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The field of exoplanet research is one of the most rapidly expanding research fields in
modern astrophysics. In recent decades, astronomers have found most exoplanets via
indirect techniques such as the transit and radial velocity method. The direct imaging
technique called high contrast imaging (HCI) enables new ways to expand our knowledge
of these exoplanets and exoplanetary systems. However, direct imaging of exoplanets is
challenging due to the high contrast ratio and small angular separation from the host star.
Thus, HCI detections, so far, are mostly limited to a few dozen young and luminous giant
exoplanets.

The new generation of HCI instruments, under development, will push direct imaging
into increasingly challenging areas, discovering and characterizing exoplanets dimmer
and closer to their host start. The ultimate goal is direct imaging and characterization
of potentially habitable exoplanets. On ground-based telescopes, HCI instruments are
equipped with eXtreme Adaptive Optics (XAO) that correct the phase fluctuations caused
by the atmosphere. With an optimized instrument design, the residuals left by XAO cor-
rection set the limitation of sensitivity; thus, minimizing the XAO residuals is a crucial
objective for ground-based HCI. Further, most habitable exoplanets are located at small
angular separations from their host stars, where current XAO control algorithms leave
strong residuals of stellar light that could be suppressed with more advanced algorithms.
This thesis explores novel data-driven control methods for XAO control that cope with
crucial limitations of traditional control laws, such as temporal delay and calibration er-
rors. Improvement in these potentially reduces the residual flux of stellar light in the
coronagraphic point spread function and thus enables fainter observations closer to the
host star.

We show that model-based RL is a promising XAO control approach that produces con-
sistent results in numeric simulations and lab setups. The proposed methods suppress
the temporal error, and photon noise compensates for misregistration and optical gain. It
can also adapt to changing wind conditions in time scales of several seconds. Moreover,
model-based RL manages the extreme time constraint of XAO control and, if well formu-
lated, scales to ELT scale XAO.

Keywords: adaptive optics, high contrast imaging, reinforcement learning, inverse prob-
lems, robotics, and statistical machine learning
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1 Introduction
Adaptive optics

Looking at the sky on a clear night, one may notice that stars seem to twinkle or change
their brightness and position. In fact, almost every visible star shines steadily and still, and
the turbulence in the atmosphere causes the twinkling effect. As the light from a distant
astronomical object travels through the atmosphere, it gets distorted by an ever-changing
mix of cold and warm air, in other words, by atmospheric turbulence. For astronomers,
atmospheric turbulence means decreased image quality on ground-based telescopes, and
for many decades it set the limits for the sharpness of images obtained.

Adaptive optics (AO) is a technique that aims to remove atmospheric distortions. The
basic concept is to use a star (referred to as a guide star), for which we know the exact
location, as a reference point to measure the distortion along the line of sight and an
adaptive element (usually a deformable mirror) that can change its shape to compensate
for the distortions caused by the atmosphere.

Proposed almost 70 years ago by Horace Babcock (1953), AO was successfully tested
on-sky for the first time in 1974 (Hardy et al., 1974) and a bit more than a decade later
for astronomical purposes in 1989 (Merkle et al., 1989). The results of Merkle et al.
(1989) showed that AO could recover the diffraction limit of a 1.5-meter telescope. Since
then, AO techniques and expectations have evolved in many directions, utilizing different
astronomical observations. Some AO systems aim to produce a good correction on a wide
field of view, some suitable corrections of very faint objects, and some good corrections in
multiple directions simultaneously, while others aim for excellent corrections on a narrow
field of view.

This thesis focuses on the development of so-called eXtreme Adaptive Optics (XAO)
systems. ExAO systems are adaptive optics (AO) systems specifically designed to pro-
vide excellent wavefront correction on relatively bright natural guide stars on small an-
gular separations (close to the guide star). They typically operate at a higher speed and
have actuators than general-purpose AO systems. XAO relies on a single on-axis star for
wavefront sensing and does not address the anisoplanatism effects that restrict the AO-
corrected field of view. Currently, these systems are found in instruments dedicated to di-
rect exoplanet imaging, such as the Gemini Planet Imager (Macintosh et al., 2014) on the
Gemini South telescope and the SPHERE (Spectro-Polarimetric High-contrast Exoplanet
REsearch, Fusco et al., 2006; Beuzit et al., 2010) instrument on the European South-
ern Observatory’s Very Large Telescope and newer experimental instruments MagAO-X
(Magellan Adaptive Optics eXtreme system, Males et al., 2018) and SCExAO (Subaru
Coronagraphic Extreme Adaptive Optics, Jovanovic et al., 2015).

