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Abstract

Context: Human Action Recognition (HAR) using skeletons has
become increasingly appealing to a growing number of researchers in
recent years. Research Problem: It is particularly challenging to rec-
ognize actions when they are captured from different angles because
there are so many variations in their representations. Objective: This
paper proposes an automatic strategy for determining virtual observa-
tion viewpoints that are based on learning and data-driven to solve
the problem of view variation throughout an act. Method: Our VA-
CNN and VA-RNN networks, which use convolutional and recurrent
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neural networks with Long Short-term Memory (LSTM), offer an alter-
native to the conventional method of reorienting skeletons according
to a human-defined earlier benchmark. Results: Using the unique
view adaption module, each network first identifies the best obser-
vation perspectives and then transforms the skeletons for end-to-end
detection with the main classification network based on those view-
points. The suggested view adaptive models can provide significantly
more consistent virtual viewpoints using the skeletons of different per-
spectives. By removing views, the models allow networks to learn
action-specific properties more efficiently. Furthermore, we developed a
two-stream scheme (referred to as VA-fusion) that integrates the per-
formance of two networks to obtain an improved prediction. Random
rotation of skeletal sequences is used to avoid overfitting during train-
ing and improve the reliability of view adaption models. Conclusion:
An extensive experiment demonstrates that our proposed view-adaptive
networks outperform existing solutions on five challenging benchmarks.

Keywords: Human Action, Skeleton, VA-CNN, VA-RNN, View adaptation

1 Introduction

A significant research topic in computer vision is human action recognition
which has been studied a lot and made a lot of progress in the last few decades.
In addition to visual surveillance, it can be used for human-computer interac-
tion and video classification. It also controls games and video summaries and
understands videos [1, 2]. Human action recognition is categorized into two
types: 3D skeleton-based methods and 2D skeleton-based approaches, based
on the input data. HAR based on RGB color has been extensively researched.
Using 3D skeletons to show human’s bodies has been getting more atten-
tion recently. This is because the locations of key joints in a human body
are shown in 3D space. This study demonstrated that techniques for human
action recognition founded on RGB and skeletal data complement one another
[3, 4]. Skeletons have the advantage of being resistant to appearances, diver-
sions, and other points of view as high-level visualizations [5, 6]. It has been
discovered by researchers that even when no appearance information is pro-
vided, individuals can identify movements based on the movement of only a
rare joint in the human body. With the widespread availability of affordable
depth cameras [7], as in the Microsoft Kinect [8] and Intel RealSense [9], as
well as the development of strong methodologies for human posture approxi-
mation from deepness [10], the achievement of 3D skeleton data has become
straightforward. Following in the footsteps of many prior studies, including
those reported in the survey publication [6, 11].
This work focuses on action recognition using skeletons. HAR is one of the
most difficult problems to solve because of the large variety of viewpoints rep-
resented by the data collected from human actions. Large view variations are



Springer Nature 2021 LATEX template

Article Title 3

caused by two fundamental factors. First, in a real setting, the camera perspec-
tives are adjustable, and changing camera perspectives result in major changes
in skeletal representations, even when the sight is the same as before. Second,
the actor could accomplish an action in many different ways. The orientations
of this person may also change with time. When taken from several views, the
skeleton models of the same position are quite different, as shown in Figure 1.
In training, the variety of observation perspectives is extremely difficult the
action recognition [5, 12]. It is possible that the perspectives of the testing sam-
ples were never observed from the viewpoints of the training samples, resulting
in a considerable degradation in the recognition performance. Furthermore,
in contrast to reliable opinions, a larger model is usually required to manage
varied viewpoints. However, when it comes to training a larger model, it is
more challenging to do so. In past studies, several attempts have been made to
tackle the problem of perspective variance to attain robust action recognition
[13-15]. Though, most of these workings are projected for usage in RGB-based
action recognition systems [16]. Pre-processing management is regularly used

Fig. 1 How the similar posture is shown differently (camera angle and position) makes the
skeleton representations look distinctive.

to make the skeleton data invariant to the particular position and alignment
of the body [17, 18]. The original 3D coordinates are translated into repre-
sentations by engaging the body axis at the source and supporting the body
level of the skeleton to be analogous to the (x, y) plane, using a person-centric
coordinate system. A pre-processing method like this can somewhat reduce the
difficulty of perspective fluctuation. However, it comes with some disadvan-
tages as well. Given that the human body is not rigid, it is possible that the
strategy specified by humans will not be flexible enough to deal with various
situations. Because they depend on past information rather than on explicit
design to enhance action recognition, these processing approaches leave less
room for using optimal viewpoints. Designing an arrangement that acquires
optimum perspectives for action recognition while minimizing the influence of
viewpoint variety is an unsolved challenge that calls for further inquiry and
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evaluation of existing theories.
In this study, we will attempt to solve the problem of perspective variation to
obtain extreme acts for skeleton-based action recognition systems. To elimi-
nate perspective variances, it is better to pre-process the 3D barebones based
on human-defined standards. We present a sight adaption technique that sets
the observation viewpoint for each sample within the network automatically.
It helps the classification unit to ”see” the skeleton representation from a dif-
ferent viewpoint, assisting rapid recognition. Note that changing the camera’s
viewpoint is comparable to transforming the skeleton into a new synchronized
structure. We develop an endwise adaptable neural network for viewing, as
shown in Figure 2.
For view adaption, its main classification network and sub-network. The
observation adaption subnetwork spontaneously governs the related effective
perspectives according to input skeletons. The main classification network is
then loaded by the new observation views’ skeletons, allowing for easier action
recognition. The complete network is trained from start to finish, as well as
the view alteration subnetwork and the main classification network, to maxi-
mize recognition performance. This encourages the view alteration subnetwork
to study and govern optimal effective perspectives. View adaptation methods
are applied in both the periodic neural network (VA-RNN) and the convolu-
tional neural network (CNN) to demonstrate the efficacy of our suggested view
adaptation mechanism (VA-CNN). The final prediction can also be obtained
by fusing the classification scores from these two networks, known as the ”two-
stream” system VA-fusion.

Fig. 2 Endwise sight adaptive neural network flowchart. View adaption network deter-
mines virtual observation points. The main classification network classifies skeleton input
by transforming it into representations that fit the new points of view.

Our main subscriptions are summed up as follows:

• We present an automatic coordinated view adaption strategy that adap-
tively repositions observation views to help better recognize actions from
skeleton data. This activity reduces pre-processing time and covers several
circumstances.

• We design two types of adaptive networks: one is called VA-CNN, and the
other is called VA-RNN. For the VA-CNN, we assimilate a CNN-based view
adaption component into a CNN organization network for end-to-end learn-
ing. During recognition, the view adaptation module chooses each stream’s
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”optimal” reflection views. In the situation of the VA-RNN, for end-to-end
learning, we combine an LSTM classification network with an RNN-based
view adaption component.

• We conduct in-depth ablation investigations. Extensive experiments have
proved the efficiency of view adaption subnetworks. The impact of various
parameters is investigated. Furthermore, we show that the gain is due to our
observation alteration component rather than a simple layer increase. We
present VA-RNN and VA-CNNmodified skeletons to explain why our models
work. Discussing failures. We randomly rotate the skeletons during training
to make our view adaptation subnetworks more powerful. The findings of
our experiments show that data expansion increases the stability of our
observation adaption models, which is optimistic.

A successful skeleton-based action recognition structure has been provided
by us that spontaneously controls the skeletons to more stable views while
keeping an act’s continuousness established on the above model improvements
and mechanical contributions. We perform view augmentation on the training
data to make the view adaption model more robust to changes in the view.
Moreover, we do a comprehensive experimental investigation of the network
architectures to determine the parameters. Additionally, we run experimenta-
tions on five difficult datasets and find that our suggested method constantly
attains considerable increases across the board, confirming the efficiency of our
suggested models.

