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Abstract. Automatic plankton recognition provides new possibilities to
study plankton populations and various environmental aspects related
to them. Most of the existing recognition methods focus on individual
datasets with a known set of classes limiting their wider applicability.
Automated plankton imaging instruments capture images of unknown
particles and the class (plankton species) composition varies between
geographical regions and ecosystems. This calls for an open-set recog-
nition method that is able to reject images from unknown classes and
can be easily generalized to new classes. In this paper, we show that a
flexible model capable of high classification accuracy can be obtained by
utilizing similarity learning and a gallery set of known plankton species.
The model is shown to generalize well for new plankton classes added in
the gallery set without retraining the model. This provides a good ba-
sis for the wider utilization of plankton recognition methods in aquatic
research.

Keywords: Plankton recognition · open-set classification · metric learn-
ing.

1 Introduction

Phytoplankton are microscopic organisms that grow at a rapid rate. Combined
with their ability to produce organic compounds from inorganic material, phy-
toplankton are considered the foundation of the marine food web by supporting
all other living organisms in the ocean. As a by-product of the photosynthetic
operation, phytoplankton are one of the main producers of oxygen on the Earth.
Because of the critical roles it plays both as a sustainer of marine ecosystems and
as a regulator of a global climate change, monitoring phytoplankton populations
over time and space is essential.

Recent technological advancements have resulted in the emergence of au-
tomated and semi-automated plankton imaging instruments with continuously
improving image resolution and output rates. This has opened novel possibil-
ities to study plankton communities. However, to fully utilize the large image
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volumes in plankton research automatic methods are needed to analyze the im-
age data. The main image analysis task to be solved is plankton recognition, i.e.,
classifying the images based on the species they contain.

Convolutional neural networks (CNNs) have shown to reach close-to-human
level accuracy in various image recognition tasks and plankton recognition is not
an exception [12, 9]. However, they are known to struggle in open-set settings
where the class composition of training data differs from the data for which
the trained model is applied. Typical CNN-based classification models tend to
classify the images from a new class to one of the known classes often with a high
confidence, and to include new classes to the models, they need to be retrained.
These are major problems for plankton recognition as the plankton species vary
between different regions and seasons. Retraining a separate model for each
dataset is not feasible. Therefore, there is a need for a recognition model that
1) is able to predict when the image contains a previously unknown plankton
species and 2) can be generalized to new classes without retraining the whole
model.

In this paper, we address these challenges by proposing a novel open-set
plankton recognition method utilizing metric learning. The idea is to learn such
image embeddings that the plankton images from the same species are close to
each other and the images from the different species are far from each other in
the feature space (see Fig. 1). The recognition method consists of a gallery set of
known species and a learnt similarity metric allowing to compare query images
to the gallery images. Similarity in this context corresponds to likelihood that
the images belong to the same class. This further allows to define a threshold
value for similarity enabling open-set classification: if no similar images are found
in the gallery set, the query image is predicted to belong to an unknown class.
Furthermore, new classes can be added by simply including them into gallery
set as the model does not necessarily need to learn class-specific image features.

Fig. 1. Similarity metric learning for plankton images.

We propose to train the similarity metric using the angular margin loss (Arc-
Face) [5] combined with Generalised mean pooling (GeM) [20] allowing to aggre-
gate of the deep activations to rotation and translation invariant representations.
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ArcFace uses a similarity learning mechanism that allows distance metric learn-
ing to be solved in the classification task by introducing the Angular Margin
Loss. This allows straightforward training of the model and only adds negligi-
ble computational complexity. In the experimental part of the work, we show
that the proposed method obtains high plankton image classification accuracy
and outperforms the previously proposed model utilizing OpenMax [1] layer in
open-set classification. We further show that the method generalizes well to new
classes added to the gallery set without retraining. This makes it straightfor-
ward to apply the model to new datasets with only partly overlapping plankton
species composition.

2 Related work

2.1 Plankton recognition

In hope of mitigating the laborious task of manually classifying the plankton
images, various automatic approaches have been proposed. Modern imaging de-
vices often utilize flow cytometry and are able to produce separate images of
individual particles rendering the plankton recognition task as an image classi-
fication problem. Traditional plankton recognition methods utilize hand-crafted
image features such as shape and texture (see e.g. [2]). Recently, CNNs have
replaced hand-crafted features and have shown recognition performance which
is comparable to human experts [13, 9]. Such recognition models have already
been implemented into operational phytoplankton recognition systems [11]. A
typical approach utilizes common CNN architectures (e.g., ResNet), pre-trained
models, and transfer learning [18, 12]. However, also custom architectures have
been proposed to address the fine-grained nature of the classification problem [3,
4].