What are exoplanets and exo-earths?

Most of us are familiar with the planets that orbit our Sun. However, our galaxy, the Milky
Way, contains about 400 billion stars, our Sun among them. Moreover, like our Sun, many
have not just one but a whole system of planets orbiting them. The planets orbiting these
other stars are called exoplanets, They come in a wide variety of sizes and with a wide
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Figure 1.1: A time-lapse picture series of exoplanet Beta Pictoris b. These stunning
pictures, showing Beta Pictoris b’s orbit around its host star, were caught with SPHERE,
an instrument dedicated to direct exoplanet imaging. Sixty-three light-years away, planet
Beta Pictoris b orbits its host star at a distance similar to that between the Sun and Saturn.
The host star is blocked with a black digital mask. So far, it is the most closely orbiting
exoplanet ever captured by the direct imaging technique. The development of the new
generation of exoplanet imaging instruments will push direct imaging into increasingly
challenging areas – discovering and characterizing exoplanets dimmer and closer to their
host start.

variety of other properties, from gas giants like Jupiter to smaller rocky planets like Earth,
and from melting hot to freezing cold.

The planets of size and mass almost equal to the Earth’s and located in the habitable
zone around a star are often called exo-earths. These planets are potential hosts for life
(as we know it) since they are located in an area where the temperature is just right for
liquid water to exist on their surface. Studying these planets is especially interesting as it
may result in finding unmistakable signs of current life on a planet beyond Earth.

From indirect observations to direct exoplanet imaging

During the last decade, NASA’s Kepler mission1 has identified over 3000 confirmed ex-
oplanets through an indirect technique called the transit method. Moreover, most of the
more than 5,000 exoplanets confirmed have been found by indirect methods, such as the
transit or the radial velocity method. The transit method measures the dimming of a star
that has a planet pass in front of it, and the radial velocity method monitors the spectrum
of a star for the telltale signs of a planet’s gravitational pull on its star causing the light to
subtly Doppler shift.

The indirect methods do not produce a direct image of the planet but give an indirect
indication of the planet’s existence. In contrast, a direct imaging technique called High
contrast imaging (HCI) aims to separate the exoplanet light from the stellar light opti-
cally, producing a direct image of the planet. Figure 1.1 shows an HCI observation, that

1Exoplanet Orbit Database: http://exoplanets.org/
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is, a direct image, of an exoplanet Beta Pictoris b. As the glaring stellar light is usually
the dominating source of measurement noise, it dramatically increases the signal-to-noise
ratio (S/N) over that provided by indirect methods. So far, HCI detections are mostly
limited to a few tens of very young and luminous giant exoplanets (e.g., Marois et al.,
2010; Lagrange et al., 2009; Macintosh et al., 2015). The main reason behind the small
number of HCI detections is that they are exceptionally challenging: the planets produce
very little light of their own and they are at an enormous distance from us yet reasonably
close to their host star. Consequently, the planets are lost in the blinding glare of their
parent stars, and the direct imaging of exo-earths remains unfeasible for even the most
advanced existing HCI instruments.

Figure 1.2: I-band flux ratio between hypothetical exo-earths and parent stars within ten
(10) parsec (observable from the ELT construction site) as a function of angular separa-
tion. The symbol size reveals the planet’s apparent brightness, and the colors indicate the
stellar spectral type (red: M-stars, yellow: solar-type stars). The approximate contrast
boundaries for PCS, i.e., the ability to distinguish the reflected light from the planet, are
shown as a dotted line (Kasper et al., 2020).

The Planetary Camera and Spectrograph for the Extremely Large Telescope

The European Extremely Large Telescope (ELT) is an observatory currently under con-
struction. When completed, it will be the world’s largest optical/near-infrared telescope,
and it is planned to enable fundamental contributions to astronomy and cosmology. It
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will facilitate multiple large science instruments for different kinds of observations, from
studying the very first galaxies in the so-called ”Dark Ages” to tracking down exo-earths
around nearby stars.

