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Abstract
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Anomaly detection is a crucial task in many industrial environments as it enables a safer
and more reliable operation of different processes; it is usually seen as a separate process
from the industrial system design. Performance improvements mostly rely on detection
methods. Therefore, anomaly detection can be seen as an end in itself. In this context,
the focus of this doctoral dissertation is to highlight the importance of anomaly detection
considering different, often neglected, subfunctions such as sampling, network architec-
ture, and planning support. These subfunctions, along with an analysis of detection per-
formance and upcoming communication technologies, are merged to ultimately improve
anomaly detection. This is achieved by the integration of anomaly detection in the cyber-
physical system composed of three articulated layers: a physical layer, a data layer, and
a decision layer, where the layers have specific tasks that could be enhanced or modified,
thereby providing additional flexibility and scalability. Simple adjustments to the physi-
cal layer like an increase in the number of sensors or changing the sampling methodology
may result in an average improvement of the data transmission rate. In the data layer,
the data aggregation method to be used has an impact on the anomaly detection accuracy.
The results presented in this doctoral dissertation were obtained in specific cyber-physical
applications, such as a microgrid, a chemical process, and a power transmission system.
The three-layer model applied to the Tennessee Eastman process shows how it benefits
the levels of data processing, pointing out in which layer greater improvements can be
made even including details of the communication network and the computing platform.
In the physical layer, the event-driven method used to transmit samples from the sensors
yielded gains in the data transmission rate of 20% and improved anomaly detection in
five out of six hard-to-detect faults. In a transmission line application, in the data layer,
the quantitative association rule mining algorithm was able to maintain a 98% accuracy
of anomaly detection while retrieving explainable results. Furthermore, in the decision
layer, predictions of anomalies served as multiobjective chance constraint optimization,
balancing resilience and economic objectives in a microgrid. Finally, an extensive anal-
ysis of protection in microgrids for anomaly detection showed that multiconnectivity of
wired and wireless technologies, such as 5G, meets the requirements of wired networks,
thereby improving the flexibility of this application.

Keywords: anomaly detection, cyber-physical systems, event-driven sampling, ML tech-
niques and wireless communication
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Hyrylä, Päivi Nuutinen, LES staff member Tarja Sipiläinen, and doctoral HR members
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Castro Tomé, M. d., Gutierrez-Rojas, D., Nardelli, P. H., Kalalas, C., d. Silva, L. C. P.,
and Pouttu, A. (2022). Event-Driven Data Acquisition for Electricity Metering: A Tuto-
rial. IEEE Sensors Journal, vol. 22, no. 6, pp. 5495–5503.

Narayanan, A., Korium, M., Carrillo Melgarejo, D., Hussain, M., Sousa De Sena, A.,
Goria, P., Gutierrez-Rojas, D., Ullah, M., Esmaeelnezhad, A., Rasti, M., Pournaras, E.,
and Nardelli, P. H. (2022). Collective Intelligence using 5G: Concepts, Applications, and
Challenges in Sociotechnical Environments. IEEE Access, vol. 10, 70394-70417.

Ullah, M., Gutierrez Rojas, D., Inkeri, E., Tynjälä, T., and Nardelli, P. H. J. (2022).
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1 Introduction

1.1 Motivation and objectives
Prediction and detection of anomalies in any industrial applications are everyday tasks
that require multiple resources to effectively mitigate the anomaly and continue operation.
Some of the anomalies are considered trivial and are in many cases solved manually with-
out any countermeasure or prediction that would increase the long-term economic impact
for a given industry. Examples of anomalies affecting industrial applications that require
attention or have an impact on their operation are faulted machines, electrical faults, ex-
treme weather conditions, cyberattacks, and chemical faults, among others. Early detec-
tion of such faults plays a significant role to increase the operating time of the process and
thereby reduce the overall energy consumption caused by the high energy requirements
in case of stopping of the system process and restart.

In this context, technology transformation and current advances in topics such as sensors,
storage and processing units, fault detection methods, sampling techniques, and com-
munication have opened a path for the emergence of industrial cyber-physical systems
(CPSs) (Nardelli, 2022). CPSs are fundamental for Industrial Revolution 4.0 and will
contribute to achieving the goals of growing demand and efficient supply chains and be
the backbone of production from both economic and sustainable aspects (Leitao et al.,
2016). The innovative aspect of Industrial Revolution 4.0 is the logical (symbolic) inter-
actions between different machines through their integration into digital platforms, which
create new business models and confront techno-economic challenges by the introduction
of a new generation of factories. Industrial CPSs will contribute to achieving global goals
such as ending reliance on fossil fuels, reduction of carbon emissions, and promotion of
sustainability by using real-time data analytics, advanced control systems, and smart sen-
sors helping to reduce energy consumption, optimize supply chain management, reduce
waste, and promote the use of renewable energy sources.

1.2 State-of-the-art
Anomaly detection in industrial environments was first approached as an intrusion detec-
tion real-time model, where the goal was to detect violations from outsiders in an attempt
to break security (Denning, 1986). According to Denning (1986), the model is based on
the following hypothesis:

Hypothesis 1 “Exploitation of a system’s vulnerabilities involves abnormal use of the
system”

This statement is the building block for anomaly detection. Monitoring of the current
state of the process becomes a key aspect, even in cases known as “rare events” where
the disturbance source is sometimes not located because of the lack of sensors in the pro-
cess or incorrect monitoring. The definition can also be rephrased in computer science
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Figure 1.1: Schematic of anomaly detection in a CPS.

as: “An outlying observation, or ‘outlier’, is one that appears to deviate markedly from
other members of the sample in which it occurs” (Grubbs, 1969). The importance of such
a statement lies in the fact that nowadays almost any industrial process is monitored by
computational means, and it involves a flow of data from one end to another. This devel-
opment of digitalization, even in its early stages, has created a need to provide security.
Many scientific approaches have been proposed to solve security and reliability issues,
focusing on protecting the information in all the steps of the dataflow. When the CPS
involves data flowing in various directions, it can be prone to attacks from intruders at
many levels, and the system’s capability to respond to those attacks in a secure and fast
manner is critical and challenging (Teng et al., 1990).

To visualize the realm of anomaly detection, Fig. 1.1 shows the different CPS layers and
how anomaly detection is integrated into the larger scheme of industrial process monitor-
ing. This is an overview of some aspects of both physical and cyber layers, which can be
integrated into any application. In the physical layer, we can find elements like sensors,
the task of which is to measure desired variables from any industrial process application,
after which these data are sent to the cyber layer for computing. When the data reach
the cyber layer, they can be monitored, stored, processed, or even sent back as feedback
information to the actuators of the application for control or action purposes. Anomaly
detection intervenes as a monitoring action carried out as part of an automatic task (su-
pervised or unsupervised methods (Munir et al., 2019)) or manually by humans at proper
interfaces. Depending on the application and the communication requirements, anomaly
detection can also be performed in real time or offline (Kühnlenz and Nardelli, 2016).

1.3 Research questions
This doctoral dissertation aims to answer research questions in the context of anomaly
detection from various perspectives, covering current computational methods used in
anomaly detection, application of anomaly detection to different industrial technologies,
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its value in energy and communication gains, and its impacts on planning energy dispatch.

RQ1 How to reformulate the three-layer model framework from (Kühnlenz and Nardelli,
2016) in order to perform anomaly detection in industrial applications?

The first research question aims to define the boundaries in a framework for anomaly de-
tection. From the design perspective, the focus is on reviewing the steps in an anomaly
detection methodology to be improved, which are applicable to any industrial process.
This means that independent of the application, the framework can either be implemented
or adjusted to find the solutions needed in the field, thereby contributing to the operation
of the industrial process and energy savings.

RQ2 How can the proposed anomaly detection framework support management and con-
trol of energy resources by the integration of data platforms?

A general framework usually gives quite straight answers to design a cyber-physical in-
frastructure for anomaly detection. Once the framework is established and a given in-
dustrial application is running, the value of support it gives to other tasks in the process
is often bypassed. An anomaly detection framework does not only improve operational
times as a static task, but also provides knowledge for expert systems to carry out control
tasks in energy resources, thereby increasing resilience.

RQ3 What is the advantage (if any) of employing the proposed framework for fault detec-
tion and/or classification in the operation of high-voltage transmission systems?

A more detailed application to energy systems in the field of power systems is used to
understand the advantages of the framework established in this study. Protection in power
transmission lines is usually performed by devices known as relays, which isolate and
clear a fault when it occurs. However, on some occasions they fail to identify specific
faults because of the techniques employed. The challenge here is to define under which
conditions an anomaly detection framework can maintain or improve security in power
lines by including communication technologies or artificial intelligence (AI) methods re-
placing or strengthening the traditional methods such as phasor angle measurement.

RQ4 In which circumstances can event-driven data acquisition be included in the pro-
posed framework to improve fault detection in a complex industrial environment?

Samples coming from sensors are of importance for anomaly detection. Understanding
concepts like sampling frequency and signal reconstruction plays a vital role in detection
performance. This research aims to answer how sampling techniques can improve the
performance of detection and identification of anomalies while saving communication re-
sources. A chemical industrial process largely used in the literature is studied as a use
case.
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RQ5 What is the expected impact of most recent (wireless) communication technologies
for adaptive protection in microgrids following the proposed framework?

Communication technologies are the link between layers in a CPS. Usually, they are taken
as a black box in anomaly detection applications. However, within the objectives of the
investigation, it is shown that improving or replacing the communication technologies by
following the framework can benefit the process both technically and economically. A
power system application is investigated in this case.

This doctoral dissertation studies various aspects of anomaly detection, not limiting to
particular techniques to perform detection. Fig. 1.2 shows the topics under study and
the research questions to be answered. It is worth mentioning that these topics are not
the only ones regarding anomaly detection; in contrast, there are many further aspects
involved and thus, much research potential.
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1.4 Dissertation outline
This doctoral dissertation is organized as follows:

Chapter 2 presents the background and mathematical support of the anomaly detection
methods used in this doctoral dissertation.

Chapter 3 explains the main results of each publication used to answer the five research
questions.

Chapter 4 provides a general discussion of the results, the conclusions of the doctoral
dissertation, and future work.
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2 Background

2.1 Introduction

The anomaly detection framework established in this study is based on a three-layer
model: a physical layer, a data layer, and a decision layer. Under this model, seven
questions are examined from a design point of view within the layers; these questions can
be applied to any industrial process. A key aspect of the framework is integration between
the layers. In order to have more efficient anomaly detection, a well-structured flow of
data and information between layers is necessary. In Table 2.1, the questions applied to
an industrial process using an anomaly detection framework are presented.

Table 2.1: Questions that can be answered by the proposed framework (adapted from
(Gutierrez-Rojas et al., 2020)).

Q# Topic Question
Q0 Anomaly What is the problem? Is the event known or unknown?
Q1 Sensors What kinds of sensors will be used? How many of each can

be used and where can they be located?
Q2 Sampling Which type of sampling will be used? Periodic, event-

driven, or mixed (hybrid)?
Q3 Communication Which type of communication system (access and network

technologies) will be used?
Q4 Data storage Where are the data from sensors stored and processed?
Q5 Data fusion How should the data be clus-

tered/aggregated/structured/suppressed?
Q6 Anomaly detection How to achieve ultrareliable anomaly detection based on

ML algorithms?

The questions presented in Table 2.1 are intended to provide the first step for a particular
industrial process that requires an infrastructure for anomaly detection. Some industrial
processes that are up and running have experienced failures in their system that cannot
be detected by their current methods or machinery. By answering the questions, or at
least partially, an industrial process will be able to establish the foundations to implement
anomaly detection. Question Q0 is related to whether the source of the anomaly is known
or if the current measurement devices are recording it. If Q0 is unknown, then we can
proceed to question Q1, where there is a possibility that new sensors might be installed
so that the source of events can be recorded. In question Q2, the target is to define what
kind of sampling is carried out, depending on the needs and capabilities of the industry
and the nature of the anomaly. Then, question Q3 is the link between physical and cy-
ber layers, the specific technology that will be used to send the data to the management
center. It usually depends on the size of the industrial process, distances, and technical
requirements. Question Q4 relates to the cyber layer, i.e., whether data are processed and
stored in the cloud or in local physical devices located at the plant. Questions Q5 and Q6
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are about the preprocessing and data manipulation before they are used in the detection
algorithms and what kinds of methods will be used to perform the detection.

2.1.1 Previous approaches

The idea of a multilayer system in a CPS comes from (Kühnlenz and Nardelli, 2016).
The main contribution is to model a system where the components are ”simple and easy
to understand.” Under this concept, the multilayer system is designed to emulate the char-
acteristics of a real-world system, where the layers are connected between them. These
layers are the physical layer, the communication layer, and the decision layer. Kühnlenz
and Nardelli (2016) state that there is no need to find explanations that are external to the
system, and therefore, everything is built within the boundaries of the system.

The method of decomposing a complex system into smaller layers might simplify the
problem and potentially find solutions to problems that might be difficult to deal with.
The interaction between layers is also an important part, as in some cases, an individual
layer can dominate, and a strong dependence on the entire system might occur. In those
cases, higher security measures can be taken by designing the specific layer accordingly.

The multilayer concept is the basis of the approach of the CPS carried out in this study on
anomaly detection. It is the base that helps to answer the research questions by providing
support in each of the performed tasks that are designed to successfully detect and prevent
system failures.

A more business-oriented approach can be seen in RAMI 4.01. This multilayer archi-
tecture proposal was made in a joint collaboration by German Electrical and Electronic
Manufacturers Association, which, among others, possesses a set of standards, practices,
and references.

The model is composed essentially of three layers, each layer being divided into two
sublayers. The model has two axes (see Fig. 2.1), a hierarchy axis and a layer axis.
The hierarchy axis is an organizational and business description of the system process, its
levels being the following:

• The product level considers the final product as part of the system, interacting with
the upper levels.

• The field device level represents the devices in the field that support the manufac-
turing processes, such as sensors and meters.

• The control device level includes the monitoring infrastructure that controls the
equipment.

1https://www.isa.org/intech-home/2019/march-april/features/rami-4-0-reference-architectural-model-
for-industr
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Figure 2.1: RAMI schematic 4.0 (adapted from (Bastos et al., 2021)).

• The station level represents the inputs of multiple modules that form a complex
system.

• The work center level is composed of multiple stations dedicated to production.

• The enterprise level refers to the interactions performed by the other layers and
represents administrative functions sending data back and forth.

• The connected world level represents the interaction between the factory and the
outside, i.e., clients or supplementary services.

On the layer axis, the properties that classify the asset can be found; it focuses on the tech-
nical aspects related to the methodology. Under the layer axis (see Fig. 2.1), asset and
integration layers refer to the devices exclusive to the physical world and the transition
from the physical to the cyber world, respectively. Communication and information layers
are where the data exchange and access take place. Under the information layer there are
identification and routing of the assets, enabling transitions between devices at different
layers. Finally, functional and business layers refer to the actions performed by the assets
defined, where the higher-level specifications that are business-oriented processes for the
assets are taking place.

The concepts given under the RAMI model in the context of Industry 4.0 aim to cre-
ate integrated solutions for different applications in many fields, like in (Alemão et al.,
2022), where a manufacturing scheduling problem is tackled by proposing a set of func-
tional requirements. RAMI 4.0 simplifies the interaction between the layers and is able
to handle the phases and aspects from assets (physical devices) to the decision-making of
the process. An important aspect is that by defining each of the process requirements, it
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will contribute to the development of the subsequent tasks performed in each of the layers.

RAMI 4.0 can be used in anomaly detection to structure tasks in industries that do not
rely on any existing methodology to detect faults in a system. The real-world challenges
that factories are facing to perform anomaly detection can be minimized by following the
methodology of structuring the problem from the physical world to the decision-making
by layers matching the architecture model of RAMI 4.0.

2.2 Sampling

Most of control and anomaly detection in modern industrial processes has relied on syn-
chronous time-based sampling. These methods have shown reliability in the majority of
cases. However, the infrastructure built for continuous sensors lacks flexibility and could
represent a nonviable economic decision from the design perspective. Another reason
why time-based approaches are expensive is the increased need for data storage facilities
and congestion of the communication network. Thus, efficient utilization of resources is
a priority, and it can have an impact on the overall use of energy of a given industrial
process.

The event-driven method (EDM) for sampling has attracted a lot of attention in recent
years mainly because of the gains in resource utilization, and it can also provide the same
effectiveness while increasing flexibility and ease of extension (Sánchez et al., 2009). The
EDM is not considered a new topic of research, but it has many challenges, as developing
a standardized sampling methodology might be difficult. Nonetheless, in the field of
anomaly detection, it is an interesting choice and may not only increase the accuracy
of the detection methods but also provide better control capabilities for the industrial
process. In this research project, time-based and event-driven methods and their impact
on the anomaly detection are investigated and compared.

2.2.1 Time-based method

In time-based methods, the sampling is done at the start of a timer, and the duration is
either at the end of the timer or the sample count. This type of sampling is also known
as continuous sampling, because the signals are constantly measured from the start of the
process until the end. The length of the sampling interval is the sampling period. The
sampling period may vary from milliseconds to minutes or hours, depending on the appli-
cation. Commonly, a short period between samples means that the resolution of the signal
is high and thus, it can improve anomaly detection. However, in some industrial environ-
ments (e.g., chemical processes), the granularity of the data points might not be beneficial
when using statistical detection techniques, because the data captured by smaller intervals
do not have a good representation when a fault occurs.
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Figure 2.2: Overview of EDM method for sampling.

2.2.2 Event-driven method

The event-driven method (EDM) is a sampling method, and it is performed at the sensor
end (data acquisition). An overview of the method is given in Fig. 2.2. The reconstruction
block is where the samples that have already been processed reach by any communication
means, and the output of this block is used to perform anomaly detection. The special
interest in this method lies in the concept of saving transmission data from the acquisition
to the reconstruction block. The main techniques in this method are: send-on-delta (SoD)
(Miskowicz, 2006); send-on-prediction (SoP) (Staszek et al., 2011; Suh, 2007); send-
on-area (SoA) (Nguyen and Suh, 2008); send-on-energy (SoE) (Miskowicz, 2010); and a
simple definition of a threshold. In the SoD, the measurement is updated when a minimum
difference between the current and the most recently transmitted signal value is reached.
SoP is an extension of the SoD strategy. The difference is related to the use of a predicted
value from the last update. SoA and SoE are two common extensions. The triggering
criterion for the former is given by the integral of the absolute difference, and in the latter,
by the energy of the difference. Another method is provided by a predefined threshold
(Astrom and Bernhardsson, 2002). In this case, the event trigger is given when the current
signal value crosses a cutoff point. Their paper investigated the threshold and delta event-
based strategies.

In the context of EDM methods, many contributions have been made by Simonov and his
collaborators in a series of papers (Simonov, 2013, 2014; Simonov et al., 2017a,c,b); in
the present study, we followed and continued these strategies. It is noteworthy that when
a sample is not received at the reconstruction block (Fig. 2.2), it is also informative in
the EDM. If no sample is received or lost in the reconstruction block, the samples are
assumed to be constant during the respective window defined by the sampling period T ,
as it never exceeds the thresholds that trigger either of the mentioned techniques.

Threshold-based technique

The threshold-based method employs a cutoff value as a decision rule for data acquisition.
That is, the sampled value of the variable is only updated if it exceeds this reference level.

First, the following statistics of the continuous signal (S) under normal operating condi-
tion are obtained: mean (Savg), minimum (Smin), and maximum (Smax). The lower (Tl)
and upper (Tu) thresholds are given in Equation 2.1 as a function of the parameter p, with
0 < p < 1. The larger the parameter is, the smaller the number of updated samples is.
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Tu = Savg + (Smax − Savg)× p (2.1a)
Tl = Savg − (Savg − Smin)× p (2.1b)

The signal reconstruction (S ′
t) is then performed for each sample as shown in Equation

2.2. If the variable value exceeds one of its respective lower and upper thresholds, it is
updated (with St), otherwise, the last sent value (St−1) is kept.

S ′
t =

{
St, if (St < Tl) or (St > Tu)

St−1, if Tl ≤ St ≤ Tu

(2.2)

The threshold method (with p = 50%) is illustrated in feed A (stream 1), which is one
of the case study process variables. The optimal threshold percentage is chosen from the
industrial process historical data.

Delta-based technique

The SoD method is based on the difference between the current value and the one previ-
ously sent by the data acquisition system. For fault detection, this difference is calculated
from a signal in normal operating conditions (NOC). Equation 2.3 gives the maximum
absolute difference (∆max) between consecutive sample values (t, t − 1) of the contin-
uous signal (S). The parameter p is used as before. This procedure is applied to each
variable separately.

∆max = max(| St − St−1 |)× p (2.3)

The next step concerns the reconstruction of the signal (S ′
t), which is done according to

Equation 2.4. The variable value (St) is passed only if it is greater than ∆max, otherwise,
the last sent value (St−1) is repeated.

S ′
t =

{
St, if | St − St−1 |> (∆max)

St−1, if | St − St−1 |≤ (∆max)
(2.4)

An example of both methods used in the study, Threshold and Delta, is illustrated in Fig.
2.3. The data of one of the variables are presented in the Tennessee Eastman process,
where both methods are easy to perceive. The level of data compression can vary accord-
ing to the percentage of the threshold chosen, or the percentage of the variation given as
p in Equations 2.1 and 2.3.

2.3 Communication

In the cyber-physical domain, the communication network is a relevant aspect as it is the
means by which the data flow from one layer to another. Traditionally, communication
systems have had a significant impact on different industrial processes as they have been
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Figure 2.3: Examples of a signal coming from a sensor with the threshold and delta EDM.
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a limiting factor in terms of the speed of data flow, usually requiring a large infrastruc-
ture inside factories to perform simple tasks. The infrastructure usually relied on Ethernet
communication, copper cables, or optic fiber, which could significantly increase the area
of operation and costs. Moreover, detecting communication failures or maintenance is a
time-consuming task.

Modern technologies have opened a new scheme of opportunities for industries. Many
anomaly detection and control tasks that have usually been performed manually are now
being executed automatically as the data reach from sensors to the management systems
on the timescale of milliseconds. In addition, faster processors are capable of delivering
decisions preventing the processes from interruptions or physical harm to industries or
personnel. Among such new technologies, cellular LTE 4G and 5G communication tech-
nologies that have shown promising results, and given the flexibility they support, are a
well-rounded choice to implement.

Especially, advances in 5G are set to offer a wider bandwidth, faster data transmission,
and improved spectral efficiency while being supported by local private networks (Es-
posito et al., 2017). 5G specifications are still being deployed worldwide, and they are
able to support a wide range of applications that impose different requirements, such
as smart homes, industrial automation, augmented reality, and 3D videos, among others
(Narayanan et al., 2022). The above-mentioned applications can be classified into three
major classes that are a signature of 5G communications:

• enhanced mobile broadband (eMBB);

• massive machine-type communications (mMTC);

• ultrareliable low-latency communications (URLLC).

Enhanced mobile broadband (eMBB) usually contains applications that have an ultra-high
data rate in both upload and download links, even exceeding 1 Gbits per second, and ap-
plications like video games and augmented reality; also communication between routers
in industrial facilities may require such a high rate. Massive machine-type communica-
tions (mMTC) focuses on enabling the connection between a massive number of devices
that have low power and low data rate requirements; such devices can be smartphones
that are being used together for a specific application like localization or even performing
edge computing. mMTC is of particular importance for large factories that have multi-
ple processes requiring constant monitoring, as communication between sensors to the
central management system could play an important role, bringing flexibility without ne-
glecting the economic aspect. The ultrareliable low-latency communications (URLLC)
class contains applications that are mainly used in critical applications, thus having more
stringent requirements in latency, reliability, and availability. The applications that can
be supported by this class are, e.g., industrial internet, fault location and clearance, and
remote surgery.
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Moreover, 5G embraces a network architecture type called network slicing. It creates vir-
tualized and independent networks inside the same infrastructure domain. Each slice is
a self-contained, logically separated, and secured part of the network that fulfills diverse
requirements required by specific applications. In anomaly detection, network slicing is
particularly important as the requirements might vary from the rest of the control and
communication tasks inside the factory; in cases like electrical circuits, detecting faults
might require a low latency and a small data rate to protect the equipment and trigger
protective functions in a matter of milliseconds. Alternatively, some chemical processes
require a higher data rate while being connected to multiple sensors, and if both appli-
cations reside next to each other, 5G network slicing can provide both needs within the
same network architecture.

2.4 Data fusion
Anomaly detection in cyber-physical environments requires data from different sources or
sensors to an aggregated unit and thus increases the effectiveness of the detection methods
by having more meaningful data (Hall and Llinas, 1997). This aggregation is performed
at the cyber layer, and it is known as data fusion. This technique not only offers statistical
gains and data reduction but also improves the accuracy of anomaly detection.

Many models haven been employed to perform data fusion (Esteban et al., 2005), some
of which are data-driven or knowledge-based methods. Choosing either of the methods
depends on the application, and a larger framework is usually necessary, especially in
industrial environments to cover the entire operating process. A whole data fusion archi-
tecture model is outside the scope of this study; consequently, data fusion is considered
as part of the data preprocessing, where mathematical methods are used to aggregate the
data incoming the cyber layer. The aggregation methods used are:

Principal component analysis (PCA)

Principal component analysis (PCA) is a dimensionality reduction technique, and it gives
a lower-dimension representation of the data by keeping the correlation between the origi-
nal variables (Chiang et al., 2001). The variables are signals coming from the sensors, and
the dimensional reduction can be chosen accordingly to maintain a good percentage that
can represent the original dimension signals. This technique is widely used in anomaly
detection for process monitoring (El Koujok et al., 2020; Jiao et al., 2020; Marino et al.,
2020; Chen et al., 2019).

Delta Method Discrete Fourier Transform (DM-DFT)

This technique is used to extract fault features. First, the Discrete Fourier Transform
(DFT) is performed on the signal (instantaneous electric current); then, a recording instant
is selected from the signal in the frequency domain; and finally, two signals coming from
two sensors are compressed, resulting in just an 8-dimension data point for the dataset.
The DFT maps a given point of the input signal (i.e., current or voltage) into two points
in the output signal. For N samples, considering the pair xn (input signal) and Xk (its
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DFT):

Xk =
T−1∑

n=0

xne
−2πikn/T , (2.5)

where 0 ≤ k ≤ T − 1, and T is the number of samples per cycle. The DM-DFT uses
a moving window of length T instead of the complete signal, thus allowing faster fault
recognition. Once the DFT is calculated, variations in the frequency domain can be de-
tected as

∆Sn = |Sn(j) − Sn(j+T )|, (2.6)
Fi = j + T ↔ ∆S ≥ 0.5Sn(j). (2.7)

in which ∆Sn is the changes in the current signal, Sn(j) is the current Fourier value of
the jth sample with 0 ≤ j ≤ N − T and Fi indicates the instant at which the values are
recorded.

A different threshold value is selected based on experimental results for different fault
conditions. In a multiphase system, if any of the phases ∆Sn are above the threshold,
the recording instant is chosen from the phase n that has the highest value. If ∆Sn = 0
for all signals, then it is assumed that there is no fault and the feature extraction is taken
randomly from one of the samples of each signal.

Note that the DFT phasor estimation is less sensitive to noise than the individual mea-
surements, and it is robust to the presence of harmonics or noise (Junior et al., 2016).
However, the DFT is dependent on the sample frequency, which might be problematic for
real-time applications because of the computational time limitations.

2.5 Anomaly detection

The increasing power capacity of large industrial environments has led to a need to deliver
better-quality goods while increasing efficiency. This means that operating times will play
a key part as an interruption in the processes will result in economic losses. Interruptions
caused by anomalies are becoming harder to detect as the modern industries rely more on
automated processes working under closed-loop control and multiple parametrizations.
Moreover, the number of sensors may be either redundant like in the case of a wrong loop
control because of a faulty sensor or because there may not be enough sensors, and thus,
the anomaly cannot be identified by current sensing devices.

The different methodologies employed to perform anomaly detection in industrial CPSs
are also known as process monitoring methods (Chiang et al., 2001). Anomaly detection
methods are important to inform operators and automated robots in charge of maintenance
or to ensure safety of the system elements. In this study, two different anomaly detection
methods are explored.
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Data preprocessing is an important part of anomaly detection methods. It can be per-
formed at the data fusion stages to prepare the datasets by eliminating outliers or by au-
toscaling. This allows the detection algorithms to have a better accuracy once redundant
or not valuable information is removed.

2.5.1 Standard statistical methods

In this category, two methods are used to perform anomaly detection. In this work, data
preprocessing includes EDM and PCA to reduce the space dimensionality. Other tech-
niques performing dimesion reduction are, e.g., nonnegative matrix factorization, linear
discriminant analysis, generalized discriminant analysis, autoencoder, and t-distributed
stochastic neighbor.

Hotelling’s T-squared distribution (T 2)

This is a multivariate statistical method that relies on a threshold to perform anomaly
detection (Hotelling, 1931). The threshold is based on the level of significance α. Calcu-
lation in T 2 is done as follows:

Given a training dataset of n variables and m samples stacked into a matrix X as

X =



x11 . . . x1m

... . . . ...
xn1 . . . xnm


 , (2.8)

the sample covariance matrix can be calculated as

S =
1

n− 1
XTX, (2.9)

and the eigenvalue decomposition of the matrix S is expressed as

S = V ΛV T , (2.10)

where Λ is a diagonal and V an orthogonal matrix, respectively. Assuming that S can be
inverted and x is an observable vector that belongs to the domain of the matrix X , z is
calculated as

z = Λ−1/2V Tx, (2.11)

and finally, we can obtain Hotelling’s T 2 statistic as

T 2 = zT z (2.12)

The conversion of the covariance matrix yields a two-dimensional observation space of
all the m variables, and it can be graphically represented in an X-Y plot.

Q statistic (Q)
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Another estimator for the upper limits after PCA is given by Jackson and Mudholkar
(1979) by means of normal approximation. It is calculated as

Q = rT r (2.13)

r = (I − PP T )x, (2.14)

then, the threshold is given as

Qα = θ1

[
h0cα

√
2θ2

θ1
+ 1 +

θ2h0(h0 − 1)

θ21

] 1
h0

, (2.15)

where

θi =
n∑

j=a+1

σ2i
j (2.16)

h0 = 1− (2θ1θ3)

3θ22
(2.17)

and cα is the normal of (1− α) percentile.

2.5.2 Machine learning methods (ML)

Many machine learning methods have been developed in recent years to perform anomaly
detection and classify those anomalies. They are usually known as black box methods,
where they learn based on fault–symptom relationships on the available data. Examples
of these methods include, e.g., pattern recognition, support vector machine, artificial neu-
ral networks (ANN), rule-based methods, and tree search. These methods have several
advantages as some of them are robust against parametrization and outliers. This means
that they can be applied to a wide range of applications in CPSs; however, they usually
require a lot of data to train the model. Time and resources might be expensive, and the
interpretation of results is not straightforward. Two knowledge-based ML methods are
used in this study.

