This is a version of a publication
in
Please cite the publication as follows:
DOI:
Copyright of the original publication:
This is a parallel published version of an original publication.
This version can differ from the original published article.
published by
A Systematic Mapping Study of Empirical Research Methods in Software
Ecosystems
Abdullai Larry, Shamshiri Hatef, Mahmud Hasan, Hamza Muhammad, Aittamaa
Essi, Vuolasto Jaakko, Adisa Mikhail O., Luukkainen Roope, Hyrynsalmi Sonja M.,
Mässeli Niina, Azad Nasreen, Haque Bahalul, Joutsenlahti Juha-Pekka, Legesse
Wondemeneh, Abdelsalam Ahmed, Gurzhii Anastasiia, Ikonen Jouni, Jansen
Slinger, van Schothorst Casper
Abdullai, L. et al. (2022). A Systematic Mapping Study of Empirical Research Methods in
Software Ecosystems. In: Carroll, N., Nguyen-Duc, A., Wang, X., Stray, V. (eds) Software
Business. ICSOB 2022. Lecture Notes in Business Information Processing, vol 463. Springer,
Cham. https://doi.org/10.1007/978-3-031-20706-8_13
Author's accepted manuscript (AAM)
Springer, Cham
13th International Conference, ICSOB 2022: Software Business : Lecture Notes in Business
Information Processing
10.1007/978-3-031-20706-8_13
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
A Systematic Mapping Study of Empirical
Research Methods in Software Ecosystems⋆
Larry Abdullai1, Hatef Shamshiri1, Hasan Mahmud1, Muhammad Hamza1,
Essi Aittamaa1, Jaakko Vuolasto1, Mikhail O. Adisa1, Roope Luukkainen1,
Sonja M. Hyrynsalmi1, Niina Ma¨sseli1, Nasreen Azad1, Bahalul Haque1,
Juha-Pekka Joutsenlahti1, Wondemeneh Legesse1, Ahmed Abdelsalam1,
Anastasiia Gurzhii1, Jouni Ikonen1, Casper van Schothortst2, and Slinger
Jansen1,2
1 LUT University, Finland
2 Utrecht University, the Netherlands
Abstract. Empirical software ecosystems research is hard. Researchers
insufficiently report their research methods, which makes replication
hard. Furthermore, researchers rarely adhere to FAIR practices, further
impeding reproducibility and validity of the studies. In this paper we
present the results of a systematic mapping study of the research meth-
ods that are applied in empirical software engineering research in the
field of software ecosystems. We show that authors do a poor job of re-
porting about their research methods. Simultaneously, we identify a set
of guidelines for the community that can help authors in this growing
field.
Keywords: Empirical research · Software ecosystems · Software engi-
neering · Platform management · Research validity
1 Introduction
A software ecosystem is a set of actors that functions as a unit and collectively
serves a market for services and software, usually based around a platform or
technology [7]. There was a time when software was developed in-house and this
was an old practice for software development. In the new era, the open ecosys-
tem is playing a big role for software development as the employees of different
companies are able to participate and do collaboration through distributed col-
laboration from different companies. When the software ecosystem has an open
access that helps other actors to perform better. The cooperation basically could
include the developer community, developers who are working in different com-
panies, partners, competitors and so on [15]. Based on the role of the ecosystem,
the companies can provide high quality user contributions for the projects. Thus
the companies keeps the customers and contributors satisfied [1].
⋆ This work was created at an extended course at LUT University in the spring of 2022.
The data is available through this link: https://docs.google.com/spreadsheets/
d/1cpsD4uxhU9hIwHbUDuIjaG2o0FnHZCybfjo6idtEQ-U/edit?usp=sharing.
2 L. Abdullai et al.
Software engineering spans across social as well as technical boundaries. To
understand how software engineers build and maintain complex, developing soft-
ware systems, we must study the empirical methods they use and human actions
such as their social and cognitive processes. We need to know how software devel-
opers produce software and how teams and organizations coordinate. Although
there is a growing concern empirical software engineering, there is scant guidance
regarding the most suitable research methodologies. Many researchers choose
improper approaches because they don’t comprehend their goals or alternatives.
The objective of our study is to explore how software ecosystem researchers
use empirical research methods in their work, with the larger goal of maturing
the field. We hypothesize that, similarly to other young domains such as software
engineering [4], researchers can become better at executing and reporting their
research. The research question that drove this research is:
RQ: How do software ecosystem researchers use empirical research methods?