The Planetary Camera and Spectrograph (PCS, Kasper et al., 2020) for the ELT will be
dedicated to detecting and characterizing nearby exoplanets with sizes from sub-Neptune
to Earth-size around the nearby planetary systems. Figure 1.2 illustrates the approximate
contrast boundaries of PCS along with some potential targets as a function of angular
separations. To achieve this ambitious goal, PCS combines XAO, coronagraphy, and
spectroscopy. If the goals are met, PCS will allow us to take direct images and look for
biosignatures such as molecular oxygen in the exoplanets’ atmospheres.

For PCS, the performance of the XAO system plays a crucial role and is a technol-
ogy still requiring significant research and development (R&D). It is critically important
to minimize the photon noise introduced by stellar light scattered to the position of the
nearby planet, which is the primary noise source for ground-based exoplanet detection.
This thesis contributes to the PCS’s R&D activities at the European Southern Observatory
(ESO).

Development of XAO control methods

The most interesting objects for direct imaging, such as exo-earths, are often located at
very small angular separations from their host stars. At small angular separations, one of
the limiting factors is the servo-lag of the system, which could be compensated for by ad-
vanced control algorithms. Therefore, for future (and current) HCI instruments, new con-
trol approaches and techniques have the potential to offer significant performance gains
(Guyon, 2005). Unsurprisingly, advanced XAO control methods have gained significant
attention in the research field of HCI instrumentation in recent years. These methods
include the Kalman filter-based linear controllers (Kulcsár et al., 2006; Paschall and An-
derson, 1993; Gray and Le Roux, 2012; Conan et al., 2011; Correia et al., 2010b,a, 2017),
sometimes combined with machine learning for system identification (Sinquin et al.,
2020). Other methods vary from linear filters to filters operating on single modes, such
as Fourier or Zernike modes (Guyon and Males, 2017; Poyneer et al., 2007; Dessenne
et al., 1998; van Kooten et al., 2017, 2019), to neural network approaches (Swanson et al.,
2018; Sun et al., 2017; Liu et al., 2019; Wong et al., 2021). Predictive control methods
have also been studied in a closed-loop configuration. Males and Guyon (2018) address
a closed-loop predictive control’s impact on the post-coronagraphic contrast with a semi-
analytic framework. Swanson et al. (2021) studied closed-loop predictive control with
NNs via supervised learning, where a NN is learned to compensate for the temporal er-
ror. Some methods have also been tested on-sky (e.g., van Kooten et al., 2022). More
recently, remarkable progress has been achieved with fully data-driven control methods
that, in addition to temporal prediction, add the control signals to the learned model to
account for closed loop dynamics (Pou et al., 2022; Landman et al., 2020, 2021; Haffert
et al., 2021a,b).

This thesis aims to explore novel data-driven control methods for XAO control for
predictive self-calibrating control. In particular, it focuses on Reinforcement Learning
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(RL) methods for AO from the perspective of studying the potential benefits of these ap-
proaches and their practical implementations. XAO is a closed-loop control system where
the system’s state is observed via indirect, ill-posed measurement. More precisely, the at-
mospheric turbulence, its evolution model, and the DM surface are not observed directly
but through a sensor measurement that gives indirect data. Moreover, the system dynam-
ics are not known a priori, but they must be approximated from the data, either from the
observation of some external sensor. RL methods learn control solely from the interaction
with the system and are, therefore, insensitive to the common pitfalls of pseudo-open-loop
predictive controllers, such as the optical gain effect, misregistration, and temporal jitter/-
timing errors. The framework of RL methods for XAO control positions the thesis at the
interface of three research fields: astronomical instrumentation, inverse problems, and
reinforcement learning.
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2 Fundamentals
This section explains the fundamentals of physics behind astronomical telescopes and
adaptive optics. Along with mathematical notation, these are explained through numer-
ically simulated examples. All XAO simulations in the introduction are performed with
COMPASS simulator (Ferreira et al., 2018), while the science camera and coronagraph
are simulated with HciPy toolbox (Por et al., 2018).

As this introduction aims only to give a short description of AO from the perspective of
the scientific results of the thesis, we encourage the interested reader to peruse textbooks
by, for example, Roddier (1999), Hardy (1998), Hickson (2008) and Roggemann et al.
(1996) for more detail. We also encourage the reader to look through Ellerbroek and
Vogel (2009) for interesting inverse problems in AO that are not discussed in this thesis.

