
1053
TOW

ARDS SECURITY AN
D RESOURCE EFFICIEN

CY IN
 FOG COM

PUTIN
G N

ETW
ORKS

Farhood Hoseinpur

TOWARDS SECURITY AND RESOURCE EFFICIENCY
IN FOG COMPUTING NETWORKS

Farhood Hoseinpur

ACTA UNIVERSITATIS LAPPEENRANTAENSIS 1053

Farhood Hoseinpur

TOWARDS SECURITY AND RESOURCE EFFICIENCY
IN FOG COMPUTING NETWORKS

Acta Universitatis
Lappeenrantaensis 1053

Dissertation for the degree of Doctor of Science (Technology) to be presented
with due permission for public examination and criticism in the Auditorium
1318 at Lappeenranta-Lahti University of Technology LUT, Lappeenranta,
Finland on the 2nd of December, 2022, at noon.

Supervisors Professor Kari Smolander
LUT School of Engineering Science
Lappeenranta-Lahti University of Technology LUT
Finland

Associate Professor Pedro Juliano Nardelli
LUT School of Energy Systems
Lappeenranta-Lahti University of Technology LUT
Finland

Reviewers Professor Tommi Kärkkäinen
Faculty of Information Technology
University of Jyväskylä
Finland

Professor Antonio Marcos Alberti
National Institute of Telecommunications
Brazil

Opponent Assistant Professor Ella Peltonen
Faculty of Information Technology and Electrical Engineering
University of Oulu
Finland

ISBN 978-952-335-885-0
ISBN 978-952-335-886-7 (PDF)

ISSN 1456-4491 (Print)
ISSN 2814-5518 (Online)

Lappeenranta-Lahti University of Technology LUT
LUT University Press 2022

Abstract

Farhood Hoseinpur
Towards Security and Resource Efficiency in Fog Computing Networks
Lappeenranta 2022
63 pages
Acta Universitatis Lappeenrantaensis 1053
Diss. Lappeenranta-Lahti University of Technology LUT
ISBN 978-952-335-885-0, ISBN 978-952-335-886-7 (PDF), ISSN 1456-4491 (Print),
ISSN 2814-5518 (Online)

The Internet of Things plays a crucial role in digitalising services in many domains di-
rectly affecting humans’ day-to-day lives. However, with immense digitalisation, the Big
Data phenomenon has become a critical issue. Big Data is, in general, characterized by
five major features, including Volume, Velocity, Value, Veracity, and Variety, which are
known as the 5 Vs of Big Data. In addition to its general characteristics, a new feature,
i.e., geo-distribution, is also introduced by emerging IoT applications. These characteris-
tics demand robust computing services for managing Big Data. Geo-distribution of Big
Data and IoT services necessitates deploying computing services already at the network’s
edge. Hence, fog computing, a geographically distributed computing platform, was intro-
duced to provide local computing services for IoT applications. However, because of its
limited resources, i.e., computing, storage, energy, and bandwidth, fog computing faces
challenges concerning implementing strong security measures.
This dissertation explores how to enhance security and privacy in fog computing by de-
signing lightweight and efficient intrusion detection systems (IDS) to detect and prevent
malicious attacks on IoT services. Furthermore, how to efficiently utilize computing re-
sources in fog computing to enhance the quality of services and effectively facilitate the
deployment of security mechanisms. The dissertation comprises five studies that em-
ployed a portfolio of research methods, including conceptualisation, proof of concept,
and simulation modelling.
The contribution of this thesis is threefold. First, the dissertation proposes solutions to en-
hance and tailor anomaly-based IDS inspired by the biological immune system to detect
network intrusions in the IoT efficiently. As a result, a new lightweight architecture, in-
cluding an extra layer of protection called the innate immune system, was proposed, and a
proof of concept was presented. Second, it proposes a security framework to manage the
trust levels of the device nodes that join the computing pool in the fog network and con-
trol their access to processing data with different levels of criticality. Third, it proposes
solutions for efficiently managing and utilizing the limited resources in fog computing.
This includes the introduction of a concept called Smart Data that aims to reshape the
existing perspective of Big Data computing from a passive to an active form. Further,
the dissertation presents a resource management model and algorithms to efficiently map
multi-task applications into fog computing networks to reduce communication delays and
enhance the quality of service.

Keywords: internet of things, fog computing, resource management, intrusion detection
system, security

Acknowledgements

This doctoral research began at the University of Turku in 2015 and continued from
Lappeenranta Lahti University of Technology (LUT) until the autumn of 2022. I would
like to express my appreciation to everyone who supported and encouraged me on this
long journey.

First, I would like to express my deepest gratitude to my supervisors, Professor Kari
Smolander and Associate Professor Pedro Juliano Nardelli, for their continued guidance
and valuable support and encouragement.

I wish to thank Professor Tommi Kärkkäinen and Professor Antonio Marcos Alberti for
their valuable reviews of this dissertation and for providing constructive comments that
improved its quality. I also extend special thanks to Assistant Professor Ella Peltonen for
agreeing to be the opponent at the public thesis defense.

I am extremely grateful to Professor Juha Plosila and Associate Professor Seppo Virtanen
for their support and guidance on my research and publications. I want to express my
sincere thanks to Professor Tapio Pahikkala for all his guidance, support, and outstanding
feedback on my last publication.

I am deeply indebted to Professor Erkki Sutinen and Dr. Päivi Sutinen for their love
and care and for welcoming me into their family. They opened their hearts and supported
me on the hardest days of my life. I sincerely appreciate their kindness.

My warmest gratitude goes to my colleagues and collaborators for their valuable con-
tributions to our joint publications. I would especially like to thank Dr. Payam Vahdani
Amoli for his valuable input on our joint publications, and Mr. Babak Ziaee and Dr.
Hesam Zolfaghari for their support and encouragement.

I would also like to take this opportunity to express my profound gratitude to Professor
Jaber Karimpour and Mr. Mehdi Barazandetar for their unwavering support and belief in
me since the beginning of my journey.

I want to extend my special thanks to Eficode Oy and all my wonderful colleagues for
building such an excellent workplace and professional community. Furthermore, I want
to express my deepest gratitude to Mr. Tuomas Leppilampi and Mr. Kalle Lindroos for
their valuable encouragement and support, as well as for believing in me and giving me
the opportunity to advance my professional career.

I am sincerely grateful to my parents, Mr. Reza Hoseinpur and Mrs. Roghiyeh Khorsandi,
whose constant love and support keep me motivated and confident. My accomplishments
and success undoubtedly owe to their love, care, and sacrifices. My deepest thanks go
to my brother, Mr. Masood Hoseinpur, who keeps me grounded and always supports my

adventures.

I would like to extend my sincere thanks to my parents-in-law, Mr. Heikki Helminen
and Mrs. Kirsti Helminen, for their support, encouragement, trust, and solicitude.

Finally and most importantly, I would like to dedicate this thesis to my love, Hanna,
who has made my life so wonderful and prosperous. These few words cannot express my
deep appreciation for her love and endless support these past years.

Farhood Hoseinpur
December 2022
Lappeenranta, Finland

To my better half, Hanna
and our sweet daughter Rita

Contents

Abstract

Acknowledgments

Contents

List of publications 11

Nomenclature 13

1 Introduction 15
1.1 Research objectives and questions . 16
1.2 Thesis Contribution . 17
1.3 Thesis Structure . 19

2 Background 21
2.1 Internet of Things (IoT) . 21

2.1.1 IoT Architecture . 21
2.2 Big Data . 22
2.3 IoT Computing Solutions . 23
2.4 Fog Computing . 24

2.4.1 Fog Computing characteristics 25
2.4.2 Virtualization . 25

2.5 Fog Computing Architecture . 27
2.6 Fog Computing Resource Management 27

2.6.1 Application placement . 29
2.6.2 Resource Scheduling . 29
2.6.3 Task Offloading . 29
2.6.4 Load Balancing . 30
2.6.5 Resource allocation . 30
2.6.6 Resource Provisioning . 30

2.7 Fog Computing Security and Privacy Issues 31
2.7.1 Trust . 31
2.7.2 Authentication, Access Control and Secure Communication . . . 31
2.7.3 End Users’ Privacy . 31
2.7.4 Malicious Attacks (Intrusions) 32

2.8 Intrusion Detection Systems . 32
2.8.1 Artificial Immune Systems . 32

2.9 Chapter Summary . 33

3 Publication Overview 35
3.1 Publication Outline . 35
3.2 Publication I . 35

3.2.1 Research Objective and Relation to the Whole Thesis 35
3.2.2 Rationale and Context . 36
3.2.3 Research Methodology . 36
3.2.4 Main Results and Contribution 37

3.3 Publication II . 37
3.3.1 Research Objective and Relation to the Whole Thesis 37
3.3.2 Rationale and Context . 38
3.3.3 Research Methodology . 39
3.3.4 Main Results and Contribution 39

3.4 Publication III . 40
3.4.1 Research Objective and Relation to the Whole Thesis 40
3.4.2 Rationale and Context . 40
3.4.3 Research Methodology . 41
3.4.4 Main Results and Contribution 41

3.5 Publication IV . 41
3.5.1 Research Objective and Relation to the Whole Thesis 42
3.5.2 Rationale and Context . 42
3.5.3 Research Methodology . 42
3.5.4 Main Results and Contribution 43

3.6 Publication V . 44
3.6.1 Research Objective and Relation to the Whole Thesis 44
3.6.2 Rationale and Context . 44
3.6.3 Research Methodology . 45
3.6.4 Main Results and Contribution 46

4 Discussion 49
4.1 Research Contributions . 49
4.2 Implications and limitations for Research and Practice 51
4.3 Proposals for Further Research . 51

5 Summary and Conclusion 55

References 57

Publications

11

List of publications
This dissertation is based on the following original publications, referred to in the disser-
tation as Publications I, II, III, IV, and V. For all of the included publications, Farhood
Hoseinpur was the principal contributor with regard to research design, planning, execu-
tion, and publication writing.

The corresponding publishers have granted the rights to include the following publica-
tions in the dissertation.

I. Hosseinpour, F., Vahdani Amoli, P., Farahnakian, F., Plosila, J., and Hämäläinen,
T. (2014) Artificial Immune System Based Intrusion Detection: Innate Immunity
using an Unsupervised Learning Approach. International Journal of Digital Content
Technology and its Applications. Vol. 8(5). pp. 1-12.

II. Hosseinpour, F., Amoli, P. V., Plosila, J., and Hämäläinen, T. (2016). An Intru-
sion Detection System for Fog Computing and IoT based Logistic Systems using a
Smart Data Approach. International Journal of Digital Content Technology and its
Applications. vol. 10(5), pp. 34-46.

III. Hosseinpour, F., Plosila, J., and Tenhunen, H. (2016). An Approach for Smart Man-
agement of Big Data in the Fog Computing Context. IEEE International Conference
on Cloud Computing Technology and Science (CloudCom). pp. 468-471. New York:
IEEE.

IV. Hosseinpour, F., Siddiqui, A. S., Plosila, J., and Tenhunen, H. (2018) A Security
Framework for Fog Networks Based on Role-Based Access Control and Trust Mod-
els. Proceedings of Research and Practical Issues of Enterprise Information Sys-
tems. & Lecture Notes in Business Information Processing. vol. 310, pp. 168-180.
Cham:Springer.

V. Hosseinpour, F., Naebi, A., Virtanen, S., Pahikkala, T., Tenhunen, H., and Plosila, J.
(2021). A Resource Management Model for Distributed Multi-Task Applications in
Fog Computing Networks. IEEE Access. vol. 9, pp. 152792-152802.

Related publications (not included in this dissertation)

This dissertation also builds on other related publications, which were not included in the
dissertation portfolio of publications.

I. Hosseinpour, F., Bakar, K. A., Hardoroudi, A. H., and Kazazi , N. (2010). Survey
on Artificial Immune System as a Bio-inspired Technique for Anomaly Based In-
trusion Detection Systems. International Conference on Intelligent Networking and
Collaborative Systems. pp. 323-324.

12

II. Hosseinpour, F., Meng, Y., Westerlund, T., Plosila, J., and Tenhunen, H. (2016).
A Review on Fog Computing Systems. International Journal of Advancements in
Computing Technology. vol. 8(5), pp. 1525-1530.

III. Hosseinpour, F., Plosila, J., and Tenhunen, H. (2016). ”Smart Data: A New Perspec-
tive of Tackling the Big Data Phenomena Leveraging a Fog Computing System. In-
ternational Journal of Digital Content Technology and its Applications. vol. 10(5).
pp. 119-130

IV. Vitabile, S., Marks, M., Stojanovic, D., Pllana, S., Molina, J. M., Krzyszton, M.,
Sikora, A., Jarynowski, A., Hosseinpour, F., Jakobik, A., Stojnev, A., Respicio, A.,
Moldovan, D., Pop, C., and Salomie, I. (2019). Medical Data Processing and Analy-
sis for Remote Health and Activities Monitoring. High-Performance Modelling and
Simulation for Big Data Applications. pp.186–220.

Nomenclature 13

Nomenclature

Abbreviations

AIS Artificial Immune System
ANN Artificial Neural Networks
CDF Cumulative Distribution Function
DDOS Distributed Denial of Service
DOS Denial-of-Service
GPS Global Positioning System
GSM Global System for Mobile
HIS Human Immune System
IDS Intrusion Detection System
IOT Internet of Things
IP Internet Protocol
LISP Locator/Identifier Separation Protocol
MAC Media Access Control
MIQP Mixed-Integer-Quadratic-Programming
PKI Public Key Infrastructure
PSO Particle Swarm Optimization
QoE Quality of Experience
QoS Quality of Service
RA Remote Authentication
RBAC Role-Based Access Control
RFID Radio-Frequency Identification
SLA Service Level Agreement
SOA Service-Oriented Architecture
VM Virtual Machine
VMM Virtual Machine Monitor

15

1 Introduction

The rise of the Internet of Things (IoT) and cloud computing has pushed the evolution
of traditional embedded devices into drastic changes. In this era, embedded devices are
transforming into intelligent systems that are gradually being adopted and deployed in
both general and special workplace environments and environments in the everyday lives
of people (Nardelli, 2022). In this paradigm, information flows from sensors through
gateways to a computing server, for example, the cloud, where a diverse set of applica-
tions in several domains can be provided for a professional or a layman. Emerging IoT
applications generate massive amounts of data from various sensors, which are generally
referred to as Big Data. Traditionally, the data is not processed in the proximity of a sensor
but transferred as it is to a server that might be located in a cloud. However, transferring
a constantly increasing amount of information from sensors to a cloud is not feasible.
Hence, pre-processing the data already at the edge of the network will ease the compu-
tation load and complexity from the cloud servers, reduce the communication delay, and
increase the energy efficiency in IoT systems (Narayanan et al., 2020).
Fog computing is a promising technology that extends cloud computing and its services to
the edge of the network (Bonomi et al., 2014). Fog computing complements cloud com-
puting services by providing a faster response for latency-sensitive applications. Data
analysis at the fog computing layer is lightweight; therefore more advanced analyses
and processing will be done at the cloud layer. Fog distinguishes from the cloud in its
proximity to end users, geographical distribution, support for mobility, heterogeneity, dy-
namicity, and interoperability (Datta et al., 2015). Fog nodes are heterogeneous, ranging
from switches, routers, base stations, edge clusters, or micro data centres. They host dif-
ferent operating systems and applications. To hide hardware and platform heterogeneity,
virtualization technologies are used to develop a software abstraction layer on top of the
hardware and host operating system (Bonomi et al., 2014; Osanaiye et al., 2017). The ab-
straction layer provides a uniform programmable interface for managing and controlling
resources in the fog platform. Virtualization facilitates the co-existence and multi-tenancy
of different applications in a single physical node for efficient utilization of the resources
while ensuring the isolation of the multiple tenants in a single machine. Unlike cloud
computing, fog computing is a distributed and highly dynamic computing network (Sahni
et al., 2017). Fog computing nodes are geographically distributed at the edge of the net-
work. They can be mobile and battery-enabled, contributing more to their geo-distributed
and dynamic nature. Utilizing the available computing and storage capabilities of smart
mobile devices in fog computing networks is one way to empower fog computing. This is
referred to as cooperative computing (Sahni et al., 2017). Fog networks are mostly wire-
less supporting heterogeneous communication protocols ranging from 5G to ZigBee or
6LowPAN, facilitating interoperability between different IoT devices (Yousefpour et al.,
2019; Mäki, 2021).
Fog computing nodes generally have considerably limited computing and storage capaci-
ties compared to cloud computing nodes. Hence, the efficient utilization and management
of resources (i.e., time, energy, communication bandwidth, storage, and computing capac-
ity) are crucial for the successful deployment of fog computing services.

16 1 Introduction

From another perspective, the decentralised and open nature of fog computing networks
makes them more vulnerable to security threats (Zhang et al., 2018). The predominance
of wireless networks in fog networks poses considerable security concerns (Zhi et al.,
2019). Moreover, due to limited resources in fog nodes, strong security measures are
infeasible. Hence, fog computing is more vulnerable to classical network intrusions, such
as man-in-the-middle, flooding, and port scanning (Khater et al., 2019; Hosseinpour et al.,
2016). Furthermore, unlike cloud computing, fog nodes may belong to different service
providers, including internet service providers, cloud service providers, end users, etc.,
resulting in more complicated trust, access control, and authentication issues (Zhi et al.,
2019; Hosseinpour et al., 2018). Outsourcing the data into such diverse fog storage nodes
also increases security threads with regard to integrity and unauthorised access.

1.1 Research objectives and questions

This thesis tackles research challenges in relation to security and resource efficiency in
fog computing networks. In summary, the following research objectives and questions
have been delineated:

Security: Detection of silent and zero-day attacks that are unknown to the system requires
constant monitoring and behavioral analysis of the system’s components and communi-
cation. Intrusion Detection Systems (IDS) with local decision making are the first line
of defence against intrusive behaviour in fog computing systems. Due to the resource
limitations of fog and IoT devices, lightweight IDS are highly desirable.
Further, in a highly dynamic fog computing system where computing nodes with different
trust levels from different service providers or individuals are dynamically joining and
leaving the system, a proper access control system is needed to protect the security and
privacy of the data processed and stored in the fog computing nodes.
The goal of this thesis concerning the security challenges in fog computing is to enhance
the security and privacy of IoT services in fog computing through lightweight intrusion
detection, trust management, and access control. To address this objective, the following
research questions are addressed in this thesis:

• RQ1: How can an anomaly-based intrusion detection systems be enhanced to detect
zero-day attacks?

• RQ2: How can distributed intrusion detection systems be adapted in a lightweight
form for fog computing to protect IoT services against silent and zero-day attacks?

• RQ3: How can the security of IoT services be enhanced in cooperative fog comput-
ing networks?

Resource efficiency: Since fog computing networks suffer from high heterogeneity, dy-
namicity, and limited resources, management, and efficient utilization of the resources is
crucial to satisfy the Quality of Service (QoS) and Quality of Experience (QoE). In a fog

1.2 Thesis Contribution 17

computing system, applications can enter and leave the system at run-time and have dif-
ferent requirements in terms of, for example, computing intensity, types of computations,
memory usage, and power/energy consumption. Furthermore, at any time, some nodes
might leave the fog network because of, for example, low battery levels or malfunctions,
and, correspondingly, some new nodes might enter the fog network (Lee et al., 2017).
In such a dynamic platform, complex resource management is needed to assign new or
unfinished tasks on the fog layer while considering several constraints, for example, Ser-
vice Level Agreement (SLA), power consumption, computing capacity, communication
bandwidth, maximum tolerable latency, energy efficiency, and reliability.
Therefore, the goal of this thesis concerning the resource efficiency challenges in fog
computing is to enhance resource utilization by introducing efficient approaches tailored
to the specific characteristics and limitations of fog computing. To address this objective,
the following research questions are addressed in this thesis:

• RQ4: How can we decouple the dependency of application codes from the under-
lying hardware computing platform in a highly dynamic fog computing network to
efficiently tackle the big data in IoT?

• RQ5: How can fog computing resources be optimally allocated to multitask IoT
applications to reduce communication delays and optimise resource utilization in
fog computing networks?

1.2 Thesis Contribution
This thesis is an investigation to address the above questions by considering different
existing aspects and constraints in the development of fog computing systems. Figure
1.1 shows a general overview of the works accomplished in this thesis and the cohesion
of the publications. As shown in the figure, two main tracks have been investigated in
fog computing, including security and resource efficiency, to tackle some of the main
challenges in fog computing systems.
Security: Since fog computing is an open system, the risk of unseen network attacks is
high. Anomaly-based intrusion detection systems are able to detect new types of attacks
and abnormal behaviour in the network. However, the precision and effectiveness of
anomaly detection systems rely heavily on the training datasets. With the rapid growth of
the attackers’ knowledge, relying on offline training data is a drawback for such anomaly-
based IDS. The Artificial Immune System (AIS) is a biologically inspired technique that
has proven to be an effective approach for anomaly detection. In Publication I, we pro-
posed a multi-agent-based architecture for AIS-based IDS and verified its effectiveness.
Furthermore, we introduced a concept called innate immunity by proposing a joint tech-
nique using unsupervised learning methods to feed into our AIS engine to empower the
IDS to detect zero-day attacks. The innate immune system is the first response to the net-
work attacks that provide online training data for anomaly-based IDS in addition to the
offline training based on offline datasets.
Since the edge devices, including the sensors and fog computing nodes, are resource-
constrained, utilizing the conventional IDS is not an efficient and feasible measure. Hence,

18 1 Introduction

Figure 1.1: Illustration of publications’ cohesion. Each category is labeled with different
colors.

the development of lightweight IDS is necessary to facilitate the adoption of such a protec-
tion mechanism in fog computing and edge devices. Therefore, in Publication II, utilizing
the smart data technique that we presented in publication III, we presented a lightweight,
multi-layered, and multi-agent architecture for distributed anomaly-based IDS tailored to
a three-layered IoT system. We considered a smart IoT-based logistic system as our case
study in this publication.
In cooperative fog computing systems, computing nodes come from different sources that
may not be trustworthy. To limit the access level for such devices in publication IV, we
proposed a framework based on role-based access control techniques and trust models. In
this model, we considered the correctness of computing tasks to verify the trustworthiness
and reliability of a node. As a result, nodes can gain trust and be promoted to process data
at higher critical levels.
Resource Efficiency: Our target fog computing platform is a hierarchical and distributed
computing system that receives data from sensors, pre-processes/processes/stores, or for-
wards them to the cloud computing layer. IoT applications that need computing services
from such a system contain several distributed tasks with dependencies, each of which
must be executed in one fog computing node. Thanks to virtualization technology, a fog
node can host several application tasks, providing them an isolated run-time environment.
The task modules of the applications are a single function/portion of the code that requires
input data provided by precedent task modules or the sensors and produces specific output
data sent to the subsequent tasks or present as the final output of the application. To run
an application, the task modules must be mapped and deployed in a fog computing node.
In a fog computing system, reducing communication and computation delays is one of
the main goals to reduce service delay, network congestion, and bandwidth and energy

1.3 Thesis Structure 19

consumption, contributing to enhancing QoS and QoE. In this respect, the location of the
data and the nodes that process them are essential. The closer the source of data and
computing node the less communication delay will occur. Therefore, the code for each
task module and, in general, the whole distributed application must be deployed as close
as possible to the source of the data. However, it is possible that the other applications
already occupy the closest nodes or the communication links are busy, and adding a new
connection will degrade the connection in the existing applications within that link. Based
on this, we propose an efficient resource management technique with joint optimization
of the delay and deployment costs in Publication V.
As the number of IoT applications grows, the diversity of data also increases. This in-
crease in the diversity of the data results in increase in the diversity of the applications
that process them. However, such diverse applications may have several common task
modules. Utilizing common task modules for multiple applications will reduce deploy-
ment cost and complexity in the fog computing layer. Furthermore, with a highly dynamic
fog computing system, there is a possibility that some nodes that contain particular ap-
plication codes will become unavailable or the source of the data will move to another
geographical area. In this case, the set of computing nodes previously assigned for pro-
cessing them becomes unreachable or costly to communicate with and delay-prone. To
tackle this problem, we propose a concept called Smart Data in Publication III that aims
to decouple the dependency of application codes from the hardware computing platform
and instead embed the intelligence into the data itself by encapsulating sensory data with
lightweight and modular applications codes.

1.3 Thesis Structure
This thesis consists of five chapters with the following contents: The current chapter de-
scribes the overall direction of the research by presenting an overview of the topic, the
motivation behind the research, objectives and research questions, and the impact and
contribution of the thesis. Chapter 2 presents the general landscape of the research rele-
vant to the main tracks of the thesis, i.e., security and resource efficiency in fog comput-
ing networks. Furthermore, it addresses the research gap that this dissertation attempts
to fill. Chapter 3 provides an overview of the publications in the dissertation portfolio
and describes each publication’s main findings and contributions, as well as the research
methodology adopted in each publication. Chapter 4 summarizes the research results and
theoretical and practical contributions of the thesis, as well as future research opportuni-
ties. Finally, Chapter 5 concludes the dissertation.

21

2 Background
This chapter presents the background and state of the art in the scientific literature related
to the doctoral thesis topic. The following sections constitute the existing works pub-
lished by other scholars, providing the theoretical background supporting the main topics
covered in publications I - V.

2.1 Internet of Things (IoT)

Phenomenal augmentation in the number of smart devices and wireless and sensor tech-
nologies has led to the realization of a new era of computing called the Internet of Things
(IoT). Kevin Ashton coined the term Internet of Things in 1999 to present an intelligent
system for supply chains using Radio-Frequency Identification (RFID) tags that enabled
the objects in the physical world to connect (Ashton et al., 2009). The IoT is composed
of heterogeneous smart devices (referred to as things) ranging from mobile phones, in-
telligent network infrastructure, and in general, any device with computing, storage, and
communication interconnected via an assortment of communication technologies, includ-
ing Bluetooth, Wi-Fi, ZigBee, NB-IoT, LoRa, and GSM. The number of connected things
is rapidly growing every day. According to a report from Cisco (Grossetete, n.d.), “by
2023, there will be nearly 30 billion network-connected devices and connections, up from
18.4 billion in 2018. IoT devices will account for 50% (14.7B) of all networked de-
vices by 2023, compared to 33% (6.1B) in 2018.” The IoT facilitates the digitalization
of almost any old-fashioned service to improve citizens’ living standards (Yaqoob et al.,
2017). The extensive adoption of IoT technologies facilitates the transformation of many
aspects of how we live. Many IoT-enabled smart appliances, home automation, smart
energy management, electronic healthcare using wearable medical devices, etc., revolu-
tionize consumers’ lifestyles, promising a better quality of life, safety, and security. In the
industry sector, intelligent IoT systems, such as mechanical and robotic automation sys-
tems, networked vehicles, intelligent traffic control, etc., are widely adopted to optimize
production and improve services. This indicates the need to select the most suitable IoT
platform (Ullah et al., 2020).

2.1.1 IoT Architecture

The IoT is a multi-layered system in which each layer carries out specific functionalities
collaboratively with the other layers. Two widely considered IoT architectures include
three-layered and five-layered architectures (Al-Qaseemi et al., 2016).
Three-layered Architecture: The three-layer architecture illustrated in Figure 2.1 is re-
garded as basic IoT architecture. As the name suggests, it consists of three layers: the
perception, network, and application layers. The perception layer, also known as the
physical layer, includes the physical devices equipped with sensors and actuators located
at the edge of the network and interacting with the physical environment, sensing and
collecting data, or carrying out actuation commands. The network layer provides connec-
tivity to the devices in the perception layer to the application layer through an assortment

22 2 Background

Figure 2.1: IoT three-layered architecture (Al-Qaseemi et al., 2016)

of wired and wireless communication technologies such as Bluetooth, Zigbee, and 5G.
The network layer facilitates sending the sensory data from the perception layer to the
application layer and other way around, sending the processing results or actuation com-
mands from the application layer to the perception layer. Finally, the application layer
consists of servers and storage, providing the required processing power to process col-
lected data (Al-Qaseemi et al., 2016).
Five-layered Architecture: The five-layer architecture, as illustrated in Figure 2.2 con-
sists of two additional layers of middleware and business in addition to the three layers
described earlier. From another perspective, the application layer is further divided into
three sub-layers in the five-layer architecture. The middleware layer consists of process-
ing and storage hardware, such as distributed servers and databases, providing critical
functionalities, such as aggregating and filtering, often called pre-processing, of the data
and access control for the applications and devices (Bhawiyuga et al., 2019). The appli-
cation layer in this model enables the management of IoT applications. Furthermore, the
business layer is responsible for the global management of IoT systems, including ser-
vices, business, and profit models. Based on the analytical results in this layer, the future
directions and business strategies of IoT services are determined (Khan et al., 2012).

2.2 Big Data
In IoT systems, massive amounts of data, referred to as Big Data, are generated in the
perception layer. Big Data is, in general, characterized by five main features as Volume,
Velocity, Value, Veracity, and Variety, which are known as the 5 Vs of Big Data (Özköse
et al., 2015). The volume of Big Data refers to the size, scale, or amount of the data
required to be processed. The velocity of Big Data represents the speed of the gener-
ation of data. The variety of Big Data expresses the complexity of data as structured,
semi-structured, unstructured, and mixed data. The value of the data reflects the added
value of the data to the underlying process. Finally, the veracity of Big Data refers to the
consistency and trustworthiness of the data being processed. Data veracity ensures the
integrity, availability, and accountability of the data. In addition to its general characteris-
tics, emerging IoT applications also introduce a new feature, namely geo-distribution. In
IoT-based applications, the data is being, generated by sensors in different geographical
locations through mobile or fixed sensors that need to be managed as a coherent whole.

2.3 IoT Computing Solutions 23

Figure 2.2: IoT five-layered architecture (Al-Qaseemi et al., 2016)

2.3 IoT Computing Solutions

Resource-constrained devices at the network’s edge do not have sufficient processing and
storage capabilities. Therefore, an external robust computing platform is required for
processing such highly distributed Big Data in IoT systems. Robust computing platforms
are crucial for processing Big Data in IoT to provide the desired service and guarantee the
QoS and QoE while preserving data privacy and security.
Cloud Computing platforms were initially employed to accommodate IoT systems’ stor-
age and computing needs. In this approach, the data provided by the sensors is transferred
to cloud servers in distant locations for further processing. However, transferring a con-
stantly increasing amount of information from sensors to the cloud is not an optimum
solution due to delays and latencies caused by communication to distant servers. To over-
come this intrinsic limitation of centralized data processing in cloud computing, a new
paradigm called Fog Computing has been introduced (Bonomi et al., 2014). Fog comput-
ing is characterized by heterogeneity, dynamicity, mobility, and geographical distribution
that complement the characteristics of cloud computing services, providing local process-
ing and faster responses for delay-sensitive or time-critical applications. It is considered
a derivative of cloud computing, extending cloud services to the network’s edge (Rafique
et al., 2019).
Fog computing does not substitute cloud computing services but instead, with a well-
defined interplay, complements the cloud computing services. Fog computing reduces la-
tency and response time for frequent and delay-sensitive local user processes. By contrast,
cloud computing offers powerful computing resources and more extensive data storage for
the global data gathered from the more extensive geographical area.
This thesis focuses on the fog computing platform, addressing two crucial challenges in
adopting this technology for IoT systems: resource efficiency and security.

24 2 Background

Figure 2.3: IoT computing architecture

2.4 Fog Computing

Fog computing was introduced in 2012 by Cisco as an additional computing layer near
the edge of the network to complement cloud computing services. Bringing computa-
tional intelligence geographically near the end users provides new or better services for
latency-sensitive, location-aware, and geographically distributed applications that, due to
their characteristics, are not feasible merely through cloud computing. In this paradigm,
smart devices and communication components with both computation and storage capa-
bilities, such as, intelligent routers, bridges, gateways, and smart devices such as tablets
and mobile phones, compose the fog computing platform. In this model, some frequent
yet simple cloud tasks are delegated to fog, resulting in better performance for IoT appli-
cations.

In a systematic view, an IoT system that uses joint services from fog and cloud computing
can be seen as a three-layered architecture (Figure 2.3). The cloud computing infrastruc-
ture is composed of homogeneous, high-performance resources deployed in a centralized
fashion in the top layer. Accordingly, it provides a more comprehensive data analysis and
storage over an extended period or geographical area. In the middle layer, fog computing
extends the computation paradigm to the network’s edge, providing local computing and
storage for local services. Fog computing does not outsource cloud computing. Instead,
it aims to provide physically closer computing and storage services to the users, provi-
sioning new breed of applications and services with an efficient interplay with the cloud
layer. The expected benefit is a better quality of service for applications that require low
latency. Lower latency is obtained by performing a part of the data analysis already at the
fog computing layer. Data analysis at the fog computing layer is lightweight; therefore
more advanced analyses and processing will be done at the cloud layer. For example, the
Fog layer pre-processes the raw data coming from the edge sensors before sending them
to the cloud layer. Applications that do not require real-time computation or need high
processing power are performed at the cloud layer.

2.4 Fog Computing 25

2.4.1 Fog Computing characteristics

Fog computing has some distinct characteristics that make it a suitable platform for IoT:
Edge Proximity and Low latency: Since the fog computing nodes are distributed across
the edge of the network, i.e., near the sensors and source of the data generation, the data
does not need to travel a long distance to reach cloud computing. This is an essential
feature of fog computing that reduces latencies and response times for IoT applications.
Geographical Distribution: Unlike cloud computing servers that are centrally located
in a building, fog nodes are geographically distributed. Thus, they are the best option for
computing data from highly distributed IoT systems. For example, fog computing can
deliver high-quality streaming to moving vehicles through proxies and gateways along
highways and tracks.
Support for mobility: Some IoT systems and their sensor sets may have a high mobility
character. Therefore, frequent handovers among low-range fog servers are expected. This
may lead to service disruptions, degrade the user experience, and decrease network re-
source utilization. Logically, anytime a user moves from one fog node’s coverage area to
another, a new connection must be established with a new network identifier. Thus, any-
time that a user moves from one area to another, the IP address should also be changed
with respect to the user’s new location. Fog computing supports users’ mobility by decou-
pling these two network functions using Locator/Identifier Separation Protocol or LISP. In
LISP, both identifiers and locators can be IP addresses or arbitrary elements, such as a set
of GPS coordinates or a MAC address. With distributed mobility management, fog com-
puting can handle the change of the IP addresses as nodes move, thus ensuring seamless
migration of the active session.
Heterogeneity: Fog computing comprises a wide variety of computing elements ranging
from a macro or small cell base station, intelligent Wi-Fi access points, or any other
mobile device with computing, storage, and network capabilities. Further, such elements
may operate with various networking protocols ranging from low-range Zigbee, LoRa,
SigFox, or 6LowPAN to high-range 5G networks.
Interoperability: Dealing with heterogeneous networks and computing elements, fog
computing must be able to interoperate to give a wide range of services. Especially with
the co-existence of cloud computing, fog computing should support interoperability to
provide seamless services to edge users.
Dynamicity: Dynamicity is another distinct characteristic of fog computing networks.
For example, fog nodes may dynamically join and leave the network due to mobility or
power limitations. Or, the other way around, the edge sensors might be mobile and move
from one local fog network to another.