The rest of the paper is organized as: Section 2 outlines the systematic map-
ping study research method, Section 3 outlines the result analysis of the extracted
dataset, Section 4 describes the top 5 papers having the highest value in meeting
the ACM Sigsoft empirical standards for software engineering, Section 5 repre-
sents the recommendation of the authors after the analysis, Section 6 concludes
the paper and outlines the future research directions.
2 Systematic Mapping Study Research Method
To arrive at a representative and quality sample of studies from the field of
software ecosystems, we commenced our systematic mapping study following
the guidelines proposed by Kitchenham et al. [8] and Petersen et al. [11]. We
started with defining our research question and designing our mapping stud-
ies protocols. This enabled us to extract keywords necessary to answering our
research question and using them as a basis to form our search string (“soft-
ware” AND “ecosystem” AND (“platform” OR “open source” OR
“governance” OR “package”). The keywords limited the search to finding
scientific articles relating to software ecosystems, rather than any other forms of
business ecosystems or ecological ecosystems. Since the ecosystem terminology
is used in nearly all fiends, this strategy excluded literature not directly relating
to software ecosystems. We used some of the orthodox guidelines in conducting
systematic mapping. However, we applied some exotic flavor in our strategy for
selecting the literature as illustrated in Figure 1 and described in the following
paragraphs.
We first chose Google scholar as our primary database search engine. Authors
were divided into groups of two and assigned to selecting a total of twenty papers
from a particular year for the period 2011-2021. For example, two of the authors
were assigned to selecting ten paper each from year 2021 and another group
assigned to the preceding year in that order. The two researchers in a group
then discuss and agree between themselves the suitability of the paper selected.
Empirical Research Methods in Software Ecosystems 3
This strategy ensure that relevant papers were evenly selected from each year
and also to avoid sampling and selection bias.
During the search, it became evident that, due to to the huge amount of
literature (an average of 60,000 articles unique hits for each year within the se-
lection year range) it was not practical to read every single article. The authors
therefore relied on the “sort by relevance” feature of the Google Scholar search
engine to arrange the generated literature. Other databases such as Scopus and
Web of Science together with a set of more formal decision criteria were also
utilized to compare with the most relevant papers from Google Scholar. The
following set of exclusion and inclusion criteria were used: (i) Only studies re-
lating to software ecosystems with focus on platform, open source, governance
or package were selected. (ii) Only papers with twenty or more citations were
selected with the exception of articles published in 2020 and 2021, to ensure a
minimum degree of quality. (iii) Only full papers were selected. We referred to
full research paper to mean articles with not less than seven pages. (iv) Only
open access literature or those that could be accessed through legal sources were
considered. Finally, (v) Systematic review studies were excluded from the list.
After applying these inclusion and exclusion decision criteria, the final lit-
erature selection process relied on the researchers’ thorough reading of the full
paper since the data set was arranged in order of relevance, to select ten papers
each for analysis. Overall, a total of 89 sample papers were included in the map-
ping study. Although there is the likelihood that we might have missed some
potentially relevant papers giving the selection approach we adopted, we believe
that our strategy allowed us to evenly and fairly select papers year by year which
is representative of the topic under investigation.
For the analysis of the research methods we have used the ACM Sigsoft stan-
dards for empirical research in software engineering [13] 3. This set of standards
includes quality guide for number of different research methods, e.g., case study,
mixed methods and grounded theory. These empirical standards have been pro-
posed to provide generic standards for the evaluation of research methods and
should be considered a useful tool for researchers when creating their articles. For
each article we have observed the Essential Attributes, the Desirable At-
tributes, and the Extraordinary Attributes as described by the standards.
Additionally, the importance of following the ACM Sigsoft standards is caused
by the requirements set by the scientific community. Since we included scholarly
peer-reviewed articles (e.g. journal papers) as well as conference proceedings,
the predetermined criteria helped us focus on the necessary components that
the chosen papers should contain. We used 19 criteria (e.g. justification for the
choice of case(s) or object(s) that have been studied, description in rich de-
tail, and presentation of the precise chain from observation to findings, etc) to
evaluate the chosen research papers for further analysis.
3 Latest standards https://github.com/acmsigsoft/EmpiricalStandards/
4 L. Abdullai et al.
Fig. 1. Systematic mapping study design and execution process
3 Results
We conducted two analysis 1) classification of used research methods and 2) anal-
ysis of utilized ACM Sigsoft Case Study standards. In classification of used re-
search methods we firstly identified research method from each selected paper
and then counted frequency of each research method type. In ACM Sigsoft Case
Study standard analysis, we analyzed the selected case study articles, including
mixed method studies and repository mining case studies. Analysis results are
presented in following Sections.
