
1070
DEVELOPM

EN
T DIRECTION

S IN
 SOFTW

ARE TESTIN
G AN

D QUALITY ASSURAN
CE

Tim
o Hynninen

DEVELOPMENT DIRECTIONS IN SOFTWARE
TESTING AND QUALITY ASSURANCE

Timo Hynninen

ACTA UNIVERSITATIS LAPPEENRANTAENSIS 1070

Timo Hynninen

DEVELOPMENT DIRECTIONS IN SOFTWARE
TESTING AND QUALITY ASSURANCE

Acta Universitatis
Lappeenrantaensis 1070

Dissertation for the Degree of Doctor of Science (Technology) to be presented
with due permission for public examination and criticism in the Auditorium
1318 at Lappeenranta-Lahti University of Technology LUT, Lappeenranta,
Finland, on the 17th of February, 2023, at noon.

Supervisors Associate Professor (tenure track) Jussi Kasurinen

LUT School of Engineering Science

Lappeenranta-Lahti University of Technology LUT

Finland

Associate Professor (tenure track) Antti Knutas

LUT School of Engineering Science

Lappeenranta-Lahti University of Technology LUT

Finland

Reviewers Professor Markku Tukiainen

University of Eastern Finland

Finland

Assistant Professor (tenure track) Outi Sievi-Korte

Tampere University

Finland

Opponent Associate Professor (tenured) Daniel Russo

Aalborg University

Denmark

ISBN 978-952-335-922-2

ISBN 978-952-335-923-9 (PDF)

ISSN 1456-4491 (Print)

ISSN 2814-5518 (Online)

Lappeenranta-Lahti University of Technology LUT

LUT University Press 2023

Abstract

Timo Hynninen

Development Directions in Software Testing and Quality Assurance

Lappeenranta 2023

75 pages

Acta Universitatis Lappeenrantaensis 1070

Diss. Lappeenranta-Lahti University of Technology LUT

ISBN 978-952-335-922-2, ISBN 978-952-335-923-9 (PDF), ISSN 1456-4491 (Print),

ISSN 2814-5518 (Online)

In software engineering, testing and quality assurance activities are characterised as

important yet costly phases of a product’s life cycle. On the one hand, quality issues or

malfunctioning products can cause expensive and potentially irreversible damage; on the

other hand, rigorous quality assurance work is time-consuming and limited by the

available resources. For this reason, companies aim to automate their testing and quality

assurance processes as much as possible. In the modern software production environment,

the use of automation, tools and even artificial intelligence is constantly evolving. Given

the rapid pace of evolution, studying industry practices and observing practitioners in

action is paramount for software engineering research.

This thesis investigates current practices and future development directions in testing and

quality assurance work. First, a survey method is used to map the current practices. Then,

the thesis utilises an empirical approach to explore novel approaches for automating

quality assurance tasks. These approaches are then evaluated using the design science

research method. Finally, the survey results are used to create a testing education

curriculum aligned with industry practices.

As a result, the thesis presents a holistic overview of testing and quality assurance

practices, tools and education. An overview of the current tools in the industry is

presented, in addition to conclusions about the trends and issues related to testing.

Following the issues identified in the survey, a novel tool—.Maintain—is constructed and

evaluated as one solution to the runtime monitoring of software projects. The last

contribution is a curriculum, learning activities and learning objectives for testing

education to produce more industry-ready graduates.

Keywords: software testing, quality assurance, maintenance, survey, design science,

testing education and training

68 pages

Acknowledgements

First, I wish to express my gratitude toward Prof. Kasurinen and Prof. Knutas for

supervising this work. It was a privilege to work with you for all these years, and I have

learned a lot. I am grateful for the support and guidance you have given me throughout

this journey.

Thank you to the preliminary reviewers, Prof. Tukiainen and Prof. Sievi-Korte. I am

grateful for all the comments, remarks, observations, and requests to correct, which

have improved the work. Thank you Prof. Russo for agreeing to be my opponent in the

public examination.

Thank you, Victoria, for pushing me into finalizing this thesis. You kept me motivated

and had a huge impact on the final result.

Throughout my academic career, I have met many friends and colleagues, who have had

an impact on my way of thinking and ultimately the final form of this thesis. There are

too many names to list but thanks go to every single person I have shared a thought with

in the corridors of the university, or who has enjoyed a cup of coffee with me in the

break room.

A special thank you to a few very special friends; Thank you Janne Parkkila for all the

amazing work we did back in the day. Encounters with you probably set me off to seek

an academic career. Thank you Lassi Riihelä and Dmitrii Savchenko for sharing a

bright-minded office with me. Your knowledge and curiosity created an innovative

place to work.

Finally, a big thank you to all the family who have always been so supportive. I’m

grateful and proud to be a son, brother, uncle, and a godfather. The support has been

invaluable.

Timo Hynninen

January 2023

Helsinki, Finland

Contents

Abstract

Acknowledgements

Contents

List of publications 9

Nomenclature 11

1 Introduction 13
1.1 Motivation ... 13
1.2 Research approach ... 14
1.3 Outline of the thesis ... 15

2 Related work 17
2.1 What are software testing and quality assurance? 17
2.2 Trends in software quality assurance, testing, and fault prediction 18
2.3 Methods for measuring software quality ... 19
2.4 Tools for analysing software quality ... 20
2.5 Software testing and quality standards .. 21
2.6 ISO/IEC 25010 and ISO/IEC 29119 in detail ... 21

2.7 Software testing education .. 25

3 Research approach and methods 27
3.1 Objectives and research questions ... 27
3.2 Research methods .. 29
3.3 Research design ... 30

4 Overview of publications 33
4.1 Publication I – Survey of the industry practices 33
4.2 Publication II – Framework for observing maintenance needs,

runtime metrics and overall quality-in-use .. 37
4.3 Publication III – Code quality measurement: case study 41
4.4 Publication IV – Early-warning system for software quality issues

using maintenance metrics .. 43
4.5 Publication V – Guidelines for software testing education objectives

from industry practices with a constructive alignment approach 45
4.6 Publication VI – Designing early testing course curricula with

activities matching the V-model phases .. 48
4.7 Summary of contributions ... 50

5 Discussion 53
5.1 Research objectives ... 53

5.2 Findings ... 53
5.3 Implications for practice and research ... 55
5.4 Assessment of the research .. 56

6 Conclusion 59

References 61

Publications

9

List of publications

This dissertation is based on the below original papers. The rights have been granted by

publishers to include the papers in the dissertation. These publications are referred to as

Publication I, Publication II, Publication III, Publication IV, Publication V and

Publication VI. The author’s contributions to each publication are also presented here.

I. Hynninen, T., Kasurinen, J., Knutas, A., & Taipale, O. (2018). Software testing:

Survey of the industry practices. In Proceedings of the 2018 41st International

Convention on Information and Communication Technology, Electronics and

Microelectronics (MIPRO) (pp. 1449–1454). IEEE.

Hynninen was the principal author and investigator of the paper. He carried out

the surveys, analysed the data and wrote most of the article.

II. Hynninen, T., Kasurinen, J., & Taipale, O. (2018). Framework for observing the

maintenance needs, runtime metrics and the overall quality-in-use. Journal of

Software Engineering and Applications, 11(4), 139–152.

Hynninen was the principal author and investigator in the paper. He designed the

framework presented and conducted the experiments to validate the results.

III. Savchenko, D., Hynninen, T., & Taipale, O. (2018). Code quality measurement:

Case study. In Proceedings of the 41st International Convention on Information

and Communication Technology, Electronics and Microelectronics (MIPRO),

(pp. 1455–1459). IEEE.

Dr Savchenko was the corresponding author. Savchenko and Hynninen designed

the experiments and cowrote the article. Hynninen also assembled the literature

review and theoretical framework sections of the paper.

IV. Savchenko, D., Hynninen, T., Taipale, O., Smolander, K., & Kasurinen, J. (2020).

Early-warning system for software quality issues using maintenance metrics.

International Journal on Information Technologies and Security, 12(4), 35–46.

In this paper, Dr Savchenko and Timo Hynninen designed the study and

conducted the experiments. Most of the article was written by Dr Savchenko and

Prof. Kasurinen. Hynninen participated in the writing and contributed to the

assembly of the literature data presented in the paper.

V. Hynninen, T., Kasurinen, J., Knutas, A., & Taipale, O. (2018). Guidelines for

software testing education objectives from industry practices with a constructive

List of publications 10

alignment approach. In Proceedings of the 23rd Annual ACM Conference on

Innovation and Technology in Computer Science Education (pp. 278–283). ACM.

Hynninen was the principal author and investigator of the paper. He performed

the data collection and analysis and wrote most of the paper. The theoretical

framework was designed in cooperation with Prof. Knutas, who also wrote the

literature review section of the paper.

VI. Hynninen, T., Knutas, A., & Kasurinen, J. (2019). Designing early testing course

curricula with activities matching the V-model phases. In Proceedings of the 42nd

International Convention on Information and Communication Technology,

Electronics and Microelectronics (MIPRO) (pp. 1593–1598). IEEE.

Hynninen was the principal author and investigator of the paper. He performed

the data collection and analysis and wrote most of the paper. The theoretical

framework was designed in cooperation with Prof. Knutas and Prof. Kasurinen,

who took part in writing the paper.

11

Nomenclature

Abbreviations

QA Quality assurance

DSR Design science research

SOA Service-oriented architecture

DevOps Development and operations

ISO International Organisation for Standardisation

MI Maintainability index

IDE Integrated development environment

13

1 Introduction

Across the software business sector, software testing is an important part of quality

assurance (QA). QA activities in general aim to ensure that the products and services

offered are of the best possible quality. Testing efforts aim to ensure that products are

shipped with no or few defects.

Testing is arguably a difficult part of the software development process. Whittaker (2000)

describes testing as the least understood part of development. Often, testing and QA work

are automated as much as possible, and for this reason, there exists a plethora of different

testing tools, technologies and frameworks for test automation (Prasad et al., 2021).

However, the complex nature of testing work, in addition to the number of different tools

used in the industry, can cause configuration problems (Kasurinen et al., 2010).

Good testing practices and QA processes can reduce the total costs of the software life

cycle by reducing the number of defects during development. However, in the overall life

cycle models for software, this is only the first step in a lengthy phase: maintenance. The

maintenance phase of software is generally considered the biggest overall expense.

Therefore, QA and testing activities must also be carried out after any dedicated

development or testing phase.

The tools and processes used in the industry constantly evolve, so much so that industry

practices and academic research are ‘worlds apart’ (Garousi & Felderer, 2017). This

evolution has brought more sophisticated tools and automation to reduce the costs related

to testing and maintenance. Working in this context, the objective of the current thesis is

to explore the different development directions related to software testing and QA work.

The current study investigates testing practices in the industry and proposes solutions to

some of the problems plaguing the business sector. The first contribution of the study to

the state-of-the-art is a survey mapping the current testing and quality assurance practices

in the industry. Two other contributions are also presented: Tools for measuring software

quality characteristics, and recommendations for learning objectives in testing education.

1.1 Motivation

By definition, software testing is the activity conducted to establish and assess the quality

of software products (Osterweil, 1996). Myers et al. (2004) offer a more pragmatic view

with the definition of testing as ‘the process of executing a programme with the intent of

finding errors’. In practice, software testing activities cover most of the QA work

(Kasurinen, 2013).

Testing is characterised as an activity simultaneously expensive and money-saving. On

the one hand, testing is a costly activity (Garousi, Arkan, et al., 2020), and it is often not

conducted efficiently (Taipale & Smolander, 2006). In 2013, the price of finding and

fixing software defects was estimated to be US$312 billion globally (Britton et al., 2013).

1 Introduction 14

The high price tag of testing is largely because of the high cost of fixing defects after the

design and development phases have been completed (Kit, 1995; Planning, 2002). The

costs related to poor quality products, such as malfunctioning programmes and errors in

functionality, cause large expenses.

On the other hand, QA work can save money in the long run. At the beginning of the

millennium, a US National Institute of Standards and Technology report estimated that

US$21.2 billion of direct losses could have been prevented (Tassey, 2002). The same

report estimated that an additional US$59.5 billion could be saved when accounting for

indirect losses to clients and customers. More recently, studies have indicated that the

costs related to testing are on the rise. The software industry has identified a need to

reduce the growing cost of test management (Capgemini, 2017).

In addition, the rise of software-as-a-service distribution methods (Ma, 2007) and

continuous delivery models (Chen, 2015) has made the maintenance phase one of the

most costly in the life cycle of a software product (Capgemini, 2017; Kyte, 2012). In

some software industries, the first launch expects the system to include only the bare

essentials, and the majority of the content is developed while the system itself is in ‘the

maintenance phase’ (Leppänen et al., 2015). However, few software development models

or software process models consider changing deployment practices.

Testing practices and processes in software are usually ad-hoc (Garousi, Arkan, et al.,

2020). In addition, testing is often manual work that relies on the experience (and

creativity) of the testers (Myers et al., 2004). Although many software companies have

established processes for testing and quality control, many studies have suggested there

is room for improvement in industry practices (e.g., Garousi et al., 2015; Garousi & Zhi,

2013; Garousi & Varma, 2010; Taipale & Smolander, 2006). Given how expensive

testing and QA work is, improvements in this line of work could bring significant savings

while improving product quality. A recent study by Wang et al. concludes that ‘there is

lack of guidelines on designing and executing automated tests and the right metrics to

measure and improve test automation processes in general’ (2020).

As the costs of testing are on the rise (Capgemini, 2017), and the software industry could

benefit from research and development efforts (Garousi, Arkan, et al., 2020), there is a

need for further empirical study on the practices, processes, and tools related to testing.

Academia can benefit from a better understanding of industry practices. Aligning research

with industry practices can also be used to improve education and training, and produce

more knowledgeable and industry-ready graduates.

1.2 Research approach

The current thesis investigates software testing through the lens of monitoring software

during the maintenance phase. The research presented falls under the umbrella of software

testing and QA. Specifically, the research examines the practices in the industry, reveals

 15

development directions in the area, presents new tools for practitioners and examines the

education and competencies related to testing and QA.

The thesis utilises both quantitative and qualitative research methods. First, the survey

method is used to study testing and QA practices in the Finnish industry. Current industry

practices in testing, processes, tools and automation are investigated to obtain an

overview of the state of the art. Next, the current study focuses on tools for monitoring

software quality and detecting defects. This, in turn, is achieved by applying the design

science research method. Finally, testing education and training are explored in the same

context. Constructive alignment is used as the main method in the final phase of the

research.

1.3 Outline of the thesis

The present thesis is divided into two parts: an introduction and six scientific publications

as an appendix. The introduction outlines the general research area, the research approach,

including research questions and research process, and synthesises the overall results

from the scientific publications. The appendix contains six publications, which describe

in detail the individual research studies that form the research programme outlined in the

thesis.

17

2 Related work

This section presents the literature and central concepts related to software quality. First,

a literature review is presented to provide an overview of the field. Next, the methods and

tools for quality assurance (QA) are discussed. Then, related software testing and quality

standards are presented. Finally, extant literature related to testing education is discussed.

2.1 What are software testing and quality assurance?

Software testing provides information about the quality of the software (Kaner, 2006).

Testing consists of verification and validation work (Kit, 1995). Verification means the

evaluation of the product’s compliance with certain requirements (IEEE, 2011).

Validation, on the other hand, means the assurance that the product meets the needs of

the customer and other stakeholders (IEEE, 2011). In layman’s terms, verification

answers the question ‘Are we building the product right?’ whereas validation answers the

question ‘Are we building the right product?’

Testing is often defined as the process of finding faults in a software product. The most

traditional—and arguably the most pragmatic—definition is by Myers et al. (2004):

‘Testing is the process of executing a programme with the intent of finding errors’. This

definition reflects the verification aspect of testing. A broader definition for testing is

offered by the joint ISO/IEC and IEEE standards as ‘activity in which a system or

component is executed under specified conditions, the results are observed or recorded,

and an evaluation is made of some aspect of the system or component’ (ISO/IEC, 2017).

Many definitions tend to share Myers’ view but augment it by addressing validation as

well; for example, Whittaker’s (2000) definition of testing as ‘the process of executing a

software system to determine whether it matches its specification’ is almost identical,

except that it focuses on validation instead of verification. In addition to focusing only on

either verification or validation, the previous definitions by Myers et al. and Whittaker

are quite narrow also because they do not cover static features of software—for example,

code reviews would not be considered testing under these definitions.

The ISO/IEC 29119 standard for software testing defines testing from the viewpoint of

the testing process. That is, testing is comprised of the individual processes and

overarching organisational policies. The standard covers, for example, dynamic test

processes, static test processes, test management, test monitoring and control, test strategy

and test policy (ISO/IEC, 2013).

Quality assurance is related to all the processes in software development that aim to

improve product quality. According to ISO 9000, QA is the ‘part of quality management

focused on providing confidence that quality requirements will be fulfilled’ (ISO/IEC,

2005). Software testing covers most of QA (ISO/IEC, 2013), so the two concepts have a

strong connection.

2 Related work 18

2.2 Trends in software quality assurance, testing, and fault prediction

Many recent studies have focused on the trends of QA, testing, and fault prediction,

including meta-analyses. For example, Catal (2011) performed a literature survey

containing 90 academic papers about software fault prediction published between 1990

and 2009. The survey covered statistics-based and machine-learning-based approaches

for fault prediction. The publication trends indicate that fault prediction gained interest

during the two decades of observation. The survey also highlights significant researchers

in the field and practical software fault prediction problems identified in the literature.

The results highlight the need for software assessment models because machine learning

and data analytics approaches to fault prediction require an extensive amount of available

data. Another challenge identified regarding the lack of data is the validity of the

constructed assessment models when there is not enough fault data to build accurate

models.

Goues et al. (2013) identify several factors in programme design that are critical to

maintenance. The article provides a high-level overview of the state of the art in automatic

programme repair. The identified programme design issues affecting scalability and

repair success include focusing on the most visited (high-risk) code areas and feature

development in patches (adding functionality in the late stages of the development cycle).

The challenges in automated programme repair are identified as locating possible fixes,

evaluating repair quality, the absence of complete test suites or formal specifications and

accepting the change or new ways to work.

Sarwar et al. (2008) analyse and compare different tools for calculating the

maintainability index (MI). The article highlights that each tool has its strengths and

weaknesses, hence producing a different MI score in different circumstances. As a result,

the article calls for standardisation of MI calculation formulas and more open-source tools

to support maintainability evaluation.

These studies suggest, that there is a need for further study in fault prediction and early-

warning systems for quality issues. The detection of faults and high-maintenance software

modules is an important research avenue. Existing measures can be utilised but more

high-level frameworks could be developed.

 19

2.3 Methods for measuring software quality

Many studies have approached software quality through maintainability characteristics.

One of the earliest in this line of work is the study by Lewis and Henry (1989), in which

the authors present a method for integrating maintainability into large-scale software

projects. Many recent studies follow the ideas presented by Lewis and Henry, the most

notable of these being the concept of using code metrics as an indicator of quality.

In the study by Koru and Tian (2005), high-change code modules are identified. Two

large-scale open-source products, Mozilla and OpenOffice, are used. The study compares

the high-change modules with the modules with the highest measurement values. The

authors conclude that, although high-change modules also have high measurement values,

they are, however, not the highest scorers in the code quality metrics.

Ghods and Nelson (1998) evaluate the factors that contribute to quality during the

maintenance phase of the software life cycle. The study emphasises that design choices

towards better maintainability positively impact quality during the maintenance phase.

The results indicate that quality during maintenance results from good application design

combined with a strong bond between software maintainers and end users.

In a similar vein, Yamashita (2015) performs software quality evaluations by combining

metrics analysis, software visualisation and expert assessment techniques. The research

presents a case study of a software quality evaluation process performed for a logistics

company. The results show that automatic software benchmarking provides useful

information to aid in decision making, but at the same time, it should be complemented

with inspections and visual analysis.

Hegedus (2013) studies the effect of coding practices on maintainability. This work

examines two Java-based systems using a probabilistic measurement model. The results

indicate a strong correlation between the density of design patterns in code and

maintainability of a system. The software measurement model combines static code

complexity metrics, for example, McCabe metrics, with in-use metrics measuring fault

proneness.

Janus et al. (2012) introduce continuous measurement and continuous improvement into

the development process as subsequent activities to continuous integration. This article

establishes software quality metrics for an agile development process. The approach is

then validated in a legacy web application project.

Herzig et al. (2015) present a generic test selection strategy that aims to improve the

agility of development. The test selection method is based on the cost estimation of

2 Related work 20

running a test, and it removes tests from a suite when the expected cost of running a test

exceeds the cost of removing it. The article describes a cost model for test executions,

which is then evaluated using large projects, such as Microsoft Office or Windows.

Rompaey et al. (2007) introduce a conceptual model for software testing. Based on the

model, the article proposes metrics that are used to measure smells in unit tests. As a

result, the article demonstrates how the proposed metrics can be used to automate test

evaluation.

Although these studies investigate how to measure the quality of software code, they

focus on individual characteristics such as performance, maintainability, security, or

usability. Thus, there is a need for further investigation toward a framework that combines

multiple quality characteristics. Such a framework can use the proven methods of

measuring software quality and further extend their utility.

2.4 Tools for analysing software quality

Some of the previous studies in the field of measuring software quality also include tools

that can be used to adopt the methods. For example, Motogna et al. (2016) present an

approach to measure software maintainability by using the characteristics of

maintainability as defined by ISO/IEC 25010. Their analysis maps object-oriented

metrics to maintainability characteristics from the software quality model. This work

shows the influence of code metrics on quality characteristics and how different metrics

affect maintainability subcharacteristics.

CODEMINE is a data analytics platform for collecting and analysing data related to

engineering processes at Microsoft. The platform collects metrics from source code

repositories, reports, test and deployment platforms and project management systems. It

can be used for onboarding processes, optimising individual processes and optimising

code flow (Czerwonka et al., 2013).

PerformanceHat is a plug-in for the Eclipse integrated development environment (IDE).

The objective of PerformanceHat is to analyse performance problems in software projects

by integrating analytics directly into the IDE. The studies by Cito et al. (2018, 2019) on

the tool show that developers who use it are faster at detecting problems and better at

finding the cause of those problems.

Suliman et al. (2006) present a built-in test infrastructure, where component testing is

realised using a test responsibility approach. The article describes an infrastructure that

supports testing at runtime through features such as test isolation, test scheduling and

resource monitoring.

 21

2.5 Software testing and quality standards

In the current study, the ISO/IEC 25010 (ISO/IEC, 2011b) software quality and ISO/IEC

29119 (ISO/IEC, 2013) software testing standards serve as the theoretical framework for

the technological aspects. The present work is mainly based on the ISO 25010 System

and software quality models because they are relatively recent yet well-established

standards. ISO 25010 provides a comprehensive model for a quality measurement

framework in its quality-in-use model. Additionally, the standard provides examples of

how to derive metrics and execute measurements.

Standards can provide a rough overview of technological fields, such as testing and QA.

However, often standards are too generic for practical use, as they are generally quite

high-level. As such, standards are a good starting point for an evaluation of software

quality, maintainability or complexity, but solutions that implement the ideas in these

frameworks are scarce.

In the literature, many software measurement frameworks are based on—or at least

influenced by—the ISO/IEC quality models. Examples of these studies include the

software maintainability measurements developed by Motogna et al. (2016), the

longitudinal project to evaluate the maintainability of software projects by Molnar and

Motogna (2020), the performance measurement framework for cloud computing by

Bautista et al. (2012) or the framework for evaluating the effect of coding practices on

software maintainability by Hegedus (2013). Thus, the ISO 25010 standard is often used

in software engineering research, which makes it a good starting point for the current

study.

However, previous research has been limited to covering only parts of quality models.

Previous studies have concentrated on specific quality characteristics such as

maintainability or performance efficiency. To the best of the author’s knowledge, no

research or tool exists where the entire software quality model has been considered. There

is a need for further work with a general measurement framework and tools, in which the

aim is to incorporate the characteristics of a software quality model into a software

measurement tool.

2.6 ISO/IEC 25010 and ISO/IEC 29119 in detail

ISO/IEC 25010 describes the quality for software as a combination of ‘system/software

quality’ and ‘system/software quality-in-use’. Software quality consists of those

characteristics related to the design and implementation of software, whereas quality-in-

use is described by the characteristics related to the outcomes of the interaction with the

software. The ISO/IEC 25000 standard aims to clarify the requirements for assessing

software quality. Thus, the ISO/IEC 25010 quality model aims to depict the software

system as a complete computer–human system, in which systems have both static

properties and interaction with users (ISO/IEC, 2011b).

2 Related work 22

The software and system product quality characteristics are divided into eight categories,

which are further divided into 31 subcharacteristics. The main characteristics are

functional suitability, performance efficiency, compatibility, usability, reliability,

security, maintainability and portability. The characteristics focus on the technical aspects

of the software, even though there are also more human-centric aspects, such as

learnability or aesthetics. The ISO/IEC 25000 standard family also contains

recommendations for measuring the characteristics and subcharacteristics using

quantitative and qualitative metrics. Figure 2.1 shows the software product quality

attributes.

Figure 2.1: The ISO/IEC 25010 software / system product quality model (adapted from

(ISO/IEC, 2011b)).

 23

The quality-in-use model includes five main characteristics, which are further divided

into 11 subcharacteristics. The quality-in-use model focuses on the effect of the use of

the software and user experience. Unlike the product quality model, several of the

subcharacteristics are recommended to be measured using psychometric scales or other

user-centric methods. Figure 2.2 presents the quality-in-use attributes in detail.

Figure 2.2: The ISO/IEC 25010 software quality-in-use model (adapted from (ISO/IEC,

2011b)).

In the current thesis, the examination of software quality is related to the maintenance

phase of the software life cycle. On its own, maintainability is one of the eight product

quality properties defined in ISO/IEC 25010. Maintainability is the ‘degree of

effectiveness and efficiency with which a product or system can be modified by the

intended maintainers’ (ISO/IEC, 2011b). Maintainability has also previously been

defined as ‘the modification of a software product after delivery to correct faults, to

improve performance or other attributes, or to adapt the product to a modified

environment’ in software standards concerning software life cycle processes (ISO/IEC,

2006).

Maintainability in the ISO 25010 software quality model consists of modularity (‘degree

to which a system or computer programme is composed of discrete components’),

reusability (‘degree to which an asset can be used in more than one system’),

analysability (‘degree with which it is possible to assess the impact on a product or

2 Related work 24

system’), modifiability (‘degree to which a product or system can be modified’) and

testability (‘degree of effectiveness and efficiency with which test criteria can be

established for a system’) (ISO/IEC, 2011b).

Table 2.1: Verification and validation activities (adapted from (ISO/IEC, 2013))

As far as testing and QA activities are concerned, the ISO/IEC 29119 standard focuses

on testing and the test process itself (ISO/IEC, 2013). This standard aims to form a

consensus regarding what areas software testing includes and to serve as a reference

manual for common concepts and definitions. Additionally, the standard can be employed

as a reference model for software testing activities at the guidance level.

In this standard, testing is seen in the context of verification and validation. This is

because most verification and validation activities are covered by testing. As a whole,

testing is presented as a risk-based activity because this approach allows testing to be

prioritised and focused. The classification of the different verification and validation

activities, as depicted in the ISO/IEC 29119, which is presented in Table 2.1.

In particular, the standard covers dynamic and static testing methods. Static testing refers

to the examination of programme code through inspections, code reviews, model

Verification and validation activities as categorised in ISO/IEC 29119

Testing

Static testing

Inspection

Reviews

Model verification

Static analysis

Dynamic testing

Specification-based

methods

Structure-based methods

Experience-based methods

Formal methods

Model checking

Proof of correctness

Verification &

Validation Analysis

Simulation

Evaluation Quality metrics

 25

verification and static analysis methods. The objective of static testing is to ensure that

the programme code does not contain faults or errors, and that the code is written with

readability in mind.

In turn, dynamic testing refers to the techniques used to examine the programme’s

behaviour. Specification-based methods, for example equivalence partitioning or

boundary value analysis, use specifications (such as requirements or models) as the basis

for the test conditions. In structure-based methods, such as branch testing, the structure

of the programme (commonly source code but also models of the system) is used to design

test cases.

Experience-based methods, such as error guessing, differ from specification- and

structure-based methods in that they rely on the experience of the tester or test designer

to identify fault-prone components and common errors. The different testing methods are

complementary, and usually, a combination of all is required for effective testing.

2.7 Software testing education

The literature related to testing education has previously been synthesised in the literature

reviews by Desai et al. (2008), Scatalon et al. (2019), Lauvås Jr & Arcuri (2018), and

Garousi et al. (2020).

Lauvås Jr & Arcuri (2018) conducted a literature review on the recent trends in testing

education. According to the results, most studies focus on the pedagogical approaches to

teaching testing. Additionally, many studies present software and tools to support

teaching. Most of the existing work in testing education describes experiences, and not

many meta-analyses have been conducted on the topic.

Garousi et al. (2020) performed a literature mapping study. According to the results, the

main activities that are present in testing courses are generic software testing, test-case

design, test automation, and test execution. In addition, the study points out some of the

challenges in teaching software testing, including motivating students, time and resource

requirements for the instructors, the complexity of the topic, and alignment with the

industry needs.

In terms of how the testing skills differ between students (novices), and professionals,

the study by Bai et al. (2021) found that students tend to struggle with test coverage and

generally have poor knowledge of how to write good tests. Writing tests also help students

write better code (Lazzarini Lemos et al., 2017; Lazzarini Lemos et al., 2015; Scatalon et

al., 2017). Instructors can also employ checklists to guide the students through designing

tests (Bai et al., 2022).

Extant literature shows a consensus that testing education produces more knowledgeable

and industry-ready graduates. At the same time, there are also challenges related to testing

as the teaching topic. For example, students’ motivation to study testing is a recurring

2 Related work 26

theme (Garousi et al., 2020; Lauvås Jr & Arcuri, 2018). This suggests, that there is a need

for further studies on the design and validation of testing curricula. One viable approach

is to integrate real-world contexts in the testing courses (Krutz et al., 2014; Lopez et al.,

2015; Valle et al., 2017). Thus, there is room for the development of testing curricula that

are aligned with industry practices.

27

3 Research approach and methods

This chapter describes the research approach and methods used in the present dissertation.

First, the objectives of the work and overarching research questions are presented. Next,

the research method and design are detailed. Finally, the different stages of the work are

discussed. The research process was split into four phases. Table 3.1 provides an

overview of the phases, research approach, outcomes and relation to the included

publications.

3.1 Objectives and research questions

The current thesis aims to investigate development directions in testing and QA. The

current study focuses on the testing practices, processes and tools of the industry, existing

quality measurement standards, as well as the education of software engineers. The main

research question is as follows: To what extent can test automation and software

measurement tools improve testing and QA work in software companies? The main

research question is further divided into the following subquestions:

RQ 1: What is the current state of industry practices in testing and QA, and how have

they evolved in recent times?

