority of the data sets. 
Moreover, it seems that the performance of the classification 
has been significantly increased by using the higher values for the 
parameter k with the proposed methods. Obviously, this is interest- 
ing since the low values of k are performing better for the bench- 
marks and it is also confirmed by showing that the KNN classifier 
worked well with k = 1 with two data sets considered. This finding 
is in agreement with previous findings by Derrac et al. in [2] . 
The preliminary conclusion that can be stated based on the 
results is that the proposed new classifiers outperform the KNN- 
based benchmarks and thus excels with data sets where KNN- 
based classification fits well. 
Table 4 presents the paired t -test results for the BM-FKNN and 
BM-KNN and benchmark classifiers with the test samples. From 
the evidence on the table, it is visible that the BM-FKNN and BM- 
KNN methods have yielded statistically significantly higher classifi- 
cation accuracies in the cases where the accuracies produced were 
superior. 
6. Conclusion 
This paper introduced two new methods to the family of fuzzy 
k -nearest neighbor classifiers that are both developed by using 
the Bonferroni mean in the computation of local mean vectors, 
which are used in the classification of new query samples to know 
classes. The proposed BM-FKNN and BM-KNN methods differ from 
FKNN and LM-KNN methods in that they use the bonferroni mean 
in the computation of local mean vectors for the set of k near- 
est neighbors, where the difference with the FKNN is that no lo- 
cal mean vectors were previously calculated and with the LM-KNN 
mean operator was arithmetic mean. 
To illustrate and study the performance of the proposed classi- 
fiers they were tested with an artificial data set and six real-world 
data sets. The obtained results show that the new methods can 
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give improved classification accuracy compared to the benchmarks 
used. Specifically it can be mentioned that the proposed new 
methods matched or outperformed all KNN-based benchmarks in 
all performance tests. The results were tested for statistical signifi- 
cance and it was found that the proposed methods had better clas- 
sification accuracy than the benchmarks. 
From the artificial data set experiment we found that the new 
methods are less sensitive to class imbalances, than its “original”
counterparts. From the results with the real-world data, the most 
obvious finding to emerge for the new methods is that the best 
classification accuracy is achieved with a relatively high number 
( k ) of nearest neighbors. This is reasonable, because when the sam- 
ple size increases, the mean of the sample gets closer to a pre- 
cise representation of the sample. However, we should note that 
due to the more complex calculations involved the execution of 
the proposed BM-FKNN method takes little more time than that of 
the benchmarks. Also finding a suitable parameters for Bonferroni 
mean requires a lot more classification runs since grid search is 
used and this takes time. In other words, computational complex- 
ity of the proposed approach is rather high in comparison to the 
classical methods. 
Moreover, this study offers some insight into our understanding 
of the Bonferroni means and its usage in the classifiers and learn- 
ing algorithms. In fact, further research directions include test- 
ing the effect of combining Bonferroni means together with other 
known variants of the KNN algorithm such as IV-KNN [2] , kNN-TSC 
[42] , and modified evidential KNN [10] . It also would be interesting 
to see how Bonferroni means can be employed in some other ma- 
chine learning applications, e.g. in [43–46] , where arithmetic mean 
has been extensively used. 
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Abstract
The fuzzy k-nearest neighbor (FKNN) algorithm, one of the most well-known and effective supervised learning techniques,
has often been used in data classification problems but rarely in regression settings. This paper introduces a new, more
general fuzzy k-nearest neighbor regression model. Generalization is based on the usage of the Minkowski distance instead
of the usual Euclidean distance. The Euclidean distance is often not the optimal choice for practical problems, and better
results can be obtained by generalizing this. Using the Minkowski distance allows the proposed method to obtain more
reasonable nearest neighbors to the target sample. Another key advantage of this method is that the nearest neighbors are
weighted by fuzzy weights based on their similarity to the target sample, leading to the most accurate prediction through a
weighted average. The performance of the proposed method is tested with eight real-world datasets from different fields
and benchmarked to the k-nearest neighbor and three other state-of-the-art regression methods. The Manhattan distance-
and Euclidean distance-based FKNNreg methods are also implemented, and the results are compared. The empirical results
show that the proposed Minkowski distance-based fuzzy regression (Md-FKNNreg) method outperforms the benchmarks
and can be a good algorithm for regression problems. In particular, the Md-FKNNreg model gave the significantly lowest
overall average root mean square error (0.0769) of all other regression methods used. As a special case of the Minkowski
distance, the Manhattan distance yielded the optimal conditions for Md-FKNNreg and achieved the best performance for
most of the datasets.
Keywords Fuzzy k-nearest neighbor ! Regression ! Minkowski distance ! Machine learning ! Performance measures
1 Introduction
In machine learning, a regression problem refers to esti-
mating a real-valued continuous response (output) based on
the values of one or more input variables. By determining
the relationships between output and input variables, a
regression method numerically predicts a target value. In
the literature, various regression techniques have been
introduced for a wide range of machine learning problems.
Among them, k-nearest neighbor regression (KNNreg)
(Benedetti 1977; Stone 1977; Turner 1977) has become
one of the most widely used regression techniques due to
its simplicity and robustness (Buza et al. 2015). This
method is an adapted version of the k-nearest neighbor
(KNN) model that was initially introduced by Cover and
Hart (1967) for applying classification problems. The main
idea of the KNNreg is to predict the output value for a
given test sample by averaging the output values of the
nearest neighbor samples (Hu et al. 2014).
Though the KNN method has many significant advan-
tages, it intuitively suffers from some weaknesses, for
example, giving equal importance to all nearest neighbors
(even if some of them are quite far from the test sample) in
the classification process. To improve model and alleviate
such issues, Keller et al. (1985) introduced the idea of
using the degree of membership in the KNN method to
propose its fuzzy version, called the fuzzy k-nearest
neighbor (FKNN) classifier. Thanks to its capability of
tackling uncertainty issues in the data, the FKNN model
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has proven promising for classification problems (Chen
et al. 2013; Yu et al. 2002) compared to the classical KNN
method. Although the FKNN classifier has received much
attention in terms of classification, it has received less
attention in the context of regression. This motivated us to
establish the fuzzy k-nearest neighbor regression
(FKNNreg) model in this research by modifying the orig-
inal FKNN rule.
