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Abstract: Various water treatment processes make extensive use of porous polymeric membranes. A
key objective in membrane fabrication is to improve membrane selectivity without sacrificing other
properties such as permeability. Herein, LiCl (0–2 wt.%) was utilised as a preforming agent in fabri-
cating biomass-derived cellulosic membranes. The fabricated membranes were characterised by dope
solution viscosity, surface and cross-sectional morphology, pure water flux, relative molecular mass
cut-off (MWCO, 35 kDa), membrane chemistry, and hydrophilicity. The results demonstrated that at
the optimum LiCl concentration (0.4 wt.%), there is an interplay of thermodynamic instability and
kinetic effects during membrane formation, wherein the membrane morphology and hydrophilicity
can be preferably altered and thus lead to the formation of the membrane with better rejection at no
detriment to its permeability.

Keywords: lithium chloride; wood; membrane fabrication; ultrafiltration; 1-ethyl-3-methylimidazolium
acetate; choline chloride; lactic acid

1. Introduction

Pressure-driven membrane filtration is universally utilised to treat wastewater in
different fields. A wide selection of polymeric membranes allows precise tailoring of
the treatment process, using particular advantages of a membrane’s characteristics to the
process’s benefit [1–3]. Cellulose-based membranes are usually defined to be hydrophilic,
biodegradable, and low-fouling, thus having an advantage over most petroleum-based
polymeric membranes [4,5]. The use and fabrication of cellulose-based pressure-driven
membranes represent the development of more environmentally intelligent technologies as
it both meets the demand for renewable materials and provides reliable and highly efficient
treatment of waste streams without secondary pollution [1,3,6]. The general challenge,
however, in manufacturing cellulose membranes is finding the appropriate solvent system
for cellulose dissolution and regeneration. Recently, the research has been focused on using
ionic liquids (ILs), the class of solvents consisting of a mixture of solely ions with a melting
point usually below 100 ◦C, and their different combinations with co-solvents [7–10]. The
utilisation of ILs for cellulose and biomass dissolution and treatment has been consecutively
studied over the last two decades [11–14]. Various ILs have been successfully utilised for
biomass and cellulose dissolution, preparation of composite materials, and fabrication of
cellulose-based membranes [4,15–20]. However, the performance of lab-made cellulose-
based membranes is usually less effective compared to both lab-made petroleum-based
polymeric membranes and commercial membranes [21]. Different strategies are utilised to
improve the performance of lab-made cellulose-based membranes, including the variations
in the used coagulation bath conditions, the choice of cellulose solvents, and the utilisation
of additives [4,22,23].
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Lithium chloride (LiCl) is a well-known pore-forming additive and has been abun-
dantly tested for the production of polymeric membranes with higher permeance
rates [22,24–28]. One of the reasons why lithium chloride is principally appealing as
an inorganic salt additive for membrane casting solutions is that LiCl interacts strongly to
form complexes with solvents frequently used for membrane preparation [27]. However,
the reported concentrations of both the polymer and the additive were usually higher than
5 wt.%, thus raising concerns about the sustainability of LiCl utilisation, keeping in mind
the scarcity of lithium resources [27,29,30].

LiCl has already contributed to the development of cellulose dissolution studies, being
part of the LiCl/ dimethylacetamide (DMac) solvent system [31–33]. Some of the studies
also report the positive effect of the addition of LiCl to ILs and dimethylsulfoxide (DMSO)
on the dissolution of cellulose and biomass in general [14,34,35]. Though studies are
reporting the effect of LiCl addition on the properties of cellulose acetate membranes, to the
current knowledge, there is no study reporting the influence of LiCl over the performance
of cellulose-based membranes, especially the ones that are made from partially purified
biomass source [36].

The present study aims to investigate the effect of LiCl salt on the rheology of dope
solutions containing 1-ethyl-3-methylimidazolium acetate ([Emim][OAc])–DMSO–biomass-
derived cellulose and further its role on the morphology and performance of fabricated
biomass-derived cellulosic membranes. The cellulose-rich membranes were prepared using
the wet-phase inversion technique. The casting solution was prepared from birch biomass
pretreated with deep eutectic solvent (DES) for partial delignification and consequently
bleached for further purification of the cellulose fraction; the detailed procedure and its
effect on the biomass composition can be found in the previous publication [37]. The treated
biomass was dissolved in the [Emim][OAc]–DMSO–LiCl system. The LiCl concentration
was kept below 2 wt.% to take advantage of LiCl being a suitable pore former and additive
and study its effect on the membranes’ morphology and performance while bearing in
mind the scarcity of LiCl.