RQ 2: What kind of framework would enable measurement of software quality

characteristics and detecting maintenance issues?

RQ 3: To what extent can runtime quality metrics be collected from real software projects

to analyse quality and maintainability?

RQ 4: To what extent are software engineers ready to use the testing and QA tools, and

how can testing education be better oriented to support this goal?

3 Research approach and methods 28

Table 3.1: Overview of the research approach

 Phase 1 Phase 2 Phase 3 Phase 4

Phase

objective

Understand the

current state of

industry practices

in testing and QA.

Investigate how

QA activities

could be

improved in the

maintenance

phase of the

software life

cycle.

Design,

implement and

validate tools

that automate

the collection of

software quality

metrics.

Evaluate the

competencies

and education of

software

engineers.

Research

questions

What is the current

state of the

industry practices

in testing and QA,

and how have they

evolved in recent

times? (RQ 1)

What kind of

framework

would enable

measurement of

software quality

characteristics

and detecting

maintenance

issues? (RQ 2)

To what extent

can runtime

quality metrics

be collected

from real

software

projects to

analyse quality

and

maintainability?

(RQ 3)

To what extent

are software

engineers ready

to use the testing

and QA tools,

and how can

testing

education be

better oriented

to support this

goal? (RQ 4)

Method Survey Design science Design science Survey;

Constructive

alignment

Outcomes Survey mapping

the industry

practices in testing

and quality

assurance

Design and

implementation

of a framework

for runtime

software

measurement

Design,

implementation,

and evaluation

of a tool for

measuring

software quality

characteristics

Curriculum and

learning

objectives for

testing

education

aligned with

industry

practices

Related

publications

Publication I Publication II Publications III

and IV

Publications V

and VI

 29

3.2 Research methods

This section covers the selection of the research methods used in the current thesis. The

selected research approach combines quantitative and qualitative research methods. First,

the survey method, as a quantitative research approach, is used to provide an overview of

the field. Next, qualitative approaches are employed to design, build and evaluate

artefacts.

Survey method

The survey method was used at the beginning of the research programme. Fink and

Kosecoff (1985) describe the objective of a survey as collecting information from people

about their feelings and beliefs. Surveys are the most appropriate when information

comes directly from people (Fink & Kosecoff, 1985).

Surveys can be employed as a data collection method for both descriptive and prescriptive

studies. Descriptive studies aim to produce descriptive theories (or kernel theories) based

on existing theories and new data (Fischer et al., 2010). Prescriptive studies, including

design science research, use data to construct useful artefacts (Carstensen & Bernhard,

2019), including models, methods, constructs, instantiations and design theories (March

& Smith, 1995; March & Storey, 2008).

Multiple approaches exist for survey research design. In the present work, a cross-

sectional research approach to the survey method was employed. In cross-sectional

survey studies, a relevant sample of a population is drawn and studied (Shaughnessy et

al., 2012). Cross-sectional studies provide descriptive statistics of the target population at

one time, but they cannot be used to draw conclusions about the factors explaining the

results (causation).

The survey research conducted within the current thesis has been positioned as

exploratory, observational and cross-sectional work exploring practices in the software

industry.

Design science research

The design science research (DSR) method (Gregor & Hevner, 2013; Hevner et al., 2004;

Hevner, 2007; Peffers et al., 2007) is an outcomes-based research method providing a

framework for the design, implementation and evaluation of systems and artefacts.

Hevner and Chatterjee define DSR as ‘a research paradigm in which a designer answers

questions relevant to human problems via the creation of innovative artefacts, thereby

contributing new knowledge to the body of scientific evidence. The designed artifacts are

both useful and fundamental in understanding that problem’ (2010).

The iterative approaches employed in DSR can enable the development of different

artefacts, ranging from theories (Kuechler & Vaishnavi, 2008) to engineering designs and

models (Carstensen & Bernhard, 2019). The DSR approach was selected to support the

3 Research approach and methods 30

design and implementation of the software tools created as part of the research

programme. The objective was to design and implement tools that automate the collection

of software quality metrics. DSR provided a research methodology for the empirical work

related to software development and a framework for the evaluation and dissemination of

the results.

In DSR, the novelty of artefacts can be seen through the lenses of applicable knowledge

and business needs. Rigour in the process is demonstrated through the application of

existing theories and methodologies. Relevance relates to the existence and fulfilment of

business needs, which can be demonstrated by applying the artefact in a real-life

environment (Hevner et al., 2004).

Constructive alignment

Constructive alignment is an outcome-based approach to education. In constructive

alignment, the learning outcomes that students are intended to achieve are defined in

advance. Teaching and assessment methods are then designed to best achieve preset

outcomes (Biggs, 1996, 2014). Hence, constructive alignment is suitable for pedagogic

design, where the teaching topics follow established industry practices.

The current study employed constructive alignment as the main method for exploring the

activities and learning objectives of a testing curriculum.

3.3 Research design

Finally, the research design in the current thesis is described in detail. Each phase

consisted of an independent objective, research question, research methods and outcomes.

Both quantitative and qualitative approaches were employed, with the whole work

consisting of survey research, design science and constructive alignment. The following

presents a breakdown of each phase of the research programme.

Phase 1

In Phase 1, a survey method (Fink & Kosecoff, 1985) was used to elicit information from

professionals working in software development companies. The responses were detailed

on the level of organisational units. This led to an analysis of how software organisations

test their products and what process models they follow. Additionally, the collected data

were compared with prior surveys to understand how industry practices have changed.

The survey instrument included questions about software development and QA practices,

tools and challenges related to QA. The present study investigated the use of test

automation, test infrastructure, agile practices and formal process models. The results of

Phase 1 are documented in Publication I.

 31

The results from the survey were used as the first step towards understanding

contemporary testing and QA challenges in the software development process. These

results helped form a picture of the types of automation currently in use in the software

industry and the interest in tools that could be further explored in future research. Later,

the survey was used to align testing education with industry practices.

Phase 2

In Phase 2, the design science research (DSR) method (Gregor & Hevner, 2013; Hevner,

2007; Hevner et al., 2004; Peffers et al., 2007) was the primary approach. The design

science approach was selected because it is particularly suitable for engineering problems

(Hevner et al., 2004; Peffers et al., 2007). DSR uses an iterative design process to create

artefacts to solve a specific problem. The outcome of the design process is then rigorously

evaluated in practice. The research process is considered successful if the artefact

quantifiably solves the problem (Hevner et al., 2004).

This approach was used to design and implement a framework for runtime software

measurement. The design and evaluation of the tools were carried out following an

iterative process, and the results of the first iteration are documented in Publication II.

The utility of the framework was demonstrated using descriptive scenarios and use cases.

However, as the DSR method requires rigorous evaluation in practice, further refinement

of the framework continued in Phase 3 of the current study.

Phase 3

The DSR approach was continued in Phase 3. This phase consisted of the design,

implementation and evaluation of a tool for measuring software quality characteristics.

The design of the tool was based on the runtime software measurement framework

designed earlier. Following the principles of DSR, the construction of the tools was

documented in Publication III, while Publication IV presents the evaluation and proof of

utility.

In Publication III, the focus was on the design, construction and initial evaluation of a

tool for analysing and visualising the maintainability of a software project. This work

consisted of designing the software architecture for the maintenance metrics collection

and analysis software, hence demonstrating the rigour of the work, as necessitated by the

DSR method.

Publication IV presented the .Maintain (read: dot maintain) tool for measuring the quality

characteristics of a software product. The design, architecture and operating principles of

the tool were demonstrated, along with use cases and descriptive scenarios. The utility of

the tool was demonstrated by presenting a case study where working software products

were used as a proving ground for the tool. In the case study, the metrics provided by the

tool were collected and reviewed in an in-depth interview with a project manager/product

3 Research approach and methods 32

owner. The case study provided a real-life environment through which the relevance of

the tool could be demonstrated.

Phase 4

In Phase 4, the research aimed to support an understanding of software testing for new

professionals through education and training. The results from the survey in Phase 1 were

used to plan a contemporary testing curriculum. The primary research method was

constructive alignment (Biggs, 1996, 2014).

The outcome of this phase was a curriculum and learning objectives for testing education.

The curriculum design used the constructive alignment approach to fit the learning

objectives, together with current industry practices. The design and evaluation of the

curriculum are documented in Publications V and VI.

33

4 Overview of publications

This chapter presents an overview of the publications included in the thesis. The full

publications are included in Appendix 1. In this chapter, the publications are summarised

in terms of their research setting, methodology, results and relation to the entire thesis.

4.1 Publication I – Survey of the industry practices

Background and objectives

Testing can be one of the most expensive tasks for software projects. Besides causing

immediate costs, problems with testing are also related to the costs of poor quality,

malfunctioning programmes and errors, all of which can cause large additional expenses

to software producers during maintenance (Kit, 1995; Planning, 2002). The costs related

to testing are on the rise; the software industry has identified a need to reduce the growing

cost of test environment management (Capgemini, 2017).

The objective of Publication I was to explore the testing practices of software companies.

To achieve this, we used an online survey, in which we collected responses from people

working in 33 different software companies. Additionally, the survey responses were

compared with the results of a similar survey conducted nine years earlier in 2009

(Kasurinen et al., 2010), which itself was a follow-up survey to one in 2005 (Taipale et

al., 2005).

Results and contributions

In this study, we surveyed organisational units (OU) representing different sizes and

business domains in software development. The survey questionnaire consisted of

multiple choice, multiple item questions to collect quantitative data for statistical analysis

and open-ended questions for qualitative analysis.

The study mapped the utilisation of different testing tools used in the industry and current

problems relating to testing and tools of the trade. The results are summarised in Tables

4.1 and 4.2, respectively.

Additionally, we compared the survey results to the results of a similar survey conducted

in 2009. The comparison revealed changes in industry practices. Finally, the survey also

contained a self-assessment of the quality of the different testing and QA practices, which

we were also able to compare to earlier survey results. These results are presented in

Table 4.3.

The results show that organisations have shifted towards automation in testing, moving

away from manual testing. They have taken advantage of more sophisticated testing

infrastructures, applied more agile practices even in mission-critical software and reduced

the use of formal process models.

4 Overview of publications 34

This study set the foundations of the thesis. The results enabled us to understand the

current industry practices in software testing. Tools and practices in testing were further

explored in subsequent publications.

Table 4.1: Percentage of the testing and QA tools utilised in the industry, as identified in our

2017 survey and previously in 2009 (Kasurinen et al., 2010).

Tool % of respondents

 2017 2009

Bug/defect reporting 72.7% 22.6%

Test automation 66.7% 29.0%

Unit testing 57.6% 38.7%

Bug/code tracing 57.6% 3.2%

Performance testing 48.5% 25.8%

Test case management 45.5% 48.4%

Integration testing 45.5% 16.1%

Virtual test environment 42.4% 12.9%

Quality control 36.4% 19.4%

Automated metrics collector 36.4% 3.2%

System testing 27.3% 9.7%

Security testing 24.2% 3.2%

Test completeness 24.2% 6.5%

Test design 15.2% 22.6%

Protocol/interface conformance tool 9.1% 6.5%

 35

Table 4.2: Software test process problems, as identified in our 2017 survey and previously in

2009 (Kasurinen et al., 2010). Responses are on a scale of 1 to 5 (1 – fully disagree, 3 – neutral

and 5 – fully agree).

 2017 mode 2009 mode

Complicated testing tools cause test configuration errors. 4 1

Commercial testing tools do not offer enough support for our

development platforms.

3 1

It is difficult to automate testing because of its low reuse and

high price.

4 5

Insufficient communication slows the bug-fixing and causes

misunderstanding between testers and developers.

4 2

Feature development in the late phases of the product

development shortens testing schedule.

4 4

Testing personnel do not have expertise in certain testing

applications.

4 4

Existing testing environments restrict testing. 3 4

4 Overview of publications 36

Table 4.3: The self-assessment of the quality of the different testing and QA practices, as

identified in our 2017 survey and previously in 2009 (Kasurinen et al., 2010). Responses are on

a scale of 1 to 5 (1 – fully disagree, 3 – neutral and 5 – fully agree).

 2017

mode

2009

mode

Our software correctly implements a specific function. We are building the

product right.

4 5

Our software is built traceable to customer requirements. We are building the

right product.

5 4

Our formal inspections are OK. 4 2

We go through checklists. 2 3

We keep code reviews. 1 4

Our unit testing (modules or procedures) is excellent. 4 2

Our integration testing (multiple components together) is excellent. 3 3

Our usability testing (adapt software to users’ work styles) is excellent. 3 2

Our function testing (detect discrepancies between a programme’s functional

specification and its actual behaviour) is excellent.

3 4

Our system testing (system does not meet requirements specification) is

excellent.

3 4

Our acceptance testing (users run the system in production) is excellent. 4 4

We keep our testing schedules. 2 4

Last testing phases are kept regardless of the project deadline. 4 4

We allocate enough testing time. 2 4

 37

4.2 Publication II – Framework for observing maintenance needs,

runtime metrics and overall quality-in-use

Background and objectives

Postrelease maintenance is usually the most expensive phase in the software product life

cycle, which cover the first design concepts to the end of product support. Knowing this,

it is rather surprising that the software development processes do not focus more on the

maintenance phase. Instead, development processes focus on enhancing and offering

product quality and quality-in-use improvements within the development and QA steps.

For example, the Scrum software process model, which is favoured in many organizations

does not take into account any activities that happen before or after active sprints, even

though most software-related costs are not realised within this period.

The objective of Publication II was to study the different methods of monitoring software

in the maintenance phase. We hypothesised that lowering the amount of work required

for maintenance by predicting and identifying the changes in the quality characteristics

could reduce the costs of maintenance. Thus, the aim was to build a software quality

measurement framework into the source code as a library of measurement tools.

Changes in quality measures serve as an early-warning system of problematic

components and software failures. More specifically, we concentrated on developing a

library of software measurement probes using the ISO/IEC 25000 standard of software

quality attributes as a starting point. The research questions in Publication II were as

follows: What kind of technical infrastructure would enable identification of online

quality characteristics and thereby maintenance issues? How can a software quality model

be incorporated into a library of runtime metrics?

Results and contributions

In Publication II, our approach was to define a framework and implement the framework

in a system to collect and monitor runtime data from an open-source application. In

addition, the collected data are visualised with a separate analysis tool to monitor the

trends and changes between the different versions of the system and assess, for example,

resource usage for the customer environments.

The study presented the implementation of a framework for software measures and a

proof-of-concept prototype using an open-source project. The framework can provide a

systematic interface that can be used to collect runtime metrics and measure software

quality-in-use. The developed software metrics are presented in Table 4.4.

The measurement framework and proof-of-concept project were evaluated using

descriptive scenarios for software in the maintenance phase of its life cycle. For example,

Figure 4.1 shows a time-performance metric collected from six different test scenarios.

Slowness or times when an application becomes unresponsive can be detected using this

4 Overview of publications 38

measure. Similarly, Figure 4.2 presents a utilisation metric collected demonstrating how

users adopt new functionality in software. The measurement framework was

implemented as a metrics library, and measurements were linked to the software during

development. This work mapped runtime software metrics to quality characteristics.

In summary, the study presented a framework for runtime software measurement. The

framework aimed to be general to warrant use in different applications but at the same

time loose enough to allow developers to derive application-specific measurement. This

contributed to the field of source code modelling and defect prediction methods. The

designed framework extended the state of the art by developing concrete metrics that

could be used to automate the measurement process.

 39

Table 4.4: Ways to measure the different quality characteristics in the proof-of-concept

environment.

ISO 25010 Quality Characteristic

(Subcharacteristic)

Ways to measure in the framework

Functional suitability (functional correctness,

functional appropriateness)

Code coverage, user-applied action to

achieve use case outcomes

Performance efficiency (time behaviour) Mean response time, response time

adequacy, mean throughput

Compatibility (interoperability) External interface adequacy

Usability (learnability) Error messages understandability, user

error recoverability

Reliability (maturity) Mean time between failure (MTBF),

failure rate

Security (accountability) System log retention

Maintainability (analysability, modifiability) System log completeness, modification

correctness

Portability (adaptability) Operational environment adaptability

Effectiveness Task error intensity

Efficiency Task time

Satisfaction Feature utilisation

Freedom from risk (economic risk mitigation) Business performance, errors with

economic consequences

Context coverage (flexibility) Proficiency independence

4 Overview of publications 40

Figure 4.1: A time-performance metric collected from six different clients in a test scenario.

Figure 4.2: A feature utilisation metric collected from clients in a test scenario.

 41

4.3 Publication III – Code quality measurement: case study

Background and objectives

Maintenance and upkeep are costly phases of the software life cycle. It has been estimated

that maintenance can reach up to 92% of the total software costs (Kyte, 2012). Code

quality can be analysed using various existing metrics, which can provide an estimate of

the maintainability of software. There are several tools and frameworks that can be used

for assessing the maintainability characteristics of a project. Many tools are included in

IDEs, such as Eclipse metrics, JHawk and NDepend. As such, the existing tools are

specific to the platform and programming language, providing quality analysis during

development. Considering that maintenance also includes activities postrelease of a

software product, it would be beneficial to perform quality measurement in the

maintenance and upkeep phase of the life cycle.

In Publication III, we focused on the maintenance analysis of web applications. The focus

on web applications provided a reasonably standardised interface for runtime

performance through the browser’s web API. We presented the design and

implementation of a system called .Maintain (read: dot maintain). The .Maintain system

included probes for gathering metrics in the system that were implemented in both the

JavaScript and Ruby programming languages. The objective was to study how the

.Maintain system could facilitate the systematic collection and analysis of maintenance

metrics to reduce the effort required in the maintenance phase of software during

development.

Results and contributions

In Publication III, we designed the architecture for a maintenance metrics collection and

analysis system. As a result, we presented a tool for analysing and visualising the

maintainability of a software project. The main contribution was the design,

implementation, and evaluation of a system for collecting maintenance metrics. The

design of the .Maintain tool is depicted in Figure 4.3, and the user interface is shown in

Figure 4.4.

The novelty of the .Maintain system is the extendibility and modularity of architecture.

This architecture is not platform specific. New probes and corresponding analysers can

be added at any stage using the REST API with any programming language or platform.

The data storage and reporting system provides a common interface for the systematic

collection of quality metrics, allowing the developers of a project to establish and sustain

a commitment for quality measurement.

In the context of the current study, the .Maintain system validates the ideas behind the

measurement framework presented in Publication II by building a measurement platform

for software quality issues. Providing a platform to establish measurement commitment

is important because previous research has shown that the QA and testing practices of

4 Overview of publications 42

developers do not necessarily line up with the measurement possibilities distinguished in

academic research. For example, a recent study by Garousi and Felderer (2017)

distinguishes that the industry and academia have different focus areas on software

testing. Likewise, Antinyan et al. (2017) show that existing code complexity measures

are poorly used in the industry. In the development of the .Maintain tool work, we used

the maintainability index as an indicator of code quality because it has been used in both

academia and industry. Thus, the main contribution of the present study is a tool that can

be easily adopted by software developers.

Figure 4.3: .Maintain system architecture.

 43

Figure 4.4: User interface for the .Maintain probes.

4.4 Publication IV – Early-warning system for software quality issues

using maintenance metrics

Background and objectives

In the life cycle models for software, development is succeeded by an expensive and

lengthy phase: maintenance. The growth of the maintenance phase and costs related to

software maintenance work have been explored in numerous studies. There is no single

reason for the trend, but there are several factors behind it, such as increasing complexity

and integration of the systems (Banker et al., 1993), changing operation and operating

environments of the systems (Reisman, 2006), the criticality of the systems (Capgemini,

2017) and the rise of a service-oriented approach to delivering software and their

functionalities (Glass et al., 2006).

Many different approaches and technologies are aimed at reducing software maintenance

costs, including, for example, SOA (MacKenzie et al., 2006), different delivery models

(Humble & Farley, 2010), development and operations (DevOps; Ebert et al., 2016) and

microservice architecture (Alshuqayran et al., 2016; Nadareishvili et al., 2016). These

approaches are examples of improving software maintainability to reduce maintenance

costs. However, the testing and deployment environments seem to be falling behind,

4 Overview of publications 44

especially when it comes to the availability of generic tools because of the diversity of

ecosystems.

On the other hand, there are techniques aimed at software quality estimation focusing on

maintainability (Lewis & Henry, 1989), code metrics (Ferreira et al., 2012) or code smells

(Fontana & Zanoni, 2011). These approaches can help identify problematic or defective

parts of software systems. However, they require an interpretation because their key

measurements are not compatible between projects.

Results and contributions

The objective of Publication IV was to further investigate the challenges of software

maintenance. The research question was as follows: Is it possible to estimate the observed

quality and maintenance needs of software using objective code metrics? A design

science approach was used to implement a prototype of the .Maintain tool to calculate

quality metrics based on the ISO/IEC 25010 quality attributes.

The development of the .Maintain tool was based on the principles of the quality

characteristics, as defined in the ISO/IEC 25010 standard’s quality models (ISO/IEC,

2011a), but here introducing two further steps. In the first step, measurement units called

probes were integrated into the system during the development phase to assist in the data

collection and activity logging work when a new feature was added during the

maintenance work. Second, every time a new version of the system was deployed, the

system analyses the quality outcomes from the data collected by the probes.

Based on the first prototype with three different commercial software projects, the basic

premise of an early-warning system correlated with the project activity logs on the

selected number of quality characteristics. Figure 4.5 shows an example graph of the

analysis produced by the .Maintain tool. The findings showed that the maintenance

indicators matched the code review and revision needs, indicating avenues for future

development. In the context of the current study, Publication IV evaluated the .Maintain

tool in large, real-world software construction projects. This extends the state-of-the-art

by validating the utility of the tools designed in the previous publications.

 45

Figure 4.5: Project quality report from the .Maintain toolkit, with annotated comments from the

project manager interview(s).

4.5 Publication V – Guidelines for software testing education

objectives from industry practices with a constructive alignment

approach

Background and objectives

Software engineering educators can bridge the gap between formal education and

industry practices to produce more industry-ready graduates by observing the industry in

action. Good testing education can improve software quality; for example, students who

are more experienced in testing may produce more reliable code. In this study, the

objective was to align testing education content with industry practices.

To reach this objective, the data from Publication I were used to design learning

objectives aligned with industry practices. The research questions for the study were as

follows: 1) Which testing tools and technologies are most used in the industry? 2) What

are the current issues related to testing in the industry? 3) How should the learning goals,

teaching methods and evaluation methods in a software testing course be constructively

aligned with current industry practices?

Results and contributions

The survey results on the testing practices in the industry were used to constructively

align the software testing curriculum with industry practices and expectations, producing

a course model responding to industry needs. The specific learning goals and activities

are presented in Table 4.5. The model can be used as a frame of reference for learning

objectives related to testing work in computer science education. Many suggestions for

actual course content were presented.

Additionally, there are several guidelines for the better alignment of testing education and

industry practices:

4 Overview of publications 46

• Incorporate the use of the most common testing tools—defect reporting, unit

testing and test automation—into the curriculum. The students will most likely

require the skill to use these tools in their future workplaces.

• Use popular, widely used testing tools rather than the tools designed for

education to teach students the correct use and configuration of real

environments.

• Emphasise the importance of static testing methods as a way to improve code

quality.

• Produce documentation early on to encourage a mindset for documenting the

progress of the project.

• Use a variety of tools for the same purpose to give students the experience of the

different tools available.

• Enforce documentation practices to enhance communication skills, for example,

producing and handling defect reports.

 47

Table 4.5: The constructive alignment of software testing course goals and methods to industry

practices.

Learning goals Teaching methods Assessment methods

(‘performances of

understanding’)

Learn the practice of defect

reporting and the use of bug

tracking tools

Individual exercises: Find

and report bugs

Demonstrate understanding

through the individual

projects

Implementing unit tests and

evaluating test coverage

Individual exercises: Create

a programme and set up unit

tests

Independent implementation

of test automation

Individual exercises: Set up

full testing automation for a

programme

Understand and apply test

process design in future

projects

Teamwork: Project

management exercise and

testing process simulation

Demonstrate understanding

through equal contribution

to the teamwork project

(individual and group

evaluation) Integrating testing phases to

software engineering

practices

Teamwork: Project

management exercise;

acceptance testing between

two teams

Evaluating and managing

technical debt; making

rational compromises

Teacher-led exercise: A

review of the shortcuts taken

during the course, and

discussion and evaluation of

the long-term drawbacks of

the shortcuts

Demonstrate understanding

by a written assignment that

reviews and evaluates

technical issues

Implementing static testing:

Creating checklists and

performing code reviews

Teamwork: Going through

checklists and reviewing

each other’s code. TA acts

as QA manager in final

projects

Demonstrate understanding

by working in a simulated

verification and validation

review

4 Overview of publications 48

4.6 Publication VI – Designing early testing course curricula with

activities matching the V-model phases

Background and objectives

Testing education improves software quality as testing-savvy students learn techniques

that lead to more reliable programme code (Lemos et al., 2018). Previous research has

established approaches to integrating testing and QA work into larger projects (Garousi,

2011; Krutz et al., 2014), but still, many institutions organise an undergraduate course in

the methods and models of software testing separately. Perhaps, for this reason, students

transitioning to the industry do not always have the necessary skills to test beforehand.

To place the testing activities in a software engineering context, we contrasted them with

the phases in the V-model (Mathur & Malik, 2010; Rook, 1986). The V-model is a generic

software development process model in which requirement analysis, specification,

architectural design, and detail design are linked with the levels of testing (acceptance

testing, system testing, integration testing, and unit testing). These development process

phases and testing levels are often referenced in software engineering education.

However, in the context of education and training, the practical impact of these activities

may play an auxiliary role or even be neglected. Hence, students might be familiar with

the development process phases on an abstract level but fail to understand which practical

activities should happen within them.

In this study, the objective was to investigate the following: 1) What learning activities

can we map to the high-level testing levels? 2) Which actual testing techniques can be

utilised? 3) How do those activities and high-level concepts relate to other software

engineering processes? To answer these questions, we designed an undergraduate course

on the fundamentals of software testing, here with a specific focus on the V-model phases

and concrete testing activities.

Results and contributions

In the study, an introductory software testing course was designed and using the principles

of constructive alignment, and learning goals were mapped to weekly activities and

testing techniques. The course structure is presented in Table 4.6. The study evaluated the

course structure by examining student outcomes. Students’ practical assignments were

used as demonstrations of learning.

From the projects, we observed that students were able to adopt the testing mindset and

carry out comprehensive and systematic testing at the system testing level. On the other

hand, this systematic approach to testing work was mainly carried out at the system level,

while many projects had problems with unit tests, integration tests, and reporting of the

project.

 49

Table 4.6: The constructive alignment of software testing course goals and methods to industry

practices.

W

e

e

k

Development phase

(V-model)

Test

level (V-

model)

Weekly

topic(s)

Activities and

testing

techniques

applied

Learning goals

1 Specification and

requirement analysis

System

testing

Introductio

n to testing

Objectives

of testing

Black-box system

testing.

Exploratory

testing. Boundary

value analysis.

Defect reporting.

Understand the

objectives of testing

work. The students can

create a (black-box) test

cases. The students

understand the scope,

and limitations of the

black-box methods.

2 Detail design Unit

testing

Testing

levels Unit

testing

White-box

testing. Test case

reporting.

Equivalence

partitioning.

Understand the concept

of unit/module test. The

students understand the

difference between

black-box and white-box

testing.

3 Architectural design Integrati

on

testing

Integration

testing

Combinatorial

methods and the

classification tree

method. Test

stubs.

Understand the

infeasibility of ‘testing

everything’. The students

can select a technique for

deriving test cases. The

students understand the

scope and limitations of

the software testing in

real-world software

projects.

4 Specification and

requirement analysis

System

testing

Acceptan

ce testing

System

testing

State transition

testing. Scenario

testing. Random

testing.

Understand the

objectives of system-

level testing. The

students can select an

appropriate testing

technique for system

testing. The students

understand the scope and

limitations of the system-

level testing methods.

4 Overview of publications 50

Table 4.6 (continued).

W

e

e

k

Development phase

(V-model)

Test

level (V-

model)

Weekly

topic(s)

Activities and

testing

techniques

applied

Learning goals

5 Detail design Unit

testing

Test

automation

and tools

Implementing unit

tests in code,

using a unit

testing

framework.

The students can use a

programming

framework/library to

implement module tests.

The student understands

the scope and limitations

of the unit testing tools.

6 Architectural design System

testing

Testing

processes,

documenta

tion and

planning

Creating test

plans. Code

review and static

testing methods.

Test coverage

analysis.

The students understand

the purpose of static

testing methods and code

review practices.

7 Specification,

architectural design,

detail design

System,

integratio

n and

unit

testing

Visiting

lecture

from a

software

company

Course project:

Plan, design,

implement and

document testing

for a small

software item.

The students can

demonstrate their

knowledge by applying

the course’s activities

autonomously in the

testing project. The

students can explain how

test process activities

would relate to the whole

software project.

4.7 Summary of contributions

The publications in the current thesis provide the following contributions to the state of

the art in software testing and QA.

Understanding software testing practices in the industry. The survey conducted in

Publication I explored current practices related to testing and QA in the Finnish software

industry. Additionally, the survey revealed changes in practices within the past few years.

According to the survey results, the organisations have shifted towards test automation

and more sophisticated testing infrastructure, they apply more agile practices even in

mission-critical software, and they have reduced the use of formal process models.

 51

The growing use of automation and tools have shifted development practices towards

more agile and less formal methods, highlighting the need for better, more intelligent

automated tests and QA tools. The reduced use of formal processes and need to push new

features into products translate into the need for better support for acceptance testing,

regression testing and QA in general. This served as motivation for the research in the

subsequent publications.

A framework for measuring maintenance needs using runtime metrics. In

Publication II, a framework was designed for the runtime measurement of maintenance

needs. This framework can be used to design, implement and sustain the commitment for

quality measurement during the software development process. The framework also

provides actionable suggestions for how to measure different quality characteristics using

runtime probes and code quality metrics in software. In the subsequent publications, the

framework was used as a roadmap for building the .Maintain tool, which implements

runtime metrics and code quality measurements in practice.

Implementing tools for measuring maintenance needs in practice. Publications II and

III utilised the design science approach to design, construct, evaluate and validate the

.Maintain tool for measuring software quality characteristics. Through the design and

implementation of proof-of-concept prototypes and working software artefacts, we

demonstrated that the .Maintain tool can be used as an early-warning system for detecting

quality issues. The utility of the tool was demonstrated by using real-world software

projects and mature products already in their maintenance phase.

A curriculum, activities and learning objectives for testing education and guidelines

for aligning the learning objectives with industry practices. Publications V and VI

presented an exploration of the pedagogical practices of testing education. Starting with

the survey results presented in Publication I, a testing curriculum and guidelines for better

aligning the learning objectives with the current industry practices were constructed.

The presented course model incorporates industry practices and expectations into a

testing course curriculum. Learning goals, teaching methods and assessment methods in

addition to the different knowledge units were constructively aligned with the surveyed

practices. Because the results presented in Publication V and Publication VI are

concerned with learning objectives and pedagogical guidelines rather than specific tools

or technologies, they can be used in many different contexts. Therefore, the results are

valuable to a wide range of educators.