Deep Learning (DL)

Deep learning (DL) is a machine learning method that learns representations from data,
putting emphasis on subsequent layers, which increases the meaningful representations
(Chollet, 2018). The representations are learned from an input dataset, which is usually
divided into training and testing, once the training is done and validated by means of a loss
function. Once the model of representation is achieved, the testing dataset is corroborated
and the accuracy for the model is obtained. In Fig. 2.4, an overview of the DL process
can be seen. As for the training procedure, the inputs are passed through the layers where
they have random assign weights, and thus, initially, the transformations within the net-
work of layers are random. Then, the predictions and true targets are computed in the loss
function and the optimizer adjusts the weights, known as backpropagation. Finally, the
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objective is to find a network that yields the minimal losses.
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Figure 2.4: Exemplification of a signal coming from a sensor with the threshold and delta
methods of the EDM applied.

The results achieved by DL in different applications are extremely useful for anomaly
detection as they can provide a good accuracy with relatively simple algorithms vastly
implemented by the research community and shared in open software libraries and codes
online.

Quantitative Association Rule Mining Algorithm (QARMA)

Quantitative Association Rule Mining Algorithm (QARMA) was defined in (Christou
et al., 2018; Christou, 2019), and it is a family of efficient novel cluster–parallel algo-
rithms for mining quantitative association rules with a single consequent item, and many
antecedent items with different attributes in large multidimensional datasets. Using the
standard support-confidence framework of qualitative association rule mining (Adamo,
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2001), it extends the notions of support, confidence, and many other “interestingness”
metrics so that they apply to quantitative rules.
QARMA is configured to produce rules of the form

I1.attr1 ∈ [l1,1, h1,1] ∧ · · · ∧ In.attrm ∈ [ln,m, hn,m] =⇒ J0.p ∈ [l0, h0] (2.18)

or alternatively, to produce rules of the form

I1.attr1 ∈ [l1,1, h1,1] ∧ · · · ∧ In.attrm ∈ [ln,m, hn,m] =⇒ J0.p = v. (2.19)

The latter form is very useful in supervised classification problems, where the value of
the target item attribute is essentially the class variable that is being learned.

QARMA learns a small set of different features from the training historical dataset by
extracting the rule and then provides simple decision rules (similar to decision trees),
and it is robust against noise. The quantitative rules generated by QARMA are easier
to understand than other ML models, making it comprehensible to humans. All the ex-
tracted rules are validated in the training dataset, and one would be able to understand the
meaning because the space of validation for each rule is within certain given boundaries.
Understanding the rules of ML approaches is very attractive to the scientific community,
and multiple early attempts have been made to light the black box (Towell and Shavlik,
1994). Therefore, QARMA is, in general, a particularly good fit for the newly emerging
“eXplainable Artificial Intelligence” (XAI) paradigm. The term “explainable” means that
the resultant model that the algorithm produces can be easily understood by humans.
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3 Results

3.1 Publication I: Three-layer Approach to Detect Anomalies in In-
dustrial Environments based on Machine Learning
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Figure 3.1: Topic studied in Publication I

In this publication, research question RQ1 was answered by studying how to represent an
anomaly detection framework that can be generalized to any industrial application. In or-
der to do this, a set of questions were proposed, which would help, from a design point of
view, in obtaining information about a specific application, and in applying the concepts
of anomaly detection that is suitable for the purposes of all the aspects under study (e.g.,
sensors, network, data processing, decision-making).

Tennessee Eastman process (TEP)

The three-layer model was applied to the Tennessee Eastman process, a dataset of a chem-
ical process generated in a process simulator widely used in process monitoring2. Despite
being a dataset generated in the 1990s, it still attracts the attention of the research com-
munity in anomaly detection and fault classification.

The dataset is described as follows: 52 process variables (11 manipulated and 41 mea-
sured) and 21 different faults of a chemical industrial plant, producing a Tennessee East-
man problem (Downs and Vogel, 1993). The Tennessee Eastman process consists of five
major equipment units: a condenser, a vapor–liquid separator, a reactor, a product strip-
per, and a recycle compressor (Fig. 3.2). Its objective is to obtain products G and H
from reactants A, C, D, and E. This is reached by a set of four chemical reactions, in
which components B and F are an inert and a byproduct, respectively. A full description

2https://github.com/camaramm/tennessee-eastman-profBraatz



38 3 Results

of the process can be found in (Yin et al., 2012; Chiang et al., 2001). There has been a
substantial interest by the research community to evaluate process monitoring schemes
and control and anomaly detection strategies based on data-driven techniques. Besides
the normal operation file in the dataset, another 21 fault conditions caused by common
disturbances in practice after a given time slot are simulated (Russell et al., 2000). When
a fault occurs in the system, the values on the variables can either change dramatically or
slightly (depending on the fault type).

Figure 3.2: Process flow diagram of the Tennessee Eastman problem (Chiang et al., 2001).

The fault files constitute a shift from the reference condition. Sample acquisition is car-
ried out every 3 min with Gaussian noise. In total, there are 960 samples of each of the 52
variables for a process duration of 48 h. Each fault file begins in normal operation until
the sample number reaches 160 (8 h after the process has started).

Anomaly detection framework

The first task consists of answering the questions proposed in the framework. Table 3.1
presents these answers applied to the TEP, which provides the boundary conditions of the
anomaly detection design.
For the second task, the related data acquisition event-driven methods were applied. In
the threshold technique, the margin is chosen based on the average of each signal and the
percentage value to the minimum or maximum of that variable given in normal operation
conditions. The value of those limits are shown in Fig. 3.3a. In this case, the parameter p
takes the value 90%. The transmitted samples are only the ones that are outside the limits.
This threshold EDM approach allows to send less data to the receiving end by any com-
munication means. In Fig. 3.3a, the compression rate is around 92.60%, meaning that
only around 72 samples (from 960 in total) are transmitted to the receiving end during
the sampling period. Once the threshold is achieved and the samples are transmitted, they
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Table 3.1: Proposed framework applied in the TEP.

Q# Answer
Q0 Lack of accuracy to detect anomalies (21) from measurements
Q1 Each of the 52 variables are sensors, no other can be added
Q2 Periodic sampling; all 52 variables are in sync (3 min)
Q3 It can be considered as in (Liu et al., 2019)
Q4 Not constrained; freedom to test as in (Dai et al., 2019)
Q5 Open question; focus of research in the field
Q6 Open question; focus of research in the field

will be used as inputs for the data fusion. This means the use of any method, such as ML
or statistical analysis, to perform anomaly detection.
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(a) Signal from variable 1 at the data acquisition point (before transmission) for fault number 2 of
the Tennessee Eastman dataset.
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(b) Signal from variable 1 at the data fusion point (after transmission) for fault number 2 of the
Tennessee Eastman dataset.

Figure 3.3: Data acquisition EDM applied to the TEP.

For the third task, in order to further reduce the amount of processing required for fault
detection, data fusion based on Mutual Information (MI) was carried out on the TEP
dataset. It measures the mutual dependence between the process variables. In the case of
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the Tennessee Eastman dataset, dependences are obtained automatically from the variable
measurements.
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Figure 3.4: Correlation between process variables.

In this application, the objective is to maximize the MI and thereby increase dependences
between the variables (Chiumento et al., 2018).

In this work, statistical closeness was used to obtain correlations between variables. First,
it quantifies correlations by producing links between the measured sample variables and
the assigning directionality (Villaverde et al., 2014). In Fig. 3.4, a form of autocorrelation
between the variables is shown. It presents a strong correlation (about 80%) between 12
out of the 52 variables, and a slight correlation (about 50%) on 34 of them. This result
implies that in some of the fault cases, the MI carried out on the process variables is help-
ful to reduce data and computational load.

Finally, in the last step, anomaly detection using QARMA was implemented. During
this step, no qualitative association mining was performed as all the rows from the sam-
ples contain values. Because of the time-dependent nature of the data, i.e., the previous
value has dependences with the next, the data were expanded for each feature, using the
difference between the current values and two previous time slots, obtaining 156 fully
dense features. Then, QARMA was run for several days, producing a total of 63008 non-
dominated rules. The rules predict all different faults with the exception of the normal
operation mode and hard-to-detect faults 3, 9, 15. By using QARMA, the overall rule
accuracy was 62% on the test set, and it is significantly better than the one reported by the
decision tree or the ANN, which was less than 50%.

In the minimum cardinality tests, it was found that an appropriate set of rules that explains
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85% of the dataset is enough with 14 of the 156 expanded variables obtained. This result
implies the need to monitor a much smaller set of variables, which will ultimately make
it possible to draw safer conclusions about the state of the process. Despite the prepro-
cessing of the variables and the computational time the algorithm takes, QARMA is a
powerful tool that can bring explainability to the behavior of the sampling measurements,
unlike traditional statistical techniques, such as PCA, that lack this characteristic.

In summary, this study, as a continuation of the model proposed by Kühnlenz and Nardelli
(2016), serves as a generalized framework for anomaly detection in cyber-physical sys-
tems. In this study, a specific application was addressed, and it was investigated how
each step of the framework helps to identify and design a proper methodology and to im-
plement it from a design point of view. With the studied application, it was possible to
answer questions such as whether more sensors are needed in an industrial process that
would be the input of the anomaly detection methods, what communications technologies
are the link between the physical and cyber layers, and how the sampling can be beneficial
for the process. This type of knowlegde derived from the three-layer model demonstrates
that it is possible to perform reliable anomaly detection in any cyber-physical application.
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3.2 Publication II: Weather-Driven Predictive Control of a Battery
Storage for Improved Microgrid Resilience
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Figure 3.5: Topic studied in Publication II

In this publication, research question RQ2 was answered by studying the outcomes of
anomaly detection. The interaction of anomaly detection and prediction and/or control
tasks in the cyber layer are key aspects that can support resilience in smart grid applica-
tions.

Most of the anomaly detection framework developed in this work was applied to obtain re-
sults of improving resilience in microgrids. The only aspect that was not explored further
was communication as it was assumed to be perfect with no delays in the data. Here, the
task was not only to perform anomaly detection/prediction based on weather, but also use
that information to control the energy exchange in a microgrid to make it more resilient
against such anomalies whenever they occur. The ultimate goal during this research was
to manage a Battery Energy Storage System (BESS) in a microgrid to improve its re-
silience. The research involved a multitask step procedure.

The first task was to obtain fault data (occurrences and locations) from Elenia (a Finnish
local distribution operator) and match that information with their closest weather station.
In Fig. 3.6, we observe the clusters created in a portion of the Finnish territory; the reason
behind the cluster is that the fault data are spread over several kilometers, and the weather
predictions must be accurate. The final outcome of this task was to find the best location
for a virtual microgrid where the follow-up investigations were going to be carried out.
This location was chosen for the comparison of five clusters that achieved the best model
test accuracy, and the corresponding microgrids were placed in the centroid of those clus-
ters. The coordinates of the microgrid locations are used to later predict faults based on
the weather condition information obtained from the nearest weather station.
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Figure 3.6: Clusters of Elenia’s substations, the closest weather stations, and the test
accuracy achieved by the predictive model. The underlying map in the ETRSTM35FIN
coordinate system is taken from the website of the National Land Survey of Finland.

The second task was to predict the energy flow in the microgrid by making a load and
generation model. Fig. 3.7 illustrates the target series in hourly resolution for the year
2013 on the virtual microgrid, the load demand from the microgrid in red and the solar
PV production for that year in gray. This information is critical because based on the
anomaly prediction, the BESS will be charged accordingly.

In the third task, energy optimization for the microgrid was performed, considering four
different scenarios. In the economical and reliable scenarios, the optimization considered
the objective function of cost reduction. The predicted scenario included both economical
aspects and uncertainty of outage probability (λ), while λ was known in advance.
In the fourth and fifth tasks, a resilience metric was calculated based on the energy op-
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Figure 3.7: Time series of the microgrid load demand and solar production.

timization for the whole year in the occurrence of an outage. The results for the daily
resilience depicted in Fig. 3.8 show the predicted scenarios, where both the economical
and anomaly prediction weights have a better performance on average than the other three
scenarios. It was considered to have 1-hour and 2-hour operation of the BESS when the
microgrid is completely disconnected from the grid during an outage. In the violin plot
presented in Fig. 3.9, a closer look for the yearly dependence (metric of resilience) is
taken. It is observed that the economical and foresight approaches have lower adjacent
values. The dependence in the economical approach is more distributed in the y-axis,
indicating that it is not dependent on resilience. In the other approaches, the medians
are almost the same and the variations lie in the first and third quartiles, the predictive
approach having greater values close to 1. The difference between the clusters is also
almost negligible as the accuracy results seen in Fig. 3.6 are quite close to each other.

The results obtained in this research indicate that anomaly prediction based on weather
conditions for distribution networks is an important task that can benefit the energy control
in a microgrid and improve the resilience against severe weather events. Moreover, it was
proved that anomaly detection in cyber-physical systems is capable of not only serving
as a reactive maintenance tool but also providing valuable information to support control
tasks that keep the whole system reliable and secure. By development of a smart approach,
it was shown that technical aspects of anomaly prediction can be combined to support an
economical scheduling mechanism of a microgrid and thereby obtain benefits in multiple
functions.
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(c) 1 h energy storage for cluster 6
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Figure 3.8: Daily dependence index (RL) for the year 2013.
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Figure 3.9: Violin plot for RL in the highest accuracy clusters for the year 2013.
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3.3 Publication III: Performance evaluation of machine learning for
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Figure 3.10: Topic studied in Publication III

In this publication, research question RQ3 was answered by studying an application in
energy systems related to protection in power lines and comparing the current and classic
methods in anomaly detection.

The results were obtained from a two-stage methodology. In the first stage, a DM-DFT
is used for preprocessing the nonfaulty and faulty data coming from a simulated double-
circuit transmission line. The second stage involves an accuracy analysis applying ma-
chine learning algorithms to fault selection. The analysis was conducted in terms of ac-
curacy and explainability. To test the methodology, in addition to the simulation data, the
ML model was tested on a real fault file. In order to be more computationally efficient, all
ML algorithms were ran on the same machine, being fully parallel and taking advantage
of all CPU cores. In the second stage, multiple ML algorithms were compared against
QARMA. The reason is that most the of widely used ML algorithms in the literature are
easy to implement. Despite usually having a high accuracy for certain applications, they
lack explainability. The correlation between variables and outcomes might be important
in an electrical application as the correlation chart presented in this research can help en-
gineers to effectively choose the sensors that will monitor the variable while maintaining
a high accuracy in the fault selection task.

In the case of QARMA, it does not require any hyperparameters to run. However, regard-
ing ANNs, parametrization is an important task, and in many cases, the tuning requires
many rounds of experimentation. The parameters of the ANN used in this study were
found by a repeated set of experiments, and thus, they might not be the most optimal
ones as the accuracy provided was above 98%. Moreover, as for the hyperparametriza-
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tion of the rest of the algorithms used for comparison, they either require no parameters,
or the ones typically used in the literature were used in this work. The simulation scenar-
ios are based on usually employed power system transmission topologies and are widely
exploited in the literature for fault location and selection.

3.3.1 Test system 1

The first test system simulation consists of a double transmission line. The data were
split into 75% for training and 25% for testing. After 5-fold cross-validation experiments,
the results obtained were similar. Table 3.2 shows the accuracy results of the above-
mentioned algorithms including QARMA; the matrix of fault selection performed by the
best result achieved by ANN can be seen in Fig. 3.11.

The best results in terms of accuracy obtained with the DL were 98.33%. They were
achieved by trial and error, and they are particularly high because of having enough layers
to produce a representation of the data and the final layer being able to correctly classify
most of the faults. The statistical methods and probabilistic classifiers Naı̈ve Bayes, logis-
tic regression, and AdaBoost did not perform well; the reason for this is that algorithms
of this type are very susceptible to noise. The similitude between some of the features
contributes to reducing the accuracy of the results. The high results obtained with rule-
based methods and ANNs in particular are a product of a well-balanced dataset and all the
features being available. During the fault point extraction, synchronization and problems
related to communication were not considered. It is important to note that once fewer
features become available in the dataset, the accuracy decreases substantially as seen in
Fig. 3.12. However, when only the currents of one end are available, the validation error
is within an acceptable range. This happens because the fault information contained in
the current features is greater than in the voltage features. This knowledge is relevant for
the application as the current transformers that sense the currents from transmission lines
are a vital aspect for protection tasks. The list of features tested for each round in Fig.
3.12 is given in Table 3.3.

Table 3.2: ML Results on the Fault-Grid Dataset.

Classifier Accuracy
Decision Tree 94.62%
ANN (1 hidden layer) 95.18%
ANN (3 hidden layer) 98.33%
SVM 89.05%
Ripper-k 86.17%
Naı̈ve Bayes 59.42%
Logistic Regression 78.47%
AdaBoost.M1 17.81%
QARMA 98%
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Figure 3.11: Fault classification task confusion matrix for test system 1.

As the experiments ran in QARMA on the dataset, the algorithm was able to obtain 5333
rules that cover 97.8% of the training dataset. The resultant accuracy of QARMA was
around 98%, and for a small number of cases, QARMA did not classify correctly be-
cause of the rules that were triggering the classification. However, in more highly skewed
datasets, QARMA is expected to outperform ANN classification by its decision-making.

Table 3.3: Feature selection on the original dataset.

Round Feature
1 all features (local and remote current

and voltages including IR)
2 LIA , LIB , LIC , LIR

3 RIA , RIB , RIC , RIR

4 LIA , LIB , LIC , LVA
, LVB

, LVC

5 RIA , RIB , RIC , RVA
, RVB

, RVC

6 LIA , LIB , LIC

7 RIA , RIB , RIC

8 LVA
, LVB

, LVC

9 RVA
, RVB

, RVC

In this system test, a sensitivity experiment was also performed. It was tested how resilient
the ANN is to measurement noise by progressively adding Gaussian white noise to all
the features in the training and test datasets. The results obtained in Table 3.4 indicate
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Figure 3.12: Validation error obtained with the same model parameters using fewer fea-
tures.

that ANNs are still able to classify the fault, achieving almost the same accuracy as that
without noise, but the accuracy significantly drops to 20.67% error when sigma (σ) is
equal to 100 in the training dataset. This is important in the sense of measurements in
a real scenario (different from simulated) that is susceptible to different noise conditions
in the system. In the sensitivity test, QARMA results outperformed ANN, and with the
different values of σ, the error was always below the 3% error, making the system very
robust against noise.

Table 3.4: Neural network and QARMA performance under different noise levels in the
data.

training σ testing σ NN error% QARMA error%
0 0.01 2.98 2
0 1 3 2
0 10 3.14 2.01
0 100 11.7 2.23

0.01 0 3.04 2
1 0 3.04 2

10 0 6.1 2.01
100 0 17.84 2.47
100 100 20.67 2.89

This difference in robustness still requires more research, but we may assume that the
underlining complexity of the ANNs subfunctions might be more susceptible to noise and
easy to overfit, while the rules extracted by QARMA provide a simpler decision-making,
and likely they hold true in the presence of noise.

Another advantage of QARMA is that it belongs to a fairly new concept called ”eX-
plainable Artficial Intelligence” (XAI), which states that the outcomes of such models are
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Figure 3.13: Fault classification task confusion matrix for test system 2.

easily understandable by humans. Under XAI, the rules created by QARMA from the
dataset are trivially checked against the training dataset. These rules are usually bounded,
and the rule attributes can easily be interpreted by humans as the extracted knowledge is
based on the antecedents of the features. This is not the case for ANN, where this type of
knowledge is embedded in the internal connections between the layers.

3.3.2 Test system 2

The objective of the test system number 2 was to test the generalization of the proposed
ML approaches, more specifically QARMA and ANN. The system is a single-circuit 400
kV transmission line. The difference is that it does not have a mutual impedance between
circuits as in the double-line case, which ultimately impacts the fault current behavior.
The accuracy obtained with ANN was 98.8% and with QARMA 98.1%, slightly better
than with the first test system, indicating that both models can be used for this type of
problem independently of the test system. The confusion matrix of the above-mentioned
test is illustrated in Fig. 3.13.

The improved results in this test can be explained by the fact that the fault currents are
less attenuated from the contributions of mutual impedances, which are not so significant
as in the case of a double-line system. Therefore, the features are able to better capture
the characteristics of the fault.
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Figure 3.14: Fault classification by the symmetrical angle method.

Table 3.5: Results obtained by replicating the symmetrical method.

Dependability Security
Local end Remote end Local end Remote end

AG 98.05% 98.86% 910 910
BG 95.53% 95.94% 896 909
CG 97.50% 97.29% 880 880

3.3.3 Symmetrical method

A symmetrical algorithm method using the system 1 model dataset was performed during
the experiments. The purpose of using this method is to serve as a comparison with the
ML methods employed in the research. The symmetrical method is often used by relay
manufacturers to perform fault selection in real transmission scenarios, where the task is
important. The results are presented in Fig. 3.14 (note that a confusion matrix like the one
presented in Fig. 3.13 cannot be used to compare all faults using the symmetrical method
because the datasets have different lengths; only AC, BC, and CG faults can be compared).
The symmetrical method is only applicable during single-phase faults. The accuracy of
this method for single-phase faults can be represented in Table 3.5 showing the false
positives. In some situations, the symmetrical component method classified the fault as
a single-phase fault, given that at least two phases were involved. Overall, this mistake
can lead to some security errors in the protection system; the error can be single-pole
tripping of transmission lines, which eventually leads to three-phase tripping that would
require manual reclosure. In some cases with congested lines on highly interconnected
and dependent systems, it can lead to further system failures.
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3.3.4 Real fault file

It was possible to obtain a real fault file from a transmission system located in Brazil. This
was extremely important for the research as we could test the model on a potential real
scenario. Once the file is preprocessed and the voltage and current matrices are obtained,
they can be injected into the DM-DFT algorithm that yields the fault point and extracts
the features as shown in Fig. 3.15.
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Figure 3.15: Phase C and DFT of a real transmission system fault.

In real situations, faults can suddenly reappear for such reasons as reclosure or reinsertion.
This is the case in the CG-type fault shown in Fig. 3.15. The algorithm successfully de-
tects the first fault occurrence, the second algorithm being able to classify both instances.
The ANN and QARMA models were applied in the real fault data with a successful result:
both correctly classify the fault as CG. In the case of QARMA, it yielded 1100 rules that
predicted the class of the fault, which resulted in the overall correct classification of the
test case. One of the highest confidence rules for this test case was:

[local voltageA >= 235730.0266612848]

AND [local voltage B >= 231130.0132737731]

AND [remote ir >= 321.3212781340371]

⇒ [fault type = CG].

(3.1)

The support of this rule on the training set is 2.72%, and it holds with a confidence level
of 100%.

The results obtained during the real fault test proved that once the models are created
based on historical data, they can serve as a fault selector with a proper computational
infrastructure to perform this critical protective task. Even with the conditions in this case
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where the model was created based on simulated data and a different test system than the
real fault, it was able to obtain the correct phase involved during the fault.

Having the generalized framework as a base study to improve detection in the cyber-
physical application is an important tool to compare between classic methods and the
recent ML methods. Improving the detection method for a particular application is no
less important than being able to create a closer relationship between the cyber and phys-
ical layers by providing explainability with ML methods. Human understanding of the
influence of features regarding the outcome of anomaly detection has a significant impact
on the prediction and mitigation of future events.
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Figure 3.16: Topics studied in Publication IV.

In this publication, research question RQ4 was answered by studying the impact of sam-
pling techniques on anomaly detection in cyber-physical systems under different scenar-
ios.

To further develop the initial results presented in Section 3.1, these results present the
advantage of event-driven strategies in anomaly detection. The results were obtained by
using delta and threshold approaches on the TEP, compared with the classic time-based
approach. PCA was employed to perform anomaly detection using T 2 and Q statistics.

Based on the comparison of the methods, the performance of the threshold method for
anomaly detection was slightly better for all the values of the parameter p (percentage of
variation). The benefit in this case is in the use of a much smaller amount of data, which
favors online applications, especially nowadays, given the era of big data.

As for the delta method, the performance was remarkably better compared with the
threshold- and time-based approaches. The results are explained by the fact that the delta
approach can record not only the greater changes within the original signal but also some
slight changes that are a product of faults that are very hard to detect. If the value is not
recorded at a specific time slot, the delta EDM maintains the previous value, and thus, the
system is working as it were in normal operation. Ultimately, the slight or greater changes
made after the anomaly are placed in the process, and then used as an input vector for the
PCA detection method.

Tables 3.6 and 3.7 show the missed detection rate (MDR) obtained with the delta rule
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for the statistics T 2 and Q, respectively. The best result for each fault is given in bold.
For example, the best MDR values for fault 5 were equal to 0.604 (for T 2 and p = 0.90)
and 0.001 (for Q and p = 0.80). Absolute differences from the respective MDR values
obtained with the periodic approach are also presented. The greater this difference is, the
better is the result obtained by the delta rule. For example, the gains for fault 5 were equal
to about 17% (= 0.775 − 0.604) and 74% (= 0.746 − 0.001) for the statistics T 2 and
Q, respectively. For the statistic Q, it can be seen that the MDR value obtained with the
event-driven delta rule is very close to zero (0.001), as desired, while the corresponding
value for the time-fixed procedure is considerably high (0.746). A gray cell means that
the result was not considered valid because of a false alarm rate (FAR) above 5%.

Table 3.6: MDR (missed detection rate) for the statistic T 2.

Fault Time-based
approach

Event-based delta approach (p in %) Absolute
gain5 10 20 30 40 50 60 70 80 90 95

1 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.009 0.008 0.008 0.010 0.010 0%
2 0.020 0.020 0.020 0.020 0.020 0.023 0.023 0.020 0.023 0.023 0.023 0.023 0%
3 0.998 0.999 0.996 0.996 1.000 0.993 1.000 1.000 0.996 1.000 1.000 1.000 1%
4 0.956 0.961 0.959 0.960 0.973 0.969 0.939 0.934 0.905 0.999 0.999 0.999 5%
5 0.775 0.774 0.771 0.770 0.766 0.764 0.766 0.773 0.729 0.683 0.604 0.701 17%
6 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.008 0.009 0.009 0.009 0.009 0%
7 0.085 0.079 0.076 0.079 0.065 0.045 0.051 0.161 0.000 0.000 0.000 0.000 9%
8 0.034 0.033 0.031 0.034 0.031 0.033 0.031 0.031 0.031 0.043 0.054 0.045 0%
9 0.994 0.998 0.996 0.991 0.993 0.998 0.984 0.984 0.979 1.000 1.000 1.000 2%
10 0.666 0.653 0.653 0.646 0.655 0.671 0.678 0.679 0.694 0.744 0.806 0.826 2%
11 0.794 0.789 0.786 0.796 0.793 0.794 0.761 0.688 0.876 0.886 0.899 0.926 11%
12 0.029 0.021 0.021 0.023 0.019 0.024 0.026 0.021 0.035 0.034 0.059 0.056 1%
13 0.060 0.060 0.060 0.061 0.061 0.061 0.061 0.063 0.061 0.063 0.076 0.078 0%
14 0.158 0.120 0.125 0.111 0.114 0.096 0.094 0.106 0.095 0.154 0.149 0.154 6%
15 0.988 0.979 0.978 0.984 0.983 0.993 0.940 0.974 0.984 0.996 1.000 1.000 5%
16 0.834 0.833 0.833 0.851 0.844 0.834 0.860 0.809 0.733 0.920 0.934 0.946 10%
17 0.259 0.254 0.251 0.258 0.260 0.249 0.261 0.255 0.273 0.338 0.261 0.324 1%
18 0.113 0.113 0.113 0.111 0.110 0.113 0.116 0.118 0.113 0.113 0.121 0.121 0%
19 0.996 0.999 0.999 1.000 0.999 0.996 0.993 0.998 0.885 0.988 0.996 1.000 11%
20 0.701 0.704 0.710 0.709 0.718 0.725 0.684 0.731 0.650 0.766 0.754 0.805 5%
21 0.736 0.694 0.693 0.691 0.691 0.696 0.690 0.651 0.716 0.786 0.865 0.876 8%

Gray cells: False alarm rate > 5%.

Moreover, faults 10, 15, and 16 showed significant MDR gains, given the statistic Q (Ta-
ble 3.7). Thus, they also showed considerable gains in terms of detection time. Faults 10
and 16 are hard-to-detect (group 3), and fault 15 is very hard-to-detect (group 4). Inter-
mediate faults 17 and 18 (group 2), with MDR gains of 7% (Table 3.7), also presented
reasonable gains for detection time, given the statistic Q, with FAR values close to zero.

To visualize the impact of delta EDM compared with the time-based approach, Fig. 3.17
shows the Q control charts obtained with the event-based delta rule for faults 5, 10, 16,
and 20 (on the left). Corresponding charts for the same fault and variables in the time-
based approach are also presented for comparison (on the right).

The values that are not sent or transmitted by using the delta EDM are replaced by the
previous ones sent to signal reconstruction. The signal obtained and its input vector nor-
mally have more deviations than the one obtained in the time-based approach because of
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Table 3.7: MDR (missed detection rate) for the statistic Q.

Fault Time-based
approach

Event-based delta approach (p in %) Absolute
gain5 10 20 30 40 50 60 70 80 90 95

1 0.003 0.003 0.003 0.003 0.003 0.001 0.003 0.003 0.003 0.006 0.004 0.004 0%
2 0.014 0.014 0.014 0.015 0.011 0.011 0.010 0.018 0.000 0.023 0.023 0.023 0%
3 0.991 0.990 0.990 0.985 0.975 0.830 0.949 0.160 0.461 0.876 0.926 0.995 11%
4 0.038 0.035 0.031 0.040 0.038 0.031 0.033 0.046 0.006 0.063 0.000 0.470 1%
5 0.746 0.745 0.743 0.743 0.720 0.644 0.303 0.164 0.000 0.001 0.000 0.008 74%
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0%
7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0%
8 0.024 0.025 0.025 0.021 0.023 0.019 0.025 0.000 0.025 0.025 0.026 0.026 1%
9 0.981 0.979 0.983 0.979 0.966 0.915 0.675 0.711 0.484 0.501 1.000 1.000 48%
10 0.659 0.650 0.653 0.648 0.578 0.465 0.255 0.061 0.065 0.226 0.454 0.464 60%
11 0.356 0.340 0.335 0.335 0.329 0.290 0.198 0.099 0.320 0.313 0.519 0.635 26%
12 0.025 0.025 0.025 0.029 0.031 0.018 0.009 0.005 0.014 0.016 0.016 0.016 2%
13 0.045 0.045 0.045 0.045 0.048 0.041 0.044 0.054 0.053 0.055 0.055 0.060 0%
14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0%
15 0.973 0.970 0.971 0.968 0.948 0.855 0.756 0.251 0.279 0.954 0.956 0.884 69%
16 0.755 0.744 0.740 0.728 0.661 0.574 0.290 0.210 0.174 0.536 0.633 0.546 47%
17 0.108 0.098 0.103 0.100 0.100 0.064 0.034 0.054 0.043 0.083 0.086 0.094 7%
18 0.101 0.103 0.100 0.101 0.096 0.076 0.031 0.048 0.034 0.063 0.114 0.114 7%
19 0.873 0.863 0.856 0.869 0.821 0.666 0.539 0.526 0.628 0.845 0.711 0.740 35%
20 0.550 0.546 0.538 0.529 0.509 0.448 0.286 0.169 0.135 0.138 0.376 0.354 42%
21 0.570 0.578 0.571 0.570 0.535 0.456 0.309 0.505 0.555 0.610 0.614 0.704 11%

Gray cells: False alarm rate > 5%.

the filtering, leaving larger variations from the original input signal. This fact is what ul-
timately provides a better performance for anomaly detection in the PCA algorithm. This
means that after a fault has occurred in the system, the most relevant changes come faster
in the detection. For the specific case of the TEP, the best results for the parameter p are
obtained in intermediate values of around 40% to 60%. When the parameter p is close
to 0, the results are the same as in the time-based approach, and when p approaches 1,
it yields a very harsh constraint for fault detection, recording only major changes. Thus,
p is seen as a sensitivity parameter for data rate transmission that has a great impact on
anomaly detection. The most important achievement for the EDM delta approach was on
hard-to-detect faults.