2.4.2 Virtualization

One effective countermeasure to cope with the heterogeneity in fog computing networks
is virtualization technology. Virtualization is a key enabler technology for resource man-
agement in fog computing that provides a seamless and integrated computing and storage
platform for applications. Virtualization includes the process of abstracting the hetero-
geneous computing infrastructure and slicing it into Virtual Machines (VMs) to hide the

26 2 Background

Figure 2.4: Fog computing virtualization architecture.

details of the heterogeneity of hardware devices from the running applications. Virtual-
ization facilitates the multi-tenancy and co-execution of multiple applications in a single
physical node without interfering with each others’ execution and violating the security of
each application. Figure 2.4 shows the virtualization architecture of fog computing sys-
tems. A Hypervisor or Virtual Machine Monitor (VMM) sits on top of the heterogeneous
hardware infrastructure and hosts operating systems and applications. The VMM presents
guest operating systems with a virtual operating platform and manages the execution of
them and their applications. From the VM perspective, the applications are run within
VMs without considering the underlying hardware heterogeneity and distribution. From
the perspective of physical machines, each VM needs to reside in one of the physical
nodes within the fog computing system. A VMM should have built-in resource manage-
ment and provisioning and service consolidation to optimally use the system resources,
i.e, energy, bandwidth, processing capacity, and storage capacity.

Virtualization is the enabling technology for the distinctive functionalities of microser-
vices and increasing their performance. Microservice architecture is an efficient approach
for designing distributed applications (Dragoni et al., 2018; Oparin et al., 2019). In
Microservice architecture, applications are developed as a collection of loosely coupled
small-sized programs called microservice. A microservice is a cohesive, self-contained
and independent piece of functionality with clear interfaces that deliver the service through
a communication protocol over a network. Microservices are developed in the form of
a black box package that provides intended computational service independent of their
platform or programming language. Hence, the microservice architecture supports the
heterogeneity of IoT applications. Applications developed as assemble of microservices
feature better scalability, interoperability, and easier upgrade and large scale deployments
compared to traditional monolithic, complex, and rigid applications (Banica et al., 2017).

Containerization, as lightweight virtualization, has brought significant advantages in im-
plementation time, resource utilization, and low management cost, compared to its heavy-
weight counterparts (Pahl and Lee, 2015). Containers facilitate the cost-effective provi-
sion of microservices. Hence, they have been widely used to develop microservice appli-
cations (Singh and Peddoju, 2017; Sampaio et al., 2019; Ray et al., 2020).

2.5 Fog Computing Architecture 27

Figure 2.5: Hierarchical architecture of fog computing.

2.5 Fog Computing Architecture
Fog computing nodes deploy a virtualized and hierarchical topology and form a dis-
tributed computing platform. Nemirovsky (2012) introduced a structure for a physical
fog node composed of multiple virtual fog nodes illustrated in Figure 2.5. Each physical
node comprises computing and storage elements and has communication interfaces for
communicating with adjacent fog nodes at the same, one step higher, or one step lower
level of hierarchy. A virtual fog node also comprises computing, storage, and commu-
nication components and forms a multi-layered hierarchical structure. Consequently, a
hierarchical architecture composed of several physical and virtual fog nodes forms the
fog computing platform. In this paradigm, the virtual fog nodes are deployed as software
agents that are composed of a virtual machine with the ability to run independently in
different physical nodes. Figure 2.6 illustrates a hierarchical architecture of physical fog
computing nodes on different levels (Nemirovsky, 2012).

2.6 Fog Computing Resource Management
Fog computing networks are dynamic and are formed based on resource-constrained de-
vices. The dynamicity of the fog computing network is twofold. First, the service requests
from heterogeneous IoT applications dynamically join or leave the fog computing net-
works as the edge devices in IoT could be mobile and travel from one geographical area
to another. Second, fog computing nodes could be dynamically joining or leaving the
network due to mobility of the nodes or limitations in energy sources for battery enable
devices or sporadic wireless connectivity (Hosseinpour et al., 2018; Sahni et al., 2017).
Such dynamicity and heterogeneity in both applications and platforms require smart and
agile coordination through a resource management system to achieve optimal or near-
optimal performance at run-time. Efficient utilization of the computing resources in this

28 2 Background

Figure 2.6: A physical fog node containing hierarchical virtual fog node.

platform will maximize the QoS and QoE. Whereas, an inefficient management of such
resources-constrained platform will lead to even higher delays than sending the data for
processing in the cloud (Rafique et al., 2019). Management of heterogeneous resources
using virtualization technologies (e.g., VM, or container), faces different challenges com-
pared to cloud computing as a result of the following limitations:

1. Communication deficiencies that are mainly because of heterogeneity of commu-
nication links, issues associated with low-bandwidth, intermittent, and less-reliable
wireless networks, and limited communication resources, i.e., hardware interface
(Wang et al., 2015b; Stojmenovic and Wen, 2014; Sanaei et al., 2014)

2. Limited available resources, (i.e,. computing, storage, memory, and power) in fog
nodes (Sahni et al., 2017; Jiang et al., 2018; Dastjerdi et al., 2016)

3. Heterogeneity of fog computing nodes (Bonomi et al., 2012, 2014)

4. Dynamicity of the network caused by communication interruption, mobility of
nodes, energy/power limitation and finally (Bonomi et al., 2012, 2014; Sanaei et al.,
2014; Wang et al., 2015a)

5. Geo-distribution of the fog nodes (Bonomi et al., 2012, 2014)

Ghobaei-Arani et al. (2020) categorize the resource management approaches in fog com-
puting into the following categories: application placement, resource scheduling, task
offloading, load balancing, resource allocation, and resource provisioning. In the follow-
ing section, we present a brief introduction to each of the techniques mentioned above
and discuss the contribution of this thesis and the technique that we proposed for resource
management in fog computing networks.

2.6 Fog Computing Resource Management 29

2.6.1 Application placement

IoT applications are typically composed of several sub-tasks (so-called a service) de-
ployed in a virtualized environment that collaboratively provide the desired functionality
following a Service-Oriented Architecture (SOA) (Ibrahim and Bench, 2017). In fog com-
puting, optimal placement of services is crucial for maximizing the resource utilization
of fog nodes and meeting the QoS requirements (Skarlat et al., 2017). The application
placement problem in fog computing is a many-to-many mapping problem in which a
set of services computing the IoT application needs to be mapped to a set of fog com-
puting nodes considering a given set of constraints and a set of objective functions opti-
mized (Selimi et al., 2019). In many studies, the targeted objectives in resource mapping
are communication delays and energy efficiency (Rafique et al., 2019; Eyckerman et al.,
2020; Goudarzi et al., 2021; Patro et al., 2021; Nashaat et al., 2020). In Publication V,
we presented a mathematical model-based solution for resource allocation and applica-
tion placement by formulating a Mixed-Integer-Quadratic-Programming (MIQP) problem
minimising the communication delays in multi-task IoT applications.

2.6.2 Resource Scheduling

In resource scheduling, the main objective is to minimize a execution time of the given
IoT service request. In this scenario, a set of sub-tasks or services in an SOA-based
IoT application with given processing and QoS requirements need to be assigned for
processing in a set of fog nodes with different computing and memory capabilities. The
main objective of resource scheduling is to optimally schedule the execution of sub-tasks
to minimize the application’s total execution time. In general, the resource scheduling
problem is an NP-hard optimization problem. Therefore, many studies have proposed
metaheuristic algorithms to find a near-optimal solution to the problem (Potu et al., 2021;
Ren et al., 2020; Wang and Li, 2019; Wu and Wang, 2019; Sun et al., 2018).

2.6.3 Task Offloading

In an IoT system in which the edge devices have limited computational power, battery
energy, and storage space capabilities, the computation load could be offloaded to the fog
computing nodes with richer computing capabilities, referred to as task offloading in fog
computing. The main objectives of task offloading include avoiding service interruption,
improving performance and throughput, and guaranteeing the QoS requirements. In this
scenario, the computing-intensive tasks are often outsourced to fog or cloud computing.
The application partitioning and generation of replicas of computation-intensive tasks and
the decision to execute them locally or remotely in fog or cloud are done already in the
edge device. According to Ghobaei-Arani et al. (2020), the task offloading can occur for
different reasons such as load balancing, data management, latency management, secu-
rity and, energy efficiency. Many studies have proposed model-based techniques such as
queuing theory, game theory, and Lyapunov optimization to solve offloading problems
(Bozorgchenani et al., 2017; Ahn et al., 2017; Deng et al., 2016; Liu et al., 2018; Ye et al.,
2016; Urgaonkar et al., 2015).

30 2 Background

2.6.4 Load Balancing

To enhance the responsiveness of the applications, one strategy is to evenly distribute the
processing load to multiple distributed computing nodes, which is referred to as load bal-
ancing. However, However, due to the heterogeneity and dynamicity of the network, the
load balancing in fog computing should be done based on the availability, processing ca-
pability, and the current load of the nodes to avoid processing bottlenecks by ensuring that
no single node bears too much demand (Haghi Kashani and Mahdipour, 2022). Hence,
load balancing faces challenges concerning network latency, system performance degra-
dation due to continuous process migration, and lacking standards for describing possible
scenarios (Ghobaei-Arani et al., 2020). The load balancing involves provisioning and
de-provisioning instances of applications. Efficient load balancing in fog computing opti-
mizes resource consumption, minimizes response time, and increases resource utilization
(Chandak and Ray, 2019).

2.6.5 Resource allocation

The service request in an IoT system that incorporates both cloud and fog computing re-
quires the allocation of resources in two separate distributing computing resource pools.
Hence, the resource allocation in this scenario is a double-matching problem in that
cloud/fog pairing for the given service request needs to take into account the constraints
between the fog computing and the involved edge users in their coverage. Further, another
way around, the fog/users paring needs to consider the constraints between the fog nodes
and cloud servers. Hence, the resource allocation is NP-hard problem and is often for-
malized as approximation and heuristics to find near-optimal solution (Jiang et al., 2020;
Lahmar and Boukadi, 2020; Lee and Lee, 2020; Mseddi et al., 2019; Gu et al., 2018; Jiao
et al., 2019).

2.6.6 Resource Provisioning

Workload in IoT applications dynamically fluctuates over time. Such workload fluctua-
tions result in over-provisioning, in which the allocated resources for a given IoT service
are more than the actual load of that service, imposing unnecessary costs for the unused
fog resource allocation. It may also result in under-provisioning, in which the allocated
resources are less than the required processing power of the service in question to meet the
quality of service and consequently leads to SLA violations. Thus, dynamic provision-
ing of the fog resources is necessary to minimise the service cost, optimize the resource
utilisation and meet the QoS and SLA requirements (Shakarami et al., 2022; Ghobaei-
Arani et al., 2020). In other words, the dynamic resource provisioning automatically
adjusts when and how to allocate or release fog computing resources based on the real-
time application requirements taking into account the QoS and SLA. Resource provision-
ing approaches are usually reactive, considering the run-time application requirement, or
proactive, predicting the application requirement based on their computing trend (Santos
et al., 2021a,b; Chandak and Ray, 2020; Etemadi et al., 2020; Santos et al., 2019).

2.7 Fog Computing Security and Privacy Issues 31

2.7 Fog Computing Security and Privacy Issues
Mukherjee et al. (2017) argued that based on the specific characteristics of fog computing,
i.e., mobility, heterogeneity, and large-scale geo-distribution, this platform faces different
security and privacy challenges than its counterpart, i.e., cloud computing. Hence, the
measures to cope with these issues differ from cloud computing. The authors classified
fog computing security and privacy issues into following main categories:

2.7.1 Trust

Unlike cloud computing, fog computing is more flexible in leveraging different computing
resources belonging to different parties. However, this flexibility adds more complexity
in terms of trust management and security. Authentication and access control provide the
foremost measure to establish an initial relationship between edge devices and fog com-
puting nodes. However, solely relying on authentication and access control is not suffi-
cient as the devices can malfunction or be compromised by malicious attacks. In such a
scenario, trust fosters relations among the fog nodes and the edge devices based on pre-
vious interactions. Hence reputation-based models are widely used for trust management
in IoT systems (Mukherjee et al., 2017). In Publication IV we presented a security frame-
work for fog networks based on Role-Based Access Control (RBAC) and trust models.
We defined different privileges and access levels for different types of participating fog
computing nodes based on their trust level, which they gain based on their past reputation.

2.7.2 Authentication, Access Control and Secure Communication

To establish a secure connection, the edge devices should be authenticated to the fog net-
work to access the resource pull in fog computing. However, the authentication and ac-
cess control in fog computing faces challenges because of limited computing, storage, and
power. Hence, the traditional authentication and access control methods based on Pub-
lic Key Infrastructure (PKI) are not practical approaches for such resource-constrained
devices. Further, performing authentication protocols in cloud servers, i.e., Remote Au-
thentication (RA), is not a desirable solution due to the communication delays and single-
point-of-failure problem for central cloud (Stojmenovic et al., 2016). To cope with these
problems, hybrid and lightweight PKI are widely used, in which the initial connection is
established with a shared key using public-key encryption, and then the subsequent com-
munication is done by symmetric-key encryption with the established key (Stojmenovic
et al., 2016).

2.7.3 End Users’ Privacy

Preserving end users’ privacy in fog computing is challenging because the fog nodes
may collect privacy-sensitive data such as identities or usage patterns, locations, etc. For
instance, as the edge nodes offload their processes to the nearest fog node, location, tra-
jectory, and even mobility habits can be disclosed. Moreover, even with well-established
security measures, critical privacy information can be exposed through side channels such

32 2 Background

as electromagnetic radiation, observation of certain activities timing, specific devices’
power usage, and even light acoustic or heat emanations from equipment (Koo and Hur,
2018; Mukherjee et al., 2017).

2.7.4 Malicious Attacks (Intrusions)

Due to their specific characteristics, Fog computing faces different challenges than cloud
computing in combating malicious attacks. On the one hand, the proximity to the end-
users lowers the risks of routing attacks. On the other hand, with the limited computing
resources in fog nodes, establishing strong security measures is not feasible, resulting in
vulnerability to attacks by malicious entities on the network (Sadaf and Sultana, 2020).
Furthermore, in a dynamic fog network in which new nodes join or leave the computing
pool, most connected devices may not be mutually authenticated with the corresponding
fog nodes making Denial-of-Service (DOS) attacks trivial. For example, a compromised
device may request a frequent processing or storage request causing network congestion
and delaying requests made by legitimate devices (Mukherjee et al., 2017). Intrusion
Detection Systems (IDS) are potent mechanisms for detecting unforeseen intrusions in
fog computing.

2.8 Intrusion Detection Systems

Detection of silent attacks in fog computing demands continuous monitoring and be-
havioural analysis of the system’s internal processing components and communication
within the network. Consequently, accurate and swift security monitoring and intrusion
detection are essential to improve the security of fog networks. An intrusion detection
system with local decision making will preclude failures caused by malicious attackers
and, with a proper alert, prevent intrusion or mitigate its impact. Two common types of
IDS include signature-based and anomaly-based IDS. Misuse-based or signature-based
types of IDS are used to detect known attacks using predetermined signatures or attack
patterns of similar attacks. By contrast, anomaly-based IDS are broadly used as defen-
sive techniques in distributed network systems to address the detection of unknown or
zero-day attacks that are unknown to the system. This process is done by monitoring and
detecting the variations in the systems’ behavior from a previously defined normal system
profile.

2.8.1 Artificial Immune Systems

The artificial immune system (AIS) incorporates biologically inspired auspicious tech-
niques to solve various problems in the information security field. The AIS is inspired by
the Human Immune System (HIS), which is capable of differentiating internal cells and
molecules of the body from foreign pathogens, so-called self and non-self, respectively,
thus protecting the body against diseases (Aliyu et al., 2021; Leandro and Timmis, 2002).
In the human body, the HIS mainly does this without any prior knowledge of attacking
pathogens or their structure. Self and non-self discrimination is a significant attribute in

2.9 Chapter Summary 33

the AIS, which is utilized in developing efficient anomaly-based IDS (Brown and An-
war, 2021; Forrest et al., 1997). Similarly to HIS, which protects the human body against
foreign pathogens, the AIS suggests a multi-layered protection structure for protecting
computer networks against adversaries’ attacks (Pamukov, 2017). This protection is ac-
complished through Innate or Adaptive mechanisms. Innate immunity is immediate; it is
the first line of defence for the HIS and provides non-specific protection. Therefore, it has
no prior knowledge of specific outsiders. The adaptive immune response, by contrast, is
antigen-specific and is trained using a pre-defined profile of specific attacks (Ademokun
and Dunn-Walters, 2010). Adaptive immunity also includes a “memory” that makes fu-
ture responses against a specific antigen more efficient (Ademokun and Dunn-Walters,
2010). As with other anomaly-based detection techniques, the AIS also takes advantage
of monitoring variations of the system’s behavior according to a pre-defined normal ac-
tivity profile as an adaptive immune mechanism. This is done through a learning phase in
which a data set containing these profiles is utilized for this purpose. Hence, the efficiency
of anomaly detection in the AIS is highly dependent on the learning data set.
Substantial research has been conducted so far on the enhancement and the utilization of
AIS-based IDS. Most existing studies utilize a pre-defined and offline dataset as learning
data for training the IDS. However, this will reduce the efficiency of the IDS by limiting
its knowledge base to that particular learning data set. Moreover, it is extremely difficult
to create a data set of self and non-self samples with all variations.

2.9 Chapter Summary
In this chapter, we presented the background of this thesis research work base on the
state-of-the-art literature. Then, we discussed IoT architecture and its computing solu-
tions. Next, we introduced fog computing as a promising technology to enhance the cloud
computing shortcomings for delay-sensitive IoT applications. We then discussed the re-
source management, security and privacy issues in fog computing and the technological
solutions in the literature to cope with those issues. In the next chapter, we will present
the publication profile of the thesis and outline each publication’s primary content, the
research results and impact, the methodology used in the publication, and the research
objective and questions addressed in each publication.

35

3 Publication Overview
This chapter presents an overview of the publications included in the dissertation portfo-
lio, representing the research motivation, main context, relation to the research objectives
and corresponding research questions, as well as findings and contributions.

3.1 Publication Outline
The dissertation portfolio consists of five publications covering two main topics, i.e., se-
curity and resource efficiency in fog computing. Table 3.1 presents an overview of the
publication portfolio of the thesis, including the research methodology used in each pub-
lication and the research question addressed by the publication. Although a number of
research publications were published during this thesis, only the most relevant publica-
tions focusing on the main research questions are included in the publication portfolio.

Table 3.1: Association of research questions with publications and research methods.

Publication Title Research Questions
Publication I Artificial Immune System Based Intrusion

Detection: Innate Immunity using an Un-
supervised Learning Approach

How can an anomaly-based intrusion de-
tection systems be enhanced to detect zero-
day attacks?

Publication II An Intrusion Detection System for Fog
Computing and IoT based Logistic Sys-
tems using a Smart Data Approach

How can distributed intrusion detection
systems be adapted in a lightweight form
for fog computing to protect IoT services
against silent and zero-day attacks?

Publication III An Approach for Smart Management of
Big Data in the Fog Computing Context

How can we decouple the dependency
of application codes from the underlying
hardware computing platform in a highly
dynamic fog computing network to effi-
ciently tackle the big data in IoT?

Publication IV A Security Framework for Fog Networks
Based on Role-Based Access Control and
Trust Models

How can the security of IoT services be en-
hanced in cooperative fog computing net-
works?

Publication V A Resource Management Model for Dis-
tributed Multi-Task Applications in Fog
Computing Networks

How can fog computing resources be op-
timally allocated to multitask IoT applica-
tions to reduce communication delays and
optimise resource utilization in fog com-
puting networks?

3.2 Publication I
Title: Artificial Immune System Based Intrusion Detection: Innate Immunity using an
Unsupervised Learning Approach

3.2.1 Research Objective and Relation to the Whole Thesis

Due to geographical distribution, fog computing networks are more vulnerable to network
attacks than central cloud computing. Therefore, protection against network intrusion is

36 3 Publication Overview

a critical issue that could affect the availability, security and privacy of the computing
services on this platform. To empower the fog computing networks, we started our re-
search by investigating the most effective intrusion detection approach. However, the
effectiveness of most of the existing IDS techniques suffered from dependency on the
training dataset. Hence, the first research objective of this thesis was to provide a solution
to improve the effectiveness of anomaly-based IDS by providing online training to de-
tect zero-day attacks. Consequently, the following research question was formulated and
answered in publication I:
How can an anomaly-based intrusion detection systems be enhanced to detect zero-day
attacks?

3.2.2 Rationale and Context

Publication I presents an enhancement for the anomaly-based intrusion detection systems
based on biologically inspired AIS techniques. AIS is a supervised machine learning
approach that is capable of distinguishing abnormal behavior of the monitored system
(called non-self) from the normal behavior (called self). The main drawback of many
anomaly-based intrusion detection systems is relying on training labelled datasets sets
to train the system against similar attacks to the labelled samples. Consequently, the
efficiency of such IDS depends heavily on the comprehensiveness of the training data
sets. Nevertheless, the IDS will not be able to distinguish zero-day attacks that they are
not trained against.
This publication introduces a new and novel line of defence to complement the AIS,
which we call Innate Immunity, by inspiring the HIS. HIS provides protection against
foreign pathogens in the human body through Innate or Adaptive immune mechanisms.
Innate immunity is the most immediate immune response and the first line of defence pro-
viding non-specific protection, meaning it has no prior knowledge of specific outsiders.
By contrast, the adaptive immune response is antigen-specific and needs to be trained us-
ing a pre-defined profile of specific attacks. For example, the antibodies produced after
exposure to a virus or a vaccine result from an adaptive immune response in the body.
Hence, adaptive immunity also includes a “memory” that makes future responses against
a specific antigen more efficient. AIS provides protection similar to that of the adap-
tive immune system in HIS by taking advantage of monitoring variations of the system’s
behavior according to a pre-defined normal activity profile. In this publication, we intro-
duced the innate immunity in AIS to address AIS-based IDS’s limitations.

3.2.3 Research Methodology

As a proof of concept, we used unsupervised learning methods to introduce innate im-
mune responses to traditional AIS to reach this goal. Among several unsupervised ma-
chine learning approaches for detecting security attacks, clustering methods have proven
effective. This publication examined the two most popular clustering algorithms, i.e.,
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and K-means.
We then fed the output of the unsupervised learning machine to our AIS engine to pro-

3.3 Publication II 37

vide online training and empower the AIS to detect zero-day attacks. We also proposed
a network measurement formula which dynamically calculates the threshold for cluster-
ing algorithms. To increase the accuracy of the clustering threshold and spot the changes
in the normal network behavior, we calculated the standard deviation of the number of
network flows in different windows from the last minute of the network traffic. We ex-
amined DBSCAN and K-means for forming the innate immune system. To evaluate the
efficiency of the proposed method, we utilised KDD-Cup 99 dataset, which extracted
from the DARPA-98 traffic network. In our experiments, the number of samples in the
dataset was 22545 samples, sufficient for performing the evaluation.

3.2.4 Main Results and Contribution

In our evaluation, we measured the False Positive Rate (FPR), True Negative Rate (TNR),
Accuracy (ACC), Recall (REC), Precision (PREC) and F1 score. According to our exper-
iment, the DBSCAN algorithm outperformed K-mean by demonstrating a better detection
rate. Table 3.2 presents the evaluation results and comparison of two clustering algorithms
mentioned above for online learning in the innate immune mechanism.

Table 3.2: Comparison of two clustering methods for forming innate immune mechanism
in AIS.

Algorithm FPR TNR ACC REC PREC F1
DBSCAN 0.008 0.991 0.771 0.589 0.987 0.738
K-Mean 0.156 0.843 0.607 0.431 0.788 0.557

To cluster the incoming traffic into self and non-self at run-time, our clustering engine
constantly compares the number of network flows in different network resolutions (i.e.,
subnets of /0, /8, /16, /24) against a threshold that is dynamically calculated by our pro-
posed network measurement formula. At run-time, we feed the output of the clustering
engine, in the form of labelled real-time data, as the innate immune response, into the
training engine of AIS to provide the AIS with online training against the zero-day at-
tacks. However, the AIS system still uses offline training with some labeled datasets in
a training phase to detect similar attacks to that of labelled samples. The online training
through the innate immune system empowers the AIS for the new attack types that may
not exist in the training samples.

3.3 Publication II
Title: An Intrusion Detection System for Fog Computing and IoT based Logistic Systems
using a Smart Data Approach

3.3.1 Research Objective and Relation to the Whole Thesis

Intrusion detection is a computing and communication-intensive and delay-sensitive op-
eration. Hence, most existing intrusion detection systems are not a practical solution for

38 3 Publication Overview

resource-constrained edge and fog environments. To tackle this problem, lightweight in-
trusion detection systems tailored to the unique characteristics of IoT and fog networks
must be developed to protect the edge devices and services in IoT systems against ad-
versaries. However, due to the limited resources of the edge devices, the efficiency and
performance of IDS are highly affected by its architectural design and implementation.
Therefore, the second objective of this research was to design a lightweight IDS to en-
hance the security of IoT services. Consequently, the following research question was
formulated and answered in publication II.
How can distributed intrusion detection systems be adapted in a lightweight form for fog
computing to protect IoT services against silent and zero-day attacks?

3.3.2 Rationale and Context

Publication II presents an architecture for lightweight distributed IDS for IoT by utilizing
the method we proposed in publication I. In this Publication, we considered IoT-based
logistic systems and food delivery chains as our use case. Logistics is one of the main
elements in a supply chain, and guaranteeing the security of logistic systems has become
a crucial challenge at the global level. In particular, food safety and security have become
the primary concerns for manufacturers and end-users. With the extensive digitalisation
of supply chain management systems and adoption of IoT, new security threats increase
cyber security concerns for supply chain and logistic systems. Therefore an IDS is re-
quired to tackle cyber threats in logistic systems.
We proposed a lightweight, multi-layered, multi-agent architecture for the distributed IDS
in an IoT-based logistic system with a three-layered architecture. In this architecture, be-
cause the training phase in the AIS involves more computing-intensive processes than
communicating-intensive processes, we deploy the AIS training engine in the cloud layer
to train its detectors through the offline and online training approaches presented in publi-
cation I. Analyzing the intrusion alerts is delay-sensitive, requires more swift processing,
and is a communication-intensive operation. Thus, we deployed the analyser agents of
AIS at the fog layer. Furthermore, we deploy our detector agents as sensors for our IDS
which monitor the behavior of the edge devices. Once any of these sensors detects an
anomaly, they initiate a process for investigating the suspected abnormality by creating a
Smart Data cell, a lightweight and active data bundle, containing the information about the
suspected anomaly in its payload and the profile of the triggered detector in its metadata.
We introduced the Smart Data concept in publication III. The Smart Data is sent to the fog
layer for further analysis if a number of triggered detects for the same operation exceeds a
predefined threshold to avoid false-positive errors. However, the IDS might fail to detect
the silent attacks in this case. Because, unlike the short-term attacks, the silent attacks
are launched over a more extended period and from distributed nodes while keeping the
system’s functionality as normal as possible to make it complex and more sophisticated to
detect. Thus, the silent attacks may trigger fewer detectors, and the IDS may fail to detect
threats. To tackle this problem, we store the suspected abnormal operation profile in the
Smart Data cells over time, keeping them under monitoring. Therefore, if the number of
triggered detectors over time exceeds a predefined threshold, the Smart Data cell is sent to

3.3 Publication II 39

the fog layer for further analysis. The Smart Data cell is aggregated with other Smart Data
cells coming from different edge devices in the fog layer if similar abnormal behaviors
are reported in other devices. In case more comprehensive information is available for the
analyser agent, which contributes to the enhancement of detection accuracy.

3.3.3 Research Methodology

Lightweight intrusion detection systems are crucial components for IoT systems to pro-
tect the services. In this publication, we presented a new lightweight architecture for
AIS-based IDS for IoT systems by extending our proposed approach in Publication I. Our
design leverages the multi-layer architecture of IoT systems by offering a three-layered,
multi-agent and lightweight architecture for IDS based on AIS. We also utilized our pro-
posed Smart Data approach for developing a lightweight and efficient intrusion analyzer
for our proposed IDS. We also presented a new efficient clustering approach for training
our IDS against silent and zero-day attacks. We improved the clustering engine using the
DBSCAN algorithm presented in the publication I, to detect the silent attacks in the busy
users’ or server network flow by comparing the new network flow from these users with
their previous profiles recorded earlier. If there is a deviation in their behavior of more
than a threshold, the clustering engine will mark the new behavior as abnormal.
We utilized the KDD-Cup 99 data set extracted from the DARPA-98 traffic network and
SSH Brute Force attacks from the ISCX dataset to evaluate our proposed architecture. As
a proof of concept, we compared the efficiency of the new proposed clustering algorithm
with the algorithm we presented in the Publication I.

3.3.4 Main Results and Contribution

According to the experimental results, our IDS was able to accurately cluster and label
the normal and abnormal behaviors in the online training phase and detect similar attacks
in the detection phase. We presented a comparison between the new proposed clustering
algorithm and the algorithm presented in the Publication I. Our new proposed model
outperforms our previous work in terms of false positive rate, true negative rate, accuracy,
recall, and precision. Table 3.3 compares our new proposed method with the method we
proposed in Publication I.

Table 3.3: Clustring methods proposed in Publication I and Publication II

Proposed model in publication II Proposed model in publication I
False positive rate 3.51% 4.53%
True negative rate 96.49% 95.47%

Accuracy 98.35% 96.23%
Recall 100% 95.3%

Precision 97.83% 91.21%

40 3 Publication Overview

3.4 Publication III
Title: An Approach for Smart Management of Big Data in the Fog Computing Context

3.4.1 Research Objective and Relation to the Whole Thesis

In a highly dynamic and heterogeneous fog computing platform, deploying the required
application code to process IoT Big Data is a challenging problem. Especially in the case
of mobile sensors that move from one edge location to another, the local processing of
data requires migration and deployment of the service to the new fog nodes within the
proximity of the sensors’ location to avoid communication delays in forwarding the data
to the nodes that the service was initially deployed. In this case, deploying all the applica-
tions in all the fog nodes is inefficient in a resource-constrained fog computing network.
Moreover, there are interoperability issues in deploying the application in heterogeneous
fog nodes with different hardware architectures and operating systems. Hence, the IoT
applications should be independent of their hardware platform so that they easily migrate
to the new edge locations without service interruption due to their deployments. Con-
sequently, the following research question was formulated and answered in publication
III:
How can we decouple the dependency of application codes from the underlying hardware
computing platform in a highly dynamic fog computing network to efficiently tackle the
big data in IoT?

3.4.2 Rationale and Context

Publication III presents a new concept called Smart Data, which aims to tackle the Big
Data in IoT systems by reshaping the raw and passive form of IoT data into intelligent
and self-managed data cells. A Smart Data cell is a package of structured data generated
by IoT sensors and a set of metadata encapsulated in a container. The metadata stored
in the Smart Data cell incorporates a set of rules that define its behavior and govern its
security, privacy and other functionalities that control and manage it. The container, in
turn, executes the rules set in the metadata to achieve its intended evolution stage. As
a result, Smart Data can evolve and become more meaningful information with reduced
size. Figure 3.1 illustrates the architecture of a Smart Data cell.
Throughout the Smart Data lifecycle, the payload component undergoes a series of pre-
processing steps, such as aggregation, filtering, compression, encryption thus converting it
into more meaningful information. The metadata component retains key information and
rules such as data source (sensors), the physical entity to which data belongs, timestamps,
status and logs, rules for accessing and aggregating, and required steps for processing its
payload. The metadata also stores the information extracted by processing the payload.
Such information becomes more accurate and meaningful when the Smart Data cell is
aggregated by other Smart Data cells, or receives data over a more extended period from
its corresponding sensor. The container of Smart Data operates as a platform that fosters
the management and execution of the rules specified in the metadata part. The container
of the Smart Data has a modular structure in which different task modules of the IoT

3.5 Publication IV 41

Figure 3.1: Smart Data architecture.

application to plugged in or removed on demand. This facilitates the Smart Data to be
lightweight and scalable, allowing it to manage the overhead of carrying the code by
removing unnecessary code modules and adding the required modules only when they
are needed.

3.4.3 Research Methodology

In this publication, we designed and conceptualized the Smart Data concept by inspir-
ing biological cell aggregation. We used containerization and active bundle technology
(Othmane and Lilien, 2009) to design the structure of the Smart Data.

3.4.4 Main Results and Contribution

This publication was the first publication in the resource efficiency track of this thesis that
focus on tackling the application deployment problem in dynamic and heterogeneous fog
computing networks. The proposed method in this publication decouples the dependency
of the application codes from the underlying hardware infrastructure, facilitating the exe-
cution of codes within a virtualized bundle capable of execution on different hardware or
operating system settings. The proposed solution was a step toward revolutionizing the
current perspective of data in IoT, opening many potential research opportunities to tackle
emerging Big Data issues.

3.5 Publication IV

Title: A Security Framework for Fog Networks Based on Role-Based Access Control and
Trust Models

42 3 Publication Overview

3.5.1 Research Objective and Relation to the Whole Thesis

Cooperative computing in fog networks faces challenges with respect to managing trust
and access permissions of arbitrary devices for the critical data of IoT services. Therefore
a robust security framework must be in place to enhance the security of such cooperative
fog computing. To address this goal, the following research question was formulated and
answered in publication IV.
How can the security of IoT services be enhanced in cooperative fog computing networks?

3.5.2 Rationale and Context

Publication IV presents a security framework for managing the trust and access control
for for computing nodes that newly join the fog computing network. Since fog comput-
ing suffers from limited resources, increasing the computing capabilities is a significant
challenge in improving the QoS. To tackle this issue, in this publication, we proposed
cooperative computing by leveraging the available and unused processing and storage ca-
pacities of surrounding smart devices. We argued that based on the literature, except for
the peak time between 11:00 to 17:00, the average processor usage in personal smart de-
vices is below 50%. This amount drops to less than 20% during the nighttime between
00:00 to 8:00.
With this motivation, we proposed utilizing the available resources of different smart
devices to enhance the fog computing capability. However, utilizing such arbitrary un-
trusted devices will impose security risks. Hence, in this publication, we presented a
combined method using reputation-based trust models and a role-based access control
model (ABAC) to enhance the security of IoT services executed in these devices. We
consider three types of fog nodes based on their processing capacities and trust levels. We
also consider different levels of criticality for the data being processed. Once a new node
joins the computing pool, it will be entitled to the lowest level of trust and the least access
privileges. Nevertheless, over time, the node can gain higher levels of trust and access
privileges based on its reputation for successfully executing the given assignment. Or in
contrast, they may lose their trust or even be revoked from the computing network if their
transaction reputation worsens.

3.5.3 Research Methodology

We calculated the trust score of each device based on important security parameters, in-
cluding availability, reliability, data integrity, and turnaround efficiency. In addition to
gaining higher trust scores to promote a node, we enforced the condition based on de-
mands for nodes with higher trust levels to contribute to processing critical data. The
trust level defines a role in this model, and the role defines the access privilege to data
with different levels of criticality.

3.5 Publication IV 43

0

100

200

300

400

0 50000 100000

N
u

m
b

e
r

o
f

c
o

m
p

le
te

d

a
p

p
li

c
a
ti

o
n

s

Time (ms)

Completed Applications

30

40

50

60

70

80

90

100

0 50000 100000

N
u

m
b

e
r

o
f

fo
g

 n
o

d
e
s

Time (ms)

Total Nodes

Trusted Nodes

0

5

10

15

0 50000 100000
Time (ms)

#Untrusted nodes

N
u

m
b

e
r

o
f

u
n

tr
u

s
te

d

n
o

d
e
s

(a)

(b)

(c)

Figure 3.2: Experimental results of proposed framework in Publication IV.