53

5 Discussion

This chapter summarises the objectives, methods and contributions presented in the

current thesis. First, the objectives and methods are revisited. The research questions are

then answered. Finally, the validity of the results is assessed, and future research avenues

are presented.

5.1 Research objectives

The objective of the present thesis was to investigate development directions related to

software testing and QA work. The study began by conducting a survey to establish the

state-of-the-art in current testing practices. Next, novel tools for measuring software

quality and detecting maintenance issues were explored. Finally, testing education was

investigated to better prepare students for software engineering work in the industry.

In Publication I, the survey method (Fink & Kosecoff, 1985) was used to elicit views on

testing and QA practices. People working in the software industry were asked to

participate in the survey, and we collected responses from different companies at the

organisational unit level. The objective was to explore industry practices concerning

software testing.

Publications II, III and IV employed the DSR method (Hevner et al., 2004; Peffers et al.,

2007). The framework for observing maintenance needs and the .Maintain tool were

designed for runtime metrics collection of software projects. The .Maintain tool

implemented the framework in practice. .Maintain was used in several real software

projects, and the evaluation of the tool acted as a proof of concept.

Publications V and VI investigated education and training related to testing and QA work.

The industry practices (uncovered in Publication I) were mapped to learning activities,

learning objectives and practical testing techniques to form an industry-aligned testing

curriculum. These studies employed the constructive alignment research method (Biggs,

1996, 2014).

5.2 Findings

Next, we address the research questions individually and present the main contributions

of the current thesis. The following text synthesises the contributions of Publications I–

VI in the context of the research questions.

RQ 1. What is the current state of the industry practices in testing and QA, and how

have they evolved in recent times?

The data in Publication I revealed changing practices in the industry within the past few

years. Organisations have shifted towards test automation and a more sophisticated

5 Discussion 54

testing infrastructure, have applied more agile practices even in mission-critical software

and have reduced the use of formal process models.

The most popular tools used include defect reporting tools, test automation tools and unit

testing tools. The configurability of testing tools has become an issue, and support for

different software platforms might become an issue when observing a trend in the

changes. Additionally, feature development during late development phases shortens

testing schedules.

RQ 2. What kind of framework would enable measurement of software quality

characteristics and detecting maintenance issues?

In Publication II, a framework for collecting runtime metrics was proposed as one

solution for the growing maintenance costs. Measurement probes were linked into the

software during the development phase and used to collect quality information during the

runtime. As a proof-of-concept, the measurements were implemented in an open-source

software project. Examples of useful scenarios were presented to demonstrate the utility

of the framework.

RQ 3. To what extent can runtime quality metrics be collected from real software

projects to analyse quality and maintainability?

Publications III and IV further demonstrated the idea of measuring runtime software

metrics. As a result, the .Maintain tool for analysing and visualising the maintainability

of a software project was presented. The results of the studies showed that the

maintenance indicators matched the code review and revision needs, indicating further

avenues for future development.

The novelty of the .Maintain tool is the extendibility and modularity of its architecture.

The .Maintain architecture is not platform specific. Instead, new probes and

corresponding analysers can be added at any stage using the REST API, with any

programming language or platform. The presented studies showed that the tool can be

used to estimate project quality and provide an early warning of issues that may arise.

RQ 4. To what extent are software engineers ready to use the testing and QA tools,

and how can testing education be better oriented to support this goal?

In Publications V and VI, the education and training in testing for software professionals

were investigated. We observed that students could adopt the testing mindset and carry

out comprehensive and systematic testing at the system test level. However, the fact that

the systematic approach to testing work was mainly carried out at the system level could

be seen as a problem because many students had problems with unit tests, integration tests

and reporting.

The principles of constructive alignment were used to develop learning activities, learning

goals, teaching methods and assessment methods aligning with the industry requirements.

5.3 Implications for practice and research 55

Concrete learning objectives were created using common software engineering methods

and models. This helped better frame the testing topics for software developers.

Main RQ. To what extent can test automation and software measurement tools

improve testing and QA work in software companies?

Finally, to answer the main research question, the software industry has exhibited a drive

towards more automation and agile practices. At the same time, the testing and

deployment environments seem to be falling behind the rate of development, making QA

work more challenging to automate. New, smart tools in software development can help

alleviate this disparity. In the current thesis, the .Maintain tool was presented as one

solution to the growing need for automation in QA. The .Maintain tool made it possible

to detect changes in the software quality during development. This can help identify

defects or high-maintenance modules in the software. Additionally, the curriculum for

testing education and training can help quickly bring new software developers up to speed

with industry practices. With more knowledge of testing, the software engineering

workforce will be better equipped to perform QA activities, and thus be better prepared

to use automation and measurement tools.

5.3 Implications for practice and research

Explorations into the measurement of software defects and maintenance needs:

Previous research has shown that the QA and testing practices of developers are not in

line with the measurement possibilities distinguished in academic research. Existing code

complexity measures are poorly used in the industry. In fact, industry and academia have

completely different focus areas on software testing related topics. The research avenues

related to the measurement and monitoring of software products are fruitful. This was

further demonstrated in the evaluation of the .Maintain tool, which suggested that there

is a need for further study and refinement in the development of software quality

measurement monitoring systems.

Further understanding about software defects in agile development: Surveying the

software industry revealed changing practices. The software industry has increasingly

employed tools to support software development. Organisations rely heavily on

automation and employ agile practices. However, these tools are also the cause of many

configuration problems. The need to push new features means that the products need

better support for acceptance testing, regression testing and, in general, better QA. This

suggests that more research is needed to understand how and why software defects

emerge in the agile development process.

Design a testing curriculum for software engineering: The processes and tools used in

the industry can be challenging to teach because of the sheer number of different tools

available and how different companies may employ slightly different ways to utilise

them. Therefore, more research is needed in designing the testing curriculum for software

engineering. Students seem to grasp some QA-related topics instinctively, while other

5 Discussion 56

topics proved more challenging to teach. This might sway the learning outcomes of

testing education towards certain topics more than educators intend.

5.4 Assessment of the research

The limitations and quality of the current study warrant discussion. This section addresses

the quality and limitations of the study through the lens of reliability and validity based

on the recommendations of Wohlin et al. (2012) and Yin (2009, 2011). In particular, the

research programme is assessed in terms of its reliability, construct validity, internal

validity and external validity.

The quality of research can be expressed through the concepts of reliability and validity.

Reliability is the degree to which the results of a study are replicable (Dubois & Gibbert,

2010). Validity is often broken down into smaller measures, all of which indicate the

consistency between study protocols and results.

Construct validity is a measure of the degree to which the research instruments are in line

with the findings, that is, how accurate the conclusions are, while also asking if the study

has investigated what it claims to have investigated in the research questions (Dubois &

Gibbert, 2010). Internal validity (Dubois & Gibbert, 2010; Yin, 2009) is the measure of

the consistency between data and the interpretations made of it, that is, how well the study

establishes cause and effect. Finally, external validity (Lavrakas, 2008; Yin, 2009) is a

measure of generalizability for study results.

Reliability

In Phase 1 of the research programme, a survey was conducted following the method by

Fink and Kosecoff (1985). Kitchenham et al. (2002) divide survey studies into

exploratory studies, from which estimates can be drawn, and confirmatory studies, from

which strong conclusions can be drawn. In the context of this work, the survey is

considered an exploratory, observational and cross-sectional study exploring testing

practices in the industry. Publication I documented the survey instrument and results. The

survey design and anonymised data are also available in an online repository (Hynninen

et al., 2017).

In Phases 2 and 3, the work employed a design science approach. Unlike traditional

qualitative research methods, DSR involves a degree of creativity. Thus, DSR is not

always easily replicable, which conflicts with the objective of reliability (Kuechler &

Vaishnavi, 2011). However, the work presented in Publications II, III and IV follows an

iterative approach to improving the outcomes at each round. The work started by

designing a measurement framework, whose utility was demonstrated by using use cases

and descriptive scenarios. The work continued with the development of the measurement

framework and then continued by implementing the tools to realise the measurement of

quality attributes and maintenance needs in practice. Thus, the .Maintain tool was created

5.4 Assessment of the research 57

as a prototype, and it was consecutively put into use in a realistic environment, which

further demonstrated the utility and novelty of the work.

In Phase 4, we investigated the organisation and content of a testing curriculum. The work

focused mainly on studying the learning outcomes of students during one semester, and

the studies yielded no quantitative results. However, the research approach in this phase

was, again, more qualitative, focusing on whether the students completed the individual

learning objectives instead of analysing descriptive statistics like course grades or student

evaluations of teaching.

Construct validity

In Phase 1, the survey employed questions from a survey instrument that was validated

in prior studies (e.g., Kasurinen et al., 2010). The survey instrument was developed over

the years and used in multiple studies.

In Phases 2 and 3, the software quality measurement framework and the .Maintain tool

were designed to implement the ISO 25010 (ISO/IEC, 2011b) software quality model(s).

This approach was similar to many prior studies, in which software quality measurement

frameworks or tools had been constructed.

In Phase 4, the design of the curriculum was based on the ACM/IEEE guidelines for

degree programmes in software engineering (Ardis et al., 2015). In addition, learning

activities and objectives were derived from the empirical results collected in the survey

in Phase 1.

Internal validity

In Phase 1, the survey instrument was based on prior studies. The survey contained

multiple-item, multiple-choice and open-ended questions. Previous studies used

Cronbach’s alpha (Cronbach, 1951) as a validity test for the survey questions: Cronbach’s

alpha expresses the degree to which items in a scale are homogeneous (Cho, 2016;

Cronbach, 1951). The survey data were also compared with prior studies, which

facilitated the observation of changes in practices. A team of four researchers was

involved, which further facilitated the triangulation (Denzin, 1973) of the findings.

In Phases 2 and 3, the research revolved around testing the .Maintain tool and prototypes

leading up to the tool’s creation. In the work, we used creativity and experience in the

field to create plausible test scenarios that would be useful in real-world software

development projects. The results were verified using a case study in a realistic

environment. When the tool was used in a real environment, the researchers had access

to developers and their version control data.

In Phase 4, the objective was to evaluate the testing and QA competencies that software

engineers receive in their education. The work was carried out over one semester,

meaning that the longitudinal effects of the curriculum require future evaluation. In

5 Discussion 58

particular, the results regarding the success of the alignment between learning objectives

and industry practices are still preliminary.

External validity

In Phase 1, the survey sample was geographically limited to Finnish software companies.

It is possible that this sample was not representative of companies in different countries

or different socioeconomic contexts. However, the results are in line with similar surveys

around the world, suggesting that the results can be generalisable. The response rate was

comparable with other online surveys, and the observations were presented as

explorative, not as strong conclusions.

In Phases 2 and 3, the testing of the .Maintain tool was done in a real-world environment.

The evaluation of the tool was done only once because of time and resource constraints,

hence posing a possible threat to validity. However, many prior studies have used the

same starting point to conduct similar research efforts. In addition, the findings were

generally in line with the literature.

In Phase 4, the studies investigated testing education in the Finnish context. However, the

results are considered exploratory, from which estimates can be drawn. Additionally, the

presented guidelines and learning objectives should be universal because they mirror

knowledge areas in universally known recommendations, such as SWEBOK (Bourque et

al., 1999) and the V-model (Mathur & Malik, 2010).

59

6 Conclusion

The objective of the current thesis was to investigate development directions in testing

and QA. The main research question—to what extent can automation and tools improve

testing and QA work in software companies—was answered in four phases. First, a survey

was conducted to map current practices related to testing and QA in the Finnish software

industry. Next, a framework for continuous software measurement was investigated. This

framework was utilised when designing and implementing the .Maintain tool, whose

utility as an early-warning system for software defects during development and

maintenance was demonstrated in practice. Finally, the present thesis investigated the

aspects of education and training in the field of testing.

Surveying the software industry has revealed changing practices that have taken place

over the past eight years. Organisations have been relying more on testing automation

and employing more agile practices. Tools are no longer seen as limited in terms of their

functionality, but at the same time, configuration problems and more complex platforms

have become more common.

To reduce the complexity related to the monitoring of quality aspects, the current thesis

proceeded to propose a framework and, consequently, a tool for measuring quality

characteristics in software development projects. The .Maintain tool was demonstrated to

be a useful early-warning system for quality-related issues because the issues indicated

by the tool matched code review findings and expert evaluation. The evaluation of the

.Maintain tool provided evidence that the automatic measurement of software project

characteristics is an interesting avenue of research, which is in line with findings in recent

related research.

Finally, the current study investigated the capabilities of computer and software

engineering students in software testing. The students tended to have a curious and

rigorous mindset but only regarding certain areas of testing, for example, system testing.

Additionally, there are many tools used in the industry, and providing a holistic learning

experience about testing can be challenging for educators.

In short, the software industry has taken an increasing number of tools to support both the

software development process and QA work. The design and development of better tools

is a contemporary research topic. The need and utility for collecting quality metrics and

maintenance needs was demonstrated with the .Maintain tool. However, the processes

and tools used in the industry can be challenging to teach, and more research is needed to

design the curriculum for competent developers.

The main contributions of the current thesis are threefold. First, the current study

contributes to the knowledge of software testing practices in the industry. Second, the

framework for measuring maintenance needs using runtime metrics and the .Maintain

tool for demonstrating this approach were constructed. Third, a curriculum, learning

6 Conclusion 60

activities and learning objectives for testing education were presented, in addition to

guidelines for aligning the learning objectives with industry practices.

The software industry is rapidly moving towards automation, which has become a

standard in everyday software development work. There is an ever-growing need to push

new features into products, which, in turn, calls for better acceptance testing, regression

testing, late testing and QA work in the publishing, deployment and maintenance phases.

The drive towards automation is not without problems, however. For example, as

discovered in the first phase of the current research programme, automation is seen as a

difficult feat because of its low reuse possibilities and high cost. Additionally, as the work

and tools become more complex, there are more misunderstandings between developers

and testers, in turn slowing down the rate of development. However, despite these

obstacles, companies are moving towards automation and more agile practices, shifting

away from plan-based, formal development processes. The tools and processes used play

a vital role in this trend.

61

References

Alshuqayran, N., Ali, N., & Evans, R. (2016). A systematic mapping study in

microservice architecture. 2016 IEEE 9th International Conference on Service-

Oriented Computing and Applications (SOCA), 44–51.

Antinyan, V., Staron, M., & Sandberg, A. (2017). Evaluating code complexity triggers,

use of complexity measures and the influence of code complexity on maintenance

time. Empirical Software Engineering, 1–31.

Ardis, M., Budgen, D., Hislop, G. W., Offutt, J., Sebern, M., & Visser, W. (2015). SE

2014: Curriculum guidelines for undergraduate degree programs in software

engineering. Computer, 11, 106–109.

Bai, G. R., Presler-Marshall, K., Price, T. W., & Stolee, K. T. (2022). Check It Off:

Exploring the Impact of a Checklist Intervention on the Quality of Student-

authored Unit Tests. Proceedings of the 27th ACM Conference on on Innovation

and Technology in Computer Science Education Vol. 1, 276–282.

Bai, G. R., Smith, J., & Stolee, K. T. (2021). How Students Unit Test: Perceptions,

Practices, and Pitfalls. Proceedings of the 26th ACM Conference on Innovation

and Technology in Computer Science Education V. 1, 248–254.

https://doi.org/10.1145/3430665.3456368

Banker, R. D., Datar, S. M., Kemerer, C. F., & Zweig, D. (1993). Software Complexity

and Maintenance Costs. Commun. ACM, 36(11), 81–94.

https://doi.org/10.1145/163359.163375

Bautista, L., Abran, A., & April, A. (2012). Design of a performance measurement

framework for cloud computing. Journal of Software Engineering and

Applications, 5(02), 69.

Biggs, J. (1996). Enhancing teaching through constructive alignment. Higher Education,

32(3), 347–364.

Biggs, J. (2014). Constructive alignment in university teaching. HERDSA Review of

Higher Education, 1(5), 5–22.

Bourque, P., Dupuis, R., Abran, A., Moore, J. W., & Tripp, L. (1999). The guide to the

software engineering body of knowledge. IEEE Software, 16(6), 35–44.

Britton, T., Jeng, L., Carver, G., Cheak, P., & Katzenellenbogen, T. (2013). Reversible

debugging software. Judge Bus. School, Univ. Cambridge, Cambridge, UK, Tech.

Rep.

References 62

Capgemini. (2017). World Quality Report 2016-17. Capgemini Group.

https://www.capgemini.com/thought-leadership/world-quality-report-2016-17

Carstensen, A.-K., & Bernhard, J. (2019). Design science research – a powerful tool for

improving methods in engineering education research. European Journal of

Engineering Education, 44(1–2), 85–102.

https://doi.org/10.1080/03043797.2018.1498459

Chen, L. (2015). Continuous delivery: Huge benefits, but challenges too. IEEE Software,

32(2), 50–54.

Cho, E. (2016). Making Reliability Reliable: A Systematic Approach to Reliability

Coefficients. Organizational Research Methods, 19(4), 651–682.

https://doi.org/10.1177/1094428116656239

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests.

Psychometrika, 16(3), 297–334. https://doi.org/10.1007/BF02310555

Czerwonka, J., Nagappan, N., Schulte, W., & Murphy, B. (2013). CODEMINE: Building

a Software Development Data Analytics Platform at Microsoft. IEEE Software,

30(4), 64–71. https://doi.org/10.1109/MS.2013.68

Denzin, N. K. (1973). The research act: A theoretical introduction to sociological

methods. Transaction publishers.

Desai, C., Janzen, D., & Savage, K. (2008). A survey of evidence for test-driven

development in academia. ACM SIGCSE Bulletin, 40(2), 97–101.

Dubois, A., & Gibbert, M. (2010). From complexity to transparency: Managing the

interplay between theory, method and empirical phenomena in IMM case studies.

Industrial Marketing Management, 39(1), 129–136.

Ebert, C., Gallardo, G., Hernantes, J., & Serrano, N. (2016). DevOps. Ieee Software,

33(3), 94–100.

Ferreira, K. A., Bigonha, M. A., Bigonha, R. S., Mendes, L. F., & Almeida, H. C. (2012).

Identifying thresholds for object-oriented software metrics. Journal of Systems

and Software, 85(2), 244–257.

Fink, A., & Kosecoff, J. (1985). How to conduct surveys: A step-by-step guide. Sage

Publications.

Fischer, C., Winter, R., & Wortmann, F. (2010). Design Theory. Business & Information

Systems Engineering, 2(6), 387–390. https://doi.org/10.1007/s12599-010-0128-2

References 63

Fontana, F. A., & Zanoni, M. (2011). On investigating code smells correlations. 2011

IEEE Fourth International Conference on Software Testing, Verification and

Validation Workshops, 474–475.

Garousi, V. (2011). Incorporating real-world industrial testing projects in software testing

courses: Opportunities, challenges, and lessons learned. 2011 24th IEEE-CS

Conference on Software Engineering Education and Training (CSEE&T), 396–

400.

Garousi, V., Arkan, S., Urul, G., Karapıçak, Ç. M., & Felderer, M. (2020). Assessing the

maturity of software testing services using CMMI-SVC: An industrial case study.

ArXiv Preprint ArXiv:2005.12570.

Garousi, V., & Felderer, M. (2017). Worlds Apart: Industrial and Academic Focus Areas

in Software Testing. IEEE Software, 34(5), 38–45.

https://doi.org/10.1109/MS.2017.3641116

Garousi, V., Rainer, A., Lauvås Jr, P., & Arcuri, A. (2020). Software-testing education:

A systematic literature mapping. Journal of Systems and Software, 165, 110570.

Glass, R. L., Collard, R., Bertolino, A., Bach, J., & Kaner, C. (2006). Software testing

and industry needs. IEEE Software, 23(4), 55–57.

Gregor, S., & Hevner, A. R. (2013). Positioning and presenting design science research

for maximum impact. MIS Quarterly, 37(2), 337–355.

Hegedus, P. (2013). Revealing the Effect of Coding Practices on Software

Maintainability. 2013 29th IEEE International Conference on Software

Maintenance (ICSM), 578–581. https://doi.org/10.1109/ICSM.2013.99

Hevner, A., & Chatterjee, S. (2010). Design science research frameworks. In Design

research in information systems (pp. 23–31). Springer.

Hevner, A. R. (2007). A three cycle view of design science research. Scandinavian

Journal of Information Systems, 19(2), 4.

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design Science in Information

Systems Research. MIS Q., 28(1), 75–105.

Humble, J., & Farley, D. (2010). Continuous Delivery: Reliable Software Releases

through Build, Test, and Deployment Automation. Pearson Education.

Hynninen, T., Kasurinen, J., Knutas, A., & Taipale, O. (2017). Survey Data for “Software

Testing: Survey of the Industry Practices” [Data set]. Zenodo.

https://doi.org/10.5281/zenodo.803996

References 64

IEEE. (2011). IEEE Draft Guide: Adoption of the Project Management Institute (PMI)

Standard: A Guide to the Project Management Body of Knowledge (PMBOK

Guide)-2008 (4th edition). IEEE P1490/D1, May 2011, 1–505.

https://doi.org/10.1109/IEEESTD.2011.5937011

ISO/IEC. (2005). ISO/IEC 9000 Family: Quality management.

ISO/IEC. (2006). ISO/IEC 14764: Software Engineering—Software Life Cycle

Processes—Maintenance.

ISO/IEC. (2011a). ISO/IEC 25000: Systems and software Quality Requirements and

Evaluation (SQuaRE)—Guide to SQuaRE:

ISO/IEC. (2011b). ISO/IEC 25010: Systems and software Quality Requirements and

Evaluation (SQuaRE)—System and software quality models.

ISO/IEC. (2013). ISO/IEC 29119-1 Software and systems engineering—Software

testing—Part 1: Concepts and definitions.

ISO/IEC. (2017). ISO/IEC 24765: Systems and software engineering—Vocabulary.

Janus, A., Schmietendorf, A., Dumke, R., & Jäger, J. (2012). The 3C Approach for Agile

Quality Assurance. Proceedings of the 3rd International Workshop on Emerging

Trends in Software Metrics, 9–13.

http://dl.acm.org/citation.cfm?id=2669379.2669382

Kaner, C. (2006, November 17). Exploratory Testing [Keynote]. Quality Assurance

Institute Worldwide Annual Software Testing Conference, Orlando, FL, USA.

Kasurinen, J., Maglyas, A., & Smolander, K. (2014). Is Requirements Engineering

Useless in Game Development? Requirements Engineering: Foundation for

Software Quality, 1–16. https://doi.org/10.1007/978-3-319-05843-6_1

Kasurinen, J. P. (2013). Ohjelmistotestauksen käsikirja. Jyväskylä: Docendo, 1.

Kasurinen, J., Taipale, O., & Smolander, K. (2010). Software test automation in practice:

Empirical observations. Advances in Software Engineering, 2010.

https://www.hindawi.com/journals/ase/2010/620836/abs/

Kit, E. (1995). Software testing in the real world. Addison-wesley.

http://cds.cern.ch/record/362136

Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. W., Hoaglin, D. C., El Emam,

K., & Rosenberg, J. (2002). Preliminary guidelines for empirical research in

software engineering. IEEE Transactions on Software Engineering, 28(8), 721–

734.

References 65

Krutz, D. E., Malachowsky, S. A., & Reichlmayr, T. (2014). Using a real world project

in a software testing course. Proceedings of the 45th ACM Technical Symposium

on Computer Science Education, 49–54.

Kuechler, B., & Vaishnavi, V. (2008). On theory development in design science research:

Anatomy of a research project. European Journal of Information Systems, 17(5),

489–504. https://doi.org/10.1057/ejis.2008.40

Kuechler, W., & Vaishnavi, V. (2011). Promoting relevance in IS research: An informing

system for design science research. Informing Science, 14, 125.

Kyte, A. (2012). The four laws of application, total cost of ownership. Gartner, Inc.

Lauvås Jr, P., & Arcuri, A. (2018). Recent trends in software testing education: A

systematic literature review. Norsk IKT-Konferanse for Forskning Og Utdanning.

Lavrakas, P. J. (2008). Encyclopedia of survey research methods. Sage publications.

Lazzarini Lemos, O. A., Fagundes Silveira, F., Cutigi Ferrari, F., & Garcia, A. (2017).

The impact of Software Testing education on code reliability: An empirical

assessment. Journal of Systems and Software.

https://doi.org/10.1016/j.jss.2017.02.042

Lazzarini Lemos, O. A. L., Cutigi Ferrari, C., Fagundes Silveira, F., & Garcia, A. (2015).

Experience report: Can software testing education lead to more reliable code?

2015 IEEE 26th International Symposium on Software Reliability Engineering

(ISSRE), 359–369. https://doi.org/10.1109/ISSRE.2015.7381829

Lemos, O. A. L., Silveira, F. F., Ferrari, F. C., & Garcia, A. (2018). The impact of

Software Testing education on code reliability: An empirical assessment. Journal

of Systems and Software, 137, 497–511.

Leppänen, M., Mäkinen, S., Pagels, M., Eloranta, V.-P., Itkonen, J., Mäntylä, M. V., &

Männistö, T. (2015). The highways and country roads to continuous deployment.

Ieee Software, 32(2), 64–72.

Lewis, J., & Henry, S. (1989). A methodology for integrating maintainability using

software metrics. , Conference on Software Maintenance, 1989., Proceedings,

32–39. https://doi.org/10.1109/ICSM.1989.65191

Lopez, G., Cocozza, F., Martinez, A., & Jenkins, M. (2015). Design and implementation

of a software testing training course. 2015 ASEE Annual Conference &

Exposition, 26–453.

Ma, D. (2007). The business model of" software-as-a-service". Ieee International

Conference on Services Computing (Scc 2007), 701–702.

References 66

MacKenzie, C. M., Laskey, K., McCabe, F., Brown, P. F., Metz, R., & Hamilton, B. A.

(2006). Reference model for service oriented architecture 1.0. OASIS Standard,

12(S 18).

March, S. T., & Smith, G. F. (1995). Design and natural science research on information

technology. Decision Support Systems, 15(4), 251–266.

March, S. T., & Storey, V. C. (2008). Design science in the information systems

discipline: An introduction to the special issue on design science research. MIS

Quarterly, 725–730.

Mathur, S., & Malik, S. (2010). Advancements in the V-Model. International Journal of

Computer Applications, 1(12), 29–34.

Molnar, A.-J., & Motogna, S. (2020). Longitudinal Evaluation of Open-Source Software

Maintainability. ArXiv Preprint ArXiv:2003.00447.

Motogna, S., Vescan, A., Serban, C., & Tirban, P. (2016). An approach to assess

maintainability change. 2016 IEEE International Conference on Automation,

Quality and Testing, Robotics (AQTR), 1–6.

https://doi.org/10.1109/AQTR.2016.7501279

Myers, G. J., Badgett, T., Thomas, T. M., & Sandler, C. (2004). The art of software testing

(Vol. 2). Wiley Online Library.

Nadareishvili, I., Mitra, R., McLarty, M., & Amundsen, M. (2016). Microservice

architecture: Aligning principles, practices, and culture. O’Reilly Media, Inc.

Osterweil, L. (1996). Strategic directions in software quality. ACM Computing Surveys

(CSUR), 28(4), 738–750.

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design science

research methodology for information systems research. Journal of Management

Information Systems, 24(3), 45–77.

Planning, S. (2002). The economic impacts of inadequate infrastructure for software

testing. https://www.nist.gov/document/report02-3pdf

Prasad, L., Yadav, R., & Vore, N. (2021). A Systematic Literature Review of Automated

Software Testing Tool. Proceedings of 3rd International Conference on

Computing Informatics and Networks: ICCIN 2020, 101–123.

Reisman, S. (2006). Costs and benefits of software engineering in product development

environments. In Cases on Strategic Information Systems (pp. 199–215). IGI

Global.

References 67

Rook, P. (1986). Controlling software projects. Software Engineering Journal, 1(1), 7–

16.

Sarwar, M. I., Tanveer, W., Sarwar, I., & Mahmood, W. (2008). A comparative study of

MI tools: Defining the Roadmap to MI tools standardization. Multitopic

Conference, 2008. INMIC 2008. IEEE International, 379–385.

https://doi.org/10.1109/INMIC.2008.4777767

Scatalon, L. P., Carver, J. C., Garcia, R. E., & Barbosa, E. F. (2019). Software testing in

introductory programming courses: A systematic mapping study. Proceedings of

the 50th ACM Technical Symposium on Computer Science Education, 421–427.

Scatalon, L. P., Prates, J. M., De Souza, D. M., Barbosa, E. F., & Garcia, R. E. (2017).

Towards the role of test design in programming assignments. 2017 IEEE 30th

Conference on Software Engineering Education and Training (CSEE&T), 170–

179.

Shaughnessy, J. J., Zechmeister, E. B., & Zechmeister, J. S. (2012). Research methods in

psychology (9th ed). McGraw-Hill.

Taipale, O., & Smolander, K. (2006). Improving software testing by observing practice.

Proceedings of the 2006 ACM/IEEE International Symposium on Empirical

Software Engineering, 262–271.

Taipale, O., Smolander, K., & Kälviäinen, H. (2005). Finding and Ranking Research

Directions for Software Testing. In I. Richardson, P. Abrahamsson, & R.

Messnarz (Eds.), Software Process Improvement: 12th European Conference,

EuroSPI 2005, Budapest, Hungary, November 9-11, 2005. Proceedings (pp. 39–

48). Springer Berlin Heidelberg. https://doi.org/10.1007/11586012_5

Tassey, G. (2002). The economic impacts of inadequate infrastructure for software

testing. National Institute of Standards and Technology.

Valle, P. H. D., Toda, A. M., Barbosa, E. F., & Maldonado, J. C. (2017). Educational

games: A contribution to software testing education. 2017 IEEE Frontiers in

Education Conference (FIE), 1–8.

Wang, Y., Mäntylä, M., Demeyer, S., Wiklund, K., Eldh, S., & Kairi, T. (2020). Software

Test Automation Maturity: A Survey of the State of the Practice: Proceedings of

the 15th International Conference on Software Technologies, 27–38.

https://doi.org/10.5220/0009766800270038

Whittaker, J. A. (2000). What is software testing? And why is it so hard? IEEE Software,

17(1), 70–79.

References 68

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2012).

Experimentation in software engineering. Springer Science & Business Media.

Yamashita, A. (2015). Experiences from performing software quality evaluations via

combining benchmark-based metrics analysis, software visualization, and expert

assessment. 2015 IEEE International Conference on Software Maintenance and

Evolution (ICSME), 421–428. https://doi.org/10.1109/ICSM.2015.7332493

Yin, R. K. (2009). Case study research: Design and methods (Vol. 5). Sage Publications.

Yin, R. K. (2011). Applications of case study research. Sage Publications.

Publication I

Hynninen, T., Kasurinen, J., Knutas, A., and Taipale, O.