2 Related Work

2.1 RGB-based View Invariant Action Recognition

Numerous methods have been planned for view-invariant action recognition
based on RGB images, although cameras can apprehend human actions from
random angles [19-21]. Several panorama models can be trained using multiple
viewpoints [22, 23]. For example, The Oriented Gradients approach trains a
Bag of Words based on video input from all viewpoints. However, it is costly to
capture videos from numerous viewpoints in practice in another approach;
view-invariant representations of features are designed [13, 20]. Descriptions
include defining self-similarity [20] or curve-based descriptions [24]. Some
original video sequences are lost in the descriptors presented in another
domain. A knowledge transfer-based approach might also be considered [25,
26].

2.2 Skeleton-based Action Recognition: Viewpoints

Skeleton-based viewpoint action recognition methods are gaining popularity.
Skeleton-based human action recognition methods often outperform RGB-
based methods. These compact data are less affected by complex backgrounds
and viewpoint changes. Graph Convolutional Networks (GCNs) is the best
way to use skeleton data [27]. Xu et al. [28] proposed a two-stream model
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based on the human skeleton and scene images. Chi et al. [29] introduce a
graph convolution method based on attention that can capture human action’s
intrinsic topology, which changes according to the circumstances. In a recent
development by Song et al. [30], a more advanced separable convolutional layer
was integrated into more primitive fused Multiple Input Branches (MIB) net-
works. A strong foundation for skeleton-based action recognition using Graph
Convolutional Networks (GCNs) was thus developed. Dynamic GCN automat-
ically learns skeletal topology using Context Encoding Network (CeN). The
surrounding joints are considered when studying the link between two joints
[31].

2.3 RNN for Action Recognition Using Skeletons

In early works, skeletons are used for action recognition via hand-crafted fea-
tures [6, 18]. Recurrent Neural Networks have been utilized to notice human
actions when raw skeleton inputs are used as inputs in recent works using deep
learning. In doing so, the networks learn features and model temporal dynamic

behavior. Du et al. [17] Hence, this paper proposes a hierarchy of RNNs that

splits the human body into five parts, feeds the parts into different subnet-
works, and combines the outputs of each subnetwork. Part-based LSTMs are
built according to Amir et al.’s model [32], in which separate cells learn eter-
nal representations of context for a specific part rather than the whole body.
Zhu et al. [33] propose systematic detection of discriminative skeleton joints in
LSTM networks based on group sparse regularization. Introducing a trusted
gate is an effective way to minimize the effects of boisterous joints. Space-
temporal attention model [34] incorporates consideration mechanisms in the
networks that selectively focus on joints within skeletal systems and pay vary-
ing degrees of consideration to productions at different times. Similarly, Liu
et al. [35] use global contextual and local information to recognize instructive
joints. To distinguish between easy-to-encountered actions at the little stages
of pathways and hard-to-encountered actions at the great stages of pathways.

2.4 ConvNet for Action Recognition Using Skeletons

To the importance of convolutional neural networks’ extraordinary power for
organization, numerous current studies [36, 37] A 2D skeleton arrangement
changed to two-dimensional images and then classified with convolutional neu-
ral networks. Examples of this include [36, 38], which assign synchronization
to the three channels in an image by dividing the border identifiers among the
rows (or columns) and joint identifiers between the columns (or rows). Dataset
figures [36]or order figures are used to normalize coordinate values to 0-255
[38]. Instead of using absolute values of the joints, In He et al. [37] study used
reference joints as a basis for multiple image reconstruction (e.g., right hip, left
hip, right shoulder, left shoulder). Some authors [39] generate 2D prognosis
drawings based on the curves of joints onto various orthogonal planes. Color
and coordinate space of 2D (2D coordinates) represent the 5D space [38].
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2.5 Transformers in Computer Vision

Unlike recurrent networks, the Transformer is the best neural model for Nat-
ural Language Processing (NLP). There are two major issues that it aims to
address: (i) processing of very long sequences, which is hard for both LSTMs
and RNNs, and (ii) standard RNN architectures usually process sentences
one word at a time, one sentence at a time. This makes it hard to process
sentences in parallel. The Transformer has the usual structure of an encoder
and a decoder, but it only uses multi-head self-attention. In recent years,
transformative self-attention has been used in many common computer vision

tasks. Wang et al. [36] came up with a changeable non-local hand based on

self-attention. This operator can protectant long-range requirements in both
space and time, which makes it easier to classify videos accurately. Dosovit-
skiy et al. (2020) [40] came up with a Vision Transformer (ViT), which shows
how Transformers can be used instead of standard image spinning.

3 View Adaptation Modeling

Even for the same action, the skeleton demonstrations are diverse in different
views. The intra-class dissimilarities formed by view differences may be even
greater than the inter-class differences. Human action recognition is difficult
due to the range of capturing views.
We provide an endwise neural network architecture that spontaneously
remarks a skeleton layout from novel computer-generated views before action
detection to eliminate the effects of multiple points of view, as illustrated in
Figure 2. An organization system and a view adaption sub-network are the
two components that make up the system. The view adaption module deter-
mines the virtual observation viewpoints, which generates a set of updated
factors Tt for each time t in the simulation (or T for a sequence). The main
classification network converts the input skeletal representation into classi-
fication representations under new perspectives. The complete network is
endwise trained to enhance classification performance. The character played
by the view adaptation module is the problem of thought perception adaption
transformation, formulated in the next subsection.

3.1 Problem Statement

The raw 3D skeletons captured by the camera are representations of the camera
coordinate system (global coordinate system), with the camera sensor as the
coordinate origin. Our new global coordinate system O is defined using the
body-centered in the first frame to be unaffected by an action’s initial position
and to make our analysis easier. Figure 3 shows the new global coordinate
system’s skeleton representation as our system’s input skeleton Vt.

When shooting for television or film, it is possible to observe activity from
many views with the passage of time to better recognize, the scenario and
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Fig. 3 By estimating that there is a manageable virtual camera, an illustration of the shift
in observation viewpoint can be seen. Skeleton sequences are records of the skeletons that
have been displayed in frames starting from the first frame, f = 1, to the last frame, f =t,
in the worldwide coordinate scheme O. To obtain a new location for the tth frame, and the
observation coordinate system must be translated through time by dt and rotated through
time by αt, βt, and γt, Like the global coordinate system, radians are measured anticlockwise

around the X, Y, and Z axes. In the following step, the observation coordinate system O
′
t

is utilized to represent the skeleton in three dimensions.

convey a story. By using 3D skeletons taken from a certain vantage point, it
is also feasible to maintain an animated virtual camera that can be moved
around and monitor the activity from other perspectives, as demonstrated in
Figure 3. As shown in Figure 1, When an illustration is observed from the
moveable virtual camera viewpoint using the portable virtual camera coor-
dinate system, also known as the observation coordinate system (observation
viewpoint), using the skeleton at frame t, the representation below the follow-
ing coordinate system is transformed into a representation under the following
coordinate system: O

′
t.

The jthskeleton joint on the tth framework, assuming a skeleton order S
under the global and Z axes. The set of transformation strictures is r coordinate
system O, which is denoted as v′t,j = [x′

t,j ′y′t,j ′z′t,j ]
T where t ∈(1, . . . , T ), j

∈(1, . . . , J), T represents the overall number of frames in order, J represents
the whole number of skeleton joints in a frame. The joint’s set in the tth frame
is denoted as Vt = {vt,1, . . . , vt,J}. Assume that the movable virtual camera is
located appropriately, for the tth frame, with an associated inspection organize
system generated by transformation as dt∈R3, and a turning of αt, βt, γt, like
the global coordinate system, radians are measured anticlockwise around the
X, Y, represented by us as Tt = {αt, βt, γt} For that reason, the representation
of jthskeletonjointv’t,j = [x′

t,j,y
′
t,j,z

′
t,j ]