3.5.4 Main Results and Contribution

We implemented the fog computing platform in the SystemC environment by modelling
each processing device as a node with the capability of communicating with all other
elements in its domain. We incorporated heterogeneous nodes with different processing
capabilities into our platform. We introduced applications with distributed task graph
models that dynamically enter and leave the fog system. Continuously, a dynamic node
group joins and leaves the fog system, and the computing tasks are assigned to them.
Based on the proposed model, we calculated the trust level of each dynamic node to
assign more critical tasks. Based on our experiment, the system was able to promote
some nodes based on their trust score and the demand for the new nodes at that level.
Furthermore, some of the nodes that were unable to execute the tasks successfully and
failed to improve their trust score were dropped from the computing pool. Figure 3.2
presents the experimental result of our proposed framework.

44 3 Publication Overview

3.6 Publication V
Title: A Resource Management Model for Distributed Multi-Task Applications in Fog
Computing Networks

3.6.1 Research Objective and Relation to the Whole Thesis

Efficient utilization of the computing resources in fog computing is essential for enhanc-
ing the QoS and QoE. Inefficient scheduling and resource allocation of fog computing
resources for IoT services can result in even higher delays than sending the data for pro-
cessing in the cloud. High dynamicity and heterogeneity in both applications and net-
work demand intelligent and agile coordination through a resource management system
to achieve optimal or near-optimal performance at run-time. Furthermore, to deal with
the ever-increasing complexity of IoT applications and ease their development, deploy-
ment, and management, multi-task applications and microservice architecture are gaining
more popularity in the design and development of IoT applications. However, the allo-
cation of fog computing resources to such distributed applications should be optimally
done to avoid QoS and QoE degradation due to undesired communication delays between
the components of multi-task applications. To address this goal, the following research
question was formulated and answered in publication V.
How can fog computing resources be optimally allocated to multitask IoT applications
to reduce communication delays and optimise resource utilization in fog computing net-
works?

3.6.2 Rationale and Context

Publication V presents a mathematical model for resource management in fog comput-
ing and service placement of distributed multi-task applications in that platform. As the
number of connected things rapidly grows daily, the number of applications that pro-
vide services to the end users also grows. As a result, they also become more diverse
and complex. Diversity is a desirable characteristic that is supported by the continuous
digitalization of services. By contrast, the complexity is undesirable and results in sev-
eral issues when scaling, upgrading, and inter-operating with other services. Traditional
monolithic and centralized applications are not sufficiently feasible to cope with the ap-
plication complexity (Butzin et al., 2016; Santana et al., 2021). Most IoT applications are
developed as a collection of several functions that collaboratively provide the requested
service by executing different operations on the incoming data stream from the sensors.
Some of these operations, such as encryption, filtering, and visualization, are common are
common in most IoT applications. Such common operations could be developed as stan-
dard task modules to reduce the complexity of applications. Butzin et al. (2016) argued
that to handle the complexity in IoT, applications must be developed as small independent
services. Developing value-added services necessitates combining best-of-breed services
from different vendors to leverage the IoT’s heterogeneity. They pointed out that service-
oriented architecture (SOA) and microservice architecture follow this goal: building one
or multiple applications from a set of different services.

3.6 Publication V 45

Thus, conventional monolith applications can be developed as an ensemble of indepen-
dent standard task modules with inter-dependencies forming multi-task applications. In
a multi-task application, each task module performs a specific operation on the data, re-
ceives input data provided by precedent tasks, produces specific output data, and sends it
to the subsequent tasks.
Offloading the multi-task application into distributed fog computing is a many-to-many
mapping problem in which a set of fog computing resources should be allocated to a set
of task modules of an application. Hence, in this publication, we presented a resource
management model for allocating fog computing resources to multi-task IoT applications
with the aim of reducing communication delays. In our model, we consider three different
communications:

• The communication between the edge sensor and the gateway node that receives
the data stream from that sensor

• The communication between the gateway node and the node in which the first task
module of the application is deployed

• The communication between the set of fog nodes that host the task modules of the
application.

Our goal in this publication was to reduce the communication costs and delay to enhance
the QoS and QoE for IoT services running on fog computing. Figure 3.3 illustrates an
example of mapping a multi-task application with a given task graph into a fog computing
network. For simplicity and for the sake of illustration, we consider a network with a
4× 4 grid-mesh network topology. The resource mapping algorithm needs then to select
a group of fog computing nodes that can accommodate and process the containers of the
task modules of the application, providing them with appropriate communication paths.
In this example, the fog nodes 5, 10, 12, 13, 14 are the selected nodes. Since fog nodes
generally have limited resources in terms of storage capacity and processing power, some
nodes cannot be chosen to host the containers of the task modules. These nodes, instead,
can act as intermediate routing nodes. In the example, the nodes 6, 9, 15, 16 are such
routers.

3.6.3 Research Methodology

In this publication, we presented a mathematical model of multi-task applications and
fog networks. We then formulated a mixed-integer-quadratic-programming (MIQP) op-
timization problem for mapping the task graph of applications into distributed fog com-
puting network, considering different constraints with the objective of minimising the
communications delays. We implemented our model in a commercial solver, i.e., Gurobi
9.1, to evaluate it and presented the key results.
However, since search space in the proposed model with MIQP optimization grows expo-
nentially by adding more fog computing or sensor nodes to the system, this approach may
not be feasible and efficient in the real-world scenario. Because in resource-constrained

46 3 Publication Overview

t1

t7

t6

t3

t5

t1

t7t6

t3

t5

t1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 3.3: An example of distributed multi-task application mapping.

fog computing, dynamic decisions for resource mapping need to be done swiftly to avoid
delays in service delivery time. Therefore, we also proposed a greedy algorithm as a
heuristic method that guarantees a near-optimal solution that is considerably less com-
putationally intensive and faster. Our proposed greedy algorithm demonstrated a highly
scalable and near-optimal performance for resource mapping problems in fog computing
networks for multi-tasking applications.

3.6.4 Main Results and Contribution

We validated the correctness of our proposed heuristic greedy-based algorithm by plotting
a Cumulative Distribution Function (CDF) of both heuristics greedy and optimal algo-
rithms by running 1000 simulation instances with different random seeds. Consequently,
our greedy heuristic algorithm demonstrated near-optimal results, reaching on average,
93.2% of the optimal value.
To validate the performance of the proposed heuristic greedy-based algorithm, we com-
pared the execution time for both optimal and greedy methods. Consequently, the heuris-
tic greedy-based algorithm demonstrated a significantly lower and more predictable ex-
ecution time than the optimal method, i.e., on average, 0.97% of the execution time re-
quired by Gurobi-based optimization.
To evaluate the scalability of our proposed heuristic greedy-based algorithm, we examined
the CPU time and maximum used memory under different network settings. As a result,
it was evident that our proposed heuristic greedy-based algorithm outperforms the Gurobi

3.6 Publication V 47

solver by requiring significantly fewer resources, i.e., on average, 99.88% less CPU usage
and 93.67% less memory usage. Furthermore, the resource usage for calculating the
optimal solution in the Gurobi solver showed near-linear dependence on the number of
sensors and a considerably steeper slope than the resource usage in the proposed greedy-
based heuristic algorithm.
We also examined the effect of different network settings on the average total cost in both
algorithms. As a result, the total cost generally increased when the number of sensor
nodes increased. Further, the average total cost increases with the increased in arrival
data rate.

49

4 Discussion
This chapter summarizes the dissertation findings, highlights research implications and
proposes recommendations and further research directions on the topics covered in the
dissertation.

4.1 Research Contributions
Motivated by the ever-increasing Big Data phenomenon and the demand for secure and
efficient ways to manage and process such data in IoT domain, this dissertation posed the
following research questions.

• RQ1: How can an anomaly-based intrusion detection systems be enhanced to detect
zero-day attacks?

• RQ2: How can distributed intrusion detection systems be adapted in a lightweight
form for fog computing to protect IoT services against silent and zero-day attacks?

• RQ3: How can the security of IoT services be enhanced in cooperative fog comput-
ing networks?

• RQ4: How can we decouple the dependency of application codes from the under-
lying hardware computing platform in a highly dynamic fog computing network to
efficiently tackle the big data in IoT?

• RQ5: How can fog computing resources be optimally allocated to multitask IoT
applications to reduce communication delays and optimise resource utilization in
fog computing networks?

A set of research studies was conducted and documented in Publications I-V, employing
various research methods to address security and resource efficiency challenges in fog
computing from different perspectives to answer these research questions. In essence, the
studies presented novel approaches to enhance and tailor the security mechanisms and
optimize resource utilization in fog computing.
With the immense growth in the IoT application and digitization of the services, reliable
and efficient computing platforms are crucial for successfully deploying and adopting
these technologies. Based on the specific characteristic of IoT service architectures, fog
computing was introduced to provide computing services already at the edge of the net-
work through geographically distributed computing elements near the data source, thus
reducing communication delays. However, fog computing faces challenges with regards
to implementing strong security mechanisms because the computing elements in fog com-
puting are resource constrained and therefore deploying strong security measures is often
infeasible or inefficient. To fill this gap, this thesis, on the one hand, focused on designing
and tailoring lightweight security solutions for detecting and preventing malicious intru-
sions to IoT services running in fog computing platforms and designing a lightweight yet
efficient access control system, and on the other hand, designing resource management

50 4 Discussion

systems to efficiently utilize the limited resource available in such platforms to facilitate
the execution of services (including the security services).

In the first step toward our objectives, in the Publication I, we enhanced the efficiency
of a biologically inspired artificial immune system-based intrusion detection system by
introducing an extra layer of protection called innate immunity. We highlighted that the
efficiency of any anomaly-based IDS heavily relies on the comprehensiveness of chosen
training dataset. However, it is impossible to guarantee that the system will be trained
against the new types of attacks that are not included in the training datasets. Therefore,
the IDS fails to detect new emerging attacks that are known as zero-day attacks. To fill this
gap, the innate immune system utilizes specially tailored unsupervised machine learning
techniques to provide online training data which is able to cluster out the zero-day attacks.

However, intrusion detection includes processing and communication-intensive opera-
tions, which are not feasible to execute in the resource-constrained fog computing envi-
ronment. To tackle this issue, in Publication II, we presented a new lightweight multi-
agent-based architecture tailored to the specific characteristics of fog computing net-
works. In this architecture, the processing-intensive tasks are executed in cloud comput-
ing, and the communication-intensive tasks run in fog computing at the network’s edge.
We utilized the Smart Data technology that we presented in Publication III to enable
lightweight detector agents at the edge devices without deploying the intrusion detection
service. This will provide scalability and facilitate interoperability in different hardware
and software platforms to execute intrusion detection operations without imposing too
much processing load on the devices. We also enhanced the innate immune mechanism
by introducing a new, improved clustering method using the DBSCAN algorithm.

As a countermeasure to tackle the limited resources in fog computing at the edge of the
network, one possibility is to utilize the unused processing and storage capacity of smart
consumer devices such as mobile phones, tablets. However, this imposes a security risk
as the devices may not be trustable to process the critical information. To overcome this
problem, in Publication IV, we proposed a framework based on trust management and
role-based access control. With this framework, the fog platform can delegate some sim-
ple and non-critical tasks to new nodes joining the computing pool and evaluate their trust
level based on the reputation that they earn for successfully delivering their processing
assignments. Once a device gains a higher level of trust, it can be promoted to higher
roles defined in the system and have access to processing more critical information.

As another step toward tackling resource limitations in fog computing, we proposed a
resource management model in the Publication V, by mathematically modeling the fog
computing system and developing mapping algorithms to map multi-task applications in
fog computing networks efficiently. In addition to the optimal solution, we presented a
greedy-based heuristic algorithm that demonstrated to be efficient, fast, and scalable while
delivering a near-optimal solution for many-to-many mapping problems. Our proposed
greedy algorithm requires significantly lower computing and memory resources compared
to the optimal solution solved by a commercial Gurobi solver.

4.2 Implications and limitations for Research and Practice 51

4.2 Implications and limitations for Research and Practice

In what follows, we discuss theoretical and practical implications and limitations of the
dissertation.
To the best of our knowledge, the innate immunity in AIS was not studied before, and
this study opened many research directions in the enhancement and optimization of AIS
and its adoption in designing anomaly-based IDS. The proposed online unsupervised in-
nate immune mechanism can be further used to complement and improve the training
phase of any anomaly-based IDS, empowering them to detect zero-day attacks. However,
distributed long-term attacks such as Distributed Denial of Service (DDOS) or botnet at-
tacks can develop fake normal behaviour patterns and thus, they may not be detected by
the clustering algorithms.
The proposed lightweight IDS architecture can be applied in various IoT systems moni-
toring anomalies, not only in the network and execution of the data in the IoT system but
also in any abnormal behaviour detected from the physical entities that are monitored by
the system. In this case, the proposed IDS can be applied to the digital twins of physical
systems.
The proposed trust management and access-control framework can be applied to various
domains such as wireless sensor networks, federated cloud computing and multi-access
edge computing networks in which the existing computing pool needs to be extended on
demand to address the service requirements.
The Smart Data concept has the potential to revolutionise the management of Big Data in
IoT. With the ever-increasing complexity and diversity of IoT applications, the geograph-
ical expansion of services, increased heterogeneity of hardware, and operating systems,
and, more importantly, mobility and dynamicity of applications and networks, the de-
ployment of IoT applications will face challenges. The Smart Data aims to decouple the
applications from the underlying hardware and bundle them into the data instead. This
enables the scalability and interoperability of IoT applications while facilitating the man-
agement of data in a coherent way. However, from a practical perspective, moving the
data in Smart Data bundles requires the migration of the container hosting the Smart
Data. The migration of containers running stateful applications has some limitations that
need further investigation.
The proposed resource management and application mapping model can be utilized in
many IoT domains. Particularly, the heuristic greedy-based algorithm, which demon-
strated significantly efficient and near-optimal resource mapping, could be used in critical
applications that require real-time or near real-time resource mapping. However, in a real-
world scenario, in addition to the communication delays, some other parameters, such as
energy consumption, bandwidth utilization, deployment, and cost, should be considered
in multi-objective optimisation for the resource mapping problems.

4.3 Proposals for Further Research

The current dissertation revealed some of the security and resource efficiency problems
in fog computing and proposed solutions to tackle these problems. The dissertation opens

52 4 Discussion

and highlights many prospects for further research in the field. Below a summary of
suggestions for further research is presented for each publication:
Findings in a Publication I and II provides valuable insight on approaches for develop-
ing lightweight and efficient IDS for IoT systems. However, there is a need for further
research on enabling the clustering algorithms to detect and cluster long-term and silent
attacks such as DDOS and botnet attacks. Additionally, to improve the efficiency of
detection and required processing resources, utilizing other lightweight evolutionary al-
gorithms such as Artificial Neural Networks (ANN), Particle Swarm Optimization (PSO),
etc., could be studied for training the detectors of AIS.
The Smart Data concept is indeed in the early phases of conceptualization, and we believe
that it has the potential to revolutionize the current perspective of Big Data management.
However, running container migration faces some challenges when the running process
is stateful. Therefore, we suggest studies be carried out on stateful container migration in
the fog computing platform.
To further improve the proposed framework in Publication IV we suggest extending this
framework by incorporating anomaly-based machine learning techniques to detect the
malicious nodes joining the computation pool.
The communication cost inferred in the Publication V is an abstract parameter reflecting
several other parameters such as delay, traffic, bandwidth, and energy. Therefore, there
is a need to investigate further concrete aspects such as communication parameters when
managing the resources in a real-world fog computing system. Furthermore, as part of
future work, we intend to extend our proposed model by considering the communication
bandwidth between network nodes to calculate realistic communication delays. The re-
source management model proposed in this publication can be extended and studied for
microservice architecture applications in IoT. Deploying the microservice applications
requires pre-deployment of the corresponding microservice in the fog node. Hence, the
deployment of microservices in the fog node is one crucial parameter that needs to be
considered in mapping problems. The deployment process, which includes cloning the
container image from the nearest repository, building the container from the downloaded
image and running the microservice, is often time-consuming, process intensive and en-
ergy consuming and imposes delays on the delay-sensitive applications. However, there
is a trade-off between microservice deployment cost and microservice communication
delays. Because deploying the microservices in the nearest nodes to reduce the com-
munication delays may impose deployment costs. Or another way around, avoiding the
deployment cost and running the services in the fog nodes that have the pre-deployed
microservice may impose some communication delays as the nodes hosting the microser-
vices of an application might be many hops away from each other. Thus, the resource
mapping model should take into account the deployment cost in finding the optimum
solution for mapping the set of microservices into fog nodes, i.e., deployment-aware re-
source management.
Moreover, the resource management model proposed in this publication could be utilized
to improve the efficiency and throughput of our proposed intrusion detection system in
publications I and II. In this case, the detectors agents deployed in Smart Data bundles
would be optimally mapped into a set of fog nodes that collaboratively process the intru-

4.3 Proposals for Further Research 53

sion alerts with minimal communication latency.

55

5 Summary and Conclusion
Continuous technology advancement in emerging IoT and IoE technologies faces chal-
lenges concerning the management, storage and processing of Big Data. Relying on cur-
rent technologies such as cloud computing is insufficient for addressing Big Data man-
agement requirements. Hence, new technologies are required to reduce complexity, ease
management, and boost Big Data processing. To this end, the fog computing platform
at the edge of the network is introduced to reduce the processing load from the cloud by
delegating some simple and frequent tasks from the cloud. However, unlike cloud com-
puting, the fog computing platform is distributed and composed of devices with limited
resources. As a result, implementing robust security mechanisms to protect the network
is not feasible. To cope with this issue, lightweight security mechanisms must be tailored
and designed according to fog computing characteristics. In addition, the resources in
fog computing need to be managed efficiently to support the execution of different IoT
applications and security services.
This dissertation has studied several approaches to tackle the above-mentioned problems,
including:

• design and development of a lightweight intrusion detection system,

• development of a security framework based on trust models and a role-based access
control system to facilitate the extension of computing resources in fog computing

• reshaping the passive form of data into active data bundles called Smart Data

• development of resource management models and algorithms to efficiently utilise
fog computing resources.

Relying only on offline data sets limits the ability of IDS to detect the new emerging at-
tacks known as zero-day attacks. Enriching the training data is one way to improve the
efficiency of anomaly-based IDS. Unsupervised machine learning techniques are promis-
ing technology for clustering and labeling the network traffic in near-real time. Hence
the output for unsupervised clustering could be used to enrich the anomaly-based IDS.
In this dissertation, we tailored the DBSCAN clustering algorithm for clustering the net-
work traffic to mark the abnormal connections. Furthermore, we utilized the unsupervised
clustering algorithm to introduce a new protection layer to AIS-based IDS called innate
immunity. Innate immunity is the first response to abnormal network behaviour, and a
more thorough investigation is done by the AIS main engine that resembles the secondary
and adaptive immune responses in the human immune system. We also introduced a new
lightweight architecture for this IDS leveraging the IoT three-layer architecture. In our
architecture, training, and analysis, which are more process intensive, occur in the cloud,
and detection, which is collaborative and communication intensive, happens at the edge
of the network in fog computing nodes to avoid communication delays. This enhances the
efficiency of IDS, as the training agents are lightweight and do not consume too much of
the nodes’ resources. Moreover, to overcome the deployment cost of the detectors in the

56 5 Summary and Conclusion

nodes, we utilize the Smart Data bundles deployed in containers able to detect intrusion
and pre-process the intrusion alerts collaboratively.
To extend the processing capability of fog computing, one approach is to utilize the un-
used processing capacity of surrounding smart devices. In this case, the new nodes join-
ing the computing pool must be monitored to ensure the security and privacy of data.
Reputation-based trust models are proven to be effective in monitoring and evaluating
the behavior of devices in a collaborative computing environment. However, these ap-
proaches must be complemented with other security measures, such as anomaly-based
machine learning techniques, to detect malicious actions in the given assignments to the
arbitrary fog nodes.
With the increasing complexity and diversity of IoT applications on the one hand and
high mobility, heterogeneity and dynamicity of edge computing platforms, including fog
computing, on the other hand, deployment of IoT services in geographically distributed
edge environments faces challenges. We believe that to overcome this issue, the data and
processing code should be decoupled from the underlying hardware infrastructure, and
the data must be self-organizing and self-managed. To achieve this goal, we introduced a
concept called Smart Data, which aims to revolutionize current passive forms of data into
smart, self-managed, active data bundles. Although Smart Data is in very early phases
of conceptualisation, it has the potential to solve many issues raised by the complexity of
IoT realm.
Finally, another premise to consider in the complexity of IoT is to standardize the com-
mon operation on the data. Traditional monolithic and centralized applications are not
sufficiently feasible to cope with the application complexity. In this case, the applica-
tions must be developed as a collection of small independent services following a SOA,
and microservice architecture. However, efficient allocation of limited resources of fog
computing to the set of tightly collaborative tasks forming an application is a crucial prob-
lem in ensuring successful deployment of services and for increasing QoS. Therefore, the
problem could be further broken down into many-to-many mapping problems. In this
dissertation, we modelled multi-task application mapping in a fog computing network
and formulated an optimum MIQP problem. However, the search space for such an algo-
rithm grows exponentially by adding more nodes and sensors. Therefore, even advanced
mathematical solvers cannot process the problem reasonably fast. Hence, we proposed
another heuristic algorithm based on a greedy principle, which proved to be lightweight,
fast (cutting the execution time to less than 1% of the execution time of the commercial
Gurobi optimiser executing the optimal MIQP model), highly scalable, and near-optimal
(i.e., 93%).

References 57

References
Ademokun, A.A. and Dunn-Walters, D. (2010). Immune Responses: Primary and Sec-

ondary. In: eLS. John Wiley Sons, Ltd. ISBN 9780470015902.

Ahn, S., Gorlatova, M., and Chiang, M. (2017). Leveraging fog and cloud computing
for efficient computational offloading. In: 2017 IEEE MIT Undergraduate Research
Technology Conference (URTC), pp. 1–4.

Al-Qaseemi, S.A., Almulhim, H.A., Almulhim, M.F., and Chaudhry, S.R. (2016). IoT
architecture challenges and issues: Lack of standardization. In: 2016 Future Technolo-
gies Conference (FTC), pp. 731–738.

Aliyu, F., Sheltami, T., Deriche, M., and Nasser, N. (2021). Human Immune-Based In-
trusion Detection and Prevention System for Fog Computing. Journal of Network and
Systems Management, 30(1), p. 11. ISSN 1573-7705.

Ashton, K. et al. (2009). That âC˜internet of thingsâC™ thing. RFID journal, 22(7), pp.
97–114.

Banica, L., Stefan, C., and Hagiu, A. (2017). Leveraging the Microservice Architecture
for Next-Generation Iot Applications. Scientific Bulletin : Economic Sciences, 16(2),
pp. 26–32. ISSN 1583-1809.

Bhawiyuga, A., et al. (2019). Architectural design of IoT-cloud computing integration
platform. Telkomnika, 17(3), pp. 1399–1408.

Bonomi, F., Milito, R., Natarajan, P., and Zhu, J. (2014). Fog Computing: A Platform
for Internet of Things and Analytics. In: Big Data and Internet of Things: A Roadmap
for Smart Environments, Studies in Computational Intelligence, vol. 546, pp. 169–186.
Studies in Computational Intelligence. Springer International Publishing. ISBN 978-3-
319-05028-7.

Bonomi, F., Milito, R., Zhu, J., and Addepalli, S. (2012). Fog Computing and Its Role
in the Internet of Things. In: Proceedings of the First Edition of the MCC Workshop
on Mobile Cloud Computing, MCC ’12, pp. 13–16. New York, NY, USA: ACM. ISBN
978-1-4503-1519-7.

Bozorgchenani, A., Tarchi, D., and Corazza, G.E. (2017). An Energy and Delay-Efficient
Partial Offloading Technique for Fog Computing Architectures. In: GLOBECOM 2017
- 2017 IEEE Global Communications Conference, pp. 1–6.

Brown, J. and Anwar, M. (2021). Blacksite: human-in-the-loop artificial immune system
for intrusion detection in internet of things. Human-Intelligent Systems Integration,
3(1), pp. 55–67. ISSN 2524-4884.

58 References

Butzin, B., Golatowski, F., and Timmermann, D. (2016). Microservices approach for the
internet of things. In: 2016 IEEE 21st International Conference on Emerging Technolo-
gies and Factory Automation (ETFA), pp. 1–6.

Chandak, A. and Ray, N.K. (2019). A Review of Load Balancing in Fog Computing. In:
2019 International Conference on Information Technology (ICIT), pp. 460–465.

Chandak, A.V. and Ray, N.K. (2020). Multi Agent Based Resource Provisioning in Fog
Computing. In: Trends in Computational Intelligence, Security and Internet of Things,
pp. 317–327. Springer International Publishing. ISBN 978-3-030-66763-4.

Dastjerdi, A., et al. (2016). Fog Computing: principles, architectures, and applications.
Internet of Things, pp. 61–75. ISSN 0020-0255.

Datta, S.K., Bonnet, C., and Haerri, J. (2015). Fog Computing architecture to enable con-
sumer centric Internet of Things services. Proceedings of the International Symposium
on Consumer Electronics, ISCE, 2015-Augus, pp. 6–7.

Deng, R., et al. (2016). Optimal Workload Allocation in Fog-Cloud Computing Toward
Balanced Delay and Power Consumption. IEEE Internet of Things Journal, 3(6), pp.
1171–1181.

Dragoni, N., et al. (2018). Microservices: How To Make Your ApplicationÂ Scale. In:
Petrenko, A.K. and Voronkov, A., eds, Perspectives of System Informatics, pp. 95–104.
Springer International Publishing.

Etemadi, M., Ghobaei-Arani, M., and Shahidinejad, A. (2020). Resource provisioning for
IoT services in the fog computing environment: An autonomic approach. Computer
Communications, 161, pp. 109–131. ISSN 0140-3664.

Eyckerman, R., Mercelis, S., Marquez-Barja, J., and Hellinckx, P. (2020). Requirements
for distributed task placement in the fog. Internet of Things, 12, p. 100237. ISSN 2542-
6605.

Forrest, S., Hofmeyr, S.A., and Somayaji, A. (1997). Computer Immunology. Commun.
ACM, 40(10), p. 88âC“96. ISSN 0001-0782.

Ghobaei-Arani, M., Souri, A., and Rahmanian, A.A. (2020). Resource Management Ap-
proaches in Fog Computing: a Comprehensive Review. Journal of Grid Computing,
18(1), pp. 1–42. ISSN 1572-9184.

Goudarzi, M., Wu, H., Palaniswami, M., and Buyya, R. (2021). An Application Placement
Technique for Concurrent IoT Applications in Edge and Fog Computing Environments.
IEEE Transactions on Mobile Computing, 20(4), pp. 1298–1311.

Grossetete, P. (n.d.). IoT and the Network: What is the future? Cisco.

Gu, Y., et al. (2018). Joint Radio and Computational Resource Allocation in IoT Fog
Computing. IEEE Transactions on Vehicular Technology, 67(8), pp. 7475–7484.

References 59

Haghi Kashani, M. and Mahdipour, E. (2022). Load Balancing Algorithms in Fog Com-
puting: A Systematic Review. IEEE Transactions on Services Computing, 1374(c), pp.
1–18.

Hosseinpour, F., Amoli, P.V., Plosila, J., and Hämäläinen, T. (2016). An Intrusion Detec-
tion System for Fog Computing and IoT based Logistic Systems using a Smart Data
Approach. JDCTA nternational Journal of Digital Content Technology and its Appli-
cations, 10, pp. 34–46.

Hosseinpour, F., Siddiqui, A.S., Plosila, J., and Tenhunen, H. (2018). A Security Frame-
work for Fog Networks Based on Role-Based Access Control and Trust Models. In: Re-
search and Practical Issues of Enterprise Information Systems, pp. 168–180. Springer
International Publishing. ISBN 978-3-319-94845-4.

Ibrahim, N. and Bench, B. (2017). Service-Oriented Architecture for the Internet of
Things. In: 2017 International Conference on Computational Science and Computa-
tional Intelligence (CSCI), pp. 1004–1009.

Jiang, J., Tang, L., Gu, K., and Jia, W. (2020). Secure Computing Resource Allocation
Framework For Open Fog Computing. The Computer Journal, 63(4), pp. 567–592.
ISSN 0010-4620.

Jiang, Y., Huang, Z., and Tsang, D.H.K. (2018). Challenges and Solutions in Fog Com-
puting Orchestration. IEEE Network, 32(3), pp. 122–129. ISSN 0890-8044.

Jiao, Y., Wang, P., Niyato, D., and Suankaewmanee, K. (2019). Auction Mechanisms
in Cloud/Fog Computing Resource Allocation for Public Blockchain Networks. IEEE
Transactions on Parallel and Distributed Systems, 30(9), pp. 1975–1989.

Khan, R., Khan, S.U., Zaheer, R., and Khan, S. (2012). Future Internet: The Internet of
Things Architecture, Possible Applications and Key Challenges. In: 2012 10th Inter-
national Conference on Frontiers of Information Technology, pp. 257–260.

Khater, B.S., et al. (2019). A Lightweight Perceptron-Based Intrusion Detection System
for Fog Computing. Applied Sciences, 9(1), p. 178.

Koo, D. and Hur, J. (2018). Privacy-preserving deduplication of encrypted data with dy-
namic ownership management in fog computing. Future Generation Computer Sys-
tems, 78, pp. 739–752. ISSN 0167-739X.

Lahmar, I.B. and Boukadi, K. (2020). Resource Allocation in Fog Computing: A System-
atic Mapping Study. In: 2020 Fifth International Conference on Fog and Mobile Edge
Computing (FMEC), pp. 86–93.

Leandro, C.N. and Timmis, J. (2002). Artificial Immune Systems: A New Computational
Intelligence Approach. London. UK.: Springer-Verlag.

60 References

Lee, G., Saad, W., and Bennis, M. (2017). An online secretary framework for fog network
formation with minimal latency. In: IEEE International Conference on Communica-
tions, pp. 1–6. ISBN 9781467389990, ISSN 15503607.

Lee, S.S. and Lee, S. (2020). Resource Allocation for Vehicular Fog Computing Us-
ing Reinforcement Learning Combined With Heuristic Information. IEEE Internet of
Things Journal, 7(10), pp. 10450–10464.

Liu, L., Chang, Z., and Guo, X. (2018). Socially Aware Dynamic Computation Offloading
Scheme for Fog Computing System With Energy Harvesting Devices. IEEE Internet of
Things Journal, 5(3), pp. 1869–1879.

Mäki, V. (2021). Feasibility Evaluation of LPWAN Technologies - Case Study for a
Weather Station. Ph.D. thesis. Lappeenranta-Lahti University of Technology LUT.

Mseddi, A., Jaafar, W., Elbiaze, H., and Ajib, W. (2019). Intelligent Resource Allocation
in Dynamic Fog Computing Environments. In: 2019 IEEE 8th International Confer-
ence on Cloud Networking (CloudNet), pp. 1–7.

Mukherjee, M., et al. (2017). Security and Privacy in Fog Computing: Challenges. IEEE
Access, 5, pp. 19293–19304.

Narayanan, A., et al. (2020). Key advances in pervasive edge computing for industrial
internet of things in 5g and beyond. IEEE Access, 8, pp. 206734–206754.

Nardelli, P.H. (2022). Cyber-physical Systems: Theory, Methodology, and Applications.
John Wiley & Sons.

Nashaat, H., Ahmed, E., and Rizk, R. (2020). IoT Application Placement Algorithm
Based on Multi-Dimensional QoE Prioritization Model in Fog Computing Environ-
ment. IEEE Access, 8, pp. 111253–111264.

Nemirovsky, M. (2012). Fog Computing. In: Cloud Assisted Services in Europe (CLASS)
Conference, Bled 2012.

Oparin, G.A., Bogdanova, V.G., Pashinin, A.A., and Gorsky, S.A. (2019). Microservice-
oriented Approach to Automation of Distributed Scientific Computations. In: 2019
42nd International Convention on Information and Communication Technology, Elec-
tronics and Microelectronics (MIPRO), pp. 236–241.

Osanaiye, O., et al. (2017). From Cloud to Fog Computing: A Review and a Conceptual
Live VM Migration Framework. IEEE Access, 5, pp. 8284–8300. ISSN 21693536.

Othmane, L.B. and Lilien, L. (2009). Protecting Privacy of Sensitive Data Dissemination
Using Active Bundles. In: 2009 World Congress on Privacy, Security, Trust and the
Management of e-Business, pp. 202–213.

References 61

Özköse, H., Ari, E.S., and Gencer, C. (2015). Yesterday, Today and Tomorrow of Big
Data. Procedia - Social and Behavioral Sciences, 195, pp. 1042–1050. ISSN 1877-
0428.

Pahl, C. and Lee, B. (2015). Containers and Clusters for Edge Cloud Architectures -
a Technology Review. In Future Internet of Things and Cloud (FiCloud), 2015 3rd
International Conference on, pp. 379–386.

Pamukov, M.E. (2017). Application of artificial immune systems for the creation of IoT
intrusion detection systems. In: 2017 9th IEEE International Conference on Intelli-
gent Data Acquisition and Advanced Computing Systems: Technology and Applications
(IDAACS), vol. 1, pp. 564–568.

Patro, R., et al. (2021). Module Placement Scheme Using MPC4.5 with Markov Chain
Process for Mobile Fog Computing Environment. In: 2021 International Conference
on Computing, Communication, and Intelligent Systems (ICCCIS), pp. 304–309.

Potu, N., Jatoth, C., and Parvataneni, P. (2021). Optimizing resource scheduling based
on extended particle swarm optimization in fog computing environments. Concurrency
and Computation: Practice and Experience, 33(23), pp. 1–13. ISSN 15320634.

Rafique, H., et al. (2019). A Novel Bio-Inspired Hybrid Algorithm (NBIHA) for Efficient
Resource Management in Fog Computing. IEEE Access, 7, pp. 115760–115773.

Ray, K., Banerjee, A., and Narendra, N.C. (2020). Proactive Microservice Placement
and Migration for Mobile Edge Computing. In: 2020 IEEE/ACM Symposium on Edge
Computing (SEC), pp. 28–41.

Ren, Z., et al. (2020). Resource scheduling for delay-sensitive application in three-layer
fog-to-cloud architecture. Peer-to-Peer Networking and Applications, 13(5), pp. 1474–
1485. ISSN 1936-6450.

Sadaf, K. and Sultana, J. (2020). Intrusion Detection Based on Autoencoder and Isolation
Forest in Fog Computing. IEEE Access, 8, pp. 167059–167068.

Sahni, Y., Cao, J., Zhang, S., and Yang, L. (2017). Edge Mesh: A New Paradigm to Enable
Distributed Intelligence in Internet of Things. IEEE Access, 5, pp. 16441–16458. ISSN
21693536.

Sampaio, A.R., Rubin, J., Beschastnikh, I., and Rosa, N.S. (2019). Improving
microservice-based applications with runtime placement adaptation. Journal of Inter-
net Services and Applications, 10(1), p. 4. ISSN 1869-0238.

Sanaei, Z., Abolfazli, S., Gani, A., and Buyya, R. (2014). Heterogeneity in Mobile Cloud
Computing: Taxonomy and Open Challenges. IEEE Communications Surveys Tutori-
als, 16(1), pp. 369–392. ISSN 1553-877X.

62 References

Santana, C., Andrade, L., Delicato, F.C., and Prazeres, C. (2021). Increasing the avail-
ability of IoT applications with reactive microservices. Service Oriented Computing
and Applications, 15(2), pp. 109–126. ISSN 18632394.