Typically, the distance metric is one of the main com-
ponents of distance-based classifiers such as the KNN and
FKNN methods (Rastin et al. 2021). Even though the
Euclidean distance is the most common distance metric
used in such methods to measure the similarity between
two data samples, it is often not optimal for every problem
domain (Cai et al. 2020; Nguyen et al. 2016). Several
research papers have reported better results with a more
general choice of distance metric (Chang et al. 2006;
Dettmann et al. 2011; Jenicka and Suruliandi 2011; Kaski
et al. 2001; Koloseni et al. 2012, 2013). Besides, the
Euclidean distance has several drawbacks. For example, if
two data samples have no feature values in common, they
might have a shorter distance than the other sample pairs,
including the same feature values (Shirkhorshidi et al.
2015). These facts encouraged us to examine the effec-
tiveness of the Minkowski distance in the FKNN rule in the
regression setting for low- and high-dimensional datasets.
The main goal of this study is to introduce the FKNNreg
using the Minkowski distance metric and to examine its
efficiency. The combination of the Minkowski distance
metric and the FKNNreg has not been studied in the lit-
erature before. This led us to create the Minkowski dis-
tance-based fuzzy k-nearest neighbor regression (Md-
FKNNreg) algorithm. A key advantage of this method is
that the nearest neighbors are weighted by fuzzy weights
considering their similarity to the test sample, leading to
the most accurate prediction through a weighted average.
Also, utilization of the Minkowski distance allows greater
flexibility for obtaining more relevant neighboring samples
close to the target sample.
Intuitively, most available regression models (e.g.,
multiple linear regression [MLR], least absolute shrinkage
and selection operator [LASSO] regression) are based on
assumptions regarding the distribution of the data. How-
ever, it is rarely confirmed that these assumptions apply to
real-world problems. That is being said, an interesting fact
about the KNNreg methods is that they do not explicitly
make any assumptions about the underlying data (Yao and
Ruzzo 2006) or model’s components and simply use
training data to make predictions. Another advantage is
that they are, in general, relatively easy to implement and
interpret and can potentially be applied even for non-linear
problems (Hu et al. 2014). Moreover, support vector
regression (SVR) is recognized as one of the well-known
methods applied for non-linear regression problems.
However, its utilization is restricted in various disciplines
due to the difficulty of selecting suitable parameters for the
model (Liu et al. 2013). In this regard, FKNNreg methods
could be better alternatives in the regression context, and
the proposed new KNNreg method is found to be signifi-
cant for non-linear regression problems.
To study the performance of the proposed Md-FKNNreg
model, we conducted an experiment using real-world data
from various applications. We compared the regression
performance of the proposed variant with the KNNreg,
Lasso, SVR, and multiple linear regression models. In
addition, the Manhattan distance-based fuzzy k-nearest
neighbor regression (Man-FKNNreg) and Euclidean dis-
tance-based fuzzy k-nearest neighbor regression (Euc-
FKNNreg) methods were also implemented, and the results
were compared. To evaluate the regression performance,
we used root mean square error (RMSE) and the coefficient
of determination (R2) values as the evaluation metrics. We
also tested whether there was a statistically significant
difference between the regression results for the Md-
FKNNreg and baseline methods.
The main contributions of this paper can be summarized
as follows:
(1) We propose a new regression approach based on the
FKNN algorithm.
(2) We introduce the Minkowski distance into the
nearest neighbors search in the proposed algorithm
and investigate its efficiency and robustness.
(3) We demonstrate the performance of the proposed
regression model on low- and high-dimensional real-
world data coming from different domains.
(4) We analyze, compare, and benchmark the regression
results of the proposed method with select well-
known state-of-the-art regression methods.
The remainder of this paper is organized as follows. Sec-
tion 2 discusses the background information related to the
present study. Section 3 briefly provides the theoretical
underpinning of the KNNreg and FKNNreg models and the
Minkowski distance measure. Section 4 proposes the Md-
FKNNreg method. Section 5 introduces the data used and
the experiment setting for the proposed method and pre-
sents and discusses the empirical results obtained with the
proposed method and benchmarks. Section 6 summarizes
the main findings and provides concluding remarks.
2 Related work
The KNNreg model has the potential to tackle linear and
non-linear problems in an effective way (Cai et al. 2020)
and performs especially well in a high-dimensional space.
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Accordingly, the growing popularity of the KNNreg
method can be seen in various fields, including renewable
energy (Hu et al. 2014; Huang and Perry 2016; Zhou et al.
2020), physics research (Durbin et al. 2021), biological
studies (Yao and Ruzzo 2006), transportation (Cai et al.
2020; Dell’Acqua et al. 2015), robotics (Chen and Lau
2016), and telecommunication (Adege et al. 2018). In
addition, some studies have also employed the KNNreg
model with other approaches to develop effective hybrid
models for specific applications. For example, Chen and
Hao (2017) proposed an integrated framework by
employing support vector machine (SVM) and KNNreg for
stock market prediction. Salari et al. (2015) also presented
a novel hybrid approach with a combination of a genetic
algorithm (GA), the KNNreg method, and artificial neural
network (ANN) for classification problems. Cheng et al.
(2019) utilized the same idea as the KNNreg to introduce a
novel approach for missing value imputations. Further-
more, the simplicity and strength of the KNNreg algorithm
have encouraged researchers to develop different enhanced
variants (for examples, see Buza et al. 2015; Guillen et al.
2010; Nguyen et al. 2016; Song et al. 2017) and to con-
struct mathematical estimations (Biau et al. 2012).
An ideal distance measure must have the ability to
precisely detect the similarity between two samples while
allowing the researchers to understand how to compare,
classify, or cluster those samples. Therefore, such metrics
have great potential to influence the outcomes of the
models used (Bergamasco and Nunes 2019). Accordingly,
some previous studies focused only on which similarity
measure best fit the particular situation (for examples, see
Rodrigues 2018; Moghtadaiee and Dempster 2015; Huo
et al. 2021). The Minkowski distance is the most investi-
gated measure among the frequently applied techniques for
measuring the similarity between instances in machine
learning-based applications (Bergamasco and Nunes 2019;
Cordeiro and Makarenkov 2016; Gueorguieva et al. 2017).