Software testing: Survey of the industry practices

In Proceedings of the 2018 41st International Convention on Information and

Communication Technology, Electronics and Microelectronics (MIPRO)

Pp. 1449-1454, 2018

© 2018, IEEE

Software Testing: Survey of the Industry
Practices

T. Hynninen*, J. Kasurinen**, A. Knutas*** and O. Taipale*

* Lappeenranta University of Technology, Lappeenranta, Finland
** South-Eastern Finland University of Applied Sciences (XAMK), Kotka, Finland

*** Lero, the Irish Software Research Centre, Dublin, Ireland
timo.hynninen@lut.fi, jussi.kasurinen@xamk.fi, antti.knutas@lero.ie, ossi.taipale@lut.fi

Abstract - The objective of this survey was to explore
industry practices concerning software testing. We studied
software organizations to assess how they test their products
and what process models they follow. The data collection
was implemented as an online implementation of the survey
method. Additionally the collected data was compared to
our prior survey study to understand how the industry
practices have changed. According to our results, the
organizations have shifted towards test automation and
more sophisticated testing infrastructure, they apply more
agile practices even in the mission-critical software, and
they have reduced the use of formal process models.

Keywords - software testing; survey; industry practices;
quality assurance

I. INTRODUCTION

Testing can be one of the most expensive tasks for any
software project. Besides causing immediate costs,
problems of testing are also related to the costs of poor
quality, malfunctioning programs and errors that cause
large additional expenses to software producers during the
maintenance [1], [2]. The costs related to testing are on the
rise; the software industry has identified a need for
reducing the growing cost of test environment
management [3].

The objective of our study was to explore the software
organizations' testing practices, tools and development
process models to give an up-to-date picture of industry
practices. In addition to answering these questions, this
study is also a continuation study to our previous surveys
(year 2009 [4] and year 2005 [5]) on the testing practices
and test automation in the software industry. Comparison
between earlier and current observations reveal changing
practices.

The actual testing practices of the software industry
were observed via an online survey, conducted in the
beginning of 2017. We surveyed organizational units
(OU) representing different sizes and business domains in
software development. The survey questionnaire consisted
of multi-choice, multi-item questions to collect
quantitative data for statistical analysis and of open-ended
questions for qualitative analysis. This mixed methods
study [6] facilitated triangulation of the results [7]. Both
the collected quantitative and qualitative data were used to
assess the current practices, and compare our new results
against our earlier survey results conducted seven years

ago. According to the results, the applied software
development models seemed to have shifted towards agile
practices, causing changes in the testing infrastructure and
test phases’ emphasis. The number of automated tools in
testing was rising, while the use of the formal process
models and capability-maturity models were generally
declining.

The work is structured as follows: In Section 2, related
surveys and studies are introduced. Section 3 discusses the
applied research method used in this work, and Section 4
presents the actual survey results with comparison to the
results of our earlier survey. Discussion and conclusions
are given in Sections 5 and 6, respectively.

II. RELATED WORK

In addition to our earlier industry-wide survey of test
automation and testing practices [4], software testing and
test process improvement have been studied by others, for
example, Ng et al. [8] in Australia and Chen et al. [9] in
China. The study by Ng et al. applied the survey method
to establish knowledge on such topics as testing
methodologies, tools, metrics, standards, and training.
Their study indicated that the most common barrier to
developing testing was the lack of expertise in adopting
new testing methods and the costs associated with testing
tools; also in their study, only 11 organizations reported
that they met the testing budget estimates. In a similar
vein, Torkar and Mankefors [10] surveyed different types
of communities and organizations. They found that 60%
of the developers claimed that verification and validation
were the first to be downgraded in cases of serious
resource shortages during a project.

As for the industry studies, a similar study approach
has previously been used in other areas of software
engineering. For example, Ferreira and Cohen [11]
completed a technically similar study in South Africa,
although their study focused on the application of agile
development and stakeholder satisfaction. Similarly, Li et
al. [12] conducted research on the Commercial Off-The-
Self (COTS) based software development process in
Norway, Chen et al. [9] studied the application of open
source components in software development in China, and
Belt et al. [13] surveyed major Scandinavian telecom
companies to identify the challenges of testing. Overall,
case studies covering entire industry sectors are not
particularly uncommon [14], [15].

On longitudinal studies in the development of testing
practices, Garousi and Varma [16] conducted a series of
surveys in the province of Alberta in Canada. They
observed that from 2004 to 2009, the industry transitioned
with a distinct elevation of codified practices: all V-model
[16] levels of testing work (unit, system, and acceptance)
increased along with the level of applied test automation.
In addition, the amount of systematic training for the test
personnel increased in all of the measured categories.
Garousi and Zhi continued the work in 2013 with a
nation-wide follow-up survey on the actual software
testing practices, where they observed that new tools and
development practices have been adopted in the Canadian
industry since the prior study [17].

A study of testing practices by Lee, Kang and Lee [18]
surveyed the amount of applied testing tools and test
practices in South Korea. Their study reveals that even
within the last ten years, some software organizations
(12% of answers) have not had any meaningful test
process or applied any test methods in practice.
Interestingly, Lee, Kang and Lee also observed that in
their survey population, application of system testing
practices was more common than unit testing. One offered
explanation was that unit testing is low level activity
conducted by the developers, so it does not require
separate tools or a process to be followed.

Khosla [19] estimated that in the near future, 80% of
the staff in IT departments may be replaced by “artificial
intelligence (AI) type systems.” This estimate highlights,
for example, automatic collection of run-time data, AI
analysis of collected data together with testing and
deployment automation during maintenance. Gartner
report [20] also emphasizes the importance of automation.
According to the Gartner report, software development
phases cover 8 % and the maintenance phase, consisting
of, for example, defect fixing, testing and deployment of
new versions, covers 92 % of the total life cycle costs.

III. RESEARCH METHOD

The survey method described by Fink and Kosecoff
[21] was used as the research method in this study in both
of the surveys, in 2009 and again in 2017. The objective
for a survey is to collect information from people about
their feelings and beliefs. Further, surveys are most
appropriate when information should come directly from
the people [21]. Kitchenham et al. [22] divide comparable
survey studies into exploratory studies from which
explanations and estimates can be drawn, and
confirmatory studies from which strong conclusions can
be drawn. We consider this study as an exploratory,
observational, and cross-sectional study that explores
software testing practices and software quality approaches
applied in the software industry.

The 2017 online survey questionnaire included eleven
chapters containing questions of organization profile,
software testing, test process maturity, applied process
models and the tasks related to software development. The
constructs were divided into multi-item questions based
on, for example, theory, definitions or best practices of the
construct. Multi-item questions are questions that are
constructed by several items that measure one underlying

construct. Chapters in the questionnaire were planned so
that combining respondent’s answers yielded holistic
information of the surveyed organizational unit.

To facilitate comparison between our earlier and
current survey, seven of the questionnaire chapters were
taken directly from our earlier survey [4] which also
observed testing and quality assurance practices. The
design of the original data collection questionnaire was
done by seven researchers from two different research
groups. Two additional people were involved in the
testing of the questionnaire with test interviews. The
questionnaire for the data collection in 2017 was compiled
by three researchers, and tested with representatives of our
partner organization. The survey questionnaires from both
2009 and 2017 are available in the online appendix at
https://doi.org/10.5281/zenodo.803995.

The 2009 and the 2017 survey both use the five point
Likert scale: 1 fully disagree – 3 neutral – 5 fully agree.
The 2017 survey was launched as a web survey via
Webropol [23]. The sampling method was probability
sampling. The survey was advertised in social media
platforms such as LinkedIn, Facebook, Twitter and
Researchgate, and by direct contacts to our industrial
partners and open calls for participation in several public
online discussion channels.

The survey results were analyzed with the R statistical
language and its statistics (“stats”) library [24]. In the
statistical analysis, survey responses were also treated as
single-item and not full constructs to see if the distribution
of data between 2009 and 2017 had changed with any
statistical significance. Descriptive statistics, displayed in
more detail in the online appendix, were generated with
the psych R library [25]. When analyzing interval data
with the Mann-Whitney U statistical test, continuity
correction was enabled to compensate for non-continuous
data [26].

To estimate the sample size for our survey we used
publically available statistics provided by the Ministry of
Economic Affairs and Employment of Finland. According
to the latest report of the software business sector from
2014 [27] there were 3360 companies whose main line of
business was software production. The survey
questionnaire was opened 930 times and it collected 33
unique responses from respondents working in different
organizations within the four-week period it was available
in January 2017. This gives the survey a response rate of
3.5 percent, which is fairly normal for Internet surveys
according to Fink [21]. In comparison, the 2009 survey
had 31 respondents from different software development
organizations. This also indicates that both of the surveys
had similar-sized sample of the software industry which
also, while acknowledging some limitations similar to
Iivari [15], were sufficient samples of the industry, and
could be analyzed with quantitative approaches.

The survey was anonymous. To identify clusters and
to classify answers we collected general information of
the organizational unit. This information helped us to
classify qualitative answers of the open-ended questions to
quantitatively observed clusters. The objective of the
study was not to collect data from a certain country but to
reveal possible changes in the industry practices.

IV. SURVEY RESULTS

The survey questionnaire included general information
of the organizational unit, a number of multi-choice,
multi-item questions and open-ended questions. The
multi-item questions was estimated by using the Cronbach
alpha in the earlier surveys: The Cronbach coefficient
alpha expresses the degree to which items in a scale are
homogeneous.

Questions concerned the development practices and
the available quality assurance infrastructure. In this
section we present the survey results collected in January
2017. The results were compared against the 2009 results.
We use mode as the primary indicator for individual items
in the questionnaire, as the survey questions used an
interval Likert scale. Additionally, we performed
statistical analysis for the items of the multi-choice
questions. In the following we only present results from
the statistical analysis that were significant enough. Our
anonymized survey dataset, along with the full statistical
analysis, is also published in the online appendix.

General information of the organizational unit
revealed that the division between the 33 organizations
that took part in the survey was very even; very small,
small and medium-sized organizations represented each
about 21 percent of the participants, while 36.4 percent
were large or very large (more than 250 employee)
organizations. Approximately eighty percent of the
organizations were private companies, while rest of the
participants were government agencies or nonprofit
organizations. Organizations focusing mainly on national
operations formed 21.2 % of the respondents while 39.3 %
of organizations focused mostly on international business.
Out of all organizations, 30.3 % of them were in-between
national and international scale. Out of all organizations,
18.2 % also considered themselves solely or primarily as
open source developers. Of the people who responded to
our survey, a majority (66.7 %) considered themselves
primarily as software developers, while 12.1% had a
management position and 15.2% worked in quality
assurance. As for the mission-criticality of the
organizations, 51.5 % of the organizations reported that
product fault could cause remarkable economic losses.
Two of these organizations indicated that a fault in their
product could cause a loss of a human life. The profiles of
the respondent’s OUs are shown in Table 1.

The use of testing tools was measured by the question,
application level of different software testing tools, and
changes were observed through comparison to the earlier
results. In this survey, a tool was defined as “an
application, framework, web service, extra library, feature
of your development environment etc. whichever supports
completing the mentioned task”.

Table 2 presents the number of used tools is illustrated
as percentages in 2017 and 2009. As observable, the three
most popular tool categories include defect reporting
tools, test automation tools and unit testing tools.
Defect/code tracing tools are used by over half of all
surveyed organizations. When comparing the new data
with the 2009 data, the overall popularity of testing tools
has increased in most categories, in particular, test
automation, tracing tools and defect reporting. Since 2009,

the popularity of test case management (for example,
ticketing systems would also fall into this category)
remains high, but is no longer the most common testing-
specific tool.

The second chapter of the questionnaire discussed the
observed test and quality assurance process problems,
identified originally in 2009 [4] supplemented with new
questions related to maintenance issues. New maintenance
and support questions were added because maintenance
and support activities have continued growing and are
responsible for a large amount of the total lifecycle costs
[20]. The observations, especially when comparing the
2009 data with 2017, implied that the configurability of
the testing tools has become an issue, and that the support
for different software platforms might become an issue,
when observing the trend of the changes. Additionally,
feature development during late development phases
shorten testing schedule and it has become an increasingly
pressing issue. The detailed results containing the self-
assessment figures for both 2017 and 2009 are presented
in Table 3.

The third chapter of the survey was software processes
and the amount of agile practices in the organizations. In
the survey of 2009, the industry was observed to be
interested in the introduction of agile and, in general, more
informal practices. Based on our responses, the results of

TABLE I. THE PROFILE OF THE 2017 SURVEY RESPONDENTS
(N = 33)

Category % of respondents
Very Small organization (1-10
employees)

21.2 %

Small (11-50 emp.) 21.2 %
Medium (51-250 emp.) 21.2 %
Large or very large (250+ emp.) 36.4 %
Private company 78.8 %
Government or non-profit organization 21.2 %
Open source developer organization 18.2 %
Primarily national business/operations 30.3 %
Primarily service business 45.5 %
Primarily product business 39.4 %
Mission-critical organization
(remarkable economic losses or loss of
human life)

51.5 %

TABLE II. THE PERCENTAGE OF APPLIED TESTING TOOLS IN
THE INDUSTRY

Tool % of respondents
2017 2009

Bug/Defect reporting 72.7 % 22.6 %
Test automation 66.7 % 29.0 %
Unit testing 57.6 % 38.7 %
Bug/Code tracing 57.6 % 3.2 %
Performance testing 48.5 % 25.8 %
Test case management 45.5 % 48.4 %
Integration testing 45.5 % 16.1 %
Virtual test environment 42.4 % 12.9 %
Quality control 36.4 % 19.4 %
Automated metrics collector 36.4 % 3.2 %
System testing 27.3 % 9.7 %
Security testing 24.2 % 3.2 %
Test completeness 24.2 % 6.5 %
Test design 15.2 % 22.6 %
Protocol/Interface
conformance tool

9.1 % 6.5 %

this chapter are very in-line with the earlier results giving
emphasis on the agility of the industry-applied processes.

The industry drive towards agile practices can also be
observed from another chapter in our survey where we
asked about the use of formal process models such as
SPICE (software process assessment, ISO/IEC 15504,
currently part of the ISO/IEC 33000 series) [28] or
software testing standard (ISO/IEC 29119) [29]. The
question covered also the utilization of capability and
maturity models, such as TMMi - test maturity model
integrated [30] or CMMi – capability maturity model
integrated [31]. Based on our survey results, the use of
formal models have decreased within the last eight years.
Some form of process model (formal or self-defined) was
applied by 21.2 percent of organizations (62.5 percent in
2009), while none of the organizations in 2017 applied
capability or maturity certificates in their organization (it
was 43.8 percent in 2009). In 2017, V-model, acceptance
criteria for tickets and “generic agile” were mentioned, all
based on best practices collected from various sources and
“self-defined”. Detailed division of answers is presented
in Table 4.

The final chapter in the survey included questions
concerning the software testing and quality assurance

practices. In general, the results do not indicate any major
shifts in the applied testing and quality assurance practices
between the two surveys. Organizational units are
confident that they are building the product right, and at
the same time, building the right product. Survey
responses detailed in Table 5 highlights some differences
between the surveys: Testing schedules may not be kept
(2009 mode 4, partially agree, 2017 mode 2, partially
disagree) and time is not necessarily allocated enough for
testing (2009 mode 4, partially agree, 2017 mode 2,
partially disagree). Respondents are less confident in their
function testing practices (3.8 vs. 2.9 in average between
2009 and 2017. 2009 mode 4, partially agree, 2017 mode
3, neutral). Statistical significance in the difference of
distributions between the years for the single question
“our functional testing is excellent” can be established
with the Mann–Whitney U test, U=613 at significance
level p=0.005. Formal inspections are the testing practices
on which the surveyed organizations have become more
confident (2009 mode 2, partially disagree, 2017 mode 4,
partially agree), while code review practices have become
more varied between different organizations (2009 mode
4, partially agree, 2017 mode 1, fully disagree).

In addition to multi-choice questions the survey
contained open-ended questions, where we asked the
respondents to explain how their organization manages the
increasing testing and maintenance effort. The following
themes were highlighted from the responses:

· Moving from proprietary software to open source

· Increasing the coverage of automated tests

· Focusing on service scalability in design

· Re-implementing legacy applications

· Setting up dedicated testing and development
environments

· Offshoring testing work

· Establishing pre-planned maintenance time for
projects, during which last defects are fixed

· Forming dedicated maintenance teams

· Emphasizing the responsibility of current
developers

· Employing a risk-based testing approach to cover
the most critical components rather than trying to
get perfect coverage.

TABLE III. SOFTWARE TEST PROCESS PROBLEMS, AS
IDENTIFIED IN OUR 2017 SURVEY AND IN 2009 [9]. RESPONSES
ARE ON A SCALE OF 1 TO 5 (1 FULLY DISAGREE - 3 NEUTRAL - 5

FULLY AGREE)

2017 mode 2009 mode
Complicated testing tools
cause test configuration errors.

4 1

Commercial testing tools do
not offer enough support for
our development platforms.

3 1

It is difficult to automate
testing because of low reuse
and high price.

4 5

Insufficient communication
slows the bug-fixing and
causes misunderstanding
between testers and
developers.

4 2

Feature development in the
late phases of the product
development shortens testing
schedule.

4 4

Testing personnel do not have
expertise in certain testing
applications.

4 4

Existing testing environments
restrict testing.

3 4

TABLE IV. THE USE OF FORMAL PROCESS MODELS AND
CAPABILITY OR MATURITY CERTIFICATES IN ORGANIZATIONS

Category 2017 2009
Process model - Yes, formal 9.1 % 25.0 %
Process model - Yes, informal 12.1 % 37.5 %
Process model - No 63.6 % 37.5 %
Capability certificate - Yes,
formal

37.0 % 0.0 %

Capability certificate - Yes,
informal

6.3 % 0.0 %

Capability certificate - No 56.3 % 81.8 %

V. DISCUSSION AND IMPLICATIONS

The objective of this study was to explore the testing
practices of software companies, compare the results with
earlier survey result from the year 2009 and thereby
outline changes in software industry. The collected data is
publicly available in the online appendix should other
researchers want to validate, replicate or build upon our
findings.

Overall, the availability and application level of
testing- and quality assurance-dedicated tools has
increased across the industry, in almost all measured
categories. Especially tools related to automated testing
(e.g. test automation, automated metrics collection,
performance testing, tracing tools) have increased
significantly. The respondents of the survey refer to
testing and automated testing almost synonymously. The
available testing tools in 2017 are more sophisticated than
in the 2009, imposing less restrictions but causing more
configuration problems.

The use of different formal standards, certifications
and process models has decreased, while the amount of
agile practices has increased moderately. The mission-
criticality of the software no longer limits the organization
from using agile practices or other informal approaches.
In 2017, the last product features are introduced later
during the development process than in 2009. This leads
to increased shortages of testing resources (time) and puts
more emphasis on the acceptance phase testing. Test
design and documentation work in general have declined
while the confidence in functional testing practices has
declined. Issues in testing and maintenance are more
related to software development processes and practices,
the quality and coverage of testing, and test schedule
rather than the cost of quality assurance.

The survey results indicate increase in test automation,
a shift towards agile practices, and that the formal
software process models are less popular among industry
practitioners. Results are in line with the observations of,
for example, Khosla [19]: the rise of automation in testing,
deployment and maintenance. Growing test automation
also fits well to the observations of the Gartner report
[20]. Explanatory factors to the growing test automation
include, for example, agile methods with regression
testing [32], continuous deployment and integration to

shorten the timespan between product versions [33],
DevOps to lower the threshold between development and
use [34], and the general requirements for automation in
IT-departments, server rooms and data centers to reduce
the costs [19].

In comparison to other industry surveys in software
testing, our results suggest similar trends as, for example,
Canadian software industry report by Garousi and Zhi
[17]. The most important testing tools in our study include
defect tracking, unit testing and test automation, and
Canadian organizations see functional and unit testing as
the most common testing work. Likewise, Canadian
organizations perform testing activities mostly during a
dedicated testing phase in development (test-last
approach). Our respondents did not suggest any other
approach than test-last, and our results indicate that test
phases may even be skipped in some circumstances.

Formal process models are more common in large and
very large organizations. According to the study of
Hardgrave and Armstrong [35], small and medium-sized
organizations are able to apply the principles and best
practices of the formal models in their work. Therefore,
the reason for the decreasing use of the process models
cannot be directly explained, and has to be assessed in
more detail in the future works.

Concerning the validity of the study, even though the
survey constructs and questions between the rounds were
almost the same, there were differences in the data
collection procedures: in 2009 the data was collected by
interviewing representatives of software organizations
whereas the 2017 dataset was collected online. The
number of interviews in the 2009 dataset was 32 and the
number of filled on-line questionnaires in the 2017 survey
was 33. The response rate of 2017 was in line with the
estimates given for on-line surveys [21]. The sample is
small but comparable with the sample of 2009 and the
observations are presented as explorative and not as strong
conclusions. Overall, the metrics presented in this paper
are accumulation data from the survey, so the researcher
bias on the results should be minimal. The 2017 results
were largely similar to the 2009 results, which adds to the
rigor of the results, and helps highlight differences
between the years.

TABLE V. THE SELF-ASSESSMENT OF THE QUALITY OF THE DIFFERENT TESTING AND QUALITY ASSURANCE PRACTICES (1 FULLY DISAGREE –
3 NEUTRAL – 5 FULLY AGREE)

2017
mode

2009
mode

Our software correctly implements a specific function. We are building the product right. 4 5
Our software is built traceable to customer requirements. We are building the right product. 5 4
Our formal inspections are OK. 4 2
We go through checklists. 2 3
We keep code reviews. 1 4
Our unit testing (modules or procedures) is excellent. 4 2
Our integration testing (multiple components together) is excellent. 3 3
Our usability testing (adapt software to users' work styles) is excellent. 3 2
Our function testing (detect discrepancies between a program's functional specification and its actual behavior) is
excellent.

3 4

Our system testing (system does not meet requirements specification) is excellent. 3 4
Our acceptance testing (users run the system in production) is excellent. 4 4
We keep our testing schedules. 2 4
Last testing phases are kept regardless of the project deadline. 4 4
We allocate enough testing time. 2 4

VI. CONCLUSION

The results of the survey presented in this paper
indicate that the software testing practices have undergone
some changes in the industry within the last eight years.
First, automation in testing has continued its growth.
Within testing trends, automation has become more
common on all levels of testing. Second, the application of
formal software process models and capability maturity
models seems to have decreased, while the testing tools
have become increasingly common and more
sophisticated.

This change is also reflected by the organizational
considerations over the testing tools: the tools no longer
restrict the organizational unit as much as they did in 2009
but in exchange, configuration problems and lack of
platform support have become increasingly common. Also
testing done during the design phase is decreasing. Since
the last features are introduced later in the software
development process, the emphasis on the late testing and,
especially, acceptance testing has increased, while, at the
same time, available time for testing work has decreased.
Overall, the changes are not dramatic but the industry
practices evolve as we can observe from the comparison
of the surveys.

In our future work, the focus is on the expenses of
testing and quality assurance. Based on our observations,
the reduced use of formal processes, and the need to push
new features into the product, mean that the products need
better support for acceptance testing, regression testing
and in general quality assurance for the features added
after the initial launch. This study area is interesting, since
the reduction of the costs of the maintenance cycle and
automated regression testing would probably have a
meaningful impact on the overall costs of quality
assurance work.

REFERENCES

[1] E. Kit, Software testing in the real world. Addison-wesley,
1995.

[2] S. Planning, “The economic impacts of inadequate infrastructure
for software testing,” 2002.

[3] “World Quality Report 2016-17,” Capgemini Group, 2017.
[4] J. Kasurinen, O. Taipale, and K. Smolander, “Software test

automation in practice: empirical observations,” Adv. Softw.
Eng., vol. 2010, 2010.

[5] O. Taipale, K. Smolander, and H. Kälviäinen, “Finding and
Ranking Research Directions for Software Testing,” in Software
Process Improvement: 12th European Conference, EuroSPI
2005, Budapest, Hungary, November 9-11, 2005. Proceedings,
I. Richardson, P. Abrahamsson, and R. Messnarz, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 39–48.

[6] G. Paré and J. J. Elam, “Using case study research to build
theories of IT implementation,” in Information systems and
qualitative research, Springer, 1997, pp. 542–568.

[7] N. K. Denzin, The research act: A theoretical introduction to
sociological methods. Transaction publishers, 1973.

[8] S. P. Ng, T. Murnane, K. Reed, D. Grant, and T. Y. Chen, “A
preliminary survey on software testing practices in Australia,” in
Software Engineering Conference, 2004. Proceedings. 2004
Australian, 2004, pp. 116–125.

[9] W. Chen, J. Li, J. Ma, R. Conradi, J. Ji, and C. Liu, “An
empirical study on software development with open source
components in the chinese software industry,” Softw. Process
Improv. Pract., vol. 13, no. 1, pp. 89–100, 2008.

[10] R. Torkar and S. Mankefors, “A survey on testing and reuse,” in
Software: Science, Technology and Engineering, 2003.

SwSTE’03. Proceedings. IEEE International Conference on,
2003, pp. 164–173.

[11] C. Ferreira and J. Cohen, “Agile systems development and
stakeholder satisfaction: a South African empirical study,” in
Proceedings of the 2008 annual research conference of the
South African Institute of Computer Scientists and Information
Technologists on IT research in developing countries: riding the
wave of technology, 2008, pp. 48–55.

[12] J. Li, F. O. Bjørnson, R. Conradi, and V. B. Kampenes, “An
empirical study of variations in COTS-based software
development processes in the Norwegian IT industry,” Empir.
Softw. Eng., vol. 11, no. 3, pp. 433–461, 2006.

[13] P. Belt, J. Harkonen, M. Mottonen, P. Kess, and H. Haapasalo,
“Improving the efficiency of verification and validation,” Int. J.
Serv. Stand., vol. 4, no. 2, pp. 150–166, 2008.

[14] K. Y. Wong, “An exploratory study on knowledge management
adoption in the Malaysian industry,” Int. J. Bus. Inf. Syst., vol.
3, no. 3, pp. 272–283, 2008.

[15] J. Iivari, “Why are CASE tools not used?,” Commun. ACM, vol.
39, no. 10, pp. 94–103, 1996.

[16] V. Garousi and T. Varma, “A replicated survey of software
testing practices in the Canadian province of Alberta: What has
changed from 2004 to 2009?,” J. Syst. Softw., vol. 83, no. 11,
pp. 2251–2262, 2010.

[17] V. Garousi and J. Zhi, “A survey of software testing practices in
Canada,” J. Syst. Softw., vol. 86, no. 5, pp. 1354–1376, May
2013.

[18] J. Lee, S. Kang, and D. Lee, “Survey on software testing
practices,” IET Softw., vol. 6, no. 3, pp. 275–282, 2012.

[19] V. Khosla, “Keynote speech,” presented at the Structure
Conference, San Francisco, 2016.

[20] “The Four Laws of Application, Total Cost of Ownership.”
Gartner, 2012.

[21] A. Fink, How to Conduct Surveys: A Step-by-Step Guide. Sage
Publications, 2012.

[22] B. A. Kitchenham et al., “Preliminary guidelines for empirical
research in software engineering,” IEEE Trans. Softw. Eng., vol.
28, no. 8, pp. 721–734, 2002.

[23] “Webropol.” [Online]. Available:
https://www.webropolsurveys.com/. [Accessed: 22-Jun-2017].

[24] R Core Team, R: A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for Statistical
Computing, 2017.

[25] W. Revelle, psych: Procedures for Psychological,
Psychometric, and Personality Research. Evanston, Illinois:
Northwestern University, 2017.

[26] R. Bergmann, J. Ludbrook, and W. P. Spooren, “Different
outcomes of the Wilcoxon—Mann—Whitney test from different
statistics packages,” Am. Stat., vol. 54, no. 1, pp. 72–77, 2000.

[27] T. Metsä-Tokila, “Ohjelmistoala,” Työ- ja elinkeinoministeriö,
2014.

[28] “ISO/IEC 15504-1: Information technology — Process
assessment — Part 1: Concepts and vocabulary.” International
Organization for Standardization, 2004.

[29] “ISO/IEC 29119-2: Test Processes.” International Organization
for Standardization, 2013.

[30] E. van Veenendaal and B. Wells, Test Maturity Model
Integration TMMi. The Netherlands: Uitgeverij Tutein
Nolthenius, 2012.

[31] R. Kneuper, CMMI: Improving Software and Systems
Development Processes Using Capability Maturity Model
Integration. Rocky Nook, 2008.

[32] K. Schwaber and M. Beedle, Agile software development with
Scrum, vol. 1. Prentice Hall Upper Saddle River, 2002.

[33] M. Fowler, “Continuous Integration,” martinfowler.com.
[Online]. Available:
https://martinfowler.com/articles/continuousIntegration.html.
[Accessed: 22-Jun-2017].

[34] S. K. Bang, S. Chung, Y. Choh, and M. Dupuis, “A grounded
theory analysis of modern web applications: knowledge, skills,
and abilities for DevOps,” in Proceedings of the 2nd annual
conference on Research in information technology, 2013, pp.
61–62.

[35] B. C. Hardgrave and D. J. Armstrong, “Software process
improvement: it’s a journey, not a destination,” Commun. ACM,
vol. 48, no. 11, pp. 93–96, 2005.

Publication II

Hynninen, T., Kasurinen, J., Knutas, A., and Taipale, O.

Framework for Observing the Maintenance Needs, Runtime Metrics and the

Overall Quality-in-Use

Journal of Software Engineering and Applications.

Vol. 11, no. 4, pp. 139–152, 2018

This open-access article is distributed under the terms of the Creative Commons

Attribution 4.0 International License (CC-BY 4.0)

Journal of Software Engineering and Applications, 2018, 11, 139-152
http://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2018.114009 Mar. 29, 2018 139 Journal of Software Engineering and Applications

Framework for Observing the Maintenance
Needs, Runtime Metrics and the Overall
Quality-in-Use

Timo Hynninen1, Jussi Kasurinen2, Ossi Taipale1

1School of Business and Management, Lappeenranta University of Technology, Lappeenranta, Finland
2South-Eastern Finland University of Applied Sciences, Kotka, Finland

Abstract
The post-release maintenance is usually the most expensive phase in the soft-
ware product lifecycle from the first design concepts to the end of product
support. To reduce the costs related to post-release maintenance, we propose
a run-time framework for measuring software quality characteristics applying
the ISO/IEC 25000 software quality and software quality in use models as the
starting point. Measurement probes are linked into the software during the
development phase and used to collect quality information during the run
time. As a proof-of-concept, we implemented measurements in an open-source
software project to demonstrate the utility of the framework. As a result, this
paper presents a framework for collecting runtime metrics and measuring
software quality-in-use with a systematic interface. Additionally, examples of
measurement scenarios are presented.