3.1 A Classification of used Research Methods
The term research method describes an approach to conducting research, specifi-
cally the numerous sorts of activities used to systematically address the research
problem that is predicated on assumptions and provide a rationale for the de-
cisions made. A research methodology may use a variety of research methods
which are the tools used to gather and analyze data [9].
To determine the methodology adopted by the selected studies, a research
method analysis on a sample of the collected papers was carried out. The results
of the performed analysis can be seen in Figure 2. It can be noticed that the
majority of researchers have conducted case studies to carry out the research.
Furthermore, the top three research methods used are, in order:
• Case study. Case study research is a quantitative research method used to
track the progress of projects, activities, or assignments. Throughout the study,
data is collected for a specific purpose. Statistical analyses can be performed
based on the data collected. The case study is typically used to track a specific
attribute or to establish relationships between various attributes. A case study
could, for example, be used to develop a model to predict the number of errors
in testing. In these types of studies, multivariate statistical analysis is frequently
used. Linear regression and principal component analysis are two of the analysis
methods [21]
Empirical Research Methods in Software Ecosystems 5
Fig. 2. Classifiable and identifiable research methods within the articles of the study.
• Mixed methods. Mixed methods research is a combination of multiple
research methods. The method uses both quantitative and qualitative data col-
lection and analysis strategies. The mixed methods research approach can be
utilized if the researcher desires a more robust, multifaceted viewpoint, one ex-
ample could be using Interviews to supplement statistical results from a survey
[14].
• Design science. Design science research is a qualitative research method-
ology that simultaneously produces knowledge about the process used to create
an artifact and the artifact itself, with the object of the study being the design
process. Furthermore, Design science research seeks to provide information that
is prescriptive for professionals in a field and to share empirical leanings from
studies of the prescriptions used in context [16]. Such information is known as
”design knowledge” since it aids practitioners in creating solutions to their issues
[5].
On the other hand, the least used methods are exploratory studies, interviews
and repository mining.
3.2 An analysis of utilized ACM Sigsoft Case Study standards
In Table 1 we present an in-depth analysis of the research methods encountered
in the case study articles that were part of the mapping study. We have analyzed
51 articles that were either pure case studies, mixed method studies, or repository
mining studies, hence the number is larger than the number of pure case studies
mentioned in Figure 2.
When looking at the overall results, it is pleasing to observe that most studies
check the essential aspects. Most studies explain in rich detail the object of
6 L. Abdullai et al.
study and why the case study was done. However, authors frequently neglect to
mention the type of case study (e.g., exploratory or explanatory). More prob-
lematic is the lack of explanation of how the case studies lead from observations
to findings. While this in part can probably be blamed on page limitations, it is
nowadays increasingly common to also make the case study report available, in
which this chain of evidence could be provided.
When looking at the desirable aspects, things become more dire. While
many studies use triangulation and present evidence such as interview quotations
(approximately half), many do not. Furthermore, only approximately a fourth
of studies use cross-checking techniques for corroborating evidence. Also, fewer
than half include an in-depth discussion of the biases that the work potentially
suffers from. If the field of software ecosystems is to be matured, it is essential
that more studies report on these desirable aspects in the future.
Finally, the extraordinary attributes are rarely observed. While not prob-
lematic, these are aspects that researchers in the future may have to include in
future studies. The authors of this work, for instance, have little experience with
pre-publishing a case protocol beforehand. While this practice may be common
in other fields, we are still maturing. One thing the field can pride itself with: we
often publish multiple case studies and perform cross case analysis. This may be
a sign that the field is maturing, that case studies are relatively ample available,
and that we may wish to create better access to case materials, to encourage
reuse and sharing of research assets.
4 Highlighting Five Studies from the Data Set
The five studies highlighted from the data sets are selected for having the highest
value in meeting the ACM Sigsoft empirical standards for software engineering
research, among our literature selections.
4.1 The Dynamics of Openness and the Role of User Communities
A Case Study in the Ecosystem of Open Source Gaming
Handhelds
Using the open source handheld games ecosystem as a case study, the paper re-
veals the influence of openness on games manufacturers’ interactions with their
user communities and customers’ changes in preference. By using a longitudinal
approach, the paper answered the two research questions: 1) how does the dis-
crepancy between the openness provided by firms and the openness demanded by
a user community emerge? And 2) what are the consequences for the ecosystem
(especially the firms) when firms fail to address such a discrepancy?