The Minkowski distance is the main focus of this research
because it offers the opportunity to compute the distance
between two instances in several different ways and holds
several well-known distances as special cases, e.g., the
Manhattan and Euclidean distances.
The concept of the fuzzy theory, originally introduced
by Zadeh (1965), can operate under uncertainty and has
advanced in many different ways in various applications
(for examples, see Chen et al. 1990; Chen and Hsiao 2005;
Chen and Chen 2007; Chen and Chang 2010; Chen et al.
2009; Horng et al. 2005; Zeng et al. 2019). The FKNN
classifier (Keller et al. 1985) was derived from fuzzy the-
ory and has been one of the most effective techniques in
supervised machine learning tasks. Nikoo et al. (2018)
applied the FKNN classifier to a regression application
without modifying its original algorithm explicitly (i.e., it
was operated as a classification task). However, to the best
of our knowledge, no one has attempted to utilize the
FKNN model in the regression setting. Thus, the effec-
tiveness of FKNNreg for machine learning applications
requires further investigation.
3 Preliminaries
This section briefly discusses the KNNreg method, the
FKNN method, and the Minkowski distance measure.
3.1 K-nearest neighbor regression
KNNreg (Benedetti 1977; Stone 1977; Turner 1977) is a
simple, effective, and robust nonlinear regression method.
The basic idea of KNNreg is to predict an output value to a
given input sample based on a fixed number (k) of its
nearest neighbors found from the input-output training
samples. The k is a smoothing parameter, and its value
controls the adaptability of the KNNreg method (Hu et al.
2014). KNNreg does not require an explicit training step
besides the initial dataset’s inputs and outputs, which
represent a unique property. The notion of the KNNreg
model can be formally defined as follows.
Let T ¼ fðXi; yiÞgNi¼1 be a training dataset with N sam-
ples, where Xi ¼ fxi1; xi2; . . .; ximg 2 Rm is an input sample i
from m-dimensional feature space, and its output value
(response variable) is yi 2 Y , where Y ¼ fy1; y2; . . .; yNg
denotes the set of output values. For a given new data
sample X, the goal is to learn the predictor function h(X)
from the training dataset such that y^ % hðXÞ, where y^ is the
estimated value for the output y of X. The KNNreg starts
with measuring the distance (d) between the test sample X
and each sample Xi in T. In this case, the Euclidean dis-
tance is the most commonly adopted distance metric, and
its formulation for the distance between X ¼
fx1; x2; . . .; xmg and Xi is presented by Eq. (1).
dðX;XiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
j¼1
ðxj & xijÞ2
vuut : ð1Þ
Next, the set of k nearest neighbors, NkX ¼ fðXi; yiÞgki¼1 for
X, is found from the reordered training samples in T
according to the increasing Euclidean distances. Finally,
the output value y for X is estimated by taking the arith-
metic mean of the output values (y1; y2; . . .; yk) of the
nearest neighbors (Song et al. 2017; Biau et al. 2012;
Gyo¨rfi et al. 2002) as follows:
y^ ¼
Pk
j¼1 yj
k
: ð2Þ
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This is based on the assumptions that training samples in
the NkX have similar output values to h(X) (Kramer 2011)
and also that all nearest neighbors in the NkX have equal
importance in the prediction (Cover and Hart 1967).
3.2 Fuzzy k-nearest neighbor classification
method
Unlike the KNN algorithm, the FKNN method uses the
unbiased weighing scheme in the decision rule using the
distances between the test sample and the nearest neighbor
samples. Put it differently, the FKNN model computes a
membership to the test sample for each class and makes the
class decision according to the highest membership degree
(Keller et al. 1985). These fuzzy memberships have
excellent potential for accurate predictions (Kumbure et al.
2020). The membership degree of a given new sample X in
a class i that is represented by the k nearest neighbors1 is
measured as follows:
uiðyÞ ¼
Pk
j¼1 uijð1= X & Xj
"" ""2=ðq&1ÞÞPk
j¼1ð1= X & Xj
"" ""2=ðq&1ÞÞ ; ð3Þ
where q 2 ð1;þ1Þ is the fuzzy strength parameter that
controls the Euclidean distance kX & Xjk2 between X and
Xj to weigh the contribution of each nearest neighbor to the
membership value. Also, uij is the membership of the
sample Xj from the training data to the class i among the k
nearest neighbors. Two methods are used to measure the
uij: crisp memberships and fuzzy memberships. More
details about these methods can be found in the work by
Chen et al. (2011).
3.3 Minkowski distance
The Minkowski distance measure (also called Lp norm
space) is a class of various distance functions that are
formed by the parameter p. For two given samples Xi and
Xj where Xi ¼ fxi1; xi2; . . .; ximg 2 Rm and
Xj ¼ fxj1; xj2; . . .; xjmg 2 Rm, the Minkowski distance metric
is defined as follows:
dMdðXi;XjÞ ¼
Xm
t¼1
jxit & xjtjp
 !1=p
for p( 1: ð4Þ
From this metric, we can specify different distance func-
tions by changing the value of p. For example, we can
obtain the Manhattan distance (also known as the city
block distance or L1 norm) by setting p ¼ 1 and the
Euclidean distance, also referred to as L2 norm (see also
Eq. (1)) by setting p ¼ 2.
4 Proposed fuzzy k-nearest neighbor
regression model using Minkowski
distance
In this research, we focus on the fuzzy k-nearest neighbor
regression. Given this, we define the FKNN method for
regression together with the Minkowski distance. In this
way, the novel regression method, Md-FKNNreg, is
introduced. This method aims to achieve a reliable pre-
diction for the predictor function by allowing the Min-
kowski distance to be adapted to the particular context with
the optimal conditions. The procedure of the Md-FKNNreg
method mainly includes four steps: measuring the dis-
tances, recognizing the nearest neighbors, computing the
fuzzy weights, and making the prediction. The detailed
process of this method is presented using the same nota-
tions in Sect. 3.1 as follows.
Step 1: Determine the Minkowski distance dMdðX;XjÞ
between X and Xi in T according to:
dMdðX;XjÞ ¼
#Pm
t¼1 jxt & xjtjp
$1=p
.