2. Materials and Methods
2.1. Materials

Debarked birch chips (Betula pendula) with an average size of 5 × 1 × 0.1 cm were
used as source material for all described operations. DES treatment was applied for
partial delignification of the biomass. Utilised DES consisted of choline chloride (ChCl,
CAS # 67-48-1, Merck KGaA, Darmstadt, Germany), acting as a hydrogen bond acceptor
(HBA), and lactic acid (LAc, CAS # 79-33-4, Merck KGaA, Darmstadt, Germany), acting as
hydrogen bond donor (HBD). Deionised (DI) water mixed with ethanol at a 1:9 ratio was
used for washing residual DES from treated biomass. Consequent bleaching of biomass
was completed using acetic acid (CAS # 64-19-7, Merck KGaA, Darmstadt, Germany)
and sodium chlorite (CAS # 7758-19-2, Acros Organics, Geel, Belgium). Ionic liquid (95%
1-ethyl-3-methylimidazolium acetate; C1C2ImOAc, CAS # 143314-17-4, Iolitec Ionic Liquids
Technologies GmbH, Heilbronn, Germany) mixed with dimethylsulphoxide (CAS # 67-68-5,
Merck KGaA, Darmstadt, Germany) at a 2:8 mass ratio was used for the preparation of the
casting solution.

Non-woven polyester was used as a support material for the membrane preparation
and was taken from used reverse osmosis (RO) membranes and cleaned mechanically and
chemically. CENTRA-R 60\120 system (Elga purification system, Veolia Water, Lane End,
UK) was used to produce ultra-pure DI water (15 MΩ, 0.5–1 µS/cm), which was used for
the washing process, preparation of water-based solutions, and as a non-solvent in the
coagulation bath. Anhydrous LiCl (CAS # 7447-41-8, Merck KGaA, Darmstadt, Germany)
was used as an additive. Polyethylene glycol (PEG, approx. Mw 35 000 g/mol, CAS #
25322-68-3, Merck KGaA, Darmstadt, Germany) was used to prepare a model solution for
the membrane retention study.
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2.2. Methods
2.2.1. DES Treatment

For the partial delignification of the birch woodchips, ChCl and LAc were taken at a
1:9 mole ratio, respectively, and mixed at 100 ◦C until a clear homogeneous mixture formed.
The DES treatment was performed at a 1:5 solid-to-liquid mass ratio for 18 h at constant
heating at 105 ◦C. The treated pulp was filtered through a filter paper under vacuum and
washed with an ethanol/water mixture at a 9:1 volume ratio. The DES-treated pulp was
moved to an oven and dried at 50 ◦C for 24 h.

2.2.2. Bleaching

The bleaching of dried pulp was performed with DI water, sodium chlorite and acetic
acid taken at an 80 mL:1 g:0.5 mL ratio to each 2.5 g of biomass. Bleaching was performed
at constant heating at 70 ◦C for 60 min with repeated stirring every 5–7 min to ensure even
treatment of the pulp load. At the end of the reaction (when the pulp was almost white-
coloured), the pulp was separated from the liquid and subsequently washed with water,
ethanol, and acetone. Then the pulp was dried in the oven at 50 ◦C until the measured
weight difference was less than 1%.

2.2.3. Membrane Preparation

For the preparation of the casting solution, LiCl in various concentrations was dis-
solved in the mixture of [Emim][OAc] and DMSO. After the dissolution of the additive was
completed, the DES-treated and bleached pulp was added to the solution in small portions
up to 5 wt.-% concentration. The solution was continuously heated at 100 ◦C (Heidolph
Instruments GmbH & CO., Schwabach, Germany) under a constant stirring rate of 200 rpm
until the pulp dissolved.

Automatic Film Applicator L (BYK-Gardner, Geretsried, Germany) was used for
membrane casting: a prepared solution was cooled down to room temperature, poured
on a casting plate with attached polyester support, and spread on a flat surface by casting
knife with 300 µm casting thickness and 50 mm/s speed. Immediately after casting, the
casting plate was transferred into a water coagulation bath (0 ◦C), where it was kept for
24 h. After the coagulation bath, membranes were washed under the DI water current to
guarantee the complete removal of the solvents from the membrane structure. Circular
coupons of 0.0038 m2 area were cut for further use.