Santos, J., Wauters, T., Volckaert, B., and De Turck, F. (2019). Towards Network-Aware
Resource Provisioning in Kubernetes for Fog Computing Applications. In: 2019 IEEE
Conference on Network Softwarization (NetSoft), pp. 351–359.

Santos, J., Wauters, T., Volckaert, B., and De Turck, F. (2021a). Towards end-to-end re-
source provisioning in Fog Computing over Low Power Wide Area Networks. Journal
of Network and Computer Applications, 175, p. 102915. ISSN 1084-8045.

Santos, J., Wauters, T., Volckaert, B., and Turck, F.D. (2021b). Resource Provisioning in
Fog Computing through Deep Reinforcement Learning. In: 2021 IFIP/IEEE Interna-
tional Symposium on Integrated Network Management (IM), pp. 431–437.

Selimi, M., et al. (2019). A Lightweight Service Placement Approach for Community
Network Micro-Clouds. Journal of Grid Computing, 17(1), pp. 169–189. ISSN 1572-
9184.

Shakarami, A., et al. (2022). Resource provisioning in edge/fog computing: A Compre-
hensive and Systematic Review. Journal of Systems Architecture, 122, p. 102362. ISSN
1383-7621.

Singh, V. and Peddoju, S.K. (2017). Container-based microservice architecture for cloud
applications. In: 2017 International Conference on Computing, Communication and
Automation (ICCCA), pp. 847–852.

Skarlat, O., et al. (2017). Optimized IoT service placement in the fog. Service Oriented
Computing and Applications, 11(4), pp. 427–443. ISSN 1863-2394.

Stojmenovic, I. and Wen, S. (2014). The Fog Computing Paradigm: Scenarios and Secu-
rity Issues. In: Federated Conference on Computer Science and Information Systems,
vol. 2, pp. 1–8. ISBN 9788360810583.

Stojmenovic, I., Wen, S., Huang, X., and Hao, L. (2016). An overview of Fog computing
and its security issues. Concurrency and Computation: Practice and Experience, 22(6),
pp. 685–701. ISSN 15320634.

Sun, Y., Lin, F., and Xu, H. (2018). Multi-objective Optimization of Resource Scheduling
in Fog Computing Using an Improved NSGA-II. Wireless Personal Communications,
102(2), pp. 1369–1385. ISSN 1572-834X.

Ullah, M., Nardelli, P.H., Wolff, A., and Smolander, K. (2020). Twenty-one key factors
to choose an iot platform: Theoretical framework and its applications. IEEE Internet of
Things Journal, 7(10), pp. 10111–10119.

References 63

Urgaonkar, R., et al. (2015). Dynamic service migration and workload scheduling in edge-
clouds. Performance Evaluation, 91, pp. 205–228. ISSN 0166-5316. Special Issue:
Performance 2015.

Wang, J. and Li, D. (2019). Task Scheduling Based on a Hybrid Heuristic Algorithm for
Smart Production Line with Fog Computing. Sensors, 19(5). ISSN 1424-8220.

Wang, S., et al. (2015a). Dynamic service migration in mobile edge-clouds.

Wang, Y., Uehara, T., and Sasaki, R. (2015b). Fog Computing: Issues and Challenges in
Security and Forensics. 2015 IEEE 39th Annual Computer Software and Applications
Conference, 3, pp. 53–59.

Wu, C.g. and Wang, L. (2019). A Deadline-Aware Estimation of Distribution Algorithm
for Resource Scheduling in Fog Computing Systems. In: 2019 IEEE Congress on Evo-
lutionary Computation (CEC), pp. 660–666.

Yaqoob, I., et al. (2017). Internet of Things Architecture: Recent Advances, Taxonomy,
Requirements, and Open Challenges. IEEE Wireless Communications, 24(3), pp. 10–
16.

Ye, D., Wu, M., Tang, S., and Yu, R. (2016). Scalable Fog Computing with Service
Offloading in Bus Networks. In: 2016 IEEE 3rd International Conference on Cyber
Security and Cloud Computing (CSCloud), pp. 247–251.

Yousefpour, A., et al. (2019). All one needs to know about fog computing and related edge
computing paradigms: A complete survey. Journal of Systems Architecture, (February).
ISSN 13837621.

Zhang, P., Zhou, M., and Fortino, G. (2018). Security and trust issues in Fog computing:
A survey. Future Generation Computer Systems, 88, pp. 16–27. ISSN 0167739X.

Zhi, Y., Fu, Z., Sun, X., and Yu, J. (2019). Security and Privacy Issues of UAV: A Survey.
Mobile Networks and Applications, pp. 1–10. ISSN 15728153.

Publication I

Hosseinpour, F., Vahdani Amoli, P., Farahnakian, F., Plosila, J., and Hämäläinen, T.
Artificial Immune System Based Intrusion Detection: Innate Immunity using an

Unsupervised Learning Approach

Reprinted with permission from
International Journal of Digital Content Technology and its Applications

Vol. 8(5). pp. 1-12, 2014.
© 2014, AICIT

Artificial Immune System Based Intrusion Detection:
Innate Immunity using an Unsupervised Learning Approach

1Farhoud Hosseinpour, 2Payam Vahdani Amoli, 3Fahimeh Farahnakian, 4Juha Plosila and

5 Timo Hämäläinen
1 Corresponding Author, 3 and 4 Department of Information Technology, University of Turku, Finland.

{farhos;fahfar;juplos}@utu.fi
2 and 5Faculty of Information Technology, University of Jyväskylä, 40100, Jyväskylä, Finland.

2 pavahdan@student.jyu.fi
5 timo.t.hamalainen@jyu.fi

Abstract

This paper presents an intrusion detection system architecture based on the artificial immune
system concept. In this architecture, an innate immune mechanism through unsupervised machine
learning methods is proposed to primarily categorize network traffic to “self” and “non-self” as
normal and suspicious profiles respectively. Unsupervised machine learning techniques formulate the
invisible structure of unlabeled data without any prior knowledge. The novelty of this work is
utilization of these methods in order to provide online and real-time training for the adaptive immune
system within the artificial immune system. Different methods for unsupervised machine learning are
investigated and DBSCAN (density-based spatial clustering of applications with noise) is selected to be
utilized in this architecture. The adaptive immune system in our proposed architecture also takes
advantage of the distributed structure, which has shown better self-improvement rate compare to
centralized mode and provides primary and secondary immune response for unknown anomalies and
zero-day attacks. The experimental results of proposed architecture is presented and discussed.

Keywords: Distributed intrusion detection system, Artificial immune system,

Innate immune system, Unsupervised learning

1. Introduction

Anomaly-based intrusion detection systems (IDS) have been broadly researched as defensive
techniques to address the detection of unknown or zero-day attacks. Unlike misuse-based or signature-
based types of IDS, which take advantage of the predetermined signature of known attacks, anomaly-
based IDS deals with the detection of new types of attack that are unknown to the system. This process
is done by detecting variation in the systems' behavior from a previously defined normal system profile.
However, it is subject to false alarms as a result of the difficulty in defining the normal state during
training. An increasing detection rate with fewer false alarms became an important challenge in the
design of anomaly-based IDS.

The artificial immune system (AIS) comprises promising techniques in the form of biologically

inspired computing that is applied to solving various problems in the information security field. The
AIS is inspired by the human immune system (HIS), which has the ability to distinguish internal cells
and molecules of the body from foreign pathogens, so called self and non-self respectively, and
protects the body against diseases [1]. In the human body the HIS mainly does this without any prior
knowledge of attacking pathogens and their structure. As self and non-self discrimination is a
significant attribute in the AIS, it is proposed that it is utilized in designing efficient anomaly-based
IDS [2]–[4]. The AIS suggests a multi-layered protection structure for protecting computer networks
against attack, like HIS protection against foreign pathogens in the human body [5]. This protection is
accomplished through Innate or Adaptive mechanisms. Innate immunity is immediate; it is the first line
of defense for the HIS and provides non-specific protection. Therefore, it has no prior knowledge of
specific outsiders. The adaptive immune response, on the other hand, is antigen-specific and is trained
using a pre-defined profile of specific attacks [6]. Adaptive immunity also includes a “memory” that
makes future responses against a specific antigen more efficient [7].

International Journal of Digital Content Technology and its Applications(JDCTA)
Volume 8, Number 5, October 2014

Artificial Immune System Based Intrusion Detection: Innate Immunity using an Unsupervised Learning Approach
Farhoud Hosseinpour, Payam Vahdani Amoli, Fahimeh Farahnakian, Juha Plosila, Timo Hämäläinen

1

Like other anomaly-based detection techniques, the AIS also takes advantage of monitoring
variations of the system's behavior according to a pre-defined normal activity profile as an adaptive
immune mechanism. This is done through a learning phase in which a data set containing these profiles
is utilized for this purpose. Hence, the efficiency of anomaly detection in the AIS is highly dependent
on the learning data set. Substantial research has been conducted so far in the improvement and
utilization of AIS-based IDS, the majority of which have utilized a pre-defined and offline data set as
learning data for training the IDS. This will reduce the efficiency of the IDS by limiting its knowledge-
base to that particular learning data set. Moreover, it is extremely difficult to create a data set of self
samples with all variations. In order to cope with this problem, in this paper we have proposed an
innate immune mechanism by using unsupervised learning methods as the first line of defense in AIS-
based IDS. The innate immune system in our proposed architecture provides online and dynamic
categorization of network flows to self and non-self, which is then used by the adaptive immune
system to generate attack-specific detectors.

Machine learning methods can be organized based on the type of input available during training.

There are three main categories of machine learning: supervised, semi-supervised and unsupervised
algorithms. Supervised machine learning algorithms need to be trained by labeled data to distinguish
the normal and abnormal behavior of the network. Semi-supervised machine learning algorithms can
be trained by attack-free unlabeled data. The acquisition of labeled data from security experts, or
finding attack-free data sets for both supervised and semi-supervised techniques, is costly. Recent
studies showed the feasibility of unsupervised learning approaches in IDS in comparison with
supervised or semi-supervised learning-based IDS. Unsupervised machine learning techniques
formulate the invisible structure of an unlabeled data set without any prior knowledge. Clustering
algorithms put objects based on their similarities into a cluster or clusters. Clustering algorithms have
been used for unsupervised IDS to classify the behavior of the network [8]–[10].

The remainder of the paper is organized as follows. In section 2 we briefly review the AIS and

unsupervised learning approaches. We discuss some of the most important related works in section 3.
Section 4 presents the proposed AIS-based IDS. Two main engines of the proposed DIS are explained
in Sections 5 and 6. In section 7, the experimental results of proposed architecture are presented and,
finally, we discuss and conclude in Section 8.

2. Background

In this section, we explain briefly the AIS and clustering method employed in our proposed IDS.

2.1. Artificial Immune System

The human immune system defends the human body against harmful and previously unseen foreign
cells using lymphocyte cells. The foreign cells are called antigens, such as bacteria and viruses [1]. The
artificial immune system is designed for the computational system and inspired by the HIS; it is
applied to solving various problems in the field of information security, particularly intrusion detection
systems [11], [12]. Moreover, it incorporates many attributes of the HIS, including diversity, error
tolerance, dynamic learning, adaption and self-monitoring [3]. The AIS has the capability to
differentiate between the “self” (cells that are owned by the system) and “non-self” (foreign entities to
the system) as intrusions. Likewise, detectors similar to lymphocytes are deployed in computer system
nodes to intercept and report any malicious activities.

The HIS employs a negative selection process to generate mature immune system cells called T-

cells. Forrest et al. [2] proposed a negative selection algorithm to utilize this process of the HIS for a
sophisticated anomaly-detection process. This process allows the detection of previously unseen
harmful cells without any definition of specific harmful cells.

The algorithm includes three phases: defining self, generating detectors and monitoring the

occurrence of anomalies. In the first phase, it establishes the normal behavior patterns of a monitored

Artificial Immune System Based Intrusion Detection: Innate Immunity using an Unsupervised Learning Approach
Farhoud Hosseinpour, Payam Vahdani Amoli, Fahimeh Farahnakian, Juha Plosila, Timo Hämäläinen

2

system to define “self”. It regards the profiled normal patterns as “self” patterns. In the second phase, it
generates a number of immature T-cells with random patterns that are compared to each self pattern
defined in the first phase. If any generated pattern matches a self pattern, the pattern fails to become a
detector and is thus removed. Otherwise, it becomes a mature T-cell detector and is utilized for
monitoring subsequent profiled patterns of the monitored system. During the third phase, if a T-cell
detector matches any newly profiled pattern, it is then considered that that new anomaly must have
occurred in the monitored system.

2.2. Clustering Methods (Unsupervised Machine Learning)

There are several approaches to unsupervised machine learning. Clustering is one of the

unsupervised machine learning techniques that have been used for IDS. Clustering techniques group
(cluster) samples of data sets based on their similarities to find the outliers as the anomaly. Cluster
association and centroid distance techniques are the two most important categories of clustering for
anomaly detection. Two popular clustering approaches that have been applied in many proposed IDS
are as follows:

1) Density-Based Spatial Clustering of Applications with Noise (DBSCAN) finds a number of

clusters starting from the estimated density distribution of the corresponding samples. It requires
two parameters: maximum radius of the neighborhood (ε) and minimum number of samples
required to form a cluster (minPts). DBSCAN detects a density-connected cluster by discovering
one of its core samples, p, and computes all samples that are density-reachable from p. It checks
the ε-neighborhood of each sample p, Nε(p), in the data set. If the Nε(p) of sample p consists of
the least minPts samples, a new cluster containing all samples of Nε(p) is created.

2) K-means partitions the given data set into n clusters, in which each cluster has a cluster center

(centroid). Any sample assigned to each cluster has a minimum distance to the centroid of the
cluster. The Euclidean distance can be used to determine the distance between each sample and
the centroid.

3. Related Works

Farmer et al. [13] put forward a new link between biological and computing sciences by proposing

the artificial immunology model. Forrest et al. [14] proposed the most effective idea in the utilization
of immunity in computer security for self and non-self discrimination. Following this work, they
presented basic architecture [3] for the artificial immune system and took advantage of it in deploying
the first AIS-based IDS, which was called LISYS. So far different frameworks have been presented in
the utilization of the AIS for IDS. However, there are essentially two main approaches to applying AIS
in DIS. One approach is classical self/non-self discrimination and another is the application of danger
theory as a substitute for the former.

· In [14], a negative selection algorithm is proposed to discriminate between self and non-

self entities. The algorithm first creates a set of detectors randomly and then compares it
with a set of normal sets (self). If any detectors are matched with any self entity, the system
eliminates them and the rest will be kept.

· As a substitute to self/non-self discrimination, the Danger Model was proposed by
Matzinger [15], [16]. According to this hypothesis the main cause of an immune response is
that a pathogen harms the system and thus is dangerous and not unknown to the system.
Aickelin et al. [17] stated that in the IDS paradigm the danger is sensed and measured
automatically after a number of intrusions because of the damage caused by the attack.
Once a danger signal is detected, it will be transmitted to the nearest artificial antibody
around the danger area.

In [5] a multi-layered structure consisting of detection, defense and user layers was proposed.
Dal et al. [18] proposed a model in which the primary immune response is evolved through

Artificial Immune System Based Intrusion Detection: Innate Immunity using an Unsupervised Learning Approach
Farhoud Hosseinpour, Payam Vahdani Amoli, Fahimeh Farahnakian, Juha Plosila, Timo Hämäläinen

3

genetic algorithm to a secondary immune response with optimized detectors that are
correspondent to memory cells in natural immune systems. This work was proposed as an
enhancement to Forrest and Hofmeyr's work. However, their model still had the disadvantage of
central processing with high processing overheads for large network traffic. In our previous
work [19], we enhanced their model by proposing a distributed framework to reduce the
processing overheads and to increase the efficiency of the IDS. Moreover, the distributed nature
of this model resulted in a greater self-improvement feature for this IDS. This work, however,
utilizes offline learning data for training the IDS. Since the network behavior is changed in a
dynamic fashion, a new profile of normal and abnormal activity needs to be trained to the
system dynamically. In order to solve this problem, in this paper we have proposed an innate
immune mechanism by utilization of unsupervised learning methods to the primary detection of
self and non-self flows, which features online and dynamic training of the adaptive immune
system of AIS-based IDS.

Researchers have applied unsupervised machine learning algorithms in IDS to overcome the

issues of training and detecting new attacks. For instance, in [20] they proposed a practical real-
time solution for NIDS to detect known and unknown network attacks using unsupervised
neural networks. They applied several neural networks to improve the detection rate of
intrusions. In [8] they also proposed an unsupervised NIDS, which uses different clustering
algorithms to detect attacks such as DOS/DDOS, Worm and Network scanning. In [9] they
presented a tree-based subspace clustering technique for unsupervised NIDS in high-
dimensional data sets. In the proposed model they have generated and analyzed cluster stability
for each cluster by using an ensemble of multiple cluster indices. They have also introduced a
multi-objective cluster labeling technique to label each stable cluster as normal or anomalous.

4. Proposed Intrusion Detection System

Figure 1 shows the proposed intrusion detection system, which consists of two main engines. The

clustering engine performs network traffic clustering into the self or non-self clusters through
unsupervised learning techniques. The AIS engine consists of agents that cooperate for intrusion
detection. The term “agent” originally comes from Artificial Intelligence (AI) and refers to anything
that can view its environment through sensors and act upon that environment using actuators . In this
paper, the term agent refers to software agents. Compared to Dal et al.'s [18] work, in our previous
work we proposed a distributed model in which we experimented increased performance and efficiency
of these IDs as a result of a greater self-improvement rate compare to a centralized structure. This is
due to generation of new memory cells and their dynamic synchronization and distribution to all hosts,
and thus an enhanced secondary immune response.

The AIS engine trains the primary detectors generated by the negative selection algorithm based on

received information from the clustering engine. Moreover, it improves the performance of primary
detectors according to the intrusion report analysis from all hosts. In the architecture, the packet pre-
processing module is responsible for extracting several attributes from the network traffic to create
network flows. These attributes are selected based on the protocol types shown in Table 1.

Table 1. Network Flow specification for each type of packet

Packets
Protocol Features

IP Source IP Address, Destination IP Address, Time of the First Packet, Time of the Last Packet, Duration

TCP Source Port Number, Destination Port Number, Number of Packets, Number of SYN Packet, Number of SYN-
ACK packet, Number of RST Packet, Number of RST-ACK Packet, Number of FIN-ACK Packet

UDP Source Port Number, Destination Port Number, Number of Packets

ICMP #Eco Request, #Eco Reply

Artificial Immune System Based Intrusion Detection: Innate Immunity using an Unsupervised Learning Approach
Farhoud Hosseinpour, Payam Vahdani Amoli, Fahimeh Farahnakian, Juha Plosila, Timo Hämäläinen

4

Figure 1. Proposed system architecture

5. Clustering Engine

In order to detect unseen intrusions without using any prior knowledge (training by labeled traffic or
signature), we propose a clustering engine as innate immune response. The clustering engine utilizes
the DBSCAN clustering method to group the real network traffic into clusters and consider them as self,
while behaviors outside of the clusters will be considered as noise or non-self. For this purpose, the
engine continuously compares the number of network flows, in different network resolutions (subnets
of /0, /8, /16, /24), with a threshold which is dynamically calculated by our proposed network
measurement formula in Table 2. Since high speed networks have larger amount of traffic, there is a
significant possibility of losing the sign of network attacks. To overcome this issue the system will also
monitor the behavior of the network in small resolutions to decrease the possibility of fading the
attacks in the normal traffic.

To obtain an accurate threshold, the system needs to determine the previous behavior of the network. It
is possible that small attacks to be fade with occurrence of heavy attacks, thus we have applied
standardization on the number of network flows by using logarithm (Log) to increase the probability of
detecting small attacks during the occurrence of heavy attacks. To determine changes in the network
traffic, the system will calculate the “standard deviation” of the number of network flows in different
windows from last minute of the traffic. As shown in Table 2 the previous 60 seconds of traffic is
divided into four 15 seconds windows. For instance,  is the standard deviation of number of network
flows in the first window which is from the last 65 seconds to the last 50 seconds of the previous
network traffic. As it has been seen in so many datasets, it takes 2 to 3 seconds from starting time of
the network attacks (such as DOS/DDOS attacks) till its own peak. To minimize the effect of early
traffic of the attacks on the threshold, the network measurement formula considers a 5 seconds gap

Artificial Immune System Based Intrusion Detection: Innate Immunity using an Unsupervised Learning Approach
Farhoud Hosseinpour, Payam Vahdani Amoli, Fahimeh Farahnakian, Juha Plosila, Timo Hämäläinen

5

between every one minute of traffic to calculate the threshold for the current traffic. Sum of the highest
standard deviations (from  to ) and the heaviest traffic from the last minute of traffic can determine
the highest traffic which could be accepted as normal. The following equation represents the network measurement formula which calculates the network traffic threshold “”:

  =   {| = 1 ⋯ 4} +    log   = 1 ⋯ 60  × 

Where  is standard deviation of number of network flows in ith window and  is number of network
fellow in jth second of last minute’s traffic. And  is a coefficient value which can be set to determine
the final threshold.

Table 2. Elements of network measurementformula

Last Minute Traffic Gap Current Traffic

Window 1 Window 2 Window 3 Window 4

  1 2 3 4

65-50 50-35 35-20 20-5 5-0  log 

The cluster engine considers a network behavior as abnormal when the number of network flows is

more than the calculated threshold. Whenever the number of network flows passes the threshold, the
clustering engine will cluster the number of in-bounded and out-bounded network flows for each IP
(from the past five minutes) to define the normal cluster and obtain an accurate “ε” as the maximum
radius of the neighborhood in DBSCAN. Afterwards it will cluster the suspicious traffic with “ε” to
find and flag the outliers (noise) as intrusion or non-self. Network intrusions such as DOS, DDOS,
Spamming, Worm and UDP storm, generate a large number of network flows. We consider the number
of inbound and outbound network flows as the other two essential features for clustering in order to
detect these types of intrusion as outliers. Using the aforementioned features of network flow for the
clustering engine increases the detection rate of network attacks. Moreover, it will reduce the time and
space complexity of clustering algorithms compared to the previous proposed IDSs, which deals with
data extracted from packets and bytes (payload). Detected intrusions will be marked as a non-self and
set of marked flows will be forwarded to the training agent in the AIS engine to train the primary
detectors.

6. AIS-based IDS

The proposed AIS-based IDS has two components: the AIS engine and the host side detectors. This

section describes these components in the AIS-based IDS.

6.1. AIS Engine

In the AIS engine, we proposed three agents to employ the adaptive immune response of the
AIS in IDS.

Training agent: first converts the network flow information into the binary string with a

total 112-bit length as a flow profile (Table 3). Then, using the negative selection algorithm it
generates and trains the primary detectors. The negative selection algorithm first generates a
number of random detectors (immature detectors) and then trains them with samples of labeled
flows from the cluster engine. If each immature detector matches each self sample of the data
set, then the system will discard it and generate another in its place. After checking all
immature detectors with all self samples, the remaining detector sets undergo the next step of
the negative selection algorithm and become mature detectors. Each mature detector will be
checked with all non-self samples of labeled flows. If a mature detector fails to match with

Artificial Immune System Based Intrusion Detection: Innate Immunity using an Unsupervised Learning Approach
Farhoud Hosseinpour, Payam Vahdani Amoli, Fahimeh Farahnakian, Juha Plosila, Timo Hämäläinen

6

some non-self samples, the system will discard this detector; otherwise, this detector will be
added to a detector set. This process will continue until all non-self packets are matched with at
least three mature detectors.

The negative section algorithm uses the r-Contiguous matching bit role [21] to check the

matching between two strings. In this method, two strings are matched if they have at least r
contiguous identical bits. Finally, the output of the negative selection algorithm is a set of
primary detectors, which are archived and synchronized in detector set repository and then sent
to the dispatcher agent for distribution to local hosts. These detectors are analogous to primary
immune response in the HIS.

Table 3. Depiction of fields in flows profile strings

Name of the Field Minimum and Maximum Value Binary Strings Length (bits)
Destination IP Address 0.0.0.0 - 255.255.255.255 32

Source IP Address 0.0.0.0 - 255.255.255.255 32
Destination Port No 0 – 65535 16

Duration 0 – 65535 12
Protocol 0 – 65535 4

Source Port No 0 – 65535 16

Dispatcher agent: distributes detectors from the detector set to all hosts in the network. Moreover,

it has the responsibility to communicate with all hosts and synchronize them according to changes in
the detector set. It also forwards the reported flow from the memory cell detectors and detector agents
to the analyzer agent.

Analyzer agent: employs the proposed genetic algorithm in [18] to evolve the highly fit detectors

activated when an anomaly has been encountered. The suspected flow reported from the host's
(discussed later) profile of activated detectors and their affinity with reported flow are analyzed in this
agent, and an optimized detector, called the memory cell detector, is generated. A memory cell detector
is a high-affinity and attack-specific detector with a higher detection ability and analogous to secondary
immune response in the HIS [7].

A selection operation is undertaken on activated detectors to select the detectors with the highest

affinity for cloning and formation of primary population for genetic algorithm. Those detectors having
a fitness value greater than or equal to cloning threshold undergo cloning. The cloning threshold is set
as follows.

 Cloning Threshold = ∑ Fitness of detectors 

Where “n” is the total number of activated detectors.

Winner detectors that consist of cloned detectors and remain activated detectors are subjected to the

genetic operators of Mutation, Crossover, and Reproduction, which facilitates the evolution of these
detectors. This process is repeated and continued for a few generations until a detector with a fitness
value higher than all winner detectors is generated. The optimized detector from the genetic algorithm
is treated as a memory cell. Finally, the agent sends the memory cell to the dispatcher agent and adds it
to the memory cell detector set.

6.2. Host Side Detectors

In order to improve the performance of IDS, detectors are distributed in all hosts in the network

rather than a centralized structure. Moreover, the proposed distributed approach is robust and

Artificial Immune System Based Intrusion Detection: Innate Immunity using an Unsupervised Learning Approach
Farhoud Hosseinpour, Payam Vahdani Amoli, Fahimeh Farahnakian, Juha Plosila, Timo Hämäläinen

7

extendable. All inbound and outbound network flows are checked using these detectors. In each host,
we consider two detectors as follows.

Detector agents: comprise a set of trained detectors that have the ability to discriminate between

self and non-self flows. These detectors are non-specific and responsible for primary immune response
for anomalies that occur for the first time. If a flow matches a detector with an effective affinity, that
detector is considered an activated detector and the flow is suspected as an intrusion. To improve the
accuracy of detection and reduce the false-positive errors in IDS, we have defined an intrusion
threshold (Ti). If the number of activated detectors by a suspected flow is more than Ti, the flow is
detected as an intrusion and its information is forwarded to the analyzer agent through a dispatcher
agent.

Memory cell detectors: composed of a set of optimized detectors generated by the analyzer agent.

As the secondary response of the AIS, memory cells have more accurate intrusion detection abilities.
Hence, any flow that activates any of these detectors is treated as an intrusion and blocked by the hosts.

6.3. Detector Life Cycle and Non-self Updater

In order to maintain the efficiency of detectors, we propose to define a lifespan to eliminate unused

or weak detectors. Due to machine learning errors, there is a possibility that some of the generated
detectors have insufficient detection ability and remain inactivated during their lifespan. Such detectors
have negative overheads to the system and reduce its performance. Therefore, in order to solve this
problem we define a lifespan for all detectors, during which the number of times the detector is
activated is counted. When the lifespan ends, if the counter is less than a threshold, the detector will be
discarded and its profile forwarded to a clustering engine as feedback to improve its accuracy.
Otherwise, the lifespan will be reset and the detector will remain in the main detector sets.

7. Experimental Result

To evaluate the efficiency of two popular clustering algorithms, we utilized KDD-Cup 99 data set,
which is extracted from DARPA-98 traffic network. The number of samples of data set was 22545,
which was sufficient for performing the evaluation and comparison between DBSCAN and K-means.
The parameters for the different algorithms used are tabulated in Table 4. These parameter values were
obtained in a series of preliminary experiments. Table 5 shows the achieved results of K-means and
DBSCAN algorithms. We have measured the False Positive Rate (FPR), True Negative Rate (TNR),
Accuracy (ACC) which estimated by dividing the total correctly classified positives and negatives by
the total number of samples, Recall (REC) or True Positive Rate which estimated by dividing the
correctly detected anomalies and the total number of anomalies, Precision of Anomalies (PREC) or
positive predicted value which estimated by dividing the correctly classified positives by the total
predicted positive count and finally the F1 score, which is the weighted average of the precision and
recall. In this experiment, due to ability of DBSCAN for finding arbitrarily shaped cluster, this
algorithm demonstrated a better rate of detection compared to K-mean.

Table 4. The parameters of the evaluated clustering approaches

Table 5. The comparison between clustering approaches
Algorithm FPR TNR ACC REC PREC F1

DBSCAN 0.008 0.991 0.771 0.589 0.987 0.738

K-Mean 0.156 0.843 0.607 0.431 0.788 0.557

n minPts ε
15 34.4% 1.09

Artificial Immune System Based Intrusion Detection: Innate Immunity using an Unsupervised Learning Approach
Farhoud Hosseinpour, Payam Vahdani Amoli, Fahimeh Farahnakian, Juha Plosila, Timo Hämäläinen

8

In our experiment all of the parameters for the network traffic threshold (Tnt) is obtained
automatically and we only set “γ” as 5. As shown in figure 3, during network attacks the behavior of
network passes the threshold. For instance the network traffic during POD (Ping of Death) attack was
10 times more than the threshold or in DDOS (Distributed Denial of service) attack it was 6 times more
than the threshold.

Figure 3. Behavior of network traffic during POD (A), SMURF (B) DDOS (C) attacks.

As mentioned before when the network traffic passes the threshold the system will flag that specific
time slot as suspicious and the traffic in that time slot will undergo for clustering. Figure 4, (A1, A2,
and A3) shows the self-training phase of attacks such as POD, SMURF and DDOS. As DBSCAN
needs two parameters “ε” and “minPts” (maximum radius of the neighborhood and minimum number
of samples required to form a cluster), it sets “ε” as average Euclidian distance between all of the
points in the dataset and “minPts” equal to 10% of the traffic sample. In Self-Training phase the
clustering engine cluster the 5 min attack free time slot (the time slot before the suspicious behavior) to
find out more accurate “ε”. Then it will obtain the minimum distance between noises and clustered
points as “φ”. Based on our experimental results, sum of “φ” and “ε” will create more accurate and
acceptable radius of the neighborhood for the DBSCAN during attack detection. Figure 4, (B1, B2, and
B3) shows the detection phase of POD, SMURF and DDOS attacks in which the noises are pointed by
arrows in the diagram showing the attackers or the victim of the attacks. For instance during 1 to N
network attacks such as POD as the intruder creates high amount of network flows the clustering
engine consider this behavior as anomaly or non-self and in N to 1 network attacks such as SMURF or
DDOS as the victims are flooded by huge number of requests the clustering engine considers this
behavior as noise or non-self.

(A) (B)

(C)

Artificial Immune System Based Intrusion Detection: Innate Immunity using an Unsupervised Learning Approach
Farhoud Hosseinpour, Payam Vahdani Amoli, Fahimeh Farahnakian, Juha Plosila, Timo Hämäläinen

9

* is the symbol of core points in a clusters
O is the symbol of density reachable point
x is the symbol of noise

Figure 4. Detection of network attacks by the clustering algorithm

 In order to test the efficiency of the AIS engine and thus the proposed model, in our experiment the
fitness value of “rc” for R-Contiguous matching bit algorithm is set to 13 and threshold of “Ti” is set to
3. Moreover, by testing the genetic algorithm for generation of memory cells, in different conditions,
the probabilities of genetic operations of Crossover, Mutation, and Reproduction have been fixed to
30%, 40% and 30% respectively. The system is tested in both centralized and distributed mode. Figure
5 compares the self-improvement rate of AIS based IDS in central and distributed modes. According
to this diagram, the self-improvement rate in distributed mode is better than centralized mode and it
reaches to its stable maximum amount after only 6 rounds, while this happens after 10 rounds in
centralized mode. This is because of dynamic distribution and synchronization of newly generated
memory cells in each host to others.

(A1)

(A2)

(A3)

(B1)

(B2)

(B3)

Artificial Immune System Based Intrusion Detection: Innate Immunity using an Unsupervised Learning Approach
Farhoud Hosseinpour, Payam Vahdani Amoli, Fahimeh Farahnakian, Juha Plosila, Timo Hämäläinen

10

Figure 5. Comparison of self-improvement rate in distributed and centralized mode.

8. Conclusion and Future Work

 In this paper, we presented a novel architecture for an intrusion detection system based on the
artificial immune system. We proposed innate immunity using unsupervised machine learning methods.
According to our primary experiments we conclude that among other methods, DBSCAN clustering is
robust and has the greatest potential for this purpose. In this multi-layered framework, the clustering
engine labels the network traffic as self and non-self without previous training or knowledge about
network flow profiles, thus acting as the first line of defense in AIS-based IDS and providing innate
immunity. We defined a network measurement formula as a dynamic threshold to facilitate the
detection of abnormal network behaviors. The output of clustering is used to feed the training data for
the adaptive immune system as online and real-time training data. Primary detectors after training are
distributed to hosts in the network and provide primary immune response for our IDS. We presented
the experimental results of proposed innate immune mechanism using our network measurement
formula. We also demonstrated that the distributed structure for this IDS is more efficient than the
centralized mode. Suspected intrusions reported from hosts are analyzed and an optimized memory cell
detector is generated through a genetic algorithm process. Memory cells are attack specific detectors,
which provide a secondary immune response. We defined detector life cycle to update and eliminate
weak or inefficient detectors to enhance the performance of detection. Future work will mainly focus
on detection of potential Bots and BotMater after DDOS attacks. As there is a specific behavioral
structure in communications between the BotMaster and Bots in Botnet attacks, it is possible to cluster
the communication between potential Bots (DDOS attackers) to detect the BotMaster.

9. References

[1] L. N. de Castro and J. Timmis, Artificial {I}mmune {S}ystems: A {N}ew {C}omputational

{A}pproach. London. UK.: Springer-Verlag, 2002, p. 357.
[2] S. Forrest, S. A. Hofmeyr, and A. Somayaji, “Computer Immunology,” Commun. ACM, vol. 40,

no. 10, pp. 88–96, Oct. 1997.
[3] S. A. Hofmeyr and S. A. Forrest, “Architecture for an Artificial Immune System,” Evol. Comput.,

vol. 8, no. 4, pp. 443–473, Dec. 2000.
[4] S. and G. G. Feixian, “Research of Immunity-based Anomaly Intrusion Detection and Its

Application for Security Evaluation of E-government Affair Systems.,” JDCTA Int. J. Digit.
Content Technol. its Appl., vol. 6, no. 20, pp. 429 – 437, 2012.

[5] M. Tan, H. Yu, Z. Zhao, Z. Liu, and F. Liu, “An artificial immunity-based proactive defense
system,” in Robotics and Biomimetics, 2007. ROBIO 2007. IEEE International Conference on,
2007, pp. 2239–2243.

[6] et al. Xishuang, D., “Multi-word-Agent Autonomy Learning Based on Adaptive Immune
Theories,” JDCTA Int. J. Digit. Content Technol. its Appl., vol. 7, no. 3, pp. 723–745, 2013.