In terms of data transmission rate, the EDM approach provides significant savings. The
process changes do not necessarily depend on periodic measurement. Fig. 3.18a shows
the average transmission rate in each time slot using the EDM delta approach from all the
52 variables in the TEP process. At 0%, in any given time slot, all variables are transmit-
ted, and once the parameter p increases just to 5%, there is a dramatic drop saving almost
half of the initial transmission rate. Similarly, it is possible to obtain for the parameter
p the best MDR results for both statistics T 2 and Q (see Fig. 3.18b). By further analyz-
ing the results from Fig. 3.18, it is possible, from a design point of view, to retrieve a p
parameter from the EDM technique that can meet the requirements of the FAR and the
MDR while considerably reducing the transmission traffic to the desired levels.

The implications of the results rely on the increasing network demand for communication
traffic and the fact that EDM techniques can substantially leverage the network traffic
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(a) Fault 10.

(b) Fault 16.

(c) Fault 20.

Figure 3.17: Q control charts for the event-based delta method (on the left) and the time-
based approach (on the right) for hard-to-detect faults (⋆: Fault start up at t = 160).

while improving anomaly detection tasks. All are important for current applications and
in the frame of Industry 4.0. Following the framework presented in this research work for
improving anomaly detection, the use of the EDM might be attractive for other process
industries that require a large amount of transmitted data in short periods of time.

In summary, before the raw samples coming from physical sensors in the chemical process
reach the cyber layer, EDM sampling techniques performed locally have a huge poten-
tial to support the data rate and improve anomaly detection techniques. From the general
framework perspective, this is a task done in the data layer, which eventually can change
the course of actions in the decision layer. The raw measurements do not always provide
significant information. Meanwhile, the two methods proposed for the EDM take advan-
tage of the data points that are far from the median or increased variation. The recording of
these data has a statistically more significant impact on the detection algorithms enhanc-
ing their performance against hard-to-detect anomalies. It is important to note that prior
knowledge of the application is required to efficiently choose the EDM in order to have
gains. This means to choose a percentage threshold or percentage variation for the delta
technique that yields best results (accuracy and data transmission rate). In this study, we
demonstrated that it is possible to gain as much as 20% on average in data rate transmis-
sion from the sensors (physical layer) to the reconstruction block (data layer). The data
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Parameter p (in %)

(a)

Parameter p (in %)

(b)

Figure 3.18: Effect of the parameter p (Equation 2.3) (a) on the average number of sam-
pled values transmitted per sampling unit and (b) on the number of best MDR results,
given the event-based delta rule.

reduction was obtained while maintaining or improving the anomaly detection accuracy
(subjected to the percentage applied) using the classic statistical technique PCA. Recent
ML techniques also have potential to be adopted by this methodology, but they were not
used during the publication for fair comparison as ML is still fairly new to approach the
TEP anomaly detection problem.
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Figure 3.19: Topic studied in Publication V.

In this publication, research question RQ5 was answered by studying the current ten-
dency of communication technologies in adaptive protection for microgrids specifically
as an anomaly detection task. The current requirements of this application were also in-
vestigated in comparison with what 5G cellular communication can offer.

The investigation also focused on how recent cellular communication technologies can
support a power application for anomaly detection. In particular, adaptive protection is a
commonly used strategy in distribution networks to successfully identify and clear electri-
cal faults in the case of topology or energy variations by changing the protective settings
of the relays or IEDs according to the current state of the grid. An adaptive protection
task requires communication between its IEDs to synchronize its settings. Communica-
tion technologies have a great impact because of the latency, and delay requirements are
usually met by means of Ethernet cabling or optic fiber.

The research relevant to the topic of this study covers around 71 papers from 2015 to
2018. There is still a predominance of wired communication technologies in microgrids
to perform adaptive protection and control. This is particularly ineffective, and wired
technologies do not possess the required flexibility when there is a need to increase the
penetration of renewable energy resources or additional loads. On the other hand, the
research shows how emerging wireless technologies, such a cellular LTE 4G or 5G com-
munication, can support those tasks, while maintaining the latency requirements.

In terms of communication standards that are essential in power systems, IEC 61850 is al-
ready widely used and seems promising because other communication protocols, such as
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Figure 3.20: Deployment of wireless 5G communications with interface diversity in an
overcurrent adaptive protection scheme.

sampled measured values (SMV) and generic object-oriented substation event (GOOSE),
are annexed, and they have the necessary requirements for data transmission for intrarelay
coordination with station-bus communications. The communication requirements for pro-
tection are very stringent, usually bounded to 12 ms from the event occurrence to the data
transmission. With the current state of cellular communications, the requirements can be
met by these wireless technologies, in particular, reliability of 99.999% with a low latency
down to 4 ms.

One of the disadvantages of relying more on the cyber domain rather than the physical
one, brought by the inclusion of wireless technologies, is that the system is more prone
to cyberattacks. In a critical infrastructure like power systems, security is the main aspect
when designing any application. Despite the vulnerabilities, a potential wireless system
should have a robust architecture that is able to prevent or avoid possible cyberattacks.

Overall, an adequate way to incorporate wireless technologies into substation automation
and control is through multiconnectivity (see Fig. 3.20) capable of performing anomaly
detection tasks by delivering information adequately and timely from the physical layer
to the data layer. This means hybrid ways between wired and wireless technologies that
are able to meet the requirements while keeping the communication network secure. The
coexistence of technologies should make economically viable the option of integration
into new resources and slowly develop to a fully wireless system, which can greatly reduce
the cost. A smooth transition will not only bring technical benefits but also be economical
in the long run.
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4 Conclusions

So far, most of the use cases addressed in the dissertation are related to energy applica-
tions. Data from those cases were found by means of simulations or datasets available for
the public on different platforms. One distribution fault dataset that was provided by the
distribution operator Elenia was used extensively for the development of the papers, but
typically, obtaining such data requires an enormous amount of bureaucracy when compa-
nies are involved.

This research work showed the potential of the proposed three-layer scheme in cyber-
physical systems to perform anomaly detection. It explored in detail some characteristics
of each layer in data acquisition, data fusion, analytics, and decision-making. Almost
every industrial application can be seen as a cyber-physical system, where data coming
from sensors must be processed to deliver a specific task. The integration of the layers in
a cyber-physical system has a significant impact on the outcomes of fault detection and
prevention. The results obtained in terms of data acquisition for anomaly detection in the
Tennessee Eastman process show that event-driven approaches can benefit the detection
and classification of faults as they can record the important features that will be later in-
jected as inputs into the detection algorithms. Moreover, event-driven acquisition is seen
as a data filtering method where reconstruction of the signal implies that less data are
transmitted over the communication network from the sensor to the management center.
The reduction in the data transmission rates was around 20% on average, at the same
time improving anomaly detection. Approaches of this kind can be very interesting for
different companies, especially for those who deal with a lot of possible shutdowns in
operation resulting from faults in the process. The complexity of some industries that
involve considerable measurements makes it hard to effectively detect, select, and isolate
faults. This is mainly due to the enormous amount of measurement variables that usually
do not have any type of filtering, or simply the storage and data transmission infrastruc-
ture is not sufficient. Using event-driven approaches will ease the load of data inside those
types of environments and support various control and operational tasks.

In terms of evaluating different algorithms existing for an application in power assets,
the research conducted in this doctoral dissertation proved that the emerging techniques
in machine learning and rule-based algorithms can outperform the classic ones. Under
this approach, a methodology was developed to first identify the instant when a fault in
power transmission lines occurs, and then, a procedure was established that selects based
on machine learning algorithms. The accuracy achieved with artificial neural networks
was 98.33%, while QARMA reached 98%. The slight difference in accuracy between the
two techniques is irrelevant, and the main advantage of QARMA is the explainability it
brings from the problem. Finding easy connections in the rules between the features and
the anomaly detection outcomes that are understandable for humans are key factors. It
can help engineering, e.g., to adequately measure and design a more robust system, place
more sensors in the system, and thereby reduce operational times in the industrial pro-
cesses.
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Anomaly detection is not only useful for reducing shutdown times, but it can also support
other control tasks leading to energy efficiency, and ultimately, reducing costs. In this
work, it was shown how anomaly detection and prevention based on weather forecasts
is one of the inputs to economically control a battery energy storage system in a micro-
grid. Using different computational techniques, such as machine learning methods, to
predict anomaly occurrences in a power distribution system, a battery was optimized to
store as much energy as possible in the occurrence of fault events. The events cause the
microgrid to be isolated from the main grid and operate solely on the battery. When the
energy of the battery is charged almost to full prior those events (while keeping an eco-
nomical approach), the microgrid load is capable of continuing operation for longer times
and thereby having less or no impact on the users connected to the microgrid. Anomaly
prediction in distribution systems is relevant information for the operators as they can
effectively prepare their maintenance team or allocate resources to specific areas to clear
faulted networks and increase the overall resilience of the grid.

Dataflows in cyber-physical systems are supported by communication technologies. In
this dissertation, it was analyzed how in an energy application, such as protection in power
systems, there is still a tendency to rely on wired communication. This conventional
technology requires a heavier infrastructure and thereby an expensive solution. With the
constant changes in electricity networks and the penetration of renewable energy, flexi-
bility for communication is an important aspect. Decentralization of electricity networks
calls for more automation, and this is only possible when the bidirectional dataflow meets
the necessary requirements for latency and delays. For the case of protection of a power
system, those requirements are met by emerging technologies, such as cellular 4G LTE
and 5G communication. The important factor will be how to merge the technologies into
a multiconnectivity application, where the technical aspects have enough flexibility sup-
porting one or many applications while increasing the economical benefits to the industry.

The overall aim of the doctoral dissertation was the articulation of anomaly detection in a
CPS in three layers for performance improvement. The importance of clearly integrating
the problem space into these layers lies in the fact that a small improvement in each layer
can have a significant impact on the anomaly detection outcome. Identifying the key fac-
tors in each layer can help engineers in ranking priorities and thereby improving accuracy
and dataflow in different industrial applications that would benefit from more effective
anomaly detection.

For future work, the research directions have plenty of potential in the five edges that
were investigated, namely the generalization framework, planning and control support,
detection methods, sampling techniques, and communication technologies.

In terms of framework application, new tests could include electric drives, methanol pro-
cesses, mechanical machines, measurement of CO2 inside industrial facilities, and auto-
motive machinery failures during operation. This last automotive application was one of
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the initial motivations to carry out this research, but a project with the automotive industry
to gather the data by employing new sensors could not be carried out in the 4-year span
of this doctoral dissertation. Futhermore, data availability from critical applications like
transmission power lines, which is usually limited for industrial security reasons, could
play a key role in developing interventions as subsequent tasks after anomaly detection.
Advances in hyperparametrization of AI techniques could also significantly improve the
accuracy of detection. Finally, for sampling techniques, advances in data reduction in
combination with communication technologies, e.g., asnew wireless standards, could not
only improve the detection accuracy but also reduce the need for data storage and overall
transmission. All these opportunities give some indication of the different paths that the
work reported here has introduced.
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Abstract—This paper introduces a general approach to design
a tailored solution to detect rare events in different industrial
applications based on Internet of Things (IoT) networks and
machine learning algorithms. We propose a general framework
based on three layers (physical, data and decision) that defines the
possible designing options so that the rare events/anomalies can
be detected ultra-reliably. This general framework is then applied
in a well-known benchmark scenario, namely Tennessee Eastman
Process. We then analyze this benchmark under three threads
related to data processes: acquisition, fusion and analytics. Our
numerical results indicate that: (i) event-driven data acquisition
can significantly decrease the number of samples while filtering
measurement noise, (ii) mutual information data fusion method
can significantly decrease the variable spaces and (iii) quantitative
association rule mining method for data analytics is effective
for the rare event detection, identification and diagnosis. These
results indicates the benefits of an integrated solution that jointly
considers the different levels of data processing following the
proposed general three layer framework, including details of the
communication network and computing platform to be employed.

Index Terms—cyber-physical systems, fault detection, indus-
trial IoT, Tennessee Eastman Process

I. INTRODUCTION

Detection and prediction of anomalies in industrial environ-
ments are important for both economic and security reasons.
However, these tasks are far from trivial since anomalies
are usually rare events within datasets so that most existing
algorithms fail to identify them with (ultra-)reliability, either
favoring false-alarms or misdetections [1], [2]. Even worse,
in the special cases where effective solutions can be found,
generalization is not straightforward. The challenge situation
becomes: general approaches usually lead to false alarms and
misdetections while effective solutions are very particular and
cannot offer direct guidelines to other cases.

In this paper we deal with this problem by proposing a
general frame to model a wide range of cases based on
the advances in Industrial Internet of Things (IIoT) networks
and Machine Learning (ML) algorithms [3]. In particular, we
approach the problem by using a theory that considers three
autonomous (but strongly dependent) layers of cyber-physical

systems (CPS), namely physical, data and regulatory. By doing
so, we are capable of analyzing in a more general way the
steps of data acquisition, transmission, fusion and analytic that
will allow an effective anomaly detection. Before going into
details, we provide next a brief review of the state-of-the-art
in industrial CPS and rare event detection.

Industrial CPS have been studied for many years, including
already several deployed solutions [4], [5]. Most of the current
research focuses on how to incorporate data flows so the
industrial physical processes can run in a more efficient
way, particularly focusing on multi-agent systems and the
concept of digital twins. The most promising solutions would
involve real-time monitoring and control [6], industrial edge
computing [7] and software-defined wireless communications
[8].

When dealing with CPS [9], three basic steps (in addition
to transmission) are taken in relation to data: acquisition,
fusion and analytics. In the data acquisition phase, sensors
map physical processes into data, which can be sampled
based on periodic measurements (e.g., sample every second),
or event-driven ones (e.g., sample every threshold crossing),
or a hybrid between both (e.g., [10]–[12]). In the fusion
phase, acquired data shall be structured, disseminated and
stored [13]. In this phase, heterogeneous data streams might
be compressed/aggregated via ML algorithms. This phase
includes possible issues related to communications and also
communication network technologies including low-power
networks, (beyond) 5G and IoT platforms [14], [15]. The
analytics phase is also related to the ML algorithms that are
now designed to detect or predict particular patterns or events
[16], [17]; in particular the algorithms based on associative
rules have been studied to identify anomalies and rare events
with high performance [18], [19]. Data fusion and analytics
are also related to the computing paradigm to be employed,
particularly cloud or edge [7].

This paper focus on the combination of these three basic
steps following a generalized framework that defines the
boundary conditions that the proposed solution for anomaly
detection shall be designed.
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Fig. 1: Three layer framework for rare event detection.

Our specific contributions are:
‚ Propose a general framework based on the 3-layer model

of CPS, as presented in Fig. 1, from where a set of
general questions related to the data acquisition, fusion
and analytic steps are defined (Sec.II).

‚ Employ the proposed framework in a well-known bench-
mark scenario from process engineering called Tennessee
Eastman Process (TEP) [17], [20], [21] (Sec. III).

‚ Evaluate numerically the benefits of: event-driven data
acquisition, mutual information data fusion and quantita-
tive association rule data analytics (Sec. IV).

‚ Discuss different aspects about communication networks
and computing paradigm usually considering perfect for
this kind of studies (Sec. V).

II. PROPOSED FRAMEWORK

There are several methods for detecting anomalies and faults
in industrial settings based on data. However, with the steep
growth of information and communication technologies, more
sensors with lower time granularity are becoming common-
place, generating the so-called big data. This, however, brings
a generalized misunderstanding: “the bigger data, the better".
In particular, in situations where the target is to reliably detect
rare events in the dataset, the situation becomes more critical
since the goal is to identify outliers with minimum chances of
false alarm and misdetection.

Under this new condition, the usual fragmentation between
data acquisition, fusion and analytic steps needs to be re-
viewed. For instance, the analytics algorithm requires struc-
tured good quality data (not necessarily “big data") to more
reliably detect anomalies. The structured (time stamped) data,
in their turn, is attained in the fusion step by disseminating,
aggregating and/or eliminating data based on the needs of the

rare-event detection algorithm. But, before data is fused, it
needs to be acquired by sensors that map different (usually
well-defined) physical processes; sensors may be located in
different places (spatial domain) and sampled (temporal do-
main) in potentially different ways (e.g., periodically or not).

Our main motivation here is then to build a tailored
integrated solution based on these three steps looking, for
example, data compression/reduction can offer to the analytics
algorithm better quality data to identify rare events. Notwith-
standing, the solution to be designed for particular shall be
derived from a general framework. In this case, the proposed
framework consists of modeling CPS using three interrelated
layers, namely physical, data, and decision. This approach was
proposed in [22], [23] to assess the dynamics of physical sys-
tems that are regulated based on a decision-making processes
that depend on data processing. The previous contributions
were mainly focused on theoretical toy-models, though. Here,
we will extend this approach to focus on realistic industrial
settings. Fig. 1 depicts the proposed 3-layer model, together
with the underlying communication network topology.

The proposed general framework is based on key questions
that must be answered before the specific solution for detecting
rare-events is designed. The questions are present in Table I.
The idea is to define the viable designing options that we
need to consider to have an effective solution for a particular
industrial processes, as well as practical limitations imposed by
industry itself (e.g., preference for private networks, or already
deployed wired communication system).

The questions are structured in steps that follow the three-
layer model. The first step is to identify the rare event(s) under
consideration, also considering whether the problem is known
beforehand. To have a quantitative evaluation of the related
physical processes related to the event, sensors are needed
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TABLE I: Related questions that can be answered by the proposed framework

Q# Topic Related Question
Q0 Anomaly What is the problem? Is the Rare Event known or unknown?
Q1 Sensors What kinds of sensors will be used? How many of each can be used and where they can be located?
Q2 Sampling Which type of sampling will be used? Periodic, event driven or mixed (hybrid)?
Q3 Communication Which type of communication system (access and network technologies) will be used?
Q4 Data storage Where the data from sensors are stored and processed?
Q5 Data fusion How the data should be clustered/aggregated/structured/suppressed?
Q6 Event detection How to make the ultra-reliable rare event detection based on ML algorithms?

to map the physical to the data layer. Here the question is
what kind of sensors can be used? How many should be used
and where they should be located? After the locations are
confirmed, the next phase is the sampling strategy from those
sensors: it may be periodic, event-driven (non-periodic) or a
mix between them. We then need to determine the time granu-
larity and/or the event that trigger a sampling. The next phase
is to define the communication system to be used. Particularly,
the type of access technology (wireless or wired), the network
(internet or private network) and storage (local database, cloud,
private cloud). Once the data is stored, data should be aggre-
gated, as other variables are stored with the same timestamp.
Depending on the information of variables monitored, some
of them could be suppressed. The question here is how data
should be clustered/aggregated/structured/suppressed (fused)?
The information gathered after the data fusion will be used to
detect the event, when adding variables that monitor physical
condition of the grid. Here the question arises is how to make
the ultra-reliable rare event detection for our problem? In
the following section, we will briefly present the Tennessee
Eastman benchmark process and then apply the proposed
approach on it.

III. TENNESSEE EASTMAN PROCESS

The dataset material consists of several faulty cases of
an industrial plant, as produced by the Tennessee Eastman
problem [24]. The process has five major equipments, namely
a condenser, a vapor-liquid separator, a reactor, a product
stripper, and a recycle compressor (Fig. 2). Its objective is
to obtain the products G and H from the reactants A, C, D
and E. This is reached by a set of four chemical reactions,
in which components B and F are, respectively, an inert and
a byproduct. More details can be found in [25], [26]. This
benchmark is suitable to evaluate process monitoring schemes
and control strategies based on data driven analysis. Besides
the normal operation, 21 abrupt or incipient faulty conditions
caused by common disturbances in practice are simulated
[20]. There are 52 monitoring variables or features, being
11 manipulated variables and 41 measured variables. Once a
faulty condition occurs, all are generally affected with changes
in their respective values.

The Tennessee dataset was generated in a process simu-
lator that has been widely used by the process monitoring
community1. It is composed by 22 subsets named dXX_te.dat,
where XX = 0, 1, 2, ¨ ¨ ¨ , 21. The file d00_te.dat refers to the
normal operating condition. Each of the other ones regards to

1https://github.com/camaramm/tennessee-eastman-profBraatz

Fig. 2: Process flow diagram of the Tennessee Eastman problem [26].

TABLE II: Proposed framework applied in TEP

Q# Answer
Q0 Lack of accuracy to detect anomalies (21) from measurements
Q1 Each of the 52 variables are sensors, no other can be added
Q2 Periodic sampling; all 52 variables are sync (3 min.)
Q3 It can be considered as in [27]
Q4 Not constrained; freedom to test as in [7]
Q5 Open question; focus of research in the field
Q6 Open question; focus of research in the field

a particular fault, that is, a different shift from this reference
condition. The subsets consist of 960 observations of the 52
variables, which are sampled every 3min with a Gaussian
noise. The faults are introduced after 8 simulation hours. Table
II presents the proposed framework applied in TEP, which
provides the boundary conditions of the anomaly detection
design.

IV. NUMERICAL RESULTS

A. Event-driven data acquisition

The main idea of an event-driven approach for this appli-
cation is to perform data compression in order to transmit
the meaning of information from the data acquisition point
to the data fusion point. This approach can be described
using the following steps: (1) input data from all 52 sensors
(N ); (2) variable average estimation and margin selection
(90% of lowest/highest values) from normal operation; (3)
at every time slot (k) for each variable, if the values are
out of the margins the sample is transmitted, otherwise, if
nothing is received at the data fusion point the variable will
maintain the average value estimated from the previous step;
(4) compression rate calculation for each variable. The limit
values for margin selection for each variable were chosen
arbitrarily. An example of this approach is seen in Fig. 3 where
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Fig. 3: Signal from variable 1 at data acquisition point (before transmission)
for fault number 2 of Tennessee Eastman dataset.
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Fig. 4: Signal from variable 1 at data fusion point (after transmission) for
fault number 2 of Tennessee Eastman dataset.

the signal obtained from the sensors is shown with its limits.
The samples transmitted are only the ones that are out of the
upper and lower limits as seen in Fig. 4.

This setup allows to transmit less data via any communica-
tions system. In the example mentioned above the compression
rate is 92.60%, this means only about 7.4% of the samples
are transmitted. The pre-processed time series based on the
proposed event-driven method will serve as inputs to the data
fusion and analytics, where anomalies should be detected,
identified and diagnosed.

B. Data fusion based on Mutual Information

In order to further reduce the amount of processing required
for fault detection, on top of the time-series compression as
proposed by the event-driven approach, the proposed frame-
work determines how the process variables are related to
each other to discover and exploit their dependencies. The
interdependencies between the process variables are deter-
mined automatically from the sampled measurements in the
Tennessee datasets. Specifically, Mutual Information (MI) en-
tropy reduction technique is used to infer how variables are
correlated. The MI quantifies the amount of information that
each variable contains about the other ones [28].

The tools used to determine correlations among the variables
used in this work represents the distances between variables
in terms of their statistical closeness, then it quantifies the
correlation by providing links between the variables. Finally, it
assigns directionality to the links [29]. Fig. 5 shows that aside
form the auto-correlation, strong cross-correlation is present
between a high number of variables; in fact, a high correlation
above 80% is present in 23% of the variables (12 out of 52)
while a modest correlation above 50% is present in 65% of
the variables (34 out of 52).
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Fig. 5: Correlation between Process Variables

As an example of statistical closeness, Fig. 5 presents
the correlation for the 52 process variables in the Tennessee
datasets. This result showcases that not every single variable
needs to be observed at every given moment but, depending on
the fault under investigation, it is possible to observe variables
carrying a high amount of MI with other variables involved
in the process. This reduces both data and computational load
considerably.

C. Quantitative association rule method for anomaly detection

Quantitative association rule mining is a natural extension of
classical qualitative association rule mining where the difficult
task is the extraction of frequent itemsets from a dataset
containing transactions. The extracted rules are statistical rules
of the form Item1ANDItem2...ANDItemk ùñ Itemn,
that hold with certain support and confidence values (or other
metrics) that are above user-defined thresholds. Association
rule mining is one of the most heavily researched areas in
data mining to this date. In our context, items correspond to
the features in our dataset, and transactions are in one-to-one
correspondence with the rows of the dataset; the consequent
item (Itemn) in particular is constrained to always be the
target variable in our dataset. The problem then becomes one
of quantifying each item in each (qualitative) rule extracted
from the dataset by constraining its value to lie in a specified
interval, so that the target variable assumes a particular value.
This is achieved by a modified parallel Breadth-First Search
(BFS) algorithm, called QARMA, which guarantees that all
(and none other) non-dominated quantitative association rules
that hold in the dataset will be found (see [30]).

In the case of the Tennessee dataset in particular, the dataset
is fully dense in the sense that every row contains values
for every dataset feature, which makes the application of the
qualitative association rule mining part useless. Instead, we
construct all itemsets of size less than 4, and quantify each
one of them separately, and in parallel, making sure that all
itemsets of size s are fully processed before starting to process
itemsets of size s`1. To take into account the time-dependent
nature of the data, whereby the values of any feature in the
dataset are to some degree dependent on the values at the
immediate previous times, we expanded the data to include
for each feature, the difference between the feature’s value and
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the feature’s value in the previous 2 time-steps, resulting in a
dataset having 156 different fully dense features. The QARMA
algorithm took several days to run on this expanded Tennessee
dataset, producing a total of 63008 non-dominated rules, that
could predict all different modes of operation except mode 0
(normal operation), and hard-to-detect faults 3, 9 and 15 (none
of the 63008 rules imply faults 3, 9 or 15). The distribution of
the rules among the faults is also highly skewed: faults 6 and
18 are implied by 23624 and 23884 rules respectively, whereas
faults 5, 10 and 21 are implied by 9, 3, and 8 rules respectively.
During testing, an instance for which more than 10 rules fire,
is predicted to belong to the fault that is specified by the
majority of rules firing on that instance. Using this majority
vote rule ensemble, we obtained an overall rule-accuracy that
exceeds 62% on the test set. This accuracy is significantly
better than the one reported by decision trees (J48), or artificial
neural networks (MultiLayerPerceptron) as implemented in the
WEKA ML/DM software suite, all of which reported accuracy
less than 50% on the test set.

We also implemented another modified BFS algorithm to
search to find a minimum cardinality set of variables that
contain all the variables necessary for an appropriate subset
of the discovered rules to cover 85% of all instances that the
entire set of rules cover; we say that "rule r covers instance
i" if and only if in the instance i the values of the features
that form the antecedents in rule r are within the intervals
specified for them by the rule, and the instance indeed belongs
to the operation mode (fault number) that is predicted by the
rule. Interestingly, only 14 of the 156 variables are enough to
"explain" 85% of the entire dataset covered by the rules found;
this result implies that possibly a much smaller set of variables
need be monitored in order to derive safe conclusions about
the state of the process. The total rules found covered more
than 70% of the training set.

We consider our first results as encouraging in that rules us-
ing only up to 2 features at a time are able to form an ensemble
of rules that outperformed other well-known ML algorithms in
test-set performance. We expect that dimensionality reduction
will allow larger number of antecedent features to be examined
and eventually provide much higher accuracies measured by
detection rates/false alarm rates per class.

V. DISCUSSIONS

A. Industrial communication networks in the TEP benchmark

Liu et al. proposed in [31] a description of how a communi-
cation network could be applied in TEP. They also proposed a
more complete analysis of Industrial IoT settings, exemplified
by TEP, in [27]. Other recent work focusing on how 5G could
be employed in TEP for fault detection and diagnosis [32]. We
expect to extend those works based on the proposed 3-layer
model, where we can focus on the following aspects.

Physical layer: It presents mostly the communication be-
tween sensors and aggregators. In order to reach a possible
massive number of sensors, wireless technologies seem to be
an obvious choice, in special machine-type communications
(MTC) [33]. Besides cellular massive MTC solutions [34],

Long Range Low Power Networks (LPWAN) (e.g. LoRa,
Sigfox, NB-IoT) recently gained attention for industrial indoor
applications [27]. See that its high link budget is suitable
for the coverage of industrial environments, where we find
many floors, walls, and machinery that mitigates the signal
propagation [35]. From this category, we see LoRa and Lo-
RaWAN with great potential for industrial scenarios. Since
LoRaWAN presents an open MAC protocol, it is easier to
deploy aggregators (gateways) inside factories and thus have
control over the whole network. Moreover, it enabled several
works that evaluated LoRa’s performance [36]–[38]. Even
though we plan on a massive communication approach for
mostly of sensors, there might be cases where they do not
attend the reliability or latency requirements. Then, cellular
ultra-reliable low-latency communications (URLLC) might
come as a solution.

Data layer: The communication is based on the aggregators
storing their data into a centralized unit, preceding the data
fusion process. Since aggregators serve a massive number of
sensors, there is a huge amount of traffic within this layer [34].
Thus, we plan most traffic to be enhanced Mobile BroadBand
(eMBB). Similar to layer 1, we can rely on URLLC when there
is reliability and latency constraints. Note that the packet size
for URLLC is very limited, thus producing a small impact on
the total aggregated traffic. Coexistence of MTC traffic can be
mitigated by non-orthogonal solutions as in [39], or through
network slicing [40] where orthogonal resources are dedicated
to meet each service requirement (e.g., eMBB, URLLC and
mMTC). Considering that communication in TEP is mostly
done in uplink, the customization of grant-free access based
on diversity scheduling of URLLC resources as proposed in
[41], [42] could be optimized in terms of reliability and users
density. Finally, we could alternatively employ wired/optical
connection where aggregators are local to the storage unit.

Decision layer: It is highly dependent on the system
topology. After the data fusion stage, the aggregator must
send all compressed data to a decision controller. This is
a sensitive stage, where losing one packet means giving up
many compressed others. Moreover, it can lead to an inaccu-
rate detection decision. Finally, the decision results can give
automatic feedback to the machinery; thus, URLLC should be
predominant.