T = Rt (vt,j − dt) of the t
th frame under

the observation coordinate system O
′
t is.
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Fig. 4 VA-CNN and VA-RNN have been proposed as two view adaptive neural net-
works (: a view adaptive CNN (VA-CNN) and a view adaptive RNN with LSTM. Two
convolutional networks comprise the VA-CNN: a view adaption subnetwork and a main con-
volutional network (ConvNet). The view adaption subnetwork is responsible for determining
which observation viewpoints are most appropriate for the series. Below the new thought
viewpoints, the core ConvNet selects which action class to perform based on the skeleton
representations. VA-RNN has two main LSTM networks: a view adaption subnetwork and
the main LSTM network. The view adaption subnetwork is responsible for determining the
most appropriate opinion viewpoint every time. The action class is determined by the main
LSTM network, which uses the skeleton representations underneath new observation views
to determine the action class. By combining the classification scores from the two networks
the VA-fusion scheme is derived.

v′t,j = [x′
t,j,y

′
t,j,z

′
t,j ]

T = Rt (vt,j − dt) (1)

Rt is symbolized as

Rt = Rx
t,αR

y
t,βR

z
t,γ (2)

The coordinate transformation matrixes were represented by Rt =
Rx

t,α,R
y
t,β,R

z
t,γ for rotating the original coordinate system by αt, βt and γt

radians anticlockwise around the X, Y, and Z axes, respectively, which are
well-defined as

Rx
t,α =

1 0 0
0 cos(αt) sin(αt)
0 −sin(αt) cos(αt)

 (3)

Ry
t,β =

cos(βt) sin(βt) 0
sin(βt) cos(βt) 0

0 0 1

 (4)

Rz
t,γ =

cos(γt) 0 −sin(γt)
0 1 0

sin(γt) 0 cos(γt)

 (5)

Furthermore, all skeleton joints have the same transformation parameters
as, i.e.,T= {α, β, γ, d} ,in the tth frame. This is due to changing viewpoints in
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an inelastic motion. Providing these alteration factors, the skeleton depiction
Vt = {vt,1, . . . , vt,J}. According to the new findings, coordinates can be found
from (1). For different frames, the viewpoints can change throughout time. The
main issue is determining the views of the virtual camera that can be moved.

4 View Adaptive Neural Networks

We proposed two different types of adaptable neural networks based on visual
perception CNN and RNN, which we refer to as VA-CNN and VA-RNN,
correspondingly. As shown in Figure 4. The VA-CNN (as represented at the
top) comprises a CNN-based subnetwork for a main convolutional network
(ConvNet) and view adaptation. Each network is thoroughly trained by opti-
mizing classification performance from start to finish. The VA-RNN (shown
at the bottom) is a view adaptation subnetwork based on RNNs for convert-
ing skeletons to new representations under the proper observation views, as
well as a primary LSTM network for identifying activities from skeletons that
have been transformed. Instead, we may utilize VA-fusion to mix the results
from both networks to get a fused forecast.

4.1 View Adaptive Convolution Neural Network
(VA-CNN)

A skeleton map makes it easier for ConvNet to model Spatiotemporal
dynamics, as shown by the top branch in Figure 4. This is different from
VA-CNN, which is shown in the bottom branch. Convolution layers and a
fully linked layer are employed to build the view adaption subnetwork. They
govern the sequence-level observation perspective, i.e., with altered param-
eters of α, β, γ, d (as conferred in section 3.1 without subscript). Using the
view-adapted skeleton map, a primary ConvNet extracts features for action
recognition and investigates spatial and temporal correlations from beginning
to end. Image modeling with skeletons.
As in [41], we convert a skeleton arrangement to an image, with columns
denoting individual frames and rows showing individual joints. As a result,
the 3-dimensional coordinate values for X, Y, and Z are preserved as the three
stations of images. We stabilize the pixel standards to be in the range of 0-255
by considering the differences between the 3D skeleton and the image, similar
to [41].

Ut,j = floor

(
255× vt,j − cmin

cmax − cmin

)
(6)

The variable vt,j is used to denote the 3D coordinates of the jth joint of
the tth frame in a skeleton sequence, and the pixel value corresponding to
the normalized image map is denoted by the variable ut,j . cmax and cmin are
the two maximums and minimums of all the joint coordinates in the training
dataset separately, cmin = [cmin, cmin, cmin]

T and floor is the maximum integer
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function.
View Adaptative Subnetwork.
The skeleton representation of the jth joint in the tth frame vt,j is transformed
to vt,j according to the transformation formula (1). As a result, the skeleton
map’s pixel value below the novel reflection viewpoint is estimated as

u′
t,j = 255×

v′t,j − cmin

cmax − cmin
(7)

= Rt,jut,j + 255× Rt,j(cmin − dt,j)− cmin

cmax − cmin
(8)

It can be seen that (8) is formed from (1) and (6) View adaptive network
based on CNN is based on CNN learns and determines the observation view-
point of each of the seven skeleton sequences, then transforms the skeleton
map. The view adaption subnetwork is made up of many convolutional covers
and a fully connected layer that allows the conversion parameters to retreat,
i.e., α, β, γ, d, for Rt,j , and dt. An altered layer transforms each pixel to a new
illustration in the observation viewpoint based on these parameters and (8) in
the skeleton map. Therefore, a novel skeleton map is generated to correspond
to the new observation viewpoint. We’ve tried retreating frame-level parame-
ters, as well Tt = {αt, βt, γt, dt}, For a skeleton map with a width of T-pixels,
this translates to 6 × T parameters and retreating order-level parameters
T = {α, β, γ, d}, which resembles 6 skeleton map parameters. While frame-
level parameters appear more elastic and dominant in theory, designing with
order-level parameters results in superior performance for ConvNets. Perhaps
this is because fewer parameters are at ease to learn.
Vision Transformer (ViT)
As suggested in [42], the established architecture is identical to the original
ViT design introduced in [43], except for the MLP head being replaced by a
linear classifier. In summary, a ViT model divides the input image into patches.
The Transformer encoder is fed a sequence of 1D patch embeddings, and self-
attention modules are used to calculate the relation-based weighted sum of
the outputs of each hidden layer. Because of this, the Transformers can learn
global requirements in the input images as a result of this strategy[43].
The Self-Attention-based Graph Convolution (SAGC) module for spatial mod-
eling and the Multi-Scale Temporal Convolution (MS-TC) module for temporal
modeling are the two most important modules in our encoding block. To
encode the input and hidden representation of joints, an SA-GC, an MS-TC,
a residual connection, and a layer simplification are used[45].

4.2 View Adaptive Recurrent Neural Network
(VA-RNN)

The bottom branch of the VA-RNN subnetwork in Figure 4 shows how
we employ a view adaption subnetwork to automatically learn and deter-
mine observation views, i.e., with transformation factors of {αt, βt, γt, dt}, (as
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explained in Section 3.1), and a primary LSTM network for action identifi-
cation using view-adaptive skeletal data to deduce temporal dynamics and
features.
View Adaptation Subnetwork.
The repositioning of the moveable virtual camera (observation coordination
system) means that this virtual camera (observation coordination system) can
be moved and rotated, which can be considered the customization of the obser-
vation viewpoint. It is used to learn the rotation parameters in two branches
of LSTM subnetworks, one at a time, one for each frame of the tth frame, and
one at a time slot matching the tth frame. αt, βt, γt, dt, to acquire the turning
matrix Rt and the translation vector dt αt, βt, γt, dt, to obtain the translation
vector dt. An LSTM layer and a fully connected (FC) layer are used in conjunc-
tion with a branch of the rotation subnetwork to learn rotation parameters.
The parameters associated with rotation are derived by utilizing.