Keywords
Software Maintenance, Software Life-Cycle, Measurement, Test Metrics,
Maintenance Costs

1. Introduction

During the software lifecycle, the maintenance of the software is usually the big-
gest overall expense, totaling even up to 90 percent of all life cycle costs [1].
Knowing this, it is rather surprising, that the software development processes do
not focus more on the maintenance phase. Instead development processes focus
to enhance and offer product quality and quality-in-use improvements within
the development and quality assurance steps. For example, the Scrum software

How to cite this paper: Hynninen, T., Ka-
surinen, J. and Taipale, O. (2018) Frame-
work for Observing the Maintenance Needs,
Runtime Metrics and the Overall Quali-
ty-in-Use. Journal of Software Engineering
and Applications, 11, 139-152.
https://doi.org/10.4236/jsea.2018.114009

Received: January 8, 2018
Accepted: March 26, 2018
Published: March 29, 2018

Copyright © 2018 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

T. Hynninen et al.

DOI: 10.4236/jsea.2018.114009 140 Journal of Software Engineering and Applications

process model which is favored in many SME organizations [2], does not take
into account any activities which happen before or after the active sprints, even
though majority of the software related costs are not realized within this period.
This issue is glaring for example in the game software development, where the
current business models such as live-ops or any other free-2-play model [3],
mean that basically all profits are generated during the maintenance period, not
at the commitment to develop software or after delivery.

Some activity models, such as continuous delivery (CD) [4] or DevOps [5]
promote more thorough integration of maintenance activities into the develop-
ment activities, but the runtime monitoring and control of the quality characte-
ristics supporting maintenance are not included. Actions such as the delivery of
hotfixes, patches or customer-tailored features are part of the continuous release
cycle, where development and maintenance are concurrent activities, with the
development phase being one iteration ahead of the maintenance phase. How-
ever, the general infrastructure in this area is not very systematically studied. In
more abstract terms, technical evaluation of the software quality is not very
straightforward, since the maintenance issues and quality assurance needs are
usually related to the preferred quality: Usually quality assurance during main-
tenance assesses, if the software system delivers the expected features or services,
and achieves the necessary quality requirements. However, there are several dif-
ferent types of quality involved [6], and if we consider quality models such as de-
fined by the ISO/IEC 25000-family [7], there are tens of different measurements
and methods to assess the quality and quality-in-use from different perspectives.

Many existing software measurement frameworks are influenced by the
ISO/IEC quality models. For example, the software maintainability measure-
ments developed by Motogna et al. [8], the performance measurement frame-
work for cloud computing by Bautista et al. [9], or the framework for evaluating
the effect of coding practices to software maintainability by Hegedus [10]. How-
ever, previous research has been limited to cover only parts of quality models,
concentrating around specific quality characteristics such as maintainability or
performance efficiency. There is a need for further work with a general mea-
surement framework, which aims to incorporate the characteristics of a software
quality model to a software system during run time.

The aim of this research is to study the different methods of reducing the costs
of the maintenance by directly lowering the amount of work required for the
maintenance by predicting and identifying the changes in the quality characte-
ristics. Changes in the quality characteristics serve as an early warning system of
the problematic components and software failures. More specifically, we con-
centrate on developing a library of software measurement probes using the
ISO/IEC 25000 standard series as a starting point. From our prior study [11],
applying the ISO/IEC 25000 standard, we understood that the quality model is
understandable enough to warrant application in the industry. The actual re-
search questions are: “What kind of technical infrastructure would enable

T. Hynninen et al.

DOI: 10.4236/jsea.2018.114009 141 Journal of Software Engineering and Applications

identification of on-line quality characteristics and thereby maintenance issues?”
and “How to incorporate a software quality model into a library of run-time
metrics?”

To answer these research questions, our approach was to define a framework
and implement the framework in a system to collect and monitor run-time data
from an open-source application. In addition, the collected data is visualized
with a separate analysis tool to monitor trends and changes between the differ-
ent versions of the system and to assess, for example, resource usage for the cus-
tomer environments.

In summary, this paper presents a framework for run-time software mea-
surement. The framework consists of two different types of metrics: direct me-
trics, which can be recorded from a system at run time by incorporating mea-
surement probes into the software during development; and indirect metrics,
which need to be derived from the direct metrics and the knowledge of the soft-
ware engineer or software specification. The framework aims to be general to
warrant use in different applications but at the same time loose enough to allow
developers to derive application-specific measurement.

Rest of the paper is structured as follows: In Section 2, related work is intro-
duced; Section 3 presents the research methodology; The main contribution of
this paper, the measurement framework and our proof-of-concept project are
introduced in Section 4; Discussion and conclusions are given in Sections 5 and
6 respectively.

2. Related Research

Measuring a software system with different kinds of tools and metrics is not a
novel idea. There are several different kinds of definitions for the use of metrics
(for example Honglei et al. [12]) and different quality models for selecting what
to test (for example Herzig et al. [13]), or how to select test cases (For example
Fontana & Zanoni [14], Schrettner et al. [15], Kasurinen et al. [16]). These all are
serious concerns, since the test cases and in general ensuring the system testabil-
ity can cause one third or even half of the workload in software development
life-cycle. This is mostly due to the need to capture not only the normal usage
but also extraordinary uses of the system [17].

The very definition of what product quality or quality-in-use actually means is
also a concern. There are several definitions such as value-based or manufactur-
ing-based quality [6], depending on the viewpoint or the relevant stakeholders.
The users have very different views on what is software or product quality, when
compared to some other quality definition, like the production quality. The cus-
tomers may not care at all on how low percentage of the products are faulty or
how high-quality the building components are, if the product is badly designed,
overpriced against its competing products or simply feels cheap or low-grade
product.

As stated, the assessment of quality relies on several measurable metrics and

T. Hynninen et al.

DOI: 10.4236/jsea.2018.114009 142 Journal of Software Engineering and Applications

models, which capture the different definitions of quality. Especially for software
products and their quality, there are some different models such as CISQ [18] or
ISO/IEC 9126 [19], which share a number of common features. For example, in
both these models the problematic aspect of defining what product quality ac-
tually is, is solved by defining a number of characteristics such as reliability or
security. These characteristics in combination assess if not all, then at least most
of the different aspects of software quality, and they can be selected on
case-by-case basis depending on what aspects are relevant.

The ISO/IEC 9126 model is probably the most applied standardized model
but it is not the most current or extensive standard in existence. The ISO/IEC
25000 Software Quality Requirements and Evaluation (SQUARE) model [7] in
its core is the upgraded version of the ISO/IEC 9126 model, with the added defi-
nitions for quality in software product, and a separate model for software quali-
ty-in-use. Overall, the objective of the ISO/IEC 25000 standard family is to clari-
fy the requirements, which should be identified to assess the software quality and
ensure the success on the evaluation and reaching of the set quality objectives.
Overall, the models cover 5 characteristics with 11 sub-characteristics for the
quality-in-use, and 8 characteristics with 31 sub-characteristics for software prod-
uct quality. These models and their characteristics are summarized in Figure 1
and Figure 2.

Figure 1. The ISO/IEC 25010 software product quality model [7], characteristics on left,
and the subcharacteristics on the right.

T. Hynninen et al.

DOI: 10.4236/jsea.2018.114009 143 Journal of Software Engineering and Applications

Figure 2. ISO/IEC 25010 software quality-in-use model [7].

The characteristics of the product quality model focus on the technical aspects

of the software, although there are also defined sub-characteristics for more hu-
man-centric aspects such as learnability. For all of the defined sub-characteristics,
the ISO/IEC 25000 standard series also defines a number of measurement tech-
niques and metrics, which can be used to assess the quality of that particular
characteristic. For example, with the testability sub-characteristics there are de-
fined measurements for test function completeness, autonomous testability and
test restartability. Similarly, confidentiality is measured with access controllabil-
ity, data encryption correctness and with the strength of the cryptographic algo-
rithms. Additionally, all of the measurements are formatted to a model, in which
the result provides a clear indicator, usually percentage, of positive outcomes
versus negative outcomes. Technically, this could enable the software systems to
be comparable against each other, and more importantly, allow formal mea-
surement of every different characteristic and their sub-characteristic. Similar
approach is also applied in the “Quality in use”-model, which focuses on the
clients and customers.

The quality-in-use-model focuses on the client side usage and on the delivered
user experience. The model follows the same principle as the product quality
model, dividing the model into a set of characteristics and their sub-characteristics.
Unlike the product quality model, several sub-characteristics such as trust or
pleasure use measurements based on the psychometric scales which are defined
by a questionnaire. However, each main characteristic have at least one aspect,
which can be measured through the use of software.

These models have been studied also in the other research works. For example
Motogna et al. [8] have been studying the maintainability-characteristic of the
ISO/IEC 25010 model, since in the software life cycle model maintenance has
significant effect on the software costs. Their study investigates the mainten-
ance sub-characteristics in detail, and proposes a set of metrics, which could be

T. Hynninen et al.

DOI: 10.4236/jsea.2018.114009 144 Journal of Software Engineering and Applications

applied in the assessment of the software maintainability, and provide evidence
that the model is a feasible starting point for a quality assessment system. In
more general studies, for example Goues and Weimer [20] have observed that
the amount of needed test cases in the maintenance can be reduced almost by 55
percent, if the system is designed to include formalized method of collecting
quality assurance-related metrics. A similar approach was used in a research
project documented by Black [21], where a set of explicit data sources was de-
signed to ensure that the quality assurance criterions were met in each incre-
mental development cycle, since there were no realistic resources to do complete
regression test cycle with each test case of the software during each software de-
velopment cycle.

In more practical terms, Lincke et al. [22] have studied the different quality
models and their applicability in real-life software development projects. Their
study suggests, that while the models are able to implicate the quality of the
software measured to some degree, the different models provide different results
and the models in general are not comparable nor compatible. The same project
could yield completely opposite results between two different quality models, if
the selected models and applied metrics are not carefully designed and mea-
ningful. Similar observations have been made also by Darcy and Kemerer [23],
who discuss the generally applicable measurements and notify that there are on-
ly handful of universal metrics. Their studies indicate that for example in the
object-oriented programming languages, concepts such amount of cohesion and
coupling between the objects are the most useful metrics to assess the product
quality and maintenance.

Rompaey et al. [17] also state that one aspect of quality, code quality, espe-
cially the concept of code smell could be transferred to the quality assurance of
unit testing. Their definition of the SSVT-test cycle (set-up, stimulate, verify,
tear down) could be useful in the assessment of system maintainability, test au-
tomation coverage and additional aspects such as explicitness of the system and
traceability of the encountered malfunctions.

3. Research Process

During the study we constructed a framework for quality measurement and
monitoring. The measurement and monitoring system aimed specifically for
software maintenance using a multi-discipline approach. First, we conducted a
literature review that covered, for example, software maintenance, quality as-
surance and software measurement methods. The review was used to identify
existing solutions and proposed methods to tackle the issues raised by our re-
search questions. In short, software quality related to the maintainability of a
system is often evaluated by analyzing code quality or complexity and run-time
approaches are used less often.

In addition to the literature review, we conducted a survey on the applied
testing and quality assurance practices in the industry. One of the key observations

T. Hynninen et al.

DOI: 10.4236/jsea.2018.114009 145 Journal of Software Engineering and Applications

was that the use of standards and formal process models seems to have declined
during the last eight years across different domains in our sample of software
organizations [25]. This observation affected our approach towards an on-line
measurement framework applying an international standard.

In order to realize the framework we followed the process described in the
ISO 15939 (Systems and software engineering—Measurement process) [24]. Our
framework covers the first two activities of the ISO 15939 model: establishing
measurement commitment and planning the measurement process. The other
activities recommended by the ISO 15939 model, performing measurements and
evaluating the measurements, are realized as a small-scale proof-of-concept sys-
tem. In the proof-of-concept, we implemented the metrics as a measurement li-
brary in an open-source application. Figure 3 depicts the measurement frame-
work and proof-of-concept implementations.

For each of the different sub-characteristics the ISO/IEC 25000 standard de-
fines a set metrics or measurements, which can be applied in the assessment. For
example, in the performance efficiency characteristic the sub-characteristic
time-behavior is defined as follows: “The degree to which the response and
processing times and throughput rates of a product or system, when performing
its functions, meet requirements”. To assess quality of this characteristic, the
system has to be able to measure and record the response and processing times.
Another example could be the compatibility-interoperability characteristic,
which is defined as “degree to which two or more systems, products or compo-
nents can exchange information and use the information that has been ex-
changed”. This characteristic demands a measurement or metric to assess object
interface similarities, usage of data storages and the amount of errors caused by
the faulty simultaneous operations. This approach was used to establish mea-
surements for sub-characteristics of the ISO/IEC 25000 model. Measurements
were either direct measurements such as with the performance efficiency, or in-
dicative measurements, which were used to collect information related to the
characteristic.

4. Framework for Collecting and Monitoring Quality
Characteristics

The concept system and the proposed testing and maintenance framework is

Figure 3. The measurement framework and proof-of-concept system (Modified from
ISO/IEC 15939 Systems and software engineering—Measurement process model [24]).

T. Hynninen et al.

DOI: 10.4236/jsea.2018.114009 146 Journal of Software Engineering and Applications

based on two separate components, which complement each other: the metrics
library, developed as a proof-of-concept IDE plugin for NetBeans [26], and the
analyzer front-end, which visualizes the collected metrics.

The IDE plugin includes a shorthand and the code generators for the different
types of measurement functions included in the library. The measurement func-
tions collect data into a log file with session-relevant information, which enables
the analysis tool to calculate the results and maintenance information. The ob-
jective of the IDE plugin is to offer practical tools for testers and software devel-
opers to measure and collect relevant data to satisfy their needs to verify or to
validate their product, or to assess the feasibility and stability of their latest re-
lease.

The metrics library consists of different testing methods. These methods are
collected from previous experiences and research work with the software indus-
try, from different models, for example, Swebok [27], Test Process Improvement
(TPI) model [28] and Test Maturity Model integration (TMMi) model [29]. The
objective of the library is to offer a wide list of different testing techniques and
tools, and recommend at least one feasible approach for evaluating any ISO/IEC
25000 family model characteristic.

The target IDE and the used programming language Java were both selected
to represent a well-known, platform-independent development environment.
The developed measurements were then incorporated to a test project, which in
our case was an experimental version of the Violet UML editor [30]. The expe-
rimental version had all of the measurements implemented, so that the system
would provide real session data for the analysis tool to calculate.

Table 1 presents the measurements using the quality characteristics collection
and monitoring framework. The measurements are categorized as either direct
or indirect: Direct measures consist of runtime events which are used to calcu-
late descriptive statistics; Indirect measures are derived from the direct meas-
ures, and their implementation requires additional expert information from the
developer or the designer. For example, Maintainability is an indirect measure
based on both runtime and static analysis, whereas Mean time between failures
is a direct measurement.

The analysis tool gives longitudinal observations for the product maintenance
and the reveals production issues. The tool is used to analyze the existing
log-files, assess quality characteristics and provide a visualization snapshot of the
current state of the system along with a view into the changes of key values be-
tween the software versions. The objective of this quality characteristics collec-
tion and monitoring framework system is to provide robust and transferable
metrics, which can be used to assess the “wellbeing” of the system, and provide
systematic and relevant information from the state of the environment or suc-
cess rate of the system revisions against the set targets. Especially for the main-
tenance, one long-term objective would be the observation of system perfor-
mance or feature utilization.

T. Hynninen et al.

DOI: 10.4236/jsea.2018.114009 147 Journal of Software Engineering and Applications

Table 1. Ways to measure the different quality characteristics in the proof-of-concept environment.

ISO 25010 Characteristic
(subcharacteristic)

Ways to measure in the framework Measurement type
Implementation in the

software

Functional suitability (Functional
correctness, functional appropriateness)

Code coverage, user-applied action to
achieve use case outcomes

Indirect
Analysis tool calculations

with IDE plugin code insert

Performance efficiency (Time behavior)
Mean response time, response time

adequacy, mean throughput
Direct

Analysis tool calculations
with IDE plugin code insert

Compatibility (Interoperability) External interface adequacy Indirect IDE plugin code insert.

Usability (Learnability)
Error messages understandability, user

error recoverability
Direct

Analysis tool calculations,
IDE plugin insert

Reliability (Maturity)
Mean time between failure (MTBF),

Failure rate
Direct

Analysis tool calculations
with IDE plugin code inserts

Security (Accountability) System log retention Direct/Indirect
Analysis tool calculations

(log retention).

Maintainability (Analysability,
Modifiablity)

System log completeness, Modification
correctness

Indirect
Analysis tool calculations

(errors after tailoring)

Portability (Adaptability) Operational environment adaptability Indirect
Analysis tool calculations

(errors after tailoring)

Effectiveness Task error intensity Direct
Analysis tool calculations,

IDE plugin code inserts

Efficiency Task time Direct
Analysis tool calculations,

IDE plugin code inserts

Satisfaction Feature utilization Direct
Analysis tool calculations,

IDE plugin code insert

Freedom from risk
(Economic risk mitigation)

Business performance, errors with
economic consequences

Indirect
Analysis tool calculations,

IDE plugin code inserts

Context coverage (Flexibility)
Proficiency

independence
Indirect

Analysis tool calculations,
feature utilization-%

To evaluate the utility of the proposed framework, we developed use case sce-

narios to test the proof-of-concept system where the metrics library based on the
framework was integrated to the Violet UML editor. In the scenarios we wanted
to present simple maintenance metrics collected over time which would be
beneficial for a developer monitoring a software system in use.

In the first scenario the proof-of-concept system is being used by multiple
clients, with varying hardware and possibly different operating systems. The
performance metric we decided to visualize was mean system startup time for
each client. Figure 4 presents the data from our scenario with six different
clients. In this example, the developer would be able to see if a patch or update
causes system startup times to rise for all clients, and have an early warning for
when to adjust loaded resources at startup. Alternatively, if a client files a bug
report about slow system performance, the developer will be able to categorize if
the problem appears locally for a single client only.

In another scenario, the metric we implemented was the usage of a new fea-
ture in the program. When software is in the maintenance phase old functionality

T. Hynninen et al.

DOI: 10.4236/jsea.2018.114009 148 Journal of Software Engineering and Applications

seldom changes, but new features may be added. In our scenario, a new feature
has been added and deployed. In the scenario there is only one client but the
software could just as well be deployed as a public web service or the metric
could be the sum of all clients. The software developer wants to monitor how
much the new feature is being utilized since it has been launched into produc-
tion. In this example, the two features being compared allow the end user to
access the same functionality and have the same outcome, but through a differ-
ent path of navigation in the user interface. Figure 5 illustrates the comparison
between the usages of the selected features, where feature utilization is plotted by
day. As observable from the graph, users in this scenario have started to favor
the newly deployed feature over the old one to accomplish their task.

5. Discussion and Conclusion

The objective was to integrate a software quality measurement framework into
source code as a library of measurement tools. To bridge the gap between

Figure 4. Example, a time-performance metric collected from six different clients in a test
scenario.

Figure 5. A feature utilization metric collected from clients in a test scenario.

T. Hynninen et al.

DOI: 10.4236/jsea.2018.114009 149 Journal of Software Engineering and Applications

established quality evaluation models and their use in practice, we used the ISO
25,000 software quality and quality in-use models as the starting point. In order
to realize our goals we implemented a framework for software measurement and
a proof-of-concept prototype using an open-source project, and evaluated the
work using descriptive scenarios for software in the maintenance phase of its life
cycle. The framework offers a step towards integrating software development
and run-time quality evaluation.

According to the quality characteristics collection and monitoring framework,
the ISO/IEC 25,000 quality characteristics which can be represented or measured
from technical aspects of the system can be covered by the framework. The
framework offers the following novel benefits:
• Development of a systematic interface for the measurement components.
• Framework that is systematic and intuitive enough to warrant ease of use

without extensive training.
• Analysis tools.

Software quality related to the maintainability of a system, is often evaluated
by analyzing the quality or complexity of the source code. Cyclomatic complexi-
ty [31], Halstead complexity measures [32], and C&K metrics [33] are estab-
lished ways to measure code complexity. The complexity metrics are calculated
directly from source code, and analysis tools often employ them. For example,
Microsoft’s Visual Studio includes a maintainability index indicator, which is
based on both Halstead metrics and cyclomatic complexity [34]. In the academic
work, RTtool is a software suite used by researchers to analyze the relative thre-
sholds for the metrics of code quality in a software project [35]. Unfortunately,
at the moment existing code complexity metrics are poorly used in the industry
[36].

Model based approaches or machine learning have been identified as solutions
of evaluating software and predicting defects [37]. Runtime metrics have been
proposed as one method of quality evaluation [37], and they have been applied
by, for example Hegedus, whose model used run-time measures together with
static measures to measure testability and analyzability by using fault proneness
metrics [10]. However, in general run-time metrics are rarely used in software
quality and maintenance evaluation.

The limitations and validity of the presented framework warrant some discus-
sion. First, we must acknowledge that the analysis of metrics depends on the
software they are used with. Not all quality characteristics are interesting in all
software applications. The analysis is affected by the application context, and
therefore the normalization of metrics varies case by case.

This work begun by using the ISO/IEC 25,000 software quality and software
quality-in-use models as the starting point. In the presented framework, we have
covered examples of quality characteristics of the models. The limitations are re-
lated to quality-in-use characteristics that have an inherent subjective nature.
For example, it is difficult to quantify user trust, pleasure or comfort through

T. Hynninen et al.

DOI: 10.4236/jsea.2018.114009 150 Journal of Software Engineering and Applications

source code, but indirect run-time measurements may give useful information.
Quality characteristics like freedom from risk or security can only partly be cov-
ered.

Additionally, the utilization of the framework requires effort from the devel-
oper. Probes must be fitted directly to source code, as the framework is intended
to be used considering the domain knowledge. In our proof-of-concept library
we have tried to minimize the required manual programming work required by
exposing ready-to-use API’s to the developer.

6. Conclusions

The objective of this paper was to study how the amount of maintenance effort,
and thereby, cost could be reduced using a quality characteristics collection and
monitoring framework. The paper presents the implementation of a framework
for software measures and a proof-of-concept prototype using an open-source
project. The framework provides a systematic interface, which can be used to
collect runtime metrics and measure software quality-in-use.

The measurement framework and proof-of-concept project were evaluated by
using descriptive scenarios for software in the maintenance phase of its life cycle.
The measurement framework was implemented as a metrics library, and mea-
surements were linked into the software as probes during development. This
work maps the run-time software metrics to quality characteristics.

In future work, we are going to investigate approaches to source code model-
ling and defect prediction methods to automate the measurement process. In
addition, the methods presented to assess the quality of the system during main-
tenance could also be thematically expanded to cover the software lifecycle
phases of design and implementation.

Acknowledgements

This work was funded by the Technology Development center of Finland
(TEKES), as part of the. Maintain project (project number 1204/31/2016).

References
[1] The Four Laws of Application, Total Cost of Ownership (2012) Gartner, Inc.,

Stamford, CT.

[2] Kasurinen, J., Maglyas, A. and Smolander, K. (2014) Is Requirements Engineering
Useless in Game Development? In: Salinesi, C. and van de Weerd, I., Eds., Re-
quirements Engineering: Foundation for Software Quality, REFSQ 2014, Lecture
Notes in Computer Science, Vol. 8396, Springer, Cham, 1-16.
https://doi.org/10.1007/978-3-319-05843-6_1

[3] Alha, K., Koskinen, E., Paavilainen, J., Hamari, J. and Kinnunen, J. (2014)
Free-to-Play Games: Professionals’ Perspectives. Proceedings of Nordic Digra 2014,
Gotland, 29 May 2014.

[4] Humble, J. and Farley, D. (2010) Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation. Pearson Education.
https://books.google.fi/books?id=6ADDuzere-YC

T. Hynninen et al.

DOI: 10.4236/jsea.2018.114009 151 Journal of Software Engineering and Applications

[5] Roche, J. (2013) Adopting DevOps Practices in Quality Assurance. Communica-
tions of the ACM, 56, 38-43. https://doi.org/10.1145/2524713.2524721

[6] Garvin, D.A. (1984) What Does “Product Quality” Really Mean? Sloan Manage-
ment Review, 4, 25-43.

[7] ISO/IEC (2011) ISO/IEC 25000: Systems and Software Quality Requirements and
Evaluation (SQuaRE)—Guide to SQuaRE.

[8] Motogna, S., Vescan, A., Serban, C. and Tirban, P. (2016) An Approach to Assess
Maintainability Change. 2016 IEEE International Conference on Automation,
Quality and Testing, Robotics (AQTR), Cluj-Napoca, 19-21 May 2016, 1-6.
https://doi.org/10.1109/AQTR.2016.7501279

[9] Bautista, L., Abran, A. and April, A. (2012) Design of a Performance Measurement
Framework for Cloud Computing. Journal of Software Engineering and Applica-
tions, 5, 69-75. https://doi.org/10.4236/jsea.2012.52011

[10] Hegedus, P. (2013) Revealing the Effect of Coding Practices on Software Maintaina-
bility. 2013 29th IEEE International Conference on Software Maintenance (ICSM),
Eindhoven, 22-28 September 2013, 578-581. https://doi.org/10.1109/ICSM.2013.99

[11] Kasurinen, J., Taipale, O., Vanhanen, J. and Smolander, K. (2012) Exploring the
Perceived End-Product Quality in Software-Developing Organizations. Internation-
al Journal of Information System Modeling and Design, 3, 1-32.
https://doi.org/10.4018/jismd.2012040101

[12] Honglei, T., Wei, S. and Yanan, Z. (2009) The Research on Software Metrics and
Software Complexity Metrics. International Forum on Computer
Science-Technology and Applications, Chongqing, 25-27 December 2009, Vol. 1,
131-136. https://doi.org/10.1109/IFCSTA.2009.39

[13] Herzig, K., Greiler, M., Czerwonka, J. and Murphy, B. (2015) The Art of Testing
Less without Sacrificing Quality. Proceedings of the 37th International Conference
on Software Engineering, Vol. 1, Florence, 16-24 May 2015, 483-493.
https://doi.org/10.1109/ICSE.2015.66

[14] Fontana, F.A. and Zanoni, M. (2011) On Investigating Code Smells Correlations.
IEEE 4th International Conference on Software Testing, Verification and Validation
Workshops, Berlin, 21-25 March 2011, 474-475.
https://doi.org/10.1109/ICSTW.2011.14

[15] Schrettner, L., Fülöp, L.J., Beszédes, Á., Kiss, Á. and Gyimóthy, T. (2012) Software
Quality Model and Framework with Applications in Industrial Context. 16th Euro-
pean Conference on Software Maintenance and Reengineering, Szeged, 27-30
March 2012, 453-456. https://doi.org/10.1109/CSMR.2012.57

[16] Kasurinen, J., Taipale, O. and Smolander, K. (2010) Test Case Selection and Priori-
tization: Risk-Based or Design-Based? Proceedings of the 2010 ACM-IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement, Bolza-
no-Bozen, 16-17 September 2010, Article No. 10.
https://doi.org/10.1145/1852786.1852800

[17] Rompaey, B.V., Bois, B.D., Demeyer, S. and Rieger, M. (2007) On The Detection of
Test Smells: A Metrics-Based Approach for General Fixture and Eager Test. IEEE
Transactions on Software Engineering, 33, 800-817.
https://doi.org/10.1109/TSE.2007.70745

[18] Consortium for IT Software Quality. http://it-cisq.org/

[19] ISO/IEC (2001) ISO/IEC 9126: Software Engineering—Product Quality.

[20] Goues, C.L. and Weimer, W. (2012) Measuring Code Quality to Improve Specifica-

T. Hynninen et al.

DOI: 10.4236/jsea.2018.114009 152 Journal of Software Engineering and Applications

tion Mining. IEEE Transactions on Software Engineering, 38, 175-190.
https://doi.org/10.1109/TSE.2011.5

[21] Black, P.E. (2006) Software Assurance during Maintenance. 22nd IEEE Internation-
al Conference on Software Maintenance, Philadelphia, 24-27 September 2006,
70-72. https://doi.org/10.1109/ICSM.2006.58

[22] Lincke, R., Gutzmann, T. and Löwe, W. (2010) Software Quality Prediction Models
Compared. 10th International Conference on Quality Software, Zhangjiajie, 14-15
July 2010, 82-91.

[23] Darcy, D.P. and Kemerer, C.F. (2005) OO Metrics in Practice. IEEE Software, 22,
17-19. https://doi.org/10.1109/MS.2005.160

[24] ISO/IEC (2007) ISO/IEC 15939: Systems and Software Engineering—Measurement
Process.

[25] Hynninen, T., Kasurinen, J., Knutas, A. and Taipale, O. (2017) Testing Practices in
the Finnish Software Industry. IEEE Conference on Software Engineering Educa-
tion and Training, Savannah, 7-9 November 2017.

[26] NetBeans IDE. https://netbeans.org/

[27] Bourque, P. and Fairley, R.E. (2014) Guide to the Software Engineering Body of
Knowledge, Version 3.0. IEEE Computer Society, Washington DC.

[28] Koomen, T. and Pol, M. (1999) Test Process Improvement: A Practical Step-by-Step
Guide to Structured Testing. Addison-Wesley Longman Publishing Co., Inc., Bos-
tong.

[29] van Veenendaal, E. and Wells, B. (2012) Test Maturity Model Integration TMMi.
Uitgeverij Tutein Nolthenius, Hertogenbosch.

[30] Horstmann, C.S. and de Pellegrin, A. Violet UML Editor.
http://violet.sourceforge.net

[31] McCabe, T.J. (1976) A Complexity Measure. IEEE Transactions on Software Engi-
neering, SE-2, 308-320. https://doi.org/10.1109/TSE.1976.233837

[32] Halstead, M.H. (1977) Elements of Software Science. Vol. 7, Elsevier, New York.

[33] Chidamber, S.R. and Kemerer, C.F. (1994) A Metrics Suite for Object Oriented De-
sign. IEEE Transactions on Software Engineering, 20, 476-493.
https://doi.org/10.1109/32.295895

[34] Code Analysis Team (2007) Maintainability Index Range and Meaning—Code
Analysis Team Blog.
https://blogs.msdn.microsoft.com/codeanalysis/2007/11/20/maintainability-index-r
ange-and-meaning

[35] Oliveira, P., Lima, F.P., Valente, M.T. and Serebrenik, A. (2014) RTTool: A Tool for
Extracting Relative Thresholds for Source Code Metrics. IEEE International Confe-
rence on Software Maintenance and Evolution, Victoria, 29 September-3 October
2014, 629-632. https://doi.org/10.1109/ICSME.2014.112

[36] Antinyan, V., Staron, M. and Sandberg, A. (2017) Evaluating Code Complexity
Triggers, Use of Complexity Measures and the Influence of Code Complexity on
Maintenance Time. Empirical Software Engineering, 22, 3057-3087.
https://doi.org/10.1007/s10664-017-9508-2

[37] Catal, C. (2011) Software Fault Prediction: A Literature Review and Current Trends.
Expert Systems with Applications, 38, 4626-4636.
https://doi.org/10.1016/j.eswa.2010.10.024

Publication III

Savchenko, D., Hynninen, T., and Taipale, O.