B. Imperfect wireless medium

In industrial CPS empowered by wireless connectivity, the
unreliable nature of the wireless medium introduces uncer-
tainties in the achieved TEP fault detection performance and
efficiency [43]. The complex fading conditions in indoor
factory plants – usually rich in metallic surfaces and physical
obstructions which result in high network dynamics and a
harsh radio propagation environment – involving numerous
IIoT components may significantly affect the accuracy of the
transmitted sensor observations to the fusion center and result
in transmission failures due to the high distortion levels. Al-
though the millimeter-wave (mmWave) technology is continu-
ously gaining momentum in industrial indoor environments for
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providing high data rate, low-latency and high-reliability [44],
mmWave frequencies (up to 100 GHz) are highly susceptible
to blockage, diffraction, and scattering effects. In practical
industrial deployments where no line-of-sight connectivity is
possible, the installation of reconfigurable intelligent surfaces,
capable of adaptively shaping the impinging radio waves based
on the actual channel conditions, appears as a promising
solution to circumvent the unreliability of high-frequency
channels.

C. Communication-Computation Trade-off

The reliability and latency concerns related to Industrial IoT
in addition to the increasing density deployment precipitate
the need for new communication and computation paradigms
in such environments. The increasing number of sensors and
the heterogeneity of the datasets being collected pose new
challenges during the data fusion and analysis. For example,
the large number of sensors collecting information about the
industrial processes have to transmit the collected datasets to
the data fusion point, which results in high communication
cost and affects the energy efficiency and computational
delay. There are multiple ways to approach this problem.
One approach is to move the data fusion points closer to the
sensors that are acquiring the measurements and to perform
the analysis in the cloud.

This approach results in lower communication overhead,
and reduce the amount of raw measurements being sent
throughout the network, which results in higher energy ef-
ficiency. However, there are problems associated with this so-
lution. For example, the sensors performing the data fusion are
potential single points-of-failure. These fusion points also use
more energy due to the computation and communication with
a large number of nodes. Therefore, depending on the energy
source being used for these nodes (e.g., battery), they could
potentially lead to parts of the network being disconnected
from the rest of the deployment. Another possible problem
with this solution is related to latency concerns. Since the
data analysis is happening in the cloud, the combined delay
associated with the communication and computation can not
be neglected. For this reasons, authors have been proposing
the idea of moving the processing from the cloud to the edge
of the network [45]. This approach relies on both, fusion
and analysis happening on the nodes that are very close to
the acquisition sensors. However, while reducing the latency
effect, this approach does not address the energy hole effect
(i.e., nodes closer to the centralized fusion point drain their
battery faster) [46].

The next logical step is to rely on in-network computing, in
which data processing is distributed among the nodes of the
network. An example is shown in [47], in which the authors
place the computational nodes of a neural network on the
physical sensor nodes. The placement relies on an optimized
mapping procedure that minimizes either the total transmit
power or the overall transmit time. Due to its flexibility, this
approach allows us to eliminate the single point-of-failure
problem, helps us to reduce the communication/computation

latency and enables us to distribute the energy consumption
across the IoT network. By taking advantage of the in-network
computing paradigms we can tweak the trade-off between
communication and computation.

D. Network Slices and Business Model

Nowadays, many wireless technologies are capable to re-
place wired communication in industrial applications. How-
ever, using these new technologies in real scenarios mean an
increase cost in terms of CapEx and OpEx. So, an appropriate
model that fairly distributes costs over multiple virtual oper-
ators, and also optimizes physical resource planning is intro-
duced in [48]. Here, a new model of 5G isolated network slices
of multitenant Mobile Backhaul (MBH) is proposed, based
on a novel pay-as-you-grow model that considers the Total-
Cost-of-Ownership (TCO) and the yearly generated Return-
on-Investment (ROI). So, new business models that are coming
with the wave of 5G and beyond have a big potential to boost
the application of novel wireless communication technologies
beyond the technical benefits.

VI. CONCLUSIONS

This paper shows the potential of the 3-layer approach to
design anomaly detection, where data acquisition, fusion and
analytics, together with the enabling communication network
and computation paradigm, are jointly studied as subsequent
steps. We presented initial results based on the TEP benchmark
and we plan to extend this study to other scenarios, including
a micro-grid and a car factory. All in all, we expect to
demonstrate that the proposed framework is general so that
it can be applied to provide ultra-reliable rare event detection
in a wide range of industrial applications.
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ABSTRACT This paper aims to introduce a predictive weather-based control policy for the microgrid energy
management to improve the resilience of the microgrid. This policy relies on the application of machine
learning models for the prediction of microgrid load demand and solar production and supply interruption
in the upstream distribution network. The predictions serve as an input to multiobjective chance constraint
optimization that balances the microgrid resilience and economic objectives based on the probability of a
supply interruption. The interruption predictions are made with a decision-tree-based model that can predict
an upcoming interruption in the distribution network with 78% of the maximum accuracy. The case study
microgrid consisting of several customers, solar photovoltaic generation, and battery storage is applied to
cluster areas located in Finland. Overall, the developed control policy shows an improvement in the daily
resilience of the microgrid in regard to an interruption in the main grid when compared with economic
dispatch only.

INDEX TERMS Microgrid resilience, weather prediction, machine learning, battery storage, chance
constraint optimization.

I. INTRODUCTION
The use of distributed energy resources (DERs) has recently
been increasing especially in microgrids (MGs) as they are
known to improve the reliability of electricity supply in
sparsely populated areas and contribute to the reduction of
greenhouse gas emissions [1]. As the integration of DER
and household loads increases, maintaining the power system
stability and voltage profile as well as management of energy
resources in a cost-effective way become more challeng-
ing [2]. Microgrids are capable of operating in two different
modes: either grid connected or island.While operating in the
grid-connected mode, the power is exchanged with the main
grid from the distribution feeder, which ensures the power
dispatch and contributes to the system stability. In case of
power faults, natural disasters, or not meeting power quality

The associate editor coordinating the review of this manuscript and

approving it for publication was Shagufta Henna .

requirements, the MG will operate in the island mode. In this
mode, battery energy storage systems (BESSs) are used to
cover load energy consumption [3]. The BESSs depend on
installed load power and have several limitations, such as
power rating, Boolean charging/discharging scenarios, and
time-dependent energy content dynamics.
During MG operation, a BESS improves resilience during

operation in the island mode. Resilience is a relatively new
concept in power systems, and in recent years, it has had a sig-
nificant impact on the definition of the reliability of electricity
distribution networks [4]. The definition proposed by [5]
involves energy systems being able to recover fast from events
caused by external factors. Moreover, the definition provided
by [6] for resilience relies on four aspects: foresee/avoid,
absorb/withstand, respond/restore, and adapt/upgrade. These
elements play a key role in the function of MGs
for the modernization and decentralization of electricity
grids.
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Many strategies to manage the power and improve the
resilience ofMGs have been proposed in the literature [1], [7],
[8]. These strategies combine predictive models for optimal
dimensioning of the BESS based on the DER power infeed
forecast of photovoltaics (PVs) and wind turbines and con-
trol methods to maximize resilience when operating in the
island mode and to maximize energy profits from energy
dispatch [9]–[11].
Renewable energy in MGs brings new challenges in terms

of how to deal with uncertainty in power generation. In [12],
uncertainty quantification is used to facilitate integration
of an energy storage and thereby mitigate the impacts of
uncertain PV and wind generation. The array of prediction
techniques is also growing as artificial intelligence algorithms
and optimization methods are being developed. One of such
techniques is reported in [13], where forecasting of solar
radiance, temperature, and load is carried out in addition to
particle swarm optimization to optimally control and manage
power in an MG.
Although resilience inmicrogrids has been a topic of grow-

ing interest in the past few years with an exponential increase
in publications, to the authors’ knowledge, the application
of predictive methods has been limited. An approach that
uses outage decision-making for power management in smart
homes is reported in [14]. Outage management can benefit
MGs, which are very prone to interruptions, as well as remote
areas of difficult access. In [15], a multilevel MG method
is proposed that incorporates a stochastic islanding event
into the operational optimization, thereby allowing to foresee
the occurrence of interruptions. The model can be adopted
for optimal scheduling by applying the uncertainty of loads,
DER, demand-side management, and frequency control.
The traditional concept of reliability has also been shifting

toward resilience to take into account more characteristics
of power grids; still, as discussed in [16], [17], reliability
plays an important role in gridmanagement and brings certain
benefits to the grid. In [18], these benefits include mini-
mization of load curtailment, flexibility, and improvement
in the reliability index. In their paper, the authors propose
a general framework for the assessment of the reliability
of distribution systems with multiple microgrids to quantify
the impact of different operating schemes by using a model
predictive control for power management. In [19], the authors
develop a resilience-oriented stochastic scheduling method
for microgrids considering economic metrics; the resilience
index is improved by 16.5% by integrating resilience metrics,
stochastic planning, and resilient operation of DER into the
method. Further, in [20], a microgrid scheduling strategy
is developed considering resilience requirements: operating
costs, energy purchasing costs, and degradation cost of the
BESS. The solution uses an optimization model ensuring
resilience by facilitating possible MG interruptions by secur-
ing load supply and robustness in DER.
BESSs have shown efficacy to increase resilience in MGs,

and to this end, correct sizing to meet the economic require-
ments is an important task. In [21], the authors use a linear

optimization approach to determine the most cost-effective
BESS sizing for different types of load and DER generation.
In the optimization, it is necessary to use historical data
and accurate forecast resources for DER. Insights into the
obtained power-to-energy ratio can also enhance the design
of new commercial BESSs, which could possibly benefit and
standardize other MG systems.
A similar approach as presented in this paper can be found

in [22], where the authors use a home energy storage man-
agement system for decision-making. This system enhances
home resilience in the face of extreme events. The model
decides in advance when to charge the BESS based on the
condition of the network and the probability of an outage.
The interruption model takes into account the wind speed to
provide the probability of an interruption for the location;
however, in the case of extreme events there might be also
other variables involved. Our approach considers a set of dif-
ferent variables, and by using machine learning techniques,
we are able to reliably predict an interruption for the next
day, thereby improving the battery state-of-charge (SOC).
Furthermore, the model is scalable to the size of the MG or
the area of interest, being thus not limited to a single MG but
being applicable also to multiple microgrids and large areas.
This can greatly improve the resilience in the system to be
able to withstand upcoming severe weather interruptions.
In this paper, a weather-based predictive control policy is

used to improve the resilience of an MG when operating in
the island mode. This method can predict the energy require-
ments for the BESS and schedule day-ahead optimal opera-
tion of the BESS based on predictions of machine learning
models for load demand and solar PV power production.
The proposed methodology takes into account the probabil-
ity of an interruption for the prediction horizon based on
weather conditions so that any decision taken beforehand to
charge/discharge the MG battery will have a profound impact
on theMG resilience when operating in the island mode. This
will contribute to the MG decentralization paradigm, because
the total output power supply from the main grid and the
power from the DERs connected to the affected MG will be
maximized. The contributions of this paper are:
• formulation of multiobjective optimization problem
under uncertainty for an MG BESS that takes into con-
sideration the interruption probability and economical
charging and thus foresees upcoming island operating
modes;

• methodology for machine learning predictions of the
probability of a daily supply interruption in the upstream
distribution network, microgrid load demand, and solar
PV production that are integrated into the optimization
problem;

• introduction of a daily dependency (resilience metric)
for the MG that continuously estimates the withstanding
capability of the MG in the face of extreme weather
events;

• quantitative comparison of how different battery sizes
can affect the degree of daily dependency in the MG.
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The rest of the paper is organized as follows.
In section II-A, we analyze previous approaches to resilience
and optimization in microgrids. The methodology of the
proposed approach is presented in Section II. The predic-
tive interruption model and the machine learning model
are described in Section III. Section IV addresses the
techno-economic dispatch optimization problem for micro-
grid energy management. A case study MG placed in the
clusters of the interruption model, results, and discussion are
summarized in Section V. Finally, conclusions of the paper
are presented in Section VI.

II. METHODOLOGY
A. BACKGROUND OF RESILIENCE
The resilience framework introduced in this paper is based
on a model proposed by [23]. In this context, to improve
the resilience of an MG, we use the blocks shown in Fig. 1.
The four pillars of MG resilience are: methods, attributes,
interruptions, and metrics. The first block, methods, refers
to a variety of methods or techniques that contribute to the
improvement of resilience, the ones used in this work includ-
ing resource allocation, battery scheduling, energy optimiza-
tion, fault prediction, and load and production predictions.
In the second block we find attributes, which are the prop-
erties or characteristics of an MG. Understanding of the
system attributes of any MG, such as islanding capacity,
is important as these attributes play a significant role in the
decision-making concerning microgrid components. These
decisions, in turn, have a direct or indirect impact on the sys-
tem recovery. In the third block there are interruptions. Here,
external events are assumed to be weather dependent and
influenced by the grid topology next to the MG connection.
Finally, for the assessment of the MG we use one common
metric in resilience: dependency [24]. It is an index that
means ‘‘a linkage or connection between two infrastructures,
through which the state of one infrastructure influences or is
correlated to the state of the other.’’ This is a key attribute
when using a battery storage, and in this work, it is adopted
in order to quantitatively characterize dependency in each
of the MG load by measuring the need for energy storage
to achieve the resilience objective. First, we introduce an
analogous availability measurement [24], which measures
individual resilience of a load as

RI =
TU
T
=

TU
(TU + TD)

, (1)

where TU is the time up (microgrid is connected to the main
grid) and TD is the time down (microgrid disconnected from
the main grid). TU is directly related to the withstanding
capability, whereas TD is the service recovery speed, which
is influenced by cyber-physical processes and human-driven
activities (e.g., maintenance, repair, availability of human
resources). Then, analogous to Eq. (1), the degree of depen-
dency of a load, and for the context of the MG, that of the
entire MG load, RL , is given by:

RL = 1− (1− RI )e−uTS , (2)

where TS is the energy capacity stored in the MG BESS,
measured by autonomy when entering the island mode, and
u is the equivalent rate of the power grid, inverse to TD. The
interdependency of battery and resilience is seen in Eq. (2).
It shows that the BESS makes the MG more resilient to
disruptions.

B. MICROGRID MANAGEMENT ROUTINE
The Methods block in Fig. 1 contains the elements of load
prediction, interruption prediction, DER generation predic-
tion, and BESS management. According to the control policy
depicted in Fig. 2, the algorithm starts at day 1 at an inter-
val of a day (from start to end) to analyze the resilience,
and an scheduling based on the weather forecast models is
made for the next 24 h. Based on the weather conditions,
a coefficient for the probability of an interruption is calculated
from the forecast model for the probability of interruption.
To prepare for an eventual island mode, the MG and the
BESS have to be scheduled based on the future output of
the DER and load power estimation; the models described in
Sections III-A and IV-A provide details of both steps. Once
the day is over, the daily dependency is calculated as pre-
sented in Section II-A. This process can be continuously
checked and updated on a daily basis. Fig. 3 shows the impact
of a varying BESS SOC (or analogous TS ) onwhole-year runs
(nS ); the figure illustrates MG management without consid-
ering any prior cost-effective or precautionary charging of the
BESS, which is seen as sudden fluctuations from day to day.
The values are within a range that depends on the resilience
index calculation period (a day) and TS .
The dependency index metric is usually calculated based

on historical data, and thereby, average TU . When this metric
is calculated on a daily basis, it will show a significant dif-
ference when compared with a method that does not take the
interruption model into consideration because of variability
in the charging of the BESS.

III. PREDICTIVE MODELS
A. RISK ANALYSIS OF THE PROBABILITY OF AN
ELECTRICITY SUPPLY INTERRUPTION
The data provided by the Finnish DSO Elenia were
used to predict the daily fault occurrence in the distribu-
tion networks of the following regions: Kanta-Häme and
Päijät-Häme, Pirkanmaa, Central Finland, and Ostrobothnia.
First, we defined clusters comprised of Elenia’s substations so
that the maximum distance between substations in a cluster
was not larger than 50 km. Agglomerative hierarchical clus-
tering, specifically complete-linkage clustering implemented
in the scikit-learn library [25], ended up with 31 substa-
tion clusters, to which the MGs are connected in our study.
Fig. 4 presents the clusters obtained and their centroids in
the ETRS-TM35FIN coordinates. Additionally, the figure
shows the weather stations closest to Elenia’s network. The
original data contained 36874 unique faults that occurred
in the whole network of Elenia between January 2011 and
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FIGURE 1. Framework of improving the resilience of a microgrid (adapted from [23] and revised).

December 2013. Faults associated with substations were
summed up for the corresponding clusters with a daily time
resolution. An additional categorical variable indicating the
absence or presence of faults per day was introduced for each
cluster. These binary variables worked as outcomes in the
cluster fault prediction. Next, we created a set of predictors
that included weather observations and time variables (see
Table 1). The coordinates of the weather stations presented
in Fig. 4 were used to collect historical weather observa-
tions from [26]. We transformed the coordinates into the
WGS84 system and retrieved the data applying the package
wwo− hist [27], [28]. For each cluster, the weather observa-
tions were gathered and averaged over the weather stations
closest to Elenia’s substations. The set of input variables
included 14 predictors similar to the previous study [29].
Predictive models were built separately for each cluster.

The data collected in 2013 were reserved to test the models,
whereas fault records from 2011 and 2012 were included
in the training. As a learning algorithm, we chose Random
Forest because of its useful properties: the ensemble-based
nature aims to reach robustness and control overfitting [25],
[30]. To reduce the model variance, we trained 250 trees in
each ensemble. The maximum tree depth was tuned for each
cluster: when varying the tree depth from 3 to 9, we selected
one model trained on the data from 2011 that showed the
highest accuracy on the validation data from 2012, and then
switched around the training and validation years to select
one more model. The outcomes of these two models on the
test data were averaged to obtain the final estimate of the fault
probability. Besides, to avoid tuning a cut-off for each cluster
where the balance between days with and without faults
differs, we oversampled the underrepresented class in the
training years 2011–2012. As a result, 0.5 cut-off was applied
within all clusters when estimating the model accuracy.
According to the previous study [29], the weather obser-

vations relevant to predicting faults are contained in a few
recent measurements. Therefore, we tested one-, two-, and

three-day historical weather as the model inputs and found
that when predicting faults for the moment t, the weather
observations from the moment t and t-1 led to the highest
maximum accuracy across clusters, i.e., 78%, and the highest
number of clusters with the accuracy exceeding 70%, i.e.,
ten clusters. In the real use case scenario, historical weather
observations should be substituted with the weather forecast.
The resulting accuracy of the test data is presented in Fig. 4.

B. MACHINE LEARNING MODEL FOR LOAD AND SOLAR
PV PREDICTION
The time series predictions of the load and solar PV pro-
duction of the microgrid are required for the operation man-
agement of the microgrid BESS. Here, point forecasts (i.e.,
conditional mean of the predictive distribution) are produced
for the next day with a 24 h ahead horizon and implemented
with a Light Gradient BoostingMachine (LightGBM) regres-
sion [31] from the corresponding library [32]. The LightGBM
model is a scalable and efficient gradient boosting framework
that uses a decision-tree-based learning algorithm. In fact,
the high accuracy of the LightGBM model was recently
demonstrated in theM5Accuracy competition [33]. Themain
difference of the model compared with the similar algorithms
is the usage of a leafwise tree growth algorithm instead of
the depthwise tree growth. This approach facilitates model
convergence because of the faster finding of the best split
points in each tree node but comes with higher chances
for overfitting, i.e., poor generalization for unseen testing
data. For instance, the unconstrained maximum depth and
number of leaves can improve the training accuracy but also
contribute to overfitting. Therefore, hyperparameter tuning is
important to achieve a good model generalization with the
LightGBM model. In this study, we apply a tree-structured
Parzen estimator from the hyperopt library [34] to search
for the hyperparameters affecting the model accuracy and
overfitting. In particular, for the LightGBM model we tune
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FIGURE 2. Flowchart of the control policy based on weather predictions
for each cluster.

the learning rate, the number of boosting iterations (i.e., the
number of trees to build), the maximum number of leaves
in one tree (i.e., the maximum number of nodes per tree),
and the maximum depth for a tree model (i.e., the maximum
distance between the root node of each tree and a leaf node).
The tuning is carried out with the hyperparameters presented
in Table 2 using 500 iterations.
The target data for load demand represent an aggregated

load of 29 customers from one Elenia secondary substation
located in central Finland. The solar PV production data were
retrieved from the same location using hourly PV simulations
with the renewable-ninja platform [35]. The solar PV is sim-
ulated using the MERRA-2 (global) dataset for a system with
30 kWp installed capacity and 10% loss, the system facing
south (azimuth angle 180◦) and inclined from the horizon

FIGURE 3. Daily dependency index with a fixed TD and a varying TS .

TABLE 1. Meteorological and time variables used for predicting faults.

with a tilt angle of 35◦. Fig. 5 illustrates the target series,
both of which have an hourly resolution for the year 2013.
Following the concept of weather-dependent operation of
low-carbon power systems, we base our predictions solely on
historical weather observations and time features presented
in Table 3. The weather observations are obtained using open
data of the Finnish Meteorological Institute [36].
The error of the point forecast for hour h on day d is

estimated by the deviation between the actual observation
yh,d and the prediction ŷh,d = f (Xh,d ) as follows:

εh,d = yh,d − ŷh,d . (3)

The performance evaluation of the model is carried out using
k-fold cross-validation with k = 12 folds separated per a
particular month of a year. In such an arrangement, the model
is trained using 11 months of a year and tested on an unseen
month. Such a validation is repeated for eachmonth. To quan-
tify the statistical quality of the forecasts for all fold data, the
metric of Mean Absolute Error (MAE) is employed:

MAE =
1

D · H

D∑
d=1

H∑
h=1

|εh,d | (4)
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FIGURE 4. Clusters of Elenia’s substations, the closest weather stations,
and the test accuracy achieved by the predictive model. The underlying
map in the ETRSTM35FIN coordinate system is taken from the website of
the national land survey of Finland.

FIGURE 5. Time series of the microgrid load demand and solar
production.

whereD·H is the number of points for the evaluation equal to
the number of hours per year. The lower the MAE, the better
the model accuracy.
The results of the model performance are demonstrated

in Table 4. The average point forecast error is close to
3 kW for the load demand and close to 2.5 kW1 for the

1For nonzero hours of solar PV production.

TABLE 2. Details of the hyperparameter search space.

TABLE 3. Exogenous features used for demand and solar production
forecasting.

TABLE 4. Model performance results for the testing folds.

solar PV production. However, similar to the fault pre-
diction, the historical weather observations should be sub-
stituted with the weather forecast data for the real use
case.
Besides the values of point prediction, an optimiza-

tion method in Section IV-A requires a covariance
matrix of expected errors to produce stochastic sce-
narios. This covariance matrix is obtained for each
target time series using post-hoc residual simulation;
i.e., relying on the corresponding model prediction
errors:

1 =



ε1,1 . . . ε1,d . . . ε1,D
...

. . .
...

. . .
...

εh,1 . . . εh,d . . . εh,D
...

. . .
...

. . .
...

εH ,1 . . . εH ,d . . . εH ,D

 (5)

where each row of the error matrix represents an hour of a
day, and each column a single daily observation. A covariance
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matrix 6 ∈ RH×H is then derived from the testing error
matrix of all folds as follows:

6 =



σ1,1 . . . σ1,hj . . . σ1,hJ
...

. . .
...

. . .
...

σhi,1 . . . σhi,hj . . . σhi,hJ
...

. . .
...

. . .
...

σhI ,1 . . . σhI ,hj . . . σhI ,hJ

 (6)

where

σhi,hj =
1

D− 1

D∑
d=1

(εhi,d − ε̂hi )(εhj,d − ε̂hj )
T (7)

is the variance of the marginal distributions of the prediction
errors for look-ahead hours hi and hj. The covariance matrix
illustrates the interdependence structure of prediction errors
for each forecast horizon. For instance, Fig. 6 shows the
examples of the target covariance matrices with a positive
covariance between the prediction hours for both prediction
targets. The positive covariance means that the prediction
errors at two hours tend to increase or decrease in tandem.
The covariance pattern has a distinct concentration along the
diagonal line, especially marked for the peak hours of load
demand and midday hours for solar PV production. There-
fore, the model has difficulties in correctly predicting the
target values at those hours. However, the covariances sharply
decrease with an increase in distance from these forecast
horizons.

IV. MICROGRID ENERGY STORAGE MANAGEMENT
A. OPTIMIZATION PROBLEM
The operation management of the MG aims to produce a
BESS schedule for the next day using convex stochastic
optimization with chance constraints, i.e., constraints that are
required to holdwith a high probability. The convex optimiza-
tion problem is described with an objective in Section IV-A1
and a list of constraints in Section IV-A2.

1) OBJECTIVE FUNCTION
The objective function of the optimization problem considers
a trade-off between cost reduction and outage prevention
goals:

minimize (1− λ) · fOp︸ ︷︷ ︸
cost reduction

+ λ · EfRel︸ ︷︷ ︸
outage prevention

subject to (19)− (29)︸ ︷︷ ︸
power balance and DER operational constraints

(8)

where λ ∈ [0, 1] is a weight coefficient that is equal to the
probability of an outage occurrence, fOp is an objective con-
taining the operating costs of devices, and EfRel is an approx-
imated expectation of the reliability of the supply objective.
Intuitively, the higher the probability of an outage is, the more
weight is given to the reliability of the supply goal. Otherwise,
the optimization prioritizes the cost-effective load shifting

FIGURE 6. Covariance matrices of forecast errors for the microgrid
(a) load demand and (b) solar PV production for the next day forecast
horizons.

with the BESS, e.g., by charging the BESS when the grid
energy is cheap and discharging when it is expensive.
The operation objective at any time t ∈ T = {1, 2, . . . ,T }

is defined by the electricity costs at the point of common
coupling (PCC) Cpcc

t and the degradation costs of BESS Cb
t :

fOp =
∑
t∈T

Cpcc
t +

∑
t∈T

Cb
t . (9)

The electricity costs are formed by selling the electricity
to the grid and buying it from the grid, as well as assum-
ing that the prices for the exported electricity Cex

t are often
lower than the prices of the imported electricity C im

t from the
grid [37], i.e., C im

t ≥ C
ex
t , ∀t ∈ T :

Cpcc
t = (Cex

t pt + (C im
t − C

ex
t )(pt + |pt |)/2)1t, ∀t ∈ T

(10)

where pt is the power scheduled at the PCC of the MG [38]
during the metering period 1t .
The MG purchase electricity price C im

t (e/kWh) consists
of the electricity network service charges Cnsc (e/kWh),
the price of electrical energy, and the electricity tax Cetax

(e/kWh). Here, the price of electrical energy is based on the
wholesale market prices Cws

t (e/kWh) and a retail margin.
The network service charges and the market price include a
value added tax (VAT, 24%). Finally, the purchase electricity
price is formulated as follows:

C im
t = Cws

t + C
rm
+ Cnsc

+ Cetax, ∀t ∈ T (11)

TheMG electricity selling priceCex
t consists of the wholesale

market priceCws
t (without VAT) and a network service charge

for the feed-in generation Cfic (e/kWh):

Cex
t = Cws

t − C
fic, ∀t ∈ T (12)

The degradation cost of the BESS during the operation is
included by penalizing excessive charge–discharge cycling
with a coefficient β as follows:

Cb
t = β|p

b
d,t |1t (13)

β =
C inv

2ncycDODmax
(14)

where pbd,t is a decision variable of scheduled battery storage
power, C inv is the investment cost of the BESS (e/kWh), ncyc
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is the estimated lifetime in equivalent cycles, and DODmax
is the maximum allowed depth of discharge (DoD). In addi-
tion, other market-related components can be added to the
objective function, such as revenue from the provision of a
BESS for the frequency regulation service [39]. This BESS
application is especially demanding for a low-carbon power
system with an increasing share of renewable generation.
The availability of self-supply and battery storage capacity

enables the MG to withstand the outage event in the upstream
grid by switching to island operation. In that case, the relia-
bility objective function is formulated using expected energy
not supplied (EENS), i.e., the amount of the net demand
unsupplied by local resources during the outage:

fRel = Cens
∑
t∈T

[poutt ]+1t, (15)

where [·]+ ≡ max[·, 0] is the elementwise ramp-up func-
tion, 1t is the metering period, Cens is the unit cost of the
energy not supplied, and poutt is the unsupplied net demand
during an outage. In such a formulation, we consider an equal
probability of an outage to happen at any hour of a day. The
unsupplied demand at time t is calculated based on the local
demand ploadd,t , supply p

solar
d,t , and available active power pb,supt

of the BESS as follows:

poutt = ploadd,t − p
solar
d,t − p

b,sup
d,t , ∀t ∈ T (16)

where

pb,supt =
ebt η

τmax
∑τmax

k=1 α
1−k

, (17)

is the available active power in one time step if the BESS
energy capacity ebt at time t is emptied at a constant power
over the next τmax time periods with a self-discharge rate α
and a discharge loss coefficient η [38]. The unknown vari-
ables (i.e., solar PV production psolard and load demand ploadd )
are specified as normal random variables p ∼ Normal(p̂, 6)
using the predicted mean and covariance matrix of prediction
errors from Section III-B. The expectation of the reliability
of the supply objective EfRel containing these random vari-
ables is then computed using scenario-based sample average
approximation (SAA):

EfRel ≈ (1/N )
N∑
i=1

fRel(p
b,sup
d , psolard,i , p

load
d,i ), (18)

where pbd serves as an optimization variable, whereas psolard,i
and ploadd,i are random variables with i = 1, . . . ,N scenarios
that are drawn using theMarkov chainMonte Carlo (MCMC)
method.