Step 2: Find the set of k nearest neighbors NkX from the
ranked training data samples according to increased Min-
kowski distances. Here, we used a grid-based search to find
the optimal parameter p for the Minkowski distance and
k that best fit a particular dataset.
Step 3: Calculate the fuzzy weight (wi) for each nearest
neighbor j using dMdðX;XjÞ as follows:
wj ¼ 1#
1=dMdðX; XjÞ
$ 2
q&1
, for j ¼ 1; 2; . . .; k; ð5Þ
where q is a fuzzy strength parameter, and ð 2q&1Þ indicates
the fuzziness exponent. The closer q is to 1, the larger the
weights are. For distances over 1 unit, the larger q is, the
smaller the weights are.
The purpose of these weights is to define a compre-
hensive linear predictor for the output value y such that
hðXÞ ¼ WTY , where W ¼ fw1;w2; . . .;wkg 2 Rk. The
weighted value wj (0)wj) 1) of the nearest neighbor Xj
reflects its relative importance to Y.
Step 4: Predict the output value y^ for X by taking the
weighted average (with the fuzzy weights) of the outputs yj
for j ¼ 1; 2; . . .; k in the NkX according to the following
equation:
y^ ¼
Pk
j¼1 wjyjPk
j¼1 wj
: ð6Þ
1 The set of nearest neighbors here is defined in terms of a
classification problem, which means each nearest neighbor i contains
m features values and a class label ci (i.e., Xi ¼ fxi1; xi2; . . .; xim; cig).
X is also shaped by similar characteristics.
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It is clear that in this method, the Minkowski distance is
used not only to find the nearest neighbors but also to
measure the weights. Accordingly, the Minkowski distance
plays a critical role in the proposed framework. Besides,
the Md-FKNNreg method is intuitively adaptive to the
number of nearest neighbors k and the p of the distance
function to vary with iterations throughout its search in a
particular situation. This characteristic allows the method
to expand the search area to a broader domain. The steps of
the Md-FKNNreg method discussed above are summarized
in Algorithm 1 by introducing a pseudo-code to it. In
addition, the pseudo-code for the grid search method used
is presented in Algorithm 2.
Algorithm 1: Md-FKNNreg
Input: {Xi, yi}Ni=1 (training data set), X (test data
sample), k (1 ≤ k ≤ N), p (p ≥ 1)
Output: Predicted target value, yˆ for X
1 Begin
2 for i← 1 to N do
3 Compute dMd(X,Xi) between X and Xi using
Eq. (4),
4 if i < k then
5 Add Xi to NkX
6 else if Xi is closer to X than any of neighbors
in NkX then
7 Drop the farthest neighbor from the set NkX
and add Xi
8 end
9 end
10 for j ← 1 to k do
11 Compute wj = 1(
1/dMd(X,Xj)
) 2
q−1
12 end
13 Estimate yˆ by taking weighted average such as
yˆ =
∑k
j=1 wjyj∑k
j=1 wj
14 return yˆ
Algorithm 2: Grid search
Input: p-values: {pi}npi=1, k-values: {ki}nki=1, n-runs
for cross-validation
Output: Optimal p∗ and k∗
1 Begin
2 for j ← 1 to n do
3 Split the training data randomly into training
and validation sets
4 for j ← 1 to nk do
5 for s← 1 to np do
6 Perform Md-FKNNreg model with k(j)
and p(s) and save the RMSE
7 end
8 end
9 end
10 for j ← 1 to nk do
11 for s← 1 to np do
12 Average the RMSE over n-runs
13 end
14 end
15 Estimate the minimum RMSE average and
corresponding p∗ and k∗ values
16 return p∗ and k∗
In the KNNreg method, the prediction of the output for a
new sample is made through a uniform weighting
scheme (Cheng 1984). This means it makes the prediction
by taking the simple average of the outputs of the nearest
neighbor samples and does not consider the distances
between the new sample and its k nearest neighbors (i.e.,
all nearest neighbors have equal influence across the pre-
diction) (Kramer 2011). In contrast, the FKNNreg uses an
inverse weighting scheme that assigns higher weights to
the closer training samples, allowing them more influence
over the prediction. Moreover, the fuzzy strength parame-
ter q controls how heavily the distance is weighted when
determining the contribution of each nearest neighbor to
the target sample (Keller et al. 1985). For example, when
q ¼ 2, the contributions of the nearest neighbors are
weighted by the reciprocal of their distances to the target
sample. Regarding the distance, the adopted distance
metric plays a crucial role in achieving the best possible
nearest neighbors and weighting them. Accordingly, the
Minkowski distance is utilized in the proposed Md-FKNN
method since it offers a more generalized nature2 than the
Euclidean distance and Manhattan distance. It has shown
superior performance with supervised and unsupervised
machine learning models compared to other distance
measures (for examples, see Aggarwal et al. 2001; Ranmya
and Sasikala 2019). Considering the above facts, overall,
the proposed Md-FKNNreg is expected to produce signif-
icantly better results than the KNNreg and FKNNreg
methods.
5 Experiment and results
This section presents the descriptions of the data sets used
and the empirical procedures of the experiments conducted
to investigate the regression performance of the proposed
Md-FKNNreg model.
5.1 Data description
For our experiment, we selected eight real-world datasets
that are freely available at the UCI Machine Learning
repository (Dheeru and Taniskidou 2017) and at the
Knowledge Extraction based on Evolutionary Learning
(KEEL) repository (Alcala-Fdez et al. 2011). As summa-
rized in Table 1, each of these datasets holds different
characteristics in terms of the number of instances and
features. Also, the related area of each of the datasets is
provided in the ‘‘Domain’’ in Table 1.
2 This can be defined in terms of the ‘‘metric space’’: Minkowski
metric space * (Rm, Lp), Euclidean space * (Rm, L2), and
Manhattan space * (Rm, L1).
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5.2 Experimental setting
In each collected dataset, the data samples were divided
into 40% for training, 40% for validation, and 20% for
testing based on the works of Kumbure et al. (2019, 2020).