[αt, βt, γt] = Wrh
r
t + br (9)

hr
t ∈ RN∗1 where hr

t is the unseen output of the LSTM layer, with N being the
number of LSTM neurons and hr

t is the vector representing the LSTM layer’s
hidden output vector wr ∈ R3∗N and br ∈ R3∗1 is the FC layer’s weight matrix
and offset vector, respectively, and the rotation matrices Rt are calculated
using the rotational parameters that have been learned (2). The FC layer and
the LSTM layer are the two layers that make up the branch of the translation
subnetwork used to learn translation parameters. The translation vector dt is
denoted by the symbol.

dt = Wdh
d
t + bd (10)

where hd
t ∈ RN∗1 is the vector representing the LSTM layer’s hidden output

vector, wd ∈ R3∗N , and bd ∈ R3∗1 represent the FC layer’s weight matrix and
offset vector, respectively. The skeleton Vt is then represented using the tth

frame’s observation viewpoint, which is achieved by the use of (1).
Main LSTM Network.
The LSTM network can simulate long-term temporal dynamics and learn fea-
ture representations without needing external assistance. As in [34] and [33],
Initially, we use two LSTM layers, then one FC layer with a SoftMax classifier,
and finally, one FC layer with a SoftMax classifier. This layer has the same
number of neurons as action classes in the below layer.
End-to-End Training.
The complete network can be trained from beginning to end. The training
loss is cross-entropy loss [34]. Loss gradients go back from each subnetwork
to the main LSTM network, not just from the main LSTM network to the
view adaptation subnetwork. Let us refer to the loss back propagated to the
view adaption subnetwork output as v′t,j ∈ R1∗3, where j ∈ (1, . . . , J) J is the
number of joints in a frame. The loss used to determine dt translation vector is

ϵdt = −Jϵv′ t,jRt, (11)
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In a similar manner, the loss can be back-propagated to the output of the
branch to obtain the rotation parameters. The loss that has been passed back
to the output of αt, for example, is

ϵαt = ϵv′t,j

ϱRt

ϱαt

j=J∑
j=1

(vt,j − dt) (12)

With the ability to train from start to finish, the view adaptation model is
guided to choose the best observation points to improve the system’s ability to
recognize things. Instead of relying on human-defined criteria, our suggested
system uses an adaptive view adaptation model enhanced for high accuracy
recognition to determine the most appropriate observation views based on the
content.

4.3 Two Stream Fusion (VA-fusion)

When we combine scores from two different streams, we can use a weighted
fusion method to get the final score. This is like the fusion strategy in[46].
Bearing in mind the performance cavity among the two streams, we set the
stream for VA-CNN and VA-RNN as 3:2, proven by science. No matter how
hard we try, we can’t beat the straightforward fusion technique. Among VA-
RNN, VA-CNN, and VA-fusion, customers can select the best scheme that
fulfills their needs in terms of performance, hardware, and storage space, among
other factors.

4.4 Model Implementation and Training

Model Architecture.
To create VA-CNN, we use convolutional neural networks to construct our
model. Similar to [43] and [45], we employ EfficientNet for our primary
ConvNet, using pre-trained parameters from ViT-b-16 for classification, as
described in [43]. Two convolutional layers and one fully connected layer are
stacked to create the view adaption subnetwork. The batch normalization layer
(momentum is 0.999) and the Relu activation layer are applied after the two
convolutional layers. After the second convolutional layer, a max-pooling layer
is applied to further reduce the resolution. Finally, an FC (totally connected)
or fully connected (FC) layer is applied to predict factors relevant to view
transformations. For all of these convolution layers, we set the number of ker-
nels to 128 to achieve the best results. We set the kernel size to 5 and the
stride to 2 for each convolutional layer in the model.

V
′
← V

′
×momentum+ v × (1−momentum) (13)

For VA-RNN, we construct our model utilizing recurrent neural networks using
LSTM as the training input. For each LSTM layer, we use 100 neurons to do
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this. We stack two LSTM layers together to form the primary LSTM network.
To learn the transformation parameters for the view adaption subnetworks,
we merely use one LSTM layer followed by one fully connected layer, a major
reduction in complexity.
View Enhancing via Data-Driven.
All of the data has a restricted number of taking perspectives. This is a typ-
ical occurrence, particularly in real-world circumstances. View enrichment is
performed at the sequence level to increase the ” influence ” of our view adap-
tation model. This is accomplished by spinning the skeleton around the X, Y,
and Z axes by a certain number of degrees throughout the training session.
Overfitting is predicted to be alleviated, particularly on minor datasets, and
the view adaption model will be strengthened due to this.
Model Training.
We train each adaptive neural network with a stream of views from start to
finish by minimizing the network’s cross-entropy loss. As mentioned in [47],
We combine the two streams and use the SoftMax algorithm to calculate the
classification probability.

5 Datasets and Experimental Results

Five benchmark datasets, including NTU RGB+D, are used to test our pro-
posed view adaption frameworks, using the NTU RGB+D dataset [32]. In the
SYSU dataset, you can see how people interact with objects [48], the Kinetics
motion dataset [49], the UCF-101 Motion dataset [50], and the SBU Kinect
Contact dataset [51].
Sections 5.1 and 5.2 provide an overview of the datasets and experimental con-
ditions used in this study. In Section 5.3, the proposed view adaption model is
evaluated and shown for ablation investigations. In addition, we link our conse-
quences to those of alternative view-invariant methods. The influence of various
characteristics is investigated. To better understand the view adaption model,
we do an analysis using visualization and explore specific failure instances. A
comparison of our results to those of current approaches is shown in Section
5.4, which applies to each of the five datasets examined. The results reveal
that our approach steadily outperforms the competition across all datasets.
Section 5.5 presents some relative studies of VA-CNN and VA-CNN, divided
into two categories.

5.1 Datasets

NTU RGB+D Dataset (NTU) [32]. The dataset of 3960 video trials

from the Kinect is the largest data set with RGB+D videos and skeleton data
for detecting human actions. It contains 60 different actions plus actions related
to regular living, common relations, and physical condition. There are 25 joints
in each subject. There is great diversity in sample viewpoints since different
angles of cameras, capturing views, and subject orientations are used. In addi-
tion, in a cross-sectional evaluation (CS), The 40 subjects are separated into
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two groups: guidance and analysis are also available, as is a cross-view evalua-
tion (CV), in which cameras two and three samples are used for guidance and
camera one for trying. The dataset presents a challenge in act appreciation
since there are so many videos and subjects, as well as varying angles of view.
SYSU 3D Human-Object Interaction Dataset (SYSU) [48]. There are
12 actions in a Kinect dataset taken by 40 individuals. It features a total of
480 scenes. There are 20 joints in each subject. The actions in this dataset
share a lot of similarities.
Kinetics-Motion Dataset [49]. A total of 680 video clips (per class) from

the most important RGB action recognition dataset was used in the exper-
iment. The dataset contains 30 action classes and 20400 video clips with a
duration of 10 seconds per clip. Among those who have contributed to this work
are Yan et al. [38], providing joint-based assessed postures for action recog-
nition. The first step was to resize videos to 340,256 pixels at 30 frames per
second. There were 30 classes, including skateboarding, tai chi, hopscotch, pull-
ups, and capoeira. They also did push-ups and punching bags, belly dancing,
country line dancing, surfing the crowd, swimming backstrokes, front raises,
crawling babies, and windsurfing. They also did weight lifting, tobogganing,
arm wrestling, salsa dancing, and hurling.
UCF-101Motion Dataset [50]. More than 13,000 videos from 101 different
types of action are in the folder. They are all at 320 -x 240 resolutions and
25 frames per second. At the same time, the AlphaPose toolbox was used to
take about 16 joint actions with RGB videos. On the other hand, Kinetics-
Motion has predefined actions like ” wounding in the kitchenette ” that are
more closely linked to specific items and actions in UCF101 than in Kinetics.
As many as 3170 videos show 24 different types of exercises that go with the
poses. These include a baby crawling on a rope and playing the cello; punch-
ing; tai chi; boxing speed bag; pushups; juggling balls; golf swing; clean and
jerk; playing the guitar; bowling; ice dancing; juggling balls; bowling; ice skat-
ing; and writing on a board.
SUB Kinetic Interaction Dataset [51]. There are 280 skeleton sequences
and 6810 frames in this collection. By standard research protocol, we con-
ducted fivefold cross-validation with delivered splits, resulting in eight classes.
Two humans were represented by frames in each skeleton, with 15 joints iden-
tified for each person. During training, two samples were used for two skeleton
sequences, which were then combined. The average predicted score was cal-
culated while the tests were being conducted. Random data collection was
utilized to supplement the data collected during the training phase. Five recent
crops were selected to calculate the prediction scores, and four bends were
more or less for the challenging computation.