Code quality measurement: case study

In Proceedings of the 2018 41st International Convention on Information and

Communication Technology, Electronics and Microelectronics (MIPRO)

Pp. 1455–1459, 2018

© 2018, IEEE

Code quality measurement: case study

D. Savchenko*, T. Hynninen* and O. Taipale*
* Lappeenranta University of Technology, Lappeenranta, Finland

dmitrii.savchenko@lut.fi, timo.hynninen@lut.fi, ossi.taipale@lut.fi

Abstract - As it stands, the maintenance phase in the
software lifecycle is one of the biggest overall expenses.
Analyzing the source code characteristics and identifying
high-maintenance modules is therefore necessary. In this
paper, we design the architecture for a maintenance metrics
collection and analysis system. As a result, we present a tool
for analyzing and visualizing the maintainability of a
software project.

Keywords - maintenance, code quality

I. INTRODUCTION
Maintenance and upkeep is a costly phase of software

life cycle. It has been estimated that maintenance can
reach up to 92% of total software cost [1]. Code quality
can be analyzed using various existing metrics, which can
give an estimate on the maintainability of software. There
are several tools and frameworks for assessing the
maintainability characteristics of a project. Many tools are
included in integrated development environments (IDEs),
such as Eclipse metrics [2], JHawk [3] or NDepend [4].
As such the existing tools are specific to platform and
programming language, providing quality analysis during
development. Considering maintenance also includes
activities post-release of a software product, it would be
beneficial to perform quality measurement also in the
maintenance and upkeep phase of life cycle.

One solution to the post-release monitoring are online
data gathering probes, which can be inserted into
production code to gather runtime performance data. In
order to establish and sustain a commitment for
maintenance measurement this work introduces a design
for data collection and storage. In this paper we present an
architecture for systematically collecting code metrics for
maintenance. Additionally, the visualization and analysis
of the metrics are explored.

In this study we will focus on the analysis of web-
applications. This delimitation is due to the collection of
runtime metrics as well as static metrics. The focus on
web-applications provides a reasonably standardized
measurement interface for runtime performance through
the browser's web API. In this paper we also propose the
design and implementation of the system called Maintain.
The probes for gathering metrics in the system are
implemented in both JavaScript and Ruby programming
languages.

Rest of the paper is structured as follows. In Section 2,
related work in analyzing software maintainability is

introduced. Sections 3 and 4 presents the architecture and
our implementation for a metrics collection and analysis
system, which is main contribution of this work.
Evaluation of the system’s performance and utility is
presented in Section 5. Finally, discussion and conclusions
are given in Section 4.

II. RELATED RESEARCH
Software maintenance, as defined by ISO 14764

standard, is the “the totality of activities required to
provide cost-effective support to a software system”,
consisting of activities both during development and post-
release [5]. The analysis of software maintainability is by
no means a novel concept. Motogna et al. [6] presented an
approach for assessing the change in maintainability. In
[6], metrics were developed based on the maintainability
characteristics in the ISO 25010 software quality model
[7]. The study presents how different object oriented
metrics affect the quality characteristics.

A study by Kozlov et al. [8] distinguished that
particular code metrics (data variables declared, McClure
Decisional Complexity) have strong correlations with the
maintainability of a project. In the work, the authors
analysed the correlation between maintainability and the
quality attributes of a Java-project.

In the study by Heitlager et al. [9] a practical model
for maintainability is discussed. The study discusses the
problems of measuring maintainability, particularly with
expressing maintainability as a single metric
(Maintainability index).

Studies where different evaluation methods are
combined in order to get a more thorough view on the
maintainability of a project have been conducted during
the past decade. For example, Yamashita [10] combined
benchmark-based measures, software visualization and
expert assessment. In a similar vein, Anda [11] assessed
the maintainability of a software system using structural
measures and expert assessment. In general, these studies
suggest that visualization systems providing developers
and project managers with an analysis of the health of a
software project can help distinguish problematic program
components, and thus help in the maintenance efforts of
software.

III. ARCHITECTURE
Maintain system architecture is presented at the figure

1. System consists of the following components:
This study was funded by the Technology Development center of

Finland (TEKES), as part of the .Maintain project (project number
1204/31/2016).

• Probe is a program that gathers some valuable data
from the software (static or dynamic). Each probe
should have an associated analyzer;

• Data Storage – data storage that stores the raw data
from the probes. It also has REST interface that
receives the data from the probes;

• Analyzer is a program that gets the raw data from
the associated probe and creates a report, based on
this data;

• Report Storage – data storage that stores reports
from analyzers;

• Report Visualizer is a component that creates a
visual representation of the report.

Figure 1. System architecture

Workflow of the system is centered around the Data

Storage. Generally, it looks like this:
• Probes gather the information from the source

code, it might be some static analysis results or
dynamic performance data;

• Gathered and normalized data is sent to the Data
Storage. Probe can have different data types, data
structure is defined by analyzer;

• When new data is received by Data Storage, the
associated analyzer is called. It requests the data
from the Data Storage, produces report (object, that
contains current status of the analyzed application
aspect and a set of time series for the end user);

When end user requests the report, Reports Visualizer
generates a visual representation of the time series, that
were created by analyzers.

IV. IMPLEMENTATION
Maintain system was implemented using Ruby on

Rails framework and hosted on Heroku cloud platform.
Project details page is shown on Figure 3. This page
provides the information about the current state of the

project, that is described as a set of 8 scores, based on
quality characteristics, described in ISO/IEC 25010 [7].
Those scores are visualized as a polar chart with 8 axis for
each quality characteristic respectively. Score calculation
is based on the report statuses – each report has an
associated probe, and each probe has a set of associated
quality characteristics. Quality characteristics are set by
the project administrator.

System class structure is organized as pictured in
figure 2. As system gathers the data using REST API, it is
generally impossible to predefine all possible probes and
probe types and set their quality characteristics in
advance. That’s why we decided to let user define the
quality characteristics for probe when it is created or
modified. Result score is based on statuses of last reports
for each probe respectively.

Figure 2. System entity-relationship diagram

A. Probes
As a case study, we have implemented four probes:

HAML, JavaScript and Ruby code quality probes, and
browser performance probe. JavaScript and Ruby code
quality probes are based on maintainability index, which
is calculated using the following formula:

maintainability = 171 –

 (3.42*Math.log(effort))-

 (0.23*Math.log(cyclomatic))-

 (16.2*Math.log(loc))

HAML maintainability index uses recursive formula,
based on linter report:

Maintainability = a*maintainability

where a is 0.9 for linter error and 0.99 for linter
warning

Code quality probes produce the following data for
Data Storage:

{

 maintainability: M,

 revision: R,

 datetime: D,

 modules: Ms

}

where M is average maintainability index for the
whole project, R is current Git revision, D is current date
and time, and Ms is a list of maintainability index for
project files and their names. Browser performance probe
generates report in different format:

{

 page: P,

 timing: T,

 datetime: D

}

Where P is an URL of the current page (without
query), T is the time between page load start time and
DOM ready event time in milliseconds, and D is current
date and time.

B. Analyzers
Currently we have implemented two different

analyzers - maintainability analyzers for Ruby, JavaScript
and HAML probes, and performance analyzer for browser
performance probe. Workflow for maintainability
analyzer works is described below:

• Data from Data Storage is grouped by days,
maintainability index for each day calculated as a
median of indices for day. If no data presented for
day, analyzer sets the value for the previous day
(fallback for weekends);

• List of maintainability indices are smoothed using
exponential moving average method, those values
are used as a time series for visualizer;

• Linear regression for last five days is used as a
status of the project source code quality: if it is less
than zero, then code quality is bad.

Workflow for browser performance analyzer is different:
• Performance data is grouped by five minutes, value

for each section is calculated as a 95th percentile of
all values for section;

• If values for all sections are less than 2 seconds,
then browser performance is good.

V. MAINTAIN SYSTEM USAGE EXAMPLE
Maintain system was evaluated using a proprietary

web application, that was implemented using Ruby on
Rails as a backend, and CoffeeScript on top of React.JS as
a frontend. This project is on maintenance phase, so we
decided to analyze historical data and compare
Maintenance system results with the feedback from the
project manager, who managed the analyzed project.
Application was used by 5 administrators and about 10000
users. Maintenance system was deployed in Heroku cloud,
while probes were running on local PC, that had 1.8 GHz
2-core CPU and 4 Gb RAM. We gathered the code quality
information for all the previous commits to make picture
more consistent.

Figure 3. Project page example

Figure 3 illustrates the general ‘health’ of the analyzed
application at the last Git revision at Master branch.
Figure 4 shows the JavaScript (CoffeeScript) and HAML
code quality. The project was started as a pure backend
solution, while frontend development started at the
beginning of September 2016. As shown in the graph,
HAML code quality was decreasing from September
2016, until December 2016, then it was stable. This
behavior can be explained by a deadline of the project,
that was at the end of the year 2016. After the deadline,
the project active development stopped. Project manager
evaluated the results and stated, that such an ‘early
warning’ system could notify the team and save some
development resources.

VI. DISCUSSION AND CONLUSION
The objective of this study was to facilitate the

systematic collection and analysis of maintenance metrics,
in order to reduce the effort required in the maintenance
phase of software already during development. To realize
the goal we designed and implemented an architecture for
a system which can be used to collect both static and
runtime metrics of a software project. We then
implemented analysis tools to visualize these metrics, and
display the most high-maintenance modules in a project
repository.

The novelty of the presented work is the extendibility
and modularity of the architecture. The architecture is not
platform specific. New probes and corresponding
analyzers can be added at any stage, using the REST API
with any programming language or platform. The data
storage and reporting system provide a common interface
for the systematic collection of quality metrics, allowing
the developers of a project to establish and sustain a
commitment for quality measurement.

Providing a platform to establish the measurement
commitment is important, because previous research

shows that the quality assurance and testing practices of
developers do not necessarily line up with measurement
possibilities distinguished in academic research. For
example, the recent study by Garousi and Felderer
distinguishes that the industry and academia have different
focus areas on software testing [12]. Likewise, Antinyan
et al. show in [13] that existing code complexity measures
are poorly used in industry. In this work, we used the
maintainability index as an indicator for code quality, as it
has been used in both academia and industry. In future, we
should work on evaluating whether quality metrics
presented in academic publications could be implemented
into our system as probes providing reliable
measurements.

Additionally, in future work we aim to develop more
measurement probes in the system. We should evaluate
the different metrics to distinguish which measurements
provide the most useful information about software
maintainability.

REFERENCES
[1] “The Four Laws of Application, Total Cost of Ownership.”

Gartner, Inc., 2012.
[2] Eclipse Metrics Plug-in, http://sourceforge.net/projects/metrics.

(accessed 5th Feb 2018).
[3] JHawk, http://www.virtualmachinery.com/jhawkprod.htm.

(accessed 5th Feb 2018).
[4] NDepend	”http://www.ndepend.com”,	(accessed 5th Feb 2018).
[5] ISO/IEC, “ISO/IEC 14764: Software Engineering - Software Life

Cycle Processes - Maintenance.” 2006.
[6] S. Motogna, A. Vescan, C. Serban, and P. Tirban, “An approach to

assess maintainability change,” in 2016 IEEE International
Conference on Automation, Quality and Testing, Robotics
(AQTR), 2016, pp. 1–6.

[7] ISO/IEC, “ISO/IEC 25010: Systems and software Quality
Requirements and Evaluation (SQuaRE) - System and software
quality models.” 2011.

[8] D. Kozlov, J. Koskinen, J. Markkula, and M. Sakkinen,
“Evaluating the Impact of Adaptive Maintenance Process on Open
Source Software Quality,” in First International Symposium on

Figure 4. Project code quality measurements

Empirical Software Engineering and Measurement (ESEM 2007),
2007, pp. 186–195.

[9] I. Heitlager, T. Kuipers, and J. Visser, “A practical model for
measuring maintainability,” in Quality of Information and
Communications Technology, 2007. QUATIC 2007. 6th
International Conference on the, 2007, pp. 30–39.

[10] A. Yamashita, “Experiences from performing software quality
evaluations via combining benchmark-based metrics analysis,
software visualization, and expert assessment,” in 2015 IEEE
International Conference on Software Maintenance and Evolution
(ICSME), 2015, pp. 421–428.

[11] B. Anda, “Assessing software system maintainability using
structural measures and expert assessments,” in Software
Maintenance, 2007. ICSM 2007. IEEE International Conference
on, 2007, pp. 204–213.

[12] V. Garousi and M. Felderer, “Worlds Apart: Industrial and
Academic Focus Areas in Software Testing,” IEEE Software, vol.
34, no. 5, pp. 38–45, 2017.

[13] V. Antinyan, M. Staron, and A. Sandberg, “Evaluating code
complexity triggers, use of complexity measures and the influence
of code complexity on maintenance time,” Empirical Software
Engineering, pp. 1–31, 2017.

Publication IV

Savchenko, D., Hynninen, T., Taipale, O., Smolander, K., and Kasurinen, J.

Early-warning system for software quality issues using maintenance metrics

International Journal on Information Technologies and Security

Vol. 12, No 4, pp. 35–46, 2020

© 2020, Union of Scientists in Bulgaria

International Journal on Information Technologies & Security, № x, 201x 1

EARLY WARNING SYSTEM FOR SOFTWARE
QUALITY ISSUES USING MAINTENANCE METRICS

Dmitrii Savchenko1, Timo Hynninen2, Ossi Taipale1, Kari Smolander1 and Jussi
Kasurinen1

1 LUT University, School of Engineering Science 2 South-Eastern Finland
University of Applied Sciences

timo.hynninen@xamk.fi, kari.smolander@lut.fi, jussi.kasurinen@lut.fi
Finland

Abstract: When software systems are developed, one of the major
milestones is usually the successful launch. However, in the overall life
cycle models for software, this is only the first step into the expensive and
lengthy phase, the maintenance. In this study, we analyse how to reduce
the cost of software maintenance and manage complexity with an analysis
tool that indicates the expected amount of maintenance work based on the
first observations after a new release. Based on our initial findings, the
maintenance indicators match the code review and revision needs,
indicating further avenues for future development.

Key words: software maintenance, early warning system, software
quality, quality assurance

1. INTRODUCTION

When considering the generic software life cycle and development models [1],
the software maintenance phase is usually the last or second-to-last step with a
relatively small amount of new actions or activities. However, due to the rise of the
software as a service distribution methods [2] and continuous delivery models [3],
software maintenance phase is arguably one of the most costly phases in the
lifecycle model [4,5]. In fact, in some software industries the first launch expects
the system to include only the bare essentials, and majority of the content is
developed while the system itself is in ‘the maintenance phase’ [6].

The growth of the maintenance phase and the costs related to the software
maintenance work have been explored in many studies. Obviously there is no one
main reason or culprit for the trend, but a number affecting factors such as
increasing complexity and integration of the systems [7], , changing operation and
operating environments of the systems [8], the criticality of the systems [5], and the

International Journal on Information Technologies & Security, № x, 201x 2

rise of service-oriented approach into delivering software and their
functionalities[9].

Many different approaches and technologies are aimed at the reduction of
software maintenance costs including, for example, service-oriented architecture
(SOA) [10], different delivery models [11], development and operations (DevOps)
[12], and microservice architecture [13]. Those approaches mostly focus on
improving software maintainability in order to reduce maintenance costs. On the
other hand, there are techniques aimed at software quality estimation focusing on
maintainability [14], code metrics [15] or code smells [16] but they require an
interpretation because their key measurements are not compatible between projects

The majority of maintenance work tends to be perfective or corrective [17],
but preventative tasks with design patterns, code smell analysis or cyclomatic
complexity [18] analysis can help by identifying areas, which with high probability
can raise issues. To investigate this in the context of software maintenance further,
we defined following research question: is it possible to estimate the observed
quality and maintenance needs of the software using objective code metrics?

In order to answer this question, we developed prototypes and proof-of-
concept tools and measurements, and implemented the most promising candidates
on a decision support system called the .Maintain tool.

The development of .Maintain was based on the measurement principles of the
quality characteristics as defined in the ISO/IEC standard 25000-SQUARE quality
model [19], but introduced two further steps. In the first step, measurement units
called probes are integrated into the system during the development phase to assist
the data collection and activity logging work when the new feature is added during
the maintenance work. Secondly, every time new version of the system is
deployed, the system analyses the quality outcomes from the data collected by the
probes. By comparing the analysis metrics for the relative changes in key quality
factors against the historical data if the analysis tools finds a quality anomality, it
triggers the early warning system (EWS) and presents the conflicting change in the
quality metrics to ensure that the change is acceptable, or intentional. Based on our
first deployed prototype with three different commercial software projects, the
basic premise of the EWS analysis tool measurements seem to correlate with the
project activity logs on the selected number of quality characteristics.

2. RELATED RESEARCH

To assess the maintenance needs, one aspect of the work is to measure,
understand and improve the system and process quality. In 1988, Humphrey [20]
described the framework that was aimed at establishing the standards of excellence
for software engineering called Capability Maturity Model (CMM). However,
these large scale approaches are not necessary applicable in all types of software
projects; Hynninen et al. [21] indicates a trend that software developer teams tend
to use as much automation as possible, especially in quality assurance (QA), and

International Journal on Information Technologies & Security, № x, 201x 3

use informal software development processes over formal approaches and
automation tools over formal inspections.

Another common approach to enhance maintainability and quality of the
software is to apply modularity and reusability design principles on the system
architecture. [22, 23]. In object-oriented programming (OOP) [24] the system is
defined as set of objects, and the isolation is mostly logical, whereas in service-
oriented architecture [25] (SOA) the system is defined as a set of components
which communicate as dedicated web services [10].

All mentioned approaches to reducing the maintenance costs have the common
idea to reduce complexity [7]. Such an approach requires measurement tools that
provide feedback about the current code complexity as early as possible. Motogna
et al. [26] presented the metric based on the maintainability characteristics
described in ISO 25010 [19] with the study indicating that such a metric may
represent the current quality of the overall project. This observation, that particular
code metrics correlate with the software maintainability is also approved by
Heitlager et al. [27], who defines a metric called Maintainability index which is
aimed at the representation of the software maintainability as a single metric. A
further study by Yamashita [28] points that the systems that combine real-time
measurements of the developed software with a visualization can help to develop
the software with better quality requiring less maintenance.

3. RESEARCH PROCESS

Code quality may be estimated in different ways, for example, by applying
both static and dynamic testing. In this study, we decided to start with the
Maintainability index, but focus on the change dynamics of this index instead of
the absolute index value to assess if it could act as an early warning system for the
maintenance. To study this, we built a prototype analysis tool following the
principles of the design science research method [29, 30]. Design science study is
usually understood as research that produces constructs, methods, and models, and
uses two iterative approaches: building and evaluation [30]. In practice, design
science is may be described by the process called design cycle (see Figure 1).

In this study, we initiated the design cycle from the first step, so our study
starts from the problem of software maintenance costs and aims at the research
question through the development of the prototype framework. We started with the
identification of the original problem, that the automated collection of data related
to most of the quality-defining attributes of the quality standard ISO/IEC 25010
[18] requires inputs which beyond the reach of a simple data collection or
repository mining tools since no suitable data is usually available. For this
observation, in the initial design we created the concept of probes, and set of
independent modules which can be embedded to an existing source code to
measure different concepts such as transaction lengths, amounts of actions the user
takes to complete one action, or other such activities. We tested the first version of

International Journal on Information Technologies & Security, № x, 201x 4

the probe library using a simple open source project to test out the idea and
demonstrate the concept to other interested parties. After this initial evaluation step
we identified further problems and concepts, for the probes needed to run the
quality assessment tests with real software development projects.

Fig. 1. Design science research method adapted from Peffers et al. [30]

The objective of the Maintain data collection and early warning system is was
to reduce the overall software maintenance effort and costs. For this objective,
study by Heitlager et al. [27] indicated that the Maintainability index of the source
code is linked with software quality, and, therefore, assessing the changes in the
maintainability index could affect the overall maintenance costs. The architecture
of our solution is presented in Figure 2, and the detailed developed process, the
module details and first trial of the tool is reported in publication [31].

Fig. 2. Maintain-tool architecture

Design science implies both building and evaluation of the developed artefact.
To evaluate the .Maintain tool, we ended up implementing the same set of code
quality probes for the different programming languages. Finally to test our proof-
of-concept tool, we analysed three finished real-life software projects at different

International Journal on Information Technologies & Security, № x, 201x 5

stages of development pulled from the code repository, while simultaneously
collected a survey from the project managers of the said projects to provide a short
summary and feedback on what their developer team was doing at the time.

4. RESULTS

In our proof-of-concept cases, the objective was to dynamically measure
changes in the Maintainability index, and compare this information against the
other data sources in the development project. In this stage, we collected and
analysed historical data from three different project repositories, and then
interviewed the developer teams about their activities to see if our maintainability
tools would match the perceived quality changes in the developed systems.

4.1. Project 1

The first project was evaluated using a proprietary application that was
developed by two different teams. The application’s backend was implemented
using Ruby on Rails, while the frontend was developed using JavaScript and
HAML notation language. The calculation metric was described using the
following iterative formula, based on code smells [32] found in the analysed file:

 (1)

Where k is 0.99 if code smell is the warning, and 0.9 if code smell is the error.
As the metrics calculations were now different and produced results in different
ranges, we decided to ignore the absolute values and focus on code quality change.
To extract the code quality change dynamics, we decided to use this formula:

 (2)

Fig. 3. Project 1 quality report

In short, code quality change was calculated as a difference between code
quality measurement and the linear regression of the code quality within a given
range. Figure 3 illustrates those changes for the three different parts of the project:

International Journal on Information Technologies & Security, № x, 201x 6

Ruby, JavaScript, and HAML. Also, according to the feedback from the project
manager, an external developer used to work with the frontend part between July
2016 and September 2016. In Figure 3, we can highlight that HAML code quality
decreased when the external developer started to work. Based on this project, we
also observed that the absolute value of Maintainability index was not as critically
important as the trend.

4.2. Project 2

The second pilot was performed with a project based on Node.js. The Figure 4
demonstrates the changes in the code quality over the analysed timeline, with peaks
and pits being explained with a summary from the project manager questionnaire.
This figure suggests that code quality is linked with the metric: maintenance index
grows during the refactoring phase, and drops with the new features. Comparison
between Maintainability index report and project manager feedback also revealed
that Maintainability index change does not necessarily tell that something goes
explicitly wrong in the project, because code quality decrease may also be linked
with the project development stage, and the behaviour of lowering quality index is
normal, if it goes down during activities such as new feature implementation.

Fig. 4. Project 2 quality report with the comments from project manager report

4.3. Project 3

In the third pilot project with our maintainability observation tools, we decided
to analyse a project with a timespan of one year. To get a comparison point from
the available data, we decided to compare the Maintainability index analysis results
with the processed ticket information from the project bug tracker. We defined and
calculated the ‘Bugs and features’ metric using the following formula for each day:

 (3)
where N is 1 if ticket type is ‘Bug’, or -1 if ticket type is ‘Feature’. For the
calculation and comparisons, the reported bugs and accepted features are included
based on the ticket creation date. In any case, as observable from Figure 5, there is
a correlating trend between the Bugs and features metric, and the Maintainability

International Journal on Information Technologies & Security, № x, 201x 7

index change; when the bug reporting system was collecting more tickets
concerning bugs and problems, the maintainability-index was going down even
though the index was based on the structural aspects of the source code, such as
amount of modules, lines of code and cyclomatic complexity.

Fig. 5. Project 3 quality report with bugs and features -metric

5. DISCUSSION AND IMPLICATIONS

The modern development processes for software systems emphasize concepts
such as continuous integration [11], cloud as the delivery model [33], service
computing [33], collaboration between software development and maintenance
[12], new integrated development environments and others. Unfortunately, the
testing and deployment environments seem to be falling behind especially on the
availability of generic tools due to the diversity of ecosystems. In this study, we
decided to combine both static and dynamic testing to implement a tool that
provides estimates of the project quality and can be integrated into the existing
software development process.

Based on our three test cases with the current version of the quality assessment
tools, our observations show that changes in the Maintainability index rather than
the absolute value of the index gives us the opportunity to estimate the project
quality. This evaluation also highlights that during the new functionality
implementation, Maintainability index seems to go down, while during the
refactoring or the bug fixing phase it rises. Evaluation of the Maintain project
shows that by abusing this feature it might be possible to implement an early
warning system that provides code quality estimation using the combination of
Maintainability index and information from the issue tracking system. Such an
early warning system compares the first derivative of the Maintainability index to
the current project state derived from the issue tracking system. Differences
between those metrics should be treated as an anomaly and reported to the project
manager.

International Journal on Information Technologies & Security, № x, 201x 8

Beyond our work with the maintainability estimations, the idea of finding the
link between the source code metrics and project quality attracts attention of the
researchers. For example, Lewis and Henry [14] show a correlation between
different code metrics and the amount of defects in the source code. On the other
hand, Kannangara and Wijayanake [34] analysed the difference in the software
quality before automated refactoring and after that using several source code
metrics, but state that those metrics do not show improvements in the software
quality after refactoring. However, for example Fontana [16] indicates that code
smell can be useful for software quality estimation and can be used as a quality
metric.

To guarantee the validity of the study we used two different approaches in the
evaluation and in the methodological triangulation. Robson [36] lists three basic
threats to validity in this kind of research: reactivity (the interference of the
researcher's presence), researchers bias, and respondent bias and strategies that
reduce their threats. To reduce these biases, we decided to perform the evaluation
in two steps. As the first step of evaluation, we performed the analysis based on
source code metrics during a limited time range and compared the results with the
feedback from the project manager. To make the feedback more structured, we
used a questionnaire and asked project managers to state their opinion on the
project quality for the given time ranges. Comparison between Maintain analysis
results and the special metrics derived from the issue tracking system showed the
correlation, but not an exact match. This may be explained by the fact that it was
not possible to link the bug or feature with the exact code change or certain commit
action, because the issue tracking system used in the evaluation does not provide
such information. This step of the evaluation also highlighted the fact that during
the new functionality implementation, following strictly the maintainability the
index will go down, while during the refactoring or bug fixing phase it will rise.
Adding further analysis option with the indexes calculated from the quality
attributes of the ISO/IEC 25010 model might provide us with additional venues to
collect more detailed information on why the quality is fluctuating.

6. CONCLUSIONS

In this study, we tried to answer the question - is it possible to determine the
changes in the subjective software quality by objective measurements? To find the
answer to this question, we decided to use a design science research approach.
Design science implies the creation and evaluation of the artefact, and as the first
step, we implemented the prototype of the Maintain-tool to calculate indexes based
on the ISO/IEC 25010 quality attributes. Following that, we used the developed
artefact to answer the research question during the evaluation phase and developed
a further tool to assess the maintainability indexes. The evaluation was performed
in a form of piloting within several independent companies. The evaluation showed
that the Maintainability index may be used as a suitable source of the project

International Journal on Information Technologies & Security, № x, 201x 9

quality estimation, but by itself it does not provide much information on why the
quality is declining. In an evaluation phase with the information derived from the
issue tracking system, it was possible to create an early warning system that
compared code quality fluctuations to the current project stage (refactoring, new
features, bug fixing) of the project. The difference between estimated the
development stage and the direction of the code quality metrics change should be
reported to the project manager as a possible source of problems.

Different metrics of the source code quality has been introduced in the related
studies, but the same metrics may provide different absolute values for different
applications. Being aware of this, we decided to implement the Maintain as a tool
focused on gathering data from different sources and analysing this data. In this
study, we illustrated as a quality-in-use characteristics example, that
Maintainability index can be applied to the project quality estimation and provide
an early warning of issues, but at this stage the results do not provide sufficient
details on what actions the maintenance team should take. Based on our
observations, the early warning system is feasible to provide an alert that there
might be issues within the new deployed version of the system, but automated
assessment of the quality attribute changes collected from the user and system
activity data to provide details on what parts of the system are failing, still need
further work.

REFERENCES

[1] Lientz BP, Swanson EB. Software Maintenance Management. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc.; 1980.

[2] Ma, D. (2007, July). The business model of" software-as-a-service". In Ieee
international conference on services computing (scc 2007) (pp. 701-702). IEEE.

[3] Chen, L. (2015). Continuous delivery: Huge benefits, but challenges too. IEEE
Software, 32(2), 50-54.

[4] Kyte A. The Four Laws of Application Total Cost of Ownership. April 2012.
https://www.gartner.com/doc/1972915/laws-application-total-cost-ownership.
Accessed October 15, 2018.

[5] Capgemini. WORLD QUALITY REPORT 2017-16.2017.

[6] Leppänen, M., Mäkinen, S., Pagels, M., Eloranta, V. P., Itkonen, J., Mäntylä,
M. V., & Männistö, T. (2015). The highways and country roads to continuous
deployment. Ieee software, 32(2), 64-72.

[7] Banker RD, Datar SM, Kemerer CF, Zweig D. Software complexity and
maintenance costs. Commun ACM. 2002. doi:10.1145/163359.163375.

International Journal on Information Technologies & Security, № x, 201x 10

[8] Reisman S. Costs and Benefits of Software Engineering in Product
Development Environments. In: Cases on Strategic Information Systems. ; 2011.
doi:10.4018/9781599044149.ch014.

[9] Glass RL, Collard R, Bertolino A, Bach J, Kaner C. Software testing and
industry needs. IEEE Softw. 2008. doi:10.1109/ms.2006.113.

[10] OASIS. Reference Model for Service Oriented Architecture 1.0. OASIS
Standard. Public Rev Draft 2. 2006;(October):1-31.

[11] Pawson R. Continuous Delivery: Reliable Software Releases through Build,
Test and Deployment Automation.; 2011. doi:10.1007/s13398-014-0173-7.2.

[12] Ebert C, Gallardo G, Hernantes J, Serrano N. DevOps. IEEE Softw. 2016.
doi:10.1109/MS.2016.68.

[13] Lewis J, Fowler M. Microservices. http://martinfowler.com.
http://martinfowler.com/articles/microservices.html. Published 2014.

[14] Lewis J, Henry S. A methodology for integrating maintainability using
software metrics. Conf Softw Maint. 1989. doi:10.1109/ICSM.1989.65191.

[15] Ferreira KAM, Bigonha MAS, Bigonha RS, Mendes LFO, Almeida HC.
Identifying thresholds for object-oriented software metrics. In: Journal of Systems
and Software. ; 2012. doi:10.1016/j.jss.2011.05.044.

[16] Fontana FA, Zanoni M. On investigating code smells correlations. In:
Proceedings - 4th IEEE International Conference on Software Testing,
Verification, and Validation Workshops, ICSTW 2011. ; 2011.
doi:10.1109/ICSTW.2011.14.

[17] ISO. International Standard - ISO/IEC 14764 IEEE Std 14764-2006 Software
Engineering - Software Life Cycle Processes - Maintenance. ISO/IEC 14764
(2006) DOI: 10.1109/IEEESTD.2006.235774.