Artificial Immune System Based Intrusion Detection: Innate Immunity using an Unsupervised Learning Approach
Farhoud Hosseinpour, Payam Vahdani Amoli, Fahimeh Farahnakian, Juha Plosila, Timo Hämäläinen

11

[7] A. A. Ademokun and D. Dunn-Walters, “Immune Responses: Primary and Secondary,” in eLS,
John Wiley & Sons, Ltd, 2001.

[8] P. Casas, J. Mazel, and P. Owezarski, “Unsupervised Network Intrusion Detection Systems:
Detecting the Unknown Without Knowledge,” Comput. Commun., vol. 35, no. 7, pp. 772–783,
Apr. 2012.

[9] M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, “An Effective Unsupervised Network
Anomaly Detection Method,” in Proceedings of the International Conference on Advances in
Computing, Communications and Informatics, 2012, pp. 533–539.

[10] T. T. T. Nguyen and G. Armitage, “A survey of techniques for internet traffic classification using
machine learning,” Commun. Surv. Tutorials, IEEE, vol. 10, no. 4, pp. 56–76, 2008.

[11] P. K. Harmer, P. D. Williams, G. H. Gunsch, and G. B. Lamont, “An artificial immune system
architecture for computer security applications,” Evol. Comput. IEEE Trans., vol. 6, no. 3, pp.
252–280, Jun. 2002.

[12] F. Hosseinpour, K. A. Bakar, A. H. Hardoroudi, and N. Kazazi, “Survey on Artificial Immune
System As a Bio-inspired Technique for Anomaly Based Intrusion Detection Systems,” in
Proceedings of the 2010 International Conference on Intelligent Networking and Collaborative
Systems, 2010, pp. 323–324.

[13] J. D. Farmer, N. H. Packard, and A. S. Perelson, “The immune system, adaptation, and machine
learning,” Phys. D Nonlinear Phenom., vol. 22, no. 1–3, pp. 187–204, 1986.

[14] S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri, “Self-nonself discrimination in a computer,”
in Research in Security and Privacy, 1994. Proceedings., 1994 IEEE Computer Society
Symposium on, 1994, pp. 202–212.

[15] P. Matzinger, “Essay 1: The Danger Model in Its Historical Context,” Scand. J. Immunol., vol. 54,
no. 1–2, pp. 4–9, 2001.

[16] P. Matzinger, “The Danger Model: A Renewed Sense of Self,” Science (80-.)., vol. 296, no. 5566,
pp. 301–305, 2002.

[17] U. Aickelin, P. Bentley, S. Cayzer, J. Kim, and J. McLeod, “Danger Theory: The Link between
AIS and IDS?,” in Artificial Immune Systems, vol. 2787, J. Timmis, P. Bentley, and E. Hart, Eds.
Springer Berlin Heidelberg, 2003, pp. 147–155.

[18] D. Dal, S. Abraham, A. Abraham, S. Sanyal, and M. Sanglikar, “Evolution Induced Secondary
Immunity: An Artificial Immune System Based Intrusion Detection System,” in Computer
Information Systems and Industrial Management Applications, 2008. CISIM ’08. 7th, 2008, pp.
65–70.

[19] Hosseinpour F., Meulenberg A., Ramadass S., Vahdani Amoli P., and Z. Moghaddasi,
“Distributed Agent Based Model for Intrusion Detection System Based on Artificial Immune
System,” Int. J. Digit. Content Technol. its Appl., vol. 7, pp. 206–214, 2013.

[20] M. Amini, R. Jalili, and H. R. Shahriari, “RT-UNNID: A practical solution to real-time network-
based intrusion detection using unsupervised neural networks,” Comput. Secur., vol. 25, no. 6, pp.
459–468, 2006.

[21] T. Stibor, “Foundations of r-contiguous Matching in Negative Selection for Anomaly Detection,”
Nat. Comput., vol. 8, no. 3, pp. 613–641, Sep. 2009.

Artificial Immune System Based Intrusion Detection: Innate Immunity using an Unsupervised Learning Approach
Farhoud Hosseinpour, Payam Vahdani Amoli, Fahimeh Farahnakian, Juha Plosila, Timo Hämäläinen

12

Publication II

Hosseinpour, F. , Amoli, P. V. , Plosila, J. , and Hämäläinen, T.
An Intrusion Detection System for Fog Computing and IoT based Logistic Systems

using a Smart Data Approach

Reprinted with permission from
International Journal of Digital Content Technology and its Applications

vol. 10(5), pp. 34-46, 2016.
© 2016, AICIT

An Intrusion Detection System for Fog Computing and IoT based Logistic

Systems using a Smart Data Approach

1
Farhoud Hosseinpour,

2
Payam Vahdani Amoli,

3
Juha Plosila,

4
Timo Hämäläinen, and

5
Hannu Tenhunen

*1, 3 and 5
Department of Information Technology, University of Turku, Finland.

{farhos;juplos;hatenhu}@utu.fi
2 and 4

Faculty of Information Technology, University of Jyväskylä, 40100, Jyväskylä, Finland.
2 pavahdan@student.jyu.fi
5
timo.t.hamalainen@jyu.fi

Abstract
The Internet of Things (IoT) is widely used in advanced logistic systems. Safety and security of such

systems are utmost important to guarantee the quality of their services. However, such systems are

vulnerable to cyber-attacks. Development of lightweight anomaly based intrusion detection systems

(IDS) is one of the key measures to tackle this problem. In this paper, we present a new distributed and

lightweight IDS based on an Artificial Immune System (AIS). The IDS is distributed in a three-layered

IoT structure including the cloud, fog and edge layers. In the cloud layer, the IDS clusters primary

network traffic and trains its detectors. In the fog layer, we take advantage of a smart data concept to

analyze the intrusion alerts. In the edge layer, we deploy our detectors in edge devices. Smart data is a

very promising approach for enabling lightweight and efficient intrusion detection, providing a path

for detection of silent attacks such as botnet attacks in IoT-based systems.

Keywords: Intrusion Detection Systems, Smart Data, Fog Computing, Internet of Things

1. Introduction

International commerce is developing all the time, which puts pressure on the whole supply chain.

Logistics is one of the main factors in a supply chain, and assuring the safety of logistic systems has

become one of the critical challenges at the national, European and global levels. Especially, food

safety and security has become one of the major concerns for manufacturers and end users. China is

utilizing a system for its national food industry that enables a citizen to track the whole supply chain of

food and drinks. The European Commission also envisions an integrated approach to food safety

aiming to ensure a high level of food safety within the European Union through coherent farm-to-table

measures and adequate monitoring [1]. Moreover, food and beverages industries are keen to prove the

quality and authenticity of their products from farmland to a dining table. In Figure 1 a holistic view of

the supply chain is shown. The safety of the transportation needs to be guaranteed throughout the entire

supply chain. Thus, having a system that is capable of protecting the supply chain is of utmost concern

- particularly in international markets.

Along with the ever-increasing demand for technological solutions for supply chain management

systems, Internet of Things (IoT) has been identified as a promising technology to ease the

management and monitoring of the system. On the other hand, such technologies increase cyber

security concerns for supply chain and logistic systems. Furthermore, the usage of commercially

available off-the-shelf (COTS) components or just-in-time (JIT) manufacturing processes increases the

security threats as most of them originate from unsecured foreign facilities. A single failure in a

logistics system may result in significant consequences for the shipping materials or human being. A

failure can be caused by adversaries who try to compromise the functionality of a system by disrupting

software, hardware, physical environment or its connectivity. The attack model for cyber-physical

systems comprises short and long term attacks. In short term attacks, adversary immediately tries to

disrupt the system and cause a failure. The second type is more sophisticated and difficult to detect as

the adversary tries not to leave any footprint by disturbing the system’s functionality, before fully

1
 Corresponding Author: Email: farhos@utu.fi

An Intrusion Detection System for Fog Computing and IoT based Logistic Systems using a Smart Data Approach
Farhoud Hosseinpour, Payam Vahdani Amoli, Juha Plosila, Timo Hämäläinen, and Hannu Tenhunen

International Journal of Digital Content Technology and its Applications(JDCTA)
Volume10, Number5, Dec. 2016

34

intruding to several components to launch a distributed attack. An intrusion detection system (IDS) is

required to tackle cyber threats in logistic systems.

In IoT applications such as cyber-physical systems, safety and security of monitoring a physical

environment is a critical issue that is underestimated in recent and current studies. First, unlike in

typical computer systems, in IoT systems the physical environment can be affected through IoT

actuators. Second, attackers can affect a cyber-physical system by manipulating the physical

environment. Moreover, as we are dealing with resource constrained devices in IoT, lightweight

approaches need to be undertaken to ensure the quality of service and feasibility of such security

measures.

The remainder of the paper is organized as follows. In Section 2 we briefly review the IoT and fog

computing technologies. In Section 3 we discuss IDS systems. In Section 4 we present a new

promising approach for lightweight IDS called Smart Data. Section 5 presents the proposed Artificial

Immune System (AIS) based IDS. In Section 6, the experimental results of the proposed architecture

are presented and, finally, we end with some concluding remarks in Section 7.

Figure 1. Food supply chain

2. Internet of Things and Fog Computing

The last decade has witnessed the wide deployment of IoT technology in various application

domains, and its pervasive role will continue to strengthen in the future. IoT is a concept that realizes

communication and control among a very large set of different devices [2]. By connecting the devices,

such as sensors, communication devices and data processing units, IoT allows distributed, autonomous

decision making and intelligent data processing and analysis [3]. The cloud computing is being

recognized as a success factor for IoT, providing ubiquity, reliability, high-performance and scalability

[4]. However, because of its geographically centralized nature and communication implications, cloud

computing based IoT fails in applications that require very low and predictable latency and which are

geographically distributed, fast mobile, or large-scale distributed control systems [5]. Fog computing

provides a promising technology to tackle the low-latency and geographical distribution required by

IoT devices.

Fog computing is a paradigm extending cloud computing and its services to the edge of the network

as shown in Figure 2. Fog is distinguished from the cloud in its proximity to end-users/nodes, dense

geographical distribution, support for mobility, heterogeneity, interoperability and pre-processing. Fog

computing does not replace cloud computing. On the contrary, it complements cloud computing and

aims to provide a computing and storage platform physically closer to the end nodes, provisioning a

new breed of applications and services with an efficient interplay with the cloud layer [5]. The

expected benefit is a better quality of service for applications that require low latency. Lower latency is

obtained by performing data analysis already at the fog layer. This data analysis is lightweight, and

therefore more advanced analyses and processing will be done at the cloud layer. Naturally, some

applications do not require real-time computation, or they need high processing power, and therefore

they are performed at the cloud layer. Fog devices, located at the fog layer, are heterogeneous in

nature, ranging from end-user devices and access points to edge routers and switches allowing their use

in a wide variety of environments.

An Intrusion Detection System for Fog Computing and IoT based Logistic Systems using a Smart Data Approach
Farhoud Hosseinpour, Payam Vahdani Amoli, Juha Plosila, Timo Hämäläinen, and Hannu Tenhunen

International Journal of Digital Content Technology and its Applications(JDCTA)
Volume10, Number5, Dec. 2016

35

The fog layer embodies software modules in the form of fog services and embedded operating

systems. At the fog layer, it is also possible to analyze gathered data obtained from the sensor layer and

thus make decisions locally. Local decision making is a key to reduce latency, and thus to provide

quick responses to unusual behaviors, for example, in the case of security and safety breaches. Such

local processing requires lightweight, energy efficient algorithms and applications that can be

performed nearby the source of data.

In a systematic view, fog computing is composed of distributed and heterogeneous resources that

are deployed based on a hierarchal model. In this model, the fog nodes constitute a virtualized and

hierarchical topology and provide a distributed computing platform. Each physical node is composed

of computing and storage components and has interfaces for communication with neighboring fog

nodes at the same, one step higher, or one step lower level of the hierarchy. Figure 3 illustrates a

hierarchical architecture of physical fog computing nodes at different levels [4].

The fog computing platform shown in Figure 2 gathers data from different sensors via a wireless

communication module using wireless communication protocols such as Wi-Fi, 6LoWPAN and

Bluetooth Low Power depending on the used application. The gateway uses the data in the analysis to

anticipate and spot any abnormal behavior in the system. In the case of food transport, the intelligent

gateway gathers the food quality data from several sensor nodes. The raw food quality information can

be transformed into information (structured data) by developing fog computing services. Naturally, the

priority of the safety services is higher that of the other services to ensure prompt action for all threats.

Figure 2: Fog computing platform

Figure 3. Hierarchical architecture of fog computing.

IoT is not only applied to consumer electronics such as wearables and sport gadgets but also, in the

industry in various applications including building/home automation, smart cities, smart manufacturing

and smart logistics. In logistics, safety is essential given the mission-critical deployments of logistic

systems. ISO 60601 defines safety as “the avoidance of hazards to the physical environment due to the

operation of a device under normal or single fault condition.”

An Intrusion Detection System for Fog Computing and IoT based Logistic Systems using a Smart Data Approach
Farhoud Hosseinpour, Payam Vahdani Amoli, Juha Plosila, Timo Hämäläinen, and Hannu Tenhunen

International Journal of Digital Content Technology and its Applications(JDCTA)
Volume10, Number5, Dec. 2016

36

3. Intrusion Detection Systems

Detection of silent attacks requires constant monitoring and behavioral analysis of the system’s

components and communication. Therefore, precise and swift safety monitoring and intrusion detection

are of utmost importance in IoT-based logistic systems. An Intrusion Detection System (IDS) with

local decision making will prevent failures caused by adversaries and decide proper alert to prevent

intrusion or to mitigate the impact of an intrusion. Anomaly-based IDS have been broadly studied as

defensive techniques to address the detection of unknown or zero-day attacks. Unlike misuse-based or

signature-based types of IDS, which take advantage of the predetermined signature of known attacks,

an anomaly-based IDS deals with the detection of new types of attacks that are unknown to the system

[6]. This process is done by detecting variation in the systems' behavior from a previously defined

normal system profile.

The artificial immune system (AIS) comprises promising techniques in the form of biologically

inspired computing that are applied for solving various problems in the field of information security

including IDS. The AIS is inspired by the human immune system (HIS), which has the ability to

distinguish internal cells and molecules of the body from foreign pathogens, so called self and non-self

respectively, and to protect the body against diseases [7]. Like HIS protection against foreign

pathogens in the human body, the AIS suggests a multi-layered protection structure for protecting

computer networks against attacks [8]. This protection is accomplished through the Innate or Adaptive

mechanisms. The innate immune response is immediate and the first line of defense for the HIS and

provides a non-specific protection. Therefore, it has no prior knowledge of specific outsiders. The

adaptive immune response, on the other hand, is antigen-specific and trained using a pre-defined

profile of specific attacks [9]. This is done through specific autoimmune cells called antibodies which

act as agents of HIS in the body. The adaptive immune system also includes a “memory” that makes

future responses against a specific antigen more efficient [10]. Likewise, the AIS is also proposed as a

distributed agent-based system [11]–[13] that is composed of a set of detectors generated as a result of

a self-training phase in its main engine. We presented an architectural design of a distributed AIS

system in [14]. The AIS comprises three main parts:

1) A training engine that has the responsibility of learning from an initial learning data set and

training its detectors. Such processes are complex and require powerful processing units to

enable a real-time monitoring of the system. Hence, a cloud computing at the center of the

network is the best option to set up the training engine. Training the detectors is an intensive

task that is done at the initialization phase of the AIS at the center of the network. Hence, it

does not need much communication with the nodes at the edge of the network at this phase.

The training process is done through a negative selection algorithm which we presented in our

previous work [15]. In the analyzing phase, in turn, the AIS requires more communication

between the infected nodes and the main engine.

2) An analyzer engine has the responsibility of analyzing anomalies detected by the detectors to

come up with an intrusion alert or to reject the false positive signals. To increase the detection

precision, an optimized detector that is called a memory cell detector is generated. Based on

our previous works [15], [16], we have utilized genetic algorithms to generate the most

optimized memory cell detectors based on the profile of the reported attack and also the

triggered detectors. Since the analyzer engine requires more communication with the edge

devices, we deploy the analyzer engine on the fog layer

3) A set of detector sensors that are accommodated in each node executing the monitoring task.

The detectors are distributed in the network providing an intelligent and collaborative

monitoring of the network and the computing nodes. Because each type of attack could be

carried out in various forms, to increase the precision of the detection, at the learning phase, a

number of different detectors are generated for each attack, and the best detectors, which have

more affinity with the targeted attack profile, are selected. So, each type of attack could be

detected by a number of detectors. Once an anomaly occurred in a node, a number of detectors

will be triggered by the anomaly. If the number of the triggered detectors is more than a

threshold, then the anomaly will be reported to the analyzer engine for further analyses. In this

case, based on the result provided by the analyzer engine, a more accurate intrusion alert will

be given.

An Intrusion Detection System for Fog Computing and IoT based Logistic Systems using a Smart Data Approach
Farhoud Hosseinpour, Payam Vahdani Amoli, Juha Plosila, Timo Hämäläinen, and Hannu Tenhunen

International Journal of Digital Content Technology and its Applications(JDCTA)
Volume10, Number5, Dec. 2016

37

Like other anomaly-based detection techniques, the AIS also takes advantage of monitoring

variations of the system's behavior as an adaptive immune response, according to a pre-defined normal

activity profile. This is done through a learning phase in which a data set containing these profiles is

utilized for this purpose. Hence, the efficiency of anomaly detection in the AIS depends heavily on the

learning data set. Substantial studies have been conducted so far for improvement and utilization of

AIS-based IDS, the majority of which have utilized a pre-defined and offline data set as the learning

data for training the IDS. This will reduce the efficiency of the IDS and limit the knowledge base to

that particular learning data set. Moreover, it is extremely difficult to create a data set of self-samples

with all variations. To cope with this problem, we proposed an online self-training method for our AIS

based IDS in [16] using unsupervised machine learning methods, which act as an innate immune

response. The innate immune system provides an online and dynamic categorization of network flows

into self and non-self flows, which is then used by the adaptive immune system to generate attack-

specific detectors.

In integrating the AIS technology in IoT and fog computing systems, a challenging task is building

a lightweight smart agent system that is computing and energy efficient and also requires less

communication to save the network bandwidth. To this end, we take advantage of the smart data

approach, which we presented in [17].

4. Smart Data

Smart data is an active and intelligent data structure using a fog computing system, which facilitates

the management of Big Data in IoT-based applications. Such a data cell is initially very simple and

light-weight, but it evolves (grows) when traveling through the hierarchical fog computing system

towards the cloud, merging with other cells or vice-versa, if the data moves from the cloud towards the

actuators.

Figure 4 illustrates the general structure of a smart data cell. The smart data is composed of three

main parts: payload data, metadata, and virtual machine. The payload contains the main data collected

from the sensors. It undergoes a series of processing or pre-processing steps and is thereby converted

into more meaningful information. The metadata part of smart data contains key information such as

the source of data (sensors), the destination of data, the physical entity which data belongs to,

timestamps, current status and logs as well as rules for accessing, fusing or diffusing, and processing

data, for example. The virtual machine part, in turn, acts as a platform which enables and manages the

execution of the rules specified in the metadata part. The VM at the very beginning stage contains only

basic application codes. Then, it evolves by adding other code modules of the application when they

are needed. Each code module provides specific functionalities and services to the smart data. The

modular structure of the VM component makes smart data extendable, allowing it to manage the

overhead of carrying the code by removing unnecessary code modules and adding the required

modules only when they are needed. To enable this, we consider a remote code repository node which

contains all necessary code modules as plugins. Whenever a smart data cell requires a specific code

module, it communicates with the code repository node and requests for the required code module. To

minimize the communication involved in downloading the plugins, the most recently downloaded

plugins are also cached in the physical fog nodes for some period of time. So, if the requested code

module does not exist in the local fog node, it will be downloaded from the remote code repository

node. We have presented a detailed design and specification of our smart data in [17].

Indeed, the smart data acts as a software agent that is able to travel through a fog computing and IoT

network, monitor, gather data, and process/pre-process them. The main objective of encapsulating a set

of data already at the sensor level, instead of constantly sending discrete data, is to reduce the

communication overheads in a very resource constrained environment as well as to reduce the data

velocity in the Big Data context. To enable lightweight intrusion detection through the AIS system in a

fog computing based IoT environment, we utilized the smart data as a package of suspected anomaly

which is needed to be processed and determine if a real intrusion happens.

An Intrusion Detection System for Fog Computing and IoT based Logistic Systems using a Smart Data Approach
Farhoud Hosseinpour, Payam Vahdani Amoli, Juha Plosila, Timo Hämäläinen, and Hannu Tenhunen

International Journal of Digital Content Technology and its Applications(JDCTA)
Volume10, Number5, Dec. 2016

38

Figure 4. Structure of Smart Data

5. Proposed Intrusion Detection System

As discussed earlier, the training phase in the AIS main engine involves more intensive processes

without a significant need for communicating with the distributed nodes at the edge of the network.

Hence, the cloud computing at the center of the network is the proper computing platform to run such

computations. In contrast, detection by the trained detectors requires less computing and a higher

amount of communication compared to processes in the main engine. According to this strategy, we

have developed our IDS architecture based on the three-layered structure of fog-based IoT systems

(Figure 5). Based on this architecture, the cloud computing accommodates the IDS main engine which

is composed of two sub-engines called a clustering engine and a training engine. The clustering engine,

using unsupervised clustering methods, divides the primary network traffic into self (normal) and non-

self (intrusion) packets which are used as the online training data set for our AIS based IDS. The

training engine, in turn, trains a set of detectors based on the learning data obtained from the clustering

engine by using a negative selection algorithm. These detectors are called primary detectors. The

primary detectors, after the training phase, are stored in a detector repository database at the cloud and

also distributed to the devices at the edge of the network.

Figure 5. Proposed IDS architecture.

An Intrusion Detection System for Fog Computing and IoT based Logistic Systems using a Smart Data Approach
Farhoud Hosseinpour, Payam Vahdani Amoli, Juha Plosila, Timo Hämäläinen, and Hannu Tenhunen

International Journal of Digital Content Technology and its Applications(JDCTA)
Volume10, Number5, Dec. 2016

39

The primary detectors at the edge of the network act as sensors for our IDS which monitor the

behaviour of the edge devices. If an anomaly is detected by any of these sensors, they initiate a process

for investigating the anomaly by producing a smart data cell. Such smart data contains the information

about the suspected connection in its payload and the triggered primary detector in its metadata. In

order to increase the precision and avoid false alarms, the smart data is sent to the fog layer for

investigation only if the number of triggered detectors exceeds a threshold. Based on our previous work

[16], we set this threshold to three. The smart data in the fog layer will fetch the required code modules

to build an optimized detector called a memory cell detector for detecting that particular type of

attacks. The memory cell detector will be sent to the detector repository in the cloud and from there it

will be distributed to all the other devices at the edge.

In this case, the connections that do not trigger a sufficient number of detector sensors will be

omitted. So, the IDS will not be able to monitor the trend of the system and detect the long-term or

silent attacks. The silent attacks, unlike the short-term attacks, are launched over a longer period of

time and from distributed nodes, while keeping the system’s functionality as normal as possible to

make it difficult and more sophisticated to detect. To cope with this problem, we take advantage of the

smart data concept. Smart data has the ability to store and encapsulate the sensory data (profile of a

suspected connection detected by any of detector sensors) over a time. We introduce the time

dimension to enable the IDS to detect the long-term attacks. If the number of triggered detector sensors

is more than a predefined threshold, the smart data cell will be sent to the fog computing platform for

further analysis. Otherwise, if the number of triggered detector sensors is less than the threshold, the

information of a suspected attack will be stored in a smart data cell. In this case, after a particular time

interval, the smart data cell will be sent to the fog computing. In the upper level, the smart data cell will

be aggregated with other smart data cells coming from other devices. So, if the similar anomaly had

occurred in another device, the aggregated smart data will include the profile of suspected connections

collected from a larger amount of devices over time. In a similar way, smart data will be aggregated at

the higher levels of the fog hierarchy (Figure 3) with other smart data collected from a larger

geographical area. In this case, the smart data become mature which means it contains the information

of suspected connections from a larger amount of distributed devices over a longer period. Hence, the

silent attacks will become more visible. Once the number of similar attacks that are aggregated and

collected by smart data becomes larger than a threshold, the smart data will fetch the code module for

analyzing the attack. In this phase, if the attack pattern is similar in all suspected anomalies then the

system will alert an intrusion.

In the following subsections the detailed functionalities of each component are discussed:

5.1. Clustering Engine

To detect unseen intrusions without using any previous knowledge (training by labeled traffic or

signature), we introduce a clustering engine as an innate immune response. The clustering engine

employs the DBSCAN clustering technique to classify the real network traffic into clusters and count

them as self, while behaviors outside of the clusters will be deemed as noise or non-self. For this

purpose, the engine continuously compares the number of network flows in different network

resolutions (subnets of /0, /8, /16, /24), with a threshold which is dynamically computed by our

suggested network measurement formula in Table 2. Since high-speed networks have a higher amount

of traffic, there is a notable probability of missing the sign of network attacks. To overcome this issue,

the system will also control the behavior of the network in small resolutions to minimize the possibility

of fading the attacks in the regular traffic.

To obtain a precise threshold, the system requires determining the past behavior of the network. It is

probable that small attacks to be fade with the existence of large attacks, thus we have applied

standardization on the number of network flows by using logarithm (Log) to increase the probability of

detecting small attacks during the existence of large attacks. To determine changes in the network

traffic, the system will calculate the “standard deviation” of the number of network flows in different

windows from last minute of the traffic. As shown in Table 1 the previous 60 seconds of traffic is

broken into four 15 seconds windows. For instance, δ1 is the standard deviation of the number of

network flows in the first window which is from the last 65 seconds to the last 50 seconds of the

previous network traffic. As it has been seen in so many datasets, it takes 2 to 3 seconds from starting

time of the network attacks (such as DOS/DDOS attacks) till its own peak. To reduce the impact of

An Intrusion Detection System for Fog Computing and IoT based Logistic Systems using a Smart Data Approach
Farhoud Hosseinpour, Payam Vahdani Amoli, Juha Plosila, Timo Hämäläinen, and Hannu Tenhunen

International Journal of Digital Content Technology and its Applications(JDCTA)
Volume10, Number5, Dec. 2016

40

initial traffic of the attacks on the threshold, the network measurement formula considers a 5 seconds

gap between every one minute of traffic to calculate the threshold for the current traffic. The sum of the

highest standard deviations (from δ1 to δ4) and the heaviest traffic from the last minute of traffic can

determine the highest traffic which could be accepted as normal. The following equation represents the

network measurement formula which calculates the network traffic threshold “Tnt”:

𝑇𝑛𝑡 = (𝑀𝑎𝑥 {𝛿𝑖|𝑖 = 1 ⋯ 4} + 𝑀𝑎𝑥 {𝑋𝑗 log 𝑋𝑗 |𝑗 = 1 ⋯ 60}) × 𝛾

Where δi is standard deviation of number of network flows in ith window and Xj is number of

network fellow in jth second of last minute’s traffic. And γ is a coefficient value which can be set to

determine the final threshold.

Table1. Elements of network measurement formula

Last Minute Traffic Gap Current Traffic

Window 1 Window 2 Window 3 Window 4

𝑇𝑛𝑡 𝛿1 𝛿2 𝛿3 𝛿4

65-50 50-35 35-20 20-5 5-0

𝑋𝑗 log 𝑋𝑗

The DBSCAN algorithm requires two parameters: the maximum radius of the neighborhood (β)

and the minimum number of samples required to form a cluster (α). The real network contains traffic

from different classes of users such as normal users, busy users, and servers. In general, the number of

busy users and servers is smaller than α thus they may not form a cluster in DBSCAN. Since the

proposed model in our previous work [16] considers all of the network behavior (in the clean traffic

windows) as normal, this will increase the acceptable distance β for DBSCAN by a high value of Δ to

include all of the points inside the nearest cluster. Clustering the data with a high value of acceptable

distance increases the false negative rate (FNR) in certain cases. To overcome this issue, we will

propose a new method which compares the previous behavior of outliers to distinguish normal high

traffic users from intrusions.

 Similar to the proposed model in our previous work [16], whenever the volume of network flows

passes the threshold, the cluster engine uses the DBSCAN to cluster the in-bounded and out-bounded

network flows for each machine to find the attacker/s.

During the training phase, DBSCAN will obtain the most accurate α and β from the most recent

clean network traffic. In our proposed model, the network traffic can be considered “clean” if it occurs

before the threshold (Tnt) raise the alarm. Technically, the normal users will form into clusters while

the density of busy users or servers may not reach the required level. Nevertheless, since training phase

uses the clean network traffic the proposed model will consider outliers as busy machines with normal

profiles.

Afterward, to find the anomalous outliers which caused the high volume of network traffic, the

clustering engine clusters the suspicious network traffic window. The outliers’ IP addresses from

detection phase will be compared to their previous profile. If the distance of current behaviors and the

previously seen behavior does not exceed the acceptable distance β, the clustering engine will mark it

as normal high traffic machine. Otherwise, if the new behaviors of outliers IP exceed the distance it

will consider the behavior of that machine as abnormal. It is important to note that if the outlier IP

addresses do not have any profile from the training phase, the clustering engine will mark it as

abnormal.

5.2. Training Engine

The training engine has the responsibility of training the primary detectors of the IDS. As discussed

earlier, because training of the detectors does not require much communication with the edge of the

An Intrusion Detection System for Fog Computing and IoT based Logistic Systems using a Smart Data Approach
Farhoud Hosseinpour, Payam Vahdani Amoli, Juha Plosila, Timo Hämäläinen, and Hannu Tenhunen

International Journal of Digital Content Technology and its Applications(JDCTA)
Volume10, Number5, Dec. 2016

41

network, this component is located in cloud computing at the center of the network. The training

engine first transforms the network flow information into binary strings with a total 112-bit length as a

flow profile (Table 2). Then, utilizing a negative selection algorithm, it trains and creates the primary

detectors. The negative selection algorithm first creates some random detectors (immature detectors)

and then trains them with samples of marked flows from the cluster engine. If any immature detector

matches with any self-sample of the data set, then the system will drop it and create another in its

place. After checking all of the immature detectors with all self-samples, the remaining immature

detectors undergo the next step of the negative selection algorithm and become mature detectors. Each

mature detector will be checked with all non-self samples of labeled flows. If a mature detector fails to

match with some non-self samples, the system will discard this detector; otherwise, this detector will

be added to the final detector set. This process will continue until all non-self packets are matched with

at least three mature detectors.

The negative section algorithm utilizes the r-Contiguous matching bit role proposed in [18] to check

the matching between two strings. In this method, two strings are matched if they have at least r

contiguous identical bits. Finally, the output of the negative selection algorithm is a set of primary

detectors, which are archived and synchronized in a detector set repository in the cloud and then

distributed to the edge devices. These detectors are analogous to primary immune response in the HIS.

Table 2. Depiction of fields in flows profile strings

Name of the Field Minimum and Maximum Value Binary Strings Length (bits)

Destination IP Address 0.0.0.0 - 255.255.255.255 32

Source IP Address 0.0.0.0 - 255.255.255.255 32

Destination Port No 0 – 65535 16

Duration 0 – 65535 12

Protocol 0 – 65535 4

Source Port No 0 – 65535 16

5.3. Analyzer Engine

The analyzer engine has the responsibility of analyzing detected anomalies and giving intrusion

alert. It employs the proposed genetic algorithm in [19] to evolve the highly fit detectors activated

when an anomaly has been encountered. The analyzer engine requires more communication with the

edge devices so we deploy the analyzer engine in the distributed fog computing at the edge of the

network. In order to save the deployment cost of the analyzer engine in the fog computing, we take the

advantage of the modular structure of the smart data cells. Indeed, we deploy the analyzer engine in

code repositories in fog computing. If a smart data which is sent to the fog computing needs the

processes of this engine, it fetches the required code module from the nearest code repository. The

smart data contains 1) the suspected flow reported from the hosts, 2) profile of the activated detectors,

and 3) their affinity with reported flow. It utilizes the fetched code modules to analyze the anomaly and

generates an optimized detector, called memory cell detector. A memory cell detector is a high-affinity

and attack-specific detector with a higher detection ability and analogous to secondary immune

response in the HIS [10]. The following operations are carried out in this case:

A selection operation is undertaken on activated detectors to select the detectors with the highest

affinity for cloning and formation of primary population for genetic algorithm. Those detectors having

a fitness value greater than or equal to cloning threshold undergo cloning. The cloning threshold is set

as follows.

Cloning Threshold =
∑ Fitness of detectors𝑛

𝑖=0

𝑛

Where “n” is the total number of activated detectors.

Winner detectors that consist of the cloned detectors and remaining activated detectors are subjected

to the genetic operators of Mutation, Crossover, and Reproduction, which facilitates the evolution of

these detectors. This process is repeated and continued for a few generations until a detector with a

fitness value higher than all the winner detectors is generated. The optimized detector from the genetic

algorithm is treated as a memory cell.

An Intrusion Detection System for Fog Computing and IoT based Logistic Systems using a Smart Data Approach
Farhoud Hosseinpour, Payam Vahdani Amoli, Juha Plosila, Timo Hämäläinen, and Hannu Tenhunen

International Journal of Digital Content Technology and its Applications(JDCTA)
Volume10, Number5, Dec. 2016

42

5.4. Host Side Detectors

The detectors are distributed to the edge devices. Figure 6 illustrates the architecture of edge devices

that comprises of sensors, actuators, connection platforms, and processing units. The IDS detectors in

the edge devices act as sensors for our IDS. All inbound and outbound network flows are checked

using these sensors. In each device, we consider two detectors as follows.

Primary Detectors: comprise a set of trained detectors that have the ability to discriminate between

self and non-self flows. These detectors are non-specific and responsible for the primary immune

response for anomalies that occur for the first time. If a flow matches a detector with an effective

affinity, that detector is considered an activated detector and the flow is suspected as an intrusion. To

improve the accuracy of detection and reduce the false-positive errors in IDS, we have defined an

intrusion threshold (Ti). If the number of activated detectors by a suspected flow is more than T i, the

flow is detected as an intrusion.

Memory cell detectors: composed of a set of optimized detectors generated by the analyzer engine.

As the secondary response of the AIS, memory cells have more accurate intrusion detection abilities.

Hence, any flow that activates any of these detectors is treated as an intrusion.

Figure 6. Architecture of Edge Devices

6. Experimental Result

To evaluate the efficiency of two popular clustering algorithms, we utilized KDD-Cup 99 data set,

which is extracted from DARPA-98 traffic network. In addition, we have tested our model on SSH

Brute Force from ISCX dataset [20]. Since today most of the servers with SSH protocol limit the

number of user attempt, we have changed the SSH Brute Force attack in ISCX to a distributed model,

which a various number of bots have participated in it. Figure 7 show the network’s behavior during

the attack. As shown in Figure 7 (A) the ratio of outbound flows to the threshold is below one because

the number of attackers is high. However, in Figure 7 (B) the threshold for inbounded traffic raise

alarm since all of the traffic goes to the limited number of machines.

(A)

(B)

Figure 7. Network’s Behaviour during Distributed SSH Brute Force Attack

An Intrusion Detection System for Fog Computing and IoT based Logistic Systems using a Smart Data Approach
Farhoud Hosseinpour, Payam Vahdani Amoli, Juha Plosila, Timo Hämäläinen, and Hannu Tenhunen

International Journal of Digital Content Technology and its Applications(JDCTA)
Volume10, Number5, Dec. 2016

43

Figure 8 shows the self-training phase during distributed SSH Brute Force attack. As mentioned

before the clustering engine marks the IP addresses of the machines which were located inside the

clusters as normal. However, the IP addresses of outliers will be profiled as busy users or servers. As

shown in Figure 9 during the comparison phase all of the outliers will be compared to their previous

history. If the distance does not exceed the threshold, the cluster engine will mark them as normal

devices (with high traffic). Otherwise, if the device exceeds its traffic abnormally, the clustering engine

will mark it as the abnormal device. Figure 10 shows the final decision of clustering engine.