2.2.4. Casting Solutions Viscosity Measurements

The viscosity of the casting solutions cooled down to room temperature was measured
based on Stokes’ law using the falling sphere method performed in the vertical glass
cylinder. The measurement of each solution was repeated five times, and the presented
results are averaged values.

2.2.5. Membrane Permeability and Retention Measurements

Amicon dead-end stirring cell equipment (Millipore, Temecula, CA, USA, Cat No.:
XFUF07611; diameter of the stirring device: 60 mm) was used to measure the permeability
and retention of the prepared membranes (see Figure 1). Prior to the filtration experiments,
each membrane was compacted for 1 min at 1 bar, 2 min at 2 bars, 3 min at 3 bars, 4 min at
4 bars, and 20 min at 5 bars. The compaction process guaranteed the complete removal of
the solvents used in the membrane manufacturing from the membrane pores. A permeate
sample collected during the membrane compaction at 5 bars was analysed for total organic
carbon (TOC) content to prove the absence of solvents’ remains.
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Figure 1. Amicon dead-end filtration system’s schematic configuration [38].

For the determination of pure water permeability, membranes’ water flux was mea-
sured at 25 ± 0.5 ◦C at 1, 2, 3, and 4 bars of pressure, calculated using Equation (1), and
plotted as a function of pressure:

J =
Qp/100

A· t
60

, (1)

where J is the tested membrane’s flux (L/(m2·h)), QP is the gravimetric flow of water
permeating through the membrane (g/min), A is the area of the membrane sample (m2),
and t is the time of collection of the permeate (min).

The retention of the produced membranes was studied with a model solution of PEG
35 kDa at a concentration of 300 ppm, which was filtered through the membrane samples
at comparable flux values. All measurements were performed at 300 rpm stirring speed
and 25 ± 0.5 ◦C. The feed, retentate, and permeate samples were collected and analysed
for TOC content with a Shimadzu TOC analyser (TOC-L series, Japan). Equation (2) was
used to calculate the retention values:

R =

(
1−

2·Cp

C f + Cr

)
× 100, (2)

where Cp, Cf, and Cr are the TOC concentrations in the permeate, feed, and retentate
(mg/L), respectively.

2.2.6. SEM Analysis

The morphology of the prepared membranes was studied with the scanning electron
microscope (Hitachi SU 3500, Tokyo, Japan) at an acceleration voltage of 1.5 kV in high
vacuum conditions. For the analysis, the membrane samples were dried in Manual Freeze
Dryer ALPHA 2-4 LDplus (Martin Christ GmbH, Osterode am Harz, Germany). The
top surfaces of the membranes were analysed straight after freeze-drying. For the cross-
sectional images, the narrow strips of membranes were cut and broken with two pairs of
forceps under the liquid nitrogen to obtain a clean cut.
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2.2.7. Examination of the Chemical Structure of the Membranes

Frontier MIR/FIR Spectrometer (PerkinElmer Inc., Rodgau Germany) equipped with
a diamond crystal was used to analyse the chemical structure of the membrane samples.
The spectral range was 400–4000 cm−1, with a spectra resolution of 4 cm−1. Five points
were measured from each membrane and averaged. All the spectra were processed for the
graphical representation with ATR correction, baseline correction, and normalisation. The
ratio of the non-normalised absorption bands A1430/A899 was used to calculate a lateral
order index (LOI), as was proposed by Nelson and O’Connor [39,40].

2.2.8. Contact Angle Measurements

The captive bubble method was applied for the evaluation of membrane hydrophilicity
by a measure of static contact angle [41]. KSV CAM 101 equipment (KSV Instruments
Ltd., Espoo, Finland) connected to a CCD camera (DMK 21F04, The Imaging Source Europe
GmbH, Bremen, Germany) was used to measure contact angles. Each tested membrane
was attached to a piece of glass with double-sided tape and submerged in DI water at room
temperature. A U-shaped needle placed approximately 3–4 µL of air bubble volume on the
membrane surface. Six points were measured from each membrane and averaged. The taken
images were treated by curve fitting analysis with CAM 2008 software (Sydney Australia).