For the first question the authors posit that often time, discrepancies occurred
when the level of openness provided by the firm fell below the expectation of their
targeted users’ community (a case of misaligned information releases). Most firms
are committed to achieving a symbiosis relationship with their users-developers
Empirical Research Methods in Software Ecosystems 7
Table 1. Out of 51 studies, we find that they check these boxes. While many of the
essential criteria are checked in high quality studies, many of the desirable aspects
are not. Please note that we identified 51 case study articles, including mixed method
studies and repository mining case studies, which is why this number is larger than the
number of case studies in Figure 2.
Quality Factor Case Studies Out of 51
Essential
justifies the selection of the case(s) or site(s) that was(were) studied 46
describes the site(s) in rich detail 42
reports the type of case study 31
describes data sources (e.g. participants’ demographics and work roles) 38
defines unit(s) of analysis or observation 43
presents a clear chain of evidence from observations to findings 37
Desirable
provides supplemental materials such as interview guide(s), coding
schemes, coding examples, decision rules, or extended chain-of-evidence
tables
25
triangulates across data sources, informants or researchers 23
cross-checks interviewee statements (e.g. against direct observation or
archival records)
16
uses participant observation (ethnography) or direct observation (non-
ethnography) and clearly integrates these observations into results
18
validates results using member checking, dialogical interviewing, feedback
from non-participant practitioners or research audits of coding by advisors
or other researchers
19
describes external events and other factors that may have affected the
case or site
25
uses quotations to illustrate findings 19
EITHER: evaluates an a priori theory (or model, framework, taxonomy,
etc.) using deductive coding with an a priori coding scheme based on the
prior theory
25
OR: synthesizes results into a new, mature, fully-developed and clearly
articulated theory (or model, etc.) using some form of inductive coding
(coding scheme generated from data)
6
researchers reflect on their own possible biases 18
Extraordinary attributes
multiple, deep, fully-developed cases with cross-case triangulation 16
uses a team-based approach; e.g., multiple raters with analysis of inter-
rater reliability (see the IRR/IRA Supplement)
8
published a case study protocol beforehand and made it publicly accessible
(see the Registered Reports Supplement)
2
8 L. Abdullai et al.
community in their openness by benefiting from the valuable contributions of-
fered by the external community contributors and reducing the possibility of
incurring negative outcomes that may jeopardize their productivity [20]. The
study shows how users’ empowerment through the online community put them
in a very good position to influence a firm’s openness levels users. Regarding
the second research question, the inability of a firm to effectively manage the
users’ demands for openness and emerging conflict can constitute a huge risk to
the firm’s survival, its competitiveness and may possibly lose to an alternative
user-initiated project springing up in the ecosystem thereby making openness a
dimension of competition. A firm’s degree of openness, therefore, relies on its
strategy as well as extra-organizational actors (users and developers) [20].
The paper proposed a framework of the dynamics of openness built on the
repeated patterns illustrating the open source game ecosystem. It highlighted
the importance and dynamism of openness as a dimension for competition. It
also emphasises the importance of user-driven innovation over the manufacturer-
driven product lifecycle. Three examples (Gamepark, GP Holdings, Project
Ninja) of firms that failed to manage conflict arising from openness are pre-
sented and one example (Open Pandora) that was able to manage their users’
demand for openness and resulting conflict successfully. The Gamepark’s fail-
ure is due to resentment from dissatisfied users’ s community members who felt
their demands are being ignored while asserting that the Gamepark’s success is
mostly from the users’ contribution. This resulting conflict is a huge blow to the
company as the users’ community eventually launched an alternative product
which eventually dies due to the same reason. Decisions regarding a firm’s open-
ness strategy required adequate planning and effective communication with the
targeted users’ community as such decision is often difficult to reverse [20].
The authors used multiple data sources (forums, expert interviews, and sec-
ondary archival data) to validate and support their argument and used trian-
gulation in the analysis. The proposed framework provides an abstract way of
identifying and managing discrepancies that emerge between openness offered
by firms and openness demanded by the user communities as well as the conse-
quences arising thereafter. In addition, the author cites real-life cases of Handheld
gaming firms to support their findings and by stating the research limitations,
the authors provide useful direction for the future of the research work. All the
data presented also meets the FAIR principles respectively.
The major weakness of the paper is the ecosystem selection, which limited
the choice to the handheld gaming industry ecosystem, thereby making it narrow
and too specific. The paper also failed to consider the contribution of ordinary
users (non-developer) during the semistructured interview process. Input from
other related ecosystems as well as other users would have helped to strengthen
the findings.
The longitudinal case study approach focuses on the open source gaming
handheld industry and helps to validate the evolution and the dynamics of firms,
user communities, and their interactions. We find that a suboptimal level of
openness can pose a threat to a firm’s very existence.