Figure 8. Self-Training Phase During Distributed SSH Brute Force Attack.

Table 3 shows the comparison of average performances of the new proposed model and our

previous work. To evaluate the performance of “different behavioral classes” feature in the new

proposed model we have added traffic from busy users and servers during the occurrence of an

intrusion. Since the proposed model compares the behavior of outliers with their previous history, the

overall performance was higher than our previous proposed model [16].

Figure 9. Comparison Phase During Distributed SSH Brute Force Attack.

Figure 10. Detection Phase During Distributed SSH Brute Force Attack.

An Intrusion Detection System for Fog Computing and IoT based Logistic Systems using a Smart Data Approach
Farhoud Hosseinpour, Payam Vahdani Amoli, Juha Plosila, Timo Hämäläinen, and Hannu Tenhunen

International Journal of Digital Content Technology and its Applications(JDCTA)
Volume10, Number5, Dec. 2016

44

Table 3. Performance Evaluation.

 New proposed model Previous Proposed model [16]

False positive rate 3.51% 4.53%

True negative rate 96.49 95.47%

Accuracy 98.35% 96.23%

Recall 100% 95.37%

Precision 97.83% 91.21%

To examine the effectiveness of the AIS engine and thus the proposed model, in our test, we set the

fitness value of “rc” for R-Contiguous matching bit algorithm to 13 and the threshold “Ti” to 3.

Furthermore, with experimenting the genetic algorithm for the formation of memory cells, in different

circumstances, the values for the probability of genetic operations of Crossover, Mutation, and

Reproduction have been set to 30%, 40% and 30% respectively. The system is examined in both

centralized and distributed mode. Figure 11 corresponds the self-improvement rate of AIS based IDS in

the central and distributed forms. According to this chart, the self-improvement rate in distributed

mode is better than centralized mode and it reaches to its steady maximum amount after only 6 cycles,

while this happens after 10 cycles in centralized mode. This is due to the dynamic distribution and

synchronization of recently created memory cells to each device.

Figure 11. Comparison of self-improvement rate in distributed and centralized mode.

7. Conclusion

Development of lightweight intrusion detection systems is critical for the safety and security of

advanced IoT-based logistics systems. In this paper, we presented a new lightweight architecture for an

AIS based IDS for IoT systems. This paper extends our previous work [16], into a three-layered

structure of IoT systems including the cloud, fog and edge layers. We utilized our proposed smart data

approach to develop a lightweight and efficient analyzing engine in fog computing platform for our

IDS. Smart data is a very promising framework for enabling lightweight and efficient intrusion

detection providing also a path for detection of silent attacks such as botnet attacks in IoT-based

systems. We also presented a new approach for clustering the primary network connections which is

more efficient method than the one used in our previous work. Our future work will mainly focus on

detection of potential botnet attacks using the smart data technology.

Acknowledgement
This work was supported by Turku University Foundation and EIT Digital.

8. References

[1] “Food Safety: overview,” European Commission, 2016. [Online]. Available:

http://ec.europa.eu/food/index_en.htm.

[2] Y. J. Guo-Zhen TAN, Hao Wang, “IoT-based Distributed Situation Awareness for Traffic

Emergent Events,” Int. J. Adv. Comput. Technol., vol. 5, no. 7, pp. 1050–1059, 2013.

[3] R. Khan, S. U. Khan, R. Zaheer, and S. Khan, “Future Internet : The Internet of Things

Architecture , Possible Applications and Key Challenges,” in 10th International Conference on

An Intrusion Detection System for Fog Computing and IoT based Logistic Systems using a Smart Data Approach
Farhoud Hosseinpour, Payam Vahdani Amoli, Juha Plosila, Timo Hämäläinen, and Hannu Tenhunen

International Journal of Digital Content Technology and its Applications(JDCTA)
Volume10, Number5, Dec. 2016

45

Frontiers of Information Technology Future, 2012.

[4] A. R. Biswas and R. Giaffreda, “IoT and cloud convergence: Opportunities and challenges,”

2014 IEEE World Forum Internet Things, pp. 375–376, Mar. 2014.

[5] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, “Fog Computing: A Platform for Internet of

Things and Analytics,” in Big Data and Internet of Things: A Roadmap for Smart

Environments, Studies in Computational Intelligence, vol. 546, N. Bessis and C. Dobre, Eds.

Cham: Springer International Publishing, 2014, pp. 169–186.

[6] S. and G. G. Feixian, “Research of Immunity-based Anomaly Intrusion Detection and Its

Application for Security Evaluation of E-government Affair Systems.,” JDCTA Int. J. Digit.

Content Technol. its Appl., vol. 6, no. 20, pp. 429 – 437, 2012.

[7] L. N. de Castro and J. Timmis, Artificial {I}mmune {S}ystems: A {N}ew {C}omputational

{A}pproach. London. UK.: Springer-Verlag, 2002.

[8] M. Tan, H. Yu, Z. Zhao, Z. Liu, and F. Liu, “An artificial immunity-based proactive defense

system,” in Robotics and Biomimetics, 2007. ROBIO 2007. IEEE International Conference on,

2007, pp. 2239–2243.

[9] et al. Xishuang, D., “Multi-word-Agent Autonomy Learning Based on Adaptive Immune

Theories,” JDCTA Int. J. Digit. Content Technol. its Appl., vol. 7, no. 3, pp. 723–745, 2013.

[10] A. A. Ademokun and D. Dunn-Walters, “Immune Responses: Primary and Secondary,” in eLS,

John Wiley & Sons, Ltd, 2001.

[11] S. Forrest, S. A. Hofmeyr, and A. Somayaji, “Computer Immunology,” Commun. ACM, vol.

40, no. 10, pp. 88–96, Oct. 1997.

[12] F. Hosseinpour, K. A. Bakar, A. H. Hardoroudi, and N. Kazazi, “Survey on Artificial Immune

System As a Bio-inspired Technique for Anomaly Based Intrusion Detection Systems,” in

Proceedings of the 2010 International Conference on Intelligent Networking and Collaborative

Systems, 2010, pp. 323–324.

[13] S. A. Hofmeyr and S. A. Forrest, “Architecture for an Artificial Immune System,” Evol.

Comput., vol. 8, no. 4, pp. 443–473, Dec. 2000.

[14] F. Hosseinpour, K. A. Bakar, A. Hatami Hardoroudi, and A. Farhang Dareshur, “Design of a

new distributed model for Intrusion Detection System based on Artificial Immune System,” in

Advanced Information Management and Service (IMS), 2010 6th International Conference on,

2010, pp. 378–383.

[15] F. Hosseinpour, A. Meulenberg, S. Ramadass, P. Vahdani Amoli, and Z. Moghaddasi,

“Distributed Agent Based Model for Intrusion Detection System Based on Artificial Immune

System,” JDCTA Int. J. Digit. Content Technol. its Appl., vol. 7, pp. 206–214, 2013.

[16] F. Hosseinpour, P. V. Amoli, F. Farahnakian, and J. Plosila, “Artificial Immune System Based

Intrusion Detection : Innate Immunity using an Unsupervised Learning Approach,” JDCTA Int.

J. Digit. Content Technol. its Appl., vol. 8, no. 5, pp. 1–12, 2014.

[17] F. Hosseinpour, P. Juha, and H. Tenhunen, “Smart Data: Reshaping Data Structure in IoT for

Tackling the Five Vs of Big Data using Fog Computing.” TUCS Technical Reports 1159,

2016.

[18] T. Stibor, “Foundations of r-contiguous Matching in Negative Selection for Anomaly

Detection,” Nat. Comput., vol. 8, no. 3, pp. 613–641, Sep. 2009.

[19] D. Dal, S. Abraham, A. Abraham, S. Sanyal, and M. Sanglikar, “Evolution Induced Secondary

Immunity: An Artificial Immune System Based Intrusion Detection System,” in Computer

Information Systems and Industrial Management Applications, 2008. CISIM ’08. 7th, 2008, pp.

65–70.

[20] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward developing a systematic

approach to generate benchmark datasets for intrusion detection,” Comput. Secur., vol. 31, no.

3, pp. 357–374, 2012.

An Intrusion Detection System for Fog Computing and IoT based Logistic Systems using a Smart Data Approach
Farhoud Hosseinpour, Payam Vahdani Amoli, Juha Plosila, Timo Hämäläinen, and Hannu Tenhunen

International Journal of Digital Content Technology and its Applications(JDCTA)
Volume10, Number5, Dec. 2016

46

Publication III

Hosseinpour, F. , Plosila, J., and Tenhunen, H.
An Approach for Smart Management of Big Data in the Fog Computing Context

Reprinted with permission from
IEEE International Conference on Cloud Computing Technology and Science

(CloudCom)
pp. 468-471, 2016.

© 2016, IEEE

An Approach for Smart Management of Big Data
in the Fog Computing Context

Farhoud Hosseinpour
Department of Information Technology

University of Turku, Turku, Finland
Email: farhos@utu.fi

Juha Plosila
Department of Information Technology

University of Turku, Turku, Finland
Email: juplos@utu.fi

Hannu Tenhunen
Department of Information Technology

University of Turku, Turku, Finland
Email: hatenhu@utu.fi

Abstract—In this paper, a new approach for tackling Big Data
in Internet of Things (IoT) systems is presented. We approach
the problem from the data perspective rather than only focusing
on the computing platform. We design and develop a concept
that we call Smart Data. Taking advantage of a hierarchical fog
computing system, we reshape the raw and passive form of the
data generated by IoT sensors to intelligent and self-managed
data cells that are able to evolve and become more meaningful
information with reduced size. We believe that smart data will
revolutionize the current perspective of data and will open many
potential research directions to tackle emerging big data issues.

Index Terms—Smart Data, Big Data, Fog Computing, Internet
of Things

I. INTRODUCTION

Big data is currently becoming a critical research focus
along with the growth of Internet of Things (IoT) and In-
ternet of Everything (IoE) technologies. Relying on current
technologies such as cloud computing is not efficient for
addressing the requirements of big data management [1].
Hence, new technologies are needed to reduce the complexity,
ease management and boost the processing of big data. Pre-
processing of raw sensory data is one of the most efficient
ways to reduce the load of big data in cloud computing.
To this end, a fog computing platform at the edge of the
network is introduced to reduce the processing load from
the cloud by delegating some simple and frequent tasks to
the fog (pre-processing) [2]. A virtualized and hierarchical
architecture of fog computing provides a distributed computing
and storage platform near to the edge sensors for local and
latency sensitive applications. In this model, the raw data
generated in edge sensors is pre-processed in the local fog, and
more meaningful and efficient data with reduced volume and
velocity are sent to the cloud for further and global processing
and storage. Expected benefits of utilizing the fog computing
technology in the IoT architecture include: local and hence
faster processing and storage for geo-distributed and latency
sensitive applications, reduced communication overhead, and
reduced volume and velocity of big data before sending it to
the cloud.

Relying merely on the advancement of computing tech-
nologies for big data processing and management will not
completely address the involved issues. In this doctoral project,

approaching the problem from a different perspective, we aim
to reshape the raw, passive and unstructured form of data in
IoT to an intelligent and active form, while preserving and
enhancing many other important parameters such as energy
efficiency, scalability, throughput, quality of service as well
as privacy and security. For this, we will introduce a new
intelligent, self-managed and lightweight data structure that
we call Smart Data. We believe that smart data has potential
to revolutionize the current perspective of data and will open
many potential research directions to tackle emerging big data
issues. The smart data is a package of encapsulated structured
data generated by IoT sensors, a set of metadata, and a virtual
machine. It is controlled and managed through the metadata
that accommodates a set of rules that define its behavior
and govern its security, privacy and other functionalities. The
virtual machine, in turn, executes the rules set in the metadata.

The remainder of the paper is organized as follows. We
discuss the fog computing technology and its integration with
IoT systems in Section 2. In Section 3 we introduce our smart
data model and present its structure and, finally, we discuss
and conclude in Section 4.

II. FOG COMPUTING

Cloud computing is being recognized as a success fac-
tor for IoT, providing ubiquity, reliability, high-performance
and scalability. However, due to its geographically central-
ized nature as well as communication implications, cloud
computing-based IoT fails in applications that require a very
low and predictable latency, are geographically distributed,
are fast mobile, or are large-scale distributed control systems
[2]. Fog computing is a promising technology proposed and
developed by Cisco [3], complementing the cloud computing
services by extending the computing paradigm to the edge
of the network. Fog computing introduces an intermediate
layer between the edge network or the end nodes and the
traditional cloud computing layer. Bringing the computational
intelligence geographically near to the end users will provide
new or better services for latency sensitive, location-aware and
geo-distributed applications which due to their characteristics
are not feasible merely through cloud computing. The expected
benefit is faster computation times for requests that require
low latency. In addition to the requirement of low latency, fog
computing is a promising technology for dealing with big data9781-5090-1445-3/16$31.00 c© 2016 IEEE (CloudCom’16)

2016 IEEE 8th International Conference on Cloud Computing Technology and Science

2330-2186/16 $31.00 © 2016 IEEE

DOI 10.1109/CloudCom.2016.77

468

Authorized licensed use limited to: Turun Yliopisto. Downloaded on June 07,2022 at 16:02:22 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Hierarchical architecture of fog computing.

generated from IoT-based systems with a vast number of nodes
spread across a large area. IoT-based systems introduce a new
dimension for characterizing big data, namely geo-distribution,
along with its generally known characteristics. Cloud based
IoT systems dealing with Big Data [2] have to process a large
amount of data at any time. Fog computing, as a middleware,
can pre-process raw data coming from the edge nodes before
sending them to the cloud layer. As a result, the fog layer not
only reduces the amount of work needed in the cloud layer by
generating meaningful results from raw data, but also reduces
the monetary cost of computing in the cloud layer.

In a systematic view, the fog computing is composed of
distributed and heterogeneous resources that are deployed
based on a hierarchal model. In this model, fog nodes deploy a
virtualized and hierarchical topology and provide a distributed
computing platform. Each physical node is composed of
computing and storage components and has interfaces for
communication with neighboring fog nodes at the same, one
step higher, or one step lower level of hierarchy. Figure 1
illustrates a hierarchical architecture of physical fog computing
nodes in different levels [4].

III. SMART DATA

To tackle the big data in IoT systems we approach the
problem from a different perspective to reduce the manage-
ment efforts, computing load and communication overhead
imposed by big data. We design and develop a new data
structure by embedding the intelligence required to process the
payload into an encapsulated data cell that we call Smart Data.
Deployment of application code in each processing fog node is
costly and not efficient in fog computing-based IoT systems
[5]. Hence, the smart data eliminates this need resulting in
saving cost, energy and network traffic as well as better Quality
of Service (QoS). Smart data are first generated by sensors in
a very basic form and then they evolve through their lifecycle
by being processed and converted to meaningful information
as well as complemented and amended with new features such
as security and privacy. A fog computing platform is the main
enabler for implementing our smart data concept.

A. Structure of Smart Data

In general, a smart data element is a cell of encapsulated
data consisting of a payload, metadata, and a virtual machine.
Smart data is inspired by the Active Bundle (AB) technology
introduced by Ben Othmane in 2009 [6] for protection of
sensitive data: An active bundle or AB is a software construct,
which bundles together the following three components: (1)
sensitive data (2) metadata, which contain information describ-
ing sensitive data and prescribing its use; they can include a
privacy policy for the sensitive data (which control the access
to sensitive data or their portions), as well as the rules for AB
dissemination; and (3) virtual machine (VM), which controls
and manages how its AB behaves, thus making the AB active;
the essential task of the VM is enforcement of the privacy
policy specified by metadata.

The smart data has a similar structure to the active bundles.
However, our smart data, rather than only protecting the data
within the bundle, is an intelligent unit which is able to
evolve and participate in the operation of an IoT application.
Generally, the smart data is a standalone unit that through
the resources provided by the underlying hierarchical fog
computing platform undergoes a series of pre-processing steps,
evolving by getting more attributes, such as security and
privacy aspects, and involved rules. A basic and lightweight
version of smart data is generated by IoT sensors. It evolves
(grows) when it travels through the hierarchical fog computing
system towards the cloud, merging with other cells. The
process is the opposite when data moves from the cloud
towards the actuators, i.e., data are transformed stepwise into
a distributed set of elementary cells.

Figure 2 illustrates the general structure of a smart data
cell. The smart data is composed of three main parts: payload
data, metadata and virtual machine. In IoT based scenarios,
where data is generated and transferred continuously in a
resource constrained environment, communication activities
can consume a considerable amount of energy. In our smart
data, data generated by each sensor are encapsulated into
smart data bundles and are communicated to their gateways in
specific intervals. The main objective of encapsulating a set of
data already at the sensor level, instead of constantly sending
discrete data, is to reduce the communication overheads in a
very resource constrained environment as well as to reduce the
data velocity in the big data context. The payload component
of the smart data undergoes a series of pre-processing steps
and is thereby converted into more meaningful information.
Pre-processing of data includes different operations such as
aggregation, filtering, compression, and encryption.

The metadata part of smart data contains key information
such as the source of data (sensors), destination of data, the
physical entity which data belongs to, timestamps, current
status and logs as well as rules for accessing, fusing or
diffusing, and processing data, for example. In addition, the
metadata part stores information extracted by processing the
payload data. Such information obtains more accurate values
when the data is processed and aggregated with other data

469

Authorized licensed use limited to: Turun Yliopisto. Downloaded on June 07,2022 at 16:02:22 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Structure of Smart Data.

from different sensors or the same sensor over a longer period
of time.

The virtual machine part, in turn, acts as a platform which
enables and manages the execution of the rules specified
in the metadata part. The VM at the very beginning stage
contains only basic application codes. Then, it evolves by
adding other code modules of the application when they are
needed. Each code module provides specific functionalities
and services to the smart data. The modular structure of
the VM component makes smart data extendable, allowing
it to manage the overhead of carrying the code by removing
unnecessary code modules and adding the required modules
only when they are needed.

The code modules are installed into a smart data cell as a
plugin. To enable this, we consider a remote code repository
node which contains all necessary code modules as plugins.
Whenever a smart data cell requires a specific code module,
it communicates with the code repository node and requests
for the required code module. To minimize the communica-
tion involved in downloading the plugins, the most recently
downloaded plugins are also cached in the physical fog nodes
for some period of time. So, if the requested code module
does not exist in the local fog node, it will be downloaded
from the remote code repository node. In order to avoid the
overhead of integrating the whole application code to each
smart data, at early stage smart data includes only basic
application code which provides it some basic functionalities
such as communication and lightweight encryption. A new
modules of the application code integrates to the base code
whenever there is a need for a new functionality. Each module
contains a set of program codes which provides a certain
service or accomplishes a certain operation on the data. For
example, there could be an aggregation module, an encryption
module, and compression modules.

B. Smart Data Lifecycle

A lifecycle of smart data is a time span in which a data
cell is generated, processed, stored, used and destroyed. A
basic form of smart data is first generated in sensors. At
this point, smart data is considered immature. Immature smart
data contains a semi-structured and encapsulated set of raw
data in its payload. The data is stored in the payload of the
smart data in a very basic format already in the sensors. This
semi-structured data needs to be re-formatted and structured
according to the applications context to make complex analysis
and access possible for the application. Furthermore, some
basic information, such as the source of data, destination of
data, and time stamps are specified in the metadata part of
each smart data cell already in the sensors. The payload and
metadata of the smart data are encrypted using lightweight
symmetric ciphers in the sensors to ensure their integrity and
confidentiality during inter-node transfers.

Once the smart data has been transmitted from the sensors
to their corresponding gateways, they are decrypted and then
aggregated with other smart data collected from the neighbour
sensors. Then, the aggregated smart data is encrypted and
access control policies for its payload are set in its metadata at
this point. For this purpose, the smart data cell communicates
with the code repository unit to fetch the required code
modules and rules for the access control and aggregation.

The gateways in IoT systems are usually resource uncon-
strained devices and responsible for managing the sensors
and their data. In the gateways, after the aggregation stronger
encryption mechanisms could be applied to smart data cells. At
this point, smart data becomes semi-mature, having aggregated
data and developed its metadata to a higher level of complex-
ity. The semi-mature smart data undergoes then a series of
further pre-processing tasks, such as filtering and compression
through the next higher levels of the fog computing hierarchy
and becomes mature.

The aggregation process also involves transforming data
from different sources to a single summative data. Such
summative data will have a smaller size compared to the sum
of the original data before the aggregation which results in
lower network traffic and improved performance in processing
the data. The aggregation of sensory data will also reduce the
variety of big data in smart data. Depending on the application,
filtering and aggregation might be applied on the smart data
in the fog computing network hierarchy until the smart data
reaches a desired level of quality. So, defining an optimal fog
computing cluster in which the smart data is processed with the
least energy consumption and time, and with the best values
for the volume, velocity, value, veracity and variety of the data,
is a challenging research problem in designing the smart data.
The mature smart data will have significantly less volume and
velocity and higher value and veracity. During its lifecycle,
semi-mature or mature smart data would be compressed and
stored in the local memory systems provided by the fog nodes,
so that it would be swiftly available for local applications
and processes. On the other hand, mature data from each

470

Authorized licensed use limited to: Turun Yliopisto. Downloaded on June 07,2022 at 16:02:22 UTC from IEEE Xplore. Restrictions apply.

local fog node in multiple geographical areas is sent to the
cloud for global processing and stored for long-term purposes.
Also, specific rules for destroying smart data can be set in
the metadata part to destroy the payload part in the case of
detected security breaches, or if a given validity period expires.

C. System Architecture

In our model, utilizing the virtualized architecture of fog
computing, we integrate smart data as virtual fog computing
nodes in an existing fog computing platform (Figure 1). The
sensors are the lowest layer of our fog computing hierarchy
. Once smart data is generated by the sensor nodes, a set of
encapsulated data is sent to the gateways within a particular
time frame. The nearest available gateway which receives
smart data directly from a set of sensors is considered the
current managing fog node, or the gateway fog node, for these
underlying sensors. Moreover, as it is the nearest point to the
edge sensors, it is considered the level one (L1) fog node for
this set of the sensor nodes (Figure 1). A gateway fog node has
the primary responsibility for managing smart data received
from its underlying reporting sensors, initiating and managing
fog computing-based processing and storage for this data
and also forwarding actuation commands to specific actuators
within its area. The gateway fog nodes, once having received
smart data from multiple sensors, supervise aggregation of this
data and assign required computing and memory resources
for the involved processing. Depending on the underlying
IoT service, the gateway nodes also establish distributed local
storage within the local fog computing platform or (pre-
)process the contents of the smart data in the fog computing
platform. Evolution of smart data involves procedures such
as aggregation, filtering, compression, encryption, and access
control.

The fog computing platform in our model is hierarchical,
which enables stepwise evolution of smart data at each level of
hierarchy. At the level one (L1) of this hierarchy, the gateway
nodes are connected directly to the sensor nodes (L0) from
one side and to their upper fog level (L2) from the other
side. The nodes at each level are able to communicate with
each other (typically with their neighbours at the same level)
and accomplish distributed tasks. Once the tasks have been
completed the nodes pass data to their parent node at the next
higher level of hierarchy. This stepwise process is continued
until data reaches a desired degree of maturity at the highest
hierarchy level of the fog computing platform. Consequently,
the architectural model is scalable and extendable both verti-
cally and horizontally.

Generally, the tasks at the lower levels of hierarchy are
more detailed and concern relatively small amounts of data,
while at the higher levels of hierarchy more general tasks on
larger amounts of data are carried out. The data collected from
the lower levels is aggregated at the higher levels. Moreover,
a higher hierarchy level deals with data from a larger geo-
graphical region than a lower hierarchy level. From the real-
time performance point of view, task allocation is done in
such a way that processes with low/tight latency requirements

are executed at lower hierarchy levels, closer to users. This
enables real-time tasks to execute and deliver results very
fast, improving user experience. Such processes have some
specific characteristics. First, they typically use data related to
fewer sensors (corresponding to smaller geographical areas),
and therefore a relatively small amount of data is involved.
Second, generally at lower levels, a larger number of individual
computing devices are involved in processing compared to
higher levels. Tasks with no or loose latency requirements can
be executed at higher levels of hierarchy. Smart data processed
in the fog computing platform becomes eventually mature and
refined and is stored either in the distributed fog storage or
sent to the cloud utilizing high performance communication
technologies such as 3G and broadband connections. In case
a local decision is made within the fog computing platform,
the resulting commands will be sent to corresponding actuators
through the involved gateways, without disturbing the cloud.
Therefore, by pre-processing data locally in the fog computing
platform, the workload of cloud computing can be significantly
reduced.

IV. CONCLUSION

With wide application of IoT/IoE technologies, new tech-
niques will be required to deal with big data. In this paper,
by reshaping the current raw and passive structure of data
into an intelligent and active form, we introduced the smart
data concept. This concept combined with the fog computing
technology will have potential to revolutionize the current
perspective of data in IoT and will open many potential
research opportunities to tackle emerging big data issues.
Smart data takes advantage of hierarchical and virtualized
model of fog computing and provides better means for pre-
processing big data originated from IoT sensors. As the next
phase of this project, our purpose is to implement the smart
data model in a realistic scenario and to develop efficient
solutions for relevant operations such as filtering, aggregation,
and compression based on the proposed smart data concept.

REFERENCES

[1] Y. Demchenko, P. Grosso, C. De Laat, and P. Membrey, “Addressing big
data issues in scientific data infrastructure,” in International Conference
on Collaboration Technologies and Systems, 2013, pp. 48–55.

[2] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, Big Data and Internet of
Things: A Roadmap for Smart Environments, Studies in Computational
Intelligence. Springer International Publishing, 2014, ch. Fog Comput-
ing: A Platform for Internet of Things and Analytics, pp. 169–186.

[3] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things characterization of fog computing,” in MCC
Workshop on Mobile Cloud Computing, 2012, pp. 13–15.

[4] M. Nemirovsky, “Fog computing,” Cloud Assisted Services in Europe
(CLASS) Conference, Bled 2012, Tech. Rep., 2012.

[5] L. Gu, D. Zeng, and S. Guo, “Cost efficient resource management in fog
computing supported medical cyber-physical system,” EEE Transactions
on Emerging Topics in Computing, vol. 6750, no. c, 2015.

[6] L. B. Othmane and L. Lilien, “Protecting privacy of sensitive data
dissemination using active bundles,” in World Congress on Privacy,
Security, Trust and the Management of e-Business. IEEE, 2009, pp.
202–213.

471

Authorized licensed use limited to: Turun Yliopisto. Downloaded on June 07,2022 at 16:02:22 UTC from IEEE Xplore. Restrictions apply.

Publication IV

Hosseinpour, F., Siddiqui, A. S., Plosila, J., and Tenhunen, H.
A Security Framework for Fog Networks Based on Role-Based Access Control and

Trust Models

Reprinted with permission from
Research and Practical Issues of Enterprise Information Systems.

pp. 168-180, 2018.
© 2018, Springer International Publishing Switzerland

A Security Framework for Fog Networks
Based on Role-Based Access Control

and Trust Models

Farhoud Hosseinpour1(B), Ali Shuja Siddiqui2, Juha Plosila1,
and Hannu Tenhunen1

1 Department of Future Technologies, University of Turku, Turku, Finland
{farhos,juplos,hatenhu}@utu.fi

2 Department of Electrical and Computer Engineering,
University of North Carolina at Charlotte, Charlotte, USA

asiddiq6@uncc.edu

Abstract. Fog networks have been introduced as a new intermediate
computational layer between the cloud layer and the consumer layer
in a typical cloud computing model. The fog layer takes advantage of
distributed computing through tiny smart devices and access points. To
enhance the performance of the fog layer we propose utilization of unused
computational resources of surrounding smart devices in the fog layer.
However, this will raise security concerns. To tackle this problem, we pro-
pose in this paper a novel method using a trust model and Role Based
Access Control System to manage dynamically joining mobile fog nodes
in a fog computing system. In our approach, the new dynamic nodes
are assigned non-critical computing tasks. Their trust level is then eval-
uated based on the satisfaction rate of assigned tasks which is obtained
through different computing parameters. As the result of this evaluation,
untrusted nodes are dropped by the fog system and nodes with a higher
trust level are given a new role and privileges to access and process cat-
egorized data.

Keywords: Fog computing · Cloud · Access control · Trust model

1 Introduction

The benefits achievable by deploying scalable applications serving a large number
of users simultaneously are rapidly generating novel innovations and expanding
the reach of cloud computing. The cloud computing has replaced the need for
owning large private data centers for service providers who want to deploy their
projects with minimum infrastructure cost [1]. Cloud computing provides scala-
bility for applications in manyfold by enabling addition and removal of processing
nodes at runtime as needed. Although cloud computing has deemed itself useful
in many scenarios [2], it is not viable for applications that require low latency

c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
A. M. Tjoa et al. (Eds.): CONFENIS 2017, LNBIP 310, pp. 168–180, 2018.
https://doi.org/10.1007/978-3-319-94845-4_15

A Security Framework for Fog Networks 169

and predictable feedback such as Smart Grids, industrial automation systems or
intelligent transport systems [3]. This is due to the fact that systems in a cloud
service are geographically distributed. For the alleviation of this issue, “fog com-
puting” [4] has been introduced as a complementary concept to cloud computing.
Cloud computing can be defined using a layered computation model. Typically
there are two layers: a cloud layer and a consumer layer. Recently a new compu-
tational layer, called a fog layer, has been introduced to the model. The fog layer
resides between the cloud and consumer layers in the network’s edge nodes like
sensors and Internet-of-Things devices. Fog computing introduces the concept of
location to cloud computing where traditionally non-locational computing has
been dominant. Additionally, the fog layer also provides extra computational
resources to the cloud layer.

Fog computing is currently an evolving new technology which aims to supple-
ment already established cloud computing platforms to expand their application
domain. Fog computing provides a location based expansion of the cloud by
using heterogeneous computing devices and access points to which end nodes
connect to communicate with the cloud. Bringing the computational intelligence
geographically near to the end users provide new or better services for latency
sensitive, location-aware and geo-distributed applications that due to their char-
acteristics are not feasible merely through cloud computing. Delegating some
simple yet frequent tasks of the cloud to the fog results in better performance
for IoT-based applications [5]. In this paradigm, intelligent networking devices
with both computation and storage capabilities, i.e., intelligent routers, bridges,
and gateways, compose the fog computing platform near to the edge of the net-
work. However, such devices are resource constrained and have computing and
storage limitations.

Increasing computing capabilities of fog computing is a major challenge to
improve the Quality of Service (QoS). To this end, one possible way is to lever-
age processing and storage capabilities of surrounding smart devices [6]. Smart
devices have become an ubiquitous part of modern life. According to the Global
Internet Phenomena Report Spotlight 2016 from Sandvine, the Waterloo-based
broadband network equipment company in North America [7,8]: “The average
household was found to have at least seven active, connected devices in use every
day, while at the top end of the spectrum, 6% of households tuned in with more
than 15 active devices, a marked increase over previous years. Whereas home
roaming via mobile devices such as tablets and smartphones accounted for only
nine percent of traffic five years ago, it now represents almost 30% of home
internet traffic across North America.” Falaki et al. [9] developed a tool called
SystemSens and investigated resource usage such as CPU, memory, and battery
in smartphones. According to this study, except for the pick time between 11:00
to 17:00 the average CPU usage in all tested users is below 50%. This amount
drops to less than 20% during the night time between 00:00 to 8:00.

Having this motivation, leveraging the available computing power of numer-
ous different smart devices will enhance fog computing. However, utilizing
resources of such devices for fog computing will impose some security challenges.

170 F. Hosseinpour et al.

Fig. 1. Fog computing platform.

In this paper, we present a novel approach to tackle this problem by leverag-
ing containerization technology to provide isolation for fog computing tasks in
external smart devices. This is further supported by role-based access control
and trust models.

The rest of the paper is organized as follows. In Sect. 2, we give an overview
of the newly emerging technology of fog computing. In Sect. 3, related works to
access control mechanisms for smart devices are presented and discussed. Then,
in Sect. 4, we present our proposed framework. The results and discussion on the
implemented model are presented in Sect. 5, and, finally, concluding remarks are
given in Sect. 6.

2 Application of Fog Computing

Fog computing introduces an intermediate layer between the edge network or the
end nodes and the cloud layer (Fig. 1). The fog layer can be implemented using
the same components as the cloud layer. The fog layer provides computation in
a geographical location. It aims to provide a computing layer physically closer
to the end node so that the computing capabilities can be brought near to con-
sumers. The expected benefit is obtaining faster computation times for requests
that require low latency. This can play an advantageous role in promotion of the
Internet of Things (IoT) [10]. Utilizing fog computing reduces the overhead of
communication with cloud through internet and provides a faster response for
applications which require lower latency. This is made possible by locally exe-
cuting such processes in the fog layer and forwarding only those which do not
require real-time computation or require higher processing power to the cloud
layer. Schulz et al. [3] have investigated different latency critical IoT applications.

A Security Framework for Fog Networks 171

According to their study, factory automation applications have the highest crit-
ical latency requirements in the range of 0.25 to 10ms. Process automation,
Smart Grids and intelligent transport systems are in the next place in their
ranking.

In addition to the requirement of low latency, fog computing as middleware
can pre-process raw data coming from the edge nodes before sending them to
the cloud. Cloud computing, dealing with Big Data [11], has to process large
amounts of data at any time. As a result, the fog layer not only reduces the
amount of work needed in the cloud to generate meaningful results, but it can
also reduce the monetary cost of computing in the cloud layer.

2.1 Fog Layer Structure

The most important and beneficial aspect of fog computing is the location prox-
imity to the end nodes. The fog layer can be deployed on intelligent access points
and gateways that not only connect the edge nodes to the cloud layer but also
provide additional computing resources near the edge of the network. In addi-
tion to that, independent computing nodes such as smart devices can be added
to the fog layer for the sole purpose of computation. Fog nodes can connect to
each other to form a mesh. This can also be envisioned as a peer-to-peer (P2P)
network with either centralized master controllers or a decentralized implemen-
tation without any controllers. Fog nodes cooperate and pool their resources to
complete a task. The fog layer can be a dynamic network because some nodes
might dynamically join and leave the network due to mobility or power limita-
tions. Or, the other way around, the edge sensors might be mobile and move
from one local fog network to another. A robust orchestration system is required
to manage the execution of applications in such a dynamic environment without
violating QoS and security.

Virtualisation: To support multi-tenancy of different applications and to
achieve elasticity in large-scale shared resources, fog computing takes advan-
tages of visualization technologies. A physical fog node can accommodate sev-
eral virtual fog nodes. A fog computing platform is composed of several physical
and virtual fog nodes that are deployed based on a hierarchical architecture [12]
(Fig. 2). Virtualisation technology based on Virtual Machines (VM) is not effi-
cient or even feasible approach for resource constrained fog computing nodes.
Containers are a new lightweight alternative for traditional VMs that are ideal
for a fog computing platform. Containers provide OS level virtualisation with-
out a need for deployment of a virtual OS. Hence, they are lightweight and
significantly smaller in size than VMs. Containers provide a self-contained and
isolated computing environment for applications and facilitate lightweight porta-
bility and interoperability for IoT applications [13]. Moreover, data and resource
isolation in containers offers improved security for the applications running in
fog nodes.