2.2.9. Contact Angle Measurements

The water uptake capacity of the membrane samples was used to determine the
membranes’ porosity. After being soaked in DI water for 24 h and carefully mopped
with filter paper to remove the excess water, the wet membrane sample was weighed.
Afterwards, the wet sample was dried in an oven at 60 ◦C for 24 h. The dry weight of
the membrane sample was then measured until the sample weight became constant. The
membrane porosity of the sample was subsequently calculated using Equation (3):

ε =
ww − wd

ρw Al
, (3)

where ε is the membrane’s porosity, ww and wd are the weights of the wet and dry membrane
samples (g), respectively, ρw is the density of water at the temperature recorded during
the measurement (23 ◦C) (0.997538 g/cm3), A is the area of the membrane samples (cm2),
and l is the thickness of the membrane sample (cm), measured from the SEM images. The
reported measurements are the averaged results from at least two membrane samples.

2.2.10. Membrane Zeta Potential Measurement

The SurPASS electrokinetic Analyzer (Anton Paar GmbH, Graz, Austria) was used to
measure the zeta potential of the membranes’ samples with an adjustable gap cell method
and using 0.001 M KCl solution as a background electrolyte. Before the measurement,
the membranes were kept in a fridge at approximately 4 ◦C for 24 h. The measurement
started from pH 7.5, to which it was shifted by the addition of 0.1 M KOH solution and
then automatically titrated to 2.7 using 0.05 M HCl solution as the analysis was carried
on. The final value of the zeta potential was calculated automatically by SurPASS software
(Anton Paar GmbH, Graz, Austria) based on the Helmholtz–Smoluchowski equation.

3. Results and Discussion
3.1. The Effect of LiCl Content on the Viscosity of Polymer Solution

Viscosity possesses a crucial role in controlling the formation kinetics of the membrane
on both the skin layer and the sublayer level, which ultimately defines the performance of
the fabricated membranes [42]. Figure 2 shows the effect of LiCl dosage on the viscosity of
the casting solutions. Herein, the obtained viscosities align with the cellulose’s solution
viscosities measured and reported in previous studies [43,44]. Although the role of LiCl
in the changes happening to the casting solution viscosity has been highlighted in several
studies, its effect on the viscosity of a complex interacting polymer solution mixture con-
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taining ionic liquid, DMSO, cellulose, and lignocellulose material has not been investigated
to date [25,27,45,46]. As seen in Figure 2, the viscosity is sensitive to the amount of LiCl, and
two distinct viscosity trends can be distinguished concerning the amount of added LiCl. A
linear increase in viscosity with a successive increase in LiCl content up to 0.4 wt.% can be
observed, after which it decreases by about 33% when the LiCl concentration reaches 2 wt.%.
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The initial increase in viscosity can be attributed to the strong interactions between
Li+ cation and electron donor groups within the solvent mixture [Emim][OAc]–DMSO,
resulting in the reduced overall solvating power which in turn causes the formation of
more prominent clusters of the polymer chains and thus increasing the viscosity [47–50].
It is worth mentioning that there is another possible interaction between the Li+ cation
and hydroxyl groups in lignocellulose, which can aid swelling and dissolution of ligno-
cellulose, especially hemicellulose and lignin when added to the ILs and DMSO solu-
tions [14,34,35,51,52]. The decrease in dope solution viscosity at LiCl concentration above
0.4 wt.% could be related to the change of its interaction nature. It is known that alkali salts
greatly influence intermolecular interactions when dissolved in DMSO solvent, destroying
entanglement networks within molecular chains and, consequently, reducing viscosity [53].