2.2 Open-set classification

Generic classifiers often fall under the false assumption that the model has al-
ready seen all the possible classes that it will encounter after the model has been
deployed [7]. In a realistic setting, this assumption is typically not true. For ex-
ample, continuous plankton imaging devices capture also non-plankton particles
and rare plankton particles not present in the training data. This is even more
evident when the classification model is applied to data collected from a new ge-
ographical location with only partially overlapping plankton species composition
with the training data. Open-set classification aims to identify already known
classes successfully and simultaneously reject unknown classes [7].

Bendale et al. [1] proposed the OpenMax which is an additional layer that
allows deep neural networks to perform open-set recognition. The method utilizes
meta-recognition to analyze activation scores and identify when the recognition
model is likely to fail. Based on the distribution of the activation vector values,
the OpenMax layer calculates the probability of an image being from an unknown
class.
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In the case of plankton recognition the open-set problem is often formulated
as an anomaly detection problem where the model is trained to both correctly
classify the known classes and to filter abnormal classes by training the model
to produce high and low entropy distributions for the normal classes and ab-
normal classes respectively. Yuchun et al. [19] proposed a loss function which
contains three loss terms to detect the anomalies and to maintain the classifica-
tion accuracy for the images belonging to the normal classes by incorporating the
expected cross-entropy loss, the expected Kullback-Leibler (KL) divergence, and
the Anchor loss. The model was tested on classes of plankton images containing
also bubbles or random suspending particles.

Walker et al. [22] utilized a large background set of images which do not
belong to the target classes (classes to be recognized) and hard negative mining
to find images that are more likely to cause false negatives. The training set
was then complemented with these challenging images to improve the classifiers
ability to recognize when the images are from novel classes. While promising
results were obtained on open-set plankton recognition the method requires that
a labeled background set is available which limits the usability of the method.

2.3 Classification by metric learning

The aim of deep metric learning is to obtain image embedding vectors that model
the similarity between images. It is commonly utilized in person [23] and animal
re-identification [15], as well as, content based image retrieval [6], but has been
also successfully applied to more traditional image recognition problems such as
vehicle attribute recognition [16]. The main benefit of metric learning is that
training with the full set of target classes is not needed which makes metric
learning more suitable for open-set recognition than traditional classification
models.

The most common approaches for deep metric learning include triplet-based
learning strategies and classification-based metric learning. The first approach
learns the metric by sampling image triplets with and anchor, positive, and neg-
ative examples [10]. The loss function is defined in such a way that the distance
(similarity) from the embeddings of the anchors to the positive samples are mini-
mized, and the distance from the anchors to the negative samples are maximized.
The second approach approximates the classes using learnt proxies [14] or class
centers [5] that provide the global information needed to learn the metric. This
makes it possible to formulate the loss function based on the softmax loss and
allows to avoid the challenging triplet mining step.

Recently, metric learning has been utilized also in plankton classification.
Teigen et al. [21] studied the viability of few-shot learners in correctly classifying
plankton images. A Siamese network was trained using the triplet loss and used
to determine the class of a query image. Two scenarios were tested: the multi-
class classification and the novel class detection. A model trained to distinguish
between five classes of plankton using five reference images from each class was
able to achieve a reasonable accuracy. In the novel class detection, however, the
model was able to filter out only 57 images out of 500 unknowns. Furthermore,
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the used triplet loss approach suffers from the high cost of the triplets mining
and exponentially increasing computations as the number of classes increases.

3 Proposed method

The proposed method for plankton recognition is based on similarity metric and
a gallery set of known classes. To obtain the similarity metric, a CNN model is
trained using the Angular Margin loss (ArcFace) [5]. Given an image as input, the
trained CNN model outputs an embedding vector and a similarity of two images
is quantified by computing the cosine distance between the image embeddings
as

dcos(v1,v2) =
v1 · v2

||v1|| ||v2||
, (1)

where v1 and v2 are the embedding vectors. The embedding vector will be
discussed further below.