172 F. Hosseinpour et al.

Fig. 2. Architecture of fog computing.

3 Related Works

Fog computing was introduced in 2012 by Cisco [4] as an additional computing
layer near to the edge of the network, to complement cloud computing services.
We discussed challenges for adoption of this technology in IoT applications as
well as its security issues in our review paper [12]. Due to location proximity to
the edge of the network, mobility of edge sensors, and also resource limitations,
enabling scalable, flexible, and real-time strategies for resource allocation is very
challenging. Oueis et al. [14] proposed a cluster-based resource allocation scheme
for fog computing in which a cluster of fog computing resources is logically
built depending on the profile of computation offloading request from an IoT
device or a fog node. Yi et al. [15] investigated security and privacy issues of
fog computing and pointed out that unlike the cloud computing that the cloud
service provider owns all computing devices, fog computing is more flexible to
leverage different computing resources belong to different parties. This flexibility
adds more complexity in the terms of trust management and security. Misra and
Vaish [16] proposed a cluster-based and multilevel hierarchical architecture for
Wireless Sensor Networks (WSN) to establish an authentication mechanism.
They deployed a multi-level access control system for each logical cluster using
Role-Based Access Control (RBAC) model. They proposed a reputation-based
trust model to assign a role for a node and form the logical cluster in WSN. They
calculated the reputation value based on the behaviour of a node for successful
transmission of data. Salonikias et al. [17] addressed access control issues in fog
computing for an intelligent transport system as a case study. They pointed
out that fog computing has dispersed nature and sensors can enter and leave
the network arbitrarily or the other way around, fog nodes could also be mobile.
Hence, traditional identity-based authentication is not a feasible approach in this
case. To cope with this problem, they proposed utilizing Attribute-Based Access

A Security Framework for Fog Networks 173

Control (ABAC) model in which the authentication is based on the attributes
of the subject (in this case, fog node) trying to access a data rather than their
identity. In [18] the author discussed the importance of granting access based on
the level of trust to individuals. They innovated a mobile device called MS-Ro-
BAC for implementation of role-based access control. The MS-Ro-BAC manages
access and network authorizations through of role-based access control with no
dedicated hubs, servers, special hard-drives or local administrators.

4 Proposed Framework

In this paper, we propose a framework for secure utilization of surrounding smart
devices’ processing capabilities in a fog computing platform. We use containers as
virtualization technology in our fog platform. The reason for this is that they are:
(1) lightweight and require less computing and storage, (2) easily portable, (3)
platform independent and provide interoperability in a heterogeneous network
and, (4) provide isolation of the application that utilize shared resources, which
results in better security. We also design and develop an access control system
based on the RBAC model to provide authentication for dynamic fog nodes
joining the fog computing network. We consider three different kinds of fog nodes
according to their capabilities and trust levels. As discussed earlier, a typical
fog network is composed of smart communication nodes with the capability of
acting as access points. This way they can communicate with edge sensors and
also forward preprocessed data to an upper level in the cloud. Also, we propose
utilization of dynamic nodes, each of which provides either processing resource
only or combined processing and access point resource. Such nodes, after having
been identified within the fog network, can join fog computing and share their
resources.

Our framework employs trust models in transactions pertaining to data trans-
fer and administration. This adds an extra layer of security and guarantees that
untrusted nodes are not able to access sensitive data over the network. Dividing
trust into levels will allow segregation of operations and data based on their
criticality.

Whenever a node is made part of the fog for the first time, it is assigned the
lowest level of trust and the least access privileges to the data to be processed
as no knowledge of its previous transactions exists. However, after some trans-
actions, the dynamic nodes can improve their reputation and gain a higher level
of trust. They might also be disjoined from the network if any malicious actions
are detected, or if they will no longer be in the vicinity of the computing envi-
ronment. In cases like this, the nodes’ access privileges need to be revoked. To
make this possible, a manager node is required for managing the task allocation
and participating nodes. Figure 3 illustrates the proposed framework in which
the fog layer consists of four types of nodes: Fog Manager Node (FMN), Static
Node (SN), Dynamic Node (DN) and Processing Node (PN). Any of these nodes
have different roles and hence different privileges are assigned to them. A role
for a node is defined based on its capability (Processing only or Processing and

174 F. Hosseinpour et al.

Fig. 3. Proposed framework.

communication) and its current level of trust. The following section describes
the definition of roles and trust in more detail.

4.1 Roles

A role for a node defines its privileges for accessing different kinds of data and for
participating in processing tasks. In this framework we assume three categories
of information based on criticality: non-critical, moderate and critical data. The
FMN assigns the roles to nodes based on their reputation and trust levels as
well as their capabilities. We define four roles according to the node types in this
framework. With each role within fog layer, a set of permissions is assigned. This
set limits the nodes’ access to certain types of data and defines their privileges
and responsibilities in processing certain tasks. Table 1 summarize the security
privileges of each node according to its role.

A detailed description of each node is presented in the following.
Fog Network Manager is the central overseer of the fog network. Whenever
a node wants to join the network, it must contact the FNM. If the connecting
node is an edge node, the FNM will send this node the address of the active
fog nodes based on location proximity. The edge node will then connect to the
nearest fog node and start sending its data. In case a fog node goes offline,
the edge node will be provided with the address of the next suitable nodes to
connect to. If a smart device attempts to join the fog network, the FNM will
assign the connecting node with the lowest trust level. On the other hand, if a

A Security Framework for Fog Networks 175

Table 1. Assignment of privileges according to roles.

Role Privileges

Processing Edge
commu-
nication

Cloud
commu-
nication

Verifying
the tasks

Assigning
a task

Adding new
nodes

Revoking
access

FNM × × × × × ×
SN × × × ×
DN × ×
PN ×

node needs to be deleted from network (due to malfunctioning or permanently
disconnecting), the FNM will revoke access rights from that node and update
the list of active fog nodes to the edge sensors as well as the cloud layer. The
FNM is also responsible for promoting or demoting the roles of participating fog
nodes according to their trust levels.

Static Nodes: These nodes are used for connecting edge devices to the fog layer.
They are static in nature and are expected to be available at all times. By default,
they are assigned the trust level High. They can either process data themselves or
they can request the FNM to initiate a task on some other processing node or an
access point. Upon completion of a task, they can forward the data themselves
to the cloud layer.
Dynamic Nodes are dynamic and are intended to be used as access points as
well as processing nodes. They start with trust level Low and gain more levels
as trusted more by the FNM. They do not themselves send data to the cloud
layer but, instead, they use the static access points for the purpose.
Processing Nodes are dynamic and are used exclusively for processing data.
Since they are dynamic, their initial trust level is Low and it is increased as the
node gains more trust. They cannot themselves connect to the cloud layer nor
act as access points but, instead, they use static access points for sending their
data. These nodes only share their processing resources. Therefore, their tasks
are assigned by the network manager or static nodes. After processing the task
the results needed to be sent to a static nodes to be forwarded to the cloud layer.

4.2 Trust Management

A trust level is a measure of the reliability of a participating node. Trust man-
agement is applied to dynamic fog nodes of the network. Static fog nodes at any
time are considered to have the highest level of trust. Trust in our system is
defined in terms of a nodes’ privilege to process a certain type of data. It can be
divided into multiple levels but in this paper, we will consider the division into
three levels:

– Low : This is the lowest level. Dynamic fog nodes are initially assigned this
level upon joining the network. The FMN assigns tasks of the lowest priority

176 F. Hosseinpour et al.

and criticality to these nodes. Data computed by nodes with this trust level
is sent to one of the static nodes to be verified before sending to the cloud
layer.

– Moderate: This is the second level of trust. On this level, the data is considered
to be of moderate criticality. The fog node handling this data is assumed to
be reliable, and the result generated by the node will be sent directly to the
cloud layer. Dissatisfaction in the service of nodes in this level will demote
the node to the low level. However, dissatisfaction up to a pre-determined
level can still be tolerated.

– High: This is the highest level of trust. The data which is considered to
be most critical by the application is handled by the nodes at this level. The
requirement of processing is not only that the data be processed correctly, but
also that the nodes maintain the highest level of service. The data processed
by nodes in this level is sent directly to the cloud layer.

The trust level of each dynamic fog node evolves over time and can change
on interaction with other nodes. We utilize already established trust algorithms
for our implementation. There can be several ways to calculate the trust level
for a node. Manuel [19] investigated different factors to evaluate trust value of
a recourse in cloud computing. They claim that combination of multiple trust
factors such as availability, reliability, data integrity, and turnaround efficiency
should contribute to the trust model of a resource. According to this study, in
our proposed framework we calculate the trust value based on all attributes
mentioned above.

In the following we discuss each of these attributes and present a formula to
compute the trust value of a resource based on those attributes:
Availability is a measure to ensure that a resource is operational and accessible
to authorized parties whenever needed. A resource is deemed unavailable if (1)
it is too busy to process and responds a task request, (2) it denies a task request,
or (3) it is just shut down. Availability of a resource AvR is calculated based on
the following equation over a period of time:

AvR =
Ac

Sb
(1)

where Ac denote the number of computing tasks accepted by a resource and Sb
denote the total number of tasks submitted to that resource.
Reliability or success rate of a resource is a measure and quality of a resource
in consistently performing according to its specifications in specified time. Reli-
ability of a resource ReR defines its success rate in the completion of the tasks
that it has accepted and is calculated based on the following equation over a
period of time:

ReR =
Cs

Ac
(2)

where Cs denote the number of accepted tasks completed successfully by a
resource, and Ac is the total number of accepted tasks by that resource.

A Security Framework for Fog Networks 177

Data Integrity involves maintaining the consistency, accuracy, and trustwor-
thiness of data over its entire lifecycle. Integrity ensures that information is not
modified by unauthorized entities. Data Integrity of a resource DiR is calculated
based on the following equation over a period of time:

DiR =
Cm

Ac
(3)

where Cm denote the number of tasks that a resource successfully preserves data
integrity, and T is the total number of accepted tasks completed successfully by
a resource.
Turnaround Efficiency is a quality that a resource accomplishes a task within
the time that it promises. Turnaround is a time frame that starts from when a
broker sends a processing request to a resource till the time that the resource
completes the task successfully. Turnaround Efficiency of a resource TeR is cal-
culated based on the following equation over a period of time:

TeR =
Pt

At
(4)

where Pt denote the Promised Turnaround time by a resource for completion of
a task and At is the Actual Turnaround time by a resource for the completion
of a task.

Trust Value of a Resource: The overall trust value for a resource is calculated
based on composition of all attributes of a resource with following equation:

TrustV alueR = (a ∗ Av) + (b ∗ Re) + (c ∗ Di) + (d ∗ Te) (5)

where a+ b+ c+d = 1 are coefficient positive numbers that define the weight of
each attribute and Av, Re, Di, and Te are respectively average value for Avail-
ability, Reliability, Data Integrity, and Turnaround Efficiency over determined
time T .

Task assignment done by the FNM is also dependent on the trust levels. To
ensure that each trust level would have the required number of nodes to perform
all tasks defined for that trust level, we will use the weight function to evaluate
the need to increase the trust level of a dynamic node. It would be preferred for
a node to be promoted to a higher trust level if there is a shortage of nodes at
a higher level. For each dynamic fog node, the weight is calculated as:

Weight =
{
1 − Nreq

Navail
if Nreq < Navail

0 otherwise
(6)

where Nreq is the number of nodes required at the next higher trust level, and
Navail is the number of nodes available at the next higher trust level.

5 Results and Discussion

The fog computing platform is implemented in SystemC environment. Each pro-
cessing unit is modeled by a SystemC module which can communicate with all

178 F. Hosseinpour et al.

0

100

200

300

400

0 50000 100000

Nu
m

be
r o

f c
om

pl
et

ed

ap
pl

ic
at

io
ns

Time (ms)

Completed Applications

30
40
50
60
70
80
90

100

0 50000 100000

Nu
m

be
r o

f f
og

 n
od

es

Time (ms)

Total Nodes
Trusted Nodes

0

5

10

15

0 50000 100000
Time (ms)

#Untrusted nodes

Nu
m

be
r o

f u
nt

ru
st

ed

no
de

s
(a)

(b)

(c)

Fig. 4. Experimental results.

the other processing elements in its domain through a SystemC channel. We
have considered heterogeneous nodes with different processing capabilities. The
execution frequency for each processing elements varies between 500MHz up to
4GHz. Applications enter and leave the system based on a randomized amount
of workload during the time. Each application is modeled as a task graph where
each task should be assigned to a processing element exclusively. Execution of
the tasks are independent of each other, and only the data transfer between tasks
connects two tasks to each other. Therefore each task can be run at a different
frequency. The fog system comprises of a number of fog nodes which include
static nodes, processing nodes, and a fog manager node. Along the time, a group
of dynamic nodes joins and leave the fog system. The fog manager assigns the
tasks to the newly joined dynamic node and calculates their trust level based on

A Security Framework for Fog Networks 179

the Trust formula. So, once any of the new dynamic nodes reaches to the desired
trust level, then the fog system upgrades their role to become trusted fog node.

Figure 4(a) shows the number of completed applications in the fog system
during the time. Figure 4(b) illustrates the total number of the nodes once the
dynamic nodes join and leave the fog system. The dashed line shows that the
system is able to detect and eliminate the untrusted nodes in each interval. As
it can be seen, while the number of nodes in the fog system increases, the rate
of the completed applications also increases. And finally Figure 4(c) shows the
total number of identified untrusted nodes during the execution time.

6 Conclusion

The fog computing paradigm extends cloud computing and services to the edge
of the network to support geographical distribution and mobility of end users.
In this paper, we presented a security framework for fog computing infrastruc-
ture. After discussing the potential application of fog computing, we argued that
to increase the performance of the fog layer we can take advantages of vacant
resources of surrounding smart devices such as smart phones and tablets. To
tackle the security issues that are imposed by this technique we proposed an
implementation of role-based access control in conjunction with trust models.
We presented how our proposed framework can contribute to solving security
issues of a fog network. In our framework, we defined a method to calculate trust
levels based on computing tasks assigned to the nodes. Moreover, we presented
algorithms for implementation of our framework. According to our implemen-
tation results, the fog system was able to distinguish the trusted and untrusted
dynamic nodes. However, in addition to secure access control and authentication
methods, secure computation schemes need to be undertaken to guarantee the
security and integrity of data in a fog network.

Acknowledgment. This work was supported by University of Turku Foundation,
EIT Digital and the Department of Information Technology - University of Turku.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing.
Commun. ACM 53(4), 50–58 (2010)

2. Rimal, B.P., Choi, E., Lumb, I.: A taxonomy and survey of cloud computing sys-
tems. In: 2009 Fifth International Joint Conference on INC, IMS and IDC, pp.
44–51. IEEE (2009)

3. Schulz, P., Matthe, M., Klessig, H., Simsek, M., Fettweis, G., Ansari, J., Ashraf,
S.A., Almeroth, B., Voigt, J., Riedel, I., Puschmann, A., Mitschele-Thiel, A.,
Muller, M., Elste, T., Windisch, M.: Latency critical IoT applications in 5G: per-
spective on the design of radio interface and network architecture. IEEE Commun.
Mag. 55(2), 70–78 (2017)

180 F. Hosseinpour et al.

4. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the
Internet of Things. In: Proceedings of the First Edition of the MCC Workshop on
Mobile Cloud Computing, ser. MCC 2012, pp. 13–16. ACM, New York (2012)

5. Sehgal, V.K., Patrick, A., Soni, A., Rajput, L.: Smart human security framework
using Internet of Things, cloud and fog computing. In: Buyya, R., Thampi, S.M.
(eds.) Intelligent Distributed Computing. AISC, vol. 321, pp. 251–263. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-11227-5 22

6. Shi, W., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges. IEEE
Internet Things J. 3(5), 637–646 (2016)

7. Sandvine Intelligent Broadband Networks: 2016 global internet phenomena report,
Latin America & North America. Sandvine - Intelligent Broadband Networks,
Technical report (2016)

8. MacLean, J.: Households now use an average of seven connected devices every day.
Cantech Letter, Technical report (2016)

9. Falaki, H., Mahajan, R., Estrin, D.: SystemSens: a tool for monitoring usage in
smartphone research deployments. In: Proceedings of the Sixth International Work-
shop on MobiArch, ser. MobiArch 2011, pp. 25–30. ACM, New York (2011)

10. Ashton, K.: That ‘Internet of Things’ thing. RFiD J. 22, 97–114 (2009)
11. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers, A.:

Big data: the next frontier for innovation, competition, and productivity. McKinsey
Global Institute (2011)

12. Hosseinpour, F., Meng, Y., Westerlund, T., Plosila, J., Liu, R., Tenhunen, H.: A
review on fog computing systems. Int. J. Adv. Comput. Technol. (IJACT) 8(5),
48–61 (2016)

13. Bellavista, P., Zanni, A.: Feasibility of fog computing deployment based on Docker
containerization over RaspberryPi. In: Proceedings of the 18th International Con-
ference on Distributed Computing and Networking, ser. ICDCN 2017, pp. 16:1–
16:10. ACM, New York (2017)

14. Oueis, J., Strinati, E.C., Barbarossa, S.: The fog balancing: load distribution for
small cell cloud computing. In: 2015 IEEE 81st Vehicular Technology Conference
(VTC Spring), pp. 1–6 (2015)

15. Yi, S., Qin, Z., Li, Q.: Security and privacy issues of fog computing: a survey. In:
Xu, K., Zhu, H. (eds.) WASA 2015. LNCS, vol. 9204, pp. 685–695. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21837-3 67

16. Misra, S., Vaish, A.: Reputation-based role assignment for role-based access control
in wireless sensor networks. Comput. Commun. 34(3), 281–294 (2011)

17. Salonikias, S., Mavridis, I., Gritzalis, D.: Access control issues in utilizing fog com-
puting for transport infrastructure. In: Rome, E., Theocharidou, M., Wolthusen, S.
(eds.) CRITIS 2015. LNCS, vol. 9578, pp. 15–26. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-33331-1 2

18. House, T.: Mobile secure role based access control (MS-Ro-BAC) device. In: Pro-
ceedings of the SoutheastCon, pp. 542–546. IEEE, April 2005

19. Manuel, P.: A trust model of cloud computing based on quality of service. Ann.
Oper. Res. 233(1), 281–292 (2015)

Publication V

Hosseinpour, F. , Naebi, A. , Virtanen, S. , Pahikkala, T. , Tenhunen, H., and Plosila, J.
A Resource Management Model for Distributed Multi-Task Applications in Fog

Computing Networks

Reprinted with permission from
IEEE Access

vol. 9, pp. 152792-152802, 2021.
© 2021, IEEE

Received October 28, 2021, accepted November 8, 2021, date of publication November 10, 2021,
date of current version November 19, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3127355

A Resource Management Model for
Distributed Multi-Task Applications
in Fog Computing Networks
FARHOUD HOSSEINPOUR 1, (Member, IEEE), AHMAD NAEBI 2,
SEPPO VIRTANEN 1, (Senior Member, IEEE), TAPIO PAHIKKALA 1, HANNU TENHUNEN1,3,
AND JUHA PLOSILA 1, (Member, IEEE)
1Department of Computing, University of Turku (UTU), 20500 Turku, Finland
2System Engineering Institute, Xi’an Jiaotong University, Xi’an 710049, China
3School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden

Corresponding author: Farhoud Hosseinpour (farhos@utu.fi)

This work was supported by the European Institute of Innovation Technology (EIT Digital) and the Academy of Finland under Project
311273 and Project 335512. The work of Farhoud Hosseinpour was supported by the Research Awards of the Nokia and Tekniikan
Edistämissäätiö (TES) Foundations.

ABSTRACT While the effectiveness of fog computing in Internet of Things (IoT) applications has been
widely investigated in various studies, there is still a lack of techniques to efficiently utilize the computing
resources in a fog platform to maximize Quality of Service (QoS) and Quality of Experience (QoE). This
paper presents a resource management model for service placement of distributed multitasking applications
in fog computing through mathematical modeling of such a platform. Our main design goal is to reduce
communication between the candidate nodes hosting different task modules of an application by selecting
a group of nodes near each other and as close to the source of the data as possible. We propose a method
based on a greedy principle that demonstrates a highly scalable and near-optimal performance for resource
mapping problems for multitasking applications in fog computing networks. Compared with the commercial
Gurobi optimizer, our proposed algorithm provides a mapping solution that obtains 93% of the performance,
attributed to a higher communication cost, while outperforming the reference method in terms of the
computing speed, cutting the mapping execution time to less than 1% of that of the Gurobi optimizer.

INDEX TERMS Greedy, fog computing, Internet of Things, modelling, optimization, resource management.

I. INTRODUCTION AND BACKGROUND
The past decade has witnessed a wide deployment of the
Internet of Things (IoT) technology in various application
domains, and its pervasive role will continue to strengthen in
the future [1]. The emerging IoT applications, through vari-
ous sensors, generate massive amounts of data that are gener-
ally referred to as big data. Traditionally, data is not processed
in the proximity of a sensor but transferred as it is to a server
that might be located in the cloud. However, transferring the
constantly increasing amount of information from sensors to
the cloud is not feasible. To overcome the intrinsic limitation
of centralized data processing in cloud computing, a new
paradigm called fog computing was introduced. Fog comput-
ing is characterized by heterogeneity, dynamicity, mobility,

The associate editor coordinating the review of this manuscript and

approving it for publication was Chi-Tsun Cheng .

and geographical distribution that complement cloud comput-
ing services, providing local processing and faster response
for delay-sensitive applications. It is considered a derivative
of cloud computing that extends its services to the network’s
edge [2].

Fog computing does not replace cloud computing services
but rather, by a well-organized interplay, complements the
cloud computing services. Fog computing reduces the delay
and response time for frequent and delay-sensitive local user
requests. In contrast, cloud computing provides powerful
computing resources and more extensive data storage for the
global data collected from a larger geographical area. Figure 1
illustrates the basic architecture of a three-layered IoT system
based on cloud and fog computing.

While the effectiveness of fog computing in IoT applica-
tions has been widely investigated in various studies [3]–[7],
there is still a lack of techniques to efficiently utilize

152792 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

F. Hosseinpour et al.: Resource Management Model for Distributed Multi-Task Applications

FIGURE 1. IoT architecture based on cloud and fog computing.

computing resources in this platform to maximize Quality
of Service (QoS) and Quality of Experience (QoE). Ineffi-
cient scheduling and resource allocation for user services can
actually result in even higher delays than sending the data
for processing in the cloud [2]. Due to the aforementioned
unique characteristics of fog computing, the resource alloca-
tion problem becomes more challenging and sophisticated.
Understanding the nature of fog computing and the analogy
between fog and cloud computing helps in systematic mod-
eling of a fog computing framework and efficient resource
management in the fog.

The fog layer is a dynamic and resource-constrained com-
puting system, where both to-be-executed applications and
executing mobile nodes can enter and leave the system at
run-time, which results in high dynamicity of the workload
and platform. Moreover, such applications and computing
nodes are heterogeneous. Applications can be related to vari-
ous services, and nodes range from switches and routers to
base stations and even edge clusters or micro data centres
[8], [9]. Such dynamicity and heterogeneity in both applica-
tion and platform demand intelligent and agile coordination
through a resource management system to achieve optimal or
near-optimal performance at run-time.

A. RESOURCE MANAGEMENT
The resource management problem in fog computing has
been widely investigated from different perspectives. The
authors in [10] investigate the trade-off between the power
consumption and delay in a cloud-fog computing sys-
tem. They formulate the workload allocation problem in a
cloud-fog scenario by modeling the power consumption and
delay functions in the cloud and fog aswell as communication
delay function for dispatch. They conclude that cloud com-
puting is more energy-efficient than fog computing while fog
computing, due to the proximity to the users, can improve the
performance of cloud computing by reducing communication
latencies. In [11], the authors formulate a joint optimization
problem for allocating the computation resources to max-
imize utility or the satisfaction rate and minimize carbon
footprint for video streaming services in fog computing. As a

solution, they propose a proximal distributed algorithm for
large scale fog systems.

Communication costs between fog computing nodes are
very important parameters to be optimized. Finding an opti-
mal path to communicate the processing requests is a key
task in building a robust resource allocation scheme in fog
computing. The authors in [12] propose a Steiner tree based
caching scheme to produce an optimal Steiner tree in a fog
computing cluster to minimize the total cost of the commu-
nication path in a way that total cost of cashing resources is
minimized.

The majority of the aforementioned works consider
non-distributed applications running in a single device. IoT
applications are typically involved with processing streams of
data that are generated by sensors (i.e. data streaming applica-
tions). Stream processing involves applications that are devel-
oped as dataflow graphs that include task vertices executing
some user-defined logic and streaming the messages between
the tasks, i.e., distributed multi-task applications [9]. Such
applications are characterized by their continuous processing
requirements and computation-intensive nature. Offloading
computation tasks into the fog computing or cloud computing
layer, i.e., distributed processing, is an efficient solution to
cope with limited resources of the edge devices.

Application partitioning is a key technology in the devel-
opment of distributed applications for distributed computing
systems such as cloud and fog computing systems [13], [14].
The partitioning can be done in different levels of granularity.
In coarse-grained granularity, applications are divided into
a set of loosely coupled units, called application modules,
that can be integrated to create larger applications. Each
module of an application runs in a computing node (typically
within a container or Virtual Machine (VM)) and communi-
cates its output data to other involved modules, processing
data streams collaboratively with the other modules of that
application which may reside at several different computing
nodes around the network [6]. In fine-grained granularity,
applications or modules of applications are further divided
into smaller sub-tasks or processes (e.g. threads) that can
be executed on different components of a heterogeneous
computing node such as Central Processing Unit (CPU),
Graphics Processing Unit (GPU), and Field Programmable
Gate Array (FPGA [6], [15]. Such distribution, if not properly
managed, could be delay-inducing and resource-intensive in
geographically distributed fog computing networks [16].

The authors in [14] propose a framework for partitioning of
applications on Mobile Cloud Computing (MCC) platforms
to maximize the performance of applications in terms of
speed/throughput as well as optimally utilize cloud resources.
The authors in [17] consider a coarse-grained application
partitioning method based on virtual machines that run as
in cloudlet-based MCC environments. In [18], the authors
develop a resource allocation model that provides optimal
partitioning and offloading the application partitions into
MCC systems. They consider several system parameters such
as network traffic and processing resources inmobile devices,

VOLUME 9, 2021 152793

F. Hosseinpour et al.: Resource Management Model for Distributed Multi-Task Applications

mobile clouds, and the cloud to optimally decide where to run
each partition of the application.

From the fog computing perspective, a distributed appli-
cation composed of several modules needs to be mapped
onto multiple computing nodes. The candidate processing
nodes communicate the data related to that application among
each other according to the data flow of the application. The
authors in [19] study dynamic task module mapping, i.e.,
deployment, in a fog computing platform. They argue that,
because of limited resources in fog computing platforms,
splitting the requests from the users into smaller modules
is a necessity. Their main goal is to find an optimal or
near-optimal way to decompose the applications into task
modules and efficiently map them onto the processing nodes.

It is evident that, in distributed processing, communication
among the nodes will impose a delay that may affect the
system’s QoS and QoE. So, a very important challenge is
how to assign applications’ modules to a set of fog computing
nodes resulting in minimal communication and execution
delays, energy consumption, and network bandwidth usage.

In an IoT-fog system, an unpredictable number of appli-
cations with different sequences may require computing
resources at any time. Therefore, allocation of computing
resources to the arriving service requests needs to be done
dynamically at run-time instead of design time. Satisfying
power and performance constraints by allocation of resources
for an application consisting of several communicating mod-
ules is a complex process. Moreover, the parallel execution
of the task modules in the system adds to the complexity,
potentially degrading the expected performance of the fog
computing system if not properly managed. Determining a
set of superior fog nodes to allocate an incoming distributed
application with the least possible communication cost and
delay is therefore crucial for ensuring high performance of the
fog computing system. At run-time, a resource allocation unit
(RTRA), manages this phase in two steps: i) node selection,
that determines a set of neighboring nodes with adequate
computing and storage capacity and bandwidth to be reserved
for the new application, and ii) task module mapping, that
forwards (distributes) the task modules of a particular appli-
cation to the selected fog nodes.

The authors in [20] investigate the requirements of dis-
tributed task placement in fog computing networks. They
point out that modeling both tasks and computing devices
is necessary for studying task placement for fog computing.
Also, development of distributed applications faces more
challenges than that of monolithic applications, in terms
of the communication complexity among each application’s
components that need to be addressed. They compare differ-
ent algorithms for the tasks placement problem in distributed
fog computing and conclude that greedy approaches, such
as the Hill-Climbing algorithm, demonstrate better perfor-
mance in solving the problem (higher speed), whereas genetic
algorithms provide solutions that have better performance
(higher quality). The authors in [21] propose an application
placement technique for concurrent applications in a fog

network. They present a weighted cost model for minimizing
the execution time and energy consumption of multi-task
applications in the fog computing context, supported by a
pre-scheduling algorithm to maximize the number of parallel
executions. The authors in [22] propose a module placement
algorithm called MPC4.5 using the Markov Chain process in
mobile fog computing networks. They consider an applica-
tion consisting of multiple modules to be placed in a set of
the most suitable fog nodes. Their proposed algorithm uses
parameters such as authenticity, confidentiality, availability,
capacity, integrity, cost, and speed as decision parameters for
placing the application module in a fog node. In [23], the
authors propose an application placement algorithm based
on multidimensional QoE prioritization. They prioritize the
incoming offloading requests based on three main domains:
the environment runtime context, application usage, and user
expectations, taking into account QoE and QoS. Then they
choose a set of fog computing nodes for each requesting
application based on proximity to the source of data, com-
puting capabilities of fog nodes, and expected execution time
for each application.

In [24], the authors present a cost-efficient resource man-
agement model for non-distributed applications in fog com-
puting. They develop an optimal and heuristic (near-optimal)
method to minimize the cost of offloading the applications
in a fog computing platform. In their model, they consider
the cost of deployment of a VM for each application as well
as the communication delay for a given size of data. They
conclude that an appropriate set of fog nodes to host the VMs
for each application is a key factor for minimizing the cost of
fog computing resource management. Inspired by their work,
in this paper, we propose a novel resourcemanagement model
for service placement of distributed multi-task applications
in fog computing through mathematical modeling of this
platform.

Our main design goal is to reduce the communication cost
between the candidate nodes hosting different task modules
of an application by selecting a group of nodes that are near
to each other and also as close to the source of the data as
possible. The communication cost considered in this paper is
an abstract parameter to characterize the penalty of communi-
cation in distributed application execution, in terms of the size
and range of involved communication events. The rationale is
that the larger (smaller) this penalty is, the less (more) optimal
the mapping is performance-wise. The adopted communica-
tion cost concept reflects (predicts) the fog system’s behavior
with respect to more concrete communication-related param-
eters such as communication delay or communication energy
consumption.

Figure 2 shows an overlay architecture of our resource
management model in an IoT-fog computing system. The
physical network underlay illustrates the sensors streaming
their data to the fog nodes that are associated with them.
The virtual network overlay shows an overlay network con-
trolled by a virtual machine manager (VMM) eliminating the
routers that provide physical interconnections between the

152794 VOLUME 9, 2021

F. Hosseinpour et al.: Resource Management Model for Distributed Multi-Task Applications

FIGURE 2. Overlay Architecture of fog computing network.

computing nodes. The task modules of each distributed appli-
cation are mapped onto a set of fog computing nodes forming
a separate overlay network, i.e., an application overlay, on top
of the virtual network overlay.

The main contributions of this paper include:
• Mathematical modeling and presentation of distributed
multi-task applications and fog computing systems.

• Formulating an optimization problem to reduce the over-
all communication costs in the system.

• Design and implementation of a heuristic greedy
algorithm for the resource management problem for
multi-tasking applications in fog computing networks.

• Performance evaluation of the proposed solution.
The rest of the paper is organized as follows. In Section 2,

we present the research methodology of this study. In section
3 we present the mathematical modeling of the system and
optimization problem formulation for multi-tasking resource
management in the fog. In Section 4, we present our pro-
posed algorithm for the problem. In Section 5, we provide
performance evaluation for the proposed solution. Finally,
in Section 6, we end with some concluding remarks.

II. METHODOLOGY
In this section, we briefly present the research methodology
used in our study.
• Modeling the applications and network: We describe
our approach for modeling an application as a com-
position of smaller task modules. In this study, we do
not present a new method for application partitioning,
but rather we consider an application comprising an
ensemble of multiple task modules from the beginning.
We also model our fog computing network consisting
of nodes that are randomly distributed into a limited
physical area.

• Problem formulation:We present the factors that con-
strain our model and formulate an optimization problem

TABLE 1. List of notations.

for resource management, in the context of task map-
ping, with the objective of minimizing the overall com-
munication cost.

• Heuristic method: In order to validate our model,
we propose a heuristic greedy algorithm for solving the
formulated resource management problem.

• Experimental analysis: Finally, we investigate our
proposed model from different points of view. We com-
pare the properties of a method providing the absolute
optimal mapping solution with the results obtained by
the proposed heuristic greedy-based algorithm.

III. SYSTEM MODELING
In this section, we introduce our fog resource management
model. For the convenience of the readers, the main notations
used in this paper are listed in Table 1.

A. APPLICATION MODEL
We model an application in a fog computing system as an
ensemble of task modules with inter-dependencies. Each task
module t ∈ T is a single function/portion of an application
that receives input data, provided by precedent tasks, and

VOLUME 9, 2021 152795

F. Hosseinpour et al.: Resource Management Model for Distributed Multi-Task Applications

FIGURE 3. Task graph model of an application.

produces specific output data and sends it to the subsequent
tasks. Hence, application mapping in a fog computing system
follows a many-to-many function that should be calculated
based on the topology of the network and the current locations
of the sensors. We consider each task module developed as a
bundle including a lightweight virtual machine, i.e., a con-
tainer, and the source code. We define each application in the
system as a directed graph.

We employ a simple mathematical model for represent-
ing applications running in the system. Let us denote by
A ∈ {0, 1}A×T×T the tensor, whose each horizontal slice
Aa,:,: ∈ {0, 1}T×T is an adjacency matrix that represents the
task graph of application a. Each entry Aa,ts,td in the tensor
represents communication between pairs of tasks (i.e., source
and destination tasks) within the task graph of the applica-
tion a that receives data from a particular sensor. To mark
the first task module that receives the data from the sensor,
we consider a dummy task module that we call the source
node in the application’s task graph, i.e., t0, to represent the
streaming sensor in A. In this case, the task module that
receives the data from t0 will represent the first taskmodule in
the application task graph. Accordingly, an incidence matrix
R ∈ {0, 1}A×T can be obtained that represents the set of task
modules composing the application. The following example
(Figure 3) shows an application task graph for a given appli-
cation and a set of associated sensors. The application a1 is
composed of following five task modules: t1, t2, t4, t6, and t7,
i.e., Ra1,: = [1, 1, 1, 0, 1, 0, 1, 1], where the involved tasks
are a subset of T = {t0, t1, t2, t3, t4, t5, t6, t7}. The adjacency
matrix Aa1,:,: represents the task graph of this application in
our system:

Aa1,:,: =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0


(1)

B. NETWORK MODEL
A fog computing network comprises heterogeneous com-
puting nodes that communicate with each other directly
or indirectly through network routers forming multi-hop
paths. We denote by N a distance matrix to represent our
network. Each element in this matrix represents the connec-
tion between a pair of fog computing nodes. Here, the values

equal to 1 indicate a direct connection, i.e., the nodes are
either physically connected or within the wireless commu-
nication range of each other. On the other hand, the values
greater than 1 represent indirect connections through inter-
mediate fog nodes or routers. In this case, the value is equal to
the hop distance in the shortest path between two nodes. Two
fog nodes are reachable from each other if there is a direct or
indirect (multi-hop) connection between them. Without loss
of generality, we assume that all the fog nodes in the network
are reachable from each other.