Before data splitting, all the datasets were normalized into
the unit interval of [0, 1] to avoid data differences between
small and large ranges. For cross-validation, we adopted
the holdout method (Arlot and Celisse 2010), in which the
training and validation datasets were randomly sampled 30
times, and mean performance measures were computed
from the results. The examination of the proposed method
using the data can be categorized into two phases, training
& validation and testing. In the training and validation step,
we trained the model by optimizing the parameter values
for p in the Minkowski distance and the number of
k nearest neighbors. Here, we used mean regression error to
determine the optimal parameter values. To find the best
possible values for the parameters, we deployed a grid
search technique during the training and validation. Then,
we evaluated the performance of the model with optimal
parameters in the testing phase. The steps of this process
are summarized by the flowchart in Fig. 1.
The proposed Md-FKNNreg, Man-FKNNreg and Euc-
FKNNreg models were implemented using MATLAB
2019b software. The KNNreg was implemented from
scratch. The SVR, LASSO, and MLR models were
developed using the Statistics and Machine Learning
Toolbox in MATLAB. The computer used was an Intelr
CoreTM i5 1.8GHz, 16GB RAM with Microsoft Windows
10 operating system.
5.3 Baseline models
We compared the performance of the developed Md-
FKNNreg method with the classical KNNreg, Man-
FKNNreg, and Euc-FKNNreg methods. In addition, we
also selected three more commonly used regression tech-
niques, namely SVR (Drucker et al. 1997), LASSO
regression (Tibshirani 1996; Wang et al. 2018), and MLR
(Montgomery et al. 2012). The basic concepts of these
methods are briefly presented.
SVR, a variant of SVM (Cortes and Vapnik 1995), is a
non-linear kernel-based regression approach that performs
the regression by constructing a hyperplane in a high-di-
mensional space. For a given test sample X, SVR develops
a predictor function: hðXÞ ¼PNi¼1ðai & a+i ÞKðX;XiÞ þ b
by mapping training samples onto the high-dimensional
features space. Here, ai and a+i are non-zero Lagrange
multipliers, b is a bias constant, and K is the kernel function
that represents the inner product of X and train sample Xi.
LASSO is a regularization-based3 linear regression
model. The model is selected to minimize the objective
function:
Pn
i¼1ðw0 þ
Pm
j¼1 wjx
i
j & yiÞ2 þ k
Pm
j¼1 wj, where
k is the regularization parameter that is used to control the
empirical error. As the k value increases, LASSO changes
more coefficients to zero (Wang et al. 2018).
MLR (also referred to as ordinary least squares regres-
sion) is one of the oldest and most frequently employed
techniques for analyzing the relationship between the
response variable and multiple input variables. The general
form of the MLR model can be given by
hðXiÞ ¼ w0 þ
Pm
j¼1 wjx
i
j þ !, where hðXiÞ is the predictor
function for the sample Xi ¼ xi1; xi2; . . .; xim, w0 is the con-
stant, wj is the coefficient for the variable j, and ! is the
error term (*Nð0; r2Þ) of the model.
5.4 Parameter settings
The detailed parameter settings for the proposed method
and benchmarks are presented in this sub-section. In the
Md-FKNNreg algorithm, the value for p of the Minkowski
distance was selected from f1; 1:5; . . .; 5g. The number of
nearest neighbors k was chosen from the range
f1; 2; . . .; 25g for all nearest neighbor regression approa-
ches. The value of the fuzzy strength parameter m was kept
constant at m ¼ 1:5 according to Arif et al. (2010) for both
the Md-FKNNreg and FKNNreg models.
The kernel function is the most critical ingredient in the
SVR model (Ali and Smith-Miles 2006) because it helps
the model achieve robust mapping from training samples to
the prediction. Accordingly, we tested the performance of
the SVR model using three different kernels: linear, Radial
Basis Function (RBF), and polynomial based on Ali and
Smith-Miles (2006). For the Lasso model, the regulariza-
tion parameter k was tuned from the range
f0:001; 0:01; . . .; 100g by following the experiments of
Saccoccio et al. (2014). Here, we attempted to create a
Table 1 Summary of the datasets used in the experiment
Data set Repository Instances Features Domain
Stock KEEL 950 9 Business
Airfoil UCI 1503 5 Physics
AutoMPG KEEL 392 6 Engineering
Baseball KEEL 337 16 Sociology
Servo UCI 167 4 IT
Laser KEEL 993 4 Physics
Qsar Fish UCI 908 6 Biology
Parkinson UCI 5875 26 Medicine
3 In machine learning, regularization is a more sophisticated
technique that is used to solve model overfitting problems.
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balance for the k values due to the fact that low values of k
prefer predictor functions that achieve a small training
error while larger values tend to obtain simple prediction
functions (Wang et al. 2018). With the multiple regression
model, we tested four different model types from the
toolbox: linear, interaction4, purequadratic5, and quad-
ratic6. Using these different types of models, we were able
to generate more sophisticated MLR versions for compe-
tition in the comparison even though high-order terms of
the features were not deployed with the nearest neighbor
methods. The rest of the parameter values in the SVR,
LASSO, and MLR models were set to the default values
according to the toolbox specifications.
5.5 Evaluation metrics
To evaluate the prediction performance of the proposed
regression method and benchmarks, we adopted two fre-
quently applied measures: RMSE and R2. RMSE computes
the square root of the average differences between the
model’s predictions and the true values. R2 is the propor-
tion of the variation in the response variable, which is
‘‘explained’’ by the regression model compared to the
mean (Kurz-Kim and Loretan 2014). It is a statistical
measure that implies how closely the data points in the
response variable fit to the values of the regression model.
In general, higher R2 values and smaller RMSE values
reflect better performance in the regression model (Pham
2019). The formulas used for both evaluation methods are
defined as follows:
RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
Xn
i¼1
ðY^i & YiÞ2
s
ð7Þ
R2 ¼ 1&
Pn
i¼1ðYi & Y^iÞ2Pn
i¼1ðYi & !YÞ2
 !
, 100% ð8Þ
where n is the number of samples in the test data, Y^i
indicates the predicted value, Yi indicates the true value of
the ith test sample, and !Y is the average of the true values.
As shown in Eq. (8), the percentage values of R2 are
considered.
When it is necessary to apply several models to a par-
ticular problem and pick the best one, the usual method is
to use several evaluation metrics to measure the models’
performance and select the best model with the highest
performance. However, when trying to prove that one
model outperforms another for a particular problem, we
must use a statistical test of significance and validate the
claim of improved performance (Borovicka et al. 2012).