[18] Gill, G. K., & Kemerer, C. F. (1991). Cyclomatic complexity density and
software maintenance productivity. IEEE transactions on software engineering,
17(12), 1284.

[19] ISO:ISO/IEC 25010:2011, Systems and software engineering --Systems
and software Quality Requirements and Evaluation (SQuaRE) --System and
software quality models

[20] Humphrey WS. Characterizing the Software Process: A Maturity Framework.
IEEE Softw. 1988. doi:10.1109/52.2014.

[21] Hynninen T, Kasurinen J, Knutas A, Taipale O. Software testing: Survey of
the industry practices. In: 2018 41st International Convention on Information and

International Journal on Information Technologies & Security, № x, 201x 11

Communication Technology, Electronics and Microelectronics, MIPRO 2018 -
Proceedings. ; 2018. doi:10.23919/MIPRO.2018.8400261.

[22] Meyer, B. (1987). Reusability: The case for object-oriented design. IEEE
software, 4(2), 50.

[23] Jehan S, Pill I, Wotawa F. Functional SOA testing based on constraints. In:
2013 8th International Workshop on Automation of Software Test, AST 2013 -
Proceedings. ; 2013:33-39. doi:10.1109/IWAST.2013.6595788.

[24] Ten Dyke RP, Kunz JC. Object-oriented programming. IBM Syst J. 2010.
doi:10.1147/sj.283.0465.

[25] Paik, I., Chen, W., & Huhns, M. N. (2012). A scalable architecture for
automatic service composition. IEEE Transactions on Services Computing, 7(1),
82-95.

[26] Motogna S, Vescan A, Serban C, Tirban P. An approach to assess
maintainability change. In: 2016 20th IEEE International Conference on
Automation, Quality and Testing, Robotics, AQTR 2016 - Proceedings. ; 2016.
doi:10.1109/AQTR.2016.7501279.

[27] Heitlager I, Kuipers T, Visser J. A Practical Model for Measuring
Maintainability. In: 6th International Conference on the Quality of Information and
Communications Technology (QUATIC 2007). ; 2007.
doi:10.1109/QUATIC.2007.8.

[28] Yamashita A. Experiences from performing software quality evaluations via
combining benchmark-based metrics analysis, software visualization, and expert
assessment. In: 2015 IEEE 31st International Conference on Software Maintenance
and Evolution, ICSME 2015 - Proceedings. ; 2015.
doi:10.1109/ICSM.2015.7332493.

[29] Hevner A, Chatterjee S. Design Science Research in Information Systems.;
2010. doi:10.1007/978-1-4419-5653-8.

[30] Peffers K, Tuunanen T, Rothenberger MA, Chatterjee S. A Design Science
Research Methodology for Information Systems Research. J Manag Inf Syst.
2007;24(3):45-77. doi:10.2753/MIS0742-1222240302.

[31] D. Savchenko, T. Hynninen and O. Taipale, "Code quality measurement: Case
study," 2018 41st International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO), Opatija, 2018, pp. 1455-
1459, doi: 10.23919/MIPRO.2018.8400262.

[32] Tufano M, Palomba F, Bavota G, et al. When and Why Your Code Starts to
Smell Bad - Aditional Analysis. In: 37th IEEE/ACM International Conference on
Software Engineering. ; 2015.

International Journal on Information Technologies & Security, № x, 201x 12

[33] Rhoton J, Haukioja R. Cloud Computing Architected. Recursive Press; 2011.

[34] Kannangara, S. H., & Wijayanayake, W. M. J. I. (2015). An empirical
evaluation of impact of refactoring on internal and external measures of code
quality IJSEA Journal, Vol.6, No.1, January 2015, PP. 51 - 67

[35] Kamei Y, Shihab E, Adams B, et al. A large-scale empirical study of just-in-
time quality assurance. IEEE Trans Softw Eng. 2013. doi:10.1109/TSE.2012.70.

[36] Robson C. Real world research. Blackwell Publ. 2002.
doi:10.1016/j.jclinepi.2010.08.001.

Information about the authors:
Dr. Dmitrii Savchenko – was a junior researcher with LUT Software Engineering
department. Dr. Savchenko defended his doctoral thesis on the automated assessment of
maintenance needs from LUT University in 2019, and currently works in the software
industry as an expert and a senior developer.

Timo Hynninen – is a senior lecturer with the South-Eastern Finland University of
Applied Sciences. Timo Hynninen has earlier graduated as Master of Science in technology
from LUT University, and is currently finalizing his dissertation work on the automated
measurement of software quality characteristics.

Professor Kari Smolander – is the current head of software engineering department at the
LUT University. His research interests include, but are not limited to software processes,
software architectures, enterprise architecture and software platforms.

Dr. Ossi Taipale – is an adjunct professor with LUT University. Ossi Taipale was the
principal investigator of the research project .Maintain, and an associate professor with the
department of software engineering. Ossi Taipale’s research interest include software
testing, software construction and software processes.

Assoc. prof. Jussi Kasurinen – works currently at the LUT University in the department
of software engineering. Assoc. Prof. Kasurinen is also the current head of software
engineering degree programs, and an adjunct professor of entertainment software
engineering. His research interests include but are not limited to software testing, quality
assurance and software maintenance.

Manuscript received on 28 September 2020

Publication V

Hynninen, T., Kasurinen, J., Knutas, A., and Taipale, O.

Guidelines for software testing education objectives from industry practices with a

constructive alignment approach

In Proceedings of the 23rd Annual ACM Conference on Innovation and Technology in

Computer Science Education

Pp. 278–283, 2018

© 2018, ACM

Guidelines for Software Testing Education Objectives from
Industry Practices with a Constructive Alignment Approach

 Timo Hynninen
Lappeenranta University of

Technology
P.O. Box 20

FI-53851 Finland
timo.hynninen@lut.fi

Jussi Kasurinen
South-Eastern Finland University of

Applied Sciences (XAMK)
Finland

jussi.kasurinen@xamk.fi

 Antti Knutas
Lero – The Irish Software Research

Centre
Ireland

antti.knutas@lero.ie

Ossi Taipale
Lappeenranta University of

Technology
P.O. Box 20

FI-53851 Finland
ossi.taipale@lut.fi

ABSTRACT
Testing and quality assurance are characterized as the most
expensive tasks in the software life cycle. However, several
studies also indicate that the industry could enhance product
quality and reduce costs by investing in developing testing
practices. Software engineering educators can bridge the gap
between formal education and industry practices to produce
more industry-ready graduates, by observing the industry in
action. To find out the current state of industry, we conducted a
study in software organizations to assess how they test their
products and which process models they follow. According to
the survey results, the organizations rely heavily on test
automation and use sophisticated testing infrastructures, apply
agile practices even when working with mission-critical
software, and have reduced the use of formal process reference
and assessment models. Based on the results, this paper identifies
a number of key learning objectives in quality assurance and
software testing disciplines that the industry expects from
university graduates. The principles of constructive alignment
are used to present learning goals, teaching methods, and
assessment methods that align with the industry requirements. 1

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted.
To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.

ITiCSE '18, July 2–4, 2018, Larnaca, Cyprus
© 2018 Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 978-1-4503-5707-4/18/07…$15.00
https://doi.org/10.1145/3197091.3197108

CCS CONCEPTS
• Social and professional topics → Software engineering
education; • Software and its engineering → Software
verification and validation

 KEYWORDS
Curriculum, software testing, constructive alignment

ACM Reference format:

Timo Hynninen, Jussi Kasurinen, Antti Knutas and Ossi Taipale. 2018.
Guidelines for Software Testing Education Objectives from Industry
Practices with a Constructive Alignment Approach. In Proceedings of
23rd Annual ACM Conference on Innovation and Technology in
Computer Science Education (ITiCSE’18). ACM, New York, NY, USA, 6
pages. https://doi.org/10.1145/3197091.3197108

1 INTRODUCTION
Testing is an important part of software life cycle, as

inadequate testing and quality assurance practices in can cause
substantial immediate costs as well as poor quality and high
maintenance products. Proper testing education can improve
software quality, for example students more experienced in
testing produce more reliable code [1], [2].

Constructive alignment is an outcomes-based approach to
teaching in which the learning outcomes that students are
intended to achieve are defined before teaching takes place [3].
Teaching and assessment methods are then designed to best
achieve those outcomes and to assess the standard at which they
have been achieved. The teaching environment, practices and
evaluation should support learning goals and the student’s
future environment [4].

278

ITiCSE '18, July 2–4, 2018, Larnaca, Cyprus Timo Hynninen, Jussi Kasurinen, Antti Knutas, Ossi Taipale

In order to align the testing education content with industry
practices, the following research questions were formulated: 1)
Which testing tools and technologies are most used in the
industry? 2) What are the current issues related to testing in the
industry? 3) How should the learning goals, teaching methods
and evaluation methods in a software testing course
constructively aligned with current industry practices?

Rest of the paper is structured as follows: Section 2
introduces related work in testing education and testing surveys.
Section 3 describes the research process. The survey and its
results are presented in Section 4. The constructive alignment
model and guidelines are given in Section 5. Finally, we conclude
in Section 6.

2 RELATED RESEARCH
There are several studies that implicitly investigate software

testing education from a constructive or a requirements
alignment perspective without explicitly citing the theory. For
example, a study by Krutz et al. [5] investigates motivational
issues and placing students into a more real-life like
environment that supports learning. The studied issue was that
students tend to think testing and quality assurance work as
boring and unnecessary extra work. In the Krutz et al. study, the
motivational problems were addressed by applying real open-
source software projects as the course assignments to give the
tasks more realistic scope and scale. Based on their results, 85
percent of their students considered this approach to be positive,
with student feedback also indicating improved motivation and
learning results. Similar observations were also reported in a
study by Garousi and Mathur [6], which also observed that it is
not uncommon for a computer science degree program to omit
the concept of quality assurance and software testing from their
course curricula. In another similar study Broman et al. [7]
discuss aligning software testing course with real world
practices, and explicitly use the theory of constructive
alignment.

Another set of studies create requirements for software
testing courses and present ways to align courses with these
interventions. A study by Smith et al. [8] discusses the general
requirements for developing a testing course: the university
course has to be fun and competitive, allow students to learn
from each other, the assignments have to demonstrate the
importance of doing testing work, and provide an example of the
scale and difficulty of the real-world quality assurance issues.
They also present an example intervention where a course is
changed to align with. These are important considerations,
because for example in study aligning course curricula with the
games industry [9], it was established that the academia and the
industry do not share a common view on what are the necessary
and important skills for the students to possess, especially when
considering more theoretical topics beyond the set of taught
programming languages. In this sense, it would be important to
collect information on the tools and strategies applied by the
industry, in the development of a course with industry-
applicable experience, especially since the more refined testing

tools applied by the industry require domain-related expertise
[6] and which may actually be difficult or expensive to acquire
without support from the degree program [10].

3 RESEARCH PROCESS
The objective of this study was to align testing education

with industry practices and needs. We used surveys as the
primary research method to study the industry, as surveys are
used to collect information from people about their feelings and
beliefs [11]. We consider the constructive alignment approach as
an exploratory study for which the survey method is appropriate
[12].

We used the questionnaire form introduced in Kasurinen et
al. [13] and originally designed in 2005 [14] to get information
about the respondents’ organization profile, testing practices,
test process maturity, applied process models and the tasks
related to software development. The questionnaire comprised of
eleven chapters containing multi-item, multi-choice questions
and open-ended questions. The multi-item questions used a five-
point Likert scale (1 fully disagree - 3 neutral - 5 fully agree).
The reliability of the multi-item questions in the chapters were
originally estimated by using the Cronbach alpha coefficient. In
addition to the original 2009 questions, we added new questions
about the costs of maintenance and product support.

The sampling method was convenience sampling, with as
wide reach as possible within the industry. We advertised the
survey in social media platforms such as LinkedIn, Facebook,
Twitter and Researchgate and by direct contacts to our industrial
partners and open calls for participation in several public online
discussion channels. We used advertisement channels to get
responses especially from our alumni, and asked them to also
share the survey on social media. In order to avoid an extremely
biased and small sample anyone working in the software
industry was welcome to take part.

The questionnaire collected 33 responses from individuals in
working in different organizations. The survey form was opened
930 times (by unique clients or IP-addresses) resulting in a
response rate of 3.5 percent which is fairly normal for Internet
surveys [11]. To estimate the sample size, we used publicly
available statistics provided by the Ministry of Economic Affairs
and Employment of Finland [15]. According to the latest
estimate, there were 3360 companies in the software business
sector, making the sample size approximately 1 percent of the
Finnish software industry.

Finally, we used the recommendations for constructive
aligned teaching [3], [4] to derive learning goals for industry
practices that were collected in the survey. From there a set of
teaching methods and the performances of understanding
required for evaluation were designed, informed by the same
recommendations. They are summarized follows:
 Learning goals should be clear, serve a purpose, and set in

advance.
 Students need to be placed in situations and environments

that elicit the required learnings, with declarative teaching
minimized.

279

Guidelines for Software Testing Education Objectives … ITiCSE '18, July 2–4, 2018, Larnaca, Cyprus

 Students are then required to provide evidence, either by
self-set or teacher-set tasks, as appropriate, that their
learning can match the stated objectives.

4 SURVEY RESULTS
Questions in the survey addressed the testing and quality

assurance practices, the tools used to support these activities as
well as development practices and problems.

In terms of organizational profile, very small, small and
medium-sized organizations represented each about 21 % of the
participants, while 36.4 % were large or very large (more than
250 employee) organizations. Approximately eighty percent of
the organizations were private companies, the rest being
government or nonprofit organizations. Respondents from
organizations focusing primarily on national operations formed
21.2 % of the total while 39.3 % focused mostly on international
business. Respondents in 51.5 % of the organizations reported
that product fault could cause remarkable economic losses, and
18.2 % considered themselves primarily as open source
developers. The majority of the respondents (66.7 %) were
primarily software developers, 12.1% were managers and 15.2%
worked in quality assurance.

The first chapter of the questionnaire was about the
application level of different software testing tools. A tool was
defined as “any application, framework, web service, extra
library, feature of your development environment etc. whichever
supports the activity in question.” The four most popular tool
categories include defect reporting, test automation, unit testing
and defect/code tracing tools, which are used by over half of all
surveyed organizations. Table 1 presents the number of used
testing tools.

The second chapter of the questionnaire consisted of multi-
choice questions about the severity of test and quality assurance
problems. The questions covered topics such as which issues
slow down the development, which issues currently restrict
testing, and how well current testing tools support development
needs. The issues in the questions were originally identified in
2009 [13]. The results indicate that the configurability of the
testing tools is a common issue. In addition, feature development
in the late phases of development can have an effect on testing
schedule, and insufficient communication can slow down defect
fixing. Another problem highlighted from the responses was that
testing personnel do not have enough expertise in certain testing
applications.

The third and fourth chapter of the survey addressed
software processes and the amount of agile practices in the
organizations. In general, the results indicate that the industry is
quite confident in the use of agile practices. The industry drive
towards agile can also be observed from the questions
concerning the use of formal process models such as SPICE
(software process assessment, ISO/IEC 15504, currently part of
the ISO/IEC 33000 series) [16] or software testing standard
(ISO/IEC 29119) [17]. The questions covered also the utilization
of capability and maturity models, such as TMMi - test maturity
model integrated [18] or CMMi – capability maturity model

integrated [19]. Some form of process model (formal or self-
defined) was applied by only 21.2 percent of organizations, while

according to the respondents none of the organizations applied
capability or maturity certificates. V-model, acceptance criteria
for tickets and “generic agile” were mentioned by name, all
based on best practices collected from various sources and “self-
defined”. No standard, model or certificate program was directly
named. Also, in some organizations individual employees are
unsure about the application of process models or capability
certificates.

The final chapter in our survey included several questions
concerning the software testing and quality assurance practices.
Respondents were asked to evaluate how well different
statements about development practices fit their organizational
unit on a scale of 1 (fully disagree) to 5 (fully agree). The
statements and survey responses in are presented in Table 2. We
present mode as the primary indicator for the individual
statements, as the survey used an interval Likert scale. The
organizational units are more confident on their system level
quality assurance (system, acceptance) testing than on the unit
or integration level testing. Organizational units are also
confident that they are building the product right, and at the
same time, building the right product. Testing schedules may not
be kept (mode 2, partially disagree) and time is not necessarily
allocated enough for testing (mode 2, partially disagree). Code
review practices are varying between different organizations
(mode 1, fully disagree).

In addition to multi-choice questions the survey contained
open-ended questions, where respondents were asked to explain
how their organization manages testing and maintenance related
effort. The following themes in managing testing-related work
were highlighted from the open responses:

Table 1: The percentage of applied testing tools in the
industry.

Tool Percentage of
respondents

Bug/Defect reporting 72.7 %

Test automation 66.7 %
Unit testing 57.6 %

Bug/Code tracing 57.6 %

Performance testing 48.5 %

Test case management 45.5 %
Integration testing 45.5 %

Virtual test environment 42.4 %

Quality control 36.4 %

Automated metrics collector 36.4 %
System testing 27.3 %

Security testing 24.2 %
Test completeness 24.2 %
Test design 15.2 %
Protocol/Interface conformance tool 9.1 %

280

ITiCSE '18, July 2–4, 2018, Larnaca, Cyprus Timo Hynninen, Jussi Kasurinen, Antti Knutas, Ossi Taipale

 Moving from proprietary software to open source
 Increasing the coverage of automated tests
 Focusing on service scalability in design
 Re-implementing legacy applications
 Setting up dedicated testing and development

environments
 Offshoring testing work
 Establishing pre-planned maintenance time for

projects, during which last defects are fixed
 Forming dedicated maintenance teams
 Emphasizing the responsibility of current developers
 Employing a risk-based testing approach to cover the

most critical components rather than trying to get
perfect coverage.

5 DISCUSSION AND IMPLICATIONS
To answer the first research question, which testing tools and

technologies are most used in the industry, the most common tools
in 2017 were defect-reporting, unit testing and test automation
tools. Test case management and test design tools were the
categories with decreasing usage. Test automation tools are
popular on every level of automation (data collection,
performance, general automation and tracing). Automated
testing is considered cheap. However, the quality and coverage
of testing is a concern to some developers.

In terms of the second research question, issues related to
testing in the industry, the configurability of testing tools and
personnel not being familiar with certain testing tools were
common issues according to the survey. Although it is unclear if
the respondents meant personnel not being familiar with a
particular application their company uses or with tools of a
particular type, this result highlights the importance of having
students use a variety of tools already during their studies. The
test process follows a certain path, executing the test phases
regardless of the project limitations. Emphasis is put on the late
phases, such as acceptance testing phase. Some form of a
systematic process or method in testing is followed by 21.2% of
the software companies even though over half of the companies
use the most common testing tools.

Interestingly, the static testing practices are very varying
between our respondents. While some organizations keep code
reviews and go through checklists, about half of the responses
say the opposite. One possible explanation for this result may be
the fact that there were many respondents from small companies
who employ extreme agile development processes and have not
yet established formal processes for code reviews, walkthroughs
or checklists.

The third research question, constructively aligning a software
testing education, is addressed next. In Table 3 we present an
initial design for a software testing course whose learning goals,
teaching methods, and evaluation methods have been
constructively aligned based on the industry survey results. In
this design we aim to minimize declarative teaching, place
students in environments that elicit required learnings on

software testing and evaluate with “performances of
understanding,” as recommended in the guidelines by Biggs [3],
[4]. It should be noted that the model presented is not exclusive.
In other words, we recommend including listed topics in
software testing education, but do not recommend excluding any
topics that we do not list.

Additionally, we suggest the following guidelines for

constructive alignment of testing curriculum:
 Incorporate the use of the most common testing

tools, defect reporting, unit testing and test
automation, into the curriculum. The students will
most likely require the skill to use these tools in
their future workplace.

Table 2: The self-assessment of the testing and quality
assurance practices (1 fully disagree – 3 neutral – 5

fully agree).
Question Average Mode

Our software correctly
implements a specific function.
We are building the product
right.

4.1 4

Our software is built traceable
to customer requirements. We
are building the right product.

3.8 5

Our formal inspections are OK. 3.4 4

We go through checklists. 3.0 2

We keep code reviews. 3.2 1

Our unit testing (modules or
procedures) is excellent.

2.9 4

Our integration testing
(multiple components together)
is excellent.

3.0 3

Our usability testing (adapt
software to users' work styles)
is excellent.

3.0 3

Our function testing (detect
discrepancies between a
program's functional
specification and its actual
behavior) is excellent.

2.9 3

Our system testing (system
does not meet requirements
specification) is excellent.

3.4 3

Our acceptance testing (users
run the system in production) is
excellent.

3.6 4

We keep our testing schedules. 3.2 2

Last testing phases are kept
regardless of the project
deadline.

3.0 4

We allocate enough testing
time.

2.6 2

281

Guidelines for Software Testing Education Objectives … ITiCSE '18, July 2–4, 2018, Larnaca, Cyprus

 Use popular, widely used testing tools rather than
tools designed for education, in order to teach
students the correct use and configuration of real
environments.

 Emphasize the importance of static testing methods
as the way to improve code quality.

 Produce documentation early on to encourage a
mindset for documenting the progress of the
project.

 Use a variety of tools for the same purpose to give
students experience of the different tools available.

 Enforce documentation practices to enhance the
communication skills, for example producing and
handling defect reports.

The ACM computer science curricula places testing skills in
the knowledge area of software development fundamentals.
Verifying program correctness is an extensive topic in the core
contents of the recommendation. Testing activities in the ACM
software engineering curricula are mainly under the Software
Verification and Validation knowledge area, although testing
themes span across multiple areas of knowledge such as
Software process or Software quality. Although the ACM
curricula recommendations cover testing well, they have been
criticized for not providing students a rigorous enough testing
mindset [20].

6 CONCLUSIONS
In this paper, we presented the alignment of software testing

education goals to industry practices. We observed the industry
by conducting a survey on testing tools and quality assurance
practices. The survey results indicated a strong preference

towards agile development practices and high use of automation.
Moreover, the use of formal process reference and assessment
models was in the minority. In addition, the survey results
ranked the popularity of different testing tools, which directly
benefits the software engineering educators.

The survey results were used to constructively align software
testing education with industry practices and expectations,
producing a course model that responds to industry needs. The
presented model can be used as a frame of reference for the
learning objectives related to testing work in computer science
education. Additionally, a number of guidelines for actual course
content were presented.

The study addressed a similar issue as in Krutz et al. [5] and
Broman et al. [7], though from a different perspective. We took a
step back and gather requirements and learning objectives for a
course on software testing, rather than investigate how the
requirements can be used to constructively align a course. This
approach is similar to the work of Garousi and Mathur [6] who
performed a review as well, though they surveyed existing
degree programs instead of the industry.

The limitations of the study warrant some discussion. The
sampling of our survey was limited to a one country, and for this
reason the results are not strong and confirmatory. However, we
consider the survey results as exploratory from which estimates
can be drawn.

In future work the actual learning activities and course
organization should be addressed. One topic of interest could be
the alignment of actual software testing activities with the
different phases of software life cycle.

ACKNOWLEDGMENTS
This work was partially funded by the Technology Development
center of Finland (TEKES), as part of the .Maintain project

Table 3: The constructive alignment of software testing course goals and methods to industry practices.
Learning goals Teaching methods Assessment methods

("performances of understanding")
Learn the practice of defect reporting
and the use of bug tracking tools

Individual exercises: Find and report
bugs.

Demonstrate understanding through the
individual projects

Implementing unit tests and evaluating
test coverage

Individual exercises: Create a program
and set up unit tests

Independent implementation of test
automation

Individual exercises: Set up full testing
automation for a program

Understand and apply test process
design in future projects

Teamwork: Project management
exercise and testing process simulation

Demonstrate understanding through
equal contribution to the teamwork
project (individual and group
evaluation)

Integrating testing phases to software
engineering practices

Teamwork: Project management
exercise; acceptance testing between
two teams

Evaluating and managing technical
debt; making rational compromises

Teacher-led exercise: A review of the
shortcuts taken during the course, and
discussion & evaluation of the long-
term drawbacks of the shortcuts

Demonstrate understanding by a
written assignment that reviews and
evaluates technical issues

Implementing static testing: Creating
checklists and performing code reviews

Teamwork: Going through checklists
and reviewing each other's code. TA
acts as QA manager in final projects

Demonstrate understanding by working
in a simulated verification and
validation review

282

ITiCSE '18, July 2–4, 2018, Larnaca, Cyprus Timo Hynninen, Jussi Kasurinen, Antti Knutas, Ossi Taipale

(project number 1204/31/2016). The work of the third author was
supported by the Ulla Tuominen foundation.

REFERENCES
[1] O. A. L. Lazzarini Lemos, C. Cutigi Ferrari, F. Fagundes Silveira, and A.

Garcia, “Experience report: Can software testing education lead to more
reliable code?,” in 2015 IEEE 26th International Symposium on Software
Reliability Engineering (ISSRE), 2015, pp. 359–369.

[2] O. A. Lazzarini Lemos, F. Fagundes Silveira, F. Cutigi Ferrari, and A. Garcia,
“The impact of Software Testing education on code reliability: An empirical
assessment,” Journal of Systems and Software, Mar. 2017.

[3] J. Biggs, “Constructive alignment in university teaching,” HERDSA Review of
Higher Education, vol. 1, no. 5, pp. 5–22, 2014.

[4] J. Biggs, “Enhancing teaching through constructive alignment,” Higher
education, vol. 32, no. 3, pp. 347–364, 1996.

[5] D. E. Krutz, S. A. Malachowsky, and T. Reichlmayr, “Using a Real World
Project in a Software Testing Course,” in Proceedings of the 45th ACM
Technical Symposium on Computer Science Education, New York, NY, USA,
2014, pp. 49–54.

[6] V. Garousi and A. Mathur, “Current State of the Software Testing Education
in North American Academia and Some Recommendations for the New
Educators,” in 2010 23rd IEEE Conference on Software Engineering Education
and Training, 2010, pp. 89–96.

[7] D. Broman, K. Sandahl, and M. A. Baker, “The company approach to
software engineering project courses,” IEEE Transactions on Education, vol.
55, no. 4, pp. 445–452, 2012.

[8] J. Smith, J. Tessler, E. Kramer, and C. Lin, “Using Peer Review to Teach
Software Testing,” in Proceedings of the Ninth Annual International
Conference on International Computing Education Research, New York, NY,
USA, 2012, pp. 93–98.

[9] M. M. McGill, “Defining the Expectation Gap: A Comparison of Industry
Needs and Existing Game Development Curriculum,” in Proceedings of the
4th International Conference on Foundations of Digital Games, New York, NY,
USA, 2009, pp. 129–136.

[10] F. Kazemian and T. Howles, “A Software Testing Course for Computer
Science Majors,” SIGCSE Bull., vol. 37, no. 4, pp. 50–53, Dec. 2005.

[11] A. Fink, How to Conduct Surveys: A Step-by-Step Guide. Sage Publications,

2012.
[12] B. A. Kitchenham et al., “Preliminary guidelines for empirical research in

software engineering,” IEEE Transactions on software engineering, vol. 28, no.
8, pp. 721–734, 2002.

[13] J. Kasurinen, O. Taipale, and K. Smolander, “Software test automation in
practice: empirical observations,” Advances in Software Engineering, vol.
2010, 2010.

[14] O. Taipale, K. Smolander, and H. Kälviäinen, “Finding and Ranking Research
Directions for Software Testing,” in Software Process Improvement: 12th
European Conference, EuroSPI 2005, Budapest, Hungary, November 9-11, 2005.
Proceedings, I. Richardson, P. Abrahamsson, and R. Messnarz, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 39–48.

[15] T. Metsä-Tokila, “Kasvun mahdollistajat - toimialaraportti ohjelmistoalasta
ja teknisestä konsultoinnista” [Enablers of growth – sector report on the
software industry and technical consulting], Työ- ja elinkeinoministeriö
[Ministry of Economic Affairs and Employment], 2014. [Online]. Available:
http://urn.fi/URN:NBN:fi-fe2017102550274. [Accessed: 4-Apr-2018].

[16] “ISO/IEC 15504-1: Information technology — Process assessment — Part 1:
Concepts and vocabulary.” International Organization for Standardization,
2004.

[17] ISO/IEC, “ISO/IEC 29119-1 Software and systems engineering - Software
testing - Part 1: Concepts and definitions.” 2013.

[18] E. van Veenendaal and B. Wells, Test Maturity Model Integration TMMi. The
Netherlands: Uitgeverij Tutein Nolthenius, 2012.

[19] R. Kneuper, CMMI: Improving Software and Systems Development Processes
Using Capability Maturity Model Integration. Rocky Nook, 2008.

[20] P. H. D. Valle, E. F. Barbosa, and J. C. Maldonado, “CS curricula of the most
relevant universities in Brazil and abroad: Perspective of software testing
education,” in Computers in Education (SIIE), 2015 International Symposium
on, 2015, pp. 62–68.

283

Publication VI

Hynninen, T., Knutas, A., and Kasurinen, J.

Designing Early Testing Course Curricula with Activities Matching the V-Model

Phases

In Proceedings of the 42nd International Convention on Information and

Communication Technology, Electronics and Microelectronics (MIPRO)

Pp. 1593–1598, 2019

© 2019, IEEE

Designing Early Testing Course Curricula with
Activities Matching the V-Model Phases

Timo Hynninen*, Antti Knutas** and Jussi Kasurinen**
*South-Eastern Finland University of Applied Sciences / Department of Information Technology, Mikkeli, Finland

**LUT University / LUT School of Engineering Science, Lappeenranta, Finland
timo.hynninen@xamk.fi, antti.knutas@lut.fi, jussi.kasurinen@lut.fi

Abstract—This work addresses the gap between software
engineering process terminology in formal education, and
the practical skills relevant to testing related work. The V-
model is a commonly referenced description of how the
software engineering processes are tied to the different
software testing levels. It is used in software engineering
education to illustrate which type of testing work should be
carried out during a certain development stage. However, the
V-model is mainly conceptual and tied to the steps in the
Waterfall model, leaving the students with little knowledge
about what is actually done. To solve this problem, we
propose an approach to map the V-Model development
phases and testing levels with corresponding, actual testing
techniques. We then evaluate the approach by designing the
weekly topics, learning goals and testing activities for a 7
week introductory course on the basics software testing and
quality assurance. Based on the course outcomes and recent
literature, we discuss the strengths and weaknesses of the
proposed curriculum.

I. INTRODUCTION

Software testing and quality assurance (QA) form an in-
tegral part of software engineering processes and therefore
should be an equally integral part of software engineering
education. Testing education improves software quality,
as testing-savvy students learn techniques that lead to
more reliable program code [1]. For example, the ACM
curricula for software engineering [2] integrates testing
and quality assurance into other domains of computing
education. However, the ACM curricula has been crit-
icized for not conveying a strong enough testing and
quality assurance mindset [3]. Our proposal to address
this issue is to design concrete learning objectives and
testing activities that follow the principles of constructive
alignment [4], [5]. This approach carries over from our
previous work in using constructive alignment, creating
high-level guidelines for testing education from the in-
dustry practices [6].