1) SENSOR-NODE COMMUNICATION
Without loss of generality, we assume that all fog nodes and
sensors are using wireless technology for communication.
We define a radius ρ for each fog node and sensor that
determines its communication range. Fog nodes f ∈ F and
sensors s ∈ S can communicate with each other only if they
are within the communication range of each other. Let us
denote by Z ∈ {0, 1}S×F a binary incidence matrix between
sensors’ set S and fog nodes’ set F that indicates if a sensor
s ∈ S and a fog node f ∈ F are within the communication
range of each other, i.e., directly reachable from each other.

For the sake of simplicity, we assume that each application
receives data from only one sensor, and the other way around,
each sensor streams the data only to one application. That
means that there is one and only one application associated
with each sensor and vice versa. So, there is a one-to-one
relationship between an application and its corresponding
sensor. This being the case, we can refer to the application
and sensor interchangeably in ourmodel. Sensors stream their
data as packages with the length of da,∀a ∈ A, to the fog
nodes f ∈ F they are associated with, in specific intervals
with an up-link cost of uf ,∀f ∈ F and an up-link streaming
rate of λa,∀a ∈ A. Sensors s ∈ S can stream their data
only to the nodes f ∈ F that are directly reachable from
them, i.e., to the nodes for which Zsf = 1 holds. Each sensor
s ∈ S should be associated to one and only one fog node at
the time to ensure that the network traffic is not overloaded
redundantly.

C. MOTIVATION
Let us consider a toy example to demonstrate the main moti-
vation for this work. Figure 4 illustrates how a distributed
application is mapped onto a network. For simplicity and for
the sake of illustration, we consider a network with a 4 × 4
grid-mesh network topology. A wearable ECG sensor needs
to offload its data to the fog network for processing. The
sensor is within the communication range of the nodes 1 and 2
in the fog network. The ECG processing application is com-
posed of 5 task modules, i.e., Ra,: = (1, 1, 0, 1, 0, 1, 1, 1).
First, the sensor will be associated with one of the fog nodes
within its range. In our example, the sensor gets associ-
ated with the fog node 1. The resource mapping algorithm
needs then to select a group of fog computing nodes that
can accommodate and process the containers of the task
modules of the ECG processing application, providing them

152796 VOLUME 9, 2021

F. Hosseinpour et al.: Resource Management Model for Distributed Multi-Task Applications

FIGURE 4. Distributed Multi-Task mapping example.

with appropriate communication paths. In our example, the
fog nodes 5, 10, 12, 13, 14 are the selected nodes. Since fog
nodes in general have limited resources in terms of storage
capacity and processing power, some nodes cannot be chosen
to host the containers of the task modules. These nodes,
instead, can act as intermediate routing nodes. In the example,
the nodes 6, 9, 15, 16 are such routers.

In this work, our optimization goal is to reduce the com-
munication costs and delays between the task modules of an
application by choosing the nodes that are as close as possible
to the involved sensors and in the proximity of each other.

D. PROBLEM FORMULATION
In this section, we define and formulate the resource manage-
ment and task mapping problem for distributed applications
in fog computing systems.

An application is partitioned into smaller task modules that
can be deployed as containers at fog computing nodes in the
system. Each task module within an application needs to be
mapped onto a selected fog node. We define a binary-valued
tensor variable M ∈ {0, 1}A×T×F , that indicates whether the
task module t ∈ T from the application a ∈ A is mapped onto
the fog node f ∈ F , i.e.,

Ma,t,f =

1, task module t from application a is mapped
onto fog node f

0, otherwise
(2)

An obvious base requirement for this mapping is that the
considered task module t is part of the considered application
a. This condition can be expressed as:∑

f ∈F

Ma,t,f = Ra,t , ∀a ∈ A, t ∈ T . (3)

Since the applications are entering the fog computing sys-
tem dynamically at run-time, assigningmultiple taskmodules
of an application to the nearest fog nodewill decrease theQoS
of applications that will join later. In this case, the nearest fog
nodes will soon be fully loaded with the tasks of the earlier
applications, and, consequently, newly arriving applications
will need to be mapped onto the fog nodes far away from their
data sources, resulting in higher communication costs and
delays. To avoid this condition and to effectively granulate
the QoS of all involved applications, our premise is that one
and only one task module of an application a can be mapped
onto any given fog node. However, this constraint does not
apply to a (dummy) source task t0 representing a gateway that
passes sensor data to an application. In other words, such a
gateway node could also be a candidate for processing one
of the computational task modules of this application. The
constraint is formulated as follows:∑

t∈T\{t0}

Ma,t,f ≤ 1, ∀a ∈ A, f ∈ F . (4)

A sensor can be associated to a fog node, if and only if
the fog node is reachable from the sensor. To ensure this,
we define the following constraint:

Ma,t0,f ≤ Zsa,f ∀a ∈ A, f ∈ F (5)

Mapping and deployment of containers of the taskmodules
is possible only if there is enough disk/storage space in the
candidate fog nodes. This condition can be expressed as:∑

a∈A

∑
t∈T

Ma,t,f ct +Ma,t,f da ≤ hf ∀f ∈ F , (6)

where ct is the container size of a running task module t , and
hf is the hard disk (storage) capacity of a fog node f .

E. MIQP FORMULATION
In this work, we associate resource management and task
mapping in fog computing with the objective of minimizing
the overall communication cost in the system. In the optimum
case, the data is processed in the fog nodes that are in the
proximity of each other and as near as possible to the sensors
providing the data streams. The total communication cost in
the system is calculated as the sum of the up-link and inter-
node communication costs for every application that receives
data from sensors, i.e.,

CCom = CUp−link + CInter−Node (7)

The communication cost between two points in the net-
work is determined by the amount and rate of the data trans-
ferred between the two points as well as the hop distance
between the two respective nodes. In the case of up-link

VOLUME 9, 2021 152797

F. Hosseinpour et al.: Resource Management Model for Distributed Multi-Task Applications

communication, since the sensors are directly connected to
the receiving fog nodes, we consider the hop distance equal
to 1. For inter-node communication, we use the hop distances
stored in N. Hence, the total communication cost can be
calculated as:

CCom
=

∑
a∈A

∑
f ∈F

ufMa,t0,f λada

+

∑
a∈A

∑
ts∈T

∑
td∈T

∑
fs∈F

∑
fd∈F

Ma,ts,fsNfs,fdMa,td ,fdAa,ts,tdλada

(8)

Our goal is to minimize the overall communication cost
by choosing the best setting for M. Since the distance
dependence in the inter-node communication cost function
is quadratic with respect to M, we can formulate a mixed-
integer-quadratic-programming (MIQP) problem as follows:

MIQP :

min : (8),

subject to : (3), (4), (5), (6)

and :M ∈ {0, 1}A×T×F (9)

IV. SOLUTIONS
The MIQP problem defined in the previous section can be
solved in different ways. To achieve an optimum solution
for a given resource management task, we implement our
multi-task resource management model using the Gurobi
optimizer. However, since the search space grows exponen-
tially by adding more fog computing or sensor nodes to
the system, an optimum solution may not be feasible for
real-world scenarios. The fog computing nodes are resource-
constrained, and the dynamic decisions for resource mapping
need to be done swiftly to reduce the service delivery time and
to contribute to better QoS. Hence, to evaluate our model’s
efficiency and performance, we propose a greedy algorithm
as a heuristic method that guarantees a near-optimal solution
which is less computationally intensive and faster to achieve,
more suitable for a resource-constrained computing environ-
ment.

A. PROPOSED GREEDY ALGORITHM
We propose a two-phase distributed greedy algorithm as a
heuristic solution for our resource management model. In the
first phase presented in Algorithm 1, the system greedily
associates the sensors to the fog nodes considering the con-
straints (5) and minimizing the system’s overall up-link cost.
In the second phase, at each iteration, the greedy algorithm
assigns a fog node with the minimum communication cost
for one task module from each application considering the
constraints (3), (4), (6). At each iteration, the algorithm stores
the next node(s) in a queue based on the sequence defined
in each application’s task graph. Once all the task modules
have been mapped onto fog nodes, a communication graph
from the selected fog nodes for processing each multitask

application is formed, and the overall cost is calculated based
on Equation (8). The greedy algorithm is presented in more
detail in Algorithm 1.

Most of the tensors and matrices used in our approach are
very sparse, meaning that they mostly comprise zero values.
Consequently, to improve the performance and simplify the
complexity of the algorithm, we only consider the non-zero
values in the tensorM that together represent the total number
of tasks modules from all the applications that are allocated
to the fog nodes. This corresponds to the total number of
elements that are pushed into the queue in Algorithm 1.
Similarly, we consider only the non-zero values in the matrix
Z that represent the number of all possible connections that
one sensor could have with the fog nodes within its range.
So, if we denote τ to correspond to the number of non-zero
values in the tensor M and Z where a ≤ τ ≤ at,∀a ∈
A, t ∈ T , the complexity of the first and second phases
could be calculated as O(τ), and O(f τ),∀f ∈ F respectively.
So the total complexity of our algorithm in the worst case is
O(f τ),∀f ∈ F .

Algorithm 1 Greedy Algorithm
Data: Communication radius and coordinates of fog

nodes and sensors
Result:Ma,t0,f
B Phase 1: Sensor association;
for each non-zero value in Zsf do

Calculate the up-link cost;
f ←FogNode with the minimum up-link cost from s;
Ma,t0,f ← 1
Queue.PUSH ← [a, 0 and, the candidate gateway
fog node]

end
B Phase 2: Task module mapping;
L = [] // a list that contains the Fog Nodes that are
already assigned for a task module of the application
while There is an item in the Queue do

a, ts, fs← Queue.POP
for each unallocated task module td acting as a
destination of ts in application a do

fd ← find a fog node closest to fs that is not in L
Queue.PUSH ([a, td , fd])
L.append(fd)
updateMa,td ,fd ← 1

end
end

V. EXPERIMENTAL SETUP AND EVALUATION
To evaluate the efficiency of the proposed solutions in a
small-scale network of 100×100 meters, we consider 10 fog
nodes and 3 sensor nodes in a field with a uniform distri-
bution. The wireless coverage for the fog nodes and sensor
nodes is set to 40 and 20 meters, respectively. Each sensor is
associated with a multi-task application with the task graph

152798 VOLUME 9, 2021

F. Hosseinpour et al.: Resource Management Model for Distributed Multi-Task Applications

FIGURE 5. Cumulative Distribution Function of total cost for Optimum
solution and Greedy algorithm.

FIGURE 6. Execution time.

presented in Figure 3. The data streaming rate from each
sensor is assigned based on a Gaussian distribution with a
mean and standard deviation of 1.2 and 0.8, respectively. The
container size for each task module is set to 0.4, and the
storage capacity of each fog node is normalized to 1. The
up-link cost associated with each fog node is also assigned
based on a Gaussian distribution with a mean and standard
deviation of 1.2 and 0.8, respectively.

We use a commercial solver, Gurobi 9.1, for solving the
MIQP problem for the optimal case. We run 1000 simu-
lation instances with different random seeds and plot the
Cumulative Distribution Function (CDF) of both algorithms’
total costs in Figure 5. According to this figure, our greedy
solution achieves near-optimal results, with the CDF reaching
on average 93.2% of the optimal value. This validates the
correctness and efficiency of our algorithm.

To validate the performance of our greedy algorithm,
we also record the execution time for 30 simulations with
the same setup. Figure.6 illustrates the comparison of the
execution time for both optimal and greedy methods. Our
greedy heuristic algorithm achieves considerably lower and
more predictable execution time than the optimal method,
cutting the execution time for resource mapping to 0.97%
of the time required by Gurobi-based optimization on
average.

FIGURE 7. Effects of number of sensors on total cost.

We visualize the task mapping for the optimal and greedy
algorithms for 3 sensor nodes with the same setting that
we described above. Figure 15 visualizes the solution by
our greedy algorithm, and Figure 16 visualizes the optimal
solution obtained by the Gurobi optimizer.

To evaluate the effects of a network setting on the average
total cost in both greedy and optimal solutions, we run 10 sim-
ulations for each network setting and obtain the average
values for the total cost. Figure 7 illustrates the average total
cost under different settings for a group of sensors, varying
from 2 to 10 sensors. To make the model feasible for our
larger experiments, we set the storage capacity of each fog
node to 10, a relatively large arbitrary value. We keep the
rest of the setup the same as in our earlier experiments. It is
evident, based on this diagram, that the total cost generally
increases when increasing the number of the sensor nodes,
as can be expected. However, the somewhat surprising local
decline in the diagram in the case with 4 sensors in the opti-
mum cost curve, and with 7 sensors in the greedy cost curve,
can result from a placement of sensors in an area where the
density of fog node distribution is higher. In such conditions,
the majority of inter-node communication is either direct
involving no intermediate nodes, or indirect involving only
few intermediate nodes, leading to a lower total cost due to a
lower average communication cost between task modules of
applications associated with the sensors.

Figure 8 illustrates the average total cost with respect to
varying rates of arriving data. In this experiment, the number
of fog nods and sensors are set to 10 and 3, respectively.
As can be seen, the average total cost for the greedy algorithm
is very near to the optimal solution and increases with the
arrival data rate.

To investigate the scalability of our model, we run a set
of experiments to examine the CPU time and maximum used
memory under different network settings. Figures 9 and 10
illustrate the CPU time and maximum used memory, respec-
tively, with the number of sensors varying from 10 to 100.
In this experiment, we set the number of fog nodes to 50.
It is evident that our greedy algorithm outperforms the Gurobi
solver, that computes the optimal solution, by requiring

VOLUME 9, 2021 152799

F. Hosseinpour et al.: Resource Management Model for Distributed Multi-Task Applications

FIGURE 8. Effects of arrival data rate on total cost.

FIGURE 9. Effects of number of sensors on CPU execution time.

FIGURE 10. Effects of number of sensors on maximum required memory.

significantly less resources (i.e., on average 99.88% less CPU
usage and 93.67 % less memory usage) for computing a
task mapping solution. The resource usage in Gurobi-based
optimization shows near-linear dependence on the number of
sensors with a much steeper slope than in the case of the
greedy method. Since the CPU time of the greedy method
is almost constant (i.e., a horizontal line) in this experiment,
we take a closer look into the resource usage of our algorithm
in Figure 11, where we can see that for 10-100 sensors,
the CPU time remains below 45 ms, and the memory need
remains below 1 MB, indicating a relatively slow increase of
the requirements. According to the experiment, for Gurobi,

FIGURE 11. CPU time vs maximum required memory of greedy algorithm
with respect to the number of sensors.

FIGURE 12. Effects of number of fog nodes on CPU execution time.

FIGURE 13. Effects of number of fog nodes on maximum required
memory.

every additional set of 10 sensors increases the required
CPU time by 4434 ms and the memory need by 1.24 MB
on average. In comparison, for our greedy algorithm, these
values are 4 ms and 0.078 MB, respectively. This provides
evidence on the scalability of our algorithm with respect to
the number of sensors in the network.

Figures 12 and 13 illustrate the CPU time and maximum
used memory, respectively, with the number of fog nodes
varying from 10 to 100 and the number of sensors having
the constant value of 3. Also in this experiment, our greedy

152800 VOLUME 9, 2021

F. Hosseinpour et al.: Resource Management Model for Distributed Multi-Task Applications

FIGURE 14. CPU time vs maximum required memory of greedy algorithm
with respect to the number of fog nodes.

FIGURE 15. Task mapping examples (solved by our Greedy Algorithm).

FIGURE 16. Task mapping examples (solved by Gurobi).

method clearly outperforms the Gurobi solver in terms of
computing resource needs, requiring on average 99.9% less
CPU time and 86.14 % less memory for solving a task map-
ping problem. Figure 14 shows that for 10-100 fog nodes,
the CPU time and memory need do not exceed 7 ms and
0.16MB, respectively.Moreover, for each additional group of
10 fog nodes, our greedy algorithm requires, on average, only
0.7 ms of more CPU time and 0.016 MB of more memory,
whereas Gurobi requires 842 ms and 0.077 MB, respectively.
Hence, compared with Gurobi, our method is highly scalable
also with respect to the number of fog nodes in the network,
facilitating dynamic run-time task mapping in networks of
different sizes.

VI. CONCLUSION
We introduced a model for handling IoT requests with
multi-tasking applications in a fog computing network and
an analytical model to formulate the resource management

problem from a communication cost perspective. We also
proposed an algorithm based on a greedy principle to
minimize the cost. Our proposed algorithm demonstrated a
near-optimal efficiency, i.e., 93%, with respect to the com-
munication cost (solution quality), while outperforming the
considered optimal method in terms of the computing speed
(solution latency), cutting the execution time to less than 1%
of the execution time of the commercial Gurobi optimizer
providing the absolute optimal solution. We showed that
our proposed model is highly scalable. However, since the
communication cost employed in this paper is an abstract
parameter, not fully covering all communication-related cost
factors in real networks, there is a need to further investigate
concrete aspects such as communication delays and energy
consumption when considering the resource management
problem in fog computing systems. As part of the future
work, we plan to extend our proposed model by considering
the communication bandwidth between network nodes to
calculate realistic communication delays. Moreover, we plan
to take into account the deployment costs of task module
containers in resource management problems.

REFERENCES

[1] S. Yi, Z. Hao, Z. Qin, and Q. Li, ‘‘Fog computing: Platform and appli-
cations,’’ in Proc. 3rd IEEE Workshop Hot Topics Web Syst. Technol.
(HotWeb), Nov. 2015, pp. 73–78.

[2] H. Rafique, M. A. Shah, S. U. Islam, T. Maqsood, S. Khan, and C. Maple,
‘‘A novel bio-inspired hybrid algorithm (NBIHA) for efficient resource
management in fog computing,’’ IEEE Access, vol. 7, pp. 115760–115773,
2019.

[3] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakanlahiji,
J. Kong, and J. P. Jue, ‘‘All one needs to know about fog computing and
related edge computing paradigms: A complete survey,’’ J. Syst. Archit.,
vol. 98, pp. 289–330, Sep. 2019.

[4] F. Bonomi, R. Milito, P. Natarajan, and J. Zhu, ‘‘Fog computing: A plat-
form for Internet of Things and analytics,’’ in Big Data and Internet of
Things: A Roadmap for Smart Environments, Studies in Computational
Intelligence (Studies in Computational Intelligence), vol. 546. Cham,
Switzerland: Springer, 2014, pp. 169–186.

[5] I. Stojmenovic, ‘‘Fog computing: A cloud to the ground support for smart
things and machine-to-machine networks,’’ in Proc. Australas. Telecom-
mun. Netw. Appl. Conf. (ATNAC), Nov. 2014, pp. 117–122.

[6] W. Zhang, Z. Zhang, and H.-C. Chao, ‘‘Cooperative fog computing for
dealing with big data in the internet of vehicles: Architecture and hier-
archical resource management,’’ IEEE Commun. Mag., vol. 55, no. 12,
pp. 60–67, Dec. 2017.

[7] F. Hosseinpour, Y. Meng, T. Westerlund, J. Plosila, R. Liu, and
H. Tenhunen, ‘‘A review on Fog Computing technology,’’ Int. J. Advance-
ments Comput. Technol., vol. 8, pp. 1525–1530, Oct. 2016.

[8] F. Hosseinpour, A. S. Siddiqui, J. Plosila, and H. Tenhunen, ‘‘A security
framework for fog networks based on role-based access control and trust
models,’’ in Research and Practical Issues of Enterprise Information
Systems, A. M. Tjoa, L.-R. Zheng, Z. Zou, M. Raffai, L. D. Xu, and
N. M. Novak, Eds. Cham, Switzerland: Springer, 2018, pp. 168–180.

[9] Y. Sahni, J. Cao, S. Zhang, and L. Yang, ‘‘Edge mesh: A new paradigm to
enable distributed intelligence in Internet of Things,’’ IEEE Access, vol. 5,
pp. 16441–16458, 2017.

[10] R. Deng, R. Lu, C. Lai, and T. H. Luan, ‘‘Towards power consumption-
delay tradeoff by workload allocation in cloud-fog computing,’’ in Proc.
IEEE Int. Conf. Commun. (ICC), Jun. 2015, pp. 3909–3914.

[11] C. T. Do, N. H. Tran, C. Pham, M. G. R. Alam, J. H. Son, and C. S. Hong,
‘‘A proximal algorithm for joint resource allocation andminimizing carbon
footprint in geo-distributed fog computing,’’ in Proc. Int. Conf. Inf. Netw.
(ICOIN), Jan. 2015, pp. 324–329.

VOLUME 9, 2021 152801

F. Hosseinpour et al.: Resource Management Model for Distributed Multi-Task Applications

[12] J. Su, F. Lin, X. Zhou, and X. Lü, ‘‘Steiner tree based optimal resource
caching scheme in fog computing,’’ China Commun., vol. 12, no. 8,
pp. 161–168, Aug. 2015.

[13] J. Liu, E. Ahmed, M. Shiraz, A. Gani, R. Buyya, and A. Qureshi, ‘‘Appli-
cation partitioning algorithms in mobile cloud computing: Taxonomy,
review and future directions,’’ J. Netw. Comput. Appl., vol. 48, pp. 99–117,
Feb. 2015.

[14] L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan, ‘‘A framework
for partitioning and execution of data stream applications in mobile cloud
computing,’’ SIGMETRICS Perform. Eval. Rev., vol. 40, no. 4, pp. 23–32,
Mar. 2013.

[15] X. Gu, K. Nahrstedt, A. Messer, I. Greenberg, and D. Milojicic, ‘‘Adaptive
offloading inference for delivering applications in pervasive computing
environments,’’ in Proc. 1st IEEE Int. Conf. Pervasive Comput. Commun.
(PerCom), Mar. 2003, pp. 107–114.

[16] E. Ahmed, A. Gani, M. Sookhak, S. H. A. Hamid, and F. Xia, ‘‘Application
optimization in mobile cloud computing: Motivation, taxonomies, and
open challenges,’’ J. Netw. Comput. Appl., vol. 52, pp. 52–68, Jun. 2015.

[17] T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt, ‘‘Cloudlets: Bringing
the cloud to the mobile user,’’ in Proc. 3rd ACM Workshop Mobile cloud
Comput. Services (MCS), New York, NY, USA, 2012, pp. 29–36.

[18] Y. Liu, M. J. Lee, and Y. Zheng, ‘‘Adaptive multi-resource allocation
for cloudlet-based mobile cloud computing system,’’ IEEE Trans. Mobile
Comput., vol. 15, no. 10, pp. 2398–2410, Oct. 2016.

[19] H.-J. Hong, P.-H. Tsai, and C.-H. Hsu, ‘‘Dynamic module deployment in a
fog computing platform,’’ in Proc. 18th Asia–Pacific Netw. Oper. Manage.
Symp. (APNOMS), Oct. 2016, pp. 1–6.

[20] R. Eyckerman, S. Mercelis, J. Marquez-Barja, and P. Hellinckx, ‘‘Require-
ments for distributed task placement in the fog,’’ Internet Things, vol. 12,
Dec. 2020, Art. no. 100237.

[21] M. Goudarzi, H. Wu, M. Palaniswami, and R. Buyya, ‘‘An application
placement technique for concurrent IoT applications in edge and fog
computing environments,’’ IEEE Trans. Mobile Comput., vol. 20, no. 4,
pp. 1298–1311, Apr. 2021.

[22] R. Patro, S. S. Patra, L. Barik, A. D. Prusty, and R. K. Barik, ‘‘Module
placement scheme using MPC4.5 with Markov chain process for mobile
fog computing environment,’’ in Proc. Int. Conf. Comput., Commun.,
Intell. Syst. (ICCCIS), Feb. 2021, pp. 304–309.

[23] H. Nashaat, E. Ahmed, and R. Rizk, ‘‘IoT application placement algorithm
based on multi-dimensional QoE prioritization model in fog computing
environment,’’ IEEE Access, vol. 8, pp. 111253–111264, 2020.

[24] L. Gu, ‘‘Cost efficient resource management in fog computing supported
medical cyber-physical system,’’ IEEE Trans. Emerg. Topics Comput.,
vol. 5, no. 1, pp. 108–119, Dec. 2017.

FARHOUD HOSSEINPOUR (Member, IEEE)
received the M.S. degree in information secu-
rity from the University of Technology Malaysia
(UTM). He is currently pursuing the Ph.D. degree
in embedded computing architectures with the
Department of Computing, University of Turku,
Finland. He has served as a Lecturer and a Pro-
ducer of several MOOCs for the European Insti-
tute of Innovation and Technology (EIT Digital),
University of Turku. His main research interests

include fog computing, the Internet of Things, intrusion detection systems,
and modeling and optimization in embedded computing systems.

AHMAD NAEBI was born in Saray, Tabriz,
Iran, in 1981. He received the B.Sc. degree from
Tractor Applied Science and Technology Univer-
sity, Tabriz, in 2006, and the M.Sc. degree from
Qazvin Islamic Azad University, Qazvin, Iran,
in 2011. He is currently pursuing the Ph.D. degree
with Xi’an Jiaotong University, Xi’an, China,
in 2021. His research interests include program-
ming languages, optimization, modeling, simu-
lation, analyzing, designing, implementing, bond

graph methodology, machine vision, signal processing, cognitive science,
neuroscience, deep learning, and artificial intelligence.

SEPPO VIRTANEN (Senior Member, IEEE)
received the D.Sc.(Tech.) degree in communi-
cation systems from the University of Turku,
Finland, in 2004. He is currently an Associate
Professor of cyber security engineering with the
Department of Computing, University of Turku,
where he is also the Vice Head of the Department.
His current research interests include cyber secu-
rity issues in communication and network technol-
ogy, especially in the smart environment context.

TAPIO PAHIKKALA received the Ph.D. degree
from the University of Turku, Finland, in 2008.
He currently holds an Associate Professorship of
machine learning with the University of Turku.
He has led many research projects, supervised
ten Ph.D. theses, held several positions of trust
in academia, and served in the program commit-
tees of numerous international conferences. He has
authored more than 150 peer-reviewed scientific
articles and participated in the winning teams of

several international scientific competitions/challenges. His current research
interests include theory and algorithmics of machine learning, data analysis,
and computational intelligence, as well as their applications on various
different fields.

HANNU TENHUNEN received the M.Sc.EE.
degree from the Helsinki University of Technol-
ogy, in 1982, the Ph.D. degree from Cornell Uni-
versity, in 1986, and the Honorary Ph.D. degree.
Since 1986, he was with the Tampere University
of Technology as an Associate Professor and the
coordinator of the National Microelectronics Pro-
gram, from 1987 to 1991. Since January 1992,
he has also been the Chair Professor of elec-
tronic system design with the KTH Royal Institute

of Technology, Stockholm. He was the dean of the New School of ICT,
KTH Royal Institute of Technology, from 2002 to 2005. For the period
2006–2011, he was the Director of the Turku Centre of Computer Science
(TUCS), Finland. He has been a part-time Invited Professor at the University
of Turku, Finland, since 2006. He has published over 940 reviewed publi-
cations and holds nine international patents. His current research interests
include embedded electronics for autonomic and smart systems, and the
IoT. He was the Education Director of the European Institute of Innovation
and Technology, EIT Digital, for the period 2006–2011, at European level.
He received the title of an Honorary Professor and the Mangolian Silver
Award and Metal from the city of Shanghai for his contributions there.

JUHA PLOSILA (Member, IEEE) received the
Ph.D. degree in electronics and communication
technology from the University of Turku (UTU),
Finland, in 1999. He is currently a Professor in
autonomous systems and robotics with the Depart-
ment of Computing, UTU. He is also the Head
of the Autonomous Systems Laboratory (ASL)
Research Group and the Smart Systems Unit,
UTU. He leads the EITDigitalMaster Programme
in Embedded Systems at the EIT Digital Master

School (European Institute of Innovation and Technology) and is a member
of the Node Strategy Committee of the EIT Digital Finland Node. His
research interests include adaptive multi-processing systems and platforms,
intelligent multi-agent monitoring and control architectures, machine learn-
ing and optimization approaches, and application of heterogeneous energy
efficient architectures to new computational challenges in the cyber-physical
systems and the Internet-of-Things domains, with a recent focus on fog/edge
computing (edge intelligence) and autonomous multi-robot systems.

152802 VOLUME 9, 2021

ACTA UNIVERSITATIS LAPPEENRANTAENSIS

1015. GIVIROVSKIY, GEORGY. In situ hydrogen production in power-to-food applications.
2022. Diss.

1016. SOMMARSTRÖM, KAARINA. Teachers’ practices of entrepreneurship education in
cooperation with companies. 2022. Diss.

1017. KAN, YELENA. Coherent anti-stokes raman scattering spectromicroscopy in biomedical
and climate research. 2022. Diss.

1018. MÄNDMAA, SIRLI. Financial literacy in perspective – evidence from Estonian and
Finnish students. 2022. Diss.

1019. QORRI, ARDIAN. Measuring and managing sustainable development in supply chains.
2022. Diss.

1020. MARTIKAINEN, SUVI-JONNA. Meaningful work and eudaimonia: contributing to social
sustainability in the workplace. 2022. Diss.

1021. MANNINEN, KAISA. Conducting sustainability target-driven business. 2022. Diss.

1022. LI, CHANGYAN. Design, development, and multi-objective optimization of robotic
systems in a fusion reactor. 2022. Diss.

1023. CHOUDHURY, TUHIN. Simulation-based methods for fault estimation and parameter
identification of rotating machines. 2022. Diss.

1024. DUKEOV, IGOR. On antecedents of organizational innovation: How the organizational
learning, age and size of a firm impact its organizational innovation. 2022. Diss.

1025. BREIER, MATTHIAS. Business model innovation as crisis response strategy. 2022.
Diss.

1026. FADEEV, EGOR. Magnetotransport properties of nanocomposites close to the
percolation threshold. 2022. Diss.

1027. KEPSU, DARIA. Technology analysis of magnetically supported rotors applied to a
centrifugal compressor of a high-temperature heat pump. 2022. Diss.

1028. CHAUHAN, VARDAAN. Optimizing design and process parameters for recycled
thermoplastic natural fiber composites in automotive applications. 2022. Diss.

1029. RAM, MANISH. Socioeconomic impacts of cost optimised and climate compliant energy
transitions across the world. 2022. Diss.

1030. AMADI, MIRACLE. Hybrid modelling methods for epidemiological studies. 2022. Diss.

1031. RAMÍREZ ANGEL, YENDERY. Water-energy nexus for waste minimisation in the
mining industry. 2022. Diss.

1032. ZOLOTAREV, FEDOR. Computer vision for virtual sawing and timber tracing. 2022.
Diss.

1033. NEPOVINNYKH, EKATERINA. Automatic image-based re-identification of ringed seals.
2022. Diss.

1034. ARAYA GÓMEZ, Natalia Andrea. Sustainable management of water and tailings in the
mining industry. 2022. Diss.

1035. YAHYA, MANAL. Augmented reality based on human needs. 2022. Diss.

1036. KARUPPANNAN GOPALRAJ, SANKAR. Impacts of recycling carbon fibre and glass
fibre as sustainable raw materials for thermosetting composites. 2022. Diss.

1037. UDOKWU, CHIBUZOR JOSEPH. A modelling approach for building blockchain
applications that enables trustable inter-organizational collaborations. 2022. Diss.

1038. INGMAN, JONNY. Evaluation of failure mechanisms in electronics using X-ray imaging.
2022. Diss.

1039. LIPIÄINEN, SATU. The role of the forest industry in mitigating global change: towards
energy efficient and low-carbon operation. 2022. Diss.

1040. AFKHAMI, SHAHRIAR. Laser powder-bed fusion of steels: case studies on
microstructures, mechanical properties, and notch-load interactions. 2022. Diss.

1041. SHEVELEVA, NADEZHDA. NMR studies of functionalized peptide dendrimers. 2022.
Diss.

1042. SOUSA DE SENA, ARTHUR. Intelligent reflecting surfaces and advanced multiple
access techniques for multi-antenna wireless communication systems. 2022. Diss.

1043. MOLINARI, ANDREA. Integration between eLearning platforms and information
systems: a new generation of tools for virtual communities. 2022. Diss.

1044. AGHAJANIAN MIANKOUH, SOHEIL. Reactive crystallisation studies of CaCO3
processing via a CO2 capture process: real-time crystallisation monitoring, fault
detection, and hydrodynamic modelling. 2022. Diss.

1045. RYYNÄNEN, MARKO. A forecasting model of packaging costs: case plain packaging.
2022. Diss.

1046. MAILAGAHA KUMBURE, MAHINDA. Novel fuzzy k-nearest neighbor methods for
effective classification and regression. 2022. Diss.

1047. RUMKY, JANNATUL. Valorization of sludge materials after chemical and
electrochemical treatment. 2022. Diss.

1048. KARJUNEN, HANNU. Analysis and design of carbon dioxide utilization systems and
infrastructures. 2022. Diss.

1049. VEHMAANPERÄ, PAULA. Dissolution of magnetite and hematite in acid mixtures.
2022. Diss.

1050. GOLOVLEVA, MARIA. Numerical simulations of defect modeling in semiconductor
radiation detectors. 2022. Diss.

1051. TREVES, LUKE. A connected future: The influence of the Internet of Things on
business models and their innovation. 2022. Diss.

1052. TSERING, TENZIN. Research advancements and future needs of microplastic
analytics: microplastics in the shore sediment of the freshwater sources of the Indian
Himalaya. 2022. Diss.

1053
TOW

ARDS SECURITY AN
D RESOURCE EFFICIEN

CY IN
 FOG COM

PUTIN
G N

ETW
ORKS

Farhood Hoseinpur

ISBN 978-952-335-885-0
ISBN 978-952-335-886-7 (PDF)

ISSN 1456-4491 (Print)
ISSN 2814-5518 (Online)

Lappeenranta 2022

 HistoryItem_V1
 Nup

 Trim unused space from sheets: no
 Allow pages to be scaled: yes
 Margins and crop marks: none
 Sheet size: 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Sheet orientation: tall
 Scale by 105.00 %
 Align: centre

 0.0000
 10.0000
 20.0000
 0
 Corners
 0.3000
 ToFit
 0
 0
 1
 1
 1.0500
 0
 0
 1
 0.0000
 0

 D:20221104101956
 841.8898
 a4
 Blank
 595.2756

 Tall
 753
 272
 0.0000
 C
 0

 CurrentAVDoc

 0.0000
 0
 2
 0
 1
 0

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 1

 HistoryItem_V1
 StepAndRepeat

 Create a new document
 Trim unused space from sheets: no
 Allow pages to be scaled: no
 Margins and crop marks: none
 Sheet size: 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Sheet orientation: tall
 Layout: rows 1 down, columns 1 across
 Align: centre

 0.0000
 10.0000
 20.0000
 0
 Corners
 0.3000
 Fixed
 0
 0
 1
 1
 0.8800
 0
 0
 1
 0.0000
 1

 D:20221109140847
 841.8898
 a4
 Blank
 595.2756

 Tall
 516
 432

 0.0000
 C
 0

 CurrentAVDoc

 0.0000
 0
 2
 0
 0
 0

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 1

 HistoryList_V1
 qi2base