3.2. The Effect of LiCl Content on the Morphology of the Membranes
3.2.1. Physical Structure of the Membranes

Figures 3–5 show that the top layer morphologies and the cross-sections of membranes
cast from LiCl-doped solutions are compared with the membrane cast from the unmodified
solution. As can be seen (Figure 3), LiCl positively affects the dissolution process, resulting
in a smaller number of visible fibrils and a smoother top layer. A positive effect of the
presence of LiCl on the dissolution process in IL media has been reported for different
kinds of polymers [14,34,51]. Up to 0.4% LiCl addition, membranes demonstrate smoothing
of the top surface, which correlates well with the increase in the viscosity of the casting
solutions and, thus, higher resistance of mass transfer during the phase inversion process
and, eventually, delayed demixing and denser morphology (Figure 2). The 0.5 and 2 wt.%
LiCl membranes show openings in the top layer, which agrees well with the lower viscosity
of the respective casting solutions and the theory behind precipitation phenomena, where
lower viscosity of the casting solution leads to quicker solvent-nonsolvent exchange process
and thus more open membrane morphology [54].
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Figure 4. SEM images of membrane cross-sections taken via scanning electron microscope (Hitachi 
SU 3500, Japan) at an acceleration voltage of 1.5 kV in high vacuum conditions: (a) 0 wt.% LiCl, (b) 
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Figure 4. SEM images of membrane cross-sections taken via scanning electron microscope (Hitachi
SU 3500, Japan) at an acceleration voltage of 1.5 kV in high vacuum conditions: (a) 0 wt.% LiCl,
(b) 0.1 wt.% LiCl, (c) 0.3 wt.% LiCl, (d) 0.4 wt.% LiCl, (e) 0.5 wt.% LiCl, (f) 2 wt.% LiCl.
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3.2.2. Thickness of the Membranes

In phase-inversion processes, the viscosity of the polymer solution can affect mem-
brane thickness and interdiffusion of solvent and non-solvent [55,56]. According to general
consensus, instantaneous demixing accelerates the precipitation of polymer chains, thereby
increasing the membrane thickness, while delayed demixing delays precipitation comple-
tion [55]. As the viscosity of the casting solution increased continuously, from 0 wt.% to
0.4 wt.% LiCl concentration, the resulting membranes demonstrate similar sponge-like
structures without macrovoids, which is a common feature of cellulose membranes pre-
cipitated from ILs’ solutions (Figure 4) [17]. It has also been reported that lithium-based
additives positively affect the suppression of macrovoids formation [57]. As a result of
the gradually increased casting solution’s viscosity and delayed demixing, the precipi-
tation process finalised over a longer time, and thereby the thickness of the membrane
decreased by ~75.4% (compared to the unmodified membrane) when the LiCl content
reached 0.4 wt.%. At LiCl dosage above 0.4 wt.% in dope solution, the viscosity of polymer
solution is drastically decreased (see Figure 2). At higher than 0.4 wt.% LiCl dosage, the
thermodynamic miscibility of casting solution reduces and consequently promotes the
kinetics of solvent outflux and non-solvent influx, which in turn increases the overall
thickness of the membrane. As shown from the cross-section micrographs of modified
membranes with 0.5 and 2% LiCl presented in Figure 3, the sponge structure gradually
changes towards finger-like pores. This alteration can be attributed to the role of lower
viscosity, reduction of thermodynamic stability of polymer solution and potential release
of LiCl to the coagulation bath, which all lead to a faster exchange rate of solvent and
non-solvent and formation of more open membranes [26,49,58].

The magnified cross-section of 0.4 wt.% LiCl membrane is depicted in Figure 5 to
highlight its different morphology. It can be seen that only 0.4 wt.% LiCl membrane
demonstrates a multi-layered structure, whereas the membranes with lower concentrations
of LiCl show sponge-like morphologies and membranes with higher LiCl concentrations
developed finger-like pores (see Figure 4). Although this kind of morphology alteration has
been previously reported for more significant differences in salt concentrations, it might
be concluded that in this particular complex system, even a more minor change in LiCl
concentration possesses immense effect over the formed membranes’ morphology [59].

3.3. The Effect of LiCl Content on the Chemical Structure of the Membranes

FTIR spectra of unmodified membrane and modified with LiCl ones were recorded to
evaluate the possible occurrence of chemical changes or interaction within the membrane
structure (see Figure 6). Regardless of the added amount of LiCl, the spectra demonstrate