To perform the plankton recognition for a query image, the embedding vector
is first computed using the trained model. Then the distances to the embedding
vectors of gallery set images are computed and the label is given based on the
most similar image. See Fig. 2 for the overview of the method. It should be noted
that since the image embeddings for gallery set can be computed and stored
beforehand the query image recognition can be done efficiently by computing
the cosine similarities between the vectors (simple dot product if the vectors are
L2 normalised). If the similarity between the query image and the most similar
gallery set image exceeds the predetermined threshold the query image is labelled
as unknown providing the basis for the open-set recognition. The metric learning
approach increases inter-class separability while decreasing intra-class variation
making the recognition less sensitive to selected threshold values when compared
to a traditional classification approach with class probability thresholding. The
threshold values can be tuned by minimizing the amount of misclassifications in
the validation set.

Since the method learns to quantify the similarity (likelyhood that the images
originate from the same class) instead of representations for individual classes,

Training
set

Gallery set

Query Unknown
class

Class
label

Similarity
metric

threshold

Fig. 2. The proposed method.
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the set of plankton species for which the method is applied can differ from
the set of classes in the training set. Therefore, to utilize the trained model
on a new dataset with different set of classes due to, for example, different
geographical region or ecosystem, one must only select and label a new gallery
set. The gallery set requires considerably less labeled images per class than model
training. Technically, even just one gallery image per class is enough to apply
the method if intra-class variation is very small. However, a very small amount
of gallery images may lead to a subpar recognition performance.

The method can be used with any backbone architecture, but ResNet-18 [8]
has been found to produce a high classification accuracy on plankton image
data with low computation cost [11]. We further propose to use Generalised
mean pooling (GeM) [20] to aggregate the deep activations and to construct a
representation that is invariant to both rotation and translation of the plankton.
The embedding vector v aggregated through GeM can be written as

v = [v1 . . . vk . . . vC ]
⊤
, vk =

(
1

|Xk|
∑
x∈Xk

xpk

) 1
pk

, k ∈ {1 . . . C}, (2)

where Xk is a set of elements of the feature map k and C is the number of
channels. The greater the power parameter pk, the more the network values
strong features. One of the major benefits of GeM is that pk is also learnable so
it can be optimized during the learning process.

3.1 Angular Margin Loss

ArcFace [5] utilizes the Angular Margin Loss to learn a distance metric for the
classification task. The idea behind the method is to consider the weights of the
last fully-connected layer as class centers. Normalization is used to distribute
embeddings on a hypersphere with predefined radius which makes it possible to
utilize geodesic distance. The loss is formulated as:

L = − 1

N

N∑
i=1

log
es(cos(θyi+m))

es(cos(θyi+m)) +
∑n

j=1,j ̸=yi
es cos θj

, (3)

where s is the the feature scale (hypersphere radius), θyi
is an angle between

embedding and the class center (vector of weights) of the correct class yi, θj is
an angle between weight vector for class j and the predicted embedding vector,
N and n are the batch size and number of classes, respectively. m is a predefined
additive margin that is used to increase inter-class separability while decreasing
intra-class variation. The most notable benefits of the ArcFace method include
the lack of need for triplet mining and a better class separability.

4 Experiments

4.1 Data

The data was collected from the Baltic Sea using an Imaging FlowCytobot
(IFCB) [17] that capture grayscale images of individual phytoplankton (see
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Fig. 3). The SYKE-plankton_IFCB_2022 dataset consists of 63 074 images rep-
resenting 50 different classes of phytoplankton manually labeled by an expert.
Due to the varying rarity of plankton species, the dataset is highly imbalanced
and the number of images per class varies from 19 to 12 280 images. For detailed
description of the data, see [11]. The dataset has been made publicly available3.

Fig. 3. Example images from the dataset.

To prepare the data for the training phase, several preprocessing steps were
done. The images were resized to have a standard dimension [224,224]. Resizing
was done using bicubic interpolation and the aspect ratio was maintained by
padding with the background color. The dataset was split into the training, val-
idation and test subsets with a ratio 6:2:2. To address the large class imbalance,
undersampling was utilized for large classes and data augmentation with random
affine transformations for small classes in order to create a balanced training set
with 2 000 images per class.