2) CONSTRAINTS AND COMPONENT MODELS
TheMG network power flow is described using a static direct
current (DC) power flow formulation. The static setting of
power flow assumes that the power flows are constant over the
metering time interval, typically equal to one hour, whereas
the DC formulation leaves out the reactive power flow and

FIGURE 7. Schematic of a microgrid network in the modeling
environment.

voltage phase angles. The network contains devices d ∈ D
(e.g., generators, loads, storages, and power converters) that
have one or more terminals providing a bidirectional power
flow.2 Here, the internal MG network structure is neglected
assuming a single bus connection of all devices without con-
necting lines. The reasoning for such a simplification given
in [40] concludes that an MG network with a limited capacity
and proximity of devices does not typically provide the lim-
iting constraints but complicates the formulation. Therefore,
following the formal notation in [41] to describe the problem,
a single bus of the MG is described by the net illustrated in
Fig. 7. The net exchanges power between terminals of devices
and guarantees power conservation over the connected termi-
nals (i.e., the sum of the terminal powers is zero). The power
balance in the net of the MG with M terminals in each time
period can be expressed as follows:∑

d∈D
pd,t = 0, ∀t ∈ T (19)

where pd,t is the scheduled power at time t ∈ T of a device
at the connected terminal.
The devices modeled in the MG network include a grid tie,

a renewable generator, an aggregated fixed-power load, and a
lossy BESS. The grid tie is a single-terminal device modeled
as a generator and representing a connection to an external
power grid. The renewable generator is a single-terminal
device that produces power, i.e., its terminal power pd,t
satisfies pd,t < 0. Similarly, the fixed load is also a
single-terminal device that consumes a fixed amount of power
pd,t > 0. The power values at the terminals of the gen-
erator and the load devices correspond to the mean fore-
casts of production and demand of these devices. The lossy
BESS is formulated as a composite device by connecting a
constant-efficiency power converter that models the charge
and discharge losses of the BESS and a storage with self-
discharge losses. The internal energy state ebt ∈ R+ of the
BESS is expressed as:

ebt = (1− α)ebt−1 + p
b
d,t−11t, ∀t ∈ {2, 3, . . . ,T } (20)

where α is the (per-period) leakage rate limited by 0 <

α ≤ 1, and 1t is the time interval between time periods.
Furthermore, we constrain the energy charge of the BESS

2Positive (negative) terminal power means power flows into (out of) the
device at that terminal.
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at the beginning and end of every optimization cycle to 50%
of the available energy capacity of the BESS E

b
:

eb1 = 0.5E
b
, (21)

(1− α)ebT + p
b
d,T1t ≥ 0.5E

b
, (22)

which enables to decouple the results of daily experiments.
The useful energy capacity is then limited by:

(1− DODmax)E
b
≤ ebt ≤ E

b
, ∀t ∈ T (23)

The charge and discharge rate is limited by the restricted p
and maximum p powers of the BESS as follows:

p ≤ pbd,t ≤ p, ∀t ∈ T (24)

The power converter is a two-terminal device that transfers
power at a certain efficiency. The conversion efficiency in the
forward and reverse directions η ∈ (0, 1) for terminals 1 and
2 is characterized by:

p2 = max{−ηp1,−(1/η)p1}, (25)

p ≤ p1 ≤ p. (26)

We approximate these nonconvex constraints with their con-
vex hull:

p1 + p2 ≥ (1− η)p1, (27)

p1 + p2 ≤ 2p
1− η
1+ η

. (28)

Similarly, typically nonconvex chance constraints are com-
puted with conservative approximations [42]. Here, we apply
chance constraints to the unsupplied net load demand:

Prob(pout ≥ 0) ≤ 1− γ, (29)

where γ is a high probability. With this constraint, we target
the probability of a deficient power balance during an outage
to be less than 1− γ .

3) IMPLEMENTATION DETAILS
The optimization problem is formulated and solved using
a collection of Python-based software packages for con-
vex optimization, namely cvxpy [43], cvxpower [41], and
cvxstoc [42], where cvxpy is a modeling language for con-
vex optimization problems; cvxpower provides a declarative
language for describing and optimizing power networks; and
cvxstoc is a modeling framework for specifying and solving
convex stochastic programs. We use 100 Monte Carlo sam-
ples for an approximation of the expression expectation and
the chance constraints. The chance constraint probability is
equal to 95%.
The simulation data are selected to represent the real-life

operating environment of the MG. The wholesale market
price is retrieved for the Finnish bidding area for the year
2019 using Nordpool’s historical market data. The static
values of the electricity tariff are taken from actual retail
tariffs and Elenia’s distribution tariffs. The characteristics
of the BESS are chosen based on the peak load demand of

TABLE 5. Values of costs used in the optimization of the MG operation
management.

the MG and interpolation of the reference scenario for the
development of the parameters of a stationary LiFePO4 BESS
to the year 2021 [44]. The charging/discharging efficiency
of the BESS is 96%, the battery investment cost C inv is
378.64 e/kWh, and the number of equivalent life cycles ncyc
is 104 cycles. The leakage rate of 0.1% of the BESS capacity
per day is equally distributed among T time periods and
applied at any time t as α = 0.001/T . With the allowed
DoD of 90 %, the marginal cost of the battery degradation
β is 0.021 e/kWh. The maximum number of time periods
for the expected duration of outages τmax is determined from
the relation of BESS energy capacity to nominal power and
equals 1 and 2 hours. The unit cost of the demand not supplied
consists of the unit cost for the amount and duration of unex-
pected interruptions in Finland, which are together equal to
12.1e/kWh [45], and the profit loss from the distribution fees
Cnsc not received. This value for the duration of unexpected
interruptions is given in the 2005 value of money and is not
adjusted using the consumer price index. All the static cost
data used in the optimization are provided in Table 5. The
implementation source codes and some real-world historical
data are available online.3

Four test scenarios are considered for the operation man-
agement of the MG: economical, reliable, uncertain, and
perfect foresight. The former two assume the usage of the
BESS solely for the objective functions of cost reduction
(i.e., λ = 0 in Eq. (8)) or outage reduction (i.e., λ = 1 in
Eq. (8)), whereas the latter two are described by Eq. (8)
with the predicted (i.e., uncertain scenario) and known (i.e.,
perfect foresight scenario) outage probability λ. Importantly,
the chance constraint is not applied for the economical sce-
nario. The objective functions in Eq. (8) are normalized for
the uncertain scenario using weighted min-max normaliza-
tion [46] applied to prosumer flexibility modeling in [39].
For instance, in the case of the cost reduction objective,
the minimum value is acquired from the economical sce-
nario, whereas the maximum is derived from the reliable
scenario. The same logic holds for the outage reduction
objective.

V. RESULTS AND DISCUSSION
A. TEST SCENARIOS
In this paper, we used real interruption data obtained from
several substations in Finland. For the sake of simplicity, the
MG was theoretically placed at the centroid of fault clusters
where the interruption data were obtained to produce fair

3https://git.io/Jundm
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FIGURE 8. Daily dependency index (RL) for the year 2013.

results. The scenarios chosen are the five clusters with the
best accuracy and the one with the lowest accuracy from
Fig. 4 as follows:
• Cluster 1: highest accuracy cluster ≈ 78%
• Cluster 2: accuracy cluster ≈ 75%
• Cluster 3: #1 accuracy cluster ≈ 73%
• Cluster 4: #2 accuracy cluster ≈ 73%
• Cluster 5: accuracy cluster ≈ 72%
• Cluster 6: lowest accuracy cluster ≈ 56%
Each cluster prediction is used independently for the opti-

mization as explained above in Section IV-A.

B. RESILIENCE
The daily resilience metric calculated using Eq. (2) for the
year 2013 is shown in Fig. 8, which depicts the combined use
of the proposed predictive interruption model and the eco-
nomical approach (predicted); considering only the econom-
ical approach (economical); the reliability model approach

(reliable); and faults to be known (foresight). The daily
resilience metric gives a granular view of how the prior
knowledge of the operational behavior of the microgrid can
enhance theMG resilience over a period of time.We analyzed
the faults in the region under study and found that 2 h for TD
explains more than 90% of the interruption time for outages
occurring in the region, and TU = 24−TD, because the daily
index analysis covers a period of 24 h. The variation seen in
the daily resilience illustrated in Fig. 8 is due the variation in
the load and in the energy stored in the battery.
Fig. 8 presents a comparison between the above-mentioned

approaches between clusters 1 and 6 (the highest and lowest
accuracies). Fig. 8 shows how the combination of economical
and predicted approaches faults yields a better dependency
and thus, the microgrid is more resilient to upcoming events
by having more energy available when a fault occurs. The
above-discussed trade-off maintains a balance that results in
a more robust grid but also considering the energy prices.

VOLUME 9, 2021 163117



D. Gutierrez-Rojas et al.: Weather-Driven Predictive Control of Battery Storage for Improved Microgrid Resilience

FIGURE 9. Violin plot for RL in the highest accuracy clusters for the year
2013.

From only the economical perspective, there is a signif-
icant decrease in dependency when faults occur for that
specific day, thereby reducing the resilience. Furthermore,
Figs. 8b and 8d show how increasing the value of the battery
storage enhances the dependency index for all approaches.
A closer look at the all-year-round dependency for the

approaches is analyzed in Fig. 9: the economical and foresight
approaches are very similar having a lower adjacent value

smaller than the other two approaches and more outside
points. Moreover, the dependency data for the economical
approach is more distributed on the axes meaning that it
is not dependent on resilience. The reliable and predicted
approaches follow a resilient strategy and thereby a narrow
distance between adjacent values. Their medians are almost
the same but have variations in the first and third quartiles
with the predictive one having greater values closer to 1.
There is no difference between clusters for the economical
approach because it does not consider interruption data,
whereas for the other approaches the difference is almost neg-
ligible because of the smaller discrepancies in the interruption
accuracy.
The violin plot shown in Fig. 10 contains the plots of the

dependency index based on a 24 h ahead horizon and calcu-
lated hourly for five days (five without faults and five with
faults) for five clusters with a higher accuracy. The scenar-
ios plotted were the economical approach and the proposed
predictive approach. We can see that when a fault occurs in
these two scenarios, the proposed approach becomes slightly
more conservative, thereby narrowing the upper and lower
adjacent values andmaintaining themedian at higher levels of
dependency. The economical approach does not distinguish a
possible upcoming fault event, meaning that the lower adja-
cent value is smaller. The tendency of the proposed predicted
approach to be more conservative with the available energy
shows an increase in the resilience especially for the days that

FIGURE 10. Violin plot for RL in five clusters calculated hourly for days with and without a fault.
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have a high probability of a fault occurrence. The scenario
plotted in Fig. 10 considers 2 h of energy available in the
battery.

VI. CONCLUSION
Preparation of a grid against severe fault conditions is one of
the least investigated actions to take account of when increas-
ing the overall resilience in an MG. The reason behind this
is the unpredictable and probabilistic nature of these events.
In this paper, weather-based decision-making for charging a
BESS in an MG was developed. The methodology includes
three different models: interruption prediction, load demand,
and solar PV production forecast. We were able to effectively
predict an upcoming interruption in the system with 78%
accuracy and thereby implement a multiobjective chance
constraint optimization to schedule themicrogrid battery stor-
age according to the prediction. The proposed optimization
approach takes into consideration two objectives: resilience
to possible supply interruptions and economic dispatch so
that we can guarantee a safe and economical operation of the
grid.
We also proposed daily quantification of the resilience

metric of dependency, which measures on a daily basis the
energy stored in the BESS revealing for the day ahead how
independent the MG will be from the main grid. We showed
that when compared with the economical, reliable, and fore-
sight approaches, our control policy can improve the overall
resilience for short and long periods of time in regard to
an interruption in the main grid so that the MG operates in
the island mode. When calculating the resilience index in
our proposed approach, the probability of the occurrence of
a fault determines whether we can prepare the MG for the
upcoming events. Fault data are not usually available for all
places where microgrids are located or they are designed to
be built; this is due to companies’ polices that prevent the
data being shared, or data are simply nonexistent for the
region. The more data are available, the more precise are
the outcomes from outage models, meaning better results in
the MG resilience. Having this type of data, we can see from
our approach that a trade-off between an economical and
resilient MG can be possible by employing multiobjective
BESS optimization. An overall resilience improvement can
only be achieved by correctly assessing the framework cycle
and its individual pillars described in detail in the paper.
In summary, using interruption and economic dispatch

ensures that the microgrid does not operate oversized when
there is no risk of a fault occurrence and that it also enters
into a hardening state, which increases the amount of energy
stored in the BESS in the case of a high probability of a
fault occurrence, thereby supplying energy for longer periods
when operating in the island mode.
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Abstract
Learning methods have been increasingly used in power engineering to perform various
tasks. In this paper, a fault selection procedure in double-circuit transmission lines employing
different learning methods is accordingly proposed. In the proposed procedure, the discrete
Fourier transform (DFT) is used to pre-process raw data from the transmission line before
it is fed into the learning algorithm, which will detect and classify any fault based on a
training period. The performance of differentmachine learning algorithms is then numerically
compared through simulations. The comparison indicates that an artificial neural network
(ANN) achieves remarkable accuracy of 98.47%. As a drawback, the ANN method cannot
provide explainable results and is also not robust against noisy measurements. Subsequently,
it is demonstrated that explainable results can be obtained with high accuracy by using rule-
based learners such as the recently developed quantitative association rule mining algorithm
(QARMA). The QARMA algorithm outperforms other explainable schemes, while attaining
an accuracy of 98%. Besides, it was shown that QARMA leads to a very high accuracy
of 97% for highly noisy data. The proposed method was also validated using data from an
actual transmission line fault. In summary, the proposed two-step procedure using the DFT
combined with either deep learning or rule-based algorithms can accurately and successfully
perform fault selection tasks but indicating remarkable advantages of the QARMA due to
its explainability and robustness against noise. Those aspects are extremely important if
machine learning and other data-driven methods are to be employed in critical engineering
applications.
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1 Introduction

Transmission lines are a fundamental part of today’s power systems, as they ensure power
supply to end consumers by connecting them to far-off large generation plants. Hence, it is
crucial to have an adequate protective system that is capable of isolating faults quickly and
reliably to prevent any possible damage to other electrical components [29]. The most com-
monly used device for protection of transmission lines is the distance relay, whose operation
relies on the impedance between the fault location and relay installation point. Depending on
the network conditions, looped segments, and double circuit lines that share towers [4], short
lines, and in-feed from the other end of the line, the measured fault impedance can suffer
from certain transitory variations that can cause incorrect operation of the distance relay.

Many transmission line protection schemes are used, but they donot provide intrinsic phase
selection (e.g., negative-sequence and zero-sequence line differential, neutral over-current
protections). However, information of the faulty phase is required to enable single-pole
tripping. As any action performed by the protective system during real-time operations will
directly affect the grid dynamics, correct tripping is critical to maintain the system stability
and reliability [30]. Distance relaying depends on a fault selector to calculate the impedance
in the loop that would lead to line triggering when the protective zone requirements are
met. Therefore, a reliable distance relaying protection system for transmission networks
must have a high-accuracy fault selector for correct operations in any protective zone for
fast trip decision-making. In particular, faults in double-circuit and high-impedance faults
rarely pose technical challenges in terms of fault selection and proper relay operation [14,
25, 32]. In addition, mutual impedance from double-circuit transmission lines may affect
relay performance. When a fault to ground occurs, the zero-sequence currents from one line
induce a voltage in the coupled adjacent line, thereby causing a current to flow in the opposite
direction, which may add or subtract to the existing zero-sequence current [20].

Both researchers and relay manufacturers have made great efforts to improve fault clas-
sification algorithms to perform fault selection and thereby increase the system robustness.
The main difficulty for selecting the correct fault is related to the effects of high resistance on
the fault parameters at any given point. This leads to a situation where the fault currents are
similar to each other in magnitude, and thus, their classification becomes a difficult computa-
tional task. Fault selection methods using one-end recordings can be classified according to
the algorithm [27]. Following this approach, they can be divided into two broad classes: clas-
sical and emerging methods, primarily differing with respect to the balance between speed
and accuracy. Some algorithms can perform the fault selection faster than the time taken by
a cycle of the system frequency, but at lower accuracy. On the other hand, others perform
the fault selection with high accuracy, but they lack speed and even post-protective actions,
and therefore are not suitable for real-time protection and trip decision making based on the
faulted loop (distance relays) [28]. These algorithms consider all measurements available, if
not, approaches like shown in [21] can deal with missing values.

One remarkable example of a classical method is the symmetrical component angle com-
parison which checks whether the magnitude of sequence currents is sufficient to reliably
perform the task by comparing with a threshold. Depending on the currents that are above the
threshold, the fault is selected by comparing the angles, as illustrated in Fig. 1. In particular,
either negative- and positive-sequence currents (I2F and I1F , respectively; see Fig. 1a), or
negative- and zero-sequence (I2F and I0F , respectively; see Fig. 1b) currents are compared.
Both cases must be consistent to perform fault selection.
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(a) (b)

Fig. 1 Fault selection method based on symmetrical currents

Fig. 2 Fault current from any phase and its associated decaying current

Another classical method is the so-called delta method that uses transient components
from faulty continuous currents or voltage signals are used as prefault components. The
output components employed in this method are, for example, decaying memory function
(as illustrated in Fig. 2), superimposed signals, or Fourier transforms.

One of the most common classical method is the impedance-based algorithm. Its main
advantage is to achieve a speed below one cycle of the system frequency, making it very
popular in distance relays, being it implemented by different commercial products used for
single pole tripping actions. In this method, current and voltage measurements from the
fault condition are used to determine the respective zone of operation for each phase (in the
case of a single phase-earth fault) or multiple phases in the loop R − X diagram. These
measurements are extensively used in numerical relays. Single phase-earth impedance loop
characteristics for relays, such as plain impedance, quadrilateral, self-polarised mho [15],
offset mho/lenticular, fully cross-polarized mho, or partially cross-polarized mho, can be
defined depending on the manufacturer and system conditions.

The other class of fault classificationmethods and electric power applications are based on
emerging computational approaches such as machine learning (ML) or deep learning (DL)
[5, 7, 17, 18]. For example, in [6], the authors introduced a non-intrusive fault identification
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method in power transmission lines using PS-HST to extract high-frequency fault compo-
nents. A feed-forward artificial neural network (ANN) was used to select the fault classes.
The authors calculated the HST coefficients and obtained a power spectrum based on the
Parseval’s theorem. In [1], a semi-supervised ML approach based on co-training of two clas-
sifiers is presented. The fault selection was performed in both transmission and distribution
systems. Feature extraction was performed using a wavelet transform of the current and volt-
age signals, and a nature-inspired meta-heuristic, harmony search, was used for determining
the optimal parameters of the wavelets.

Another emerging method is pattern recognition, having shown promising results com-
paredwith conventionalmethods. For instance in [8], a summation-Gaussian extreme learning
machine (SG-ELM)was used for transmission line diagnosis, which includes fault classifica-
tion and fault location, by means of an iterative back-propagation learning algorithm. In [27],
an intrinsic time decomposition (ITD) algorithm was employed to analyze the frequency and
time of non-stationary signals, and subsequently, a probabilistic neural network (PNN) to
implement fault classification was developed. The advantage of this approach lies in its train-
ing speed that enables the entire process to be performed in real time.Apower-spectrum-based
hyperbolic S-transform (PS-HST) and back-propagation artificial neural network (ANN)
were used in [6] to extract high-frequency components of the electric signal generated by an
electric fault to improve fault selection coefficients, and fault classes in power transmission
networks were then identified with one-end recordings. Three ML models—naive Bayes
classifier, support vector (SV), and extreme learning machine—were compared in [26] for
fault classification based on the Hilbert–Huang Transform.

Hybrid techniques can also play an important role. Control strategies that involve two or
more of the methods described above can be used to increase the reliability and accuracy of
fault selection.Newnumerical relays (with higher processing capabilities) are often employed
to effectively select the proper fault and avoid undesirable tripping. Strategies based on ML
use classic methods for pre-processing to improve their models [6].

Here, wewill give particular attention to the quantitative association rulemining algorithm
(QARMA), which has not yet been employed for the fault selection in transmission lines.
QARMA has already been tested in several application scenarios and use-cases in the health
domain and in predictive maintenance applications in particular (see [10, 11] for results
relating to predicting tool Remaining Useful Life in the auto-motive manufacturing industry
from the recently concluded PROPHESY project). Within the context of the EU-funded
QU4LITY1 project, QARMA results have been tested against real-world data-sets ranging
from tool wear-and-tear to body measurements to compute morphotype fit scores in the
fashion industry.

The main reason therefore for choosing QARMA as a tool to study its applicability in
the given domain is the success that QARMA-based classifiers and regressors obtained in
such varied domains, and given the natural appeal that the output of QARMA offers, in the
form of easy-to-understand rules, that we consider are more directly explainable than higher-
order approaches to explainability/interpretability such as Shapley values for explaining
otherwise black-boxmodels. Still, we compare ourmain two approaches, namely deep neural
networks and QARMA to several other well-known classification algorithms, see Sect. 4.2.
Themain criteria for the choice of these other algorithmswere their prior use in this domain as
established in the literature, their overall popularity in the ML field in general, as established
by the number of results returned in Google Search for the respective terms, and finally, their
explainability/interpretability.

1 https://qu4lity-project.eu/.
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This paper extends the above contributions by proposing a two-stage method. The first
stage is the delta method discrete Fourier transform (DM-DFT) that is used to pre-process
the raw data from the transmission. The second stage performs a machine learning algorithm
for fault selection. We studied different techniques in terms of accuracy and explainability.
Our main contributions, also presented in Sect. 4, are as follows:

– We propose a general hybrid methodology based on DM-DFT algorithm that works
independent of network topology.

– We test and compare the performance of well-known ML algorithms techniques such as
decision trees, neural networks, and support vector machines (SVM).

– We develop a fully explainable method that employs the quantitative association rule
mining algorithm (QARMA) [12, 13] and compare its performance with the state-of-the-
art ML algorithms (mostly not-explainable).

– We demonstrate with several numerical examples, including real-world data that fault
classification task can be solved by QARMA with very high accuracy even when only
one-end currents are available, or when the measurements are subject to high levels of
noise.

The rest of this paper is divided as follows. Section 2 introduces proposed methodol-
ogy. Section 3 details the machine learning algorithms employed here, including a detailed
description of QARMA. Section 4 presents the numerical results, while Sect. 5 concludes
this paper.

2 Proposedmethod

2.1 Step 1: delta method discrete Fourier transform

To extract fault features (currents and voltages), a combinedDM-DFT is employed to identify
the fault instance. The DFT maps a given point of the input signal (i.e., current or voltage)
into two points in the output signal. For N samples, considering the pair xn (input signal)
and Xk (its DFT)

Xk =
T−1∑

n=0

xne
−2π ikn/T , (1)

where 0 ≤ k ≤ T − 1, and T is the number of samples per cycle and n represents current
phase (a, b or c). The DM-DFT uses a moving window of length T instead of the complete
signal, thus allowing faster fault recognition. The fault point requires to be within a fault time,
which is considered here to be approximately 3.5 cycles. The sampling rate is 4 kHz, i.e.,
about 80 samples per cycle (which is usually used in commercial relays). To obtain a highly
accurate signal point 1.5 cycles or about 120 samples after fault occurrence are needed.When
a transmission line is in a faulty state, magnitudes of currents and voltages (which are the
features used in the fault classification task) can suddenly change depending on the type of
fault and its characteristics. Figure 3 illustrates a cycle in the periodic sinusoidal signal where
the DFT calculations are performed. Once the DFT is calculated, variations in the frequency
domain can be detected as follows:

threshold = 1.5In( j), (2)

ΔIn = In( j+T ) − threshold, (3)

Fi = j + T ↔ ΔI ≥ 0 (4)
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Fig. 3 DM-DFT cycle calculation

where “threshold” refers to the current signal;ΔIn are the changes in the current signal; In( j)

is the current Fourier value of the j th sample with 0 ≤ j ≤ S − T ; S is the total number of
samples in the signal; and Fi indicates the fault instance. Threshold for the ongoing signal
calculation is given by 1.5 times the Fourier pre-fault signal value. A different threshold value
is selected based on the experimental results for different fault conditions. The DM-DFT is
applied to the three-phase currents without considering if ΔIn have similar values; it only
considers values above the threshold. If multiple ΔIn are positive, the fault instant is chosen
from the phase n that has the highest value. IfΔIn ≤ 0 for all three phases, then it is assumed
that there is no fault and the feature extraction is taken randomly from one of the samples of
each signal. Delta methods can be seen as detection of high fluctuation of any quantity (like
temperature, current, or even monetary value) and is only used to identify faulted point and
then method continues with feature extraction. At this stage, it is possible to miss fault points
(miscalculation of a given phasor due to wrong time series point) because of threshold values.
However, for the data-set obtained in this process, all the faults were detected successfully.

Note that the DFT phasor estimation is less sensitive to noise than the individual measure-
ments, and it is robust to the presence of harmonics [23]. Also the threshold selection can
perform even if parallel lines are out of service or if it is applied to transmission lines with
different parameters or ratings [16]. That means the threshold is independent of the topol-
ogy and geometry of the structure. Traditional protection relays use the DFT for protection
calculations [23], therefore using the same pre-processing technique to minimize hardware
requirements, while providing sufficient information to the neural network. However, the
DFT is dependent on the sample frequency, which might be problematic for real-time appli-
cations because of the computational time limitations. It means, the DFT calculation might
take longer than 20 ms to calculate, which is the time where the trip decision is made in a
real-time transmission line scenario.

The process is applied to data-sets (like the one obtained from simulations to be explained
in Sect. 4.1) that contain currents and voltages, either with or without a faulted state. The
selection is automatically done after DFT procedure is completed. For data-sets with faults,
the voltages and current feature extraction are selected at the fault instant point; for the ones
without faults, a random point within the signal is selected. The output data-set, listed in
Table 1, is the input for the ML methods to be described next. Table 1 contains the absolute
values of currents and voltages of local and remote ends of the transmission line. The neutral
currents were estimated as a phasorial sum of the abc currents.
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Table 1 Output from DM-DFT
including all datasets with and
without faults

Feature File 1 File 2 … Last file

L IA , L IB , L IC . . . RVC Value Value … Value

Target variable

Fault type Value Value … Value

2.2 Step 2: machine learningmethods

A number of different established algorithms are then considered for the supervised learning:
decision trees, artificial neural networks (both shallow and deep), support vector machines,
rule-extraction systems (Ripper-k andQARMA), naive Bayes, logistic regression, and finally
ensemble methods (AdaBoost). As already mentioned, the main criteria for selecting the
abovemethods were their prior use in the domain, as established in the current literature, their
popularity in the machine learning field, and their explainability/interpretability properties.

These algorithms have different accuracy levels and time to train each model. Moreover,
the “explainability” of their models also varies. For example, explainable methods, such as
decision trees, usually have poorer accuracy thanANNs. On the other hand, when the training
data-set is large enough, an ANN often gives very high accuracy, but it is time consuming,
and the resulting model offers little in terms of explainability to humans. The algorithm
should then be selected depending on the requirements set between accuracy, time, as well
as explainability of the outcome.

In this paper, the focus is on representatives from the class ofDLmethods and the “explain-
able artificial intelligence (AI)” families—for an exposition to the latter class, see [22].
We built and tested models with multiple hidden layers of feed-forward nodes trained by
mini-batch-based optimization methods (including classical stochastic gradient descent with
momentum as well as the Adam [24] optimizer); we also built rule sets extracted using the
QARMA algorithm for quantitative association rule mining [13]. These choices were made
because of the proven capability of DL methods to obtain very high accuracy given enough
data, and also because QARMA is an algorithm that has already been successfully tested
for Predictive Maintenance (PdM) related tasks in industrial settings. The output data-set
from the DM-DFT is used in all cases, and it contains all the produced features. The target
variable, i.e., the fault type (see Table 1), is encoded into eleven different classes (ten fault
types plus one no_fault mode) as it has string values (one-hot encoding). Figure 4 presents
the flowchart of the proposed two-step method. The DM-DFT is employed for all cases as the
preprocessing stage, while the second stage is the different ML algorithms presented here.

3 Selected learning algorithms

This section starts with the algorithm that is expected to have the highest accuracy: the ANN
as proposed in [9]. Then, the QARMA algorithm [12] is presented in brief, as it is expected
to provide reasonably high accuracy but with the added benefit of explainable outcomes.

3.1 Artificial neural networks

Artificial neural networks (ANN) and in particular feed-forward ANNs, also known as multi-
layer perceptrons, are a powerful ML tool and have been used extensively for fault diagnosis
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Fig. 4 Flowchart of the fault classification process using ML
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Fig. 5 Structure of a three-stages feed-forward neural network

problems such as the ones mentioned before. The ANN is a feed-forward neural network
consisting of three stages. The first stage is the input layer containing the voltages and currents
from both ends at the time of fault occurrence given by the DM-DFT along with a fault tag
coded into binary form. The second stage is the set of hidden layers, where every node in a
particular layer receives inputs from all the nodes in the layer immediately below that layer
and sends its output to all nodes in the layer immediately above it. We have experimented
with various architectures, shallow and deep, using theOpen-Source library popt4jlib (https://
github.com/ioannischristou/popt4jlib) that allows for parallel and distributed evaluation of
training instance pairs of both the network output as well as the gradient of the network
computed via the classical back-propagation algorithm. The third and final stage is the output
layer that returns fault type (or no_fault) signals that are encoded back into the phase selection
tag. Figure 5 illustrates the procedure, where “Local current A” refers to the current signal of
phase Ameasured at the left end of the transmission line (see Fig. 6), while “Remote Current
A” refers to the current signal of phase A measured at the right end of the transmission
line and subsequently with voltages and phase B and C . Together, they form the features of
the data-set. The multi-layer ANN in [9] has the following parameters: two fully connected
layers with a rectifier linear unit (ReLU) activation, one output layer with softmax activation,
categorical cross-entropy loss function, and adam optimizer.

In our experiments, the best topology was achieved with a deeper network consisting of
4 layers in total: the first hidden layer consisting of a mixture of 5 linear activation units
and 5 SoftPlus activation units (smoother version of ReLU), and the other two hidden layers
consisting of 5 SoftPlus activation units each. The output layer, using one-hot encoding,
comprised of 11 sigmoid (logistic) activation units, each one corresponding to one of the
possible classification results for the problem (10 different fault types and one no_fault
type.)
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3.2 Quantitative association rule mining for fault diagnosis

Association rulemining (ARM) is amajor and still very active research area; implementations
of the algorithms developed over the years are found in most popular software packages
for data mining, such as WEKA, MOA, KEEL, and Orange. ARM works on datasets that
contain subsets of “items.” A typical dataset applicable for ARM is a database containing
super-market basket data, i.e., the items in customers’ shopping carts during check-out. Its
major objective is to discover statistical rules that relate the presence of a set of such items to
the presence of other items, and a typical association rule for such market basket data would
be Buys(“Milk”) �⇒ Buys(“Bread”) where the implication is understood to hold in a
statistical sense, so that the rule means that the percentage of baskets that contain both milk
and bread is above a minimum threshold (support of the rule) as well as that the ratio of all
baskets that contain both milk and bread over the number of baskets that contain at least milk
is above another threshold (confidence of the rule.) The a priori [3] algorithm is a famous
early algorithm for discovering all such rules satisfying minimum support and confidence
in a given dataset. In the following years, many different authors improved upon this first
algorithm (see [19] for a notable example).

However, the above notion of association rules is a “qualitative” one: any possible quanti-
tative attribute belonging to the items is not taken into account. Quantitative association rule
mining (QARM) is an extension of the standard ARM that allows for items to quantify any
attributes they may have in the rule antecedents and/or consequences, for more precise rules.

An illustrative example of a quantitative association rule would then be Buys(Milk).
price ≤ 0.9 ∧ Buys(Bread).price ≤ 0.25 ⇒ Buys(Sugar).price ≤ 0.1 which says
that (for a percentage of customers above the specified support) customers who buy milk at
a price less than or equal to USD$.9 and bread at a price less than or equal to USD$.25
will also purchase sugar at a price less than or equal to USD$.1. This is significantly more
information than simply knowing that when a customer buys bread and milk they are also
likely to buy sugar.