6 Experimental Procedure

The batch size for VA-CNN was set at 16. For effective preparation, we set the
fully connected layer parameters to zero for the view adaption subnetwork.
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All networks are trained with Adam [52], and the early learning rate is set
at 0.0001 for all datasets. Skeleton maps have been scaled to 224x224 pixels.
To account for the modest sizes of the other datasets, For the NTU dataset,
we set the batch size for VA-RNN to 16, and we did the same for the other
datasets as well. We initialize the fully connected layer parameters of the view
adaptation subnetwork to zeros for this network to promote effective training
of the subnetwork. To avoid overfitting Gradient clipping, dropout [45] with a
probability of 0.5 is used, which is identical to the method described in [53] and
is used to avoid the gradient explosion problem by placing a strict constraint
on the gradient’s norm (not exceeding 1). All networks are trained with Adam
[52] (beta1 and beta2 have values of 0.8 and 0.9, respectively), and the primary
learning rate is set to 0.001 for all datasets.

6.1 Affective Ablation Research

Compared to Other Pre-Processing Techniques: Certain methods pre-
process the skeletons using human-defined rules to reduce the difficulties
created by view fluctuations [17, 34]. We compare these approaches’ efficiency
with our proposed adaptation model. The NTU RGB+D dataset is now the
largest and most demonstrative dataset accessible; we analyze this dataset in
depth using recurrent neural networks, and the results are provided in Table 1.

Table 1 Description On the NTU, we compared pre-processing approaches and our view
adaption model dataset.

Wo/pre-proc.
Methods CS CV

S-trans+RNN 76.00 82.30

Pre-processing

F-trans+RNN 75.10 80.50

Raw+RNN 66.30 73.40

S-trans&S-rota+RNN 76.40 85.40

S-trans&F-rota (w.r.t shoulder) +RNN 75.80 84.90

S-trans&S-rota (w.r.t shoulder) +RNN 75.80 85.10

F-trans&F-rota+RNN 74.10 83.90

S-trans&F-rota+RNN 75.00 85.10

View-adaptive
VA-trans +RNN 77.4 84.4

VA-rota+RNN 87.9 94.1

VA-RNN 81.8 89.3

As the RNN architecture changes, VA-RNN is a suggested view adaption
technique. This means that the view of the network changes automatically as
the network changes. This is our baseline pattern without the view adaption
model enabled, which means that the switches s-rota and s-trans are both
turned off, resulting in variable Vt being equal to the variable’s value. Because
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the overall coordinate system is moved to the first frame’s body center using
our view adaption techniques, the input Vt is identical to that used in those
methods (see section 3.1). Sequence-level translation, or S-translation, is a sort
of pre-processing. Table 1 shows that for the CS and CV settings, the suggested
view adaption strategy beats the S-trans+RNN by 5.8% and 7.0 %, respec-
tively, in terms of accuracy. VA-rota+RNN appears to be additional operative
than VA-trans+RNN in terms of rotation-only adaptation. In this case, the
majority of the actions in this dataset are executed deprived of changing places
throughout existence.
If one uses RNN Network skeletons that have been pre-processed based on
frequently used human-defined processing criteria, one should be cautious
about the performance of the RNN Network. To establish the viewpoints,
such pre-processing follow rules that have been defined by humans. The pre-
processing-based schemes are denoted by the letters C+RNN, where C denotes
the pre-processing strategy, for example, F-trans+RNN. The results of meth-
ods that use a range of pre-processing methodologies are shown in the 3rd
through 9th rows. F-trans is an abbreviation for frame-level translation, which
means that the body center is moved to the origin of the coordinate system for
every frame. This rotation is done at the sequence level, and the parameters
for the rotation are calculated from the first frame.
The goal is to align the X-axis with the vector running from the ”left shoulder”
to the ”right shoulder,” the Y-axis with that of the vector from ”spline base”
to ”spine,” and the Z-axis with the new X-Y axis. F-rota, on the other hand,
is the frame-wise rotation. During the S/F-rota processing, only the rotation
pre-processing required to align the X-axis with the vector from ”left shoul-
der” to ”right shoulder” is done at the sequence/frame level (w.r.t shoulder).
F-trans&F-rota indicates that both F-trans and F-rota operations are carried
out, comparable to the pre-processing carried out in [32]. Using the Raw+RNN
scheme in the second row, we can denote a scheme that uses the original skele-
ton as the input to the RNN Network without performing any pre-processing.
It’s worth noting that the scale of 3D skeletons is unaffected by the distance
between the subject and the camera. As a result, the scaling procedure is not
considered in our system. We can draw the following observations and conclu-
sions based on Table 1.
1. Our last strategy outdoes the most frequently used pre-processing solutions
by a significant margin. Compared to F-trans&F-rota+RNN [24, 26, 28], our
pattern improves inaccuracy by 7.7% and 5.4% for the CS and CV settings,
correspondingly. In contrast to Strans&S-rota+RNN, our method improves
accuracy by 5.4 percent and reduces inaccuracy by 3.9 percent.
2. Pre-processing at the frame level is inferior to pre-processing at the sequence
level because the previous drops more material, such as the gesture diagonally
edges, than the latter.
3. Given that it is oblivious to the primary point of action, S-trans+RNN out-
does Raw+RNN, the technique that uses raw skeletons as input by a large
margin.
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4. As using the CV setting, several human-defined pre-processing options, such
as S-transS-rota, S-transFrota, S-transFrota (w.r.t shoulder), and S-transFrota
(w.r.t shoulder), produce improved results when compared to when using the
CV setting alone. The reason such pre-processing can lessen the diversity of
opinions while also resolving the issue of incongruent viewpoints across the
training and testing samples.

6.2 Data Augmentation Effects

Through a more inclusive training environment, it is possible to reduce the dis-
parity in opinions between the training and testing environments. It improves
the capabilities of the S-trans starting position system and our VA scheme.
Data augmentation helps the VA module learn how to modify diverse views
by allowing it to ”see” more views during training. As illustrated in Table
2, the developed view adaptation model VA and the baseline system S-trans
both benefit from data augmentation. The language. Data augmentation is
not used in the baseline or proposed view adaption schemes, denoted by
S-trans+RNN/CNN and VA-RNN/CNN. The techniques with data augmen-
tation are denoted by the letters Strans+RNN/CNN (aug.) and VA+RNN
(aug.)/CNN (aug.).
There is a 3.5 % increase in the performance of CNN-based networks when
more data is added to the NTU dataset. This is true for the CS and CV
settings of the dataset. Regarding the CV setting, the testing data’s perspec-
tives are distinct from the training data’s. Therefore, growing the viewpoints
in data augmentation can result in a higher gain on the CV setting, allowing
some previously unknown testing views to be observed throughout the train-
ing process. The view discrepancies between the Kinetic-Motion and UCF101
datasets under the CV setting are substantial, with even a top view. In con-
trast, the other views are taken by cameras situated roughly horizontally. Data
expansion allows the training process to ”see” the testing perspectives, result-
ing in gains of 10.3-12.9%. By enhancing the range of training viewpoints, data
augmentation primarily tackles the misalignment between the instruction and
testing perspectives.
Furthermore, with the assistance of data increase, VA-CNN (aug.) and VA-
RNN (aug.) greatly increased their show compared to VA-CNN and VA-RNN,
particularly for the Kinetic-Motion and UCF101 datasets. Data augmenta-
tion improves the VA-CNN performance of the Kinetic-Motion and UCF101
datasets by 6.6% and 11.7%, respectively. One of the primary reasons for this
is that the VA-CNN and VA-RNN models are incapable of transforming the
skeleton order of the testing set into a good learned view when the views of
the training and testing sets are significantly out of sync with one another.
Although the VA-CNN and VA-RNN models could ”see” a large number of
views during training, data augmentation made this possible. The models could
also translate skeletons from training and testing sets into properly learned
views.
Data augmentation is a cost-effective and required strategy to maximize
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Table 2 Effectiveness (inaccuracy (%)) of Data-Driven on S-trans and VA schemes.

height
Datasets

NTU SYSU
SUB Kinetic-Motion UCF-101

CS CV Setting-1 Setting-2

CNN-Based

S-trans+ CNN 86.4 92.4 83.1 81.6 87.9 70.2 74.5

S-trans+ CNN (aug.) 89.9 93.4 83.2 82.1 87.7 77.3 80.4

VA-CNN 90.3 95.1 84.3 83.8 90.3 73.8 72.4

VA-CNN (aug.) 90.1 95.4 88.5 85.9 90.3 80.4 84.1

RNN-Based

S-trans+ RNN 77.4 84.4 77.4 75.3 94.4 86.6 71.02

S-trans+ RNN (aug.) 79.6 86.1 80.1 79.3 94.9 77.3 73.8

VA-RNN 81.8 89.3 77.9 77.3 95.4 70.4 76.5

VA-RNN (aug.) 82.9 92.8 86.4 81.9 98.1 75.1 92.01

efficiency in both the baseline and proposed perspective adaption patterns. Fol-
lowing that, all of our trials are carried out with data augmentation techniques.