Following Chen et al. (2011), we adopted the paired
t test, one of the most commonly used statistical tests in
machine learning. This analysis tested the null hypothesis
that there is no significant difference between two mean
RMSE rates at the 0.05 significant level. Here we consid-
ered the error samples from the holdout method (size of
30, 1) for each regression model when the optimal
parameter values were employed. The standard deviations
were also computed.
5.6 Results and discussion
In this subsection, we first present the results of the pro-
posed method compared with the baseline methods from
the training and validation step. After that, optimal
parameter values observed for each model are discussed.
Then, the performances of the fitted models for the training
and validation data are evaluated with the test datasets.
Fig. 1 A workflow of the development and evaluation of Md-FKNNreg model
4 Includes an intercept, linear term for each variable, and all products
of pairs of distinct variables.
5 Includes an intercept term and linear and squared terms for each
variable.
6 Includes a constant term, linear and squared terms of each variable,
and all products of pairs of distinct variables.
Granular Computing
123
Content courtesy of Springer Nature, terms of use apply. Rights reserved.
5.6.1 Results with the validation data samples
Table 2 summarizes the results of all the methods for each
of the datasets from the training and validation step. In the
table, we report the minimum RMSE and standard devia-
tion (STD) for the RMSE as the performance measures.
Notice that these mean RMSEs and standard deviations are
the result of the holdout method with 30 repetitions.
From Table 2, it is apparent that the proposed Md-
FKNNreg method outperformed all benchmarks for six
datasets and had the second-best performance for the rest
of the datasets. Also, the standard deviations of the pro-
posed method were reasonable for all cases. In particular,
the Md-FKNNreg method achieved significantly improved
performance compared with the Euc-FKNNreg method
even though the results of the two methods were compa-
rable in some cases, for example, in the cases of Servo and
Stock. Additionally, the Md-FKNNreg and Man-FKNNreg
models produced the same results over six datasets.
Moreover, the KNNreg and SVR models achieved the
lowest mean RMSE results in the cases of Servo and Laser,
respectively. Finally, neither the LASSO and nor MLR
models offered comparative results for the datasets com-
pared to the other models.
Figure 2 illustrates the R2values of each for the opti-
mized regression models from the training and validation
step for each dataset. Notice that the R2 values revealed by
the bar-heights in the graphs refer to the maximum of mean
R2 values obtained from the holdout cross-validation. The
bar graphs in the figure are also displayed so that the blue
bar represents the highest R2 while the other bars indicate
the rest of the values. From Fig. 2, one can observe a
similar indications about the regression performance of the
proposed Md-FKNNreg method and benchmarks as from
Table 2.
5.6.2 Evaluation of the optimal parameter values
During the training and validation, we evaluated the
regression results by tuning the parameters of the Md-
FKNNreg and benchmark models. Figure 3 displays the
impacts of different combinations of the parameters k and p
in the Md-FKNNreg method on the RMSE (and R2) with
the Stock dataset. Figure 3 demonstrates how these
parameters maintain the good performance of the Md-
FKNNreg method for the Stock data set.
Corresponding to the results in Table 2, the optimal
parameter values observed for the proposed Md-FKNNreg
and benchmark models are presented in Table 3. The
table shows that p ¼ 1 (i.e., the Manhattan distance)
obtained the best performance with the Md-FKNNreg
method for the majority of the datasets. We also applied the
Manhattan distance-based FKNNreg and received the same
results as for the Md-FKNNreg method with p ¼ 1. This
finding is consistent with the implications of Aggarwal
et al. (2001), who showed that the Manhattan distance (L1
norm) is the best option for high-dimensional applications.
Additionally, it seems that relatively low k values (varying
from 1 to 13) are better suited to the original KNNreg
method, while high k values (ranging from 2 to 25) work
Table 2 The results obtained for all methods in the training & validation step
Data set Measure Md-
FKNNreg
Man-
FKNNreg
Euc-
FKNNreg
KNNreg (Biau
et al. 2012)
SVR (Drucker
et al. 1997)
LASSO
(Tibshirani 1996)
MLR (Montgomery
et al. 2012)
Stock RMSE 0:0272 0:0272 0.0276 0.0308 0.0381 0.0854 0.0421
STD 0.0022 0.0022 0.0023 0.0025 0.0062 0.0029 0.0026
Airfoil RMSE 0:0932 0.0994 0.0942 0.1027 0.0957 0.1273 0.1113
STD 0.0047 0.0049 0.0049 0.0046 0.0037 0.0031 0.0030
AutoMPG RMSE 0:0769 0:0769 0.0812 0.0815 0.0843 0.0952 0.0779
STD 0.0039 0.0039 0.0050 0.0047 0.0075 0.0045 0.0043
Baseball RMSE 0:1235 0:1235 0.1254 0.1307 0.1326 0.1276 0.1293
STD 0.0096 0.0096 0.0092 0.0091 0.0083 0.0072 0.0071
Servo RMSE 0.1611 0.1611 0.1612 0:1549 0.1818 0.1861 0.1579
STD 0.0221 0.0221 0.0185 0.0157 0.0296 0.0145 0.0150
Laser RMSE 0.0407 0.0407 0.0431 0.0451 0:0396 0.0885 0.0438
STD 0.0083 0.0083 0.0078 0.0084 0.0076 0.0054 0.0050
Qsar Fish RMSE 0:0966 0.0969 0.0993 0.0981 0.0971 0.1022 0.1021
STD 0.0036 0.0036 0.0035 0.0039 0.0037 0.0042 0.0042
Parkinson RMSE 0:0583 0:0583 0.0626 0.0678 0.0810 0.1936 0.1865
STD 0.0028 0.0028 0.0027 0.0022 0.0036 0.0016 0.0015
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Fig. 2 Observed R2 values of
each model for each dataset
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better for its fuzzy versions. Moreover, the RBF kernel
appears to be the most suitable for the SVR model because
it achieved high performance for all datasets except for
Baseball and Servo data. Regarding the LASSO model
having the most instances of the least-squares estimations,
we believe that this is because of the lowest k ¼ 0:001
shows the optimum. The optimal type of MLR model
varied depending on the particular datasets. By taking the
parameters and other results together, it is evident that the
fuzzy variants have more potential for linear and non-linear
problems. For instance, the case with the Baseball data
could be considered a linear problem since both SVR and
MLR hold linear parameters, but high performance was
achieved with the Md-FKNNreg, Man-FKNNreg, and Euc-
FKNNreg methods.