Empirical Research Methods in Software Ecosystems 9
4.2 How do software ecosystems evolve? A quantitative assessment
of the R ecosystem
Plakidas et al. [12] focus on the analysis of the emergence of software ecosystems
by examining the structure and emergence of the R ecosystem as a case study
of the open-source ecosystem. Package repository mining and statistical analysis
method was used to extract R package data over a period of 12 months. The
paper reveals metrics that help to identify and characterized a successful software
ecosystem and compares it to approaches from related ecosystems literature
by creating and comparing the prediction models based on package download
frequency.
The software ecosystem consists of three main components namely: the soft-
ware platform, the community of users, and the marketplace(s) respectively. The
R ecosystem is classified into Platform Characteristics, Marketplace and Pack-
age Characteristics, and Community Characteristics. The paper was structured
to provide answers to three research questions RQ1: How does the R software
ecosystem evolve? The R ecosystem still enjoys strong growth in sizes and vari-
eties since its inception RQ2: How do the community members collaborate, and
how does this impact the software marketplace? The stakeholders play a signifi-
cant role in boosting the marketplace by providing several packages that extend
the functionality of the R core, with the active involvement of “insiders” as well
as the single-package contributors. RQ3: What makes a software ecosystem mar-
ketplace product successful? A strongly-established community commitment and
frequently maintained package contributed by experienced authors constituted
a successful marketplace ecosystem [12].
The paper was well structured and clear answers were provided to the re-
search questions. The paper employed a quantitative analysis of the R ecosystem
to assess and quantify its emergence, and derive metrics on its core software
components, the marketplace as well as its community, in addition to validating
existing theories from the literature. The metrics and basic characteristics of
the mined data are presented and supported with related analysis. Threats to
validity are discussed from multiple perspectives and this help to strengthen the
validity of the findings.’
One weakness identified from this research is the sourcing of data from Bio-
conductor (data downloaded were limited to the previous 12 months), which
indicates incomplete versioning differentiation. A better approach would have
been obtaining data from multiple repositories like Github or the package home-
page.
4.3 Knowledge boundaries in enterprise software platform
development: Antecedents and consequences for platform
governance
The extant research on platforms has studied extensively the roles and actions
of a platform leader and complementors, whether it is about governance or tech-
nological aspects. However, according to Foerderer et al [6] “a comprehensive
10 L. Abdullai et al.
picture of knowledge management in platform ecosystems did not yet exist.”
This is important, because complementors need knowledge about the platform
functionality – what they can do with it to provide add-on services or products
– and about the design of interfaces – how they can do it. A lot of the prior re-
search has studied consumer-focused platforms, so the authors decided to focus
on enterprise software, which is considered complex by nature. This complex-
ity makes it non-trivial for the complementors to develop add-ons. The authors
discuss knowledge management as one of the strategic activities of a platform
owner, using and extending a knowledge boundary framework by Carlile [2].
The paper presents reasons for what hinders knowledge from passing the firm
boundaries within a platform ecosystem, and what are its consequences.
The authors lay their foundations of the platform governance and knowledge
management and show how they are related. From there they identify the re-
search gap: what are the causes for knowledge gaps when boundaries are crossed
and how the platform owners can try to manage the caps. Regarding the re-
sults, providing add-on services and products is about technological issues, but
at the same they are not enough. The authors link technological properties of a
platform – functional extent and interface design – with knowledge boundaries.
The paper presents a classification of platform owners’ approaches to managing
knowledge boundaries: broadcasting, brokering, and bridging. The research is a
multiple case study with four platforms and interviewees from different indus-
tries, emphasis on the complementors. Empirical standard of ACM Sigsoft for
case study is matched rather well. Data triangulation is used: archival data com-
plements the interviews. The analysis phase utilizes grounded theory with both
a priori scheme and emerging codes. Inter-coder discussion and agreements was
used. These tactics are applied in a rigorous fashion in the context of enterprise
software platforms to show how knowledge boundaries come about and how they
can be managed.
The multi-case approach and extensive data set provide a solid starting point.
For some grounded theory researchers the use of a priori coding scheme could
be an issue, as grounded theory is about the emergence of concepts from the
data. While the authors used a priori coding as a starting point based on the
theoretical background and then allowed for the emergence of concepts related
to knowledge boundary resources, it could be asked if something was missed or
emphasized incorrectly due to it. Another question is related to the interviewees.
The selection of CEOs and or CPOs was justified, but would for example a
product manager point of view enriched the results? However, the interviewees
had a chance to discuss and validate the research results, and according to the
authors this strengthened the internal and external validity of the study.