Membranes 2023, 13, 198 10 of 16

the presence of the typical cellulose membrane’s peaks, the assignments of which can be
found in the literature [37,60–64]. The peaks of practical interest are located at 1430 cm−1,
representing in-plane symmetric bending characteristic of cellulose Iβ crystal, and at
899 cm−1, characteristic of amorphous cellulose regions’ C-H deformation in β-glycosidic
linkages. The absorbance values ratio at these peaks (A1430/A899) represents the amount
of crystalline and amorphous cellulose in the membrane’s matrix or the lateral order
index (LOI). The lower the value of LOI, the less ordered the cellulose structure and
hence the lower the crystallinity [39,40,65]. The calculation shows a distinctive difference
between LOI values of 0.1, 0.3, 0.5, and 2% LiCl membranes (all showing the LOI values
within 1.21–1.23 interval) and 0 and 0.4% LiCl membranes, showing LOI of 1.33 and
1.28, respectively, indicating higher content of crystalline cellulose in those membranes.
Although previously it has been stated that LiCl addition does not affect the crystallinity of
the polymers [57], it might work differently for the cellulose regenerated from solutions
with higher viscosity due to delayed demixing and improved orientation of the regenerated
crystals and amorphous regions along the fibre axis [9].
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Figure 6. FTIR spectra of tested membranes were recorded using the Perkin Elmer Frontier spectrometer
with a universal ATR module of diamond crystal at a resolution of 4 cm−1 in the absorbance mode.

3.4. The Effect of LiCl Content on Hydrophilicity and Zeta Potential of the Membranes

Several factors influence the contact angle value, such as roughness, hydrophobicity or
hydrophilicity, pore size and porosity, and distribution of pores. Figure 7 depicts changes in
the membranes’ apparent contact angles and estimated porosities. All the tested membranes
show the contact angle values typical for the regenerated cellulose membranes [5,52,66,67].
Generally, LiCl is reported to have a slight positive effect on the membranes’ surface
hydrophilicity when coupled with petroleum-based polymeric membranes [47]. However,
considering that the 0 wt.% LiCl membrane was very hydrophilic already before the LiCl
addition (see. Figure 7), the addition of LiCl seems not to be having a similar effect on
the hydrophilicity. It is worth stressing that the measured contact angle values are highly
dependent on the surface’s morphology, which notably differs from one membrane sample
to another and poses an effect over the measured values (see Figure 3).
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Figure 7. Variations in membranes’ porosity and contact angle as a function of LiCl additive concen-
tration in the casting solution; the contact angle values of the prepared membranes were recorded
using the captive bubble method with KSV CAM 101 equipment connected to a CCD camera.

The zeta potential versus the pH of the reference and LiCl-modified membranes are
presented in Figure 8. As can be seen, there is generally a negatively charged surface
on the fabricated membranes over a wide pH range (4 to 7). Further confirmation of the
speculation of changed interactions before and after 0.4 wt.% and induced solvent power
by the addition of LiCl can also be noted in the isoelectric point shift of the modified
membranes with 0.3 and 0.5 wt.% towards lower pH [68]. In general, with the increase
in crystalline content in cellulose, the accessibility towards its charged group is more
complicated compared to amorphous regions. As a result, it leads to cellulose with less
negative surface charge [52]. Compared to the other membranes, 0 wt.% and 0.4wt.% LiCl
ones showed a higher lateral order index, i.e., higher crystalline cellulose content, which
can be considered a possible reason for their less negative surface charge. Another reason
for increased zeta potential values can be found in the other membranes’ considerably
higher overall porosity, including surface porosity. For example, the overall porosity of
modified membranes with 0.3 and 0.5 wt.% increased by ~4.9 and ~11.6 times compared
to 0.4 wt.% modified membrane. According to previously published reports, the increase
in the accessibility of functional groups results in more negative net ζ-potential, which
inevitably follows the formation of multiple openings when 0.5 wt.% LiCl is added (see
Figure 3e) [68–72].

Membranes 2023, 12, x FOR PEER REVIEW 12 of 17 
 

 

 
Figure 8. The zeta potential curves of prepared membranes were recorded using a SurPASS electro-
kinetic analyser with the adjustable gap cell method and using 0.001 M KCl solution as an electro-
lyte. 

3.5. The Effect of LiCl Content on the Filtration Performance of the Membranes 
The performance of the prepared membranes as a function of the addition of LiCl is 

reported in Figure 9. The performance of fabricated membranes, i.e., flux and retention 
behaviours, are in accordance with the membranes’ morphology and the viscosity of the 
dope solutions. The pure water flux of the membrane was slightly increased with the in-
crease in LiCl content up to 0.4 wt.%, which can be related to the reduction of membrane 
thickness (see Figure 4). Due to the dominant role of viscosity, particularly at the highest 
one (i.e., 0.4 % LiCl dosage, see Figure 2), the solvent/non-solvent mutual diffusion is hin-
dered, and so-called delayed demixing takes place, resulting in the formation of denser 
structure (see Figure 7). Slow demixing results in nucleation after a specific time, which 
increases polymer concentration in the top layer. After that, nucleation occurs succes-
sively over a short period of time in the inferior layer. Hence, it can be said that slow 
demixing prevents the unrestrained growth of limited nuclei on the top layer, resulting in 
many small nuclei scattered throughout the film [73]. 