QARMA [12, 13] is a family of efficient novel cluster–parallel algorithms for mining
quantitative association rules with a single consequent item, and many antecedent items with
different attributes in largemultidimensional datasets. Using the standard support-confidence
framework of qualitative association rule mining [2], it extends the notions of support, con-
fidence, and many other “interestingness” metrics so that they apply to quantitative rules.

QARMA is configured to produce rules of the form I1.attr1 ∈ [l1,1, h1,1] ∧ · · · ∧
In .attrm ∈ [ln,m, hn,m] �⇒ J0.p ∈ [l0, h0] or alternatively to produce rules of the
form: I1.attr1 ∈ [l1,1, h1,1] ∧ · · · ∧ In .attrm ∈ [ln,m, hn,m] �⇒ J0.p = v. The latter
form is very useful in supervised classification problems where the value of the target item
attribute is essentially the class variable that is being learned.

QARMA (fully specified in [13], and then extended in [12]) within the particular context
of grid fault diagnosis, works as follows:

First, all subsets of variables including the target variable (fault indicator) of length 2,
then 3, then 4, up to a user-specified length are constructed, and called “itemsets.” Then, the
algorithm proceeds sequentially to produce all valid quantitative association rules from each
itemset of length 2, then 3, then 4…Within each phase of producing all valid rules of length
l = 2, 3, . . . , the algorithm considers in parallel all frequent itemsets of length l. For a given
itemset, it produces all possible rules (with each attribute in the rule being un-quantified in
the beginning); for each such initially unquantified rule, a possibly different CPU core runs
a procedure called QU ANT I FY_RULE() maintaining a local rule set R (initially empty)
and runs a modified breadth-first Search procedure that first assigns the consequent attribute
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to the highest possible value, and, as long as the resultant partially quantified rule has support
above the threshold required, adds it to a queue data structure T .

While this queue is not empty, the first rule inserted in the queue is retrieved and removed
from the queue. For each attribute that has not been quantified in it yet, the algorithm creates
as many new rules as there are different values in the dataset for the attribute being examined
in an ascending attribute order value and enters the queue T in this order, but only if the
newly quantified rule exceeds the minimum support requirement. If the partially quantified
rule also meets minimum confidence (or any other metric), then it is checked against the
current set of local rules R to see if it is dominated by another rule in R. If no other rule in
R dominates the current rule, the current rule is added to the set R. After having run this
BFS process in parallel for all frequent itemsets of length l, the various CPUs participating
in the run synchronize to obtain all rules from all the other ones before moving to process
the frequent itemsets of length l + 1.

The resulting rule set has the theoretical property that it maximally covers the dataset it
has worked on: there is no other rule outside the produced dataset in the form described above
that can cover even a single extra instance in the dataset while having the required minimum
support and confidence (or other specified interestingness metrics) required. Once the set of
all non-dominated rules has been computed, a classifier based on their ensemble works as
follows:

1. Select all the rules whose antecedent conditions are satisfied by this instance and add
them to the set F ;

2. Sort out the rule-set F in decreasing order of confidence and decreasing order of support
on the training set;

3. Remove all but the top-100 rules of the sorted set F ;
4. Each rule in F carries a weight equal to its confidence on the training set;
5. The weighted majority vote of the rules in F decides the class of the instance.

4 Simulation results

4.1 Test system description

A 400-kV, 50-Hz power system (Fig. 6) was simulated to extract features and then generate
the dataset of currents and voltages based on the DFT at a fault point (when there is a fault).
Under this setting, 10 different faults can occur involving the electrical phases A, B or C and
ground G of the transmission line: three-phase faults (ABCG), bi-phase faults (ABG, BCG,
CAG, AB, BC and CA) and mono-phase faults (AG, BG and CG). They differ from each
other due to the phases involved and their parameters. The electrical system under study is
composed of a double-circuit transmission line typical, for example, in Finland and other
European countries. It has two lines connected to a local end marked as L and remote end R.
At each end, a source is connected representing a transmission network. These types of lines
represent a challenge for correct fault identification and selection owing to the strong impact
of mutual impedance on the fault resistance. As for the communication channel, data were
gathered by intelligent electronic devices (IED) from both ends and sent via a wireless link
(e.g., 4G or 5G) to the fault selector, as shown in Fig. 6. It also presents the data flow blocks
how the fault selection is performed and retrieved back to the smart devices for protective
actions. The training and testing data-sets were collected in the preprocessing phase.
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Fig. 6 A 400-kV double-circuit transmission line and data flow

Table 2 Simulation input parameters

Parameter Training data set Testing data set

Fault type None, AG, BG, CG, None, AG, BG, CG,

ABG, BCG, CAG, AB, ABG, BCG, CAG, AB,

BC, CA, ABC BC, CA, ABC

Fault resistance (�) 0.01, 0.1, 1, 5a Random

Fault distance (%) 10–90 (steps of 10) Random

Fault inception angles 2 (45◦ and 90◦) Random

Power flow variation 2 Random

Line parameter error 5 Random

Total size 15,120 5040

aFault resistances from 10–200� (steps of 10�) are only applied for single-phase faults

All the simulations were carried out in MATLAB/Simulink. The simulations were pre-
pared with the specifications shown in Table 2, the transmission line parameters in Table
3. Both normal operations and different fault types (10 in total) were simulated along with
different fault resistances (24), fault inception angles (2), line parameter errors (5), high and
low power flow (2), and fault locations along the line (9). The simulation comprised 20160
rounds to collect data of both fault and non-faulted systems whose details are presented in
Table 2. The resulting data-set is already publicly available.2

2 https://github.com/ioannischristou/popt4jlib/tree/master/testdata/grid_fault.
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Table 3 Transmission line
parameters

Parameter Transmission line L–R

Voltage (kV) 400

Length (km) 220

Positive-sequence resistance (�/km) 0.0033564

Positive-sequence inductance (H/km) 0.00057347

Positive-sequence capacitance (F/km) 2.0423e−8

Zero-sequence resistance (�/km) 0.27073

Zero-sequence inductance (H/km) 0.0039052

Zero-sequence capacitance (F/km) 7.9939e−9

4.2 Results

Two simulation scenarios and a real fault from a transmission line were used to test the
proposed methodology. Note that, for these experiments, all machine learning algorithms ran
on the same machine. However, the proposed implementations are fully parallel and do take
advantage of all CPU cores available in the computer running the codes. This makes it more
computation-efficient. Specifically, QARMA does not require any hyper-parameters to run.

This is not the case for the ANN, though, for which, the architecture (number of layers,
number of nodes in each layer, type of each node and so on) must be specified in advance,
and forms the set of hyper-parameters that need to be fine-tuned through experimentation
and best-practice guidance.

Nevertheless, it is worth mentioning that we do not claim that the parameters of our ANN
model are optimal, as they were found by manual search in repeated experiments; they only
provided excellent accuracy, and it is only this best set of results for the ANN that we report
in this paper. Further, regarding the hyper-parameters required for the other classification
algorithms that we experimented with, Naive Bayes requires no hyper-parameters, Ripper-k
requires only the number of FOLD iterations which is by default set to 2, Decision Trees,
Logistic Regression and Support Vector Machines are famous for requiring very few hyper-
parameters (gain criterion function, and penalty factors “w” and “C,” respectively); finally,
for the AdaBoost.M1 method, that does require the base weak learners to be fully specified,
we left the default settings specified in the WEKA package.

Besides, all simulation scenarios were based on typical topologies and parameters used
in the specialized literature, which represent real transmission lines and their operation.

4.2.1 Test system 1

In the first test system, the generated data-set was split into two subsets: 75% of a random
shuffle of the data-set was kept for training and the remaining 25% was used to validate the
accuracy of the trained models. The exact same split was used for all simulations with all
different algorithms. Experiments with fivefold cross-validation gave essentially identical
results. Table 4 shows the results of running the above-mentioned algorithms for supervised
learning on the produced data-set; Fig. 7 shows the results for the classification task. The
accuracy achieved with the DL model setup was remarkably high, 98.33%. It was achieved
by a 4-layer deep network, with 10 nodes in the first hidden layer (5 linear and 5 SoftPlus
units), 5 SoftPlus units in the second layer, and 5 SoftPlus units in the third layer; the output
layer had 11 sigmoid units corresponding to each of the 11 fault class types (including the
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Table 4 ML results on the
fault-grid dataset

Classifier Accuracy (%)

Decision tree 94.62

ANN (1 hidden layer) 95.18

ANN (3 hidden layer) 98.33

SVM 89.05

Ripper-k 86.17

Naïve Bayes 59.42

Logistic regression 78.47

AdaBoost.M1 17.81

QARMA 98

Bold indicates the two best accuracy methods

Fig. 7 Fault classification task confusion matrix for test system 1

“no-fault” type). This particular architecture was determined via trial-and-error, as the best
observed among 50 different architectures. The total cost function of the network was the
sum of square errors of each output node over all training instances. The entire network was
trained via stochastic gradient descent (SGD) as the weights optimization algorithm. The
backpropagation algorithm was used to compute the overall function gradient (derivatives
corresponding to each data instance within a batch computed in parallel and then summed
together to form the total gradient). The open-source library popt4jlib (https://github.com/
ioannischristou/popt4jlib) was used to train this network, and it also contains the simula-
tion datasets used in this paper. Note that simpler methods such as Naive Bayes or logistic
regression did not perform well on this dataset. This happens because the relatively deep
neural network employed here has enough layers to produce an intermediate representation
that makes it easy for the final layer to classify correctly the 11 different classes; and that
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Table 5 Feature selection on original data-set

Round Feature

1 All features (local and remote current and voltages including IR )

2 L IA , L IB , L IC , L IR

3 RIA , RIB , RIC , RIR

4 L IA , L IB , L IC , LVA , LVB , LVC

5 RIA , RIB , RIC , RVA , RVB , RVC
6 L IA , L IB , L IC

7 RIA , RIB , RIC

8 LVA , LVB , LVC

9 RVA , RVB , RVC

the large number of produced high-confidence rules leads to majority votes that are usually
correctly predicting the fault.

The SGD method was used with a mini-batch size of 50 instances. In addition, normal-
ization of the gradient vector g(w) = ∇E(w) to 1 before the steepest gradient descent rule
w ← w − αg(w) was important for quick convergence; the learning rate α decayed as the
epochs progressed according to the formula α ← α500/(500 + epoch). The remarkable
validation accuracy was achieved after only 10 epochs in less than 8.6 s of wall-clock train-
ing time on an Intel i-9 10920X processor, using all its 24 logical cores. This high accuracy
is due to the large size of the simulated fault dataset and equally importantly because of
the balance between the sample sizes of the various classes. The strong success of the DL
model is also because all the voltages and currents from both lines were available, including
neutral currents. The faults that were not selected properly were all single-phase-to-ground
faults. This can be explained as follows: in those fault cases where the fault resistance took
the larger value, only one of the phases changed slightly compared to the other two phases
making the feature variation difficult for the model to detect. Further, perfect communication
and without any problems related to latency, availability, or synchronization was considered.

With this setup, the importance of availability of all features was tested. Table 5 lists the
number of features tested, and Fig. 8 shows the results with an ANN.

With fewer features, the ANN does not perform as well, emphasizing the importance of
neutral current estimation. However, when only one-end currents are available, the validation
error of the algorithm is still adequate for the task.

We also ran an experiment to test the sensitivity of the neural network to measurement
noise; we progressively added more Gaussian white noise (with zero mean and increasing
sigma values) to each of the features in our training and/or test data except for the class
attribute (fault type.) The results are tabulated in Table 6 and show that for small σ values
less than 10, the trained model is still able to classify test data with nearly the same accuracy
as when there is no noise in the measurements; however, for large σ = 100, the neural
network accuracy drops significantly, to around 89% which indicates that the trained model
is no longer able to accurately identify fault types when measurement noise reaches such
high levels. The situation is the same or worse when the training data-set itself suffers from
measurement noise: when the training data-set is “polluted” with white noise with small
σ = 10, even when the test data have no noise at all, the accuracy of the trained model
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Fig. 8 Validation error obtained with same model parameters using less features

Table 6 Neural network
performance under different
noise levels in the data

Training σ Testing σ NN error% QARMA error%

0 0.01 2.98 2

0 1 3 2

0 10 3.14 2.01

0 100 11.7 2.23

0.01 0 3.04 2

1 0 3.04 2

10 0 6.1 2.01

100 0 17.84 2.47

100 100 20.67 2.89

drops to less than 94%.When both training and test data are “polluted” with white noise with
σ = 100, the neural network accuracy drops to less than 80%.

We ran QARMA on the same training set with the user-defined support threshold of 3.5%,
and the confidence threshold of 90% to obtain 5333 rules covering 97.8%of the entire training
set. Then, a slight variant of the decision making algorithm described in the previous section,
based on weighted voting, was used: for each instance in our test set, as long as the instance
is covered by more than 100 rules, the instance’s class is decided upon by the majority vote
of the top 10 firing rules having the highest confidence on the training set; instances that
fail the minimum coverage requirement are not classified. This algorithm resulted in high
accuracy comparable with the one obtained by the DL, around 98% but at the following cost:
a longer training time (around 15min of wall clock time on the same i-9 10920XCPUwith 24
logical cores.) For a small percentage of testing instances, approximately 4%, QARMA was
not able to provide a decision, because of the small number of rules firing on them. However,
we expect that QARMA and its decision-making components will compare equally well or
even outperform deep learning techniques in training sets that are more highly skewed.

Another advantage of QARMA relates to the sensitivity of the produced rules with respect
to noise in the data. We already saw that when the training and testing data suffer from
Gaussian white noise with σ = 100 the performance of the neural network drops just below
80%. On the other hand, when QARMA ran on the same noise-polluted training dataset with
σ = 100, and then the resulting rule-ensemble asked to classify an equally noise-polluted
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testing data-set (with σ = 100), surprisingly, QARMA performance remained very high at
97.11% making QARMA much more robust to noise in the measurements than the neural
network. QARMAperformance is then very little affected by noise in absolute terms, ranging
from 2% of error in the best studied case (first row of Table 6) to 2.9% in the worst (last row).

Even though more research and experiments are needed to fully explain why this might
happen, we believe that the answer about the cause of the difference of robustness between
the two classifiers is probably lying on the underlying models’ complexity: the NN being a
deeply composite function of many variables (connection weights and bias thresholds) when
optimized on a noise-polluted training data-set is easier to over-fit, and “learn” some of the
noise in its weights. On the other hand, QARMA being a rule extractor that learns rules that
have only a small number of different features in their antecedent conditions provides an
ensemble of simple if-then decision rules that are more likely to hold true in the presence of
noise.

Besides, QARMA produces a model with a set of quantitative rules that are much easier
to understand and reason about than most of the other models, and DL models in particular;
this makes QARMA results much easier to explain to humans than any other model. Every
extracted rule is trivially checked against the training data-set for validation purposes, and it is
also trivial to understand “what it means” since the preconditions of the rule are nothingmore
than a conjunction of the restrictions of the attributes that comprise the rule’s antecedents
to certain intervals. This ease of understanding of rules is what has made them particularly
attractive since the beginning of AI and ML research. In fact, already since the 1980s, there
have been attempts to extract the knowledge that is embedded in neural network models into
sets of rules [31] since such rule sets were recognized from the beginning as the most obvious
knowledge representation that can exist. Therefore, QARMA is, in general, a particularly
good fit for the newly emerging “eXplainable Artificial Intelligence” (XAI) paradigm, the
term “explainable”meaning that the resultingmodel that the algorithm produces can be easily
understood by humans.

4.2.2 Test system 2

A different line configuration was also tested in order to evaluate the generalization capa-
bilities. The test system 2 consists of a single-circuit 400-kV transmission line connected
to two Thevenin equivalents. Although this is a simpler system that does not have the same
impact of mutual impedance of double-circuit transmission lines, the inclusion of this sim-
ulation in the data-set allows the analysis of generalizing the solution to different systems.
A data-set containing 990 rows was used for testing the original model; the ANN achieved
an accuracy of 98.8% while QARMA achieved 98.1% for all faulty classes and non-faults in
this system. The results were slightly better than the test performed on the original data-set,
showing the viability of DMFT for fault detection and the ANN/QARMA for classification.
The confusion matrix of the mentioned test can be seen in Fig. 9.

We also ran a symmetrical algorithm method using the model data-set for this paper. This
method is used as the basis for comparison of our proposed approach because it is employed
by one top relay manufacturer. The results can be seen in Fig. 10 (note that a confusion
matrix like the one presented in Fig. 9 cannot be used for comparing all faults using the
symmetrical method because the datasets have different lengths; only AC, BC and CG faults
can be compared in that way). The accuracy of this method for single-phase faults can is
represented in Table 7 along with the false positive single-phase detection. False positive in
this context is seen as the number of single-phase faults selected by the symmetrical method
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Fig. 9 Fault classification task confusion matrix for test system 2

Fig. 10 Fault classification by symmetrical angle method

given that the real fault involved at least 2 phases. Under those conditions, the classification
strategy takes the system to a situation less secure than with a tripolar tripping.

In summary, the results shown in Fig. 7 indicate that the errors in the proposed method
occurred in the form of lack of identification of some faults. Since fault selection systems
are meant to be associated with protection algorithms, those errors can cause an unnecessary
tripolar breaker opening—security error. Considering an interconnected system, security
errors are less likely to cause system-wide power outages than protection dependability
errors. Therefore, in comparison with the symmetric method, the proposed solution will
promote better system stability than the traditional method’s results depicted in Table 7.
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Table 7 Results obtained by replicating symmetrical method

Dependability Security

Local end (%) Remote end (%) Local end Remote end

AG 98.05 98.86 910 910

BG 95.53 95.94 896 909

CG 97.50 97.29 880 880

Fig. 11 Phase C and DFT of real transmission system fault

4.2.3 Real fault file

To test the proposed procedure, we used a real fault file from a transmission system located
in Brazil, whose exact location cannot be disclosed. Real faults are usually gathered by
fault recorders in .cvg files, we used an algorithm to convert into matrices (.mat) for easier
processing. Once the voltages and currents matrices are obtained, they can be injected in
DM-DFT algorithm that yields the fault point and extracts the features as seen in Fig. 11.

In real situations, faults can suddenly reappear for reasons as re-closure or reinsertion.
This is the case on the CG-type fault we see in Fig. 11. The algorithm detects successfully
the first fault occurrence and also locate the exact sample where the phasors are extracted
to perform selection. The NN and QARMA techniques were applied in the real fault data
with a successful result: both correctly classify the fault as CG. Particularly with QARMA,
it yielded 1100 rules that predicted the class of the fault, which resulted in the overall correct
classification of the test case. One of the highest confidence rules for this test case was,

[local_voltageA >= 235730.0266612848]
AND [local_voltage_B >= 231130.0132737731]
AND [remote_ir >= 321.3212781340371]

⇒ [fault_type = CG].
(5)

The support of this rule on the training set is 2.72%, and it holds with confidence 100%.
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4.3 Discussion

4.3.1 Implications of the results

Current implementations for real-time use cases, such as relay 21 in transmission lines,
usually employ a full cycle of phasor estimation and around 4 ms of angle comparison
between current/voltage components, as reported by some manufacturers. With either of the
studied methods (DL or QARMA), once the model is generated based on historical data of
the target system, the time taken to perform phase evaluation given a single-phase fault in
the system is as small as 4 ms. Therefore, both methods can reliably select the faulty phase
in the relay to make additional trip decisions. The algorithms described in this paper that
are commonly implemented in relays in operation today employ a full cycle Fourier phasor
estimation for both the protection and the phase estimation. Because the phasor calculation is
done in real time, it is based on the Fourier transform (or another filter with a similar output)
that provides the root-mean-square (RMS) value required for the proposed phase estimation,
implying that only the phase selection itself has to be calculated.

Distance relays (ANSI 21) require 4 ms of angle comparison between current/voltage
components, as reported by some manufacturers. The process to utilize the algorithms’ out-
puts only requires multiplications and additional operations, making it more computationally
efficient than most phasor operations and suitable for use in real-time applications.

4.3.2 Communication systems

As for the requirements for a communication setup where one can perform phase selec-
tion, no communication is needed between the two ends as a signal input, because once
the model is generated, the validation is performed at the end. However, there is still a
need for communication for data gathering from both ends for phasor estimation. Current
mobile communication advances could enable wireless communication between the ends for
instantaneous data gathering of currents and voltages, and interface diversity could enable a
centralized system that is cheaper to implement in a communication architecture, as shown
in Fig. 6.

4.3.3 Explainable results

When comparing the results of the DL method against the ones provided by QARMA, it
is clear that the rule set produced by QARMA leads to a slightly lower accuracy than the
DL method, while still being highly accurate. However, the resulting QARMA model is by
default much more “explainable” than the DL model and has the extra advantage that it can
be “reverse-engineered” much more easily than any other model. As an example, consider
the following QARMA produced rule:

local_current_A ∈ [433.89, 589.99]
∧ local_current_B ∈ [433.96, 564.25]
�⇒ fault_type = 10 (no_fault) (6)

which holds with support 3.66% and confidence 91.84% on the training set. This rule is
highly statistically significant as it has conviction 1,115.06, and lift equal to 10.13. It is also
obvious to a human what it means. As another example, consider the rule:

local_current_A ≥ 438.39
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∧ local_voltage_B ≥ 235721.9 ∧ local_voltage_C ≥ 225592.7

�⇒ fault_type = 0 (AG) (7)

holding with support 4.19% and confidence 95.06%. Again, a human can understand what
the rule means instantly.

When the QARMA rule set leads to a false diagnosis, it is trivial to see which set of rules
led to the wrong decision. These rules can then be individually checked by human experts
to see if their validity still holds in the face of new data and/or operating system conditions.
Thus, at least, in principle, the entire model can be monitored and “debugged” in real time by
human experts when it is put in production. This contrasts with models that make decisions
based on the output of a highly nonlinear equation.

When less features are available in the training set, it has been shown that performance
drops as expected. In certain cases, the performance degrades gracefully, but it can also
be more serious. This performance degradation could be mitigated to a larger extent if we
performed our simulations allowing the design of the deep network to vary with all hyper-
parameters, from the number of layers and the number of epochs chosen, to the optimization
algorithm used for the learning of the network weights and threshold biases. However, with
such an approach, the ML process shown in Fig. 4 would essentially have to be repeated
anew. Instead, we show how a network with predefined hyper-parameters, in particular those
proposed in Sect. 3, performswhen trained on different subsets of the original training dataset
containing less features, such as local only information (local currents or local voltages and
so on.)

Moreover, we also presented key aspects related to the real dataset from a transmission
line and how the proposed method can be used by power engineers on their operational
decision-making, including the association rules provided by QARMA that “explain” the
fault selection. Results from association rules improve the knowledge on how power systems
work in face of stressful events. This is indeed an important step if traditional engineering
fields would rely more on machine learning methods. This sort of new explaining knowledge
is to become evermore frequent in real-world applications as well as in academic research.

5 Conclusion

In this paper, we have proposed and analyzed a two-step methodology for selecting faults in
double-circuit transmission lines. In the first step, the DFT was used to pre-process the raw
data from the transmission lines. Subsequently, different learning algorithms were employed
in the second step to detect and classify any fault based on a training period, and their per-
formances were compared through numerical simulations. The presented two-step approach
has been proven to be highly robust against high resistance faults and faults that occur in
lines with high mutual impedance. The results have shown high phase selection for all types
of faults and even identified recordings that do not present faulty states.

Among the different benchmarked learning methods, deep neural networks have reached
an accuracy of 98.33% of correct selection, while the QARMA reached 98% accuracy.
However, interestingly, the QARMA is also an explainable algorithm (i.e., the outcomes
have explainable explicit internal relations between features) and also robust against noisy
measurements unlike ANNs. This makes QARMAa highly suitable approach to achieve high
robustness and high accuracy with explainable model outcomes. Future work will include
the communication delay of the current and voltage signals sent to the central processing unit
from the IEDs to evaluate the performance of the proposed method.
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ABSTRACT Data acquisition in process industries usually takes place at each sampling. The disadvantage
is that a considerable amount of data without new information about the state of the process is continuously
transmitted and processed. This negatively affects the communication system and computational power,
which is more critical nowadays given the number of variables measured, even in seconds. One solution
concerns the event-driven paradigm, in which only relevant data according to a pre-defined criterion is
forwarded for further processing. This work investigated the event-based threshold and delta methods in the
context of fault detection. The data transmission rate was also analyzed. The well-know Tennessee Eastman
problem (TEP) was used as a case study. The fault detection system was based on PCA (principal component
analysis), which is widely used for this purpose in this benchmark. The results were compared with the
commonly used time-based approach, for a fixed false alarm rate. The threshold rule provided similar results,
but with much less data. For the delta rule, significant MDR (missed detection rate) gains of up to 74% were
obtained for five of the six hard-to-detect faults, and of up to 69%, for two of the three very hard-to-detect
faults. MDR values very close to zero were reached for two of the three intermediate detection faults and
two of the hard-to-detect faults. The detection time was also evaluated. In this regard, considerably lower
values were obtained for all intermediate detection faults, three of the hard-to-detect faults and all very hard-
to-detect faults. In short, the delta method was able to improve fault detection performance, especially for
hard-to-detect faults, with a considerably lower data transmission rate, around 20% on average. Event-driven
data acquisition can be very attractive for process industries.

INDEX TERMS Data acquisition, event-driven, signal reconstruction, fault detection, PCA, Tennessee
benchmark.

I. INTRODUCTION
Data acquisition based on a fixed time interval is com-
monly used in continuous process industries worldwide [1].
The disadvantage of this procedure is that a fair amount of
data without new information about the state of the pro-
cess is continuously transmitted and processed. This data

The associate editor coordinating the review of this manuscript and

approving it for publication was Baoping Cai .

can overwhelm system communication and limit comput-
ing power, resulting in information loss. Currently, high
frequency data sampling nowadays through a multitude of
industrial sensors, even within seconds, exacerbates this
problem. In this context, the challenge is to select only
data that carry new information for transmission and further
processing.

Event-based data acquisition is an alternative to peri-
odic procedure, since events are asynchronous in nature [2].
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An event refers to a significant change in a signal according
to a predefined threshold [3]. In process industries, a con-
siderable change in a measured variable is often associated
with new information about the state of the process, which
would actually require processing. Variables measurements
can be used directly, or their variations (derived). This strat-
egy favors communication and data processing, which in
turn can result in energy savings and running more tasks in
parallel [4]. The event-based paradigm emerged in the context
of system control [5]–[10]. More information can be found
in [3], [4].

Several potential advantages using event-driven data acqui-
sition strategies have been reported in the literature. They
pertain to data storage, channel bandwidth, signal reconstruc-
tion, communication system, and sensor power consumption,
to name a few. Below are examples of works from differ-
ent areas of knowledge. [11] used an event-driven mecha-
nism to update information about unreliable links in network
switched systems. The authors reported a gain in network
security and bandwidth. [12] described an event-based anal-
ysis of a solar distribution feeder integrated into distribution
substations. The authors highlighted an improvement in event
detection, analysis of the impact of solar production, and
understanding of the dynamics of the solar feeder control
system. [13] employed smart meters through event-driven
sampling for data acquisition and feature extraction to dis-
regard redundant information. The authors reported that this
data filtering facilitated the identification of energy consump-
tion patterns of devices by vector support machines. [14]
designed an event-based model predictive control strategy
to more efficiently reconfigure production logic in real-time.
An industrial sewing machine production plant was used as
a case study, focusing on smart factories. [15] investigated
event-based sampling techniques for more efficient node
communication and power consumption in wireless sensor
networks (WSN). The application involved air quality mon-
itoring. According to the authors, smarter data acquisition
would contribute to increasing the life cycle of sensor nodes,
since data transmission is currently the main source of energy
consumption. [16] compared time- and event-based sampling
strategies in electricity grids. The authors reported that the
latter was able to perform the signal reconstruction satisfacto-
rily. [17] used Monte Carlo simulation to perform component
reliability analysis in complex and dynamic systems using
dynamic fault tree. As this is time consuming, an event-
driven simulation approach was applied disregarding the gate
simulations without significant changes in the output. The
authors reported that this data filtering increased computa-
tional efficiency. [18] presented an event-driven architecture
in the context of Industry 4.0 for manufacturing systems.
The focus was on more efficient integration of data from
devices and services at all levels for more flexible and timely
decisions. [19] developed an information system to detect
significant events in collaborative processes in modern busi-
ness environments. The authors aimed to provide more agile
responses to improve interaction between people, devices and

organizations. [20] applied an event-driven strategy, in com-
bination with MPCA (multiway principal component analy-
sis), to monitor a SBR (sequencing batch reactor) wastewater
process, which outperformed the time-based approach. [21]
investigated techniques for developing event-oriented control
systems for batch processes. The authors reported gains in
engineering and economics aspects. [22] proposed a reduc-
tion in the number of events and decision variables using
a context-based definition of what an event would be. This
more rational concept was used in a MILP (mixed integer
linear programming) problem tomodel batch scheduling with
respect to multi-product/stage machine processes. [23] con-
sidered a series of sensors to monitor the thermal control
system of a space station. To reduce the amount of data to
be processed, the authors adopted an event-driven simulation,
computing only the events that could actually contribute to
reaching an alarm level. In summary, all works reported
that the event-based paradigm can be an efficient strategy to
reduce the amount of data before further processing. This is
also the case for fault detection ( [15], [17], [20]), which is
the focus of this work.

Process monitoring, and more specifically fault detection,
is an essential activity in process industries. Due to the inher-
ent complexity of the processes, being multivariable, non-
linear and only partially known, this task is still challenging
from a practical point of view [24]. Many process variables
are currently measured continuously, even within seconds,
which is very beneficial on the one hand [25]. However, prob-
lemswith the resultingmassive amount of data also arise from
the other side. Packet collision and high latency are examples
involving data transmission in communication systems [26].
As far as information is concerned, more data does not neces-
sarily meanmore quality. Process noisy, missing values, mea-
surement errors and imbalanced classes (operation modes),
to name a few, occur frequently [27]. In this context, process
industries can benefit greatly from the event-driven paradigm,
reducing the amount of data to be transmitted and processed.
Unlike the fixed-time data acquisition procedure, the input
data for the fault detection system would only be updated
in the case of new process information, according to a pre-
defined criterion.