6.3 View Adaptation Model Efficiency

Table 3 will relate our suggested VA model to the two prevailing baselines.
The baseline techniques are Strans&S-rota+CNN and Strans&S-rota+RNN,
including human-defined pre-processing for translation and rotation. For S-
trans&S-rota, it’s crucial to remember that reversing the skeleton sequence
to add extra views is not a good idea in most cases. The goal of the revolu-
tion preprocessing is to align the viewpoints. Aside from S-trans+CNN (aug.)
and S-trans+RNN (aug.), there are additional sorts of baseline schemes that
require translation pre-processing, with no data increase carried out.
View Adaptation versus pre-processing: According to Table 3, the
view adaption model consistently outperforms human-defined rotation pre-
processing. The pre-processing technique that has been designed by humans
is not optimum for recognition performance. Because the human body is
non-rigid, the specification of rotation requirements is not always appropri-
ate for the alignment of orientations in space. Our method uses a system to
mechanically find the most appropriate views, which has been trained through
optimizing ordering correctness.
View adaptation versus data augmentation: From Table 3, VA-CNN
(aug.) and VA-RNN (aug.) outperform Strans+CNN (aug.) and S-trans+RNN
(aug.) for all datasets. Viewpoint is more of a distraction than a feature that
helps you recognize actions. When the training and testing perspectives are
identical (for example, after data augmentation), it should be more difficult
for a network to deal with different viewpoints because it should be easier to
deal with different viewpoints than it should be to deal with only the same
viewpoints.VA-RNN is a view adaptation scheme that tries to make the dif-
ferent viewpoints into one consistent viewpoint to make it easier for people to
understand. The consistent viewpoint that you’ve learned is good for learning
how to look for specific structures. In summary, our planned VA-CNN (aug.)
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and VA-RNN (aug.) schemes steadily outperform two effective baseline plans
on all datasets compared to the two powerful baseline schemes.

Table 3 The accuracy of two powerful baseline schemes, S-trans+CNN (aug.) and
S-trans+RNN (aug.) with sequence translation preprocessing strategy, S-transS-rota+CNN
and S-transS-rota+RNN with sequence translation and rotation preprocessing strategy,
and our schemes with view adaptation, was compared (percent). Please note that for both
sorts of baseline systems, we highlight the one we believe is the best.

NTU SYSU

Datasets
CS CV Setting-1 Setting-2

SUB Kinetic-Motion UCF-101

S-trans&S-rota+CNN 71.1 86.2 76.9 76.2 96.2 77.4 81.1

S-trans+ CNN (aug.) 89.9 93.4 83.2 82.1 87.7 77.3 80.4

CNN-Based
VA-CNN (aug.) 90.1 95.4 88.5 85.9 90.3 80.4 84.1

S-trans&S-rota+RNN 82.9 92.8 82.1 80.9 87.4 67.09 77.3

S-trans+ RNN (aug.) 79.6 86.1 80.1 79.3 94.9 77.3 73.8

RNN-Based
VA-RNN (aug.) 86.9 94.1 86.4 81.9 98.1 75.1 92.01

Influence of Network Parameters: In the recognition network, the VA
module is part of it and is responsible for recognition. As a result, the VA-
CNN and VA-RNN have more factors than the comparable base networks in
their respective domains. One can wonder if the advantages are due to the
enlarged number of factors or to the proposed view adaption units, which are
both beneficial. There are two techniques to expand a network’s model size: (1)
Adding more CNN or RNN layers; (2) reducing the number of LSTM neurons
or convolutional kernels in RNN-based or CNN-based networks. It should be
noted that we are using the EfficientNet as our CNN-based backbone network,
using factors pre-trained by ViT. As a result, the number of convolutional ker-
nels has remained the same. For RNN-based networks, we show the results of
adjusting the number of LSTM neurons in each RNN layer. The following is
a breakdown of the two approaches we’ll be taking.
Stacking more layers: The comparisons in Table 4 are between our planned
view adaption models and the equivalent primary ordering networks with vari-
ous layer counts. Each layer of the LSTM architecture has 100 neurons. As the
number of LSTM layers in RNN-based networks increases, the performance
rises but then declines after two levels. Stacking LSTM layers will not greatly
improve performance. Nevertheless, Following the results of a standardized
test, our suggested VA-RNN (aug.) scheme outperforms the baseline scheme
by using four LSTM layers (2 for the main network, 2 for the VA subnet) with
3,4 or 5 layers by approximately 5.0 percent and 4.9 percent, respectively, in
the CS and CV settings, when compared to the baseline scheme with 3,4 or 5
layers. We use EfficientNet of various layers as our support networks for CNN-
based networks and discover that a deeper network does not provide noticeable
benefits. In both the CS and CV scenarios, our 53-layer system beats the
baseline scheme with 152 layers by 3.5 percent and 1.8 percent, respectively,
compared to the baseline scheme.
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Table 4 The accuracy (percent) of the main ConvNet (S-trans+CNN (aug.)) on the NTU
dataset was compared to the accuracy (percent) of the main LSTM network (Strans+RNN
(aug.)) on the same dataset using varying numbers of convolutional layers.

Main Network Structure #Param. (M) CS CV

S-trans+RNN (aug.)

1 LSTM layer 0.11 83.2 92.1

2 LSTM layers 0.19 84.3 92.9

3 LSTM layers 0.27 82.3 91.2

4 LSTM layers 0.35 82.1 90.6

5 LSTM layers 0.43 81.9 89.8

VA-RNN (aug.) 2+2 LSTM layers 0.32 86.9 94.7

S-trans+CNN (aug.)
EfficientNet-B5 30 90.7 94.1

EfficientNet-B6 43 92.4 95.7

EfficientNet-B7 66 93.2 96.8

VA-CNN (aug.) EfficientNet-B5+5 linear layers 33.56 96.7 98.6

Increasing the number of LSTM neurons:Comparing our suggested view
adaption models to the appropriate primary ordering networks for RNN-based
networks with varying numbers of LSTM neurons is shown in Figure 5. The
VA model has four LSTM layers compared to the two in the baseline mod-
els. Three models were created: VA-RNN (aug.), S-trans+RNN (aug.), and
S-trans&S-rota+RNN, each with different numbers of neurons (20, 40, 70, and
150). When we utilize more neurons in a model, the number of factors and
the overall show of the model both rise. When using comparable or fewer
parameters, VA-RNN (aug.) consistently beats S-trans+RNN (aug.) and S-
transS-rota+RNN when using alike or rarer factors for both the CS and CV
settings. Observe that the bigger the number of neurons in the LSTM layer,
the better the ability to describe the evolution of action dynamics. By default,
we utilize 100 neurons for each LSTM layer.
Finally, merely stacking more layers or employing a bigger number of neurons
to increase the effectiveness of parameters is not as successful as our planned
view adaption module, which is more efficient. Our models outdo the baseline
models while having a similar number of parameters.