Consequently, the suppression of macrovoids and the formation of denser structure 
occurs, which can be considered a reason for the ~13% improvement of PEG 35 kDa reten-
tion for membrane fabricated at 0.4 wt.% LiCl content compared to the 0 wt.% membrane. 
At a concentration above 0.4 wt.%, the possible washing out of the salt from the membrane 
matrix and the viscosity reduction (see Figure 2) enhances the solvent/non-solvent ex-
change rate, i.e., instantaneous demixing. It thus leads to the formation of more open 
membranes (see Figure 3) with higher porosity (see Figure 7), which dominates a trade-
off between higher permeability and worse selectivity. 

Figure 8. The zeta potential curves of prepared membranes were recorded using a SurPASS electroki-
netic analyser with the adjustable gap cell method and using 0.001 M KCl solution as an electrolyte.



Membranes 2023, 13, 198 12 of 16

3.5. The Effect of LiCl Content on the Filtration Performance of the Membranes

The performance of the prepared membranes as a function of the addition of LiCl is
reported in Figure 9. The performance of fabricated membranes, i.e., flux and retention
behaviours, are in accordance with the membranes’ morphology and the viscosity of the
dope solutions. The pure water flux of the membrane was slightly increased with the
increase in LiCl content up to 0.4 wt.%, which can be related to the reduction of membrane
thickness (see Figure 4). Due to the dominant role of viscosity, particularly at the highest
one (i.e., 0.4 % LiCl dosage, see Figure 2), the solvent/non-solvent mutual diffusion is
hindered, and so-called delayed demixing takes place, resulting in the formation of denser
structure (see Figure 7). Slow demixing results in nucleation after a specific time, which
increases polymer concentration in the top layer. After that, nucleation occurs successively
over a short period of time in the inferior layer. Hence, it can be said that slow demixing
prevents the unrestrained growth of limited nuclei on the top layer, resulting in many small
nuclei scattered throughout the film [73].
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Figure 9. Pure water permeability values were measured at 1 bar, and PEG 35 kDa of the tested
membranes was measured in an Amicon ultrafiltration cell at 25 ◦C and a mixing rate of approximately
300 rpm.

Consequently, the suppression of macrovoids and the formation of denser structure oc-
curs, which can be considered a reason for the ~13% improvement of PEG 35 kDa retention
for membrane fabricated at 0.4 wt.% LiCl content compared to the 0 wt.% membrane. At a
concentration above 0.4 wt.%, the possible washing out of the salt from the membrane ma-
trix and the viscosity reduction (see Figure 2) enhances the solvent/non-solvent exchange
rate, i.e., instantaneous demixing. It thus leads to the formation of more open membranes
(see Figure 3) with higher porosity (see Figure 7), which dominates a trade-off between
higher permeability and worse selectivity.

4. Conclusions

In this work, cellulose-based ultrafiltration membranes were prepared from wood
using a wet phase inversion casting method. Lithium chloride was chosen as a good
pore-forming additive and added to the mixture of [Emim][OAc] and DMSO before adding
DES-treated and bleached birch biomass. The concentration range for LiCl was kept low
to study the effect of low concentrations and suggest the sustainable concentration of the
additive. Based on the available literature, the expected outcome was an increase in mem-
branes’ permeability. However, the results showed that in the mixture with wood-based
biomass of complex composition and chosen solvents, the effect of LiCl over the membrane
morphology and performance did not repeat the same trends as it did with other polymers.
Even small changes in the amount of added LiCl were found to have an immense effect
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on the viscosity of casting solutions and the morphology of the formed membranes. The
optimum concentration of the LiCl additive was found to be 0.4 wt.%, where an improve-
ment of the separation efficiency by 13% is observed without the loss of permeability.
In contrast, the further increase in LiCl dosage was impractical. The complexity of LiCl
interactions with wood polymers chains, solvent, and co-solvent molecules might explain
why LiCl shows different effects over the casting solution viscosity and consequently on
the membrane’s morphology and performance depending on the concentration, where
even the tiny alteration changes the entire outcome of LiCl presence.
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