The motivation behind designing a dedicated under-
graduate testing course and its activities was that currently
testing education research has mainly focused on the
implementations of such courses and not in course content
design. Although previous research has also established
approaches to integrating testing and QA work into larger
projects [7], [8], many institutions organize an undergrad-
uate course in the methods and models of software testing
separately. In addition, the software industry leaves a lot
of responsibility in QA work to the shoulders of individual

employees, while acknowledging that personnel do not
always have the necessary skills in testing beforehand [9].
We therefore feel that the objectives of this study are of
interest to many in higher education.

In order to place the testing activities into a software
engineering context, we contrast them with the phases
in the V-Model [10], [11]. The V-Model (see Figure 1)
is a generic software development process model where
requirement analysis, specification, architectural design,
and detail design are linked with the levels of testing,
namely acceptance testing, system testing, integration
testing, and unit testing. These development process
phases and testing levels are often referenced in software
engineering education. However, in the education and
training context, the practical impact of these activities
may play an auxiliary role or even be neglected. Hence,
students might be familiar with the development process
phases on an abstract level but fail to understand which
practical activities should happen within them.

To summarize, our research questions in this paper are
as follows.

• RQ1. What learning activities can we map to the
high-level testing concepts?

• RQ2. Which actual testing techniques can be uti-
lized?

• RQ3. How do these activities and high-level con-
cepts relate to other software engineering processes,
namely the V-Model activities?

In order to answer the research questions, we used the
principles of constructive alignment [4], [5] to design and
implement an undergraduate course on the fundamentals
of software testing. We planned the topics and activities
for a 7-week (one period), first-year freshman course. The
course had no other prerequisites except the freshman
course on introductory programming. Various techniques
for testing were adapted from the ISO/IEC Software
testing standard, which covers a multitude of testing
techniques in ISO/IEC 29119 Part 4 [12]. These testing
techniques were used as a starting point for designing
assignments demonstrating the practical testing work on
each testing level.

The rest of this paper is organized as follows. Recent
studies on testing education are presented in Section
2. Section 3 introduces our course implementation and
its results. Discussion and implications are discussed in

Fig. 1. The software testing V-Model, adapted from [11]

Section 4. Finally, we conclude in Section 6.

II. RELATED WORK

Educators face challenges when it comes to testing
concepts. For example, students find it difficult to digest
testing concepts unless they are introduced carefully [13].
In addition, many instructors do not have the necessary
knowledge that should be taught to students [1]. Addi-
tionally, the motivational aspects especially in technically
challenging topics are well-known factors influencing the
outcomes of a learning scenarios to a significant degree
[14].

Testing course content has been studied in different
countries, for example by Šošić in Serbia [15], Bin in
China [16] and Kasurinen in Finland [17]. According to
Kasurinen, students want testing education to be practice
oriented, using real-world tools with a real software
project to promote the motivational aspects of learning
something practical, which provides skills applicable in
real-life software development work.

Experiences from running traditional university courses
in software testing, or software verification and validation,
have been previously reported by Mishra et al. [18] and
Lopez et al. [19]. Van Eijck et al. [20] designed a flipped
classroom version of the testing course in addition to
bundling the testing education around Microsoft’s devel-
oper software [21].

Gamification in education is a rising trend in the testing
field. Fraser [22], Valle [23], Fu [24], and Soska [25] all
present recent approaches for gamifying software testing
education. In general, gamification can be used to increase
student motivation and communication.

Other approaches for increasing student motivation on
the testing course include using large, real-world projects.
For example, Krutz et al. [7] used open-source projects
and Garousi industrial software projects [8]. Another
interesting approach employed by Chen et al. infused
research topics into the testing curriculum [26].

III. COURSE IMPLEMENTATION

In the academic year 2017-2018 the course Principles
of Software Testing was arranged in parallel with a
basic course on C programming. The course population
consisted of first year computer science students, and also
students majoring in other technology programmes. The
objective of the course was to cover the most common
software testing methods, give the students an overview
of how testing and software engineering are related, and
give the students the transferable skills to perform testing
related work autonomously or as part of an organization.

We created the course syllabus by taking the high-level
objectives and relating the required testing-related skills to
the ones that can be acquired by mastering the V-Model.
During the process we also mapped the development
phases and testing levels from the V-Model to the set
of weekly lecture topics on software testing practices.

During the mapping process we used the theory of
constructive alignment as the guiding principle when
setting learning goals and designing course activities.
Constructive alignment is an outcomes-based approach
to teaching in which the learning outcomes that students
are intended to achieve are defined before teaching takes
place [5]. Teaching and assessment methods are then
designed to best achieve those outcomes and to assess
the standard at which they have been achieved. The teach-
ing environment, practices and evaluation should support
learning goals and the student’s future environment [4].
We summarize the principles of constructive alignment
[4], [5] as follows:

• Learning goals should be clear, serve a purpose, and
set in advance.

• Students need to be placed in situations and en-
vironments that elicit the required learnings, with
declarative teaching minimized.

• Students are then required to provide evidence, either
by self-set or teacher-set tasks, as appropriate, that
their learning can match the stated objectives.

In the next phase, we took different testing activities
and test techniques, and placed them under the weekly
lecture schedule. The testing techniques were taken from
the ISO/IEC 29119 Software testing standard. The dif-
ferent testing activities were carefully selected to fit the
development phase and test levels according to the V-
Model activities. For example, Black-box testing and ex-
ploratory testing techniques were used as exercises on the
system testing level, whereas the unit testing level used
the White-box testing approach. Similarly, state transition
testing, scenario testing and random testing were used as
the approach to specification and requirement analysis,
while the classification tree method was used on the
integration testing level.

In total, the course consisted of seven weeks of instruc-
tion in the form of lectures and voluntary exercise (tutor-
ing) sessions. The weekly course topics are presented in
Table I.

The concepts and skills covered in the course material
were assessed in two parts: First, the students performed,

TABLE I
THE WEEKLY ACTIVITIES, COVERED TOPICS, AND TESTING TECHNIQUES

Week Develop-
ment
phase
(V-Model)

Test
level
(V-
Model)

Weekly
covered
topic(s)

Activities and
testing techniques
applied in them

Learning goals

1 Specifica-
tion and
require-
ment
analysis

System
testing

Introduc-
tion to
testing.
Objectives
of testing

Black-box system
testing. Exploratory
testing. Boundary
value analysis.
Defect reporting.

Understand the objectives of testing work. Student
is able to create (Black-box) test cases. Student
understands the scope, and limitations of the black
box methods.

2 Detail
design

Unit
testing

Testing
levels.
Unit
testing

White-box testing.
Test case reporting.
Equivalence
partitioning.

Understand the concept of unit / module test.
Understand the difference between Black-box and
White-box testing.

3 Architec-
tural
design

Integra-
tion
testing

Integration
testing

Combinatorial
methods and the
classification tree
method. Test stubs.

Understand the infeasibility of ”testing everything.”
Student is able to select a technique for deriving
test cases. Student understands the scope, and
limitations of the software testing in the real world
software projects.

4 Specifica-
tion and
require-
ment
analysis

System
testing.
Accep-
tance
testing

System
testing

State transition
testing. Scenario
testing. Random
testing.

Understand the objectives of system-level testing.
Student is able to select an appropriate testing
technique for system testing. Student understands
the scope, and limitations of the system-level
testing methods.

5 Detail
design

Unit
testing

Test
automation
and tools

Implementing unit
tests in code, using a
unit testing
framework

Student is able to use a programming framework /
library to implement module tests. Student
understands the scope, and limitations of the unit
testing tools.

6 Architec-
tural
design

System
testing

Testing
processes,
documen-
tation and
planning

Creating test plans.
Code review and
static testing
methods. Test
coverage analysis.

Student understands the purpose of static testing
methods and code review practices.

7 Specifica-
tion,
architec-
tural
design,
detail
design

System,
integra-
tion,
unit
testing

Visiting
lecture
from a
software
company

Course project: Plan,
design, implement
and document testing
for a small software
item.

Student is able to demonstrate their knowledge by
applying the course’s activities autonomously in the
testing project. Student is able to explain how test
process activities would relate to the whole
software project.

reported and planned a small-scale testing project using
a small console application and its specification. The
assignment was completed in groups of three and it
accounted for 35% of the total course grade. A written
exam worth 25% of the grade formed the second part
of course assessment. Voluntary weekly exercises, also
completed in groups, formed the rest of the course grade,
but the emphasis in grading was on the project and the
exam.

The testing project was graded by the head teaching
assistant based on the completion of each of the individual
five parts. Parts 1 and 2 consisted of system testing
activities. First, the tests were completed manually using
exploratory testing as the main method. Then in part 2
the assignment was to automate some of the test cases
developed in part 1 by recording the inputs and program
outputs during the test.

In part 3 of the project we tasked the students with
writing unit tests for individual modules of the software.
Part 4 was an exercise in testing work from a managerial

point of view, and students were to develop a testing plan
for the project software as if it was a real product by a real
software company. Part 5 consisted of reporting the whole
project and documenting in the write-up which test cases
they had developed, which were automated, and what unit
tests were added to the project repository. Additionally,
the report included testing logs and bug reports from the
manual system testing phase.

In the final project students were given free choice
of tools. Additionally, the problem description did not
specify which testing methods or approaches should be
used in the different parts as one objective of the project
was that students select a suitable method and justify it
in the test plan. The various testing techniques had been
covered previously in the weekly exercises, where tools
for unit testing and test coverage were also introduced.

The final exam consisted of two essay questions about
the concepts presented in the lecture material. The exam
was graded by the lecturer.

Descriptive course statistics are presented in Table II.

TABLE II
DESCRIPTIVE STATISTICS FROM THE INTRODUCTORY TESTING

COURSE

Students working in the course 124
Group projects returned 43
Average project grade (median) 3.4 (4)
Average exam grade (median) 3.8 (4.5)
Respondents in the post-course survey (%) 19 (15%)
”The course implementation helped me to
achieve the learning outcomes of the course” (1 -
very poorly, 3 - neutral, 5 - very well)

3.33

”The teaching methods used on the course
supported my learning” (1 - very poorly, 3 -
neutral, 5 - very well)

3.39

TABLE III
THE MOST COMMON TYPES OF PROJECT FEEDBACK GIVEN TO

STUDENTS BY THE TA

Unit tests did not check that the functions
manipulated data correctly, only that their return
value reported ’success’

49% (21)

Manual system testing was comprehensive 37% (16)
Objectives of the testing project were unclear or
undefined

35% (15)

Unit tests were implemented without the use of
a testing framework. The results of the tests
were often presented in a way which required
the tester to verify the results manually.

16% (7)

The tests seemed to only concentrate on crashing
the program using only bad/sketchy inputs.

14% (6)

Unit tests were comprehensive, and tested the
actual data manipulation

5% (2)

Amount of generally positive feedback
comments given

37% (16)

Amount of generally negative feedback
comments given

63% (27)

In the end a total of 124 students worked actively on
the course assignments. The average project grade was
3.4 and the average exam grade 3.8 (on a scale of 1-5
in passing grades). In addition to the course deliverables,
a post-course survey was also conducted. Unfortunately,
even though the survey got a 15% response rate in relation
to the course population, the number of actual respondents
remained low, and only 10 students gave written feedback.

Observations from the student testing projects are sum-
marized in Table III. The themes listed were collected
from the written feedback on the project given by the
teaching assistant to the students. Overall, 37% of the
comments in the feedback were positive, and 63% neg-
ative pointing out flaws in the implementation or clear
misconceptions in the report.

IV. DISCUSSION AND IMPLICATIONS

In assessing the proposed curricula, it is necessary to
highlight the importance of an early testing course. Some
approaches to testing education emphasize using big, real
world projects as the basis to prepare graduates for work
in the industry (for example [7], [8]). However, as students
first go work in the industry as early as 1.5 years into their
studies [27], this approach can be difficult to employ early
on.

The ACM Curricula Recommendation for undergrad-
uate software engineering programmes infuses software
verification and validation into larger projects and courses
[2]. We take a step back and ensure the students have
familiarized themselves with testing, verification and val-
idation on the dedicated testing course. Our approach to
teaching the testing discipline complements the approach
of the ACM Curricula Recommendation: Once the stu-
dents have acquired the appropriate testing mindset the
testing skills can be used in other software engineering
and computer science projects.

Next, we summarize the findings from our course by
addressing the individual research questions. To answer
RQ1, what learning activities can we map to the high-
level testing concepts, it is possible to complete activities
on all testing levels. The activities can vary from black-
box to white-box testing, system testing to unit testing,
or something in between.

For the second research question, which actual testing
techniques can be utilized, we created weekly assignments
for students employing a variety of different techniques
taken from relevant literacy, such as Swebok [28] or the
ISO/IEC Software testing standard [12]. We incorporated
a number of different techniques for deriving test cases
on different levels, and additionally covering static testing
methods and code reviews. In summary we used ex-
ploratory testing, equivalence partitioning, boundary value
analysis, combinatorial methods, state transition testing,
scenario testing, random testing and static testing in
conjunction with unit testing, integration testing, system
testing, writing test stubs and drivers, and analyzing test
coverage.

Finally, for the third and final research question, how
do these activities and high-level concepts relate to other
software engineering processes, we can say that our seven
week course content is aligned with the V-model. This in
our opinion makes it easier for students to grasp how
the software engineering processes presented in theory
relate to work with real projects, and bridges the gap
between formal software engineering terminology and the
real world.

However, there are still some issues which need ad-
dressing in our course arrangements. The project as a
demonstration of learning worked generally well. Espe-
cially in the first part of the project, exploratory system
testing, the project reports presented testing comprehen-
sively. Students were able to use the different techniques
and approaches combined with intuition and creativity to
sufficiently cover possible errors. Even if the reports did
not directly name a particular method which was used
in order to arrive to the test cases, it appears that the
students were either formally or informally adequately
familiar with these techniques.

The other parts of the project proved to be more
challenging for the students. For example in the second
part nearly all groups successfully employed an automated
system testing pipeline, but it was unclear what the
students had set as the objectives for automated testing.

In most cases the students had simply recorded test cases
which they knew would fail, resulting in nearly all tests
failing.

We can see that the problems revolve around discov-
ered with aligning the objectives and implementations of
testing. In part 4 of the assignment, drafting a testing
plan and test reports, the actual testing objectives were
either shallow or completely neglected. In conclusion, it
seems that to the students testing meant finding errors
and making the program crash - and not ensuring that
the program works. In this sense, it can be argued that
the students understood the concept of testing work itself
as defined by Myers [29], but not the concept of quality
assurance or quality control practices as defined by Kaner
et al. [30]. However, testing levels were often referenced
in the reports, meaning that students were able to place
the testing work within the V-model.

V. CONCLUSIONS

The objective of this study was to map high-level
learning objectives into concrete testing activities, and
to ground the testing activities firmly into the software
engineering processes by using the V-Model as a starting
point. In order to accomplish this objective we designed
an introductory software testing course, and using the
principles of constructive alignment, mapped learning
goals to actual weekly activities and testing techniques.

We assessed the course curriculum by examining the
outcomes of our seven week testing course. Student’s
practical assignments were used as demonstrations of
learning. We observed from the projects that students were
able to adopt the testing mindset and carry out compre-
hensive and systematic testing on the system testing level.
On the other hand, this systematic approach to testing
work was mainly carried out on the system level, while
many projects had problems with unit tests, integration
tests and reporting of the project.

The limitations of the study and the validity of the
results warrant some discussion. The assignment reports
written as group work are of course not the perfect
instrument to measure the learning of individual students.
However, as the assignment was split into multiple sub-
sections with each section focusing on individual activi-
ties (exploratory testing, system testing, unit testing, test
planning and documentation), it was easy to see which
concepts the students excelled in or struggled with.

Additionally, the lecture material and the reference
book used in the course, will most certainly have had a
significant impact on the student’s perception of testing as
a whole. If the reference material is biased towards some
topics or does not cover some concept well enough, it
can be expected that the student reports follow the same
shortcomings. In our case, the course material covers
all the concepts expected in the assignments. On the
other hand, due to the practical limitations some content
discussing more advanced topics had to discussed only
on a high level.

As future work, one promising approach would be
incorporating a knowledge acquisition measurement algo-

rithm such as ACT-R or BKT to assess the student perfor-
mance and learning during the course in order to establish
which course components require more refinement. Other
prospective area of interest would be the integration
of the advanced topics, and including a larger project
work, which integrates both the software engineering and
software testing methods into one capstone assignment.

REFERENCES

[1] O. A. L. Lemos, F. F. Silveira, F. C. Ferrari, and A. Garcia,
“The impact of software testing education on code reliability: An
empirical assessment,” Journal of Systems and Software, vol. 137,
pp. 497–511, 2018.

[2] The Joint Task Force on Computing Curricula, “Curriculum guide-
lines for undergraduate degree programs in software engineering,”
New York, NY, USA, Tech. Rep., 2015.

[3] P. H. D. Valle, E. F. Barbosa, and J. C. Maldonado, “Cs curricula
of the most relevant universities in brazil and abroad: Perspective
of software testing education,” in Computers in Education (SIIE),
2015 International Symposium on. IEEE, 2015, pp. 62–68.

[4] J. Biggs, “Enhancing teaching through constructive alignment,”
Higher education, vol. 32, no. 3, pp. 347–364, 1996.

[5] ——, “Constructive alignment in university teaching,” HERDSA
Review of higher education, vol. 1, no. 1, pp. 5–22, 2014.

[6] T. Hynninen, J. Kasurinen, A. Knutas, and O. Taipale, “Guidelines
for software testing education objectives from industry practices
with a constructive alignment approach,” in Proceedings of the
23rd Annual ACM Conference on Innovation and Technology in
Computer Science Education. ACM, 2018, pp. 278–283.

[7] D. E. Krutz, S. A. Malachowsky, and T. Reichlmayr, “Using a real
world project in a software testing course,” in Proceedings of the
45th ACM technical symposium on Computer science education.
ACM, 2014, pp. 49–54.

[8] V. Garousi, “Incorporating real-world industrial testing projects in
software testing courses: Opportunities, challenges, and lessons
learned,” in Software Engineering Education and Training
(CSEE&T), 2011 24th IEEE-CS Conference on. IEEE, 2011,
pp. 396–400.

[9] T. Hynninen, J. Kasurinen, A. Knutas, and O. Taipale, “Software
testing: Survey of the industry practices,” in 2018 41st Interna-
tional Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO). IEEE, 2018, pp.
1449–1454.

[10] P. Rook, “Controlling software projects,” Software Engineering
Journal, vol. 1, no. 1, pp. 7–16, 1986.

[11] S. Mathur and S. Malik, “Advancements in the v-model,” Interna-
tional Journal of Computer Applications, vol. 1, no. 12, 2010.

[12] “Software and systems engineering – software testing – part 4:
Test techniques,” International Organization for Standardization,
Geneva, CH, Standard, 2015.

[13] D. Mishra, S. Ostrovska, and T. Hacaloglu, “Exploring and ex-
panding students’ success in software testing,” Information Tech-
nology & People, vol. 30, no. 4, pp. 927–945, 2017.

[14] M. Gagné and E. L. Deci, “Self-determination theory and work
motivation,” Journal of Organizational behavior, vol. 26, no. 4,
pp. 331–362, 2005.

[15] S. Šošić, O. Ristić, K. Mitrović, and D. Milošević, “Software
testing course in it undergraduate education in serbia,” Information
Technology, vol. 4, no. 6, p. 8, 2018.

[16] Z. Bin and Z. Shiming, “Curriculum reform and practice of
software testing,” in International Conference on Education Tech-
nology and Information System (ICETIS 2013), 2013, pp. 841–844.

[17] J. Kasurinen, “Experiences from a web-based course in software
testing and quality assurance,” International Journal of Computer
Applications, vol. 166, no. 2, 2017.

[18] D. Mishra, T. Hacaloglu, and A. Mishra, “Teaching software
verification and validation course: A case study,” International
Journal of Engineering Education, vol. 30, pp. 1476–1485, 2014.

[19] G. Lopez, F. Cocozza, A. Martinez, and M. Jenkins, “Design and
implementation of a software testing training course,” in 122nd
ASEE Annual Conference & Exposition, 2015.

[20] J. van Eijck, V. Zaytsev et al., “Flipped graduate classroom
in a haskell-based software testing course,” in Pre-proceedings
of the Third International Workshop on Trends in Functional
Programming in Education (TFPIE 2014), 2014.

[21] G. Lopez and A. Martinez, “Use of microsoft testing tools to teach
software testing: An experience re-port,” in Proceedings of the
American Society for Engineering Education Annual Conference
and Exposition, 2014.

[22] G. Fraser, A. Gambi, and J. M. Rojas, “A preliminary report on
gamifying a software testing course with the code defenders testing
game,” in Proceedings of the 3rd European Conference of Software
Engineering Education. ACM, 2018, pp. 50–54.

[23] P. H. D. Valle, A. M. Toda, E. F. Barbosa, and J. C. Maldonado,
“Educational games: A contribution to software testing education,”
in Frontiers in Education Conference (FIE). IEEE, 2017, pp. 1–8.

[24] Y. Fu and P. Clarke, “Gamification based cyber enabled learning
environment of software testing,” submitted to the 123rd American
Society for Engineering Education (ASEE)-Software Engineering
Constituent, 2016.

[25] A. Soska, J. Mottok, and C. Wolff, “An experimental card game for
software testing: Development, design and evaluation of a physical
card game to deepen the knowledge of students in academic
software testing education,” in Global Engineering Education
Conference (EDUCON), 2016 IEEE. IEEE, 2016, pp. 576–584.

[26] Z. Chen, A. Memon, and B. Luo, “Combining research and
education of software testing: a preliminary study,” in Proceedings
of the 29th Annual ACM Symposium on Applied Computing.
ACM, 2014, pp. 1179–1180.

[27] The Joint Task Force on Computing Curricula, “Curriculum guide-
lines for baccalaureate degree programs in information technol-
ogy,” New York, NY, USA, Tech. Rep., 2017.

[28] P. Bourque, R. E. Fairley et al., Guide to the software engineering
body of knowledge (SWEBOK (R)): Version 3.0. IEEE Computer
Society Press, 2014.

[29] G. J. Myers, T. Badgett, T. M. Thomas, and C. Sandler, The art
of software testing, 2nd ed. John Wiley & Sons, 2004.

[30] C. Kaner, J. Bach, and B. Pettichord, Lessons learned in software
testing: a context-driven approach. Wiley, 2002.

ACTA UNIVERSITATIS LAPPEENRANTAENSIS

1032. ZOLOTAREV, FEDOR. Computer vision for virtual sawing and timber tracing. 2022.
Diss.

1033. NEPOVINNYKH, EKATERINA. Automatic image-based re-identification of ringed seals.
2022. Diss.

1034. ARAYA GÓMEZ, Natalia Andrea. Sustainable management of water and tailings in the
mining industry. 2022. Diss.

1035. YAHYA, MANAL. Augmented reality based on human needs. 2022. Diss.

1036. KARUPPANNAN GOPALRAJ, SANKAR. Impacts of recycling carbon fibre and glass
fibre as sustainable raw materials for thermosetting composites. 2022. Diss.

1037. UDOKWU, CHIBUZOR JOSEPH. A modelling approach for building blockchain
applications that enables trustable inter-organizational collaborations. 2022. Diss.

1038. INGMAN, JONNY. Evaluation of failure mechanisms in electronics using X-ray imaging.
2022. Diss.

1039. LIPIÄINEN, SATU. The role of the forest industry in mitigating global change: towards
energy efficient and low-carbon operation. 2022. Diss.

1040. AFKHAMI, SHAHRIAR. Laser powder-bed fusion of steels: case studies on
microstructures, mechanical properties, and notch-load interactions. 2022. Diss.

1041. SHEVELEVA, NADEZHDA. NMR studies of functionalized peptide dendrimers. 2022.
Diss.

1042. SOUSA DE SENA, ARTHUR. Intelligent reflecting surfaces and advanced multiple
access techniques for multi-antenna wireless communication systems. 2022. Diss.

1043. MOLINARI, ANDREA. Integration between eLearning platforms and information
systems: a new generation of tools for virtual communities. 2022. Diss.

1044. AGHAJANIAN, SOHEIL. Reactive crystallisation studies of CaCO3 processing via a
CO2 capture process: real-time crystallisation monitoring, fault detection, and
hydrodynamic modelling. 2022. Diss.

1045. RYYNÄNEN, MARKO. A forecasting model of packaging costs: case plain packaging.
2022. Diss.

1046. MAILAGAHA KUMBURE, MAHINDA. Novel fuzzy k-nearest neighbor methods for
effective classification and regression. 2022. Diss.

1047. RUMKY, JANNATUL. Valorization of sludge materials after chemical and
electrochemical treatment. 2022. Diss.

1048. KARJUNEN, HANNU. Analysis and design of carbon dioxide utilization systems and
infrastructures. 2022. Diss.

1049. VEHMAANPERÄ, PAULA. Dissolution of magnetite and hematite in acid mixtures.
2022. Diss.

1050. GOLOVLEVA, MARIA. Numerical simulations of defect modeling in semiconductor
radiation detectors. 2022. Diss.

1051. TREVES, LUKE. A connected future: The influence of the Internet of Things on
business models and their innovation. 2022. Diss.

1052. TSERING, TENZIN. Research advancements and future needs of microplastic
analytics: microplastics in the shore sediment of the freshwater sources of the Indian
Himalaya. 2022. Diss.

1053. HOSEINPUR, FARHOOD. Towards security and resource efficiency in fog computing
networks. 2022. Diss.

1054. MAKSIMOV, PAVEL. Methanol synthesis via CO2 hydrogenation in a periodically
operated multifunctional reactor. 2022. Diss.

1055. LIPIÄINEN, KALLE. Fatigue performance and the effect of manufacturing quality on
uncoated and hot-dip galvanized ultra-high-strength steel laser cut edges. 2022. Diss.

1056. MONTONEN, JAN-HENRI. Modeling and system analysis of electrically driven
mechatronic systems. 2022. Diss.

1057. HAVUKAINEN, MINNA. Global climate as a commons — from decision making to
climate actions in least developed countries. 2022. Diss.

1058. KHAN, MUSHAROF. Environmental impacts of the utilisation of challenging plastic-
containing waste. 2022. Diss.

1059. RINTALA, VILLE. Coupling Monte Carlo neutronics with thermal hydraulics and fuel
thermo-mechanics. 2022. Diss.

1060. LÄHDEAHO, OSKARI. Competitiveness through sustainability: Drivers for logistics
industry transformation. 2022. Diss.

1061. ESKOLA, ROOPE. Value creation in manufacturing industry based on the simulation.
2022. Diss.

1062. MAKARAVA, IRYNA. Electrochemical recovery of rare-earth elements from NdFeB
magnets. 2022. Diss.

1063. LUHAS, JUKKA. The interconnections of lock-in mechanisms in the forest-based
bioeconomy transition towards sustainability. 2022. Diss.

1064. QIN, GUODONG. Research on key technologies of snake arm maintainers in extreme
environments. 2022. Diss.

1065. TAMMINEN, JUSSI. Fast contact copper extraction. 2022. Diss.

1066. JANTUNEN, NIKLAS. Development of liquid–liquid extraction processes for
concentrated hydrometallurgical solutions. 2023. Diss.

1067. GULAGI, ASHISH. South Asia’s Energy [R]evolution – Transition towards defossilised
power systems by 2050 with special focus on India. 2023. Diss.

1068. OBREZKOV LEONID. Development of continuum beam elements for the Achilles
tendon modeling. 2023. Diss.

1069. KASEVA, JANNE. Assessing the climate resilience of plant-soil systems through
response diversity. 2023. Diss.

1070
DEVELOPM

EN
T DIRECTION

S IN
 SOFTW

ARE TESTIN
G AN

D QUALITY ASSURAN
CE

Tim
o Hynninen

ISBN 978-952-335-922-2
ISBN 978-952-335-923-9 (PDF)

ISSN 1456-4491 (Print)
ISSN 2814-5518 (Online)

Lappeenranta 2023

 HistoryItem_V1
 Nup

 Create a new document
 Trim unused space from sheets: no
 Allow pages to be scaled: yes
 Margins and crop marks: none
 Sheet size: 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Sheet orientation: tall
 Scale by 70.00 %
 Align: centre

 0.0000
 10.0000
 20.0000
 0
 Corners
 0.3000
 ToFit
 0
 0
 1
 1
 0.7000
 0
 0
 1
 0.0000
 1

 D:20230123093300
 841.8898
 a4
 Blank
 595.2756

 Tall
 1064
 478
 0.0000
 C
 0

 CurrentAVDoc

 0.0000
 0
 2
 0
 1
 0

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 1

 HistoryItem_V1
 Nup

 Create a new document
 Trim unused space from sheets: no
 Allow pages to be scaled: no
 Margins and crop marks: none
 Sheet size: 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Sheet orientation: tall
 Layout: rows 1 down, columns 1 across
 Align: centre

 0.0000
 10.0000
 20.0000
 0
 Corners
 0.3000
 ToFit
 0
 0
 1
 1
 0.7000
 0
 0
 1
 0.0000
 1

 D:20230202071557
 841.8898
 a4
 Blank
 595.2756

 Tall
 674
 242

 0.0000
 C
 0

 CurrentAVDoc

 0.0000
 0
 2
 0
 0
 0

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 1

 HistoryList_V1
 qi2base

 HistoryItem_V1
 Nup

 Create a new document
 Trim unused space from sheets: no
 Allow pages to be scaled: yes
 Margins and crop marks: none
 Sheet size: 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Sheet orientation: tall
 Scale by 70.00 %
 Align: centre

 0.0000
 10.0000
 20.0000
 0
 Corners
 0.3000
 ToFit
 0
 0
 1
 1
 0.7000
 0
 0
 1
 0.0000
 1

 D:20230123093300
 841.8898
 a4
 Blank
 595.2756

 Tall
 1064
 478
 0.0000
 C
 0

 CurrentAVDoc

 0.0000
 0
 2
 0
 1
 0

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 1

 HistoryItem_V1
 Nup

 Create a new document
 Trim unused space from sheets: no
 Allow pages to be scaled: no
 Margins and crop marks: none
 Sheet size: 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Sheet orientation: tall
 Layout: rows 1 down, columns 1 across
 Align: centre

 0.0000
 10.0000
 20.0000
 0
 Corners
 0.3000
 ToFit
 0
 0
 1
 1
 0.7000
 0
 0
 1
 0.0000
 1

 D:20230202071557
 841.8898
 a4
 Blank
 595.2756

 Tall
 674
 242
 0.0000
 C
 0

 CurrentAVDoc

 0.0000
 0
 2
 0
 0
 0

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 51.99, 639.43 Width 45.66 Height 12.38 points
 Origin: bottom left

 1
 0
 BL

 Both
 CurrentPage

 CurrentAVDoc

 51.9909 639.4282 45.6639 12.3788

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 3
 135
 3
 1

 1

 HistoryList_V1
 qi2base