4.2 Description of experiments

To evaluate the open-set classification accuracy 10 classes were selected as un-
knowns and excluded from the training set. The remaining 40 classes were used
for training. The gallery set was constructed by randomly selecting 100 images
per class from the the training set. The experiment was repeated 5 times in such
a way that each class was selected as unknown once.

ResNet-18 was used as the backbone architecture for all experiments. The
network was trained from scratch using Adam optimizer. A fixed learning rate
of 1e-5 was used to train 200 epoch with a batch size of 64. The main two hy-
perparameters related to ArcFace are the hypersphere radius s and the additive
angular margin penalty m. s and m were set to 2.39 and 0.95, respectively. The
threshold values for open-set classification were defined for each class separately
3 http://doi.org/10.23728/b2share.abf913e5a6ad47e6baa273ae0ed6617a
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based on the validation set. The thresholds were found based on the distance
between the query image and all the images in the gallery set. For OpenMax a
pretrained ResNet-18 was used as a backbone.

4.3 Results

Table 1 shows the comparison between the proposed metric learning based
method and the OpenMax method. The classification of the knowns presents
the results in traditional closed-set setting with the same 40 classes included in
both the training and test sets. The classification accuracy with the proposed
method varied between 92.5% and 95.4%. These are comparable accuracies with
baseline CNN classifiers obtained with the similar datasets (96% accuracy with
32 classes of phytoplankton [3] and 97% accuracy with 50 classes [11]). The clas-
sification of the knowns with the threshold shows the results when the test set
contains only images from the known classes, but the threshold is applied to fil-
ter out predicted unknowns. As it can be seen, the accuracy decreases only little,
which indicates that the known classes are only rarely classified as unknowns.
The classification of the unknowns shows how many percentage of images from
the previously unseen classes were correctly classified as the unknowns and the
open-set classification shows results with 41 classes (40 known classes + un-
knowns). As it can be seen, the proposed method outperforms OpenMax in
both recognition accuracy and ability to reject images from previously unseen
classes.

Table 1. Mean classification accuracies and standard deviations over all 5 subexperi-
ments.

Classification Classification of Classification Open-set
of knowns knowns+threshold of unknowns recognition

OpenMax [1] 93.85±0.84% 91.96±0.68% 41.80±8.10% 90.65±0.39%
Proposed 94.60±1.05% 93.27±0.95% 65.20±6.43% 92.33±0.90%

One benefit of the proposed similarity learning approach is that by including
images to the gallery set it allows to generalize the method to new classes without
retraining the model itself. To study the method’s ability to generalize, example
images from the 10 unknown classes were included into the gallery set. Two
experiments were carried out: 1) the gallery set and the query set contained
images from all 50 classes (40 classes used to train the similarity model and 10
unknown classes), and 2) the gallery set and the query set contained images only
from the 10 classes that were not included in the training. The results are shown
in Table 2. While a drop in accuracy can be observed due to considerably more
challenging tasks and a mismatch between training and test set distributions, a
reasonably high accuracy was obtained.
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Table 2. Capability to generalize to previously unseen classes.

Top-1 Top-2 Top-3 Top-4 Top-5
50 classes 84.48±1.90% 91.96±0.99% 94.69±0.70% 95.88±0.41% 96.57±0.38%
(10 new)
10 classes 74.07±7.08% 90.21±3.29% 95.68±2.03% 97.78±1.60% 98.91±0.70%
(all new)

5 Conclusions

In this paper, a similarity learning approach to tackle the open-set plankton
recognition problem was proposed. The method consists of a similarity metric
learned using angular margin loss and a gallery set of known plankton species.
The feature embeddings produced by the similarity learning model allow to
compute the similarities between images and to find the most similar image
(species) in the gallery set of known plankton species. Moreover, by setting simi-
larity thresholds, the method is able to recognize when the query image contains
a plankton species not present in the gallery set, enabling open-set recognition.
The proposed method was shown to accurately recognize plankton species and
it outperformed OpenMax in the open-set recognition task. Furthermore, we
showed that the proposed method can adapt to new classes added to the gallery
set without retraining the similarity learning model. This is a promising step
towards a general-purpose plankton recognition method applicable to different
datasets with varying class compositions, promoting the wider utilization of au-
tomatic plankton recognition for aquatic research.
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