This work investigates the event-driven data acquisition
strategy for fault detection in continuous industrial sys-
tems. The threshold [28] and delta [29] event-based methods
were evaluated under different data transmission rates. The
well-known Tennessee Eastman Process (TEP) benchmark
served as the case study [30]. Several techniques and strate-
gies have been used for fault detection purposes in this bench-
mark. To name a few, DPCA (dynamic principal component
analysis) with decorrelated residuals [31], a combination of
PCA (principal component analysis) and k-NN (k-nearest
neighbors) [32], a combination of PCA with fuzzy logic [33],
a sparse auto-encoder [34], RNN (recurrent neural network)
and CNN (convolutional neural network) deep learning mod-
els [35], and image processing using MLP (multilayer per-
ceptron) and RBF (radial basis function) neural networks
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FIGURE 1. Proposed approach for event-driven data acquisition.

based classifiers [36]. A common point among all these
works is the use of the fixed-time approach. The following
works are reviews on fault detection and diagnosis using
data-driven modeling in various fields of engineering: photo-
voltaic system [37], power transformer [38], HVAC (heating,
ventilation and air conditioning) system [39], building energy
system [40], marine current turbine [41], gear system [42],
thermal system [43], industrial system [44] and high-speed
trains in intelligent transportation [45]. The present work
made use of PCA, as it is the most applied technique for
fault detection in the TEP benchmark. [31], [32], [46]–[48]
are examples of recent works, which also employed periodic
data acquisition. In this sense, the results obtained with the
event-based methods were compared with this commonly
used fixed-time approach. The classic work in [49] was used
for this purpose. To have the same basis of comparison, the
percentage of variance explained by the PCA model was
approximately 55% and the false alarm rate was set at 1%.
In addition, the missed detection rate (MDR) and detection
time (delay) were used as performance metrics. This work
shows, as its main contribution, the possibility of obtaining a
better performance in fault detection with considerably low
data transmission rates. Event-driven applications in process
industries are often related to process control and instrumen-
tation. To the best of the authors’ knowledge, there is no
systematic study of its use for fault detection in continuous
industrial systems.

This paper is organized as follows. Section II shows the
proposed event-driven framework for data acquisition. The
methodology is depicted in section III. The event-basedmeth-
ods used in this work are described in section IV. Section V
refers to the TEP (Tennessee Eastman Process) benchmark
used as a case study. Section VI presents the results and dis-
cussion of the fault detection performance, including a com-
parison between the event- and the time-based approaches.

An analysis of the data transmission rate is given in
section VII. Final considerations are given in section VIII.

II. EVENT-DRIVEN DATA ACQUISITION FRAMEWORK
To properly design an event-driven data acquisition proce-
dure, it is necessary to characterize the measured signals.
This can be done explicitly by knowing the math function
or directly from the data. The latter is generally used due
to the complexity of industrial processes. The main question
in this case concerns how to ‘‘filter’’ the signals to consider
only the sampling points associated with new information
about the state of the process. Predefined thresholds based
on individual values, or signal variations or accumulations
over time, are used to identify these relevant events [3], [4].
As part of the data acquisition phase, event-driven strategies
have the potential to significantly reduce the amount of data
to be transmitted and processed. In this sense, applications
of Cyber-Physical Systems (CPS) involving large amounts
of data can be greatly benefited [50]. Figure 1 depicts the
proposed event-based data acquisition system with a focus
on continuous industrial processes. Each element is described
below.

A. PHYSICAL SYSTEM
This initial element refers to the real-world system of interest.
It is very important to have information about the measured
variables, the location of the sensors and the dynamics of the
process.

B. DATA ACQUISITION
The input to this step is the sampled values collected contin-
uously by a series of sensors in the physical system using a
fixed time interval. The selection of samples to be transmitted
containing new information about the state of the process is
based on a predefined event-based strategy. This data filtering
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can be applied locally in the case of smart sensors or at a
remote center. Examples of event-basedmethods are given by
the threshold, delta, area, and energy approaches (described
in the IV section). The first two were used in this work
with different data compression rates, which determines the
amount of data to be transmitted for further processing.

C. COMMUNICATION SYSTEM
This system is responsible for transmitting the previously
selected values. Wired or wireless systems can be used. This
data filtering contributes to more efficient management of
memory, latency and packet collision, to name a few, which is
most critical in the case of networks with limited bandwidth.
The communication system infrastructure and its challenges
are outside the scope of this work.

D. SIGNAL RECONSTRUCTION
The signal at this point may contain missing values as the
values of some variables may not have been transmitted. This
occurs when they do not exceed the respective event-based
method limits. For signal reconstruction, a data imputation
protocol should then be used [51]. The present work adopted
the last value sent by the communication system. This proce-
dure is also beneficial in case of signal loss.

E. MANAGEMENT CENTER
This unit receives and processes the previously reconstructed
signal, according to the purpose of the application. This can
refer to process modeling, simulation, control, optimization
or monitoring. Given the objective of this work, a fault detec-
tion system is part of this unit in the present work. Central
units like this are even more important nowadays, given the
concept of a cyber-physical system in the context of Industry
4.0 [50]. This system integration can be useful for offline and
real-time applications. Event-based strategies also favor the
computational power needed in this case, given the smaller
amount of data to be processed.

III. METHODOLOGY
Figure 2 depicts the methodology adopted in this work. There
are three main steps: model identification, control limits defi-
nition, and fault detection itself. Each step is described below.

FIGURE 2. Methodology steps.

A. MODEL IDENTIFICATION
The fault detection system was based on PCA (Principal
Component Analysis). This technique have been the most

used for fault detection in industrial applications [52]–[55].
The case study in this work used the Tennessee benchmark
problem [30], described in section V. In this case, a first data
set (normal data I), characteristic of the normal operating con-
dition, was used to obtain the PCA model. The approximate
number of twelve principal components, which explain about
55% of the total variance in the original data, was adopted for
comparison purposes [49].

B. CONTROL LIMITS DEFINITION
The multivariate control charts for the T 2 and Q statistics
were used for fault detection [44], [56], [57]. Their respective
control limits were calculated from a second data set (normal
data II), also characteristic of the normal operating condition.
For this, the false alarm rate was set at 1% [49], being deter-
mined by the 99th percentile. Both previous steps consid-
ered fixed-time sampling. Fault detection: The event-based
data acquisition framework (Figure 1) was used in this step.
At each sampling, the measured value of the variable is
transmitted only if it is considered an event. Otherwise, the
last value sent to the variable is used during signal recon-
struction. This procedure is repeated for each variable. The
reconstructed signal is then fed into the previous PCAmodel,
and the corresponding values of T 2 and Q are calculated
and plotted on the respective control charts. All twenty-one
faults available in the benchmark were investigated (using
the respective fault data set). The results were compared with
the classical time-based data acquisition approach [49]. The
missed detection rate and detection time performance metrics
were used for this purpose. The event-based strategies used in
this work are described in section IV.

In short, PCA is a dimensionality reduction technique
belonging to multivariate statistics [58]. Its principle resides
in an orthogonal rotation of the coordinate system given
by the original variables. The rotated axes, called principal
components, are defined according to a criterion of maxi-
mum variance. The first component explains as much of the
total variance of the original data as possible, the second,
which is orthogonal to the first, as much of the remaining
unexplained variance, and so on. Given a required amount
of explained variance, the first k components are used as the
final PCA model. With regard to fault detection, this model
is obtained with normal data, being, therefore, characteristic
of the normal operating condition. When fed with fault data,
it is expected to recognize such a condition, which is nor-
mally accomplished through control charts for the T 2 and Q
statistics.

IV. EVENT-DRIVEN METHODS
Event-based methods are generally provided by the follow-
ing strategies: send-on-delta (SoD) [29], send-on-prediction
(SoP) [59], [60], send-on-area (SoA) [61], send-on-energy
(SoE) [62], and a simple threshold definition. In SoD, the
current value is transmitted when a minimum difference from
the last value sent is reached. SoP is an extension of the previ-
ous strategy, in which a predicted value from the last update
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TABLE 1. Process disturbances [30], [49].

is used. SoA and SoE are two other common extensions.
The triggering criterion in the first is given by the integral
of the absolute difference and, in the second, by the energy
of the difference. Another method is provided by the use of
a predefined threshold [28]. The event trigger in this case
occurs when the current value crosses a cut-off point. This
work investigated the threshold and delta strategies. The use
of the others is straightforward.

A. THRESHOLD-BASED METHOD
The threshold method employs a cut-off point as a decision
rule for data acquisition. The measured value is only trans-
mitted if it exceeds this reference, whose definition uses the
mean (Savg), minimum (Smin) and maximum (Smax) statistics
of the signal (S) under the normal operating condition. The
resulting lower (Tl) and upper (Tu) thresholds are shown in
Equation 1. To investigate the effect of the magnitude of the
differences (Smax−Savg; Savg−Smin) on data transmission rate
and fault detection performance, a parameter p (0 < p < 1)
was varied as follows: [5, 10 : 10 : 90, 95]%. The higher,
the lower the number of values transmitted. This procedure is
repeated for each variable separately.

Tu = Savg + (Smax − Savg)× p (1a)

Tl = Savg − (Savg − Smin)× p (1b)

The reconstruction of the signal (S ′t ) is performed accord-
ing to Equation 2. The value of the variable (St ) is transmitted
if it exceeds the lower or upper thresholds; otherwise, the last
value sent (S ′t−1) is used. The threshold definition and signal
reconstruction steps follow the event-based data acquisition
framework shown in Figure 1.

S ′t =

{
St , if (St < Tl) or (St > Tu)
S ′t−1, if Tl ≤ St ≤ Tu

(2)

The threshold method (with p = 50%) is illustrated for
feed A (stream 1), which is one of the variables of the TEP
benchmark. Figures 3a and 3b show the original and filtered
signals, respectively, given fault 5 (Table 1).

B. DELTA-BASED METHOD
The send-on-delta (SoD) method is based on the difference
between the current value and the one previously sent by
the data acquisition system. Equation 3 shows the definition
of the reference value in this case, which is given by the
maximum absolute difference (1max) between consecutive
values (St , St−1) considering the signal under the normal
operating condition. The parameter pwas used as before. This
procedure is applied to each variable separately.

1max = max(| St − St−1 |)× p (3)

The next step concerns the reconstruction of the signal
(S ′t ), according to Equation 4. The value of the variable (St )
is transmitted only if the corresponding difference is greater
than 1max; otherwise, the last value sent (S ′t−1) is used. The
delta rule is detailed in Figure 4. This procedure is applied to
each variable separately. It also follows the event-based data
acquisition framework shown in Figure 1.

S ′t =

{
St , if | St − St−1 |> (1max)
St−1, if | St − St−1 |≤ (1max)

(4)

Figure 3c illustrates the use of the delta rule for A feed
(stream 1), with p = 50%, given fault 5 (Table 1). A low res-
olution signal can be verified in comparison to the threshold
rule (Figure 3b).

V. CASE STUDY: TENNESSEE EASTMAN PROCESS (TEP)
BENCHMARK
The Tennessee benchmark problem [30] has often been used
for the development of fault detection systems [35], [54],
[55], [63], [64]. Based on a real industrial process, it involves
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FIGURE 3. Event-based data acquisition for A feed (stream 1), which is
one of the variables of the case study (section V), given fault 5 (Table 1)
(?: Fault start up at t = 160).

a reactor, a condenser, a vapor-liquid separator, a recycle
compressor and a stripper column (Figure 5). The objective is
to obtain the liquid (l) products, G andH, from the gaseous (g)
reactants, A, C, D and E. This is achieved by a set of four
irreversible and exothermic chemical reactions, as shown
below. Components B (not shown) and F are an inert and a
by-product, respectively.

A(g) + C(g) + D(g) → G(l)(product1)

A(g) + C(g) + E(g) → H(l)(product2)

A(g) + E(g) → F(l)(byproduct)

3 D(g) → 2 F(l)(byproduct)

There are fifty-two measurements, where twenty-two are
process variables, eleven are manipulated variables, and nine-
teen are laboratory parameters. The variables and parame-
ters are collected every three and six minutes, respectively.
Twenty-one faults are available (Table 1) [1], [49], occurring
one at a time. The normal and fault data sets are composed of
500 and 960 observations, which correspond to twenty-five
and forty-eight hours of simulation, respectively. Each fault
occurs at t = 160, that is, after eight hours under normal oper-
ation. Gaussian noise is introduced into all measurements.

VI. RESULTS AND DISCUSSION
The results obtained with the event-driven methods, namely,
threshold and delta rules, were compared with the time-based
approach. The PCA model (step 1 in Figure 2), characteristic
of the normal operating condition, as well as the respective

FIGURE 4. Flowchart of the delta event-driven method for data
acquisition.

upper control limits for the statistics T 2 and Q (step 2),
were common to both cases. This model is given by twelve
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FIGURE 5. Process flowchart of the Tennessee benchmark problem [1].

TABLE 2. MDR (missed detection rate) for the T 2 statistic.

principal components, which explains about 56% of the total
variance of the original data. This percentage was adopted
for comparison purposes [49]. The difference between them
concerns the input information for the fault detection system
(step 3). All values sampled periodically are used in the time-
based procedure, while they are filtered in the event-based
approach (Figure 1).

The threshold method performed slightly better compared
to the fixed-time approach over the entire range of the p
parameter (results not shown due to lack of space). The ben-
efit in this case concerns the use of a much smaller amount of
data, which favors online applications, especially nowadays,
given the era of big data.

Tables 2 and 3 show the missed detection rate (MDR)
obtained with the delta rule for the T 2 and Q statistics,
respectively. The best result for each fault is in bold. For
example, the best MDR values for fault 5 were equal to
0.604 (for T 2 and p = 0.90) and 0.001 (for Q and p =
0.80). Absolute differences from the respective MDR values
obtained with the periodic approach are also presented. The
greater this difference, the better the result obtained by the
delta rule. For example, the gains for fault 5 were equal to
about 17% (=0.775− 0.604) and 74% (=0.746− 0.001) for
the statistics T 2 and Q, respectively. For the Q statistic, it can
be seen that the MDR value obtained with the event-driven
delta rule is very close to zero (0.001), as desired, while the
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TABLE 3. MDR (missed detection rate) for the Q statistic.

TABLE 4. FAR (false alarm rate) for the T 2 statistic.

corresponding value for the time-fixed procedure is consid-
erably high (0.746). A gray cell means the result was not
considered valid due to a false alarm rate (FAR) above 5%.
Tables 4 and 5 show the FAR values for the T 2 and Q statis-
tics, respectively. For example, for fault 5 and statistic T 2,
FAR is equal to 0.006 and zero (p = 0.90) for the temporal
and delta approaches, respectively. The corresponding values
for the Q statistic are equal to 0.006 and 0.013 (p = 0.80),
respectively. The vast majority of FAR values were compa-
rable to those obtained with the time-based approach. This
point is critical when comparing fault detection strategies.
Tables 6 and 7 show the detection time (or detection delay) for
the statistics T 2 and Q, respectively. A fault was recognized
after the occurrence of six consecutive points beyond the
control limit, the detection time being calculated from the
first [49]. For fault 5 and statistic T 2, it was equal to 16 and 15

(p = 0.90) sampling units given the periodic and delta proce-
dures, respectively. That is, there was a gain of one sampling
unit in this case. A detailed analysis of the event-based delta
strategy is presented below, along with a comparison with the
time-fixed approach.

From the MDR results obtained from the statistics T 2 and
Q with PCA for the fixed-time approach (2nd column of
Tables 2 and 3), the set of twenty-one faults of the Tennessee
benchmark problem can be grouped into four subsets accord-
ing to the level of detection difficulty. Group 1 refers to easy
faults (1, 2, 4, 6, 7, 8, 12, 13, 14); group 2, to intermediate
faults (11, 17, 18); group 3, to hard faults (5, 10, 16, 19,
20, 21); and group 4, to very hard faults (3, 9, 15).

First, significant MDR gains were verified for eight faults,
all related to theQ statistic. Namely, faults 5 (74%; p = 0.80),
9 (48%; p = 0.80), 10 (60%; p = 0.60), 11 (26%; p = 0.60),
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TABLE 5. FAR (false alarm rate) for the Q statistic.

15 (69%; p = 0.70), 16 (47%; p = 0.50), 19 (35%; p =
0.60) and 20 (42%; p = 0.70) (Table 3). For example, for
fault 10, the MDR values were equal to 0.659 and 0.061
(p = 0.60) for the periodic and delta strategies, respectively.
The difference between them corresponds to the gain of 60%.
The respective FAR values were considerably low, equal to
0.013, zero, 0.006, zero, 0.038, zero, 0.019 and zero, respec-
tively (Table 5). Faults 5, 10, 16, 19 and 20 are hard-to-
detect (group 3), and faults 9 and 15 are very hard-to-detect
(group 4). Figure 6 shows the Q control charts obtained with
the event-based delta rule for faults 5, 10, 16 and 20 (on the
left). Corresponding charts for the usual fixed-time approach
are also presented for comparison purposes (on the right).

Furthermore, it can be noted that the best MDR values are
a function of the parameter p. However, they are concentrated
at 0.50 < p < 0.80. This result suggests an optimal range for
p, which is positive in the sense of defining a single value.
For example, the MDR for fault 5, initially equal to 0.001
(p = 0.80), is equal to 0.164 for the most usual value of
p, equal to 0.60 (Table 3). The gain in the latter would still
be high, around 58% (=0.746 − 0.164), with a FAR value
still considerably low, equal to 0.044 (Table 5). An ensemble
approach using an interval for p can also be considered.

There are cases where the gain is not relatively large;
however, MDR tends to zero as desired. This was verified
for fault 7, with an MDR of zero for p = 0.70, 0.80, 0.90 and
0.95, given the T 2 statistic (Table 2). The value corresponding
to the periodic approach is relatively higher, equal to 0.085.
For the Q statistic, it occurred for faults 17 and 18, both
with an MDR of 0.034 for p = 0.50 and 0.70, respectively
(Table 3). The corresponding values for the cyclic procedure
are relatively larger, equal to 0.108 and 0.101, respectively.
The MDR values for faults 5, 10 and 11, which showed
significant gains (previous analysis), were also relatively low.
Namely, 0.001 (p = 0.80), 0.061 (p = 0.60) and 0.099 (p =
0.60), respectively (Table 2). On the other hand, the values

corresponding to the time-based approach are considerably
high, equal to 0.746, 0.659 and 0.356, respectively. The FAR
values in all cases were close to zero (Tables 4 and 5). Faults
11, 17 and 18 belong to group 2 (intermediate detection), and
faults 5 and 10 to group 3 (hard detection).

Another performance metric concerns detection time.
Tables 6 and 7 summarize the results for the statistics T 2

and Q, respectively. As before, a gray cell means it was not
considered valid due to a false alarm rate above 5%. Shorter
detection times were generally associated with lower MDR
values (Tables 2 and 3), as expected. Relatively high MDRs
and therefore low gains were obtained for faults 11, 16 and
21, given the T 2 statistic. The respective MDR gains were
equal to 11% (=0.794 − 0.688; p = 0.60), 10% (=0.834 −
0.733; p = 0.70) and 8% (=0.736 − 0.651; p = 0.60)
(Table 2), with FAR values equal to zero for all (Table 4).
However, the main result in this case concerns the detection
time, with gains of 208 (=304 − 96), 26 (=312 − 286)
and 49 (=563 − 514) sampling units, respectively, in rela-
tion to the fixed-time approach (Table 6). That is, these
faults were detected in advance, through the delta rule. Fault
11 belongs to group 2 (intermediate detection) and faults
16 and 21 to group 3 (hard detection). More, the detection
times for faults 4, 9, 15 and 19 were equal to 447 (p = 0.70),
734 (p = 0.70), 646 (p = 0.50) and 444 (p = 0.70) sampling
units, respectively, given the T 2 statistic (Table 6), with FAR
values equal to zero for all (Table 4). These values are still
relatively high, but these faults were not detected (ND) by
the time-fixed approach (Table 6). For the Q statistic, this
occurred for faults 3, 9 and 19, with detection times of 307
(p = 0.80), 233 (p = 0.80) and 217 (p = 0.60) sampling
units, respectively (Table 7), with all FAR values close to
zero (Table 5). These faults were also not detected (ND)
by the time-based approach (Table 7). Fault 19 is hard-to-
detect (group 3) and faults 3, 9 and 15 are very hard-to-
detect (group 4). Furthermore, as described earlier, faults 10,
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FIGURE 6. Q control charts for the event-based delta method (on the left) and time-based approach (on the right) for
hard-to-detect faults (?: Fault start up at t = 160).

15 and 16 showed significantMDRgains, given theQ statistic
(Table 3). Thus, they also showed considerable gains in terms
of detection time. Namely, 25 (=49 − 24; p = 0.60), 662
(=740 − 78; p = 0.70) and 161 (=197 − 36; p = 0.50)
sampling units, respectively (Table 7), with FAR values close
to zero for all (Table 5). Faults 10 and 16 are hard-to-detect
(group 3), and fault 15 are very hard-to-detect (group 4).
Intermediate faults 17 and 18 (group 2), with MDR gains of
7% (Table 3), also presented reasonable gains for detection
time, given the Q statistic. Namely, 16 (=25 − 9; p = 0.50)
and 72 (=84 − 12; p = 0.70) sampling units, respectively
(Table 7), with FAR values close to zero (Table 5). Slightly
longer detection times were observed for some faults in rela-
tion to the periodic procedure. Namely, for fault 14, equal
to −1 sampling unit (=4 − 5; p = 0.50), and for fault 20,
equal to −3 sampling units (=87− 90; p = 0.70), given the
T 2 statistic (Table 6). However, the respective MDR gains
were equal to 6% (=0.158−0.094) and 5% (=0.701−0.650)
(Table 2), with FAR values equal to zero (Table 4).

Two event-based systems were analyzed in this work,
namely, the threshold and delta rules. The threshold method

provided at least the same fault detection performance com-
pared to the time-based approach, but with much less data.
On the other hand, the delta rule yielded significantly superior
performance, including hard-to-detect faults. This analysis
also showed that the delta rule led to significantly supe-
rior performance, including hard-to-detect faults. This per-
formance can be explained as follows. For the usual case
of fixed-time data acquisition procedure, at each sampling
interval, all measured samples of all monitored variables
compose the input vector fed to the PCA-based fault detection
system, which is characteristic of normal operating condition.
With respect to the event-based data acquisition approach,
only values beyond their respective limits are used in the
input vector. The values not transmitted are replaced by the
last ones sent for signal reconstruction. This second input
vector generally presents more discrepant deviations from
the normal condition compared to the first one provided by
the fixed-time approach. This fact contributes to improve the
fault detection performance. In other words, the most relevant
changes in fault signals come earlier, favoring fault detection.
This is in agreement with the best results generally obtained
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TABLE 6. Time to detection (in sampling units) for the T 2 statistic.

TABLE 7. Time to detection (in sampling units) for the Q statistic.

for intermediate values for the parameter p (Equation 4).
While values of p close to zero produce similar results to
the fixed-time approach, values close to one constitute a
strong constraint for the initial detection of the faults. That
is, the data transmission rate plays a considerable role in
fault detection, and p can be seen as a sensitivity parame-
ter. The highest performance was mostly for hard-to-detect
faults.

VII. DATA TRANSMISSION RATE ANALYSIS
Data transmission in industrial systems has become increas-
ingly critical due to the huge amount of continuously mea-
sured variables nowadays [65]. Greater efficiency is therefore
crucial for better management of networking and computing

aspects, among others. For example, with respect to latency
and bandwidth, as well as memory allocation and processing
power. These issues are also essential for advancing cyber-
physical systems (CPS) applications. One way to reduce the
amount of data to be transmitted and processed is through the
event-based paradigm [4]. The motivation is that significant
process changes are usually not periodic. This approach can
also improve fault detection performance, as shown in this
work mainly for hard-to-detect faults.

Figure 7a shows the average number of values transmitted
in each sampling interval as a function of the parameter p
(Equation 3). All fifty-two variables and twenty-one faults
of the TEP benchmark were considered. The time-based
approach (p = 0), in which all sampled values are passed
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FIGURE 7. Effect of the parameter p (Equation 3) (a) on the average
number of sampled values transmitted per sampling unit and (b) on the
number of best MDR results, given the event-based delta rule
(Equation 4).

continuously, serves as a reference. For the more restrictive
case (p = 0.95) of the event-based delta method (Equation 4),
less than five measured values are forwarded on average.
The higher the value of this parameter, the lower the data
transmission rate.

The best MDR results (section VI) were obtained for a
range of values for p considering all twenty-one faults. Its
definition must be a compromise between data transmission
rate and fault detection performance. Figure 7b shows the
number of best MDR values as a function of the p parameter.
For example, there were three best MDR values for p = 0.05
(or 5%), given the T 2 statistic. They refer to faults 1, 2 and
13 (Table 2). This was also the case for the Q statistic, with
faults 6, 7 and 14 (Table 3). A best result can be counted more
than once, as it can occur for an interval of p, given a fault.
For example, for fault 13, this occurs for p = 0.05 and 0.10
(MDR= 0.06) (Table 2). For T 2, the value of pwith the high-
est number of best MDR values was equal to 0.70 (with eight
faults), followed by 0.30 and 0.60 (with five). Given Q, the
best score occurred for p = 0.40 (with seven faults), followed
by p = 0.50 (with six) and p = 0.60, 0.70 and 0.80 (with
five). In general, the best results were found for intermediate
values of p, for both statistics. On the one hand, this means
that it is not necessary to forward all sampled values (p = 0),
and on the other hand, values of p close to one degrade the
fault detection performance as it is very restrictive. The data
transmission rate for intermediate values of p (0.30 < p <

0.80) varied between less than five and about ten observations
on average, that is, around a maximum of 20% (≈10/52;
Figure 7a). This number is considerably lower in relation to
the full set of fifty-two values sampled. In addition to the
benefit in terms of data transmission rate, an intermediate
value of p also improved the fault detection performance
compared to the usual fixed-time approach (section VI).

VIII. CONCLUSION
Data transmission in process industries usually occurs at
every sampling interval. The problem is that a considerable
amount of data without new process information is contin-
ually forwarded and processed. This adversely affects the
communication system and computing power. For exam-
ple, regarding network latency and bandwidth, and memory
allocation and processing capacity. This is more critical
nowadays, given the era of big data and cyber-physical sys-
tems (CPS) in the context of Industry 4.0. An efficient way to
reduce the amount of data to be transmitted can be provided
by the event-based paradigm. In this strategy, only sampled
data associated with significant changes (events) in the pro-
cess state are forwarded for further processing.

This work proposed an event-driven data acquisi-
tion framework for continuous industrial systems. Two
methods were considered, namely, threshold and delta
rules.Furthermore, the level of data filtering was varied in
both. They were applied in the context of fault detection,
using the Tennessee benchmark problem as a case study.
The fault detection system was based on PCA (principal
component analysis), which has been widely used for process
monitoring. The threshold method provided similar results
to the classical data acquisition time-based approach, with
the advantage of using much less data. On the other hand,
the delta method was generally better. Significant results,
including mostly hard-to-detect faults, were achieved for
considerably low data transmission rates, around 20% on
average. In short, the event-based delta rulewas able to reduce
the amount of data to be transmitted and, at the same time,
improve the fault detection performance compared to the
fixed-time procedure.

Future work may be related to the search for an opti-
mal value for the parameter p used for data filtering,
sensor technology and communication systems, and sig-
nal reconstruction. This work adopted the PCA technique,
which is commonly used for fault detection in the TEP
benchmark problem. Artificial intelligence techniques can
also be evaluated. Furthermore, while fault detection is
still a major practical challenge, how the event-driven
paradigm affects fault diagnosis is another point of
investigation.

Concluding, event-driven data acquisition can be very
attractive for process industries, given the large amount of
variables measured continuously, even in seconds. The pro-
posed event-based data acquisition framework can be applied
directly to similar systems.
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Abstract—The dominance of distributed energy re-
sources in microgrids and the associated weather depen-
dence require flexible protection. They include devices ca-
pable of adapting their protective settings as a reaction to
(potential) changes in the state of the system. Communica-
tion technologies have a key role in this system, since the
reactions of the adaptive devices shall be coordinated. This
coordination imposes strict requirements: communications
must be available and ultrareliable with bounded latency in
the order of milliseconds. This article reviews the state of
the art in the field and provides a thorough analysis of the
main related communication technologies and optimization
techniques. We also present our perspective on the future
of communication deployments in microgrids, indicating
the viability of 5G wireless systems and multiconnectivity
to enable adaptive protection.
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RTPS Real-time publish–subscribe.
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URLLC Ultrareliable and low-latency communications.

I. INTRODUCTION

THE ELECTRIFICATION of energy systems based on RES
contributes toward reaching United Nations Sustainable

Development Goal 7—ensure access to affordable, reliable,
sustainable and modern energy for all. Furthermore, build-
ing transmission lines and distribution lines, as well as new
communication infrastructure to serve the traditional power
systems, is becoming more and more challenging owing to,
for instance, growing pressures over environmental licensing,
funding allocation, etc. It has been suggested that the centralized
paradigm of energy delivery is reaching its technical boundaries
and no longer seems to constitute the most effective approach
for granting continuous and reliable power supply to customers
located at the edge of the grid, especially in countries with a
high percentage of nonurban area installations [1]. The above-
mentioned trends have led to increasing interest in installing
small-scale generation closer to the consumption nodes—DER.

Practical modernization of the electrical grid usually refers
to small-scale cluster integration of DER and customer demand
at the distribution level—microgrids. Microgrids are localized
electrical systems with autonomous control and enhanced grid–
demand interaction, which are also able to operate in a grid-
connected and islanded mode [2], [3]. Sophisticated features of
microgrids as advanced power electronics and complex control
configurations impose substantial technical challenges. Protec-
tion schemes and strategies against internal and external faults,
which can harm system elements or consumer equipment, are
among those challenges. Microgrid operational conditions may
vary rapidly due to DER contribution with low inertia of nonro-
tating elements and rapid changes in weather conditions (wind
and solar radiation) [4] or due to sudden state changes between
connected and islanded modes. External faults are normally
cleared using conventional protection schemes at the distribution

1551-3203 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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level, but these schemes may not be suitable to microgrid internal
faults [5].

To ensure safe and appropriate operation, all variables of the
microgrid elements shall be monitored, and required changes
shall be applied to the device protection settings dynamically
when the operating conditions of the grid change (e.g., due
to fault occurrence). Conventional protection schemes, how-
ever, rely on large inertia and long transient periods, which
are insufficient in this new microgrid context dominated by
DER. Thus, adaptive schemes become necessary [6], [7]. The
self-implemented changes by adaptive protection devices are
based on “intelligent” algorithms that process the available
data, making the microgrid a cyber–physical system. This leads
to an additional concern about the cyber domain: failures in
algorithms may stress or even harm physical components [8].

In microgrids that rely on a central management controller,
the communication of IEDs is used to keep the system up-
dated on the current state of the grid, tracking the operating
currents and making proper fault detection [7], [9], [10]. A
reliable communication between the system elements is, there-
fore, needed. In fact, any type of electrical protection scheme
that relies on communication requires robustness, a virtually
full-time availability, and strictly bounded latency [11]. Those
stringent requirements associated with communications are hard
to meet for any current communication system (either wired or
wireless). Latency as low as 10 ms, high reliability (i.e., packet
error rate lower than 99.999%), high availability (≈99.999%),
and time synchronization are some of the key requirements that
the fifth generation (5G) of wireless mobile networks promise
to achieve for safe operation of electrical protection systems
and that previous technologies alone cannot satisfy due to lack
of performance and cost-effective solutions. In particular, the
integration of different existing technologies with 5G with other
wireless interfaces (e.g., WiFi, LTE, or NB-IoT) to exploit the
interface diversity also known as multiconnectivity offers an
already feasible solution for many applications that require high
reliability with latency at order of milliseconds, as shown in [12].
Such a performance is only becoming possible due to major ad-
vancements in machine-type communications, adopting specific
solutions for different regimes related to data rates, coverage,
availability, reliability, and latency. The deployment of NS and
different types of control messages to establish connections are
also examples of wireless communication engineering solutions
to comply with the aforementioned strict quality of service
requirements.