4.4 Technology Ecosystem Governance
The case study by Wareham, Fox, and Cano Giner [17] identifies and describes
three major tensions present in an enterprise software ecosystem: standard-
variety, control-autonomy, and collective-individual. These tensions can lead to
Empirical Research Methods in Software Ecosystems 11
exclusive either-or choices that actors have to make, or they can manifest as com-
plementary options. The authors have two research questions, first: ”How are the
main tensions in technology ecosystems addressed in technology ecosystem gov-
ernance?” and second “Tensions can manifest themselves as either contradictory
or complementary logics. Are contradictory and complementary logics present
in technology ecosystems? If so, how are they governed?”. Based on the analysis
of the tensions and their interactions the article then provides advice for the
design of an ecosystem governance.
The article presents foundations of ecosystems around platforms: commu-
nity of complementors, innovation, governance mechanisms, and generativity. It
then focuses on the management of complementors (or third-party partners /
providers) and the paradoxes between stability and evolvability that are present
in the governance of modern ecosystem. Conceptual development in the article
starts from tensions and how they can appear in three dimensions: outputs, ac-
tors, and identifications. They are studied in the context of ERP software, and
the selection of the case is justified well. The selected ERP ecosystem provides
a B2B setting with “severe heterogeneity across customers, complementors, and
complements” – in other words, a real-life example. With their case study the
authors show evidence for the presence of the tensions in the ecosystem, de-
scribe causes and effects, and finally present insights how to “harness tensions
as enabling forces that serve the overall needs of the platform.”
Strengths of the article include detailed representation of the case study and
its various attributes. Selection of the interviewees aims to handle the diversity
present in the ecosystem. Grounded theory is used as a method for analyzing
the data and a coding scheme is presented as well. Quotes from the interviews
provide a very good understanding. Additional data sources are used to supple-
ment the interview data. Finally, the results are summarized in a comprehensive
implications section.
As the data set of the study is extensive and the analysis process was de-
scribed as iterative, a more detailed description of the analysis would have been
interesting to read. Cross validation or external factors that may have affected
the data collection were not described in detail. Any possible bias of the au-
thors was not discussed, although the Methods section mention that there were
multiple validation incidents.
4.5 What Do Package Dependencies Tell Us About Semantic
Versioning?
Decan and Mens discuss the semantic versioning policy and how four software
packaging ecosystems comply with it over time [3]. The topic is important as the
modern software development is more and more dependent on reusable packages
of source code. Packages form dependency networks that can be rather extensive.
Semantic versioning (semver) provides rules for assigning version numbers, so
that the users of a package are aware of the nature of the changes in the package
version. The paper considers the semantic versioning issues with the following
questions: “to what extent maintainers in different packaging ecosystems rely
12 L. Abdullai et al.
on the semver policy to define the dependency constraints for the packages they
maintain, and to what extent semver can be assumed to be followed by required
packages.”
The authors introduce the concept of semantic versioning and discuss how
it is promising, but not everyone is using it. Dependencies in packaging ecosys-
tems have been researched before and the emphasis has been on code analysis,
which can be heavy to perform and are specific to a programming language.
The authors suggest a complementary approach that is based on package meta-
data, which makes it language independent. Four packaging ecosystems that use
semver were selected for the study. Selection and exclusion criteria were specified.
The four ecosystems are of different age, so the authors selected a common time
period that provides data for all the ecosystems. A repository mining approach
was then used with the selected ecosystems and the time interval. Because dif-
ferent ecosystems use somewhat different notations, normalization was done for
the dependency constraints.
The results are split into several sections, and each section summarizes the
findings very clearly. According to the article, semver compliance “increases over
time for all ecosystems, while ecosystem-specific notations, characteristics, matu-
rity and policy changes play an important role in the degree of such compliance.”
Another key observation is that ecosystems seem to be more loose than semver
for packages that are in their early phases.
Strengths of the article include the look on multiple package managers with
a unifying approach that enables their comparison. Differences of the ecosystems
are presented. A considerable merit of the article is its Threat to validity section.
Construct, internal, conclusion, and external validity according to Wohlin et al.
[19] are discussed.
5 Recommendations for Empirical Researchers
Following the ongoing discussions, it is apparent that researchers in Software En-
gineering (SE) are adopting a variety of research methods, techniques, strategies,
practices and tools to increase the quality of their research. Despite widespread
interest in empirical SE studies [4], some researchers fail in presenting explicitly
rigorous empirical evidence of their research goals, research questions, research
methods, and validity defense, as we find in this preliminary study. Based on
our findings, we make the following recommendations presented in Table 2.