6.4 Analysis and Visualization of Learned Views

By repositioning the virtual moveable camera, the view adaption subnet-
works determine the observation views and then change the input skeleton
Vt to the representation Vt below the new viewing platform to optimize the
appreciation shown. The illustrations Vt and Vt are shown graphically to
help us better comprehend our models. Figure 6 shows the skeletons from
various orders, each taken from a unique perspective of (a) a related position
or (b) a similar action. A variety of original skeletons representing different
points of view are displayed in the second row. Skeletons from our VA-RNN
model are presented in the third row after they have been altered. Even when
dealing with a wide range of topics and acts, the updated skeletons exhibit
substantially more consistent points of view than their original counterparts.
As indicated in the fourth row, the skeletons from our VA-CNN model have
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(a) NTU-CS

(b) NTU-CV
Fig. 5 Both baseline and RNN-based view adaptation schemes are shown on the NTU
dataset. The curves show how well they work on this dataset. In the recognition network,
the VA module is a part of it. The horizontal axis shows how big the model is or how many
parameters it has. The vertical axis shows how well the model can be recognized. (%)

been modified. Following an extensive number of observations over various
sequences, it has been established that both the VA-RNN and the VA-CCN
models are efficient in translating skeletons into significantly more consistent
viewpoints. It’s worth noting that the most significant factor in our system’s
success is the consistency of opinions that follow our model. The redesigned
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skeletons have also been examined on a wide number of sequences and shown
to be able to preserve the flow of an activity. The view adaptation model
alters the perspective of a skeleton sequence in response to the contents of the
sequence. On the surface, many frames are necessary for the system to fully
learn the transformation parameters VA-RNN. Our research shows the fol-
lowing results from our examination of various sequences and transformation
factors. First and foremost, as soon as the network receives the first skeleton
frame, it begins to modify the skeleton. On the other hand, the learned views
of the first few frames are not particularly stunning. As far as the first few
frames are concerned, the LSTM network hasn’t ”seen” nearly enough infor-
mation to generate a reliable forecast about which views are being presented.
It takes anything between 5 and 20 frames to transform the skeleton into
something that appears to be very steady.
As illustrated in Figure 7, under the CV condition, the performance of the
VA-RNN model outperforms that of the S-trans+RNN model in terms of
accuracy (percentage) on the NTU dataset. According to [32], The Id of
action is represented by the index of the horizontal axis as [32]. Waving one’s
hand, for example, depicts the motion represented by the number ”23.”

(a) (b)
Fig. 6 Edges of (a) the same pose taken since altered perspectives for the similar focus, and
(b) the similar action ”drinking” taken from altered perspectives for different subjects. Orig-
inal skeletons in the second row. 3rd row: skeleton representations of our VA-RNN model’s
observation viewpoints. 4th row: skeleton illustrations of our VA-CNN model’s observation
viewpoints.

Failure Case Discussion: Those interested in the failure rates of the VA-
RNN or VA-CNN models compared to the S-trans+RNN or S-trans+CNN
baseline schemes might be interested in learning more. Following extensive
research, we discovered that our proposed models are proficient in converting
skeletons into stable perspectives, even for samples that had been misclassi-
fied before. Using the NTU dataset in the CV condition, Figure 7 shows the
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histogram of our VA-RNN model’s performance improvements over our base-
line model S-trans+RNN. To determine the gain values for each action class,
subtract the S-trans-RNN accuracy from the VA-RNN accuracy and divide
the result by two. We can undoubtedly perceive that our system outdoes the
baseline scheme in most classes. We all know that when multiple initializa-
tion seeds are used for the same network, performance varies. The VA-CNN
method exhibits similar behavior, which we do not illustrate to save space.

Fig. 7 Shows the VA-RNN model’s performance gain in terms of accuracy (percent) for the
S-trans+RNN on the NTU dataset for the CV configuration. According to [38], the index
of the horizontal axis denotes the Id of action. The action of hand waving, for example, is
denoted by the number ”23.”

6.5 Compared with Other Approaches

In the following segment, we relate our VA-fusion(aug.) stream view adaptation
technique to additional state-of-the-art methods on such datasets. Moreover,
the performance of VA-RNN (aug.) and VACNN (aug.) is shown.
NTU Dataset: During the performance assessment, we track the ordinary
CV and CS conventions proposed by [32]. Our approach is compared with
Deep Learning methodologies incorporating RNNs or CNNs and skeleton data
[17, 27, 28, 35, 39]. Some traditional approaches use handcrafted elements
[54, 55]. The results are displayed in Table 5. This dataset has hundreds
of viewpoints, making action recognition difficult. VA-RNN(aug.) and VA-
CNN(aug.) outpace standard arrangements and more RNN- and CNN-based
systems that apply innovative techniques [17, 27, 28, 35, 39] for instance, atten-
tion [34, 39]. In both CS and CV contexts, our planned method’s performance
of VA-fusion(aug.) outdoes the best state-of-the-art outcomes.

SYSU Dataset: Evaluation of the performance is done under [48]’s stan-
dard protocol. Setting 1 requires that half of the subjects be trained, and half
of them be tested. As part of Setting 2: A partial of the movies are used for
teaching, whereas the second half is utilized for testing. The normal of every-
thing 20-fold cross-validation results for each setting are found in Table 6. With
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Table 5 Comparative analysis of proposed and existing models using NTU datasets.

Methods CS CV

Skeleton Quads [54] 38.6 41.4

Lie Group [55] 50.1 52.8

Dynamic Skeletons [48] 60.2 65.2

HBRNN-L [56] 59.1 64.0

Part-aware LSTM [32] 62.9 70.3

STA-LSTM [34] 73.4 81.2

GCA-LSTM [35] 74.4 82.8

Clips+CNN+MTLN [37] 79.6 84.8

ESV (Synthesized + Pre-trained) [39] 80.0 87.2

VA-CNN (aug.) 90.1 95.4

VA-RNN (aug.) 82.9 92.8

VA-fusion (aug.) 93.2 97.6

view adaptation models minimizing the view differences, our methodology gets
the finest show, which is 14.1% and 6.5% higher compared to [48] for setting-1
and setting-2, correspondingly, and 13.1% greater than [28] for setting-1.

Table 6 Comparative analysis of proposed and existing models using SYSU datasets.

Method Setting-1 Setting-2

LAFF [57] 54.2 -

Dynamic Skeletons [48] 75.5 76.9

ST-LSTM+True Gate [28] 76.5 -

VA-CNN (aug.) 88.5 85.9

VA-RNN (aug.) 89.1 86.9

VA-fusion (aug.) 89.6 87.2

Kinetic-motion Dataset: To evaluate the performance, we use the stan-
dard protocol described by [3]. There are 4 views. The dataset is divided in
various ways, yielding 12 partitions. Each division contains three viewpoints:
two for training and one for testing. The findings for each partition are shown
in Table 7. Because the four perspectives are so dissimilar, it’s difficult to tell
what’s happening when you can’t see what’s happening. VA-RNN (aug.) and
VA-CNN (aug.) meaningfully outstrip zero arrangements using the view adap-
tion model. Although ESV [39] combines 10 separate models, our solo model
VA-CNN(aug.) outdoes ESV [39] by 5.5 percent.

Table 7
Comparative analysis of proposed and existing models using kinetic-motion datasets.

Methods Accuracy (%)

RGB CNN [58] 70.4

Flow CNN [58] 72.8

ST-GCN [59] 72.4

VA-CNN (aug.) 80.4

VA-RNN (aug.) 75.1

VA-fusion(aug.) 83.1

UCF-101 Dataset: In this dataset, there are three views. Two perspec-
tives are often utilized for instruction and the other for testing [60, 61]. Only
samples from the first two views are used as training [61], while the third is
used for testing. [60] selects every two views as training, resulting in three
examples. Comparisons of performance are shown in Table 8. V1 signifies the
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partition in which training samples are collected from views 2 and 3, and test-
ing samples are taken from views 1. V2 signifies that models from view 2 are
being used as trying models. Our VA-fusion(aug.) system obtains the greatest
show of 95.3 percent for the V3 setting using view adaption modules.

Table 8
Comparative analysis of proposed and existing models using UCF-101 datasets.