5.6.3 Results with the test data samples
This subsection presents the regression results of the Md-
FKNNreg and baseline models with the testing data sam-
ples that were initially split from the original datasets. In
this testing phase, we used the optimized parameter values
and training data samples stored from the cross-validation
step to evaluate the models’ performances with the previ-
ously unseen test data samples.
Table 4 summarizes the results with the mean RMSEs
and the standard deviations (STD) of the proposed Md-
FKNNreg and benchmarks models for the selected data-
sets. In addition, the average computational time (Com.
time, in seconds) of each method in the testing phase is also
reported.
The results of Table 4 show that the Md-FKNNreg
method outperformed all benchmarks for all datasets,
verifying the effectiveness of the proposed Md-FKNNreg
Fig. 3 The averages of the RMSE and R2 values for the Md-FKNNreg method for different parameter combinations (p, k) in the training and
validation step with the Stock dataset
Table 3 Optimal parameter values of each model for each dataset
Model Parameters Stock Airfoil AutoMPG Baseball Servo Laser Qsar
fish
Parkinson
Md-FKNNreg (k, p) (9, 1) (5, 4.5) (16, 1) (8, 1) (8, 1) (4, 1) (13,
1.5)
(4, 1)
Man-FKNNreg k 9 2 16 8 8 4 15 4
Euc-FKNNreg k 9 11 25 13 6 4 25 5
KNNreg (Biau et al. 2012) k 2 1 7 13 9 3 10 3
SVR (Drucker et al. 1997) kernel RBF RBF RBF linear polynomial RBF RBf RBF
LASSO (Tibshirani 1996) k 0.001 0.001 0.010 0.001 0.001 0.001 0.001 0.001
MLR (Montgomery et al.
2012)
Model Quadratic Quadratic Interaction Linear Pure-
quadratic
Quadratic Linear Linear
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method for regression problems. Compared with the Man-
FKNNreg results, the Md-FKNNreg model achieved
somewhat higher accuracy for the Airfoil and Qsar Fish
datasets. Additionally, the Md-FKNNreg showed signifi-
cantly better performance than the Euc-FKNNreg method
across almost all datasets. This reveals that introducing the
Minkowski distance in the learning part can result in
finding more reasonable nearest neighbors, leading to
better performance compared to the Manhattan and
Euclidean distances. Considering the KNNreg and SVR
models, even though these achieved the lowest errors in
some cases during the training and validation, the Md-
FKNNreg method outperformed them on all testing cases.
This proves that the proposed Md-FKNNreg model has
more power to overcome over-fitting issues than both
KNNreg and SVR models. Moreover, the lowest regression
performance for the testing data, similar to the validation
data, occurred for both the LASSO and MLR models.
Based on the testing times, it is clear that the compu-
tational complexity of the FKNNreg methods was rela-
tively high compared with the other methods used. This
might be because of the inclusion of the weight generation
process based on the inverse of the distances and the fuzzy
strength parameter. Additionally, the proposed Md-
FKNNreg method required more time (in seconds) than the
Euc-FKNNreg and Man-FKNNreg methods to deliver the
Table 4 The results obtained for all methods in the testing step
Data set Measure Md-
FKNNreg
Man-
FKNNreg
Euc-
FKNNreg
KNNreg SVR LASSO MLR
(Biau et al.
2012)
(Drucker et al.
1997)
(Tibshirani
1996)
(Montgomery et al.
2012)
Stock RMSE
mean
0:0294 0:0294 0.0302 0.0311 0.0406 0.0762 0.0407
STD 0.0016 0.0016 0.0017 0.0017 0.0041 0.0007 0.0011
Com. time 0.0230 0.0171 0.0200 0.0207 0.0009 0.0002 0.0082
Airfoil RMSE
mean
0:0963 0.0966 0.1002 0.1036 0.0986 0.1342 0.1182
STD 0.0046 0.0039 0.0046 0.0048 0.0022 0.0010 0.0013
Com. time 0.0428 0.0306 0.0264 0.0233 0.0009 0.0001 0.0030
AutoMPG RMSE
mean
0:0687 0:0687 0.0719 0.0728 0.0707 0.0824 0.0725
STD 0.0024 0.0024 0.0023 0.0028 0.0036 0.0015 0.0020
Com. time 0.0098 0.0066 0.0075 0.0066 0.0004 0.0002 0.0020
Baseball RMSE
mean
0:1184 0:1184 0.1239 0.1316 0.1448 0.1329 0.1350
STD 0.0080 0.0080 0.0082 0.0070 0.0064 0.0043 0.0050
Com. time 0.0068 0.0052 0.0060 0.0051 0.0004 0.0001 0.0003
Servo RMSE
mean
0:1120 0:1120 0.1231 0.1167 0.1577 0.1602 0.1197
STD 0.0210 0.0210 0.0237 0.0164 0.0218 0.0038 0.0107
Com. time 0.0062 0.0060 0.0062 0.0054 0.0014 0.0003 0.0051
Laser RMSE
mean
0:0435 0:0435 0.0441 0.0527 0.0483 0.0986 0.0509
STD 0.0094 0.0094 0.0124 0.0106 0.0158 0.0026 0.0058
Com. time 0.0237 0.0168 0.0192 0.0175 0.0004 0.0002 0.0030
Qsar Fish RMSE
mean
0:0902 0.0905 0.0917 0.0942 0.0943 0.0976 0.0973
STD 0.0021 0.0021 0.0027 0.0020 0.0026 0.0010 0.0009
Com. time 0.0249 0.0058 0.0201 0.0046 0.0005 0.0001 0.0003
Parkinson RMSE
mean
0:0566 0:0566 0.0608 0.0666 0.0786 0.1915 0.1844
STD 0.0025 0.0025 0.0027 0.0027 0.0028 0.0005 0.0031
Com. time 0.2296 0.2229 0.2971 0.2815 0.0178 0.0039 0.0101
Overall RMSE
mean
0:0769 0.0770 0.0807 0.0837 0.0917 0.1217 0.1023
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results since it includes an additional computation with the
parameter p.