Firstly, we noticed that in many articles the research goal and research ques-
tions are not explicitly stated but rather more generic, vague and implicit. While
some of these studies are well cited, it is unclear what their direct contribution
is to the field and theory of software ecosystems. Similarly, scholars in [4] posit
that, it is essential when selecting an appropriate research method to first clarify
the research question. Therefore, as the first recommendation (R1), we recom-
mend researchers to explicitly state the research objective and research
question, possibly even highlighting them for increased readability.
Empirical Research Methods in Software Ecosystems 13
Table 2. Recommendations for SE studies.
ID Recommendation Reasoning
R1 Explicitly state the research ques-
tion and research objective
Clarify and highlight the objective
R2 Utilize at least minimum essential
attributes from ACM Sigsoft stan-
dards
Improve and standardize the qual-
ity of empirical studies in SE
R3 Utilize desirable attributes from
ACM Sigsoft standards when re-
search setting allows it
Deepen the quality by verifying in
more detail what and why is made
R4 Utilize FAIR data sharing princi-
ples
Enable external validation and fu-
ture work by meeting principles of
data findability, accessibility, inter-
operability, and reusability
Secondly and thirdly, it is striking to see how few articles are matching the es-
sential and desirable criteria in the ACM Sigsoft empirical standards. We there-
fore encourage researchers to ensure that their articles (R2) meet at least
the essential the ACM Sigsoft standards for empirical software engi-
neering research and when research setting allows it, a study should
also (R3) utilize the desirable standards. The ACM Sigsoft standards offer
guidelines to improve the quality of empirical studies in SE.
Fourthly, to provide possibility for external validation and future works it
necessary to get access to used data and extra materials, e.g., via appendix or
link to external data storage. Therefore, we recommend researchers to provide
data and extra materials, i.e., (R4) utilize FAIR data sharing principles [18]
to make data findable, accessible, interoperable, and reusable.
Based on our observations in the studied articles, these recommendations
can be applied, e.g., for case studies. Therefore, in case study once the research
question is stated, attention should be paid to the case description (essential
attribute): why was it selected and what makes it suitable for the study. When
performing interviews, the triangulation of informants is an important phase
(desirable attribute), i.e., selecting interviewees from different work roles. The
studies we highlighted in Section 4 had a broad set of informants, intended to
cover for the diversity. For example, interviewing only CEO level may introduce
a bias. We encourage the researchers to utilizing multiple data sources (desirable
attribute), as it is a feature that was present in many of the studies that matched
ACM Sigsoft criteria well. Moreover, although validity checking and validity
discussion (desirable attributes) is by no means a novelty, it was surprising to
find studies that only touched the subject lightly or even omitted it. To meet
desirable attributes adding a section for validity discussion is advised.
14 L. Abdullai et al.
6 Conclusions and Future Work
In this study, we have explored how do software ecosystem researchers use empir-
ical research methods, and how ACM Sigsoft empirical standards were utilized
in case studies. For this, we conducted a literature study, with a pragmatic ap-
proach, to identify relevant literature in software ecosystem field, and it is likely
that some relevant articles are missing.
We analyzed empirical software ecosystem papers from the years 2011-2021
and found out that the most common research methods used in empirical soft-
ware ecosystem research were case study, mixed methods, design science and
survey. The collected articles were scored based on ACM Sigsoft Case Study
standards and we highlighted the five highest rated articles as examples of good
articles according to aforementioned standards.
The scoring of the articles revealed a huge variety in the research quality of
the papers. Therefore, to help researchers to improve the quality of their software
ecosystem research we provide four recommendations presented in Table 2.
In the future, we plan to expand this data (and paper) to include a better
coverage of the literature, for instance by snowballing from the works of Manikas
et al. [10] and perhaps by sharpening some of the inclusion criteria. For this
reason, we avoided generalization in this work and discuss only inductively from
the data that we have gathered.
It has been insightful to perform the analyses of the articles against the
ACM Sigsoft standards; they provide a useful tool for assessing study quality
and as a guideline for designing future studies. However, collecting data has
been tedious. We also recommend that reviewers in the future perform similar
assessments with each review and make this data publicly available. In this way,
we can ensure that it becomes easier to perform systematic mapping studies in
the future.
Acknowledgments
We thank Kari Smolander for organizing the session that sprouted this research.