Methods Accuracy (%) RGB

LRCN [62] 81.6 True

3D-ConvNet [63] 75.2 True

Two-Stream [43] 91.3 True

DS-LSTM [49] 87.33 True

VA-CNN(aug.) 84.1 True

VA-RNN(aug.) 92.01 True

VA-fusion(aug.) 95.3 True

SUB Dataset: We make use of the ordinary etiquette described by [51],
which involves 5 folders and cross-validation. Performance comparisons are
shown in Table 9. Our method surpasses previous approaches by a large mar-
gin [17, 28, 33, 34] with an accuracy of 99.1 percent. Although this dataset
contains no significant view changes, our model tends to detect minor view
modifications and turns them into more appropriate views for more efficient
action recognition. VA-RNN outperforms VA-CNN in this short dataset (just
282 sequences). Because VA-CNN has a far larger number of parameters than
VA-RNN, it’s simple for ConvNet to overfit a short training dataset.

Table 9 Comparative analysis of proposed and existing models using SUB datasets.

Methods Accuracy (%)

Raw skeleton [51] 49.7

Joint feature [51] 80.3

Raw skeleton [56] 79.4

Joint feature [56] 86.9

HBRNN-L [17] 80.4

Co-occurrence RNN [33] 90.4

STA-LSTM [34] 91.5

ST-LSTM + Trust Gate [28] 93.3

GCA-LSTM [35] 94.1

Clips+CNN+MTLN [37] 93.6

VA-CNN(aug.) 90.3

VA-RNN(aug.) 98.1

VA-fusion(aug.) 99.1

The suggested view adaptation module is particularly operational in select-
ing relevant views, as it was adjusted to optimize recognition performance.
The barrier posed by the diversity of views in video recording is overcome by
the consistency of viewpoints for diverse actions/subjects, allowing learning
action-specific properties to be focused on by the network. Distinct from
many other pre-processing techniques, these keep crucial motion information.
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6.6 Comparative Analysis of VA-CNN and VA-RNN

As a result of the overview of the view adaptation modules, both VA-CNN
and VA-RNN attain perfection in contrast with their standards, as presented
in Table 3.
VA-CNN(aug.), In general, is far more dominant than VA-RNN(aug.), as
demonstrated in Table 3. The fundamental cause for this is that we convert
the complete frame order to an image, allowing a CNN network (such as Effi-
cientNet) to investigate three-dimensional and time-based relationships of the
hinges nearby and internationally. The history information is stored in RNN’s
memory, although restricted.

Table 10 View adaption design effectiveness (inaccuracy (percentage)) on various
support CNN networks. S-trans+CNN(aug.) is the baseline system for pre-processing
order-level conversion and data amplification.

Networks Method #Param.(M) CS CV CS gain CV gain

CNN-5layers
S-trans+CNN(aug.) 2.06 90.7 94.1

2.1 4.2

VA-CNN(aug.) 3.56 92.8 98.3

EfficientNet-B5
S-trans+CNN(aug.) 30 90.7 94.1

2.1 4.2

VA-CNN(aug.) 30.43 92.8 98.3

EfficientNet-B6
S-trans+CNN(aug.) 43 92.4 95.7

1.8 1.4

VA-CNN(aug.) 43.45 94.2 97.1

EfficientNet-B7
S-trans+CNN(aug.) 66 93.2 96.8

1.2 1.2

VA-CNN(aug.) 66.42 94.4 97.9

In comparison to RNN networks, the gain of the view adaption module
appears to be less. To evaluate the efficiency of the view adaption module, we
run tests on numerous back CNNs with varied model sizes. Table 10 displays
the results of CNN-5layers for classification, which contains five convolutional
levels and one FC level, as well as our backbone networks EfficientNet-B5,
EfficientNet-B6, and EfficientNet-B7.

Two conclusions have been reached. (1) When the CNNs are small, our
model produces significant gains. Our view adaption model for the CNN-
5layers network obtains improvements of 2.1 percent on the CS and 4.2 percent
on CV sets of the NTU dataset, respectively, which are similar to the addi-
tions of the RNN-based network (see Table 3). Table 11 contains a summary
of all dataset outcomes. When the networks are tiny, we can see that our opin-
ion adaption replicas outperform CNN baselines for all datasets. (2) When the
backbone CNNs are huge, our view adaption module sees significant gains.
It becomes tougher to achieve the same gain as the model size or complex-
ity grows. Table 10 shows that raising the baseline model size by the same
amount results in a lesser increase. In comparison to improving the deepness
of the network, a small rise in the perfect dimension of the opinion adaption
component boosts performance significantly.
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Table 11 Affectivity (incorrectness (%)) of the view adaptation model with small
5layered network CNN- and Efficient-B5, big net as the backbone CNN Networks. the gap
between S-trans+CNN (aug.) and VA-CNN (aug.) is represented by Gain.

Network Method NTU SYSU SYSU

EfficientNet-B5

CS CV Setting-1 Setting-2 Setting-2

S-trans+CNN (aug.) 89.9 93.4 83.2 82.1

VA-CNN (aug.) 90.1 95.4 88.5 85.9

Gain 0.2 2.0 5.3 3.8

EfficientNet-B5

Method SUB Kinetic-motion UCF-101

S-trans+CNN (aug.) 87.7 77.3 80.4

VA-CNN (aug.) 90.3 80.4 84.1

Gain 2.6 3.1 3.7

Table 12 compares the number of parameters in our concluding VA-RNN
(aug.) and VA-CNN (aug.) modules, evaluating speed and accuracy when the
batch size is 1 (number of arrangements in one second) (percent). It’s worth
noting that deep CNN outperforms RNN with three LSTM layers. The per-
formance of RNNs improves only slightly when more layers are used. We’re
going to suppose that the arrangement is 300 frames long. (1) VA-RNN (aug.)
has the benefit of having a modest model dimension (number of parameters),
which is just 2% of VA- CNN’s (aug.). (2) VA-CNN(aug.) has a relatively fast
recognition speed on well-trimmed sequences, 83.3 orders in one second, which
is 10 times faster than VA-RNN (aug.). Because the LSTM configuration is
appropriate for the frame-to-frame handling, whereas VA-CNN(aug.) must use
a downhill window method to develop flowing data that is untrimmed, VA-
RNN(aug.) may be more time effective for the online detection task, based on
the sliding window’s size VA-CNN(aug.) is around 83.3 structures per second
if the window slithers for respectively surround. In contrast, VA-RNN(aug.)
is around 7.9300 = 2370 edges in one second if the window glides for every
frame. (3) VA-CNN (aug.) has an advanced credit accurateness than VA-RNN
because of its combined Spatiotemporal exploration capacity, CNN construc-
tion power, and greater model size (aug.). However, due to its short number of
parameters, VA-RNN (aug.) performs better for small datasets. Users can pick
from VA-RNN (aug.), VA-CNN (aug.), and VA-fusion depending on the needs
of actual applications (aug.). TABLE 12: Comparisons of models VA-RNN and
VA-CNN.

Table 12 Model comparisons of VA-RNN and VA-CNN

Model #Param. (M) Speed (seq./sec.) Acc. (NTU-CV) (%) FLOPs

VA-CNN (aug.) 33.56 105.4 95.4 2.7B

VA-RNN (aug.) 0.32 6.1 92.8 2.9B



Springer Nature 2021 LATEX template

Article Title 29

7 Conclusion

To recognize human action from skeleton data that can handle very long
sequences, we present new state-of-the-art end-to-end view adaptive neural
networks, VA-RNN and VA-CNN, with the backbone ViT. These two streams
are the best for getting a high final score instead of using the standards set
by humans to adjust skeletons for action recognition. The proposed networks
can adapt the observation perspectives to the most appropriate ones, with the
optimization goal of maximizing the recognition performance. We have devel-
oped transformer-based view adaptation models based on the recurrent neural
network and the convolutional neural network. Both models can transform the
skeletons automatically to consistent viewpoints, which reduces the impact of
the models’ different perspectives and makes training convenient. Experimen-
tal results show that the proposed framework consistently improves recognition
performance and can handle long sequences on five challenging benchmark
datasets. It also gets state-of-the-art results, even though some classes don’t
perform well because of the model’s limitations. Future models with limited
datasets will be generalized using the Generative Adversarial Network (GAN).
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