It is also important to consider the different protocols available
for communications in grid protection. The Standard IEC 61850
includes messaging protocols for control and grid automation
that are ideal for adaptive protection. Although various review
papers on adaptive microgrid protection and their communica-
tion schemes have been published [6], [7], [13], [14], none of
them actually considers the possibility of using emerging 5G
mobile communications as part of their proposed solutions. We
try here to fill this gap by reviewing of the state of the art of
adaptive protection focusing on the communication aspects and
how 5G technologies can be deployed as an enabling technology.

Fig. 1. Generic case of a microgrid adaptive setting with fault and load
current.

The rest of this article is organized as follows. Section II
presents a generic case that highlights the need for adaptive
protection schemes in microgrids. Section III presents a review
of techniques for adaptive protection and communication ap-
proaches in microgrids. Section IV discusses finding done in
previous chapters, introduces how 5G can become a reliable
communication system for adaptive microgrid protection, and
elaborates on outstanding issues and challenges in this area.
Finally, Section V concludes this article.

II. ADAPTIVE PROTECTION SCHEMES IN MICROGRIDS

The most common type of protection in electrical distribution
systems today is overcurrent-based protection. This mission-
critical application requires from the communication system
a latency between 12 and 20 ms with 99.999% of reliability
for sensing/metering and control purposes [15]. Overcurrent
protection is impacted more than any other protection function
by connection of DER [16] due to bidirectional current flow to
the faulted point. The state of the different circuit breakers in
the electrical grid also plays a significant role in the protection
settings. Consider a generic case representation of a microgrid
depicted in Fig. 1 with a common IEC 61850 communication
setup.

A. Adaptive Setting

The electrical system in Fig. 1 is composed of three main
circuit breakers (CB1, CB2, and CB3), which are responsible
for maintaining the power supply within the microgrid and two
circuits breakers (CB4 and CB5) at the DER infeed. Consider
overcurrent protection functions for CB1 and CB2 associated
with an IED located at BUS 1 and three different cases for their
setting and reclosing.

1) Case 1. CB1 and CB2 are Closed and CB3, CB4, and
CB5 are Opened: Without any infeed from DER at CB4 and
CB5, apply the rule of thumb where the overcurrent settings
(CBS) are inside the interval of double the magnitude of load
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current Il and half of the minimum current fault If , as follows:

CBS =

[
Il × 2,

If
2

]
(1)

where currents are measured in Amperes.
At CB1, the protection setting in relation to the current is

given by

CBS1 =

[
400 × 2,

2000
2

]
⇒ [800, 1000]. (2)

For CB1, the rule of thumb applies correctly, and then, we only
have to choose a setting value given inside the limits showed in
(2).

Likewise, for CB2, we have

CBS2 =

[
500 × 2,

1000
2

]
⇒ [1000, 500]. (3)

In this case, when we do not have an optimal interval, in order
to find a setting, we sum the minimum fault current 500 A and
load current 1000 A divided by 2, which returns a setting of 750
A. The setting must be above load current and below minimal
fault current.

2) Case 2. CB2 and CB3 Closed and CB1, CB4, and CB5
are Opened: With CB3 closed, the setting at CB2 has lower
margin from minimum fault current due to the increase in load
current. Having 900 A of load current and 1000 A as minimum
fault current, we must find a middle point for setting at 950 A.
As establish before, a setting below the maximum load current
could make the protective device operate under normal operating
conditions, and in a setting above minimal current fault, the
protective device would not be able to identify and clear any fault
under faulty conditions. This means an increase in the setting
at CB2, while the previous setting is inadequate for this case
because, at some point, the load current may be seen as fault
current by the IED causing complete isolation of both loads.

3) Case 3. CB2, CB3, CB4, and CB5 are Closed and CB1
is Opened: With the infeed of DER into the microgrid, the
protection setting at CB2 can also change. A total infeed of
500 A leaves the maximum load seen from the IED at 400 A and,
consequently, a bigger margin for setting overcurrent protection
function at CB2.

These different cases within a simple microgrid configuration
shows the necessity of awareness of the IED to know operation
conditions of the network, so they can adapt to its actual state
by changing their overcurrent settings and guarantee a reliable
protection for all elements. This means complete fault isolation,
including selectivity. Considering case 3 microgrid state, if there
is a fault at BUS 2, both loads (or part of the load, if DER had
a manageable way to supply part of the load at BUS 3) would
get disconnected by operation of CB2, but with a centralized
wireless proposed scheme, as shown in the following sections,
that situation could be avoided, and power supply of load at BUS
3 could be ensured, by having a lower overcurrent setting at CB2
and operation of CB3 instead.

4) Auto-Reclosing: Once a fault in a given microgrid net-
work is cleared by protective devices, it is important to reclose as
fast as possible to minimize the lack of power supply and provide

stability to the system. Auto-reclosing, though, can degrade the
life of some elements or even cause permanent damage if the
attempt is unsuccessful. The auto-reclosing action is mostly a
control function that can be easily performed at the MPMC level
to mitigate any possible damage to the system; the line branches
that have less current contribution are the ones to reclose first.
This implies that the MPMC has to know the current state of the
circuit breakers of the microgrid, along with real-time operation
currents and fault currents, so that the line branches that reclose
first can be determined. Since the current measuring is performed
at IEDs, these devices need to communicate with the MPMC.
Similarly to the protective system for fault clearance, wireless
communication seems to be a more suitable solution for this task
due to its flexibility.

B. Adaptive Protection Algorithms

Traditional distribution systems are designed to have radial
configuration, in order to supply power from a single power
source at a time. This means that current will flow only in one
direction, i.e., from the source (distribution feeders) to the load
(consumer). Protection functions for radial configuration usually
include nondirectional overcurrent relays or IEDs, with fixed set-
tings and no need for communication within protective elements
[17]. As microgrids start to proliferate and DER penetration
in distribution networks increases, power flow and, therefore,
fault current become bidirectional. Adaptive protection schemes
appear as an option to solve the fault clearance challenges that
are imposed in this scenario.

Fig. 2 shows the flowchart of a typical adaptive protective
scheme implementation. First, the real-time data gathered by
the IEDs are collected and sent through a wired communication
channel (usually Ethernet-based), where these are received by
the MPMC (see Fig. 3) [20], which will analyze whether a trip
action was made and whether it was from a fault occurrence.
Then, the microgrid state is evaluated for possible temporary
conditions in the system after any possible reclose from the
circuit breakers. Based on the fault currents, the system will
update the settings at the decision-making table, and depending
of the state of circuit breakers, a signal could be sent back to the
IEDs to rewrite their actual settings for the new ones.

Additionally, in [19], after the measurements are gathered,
a block of artificial neural networks and another of support
vector machine algorithms estimate whether there is a fault
and its location, respectively. A least-squares estimation is
employed for comparison before updating the decision table.
In [21], the whole tripping process is shown by dividing the
flowchart into two main blocks (relay agent and central con-
troller agent) performing an examination of grid state and
updating the values of relays. After a fault occurs, the new
state is evaluated to calculate new relay settings. A calculation
of the average of total communication latency that involves
the previous described blocks was described in [20]. Adaptive
protection schemes use different methods to solve their setting
adjustment when needed. Those methods also rely on different
optimization techniques to find an efficient but fast method to
change a predetermined variable of the IED. Examples include
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Fig. 2. Typical adaptive protection scheme (adapted from [18] and
[19]).

differential search algorithm [22], fuzzy logic and genetic algo-
rithm [23], and modified particle swarm optimization [24].

III. EXISTING COMMUNICATION APPROACHES

IN ADAPTIVE PROTECTION SYSTEMS

A. Wired and Wireless Implementations

In wired-communication-based automation and adaptive pro-
tection implementations, the data transfer between IEDs and the
MPMC takes place through cables installed at the substation
level. Wireless communication, in contrast, operates based on
radio frequency signals. Both implementations have advantages
and disadvantages, and whether one is more appropriate than
the other depends entirely on the use case. Table I presents a

Fig. 3. Implementation of wired Ethernet-based communications for
an overcurrent adaptive protection scheme (adapted from [18]).

TABLE I
WIRED AND WIRELESS COMMUNICATION FOR SUBSTATION AUTOMATION

comparison between wired and wireless applications of some
of the characteristics of substation control that are relevant for
adaptive protection.

Wired connections are generally considered to be highly reli-
able, but their total cost and lack of flexibility impose additional
challenges when new equipment is installed at the substation.
Wired and wireless communication can also be combined to
enhance the tasks performed by each element of the network,
such as in [25], where a mix of technologies such as Fiber Optics,
Broadband Power Line over medium voltage, and WiFi are used
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for control and measuring. However, most work found in the
literature adopts less sophisticated physical wired communica-
tions, for high reliability and low latency.

In this context, the role of emerging technologies in wireless
communications (5G and integration of 5G other wireless com-
munication interfaces) can be groundbreaking. These will be
able not only to efficiently address the drawbacks from legacy
wireless communications, but also to significantly enhance its
capabilities. Furthermore, the discussion on the need for more
versatile communication technologies, i.e., applicable to the
generality of implementation use cases, increasing efficiency
and reducing costs, is a valid one. Thus, the authors propose a
change of paradigm of microgrid automation and control toward
a scenario of prevalent adaptive protection implementations,
which, as explained, constitute a significant departure from
contemporary wired installations.

B. Traditional Communication Architectures

Recent literature on adaptive protection of microgrids has re-
vealed a variety of approaches for analyzing the performance of
the respective algorithms and methodologies. Some approaches
focus on centralized or decentralized management for data pro-
cessing and control, while others focus on the communication
infrastructure to reduce times of online settings adjustment.
Most of the utilized algorithms were tested in grid-connected
operation conditions. A small set, however, can also work under
an islanded mode, in order to test control robustness of adaptive
protection in the case of communication failures or disconnec-
tion from the grid, when DER are present.

Table II summarizes the aforementioned approaches to adap-
tive protection in microgrids, in the last five years. In [19],
a centralized approach is chosen. The article states that the
methodology requires a database available beforehand, and it is
obtained through simulation. It proposes a data mining method-
ology to quantitatively extract meaningful information from the
database.

As for the implementation, the authors used a wired com-
munication approach, along with SNTP and SCADA, which
includes the IEC 61850 standard. The authors considered both
grid-connected and island operation modes. A fractionalization
of microgrid protection is made in [28] to avoid dependence
of centralized management and to improve reliability, which
can also work in grid-connected and island operation modes. In
[20] and [25], a decentralized methodology is proposed using
the IEC 61850 standard for grid-connected operation mode.
A combination of adaptive communication-based decentralized
(precontingency) and centralized (post-contingency) protection
schemes is shown in [21], which is suitable for both grid-
connected and islanded operation modes. In addition, in this
article, the IEC 61850 is used for communication between the
elements.

When a microgrid is in the island mode, it often loses its
communication capabilities with a central server, leaving all
protection devices operating with stationary settings or not being
adjusted to the lower setting, which means that the fault will
not be detected. To overcome this problem, in the case of

communication failure, Habib et al. [54] propose a solution using
a supercapacitor with a bidirectional voltage-source converter to
contribute to the fault current and increase the current value to
a certain level, which is sensed by the relay, and a comparison
between high and low settings can be made. In [58], numerical
relays and a global system for mobile communication modem
are connected to communicate with each other (schematic shown
in [102]) and perform a decentralized adaptive protective action
due to very good coverage. In addition, in [43], the authors
propose a SCADA system with advanced meter infrastructure
(AMI) and 4G wireless communication.

The SCADA system is used to perform the online adaptive
feature, by obtaining measurements from DER output and AMI.
To acquire the mentioned data from the distribution system to the
control center, a 4G wireless communication system was used.
Finally, in their work, Bari and Jawale [75] suggest that the in-
formation exchange between the elements can be accomplished
by a wireless sensor network.

Fig. 4 offers a quantitative analysis of the communication
approaches used in adaptive protection of microgrids in recent
literature, based on 85 compiled papers from the last five years.
The analysis is expressed in terms of communication technology
(wired or wireless), control approach (centralized or decentral-
ized), and operation mode (grid-connected, islanded, or both
operation modes). It is important to make the remark that the
literature review spans from January 2015 to July 2019, i.e.,
publications compiled for 2019 do not reflect an entire year. The
findings from this analysis are further discussed in Section IV.

C. Communication Standards and Protocols
for Substation Automation and Control

When it comes to communications architecture, the IEC
61850 is a widely accepted standard for automation and equip-
ment of power utilities and DER, specifically for defining pro-
tocols for IEDs at electrical substations [103]. There are three
main protocols defined by the IEC 61850.

1) GOOSE: It is used to send data from IED to IED or
from IED to circuit breakers due to its high-speed and
high-priority characteristics, suitable for tasks such as
command trips or alarms.

2) SMV: It is used to transfer the analog channels of current
and voltage to the IED.

3) Manufacturing message specification: It is used for ap-
plications that are non-time-critical, such as communica-
tions between the controller and substations.

IEC 61850 also defines generic substations events, which is
a control model that provides a fast and reliable mechanism
for data transferring over the electrical substation network. The
generic substation event model is divided into earlier described
GOOSE and generic substation state events. All of the above
tasks, performed inside communication layers within a power
system, are adequate for protection-related applications. The
three protocols run over transmission control protocol, Internet
protocol, or a LAN that can use high-speed switched Ethernet
like in [18].

Authorized licensed use limited to: Lappeenranta-Lahti University of Technology LUT. Downloaded on December 15,2022 at 10:21:21 UTC from IEEE Xplore.  Restrictions apply. 



1544 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 3, MARCH 2021

TABLE II
MAPPING OF COMMUNICATION APPROACHES USED IN ADAPTIVE PROTECTION SCHEMES FOR MICROGRIDS

— Not specified. Their main features are discussed throughout Section III.

IEC 61850 entails additional features, such as data modeling,
reporting schemes, fast transfer of events, setting groups, sam-
pled data transfer, commands, and data storage, which justify its
use in substations and grid protection. A communication setup
using IEC 61850 standard makes it relatively simple to achieve
low latency, normally around 4 ms, which is ideal for protection
purposes. Although many of the current implementations using

this standard use wired Ethernet or fiber-optic physical layers,
wireless communication may also be implemented using IEC
61850 for communications between the substation elements.

Other standards used are, for instance, the IEEE 1588, which
describes a hierarchical master–slave architecture for clock dis-
tribution and introduces precision time protocol (PTP), used to
synchronize clocks throughout a computer network. On a LAN,
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Fig. 4. Communication approaches found in microgrid adaptive protection literature, expressed in the number of publications per year.

it achieves clock accuracy in the submicrosecond range, making
it suitable for measurement and control system applications
[104].

The PTP supports the transmission of GOOSE messages
over an Ethernet network using IEC 61850. This is generally
implemented in SCADA systems, where several substations can
be covered. For instance, Liu et al. [105] show that monitoring
three pulses per second signals from master to slave can be
synchronized within 200 ns and deliver accurate time stamps
below 500 ns. Note that this delay has a much lower order
of magnitude compared to the adaptive protection needs (or-
der of milliseconds), making them negligible. In addition, the
IEC 60870-5 defines systems used for telecontrol, supervisory
control, and data acquisition in electrical engineering and power
system automation applications. It provides the communication
architecture for sending basic telecontrol messages between two
elements (e.g., IED and MPMC) that have permanent connected
communication channels. IEC 60870-5-101 specifically refers
to companion standards for basic telecontrol tasks, which are
commonly used in substation control and protection in SCADA
systems.

Other protocols used for control purposes found in the litera-
ture and listed in Table II are the following.

1) DPN3: It is used mainly for communication between a
master and remote terminal unit or IEDs. It provides
multiplexing, data fragmentation, error checking, link
control, prioritization, and layer 2 addressing services for
user data. The protocol is robust, efficient, and compat-
ible with many elements, which is suitable for SCADA
systems. Depending on the elements and the applications,
it can become very complex.

2) Telnet: It is an application protocol used in Internet or
LAN to provide interactive text-oriented communication
systems using a virtual terminal connection and data being

Fig. 5. Percent distribution of communication standards and protocols
used in microgrid adaptive protection literature.

interspersed in-band with control information over an 8-
byte transmission control protocol. Telnet was often used
to perform remote connection applications. It does not
use, however, any form of encrypting mechanism, which
makes it vulnerable in modern security terms.

3) RTPS: It is a protocol that provides two main communica-
tion models: the publish–subscribe protocol that transfers
data from publishers to subscribers, and the composite
state transfer protocol that transfers states. It features
characteristics such as modularity, scalability, and ex-
tensibility, and it is suitable for real-time applications
running over standard internet protocol networks.

4) Peer-to-peer: It allows us to connect a large number of
users over a LAN. The scalability is no longer limited by
the server. Its functions are distributed among a number
of client peers, communicating in a multicast mode. Mes-
sages are sent from one client directly to another client,
without relying on a central server.

Fig. 5 shows the percent distribution of communication stan-
dards and protocols used in recent microgrid adaptive protection
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literature (based on the same 85-research-paper sample). An
immediate observation is the dominance of the IEC 61850 stan-
dard, which suggests that its protocols are suitable for adaptive
protection tasks even in the case of wireless deployments, as
shown in Table II.

One additional consideration to communication standards
and protocols is the physical capability of network elements.
Adaptive protection requires robust and flexible elements for
data gathering and control. Due to their ability to receive and
send data to form the closed loop of the adaptive process, IEDs
comply fully with these strict requirements. IEDs must also
count with sufficient flash memory capabilities to read/write
protective settings [16] and successfully achieve the commu-
nication data exchange. Bari and Jawale [75] also mention that
IEDs should have the ability of logging voluminous information
about system parameters. In [43] and [44], the authors selected
the most suitable wireless technology for collecting data in real
time and transfer it to the central controller, based on synergies
with SCADA systems.

D. Cyber-Security

The transition of microgrids to the cyber-physical domain
comes with a number of cyber-security risks. Communication
systems are vulnerable to malicious cyber-attacks. If the protec-
tion systems in place do not perform appropriately, such attacks
can potentially harm the physical domain [13]. Cyber-attacks
can be classified into two main categories: network security
attacks and GOOSE and SMV message attacks [7]. Three types
of attacks related to network security are as follows.

1) DoS: DoS prevents authorized users to access a service
and affects the timeliness of the information exchange,
which can cause packet losses. Peng et al. [106] address
the case of load frequency control in a power system,
where supply is limited from DoS attacks by transferring
the model of multiarea power systems to a dependent
time-delay model, in order to tolerate a certain degree
of data losses induced by energy-limited DoS. Many
classical approaches address this type of attacks by using
distribute topology formation techniques that are based
upon the cooperation between IED nodes [107].

2) Password cracking attempts: This method is based on
attempts to gain access to system devices (such as IEDs)
to gain control over them, performing tripping actions or
blocking them from protective signals. For techniques to
detect type of attacks, see [108].

3) Eavesdropping attacks: This type of attack is done by
accessing the communication link between the control
center and the substation and can be performed in both
wired and wireless communication implementations. The
data packets are intercepted by the intruder, who is able to
replace real data for fabricated one. Then, the controller
can send back to the IEDs tripping signals out of wrong
information provided by the intruder [109].

For GOOSE and SMV attacks, we have the following.
1) GOOSE and SMV modification attacks: In this type of

attack, the intruder modifies the message data between the
IED (GOOSE sender) and the circuit breaker (GOOSE

receiver) without any notice. And as SMV, the intruder
can send wrong information about the analog variables
of the system. In [110], a case where the minimum capa-
bilities an intruder needs to inject a single message and
perform undesirable actions is presented.

2) GOOSE and SMV DoS attacks: The intruder can prevent
the correct operation of the IED by sending a great amount
of messages to an IED target causing communication col-
lapse and making it unable to respond to other messages.

3) GOOSE and SMV replay attacks: Fault information pack-
ets are kept from the intruder and then sent back to the
elements under normal operation, causing undesirable
tripping and possible substation outages.

When a communication failure resulting from cyber-attacks
takes place in a microgrid, it would usually trigger microgrid
islanding, which poses challenges to protective devices. Habib
et al. [7] envision such a scenario, devising an approach to handle
relying on energy storage. Under service of energy storage, the
IEDs may be able to reach the overcurrent fixed setting to per-
form tripping actions in the case of fault condition, guaranteeing
protection actuation and, therefore, no damages to the microgrid.

The literature is abundant in terms of proposed approaches for
evaluating and preventing cyber-attack in electrical networks
[111]. However, for the sake of effectiveness and robustness
of operations, cyber-security should be approached holistically
and from a project design stage. Therefore, to prevent those
attacks, guaranteeing a reliable cyber-physical protective system
embedded in the communication architecture of microgrids,
substantial improvements, and thus investments in prevention,
detection, mitigation, and resilience must still be undertaken.

IV. DISCUSSION, OPEN ISSUES, AND CHALLENGES

The increasing penetration of RES in electrical networks
and the dissemination of microgrids are generating interest in
developing communication technologies tailored to new uses
and functionalities. For instance, islanded operation will become
more relevant (as seen in Fig. 4), driving the need for further
adaptability in protective units for system elements. Unprece-
dented changes have taken place in the ways in which people
communicate during the last two decades. Changes in the com-
munication infrastructure of distribution systems and microgrids
are also important and ruled by the need for greater flexibility
and more cost-effective solutions. The research presented in this
article highlights the predominance of wired centralized com-
munication approaches for adaptive protection in microgrids.
In contrast, it reveals no identifiable changing trend in terms
of adopted communication technology (wired or wireless) in
recent practical and theoretical research (see Fig. 4). There is a
dominant use of IEC 61850 standard because it addresses neces-
sary communication protocols in the substation domain 5. IEC
61850 is suitable for wireless communications and can be used
for future implementation of protection and control systems.
Many further developments such as the IoT, augmented reality,
telemedicine, virtual reality, and unmanned driving have been
applied to real businesses. These developments have brought
significant changes to society, and their mobile communication
requirements became higher [112]–[114].
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Fig. 6. Wireless 5G communications deployment with interface diver-
sity in an overcurrent adaptive protection scheme.

Section III showed that current microgrid sensoring and mon-
itoring rely largely on wired communications, even though wire-
less systems can meet increasing quality of service requirements
(as ongoing discussions on 5G suggest). On a related note, the
recent appearance of mobile 5G wireless communications, an
evolution of 4G, as proposed by the latest realization of the 3rd
Generation Partnership Project, has revealed highly promising
for various vertical use cases, with reported efficient technical
and economical solutions [115]. In the years to come, 5G net-
works shall include features targeted at improved performance
for specific vertical use cases (as the case of energy and automa-
tion verticals). Advantages of 5G communication infrastructure
include cost savings (no wired physical connections are needed),
network virtualization, improved response time, efficiency, flex-
ibility, redundancy, and its platform approach, where a single
interface is used to provide different types of connectivity [116].
Microgrid protection will eventually benefit from 5G technology
developments, as it matures, since all network communications
within the different elements from traditional protection or
adaptive protection can be made using a centralized scheme,
as shown in Fig. 6.

In particular, 5G is framed as having three cornerstones:
1) enhanced mobile broadband: more data rate and connec-

tivity than previous technology (4G);
2) massive machine-type communication (mMTC): larger

number of devices connected than 4G and possibility of
machine-to-machine communications;

3) URLLC: 1-ms latency and 99.999% reliability.
All the above features are relevant and will play a key role

in substation control and grid automation. For instance, sys-
tem operators can connect devices that are located in zones
with difficult access. 5G would also allow for protection to
become more distributed by installing IEDs at points closer to
consumption and DER generation without having to build new
communication infrastructure. mMTC schemes could be used by
IEDs to communicate without having to rely on central servers
for actuation purposes (e.g., reclosing schemes or informing the
current state of a branch), as well as including one or multiples
IEDs to the network, maintaining the same base stations (scala-
bility). If one considers a large network deployment, as in a big
city, massive connectivity between the elements is needed.

However, URLLC is the most promising regime for adaptive
protection in microgrids. Previous work shows that message
latency should be constrained by two cycles (i.e., 40 ms for
a 50-Hz power system) [117], while other indicates a stricter
requirement between 12 and 20 ms [15], both considering high
reliability. Current 4G systems can deliver an end-to-end latency
of 20 ms, at best, which is a result of the constraint from the frame
structure. For example, tests in a 4G industrial private network
achieved in the most favorable settings a delay of 26 ms (in
comparison to a wired Ethernet scenario that achieved a delay of
3 ms) [118]. It is important to mention that, although 5G URLLC
targets latencies as low as 1 ms, our particular application is less
strict requiring 12-ms latency at the most stringent cases.

In terms of reliability, the performance of 4G is dependent on
several parameters, from the size of the message to the number of
users. In [12], the authors have proposed a quantitative relation
between these key parameters based on field measurements. The
URLLC regime in 5G relates latency and reliability in a sense
that the target reliability should be achieved within a very low
latency constraint; originally, this constraint was 1 ms, but in the
later years, it has been relaxed according to some more elaborate
requirements for industrial IoT (see, e.g., [119, Table 1]). Even
these more relaxed versions, including the one we are using for
the adaptive protection case, cannot be met by 4G.

In this case, the data-driven reliability guarantees based on a
statistical learning framework seems a more suitable approach
than the “deterministic” 1 ms potentially provided in the URLLC
regime [120]. Depending on the application, ultrareliability
is critical, but the low latency is more flexible; the adaptive
protection exemplifies this. Besides, recent results have proved
that interface diversity where 5G combined with other wireless
interfaces can provide ultrareliability with bounded delay, which
would satisfy the adaptive protection requirements [12].

The integration of these different quality of service can be
done by NS, which is a concept that finds an efficient way for
serving a determined application with 5G features on a common
infrastructure [121], [122]. Various works in fields of communi-
cation for applications in Industry 4.0 show that NS using pro-
grammability and flexibility can be used to reduce complexity.
This allows getting the best feature from a communication net-
work, depending on the requirements from specific applications
[123]. A slice can be considered an independent network, with
corresponding advantages; in microgrid protection, it could be
divided in many slices depending on the availability, latency, or
message type, as shown in [124]. This concept makes commu-
nications even more flexible. As RES penetration increases in
distribution systems, particularly in microgrids, the bidirectional
fault current magnitudes become bigger, more sensors need to
be installed, and, therefore, more signals need to be monitored. It
then becomes a growing challenge for communication systems
to deliver different messages from sensing devices to controllers
and actuators. NS architectures may be able to efficiently deal
with the complexity of handling such different and demanding
requirements, which can range from high reliability and low
latency to high data rates on the same industrial application.

All in all, new ways to incorporate wireless technology in
substation automation and control need to be researched in
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the upcoming years, to accompany the rapid changes electrical
distribution systems are already undergoing. The wired commu-
nication infrastructure will not be able to catch up, due to the
lack of scalability and further prohibitive characteristics. A good
approach would be multiconnectivity that combines wired and
wireless, as those technologies have different failure patterns. 5G
communications will open new frontiers in how these systems
can be effectively integrated to perform tasks such as adaptive
protection with very stringent requirements [125]. In particular,
ultrareliable communications with latency constraints required
to perform adaptive protection should coexist with other appli-
cations with multiple requirements, including massive connec-
tivity of machine-type devices and more traditional broadband
applications. While current 5G solutions are not yet capable of
reaching the demanded performance in protection applications,
upcoming releases of 5G—and even of 6G—are expected to
focus on specific vertical applications and application-specific
requirements. In this context, fast technological developments,
including potentially groundbreaking concepts, such as semantic
filters [126] and edge intelligence, are expected to take place in
the upcoming years[127]. These developments should allow for
tailored wireless communication solutions, i.e., based on spe-
cific applications and their particular requirements, that coexist
and share the same resources.

Usually, societal paradigm changes take place decades after
key technologies (such as 5G) have been developed, and rapid
adoption is limited by conservative and progressive investment.
The adoption of wireless connectivity in energy sector has not
yet become mainstream. Some solutions such as 4G and WiFi are
deployed for some applications (mainly monitoring, metering,
and demand response), but not for adaptive protection, due to
their performance limitations. Upgrading infrastructure to add
5G capabilities would bring additional capital costs considering
incremental deployment in the existing grid infrastructure. In
contrast, it is expected that 5G brings down the operational
costs related to communication network operations, due to its
modularity and scalability [128]. In 5G, the concept of local
operator and private cellular networks indicates the tendency
of third-party service providers, which is expected to decrease
the operational costs related to the communication network,
compared to more expensive deployment and maintenance of
wired networks [129].

5G has many potential advantages, but also some challenges
related to its effective implementation. These challenges are
commonly associated with cyber-security. Careful examination
of communication technologies has to be taken into consider-
ation during a control and protection project design stage. The
authors suggest this step to be essential for the economic viability
of the project, since it can greatly reduce costs. This design
should also include a robust system architecture to prevent or
avoid possible cyber-attacks, given the vulnerability of wireless
communication systems over wired communication systems.
The reason for this is the wireless air propagation channel,
where signals can be picked up from nearby locations without
interfering in any hardware equipment.

It is worth restating that the proposed adaptive protection
scheme can greatly reduce costs associated with the commu-
nication network, bringing more flexibility in comparison to the

traditional wired solutions. The benefits of using 5G would also
be combined with already deployed solutions, leading to gains
from multiconnectivity, which is a popular way of attaining now
that there are many wireless interfaces available [12]. In sum-
mary, we argue that the proposed solution generally complies
with the current deployments, which yields a smooth transition
that will bring not only technical benefits but also economical
ones.

V. CONCLUSION

This article presented key technical aspects related to the com-
munication system that is needed to perform adaptive protection
in microgrids with high penetration of DERs. We particularly
focused on different exiting solutions for adaptive protection
systems, which were dominantly based on wired solutions.
We covered the traditional communication architectures (e.g.,
centralized or decentralized) and standards (e.g., GOOSE, SMV,
and RTPS, among others). We also discussed aspects related to
cyber-security, including potential threats and types of attacks.
What is remarkable, though, is that current approaches mostly
rely on wired networks despite the unquestionable performance
gains of wireless technologies during the last decade. In this
sense, we argue that 5G in combination with other existing
solutions (e.g., WiFi) can already achieve the required reliability
of 99.999% with a bounded latency as low as 12 ms so that
they should be seriously considered as a feasible enabler of
adaptive protection applications. In the near future, we expect
that these solutions will take over many traditionally wired
applications, since wireless solutions tend to be cheaper, more
flexible, and easier to implement than wired ones to perform
the same tasks, including mission-critical ones. All in all, this
review highlighted the state of the art in the field indicating
possible research directions that shall be taken to effectively
deploy adaptive protection using wireless communications.
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