References
1. Bosch, J.: From software product lines to software ecosystems. In: SPLC. vol. 9,
pp. 111–119 (2009)
2. Carlile, P.R.: Transferring, translating, and transforming: An integrative frame-
work for managing knowledge across boundaries. Organization science 15(5), 555–
568 (2004)
3. Decan, A., Mens, T.: What do package dependencies tell us about semantic ver-
sioning? IEEE Transactions on Software Engineering 47(6), 1226–1240 (Jun 2021).
https://doi.org/10.1109/TSE.2019.2918315
4. Easterbrook, S., Singer, J., Storey, M.A., Damian, D.: Selecting empirical methods
for software engineering research pp. 285–311 (2008)
Empirical Research Methods in Software Ecosystems 15
5. Engstrom, E., Storey, M.A., Runeson, P., Ho¨st, M., Baldassarre, M.T.: How soft-
ware engineering research aligns with design science: a review 25, 2630–2660 (07
2020)
6. Foerderer, J., Kude, T., Schuetz, S.W., Heinzl, A.: Knowledge boundaries in enter-
prise software platform development: Antecedents and consequences for platform
governance. Information Systems Journal 29(1), 119–144 (2019)
7. Jansen, S., Cusumano, M.A., Brinkkemper, S.: Software Ecosystems: Analyzing
and Managing Business Networks in the Software Industry. Edward Elgar (2013)
8. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature re-
views in software engineering 2, 66 (01 2007)
9. Kuhn, T.S.: The structure of scientific revolutions, vol. 111. University of Chicago
Press: Chicago (01 1970)
10. Manikas, K., Hansen, K.M.: Reviewing the health of software ecosystems–a con-
ceptual framework proposal. In: Proceedings of the 5th international workshop on
software ecosystems (IWSECO). pp. 33–44. Citeseer (2013)
11. Petersen, K., Vakkalanka, S., Kuzniarz, L.: Guidelines for conducting systematic
mapping studies in software engineering: An update. Information and software
technology 64, 1–18 (2015)
12. Plakidas, K., Stevanetic, S., Schall, D., Ionescu, T.B., Zdun, U.: How do software
ecosystems evolve? a quantitative assessment of the r ecosystem. In: Proceedings of
the 20th International Systems and Software Product Line Conference. pp. 89–98
(2016)
13. Ralph, P., Ali, N.b., Baltes, S., Bianculli, D., Diaz, J., Dittrich, Y., Ernst, N.,
Felderer, M., Feldt, R., Filieri, A., de Franc¸a, B.B.N., Furia, C.A., Gay, G., Gold,
N., Graziotin, D., He, P., Hoda, R., Juristo, N., Kitchenham, B., Lenarduzzi, V.,
Mart´ınez, J., Melegati, J., Mendez, D., Menzies, T., Molleri, J., Pfahl, D., Robbes,
R., Russo, D., Saarima¨ki, N., Sarro, F., Taibi, D., Siegmund, J., Spinellis, D.,
Staron, M., Stol, K., Storey, M.A., Taibi, D., Tamburri, D., Torchiano, M., Treude,
C., Turhan, B., Wang, X., Vegas, S.: Empirical standards for software engineering
research (2020), https://arxiv.org/abs/2010.03525
14. Tashakkori, A., Creswell, J.W.: The new era of mixed methods 01, 3–7 (01 2007)
15. Teixeira, J., Robles, G., Gonza´lez-Barahona, J.M.: Lessons learned from applying
social network analysis on an industrial free/libre/open source software ecosystem.
Journal of Internet Services and Applications 6(1), 1–27 (2015)
16. Van Aken, J.E.: Management research as a design science: Articulating the research
products of mode 2 knowledge production in management 16, 19–36 (03 2005)
17. Wareham, J., Fox, P.B., Cano Giner, J.L.: Technology ecosystem governance. Or-
ganization science 25(4), 1195–1215 (2014)
18. Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., Appleton, G., Axton, M.,
Baak, A., Blomberg, N., Boiten, J.W., da Silva Santos, L.B., Bourne, P.E., et al.:
The fair guiding principles for scientific data management and stewardship. Scien-
tific data 3(1), 1–9 (2016)
19. Wohlin, C., Runeson, P., Ho¨st, M., Ohlsson, M.C., Regnell, B., Wessle´n, A.: Ex-
perimentation in software engineering. Springer Science & Business Media (2012)
20. Zaggl, M.A., Schweisfurth, T.G., Herstatt, C.: The dynamics of openness and the
role of user communities: A case study in the ecosystem of open source gaming
handhelds. IEEE transactions on engineering management 67(3), 712–723 (2019)
21. Zelkowitz, M., Wallace, D.: Experimental models for validating technology. 31,
23–31 (05 1998)