To validate the test results statistically, a paired t test
was applied, and the observed results for the P values and
test statistics are presented in Table 5. The t test results
demonstrate whether there is a statistically significant dif-
ference between mean RMSEs of the compared regression
methods. From the evidence in the table, it is apparent that
the Md-FKNNreg method yielded statistically significantly
better performance than the benchmarks in terms of the
lowest error. In particular, we observed that the proposed
method could not produce statistically significant results
for either the Servo dataset (compared with the Euc-
FKNNreg and KNNreg methods) or the Laser dataset
(compared with the Euc-FKNNreg and SVR methods). It
should be noted here that we did not find a statistically
Table 5 Paired t test results on
the performance of the Md-
FKNNreg method vs. five
benchmarks for the test datasets
Data set Paired t with Md-FKNNreg P value Test statistic
Stock Euc-FKNNreg 0.0463 Significant
KNNreg (Biau et al. 2012) 1.0715e-04 Significant
SVR (Drucker et al. 1997) 3.8055e-20 Significant
LASSO (Tibshirani 1996) 1.7732e-76 Significant
MLR (Montgomery et al. 2012) 1.8274e-38 Significant
Airfoil Euc-FKNNreg 0.0014 Significant
KNNreg (Biau et al. 2012) 4.2915e-08 Significant
SVR (Drucker et al. 1997) 0.0131 Significant
LASSO (Tibshirani 1996) 3.3463e-50 Significant
MLR (Montgomery et al. 2012) 2.3700e-36 Significant
AutoMPG Euc-FKNNreg 2.7216e-06 Significant
KNNreg (Biau et al. 2012) 8.6347e-08 Significant
SVR (Drucker et al. 1997) 0.0141 Significant
LASSO (Tibshirani 1996) 2.1512e-34 Significant
MLR (Montgomery et al. 2012) 1.6638e-08 Significant
Baseball Euc-FKNNreg 0.0101 Significant
KNNreg (Biau et al. 2012) 5.3335e-09 Significant
SVR (Drucker et al. 1997) 1.9285e-20 Significant
LASSO (Tibshirani 1996) 3.1952e-12 Significant
MLR (Montgomery et al. 2012) 1.1241e-13 Significant
Servo Euc-FKNNreg 0.0600 Not significant
KNNreg (Biau et al. 2012) 0.3348 Not significant
SVR (Drucker et al. 1997) 2.2466e-11 Significant
LASSO (Tibshirani 1996) 6.2441e-18 significant
MLR (Montgomery et al. 2012) 0.0778 Not significant
Laser Euc-FKNNreg 0.8251 Not significant
KNNreg (Biau et al. 2012) 7.6651e-04 Significant
SVR (Drucker et al. 1997) 0.1544 Not significant
LASSO (Tibshirani 1996) 8.6754e-38 Significant
MLR (Montgomery et al. 2012) 4.9310e-04 Significant
Qsar Fish Euc-FKNNreg 0.0155 Significant
KNNreg (Biau et al. 2012) 3.0113e-10 Significant
SVR (Drucker et al. 1997) 9.4806e-09 Significant
SVR (Drucker et al. 1997) 1.3310e-24 significant
MLR (Montgomery et al. 2012) 5.3260e-24 Significant
Parkinson Euc-FKNNreg 3.7463e-08 Significant
KNNreg (Biau et al. 2012) 1.9184e-21 Significant
SVR (Drucker et al. 1997) 2.0103e-38 Significant
LASSO (Tibshirani 1996) 2.2655e-93 Significant
MLR (Montgomery et al. 2012) 6.3721e-81 Significant
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significant difference between Md-FKNNreg and Man-
FKNNreg results for any dataset. In addition to finding no
difference between the test results of Md-FKNNreg and
Man-FKNNreg for six datasets, the t test produced no
evidence of a significant difference between these methods
for the Airfoil and Qsar Fish cases.
6 Conclusions
This paper proposed a new generalized regression model
based on the FKNN rule and investigated its effectiveness
on different regression problems from various domains.
The Minkowski distance metric was introduced into the
nearest neighbor search in the proposed algorithm to
examine how it improves accuracy. Accordingly, the pro-
posed method was named the Md-FKNNreg model. The
effectiveness of the Md-FKNNreg method was evaluated in
comparative experiments with the standard nearest neigh-
bor and three well-known regression methods, namely
SVR, LASSO, and MLR. In addition, Man-FKNNreg and
Euc-FKNNreg methods were implemented, and their
results were compared. For the experiments, we used eight
real-world datasets that are freely available from machine
learning repositories. The regression performance of each
model for those datasets were discussed in terms of the
RMSE, R2 and standard deviation. The results showed that
the Md-FKNNreg method outperformed the benchmarks
and is a suitable choice for regression problems. In our
experiments, Md-FKNNreg gave the lowest overall aver-
age RMSE of 0.0769.
The results of the experiments showed that the proposed
Md-FKNNreg method achieved statistically significantly
higher performance than the other methods in almost all
cases in terms of the RMSE means. Additionally, we found
that the Minkowski distance with p ¼ 1 yielded the optimal
Md-FKNNreg model, which then achieved the best per-
formance for the majority of the datasets. In other words,
the Man-FKNNreg showed promising results for the
regression at large, supporting the indications in the study
by Aggarwal et al. (2001).
However, it should be noted that the computational
complexity of the proposed method is relatively high
compared with the Euc-FKNNreg and KNNreg methods
because an additional calculation with the Minkowski
distance is included in the learning algorithm. Despite that,
this research has offered some insight into further investi-
gations. For example, it would be interesting to see how the
Md-FKNNreg method adapts and performs in regression
applications in which KNNreg was previously utilized
(e.g., Hu et al. 2014; Cai et al. 2020; Yao and Ruzzo 2006;
Huang and Perry 2016; Zhou et al. 2020; Durbin et al.
2021; Dell’Acqua et al. 2015). Furthermore, future
research directions may also test the effect of combining
Md-FKNNreg with other efficient variants, such as SVM
(Chen and Hao 2017) and ANN (Salari et al. 2015) in a
hybrid framework.
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