Figure 2.1: Illustration of diffraction effect and the Fraunhofer approximation. The light
from a faraway star (a point source at infinity) produces a planar wavefront. The telescope
aperture causes the light to diffract and form a diffraction pattern (the Airy disk) on the
focal plane

2.1 Diffraction limit
The purpose of a telescope is to collect light from a distant source and focus it as an image
on the science camera, that is, the image plane. Generally, the shape of the primary mirror
defines the entrance aperture that restricts the rays that reach the image. By the principles
of physics, the aperture causes light waves to spread out and interfere with one another
and, consequently, small details on the image plane to blur. This effect, called diffraction,
sets a theoretical limit for the telescope’s image quality.
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The most natural way to explain diffraction for astronomical imaging is by Fourier op-
tics (Goodman, 2005). All astronomical objects are very distant compared to the telescope
aperture; hence, it is common to use the so-called Fraunhofer far-field approximations to
model the diffraction pattern. The point spread function (PSF) s0(u, v) of an ideal tele-
scope (i.e., an image of a faraway monochromatic point source) is then described by a
Fourier transform of the aperture shape:

s0(u, v) = |F{χΩ}(u, v)|2 =
∣∣∣∣∫∫ χΩ(x, y)e

−2iπ(xu+yv) dx dy

∣∣∣∣2 , (2.1)

where the χΩ(x, y) is a characteristic function of the telescope aperture and (u, v) spatial
frequencies scaled by λ/D. The Fourier spatial frequencies (u, v) represent the spatial
location at the image plane, that is, the science camera, and the value s0(u, v) represents
the relative intensity of the light on it.

Due to the Fourier optics (Goodman, 2005), the image I of an arbitrary astronomi-
cal object f (e.g., an exoplanet and host star or a galaxy) can now be described as the
convolution of the observed light intensity with the diffraction limited PSF s0, that is,

I(u, v) =

∫ ∞

−∞

∫ ∞

−∞
s0(u− u′, v − v′)f(u, v) du′ dv′ (2.2)

The convolution operator blurs the image; hence, the images’ high spatial frequencies are
dampened. A telescope’s ability to differentiate details is often defined by the so-called
Rayleigh criterion. It states that two images are just resolvable when the center of the
diffraction pattern of one is directly over the first minimum of the diffraction pattern of
the other; see Figure 2.2. The diffraction pattern’s first minimum is approximately at point
1.22λ/D. Two points are just resolvable if this angle separates them.

The diffraction-limited angular resolution (1.22 λ/D) of the telescope depends on the
imaging wavelength λ and the telescope diameter D. Thus, at a given wavelength, re-
solving smaller angular separation needs bigger telescopes. For an 8-meter telescope,
imaging at wavelength 850 nm (I-band), 1.22 λ/D is approximately 25 milliarcseconds,
which is enough spatial resolution to resolve many potentially habitable planets around
nearby stars. However, on ground-based telescopes, the difficulty of exoplanet imaging
lies in the enormous flux ratio (contrast) between the planet and the host star (see Figure
1.2), the atmospheric turbulence, and in the telescope’s ability to collect enough photons
in reasonable observing time.

2.2 The effect of phase aberrations

The diffraction pattern gives a theoretical limit to the telescope’s image quality, but in
the real world, any optical system will introduce aberrations to the incoming wavefront.
We denote the aberrated incoming electromagnetic field (the wavefront) by ψ : R2 → C,
defined by:

ψ(x, y) = AΩ(x, y)e
−iϕ(x,y), (2.3)
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Figure 2.2: The Rayleigh criterion. The focal plane image of two point sources at three
different separations: 0.5 λ/D (unresolved), 1.22 λ/D (just resolved) and 5 λ/D (re-
solved). The color indicates the PSF relative brightness compared to the peak intensity in
the middle, i.e., the contrast in a logarithmic scale.

where AΩ(x, y) is the amplitude over the pupil aperture and ϕ(x, y) the phase aberrations.
Neglecting the amplitude variation and normalizing the amplitude, the function A is sim-
ply the characteristic function of the pupil χΩ, and the Fraunhofer approximation of a
monochromatic point source (PSF) is now given by,

sϕ(u, v) = |F{χΩe
iϕ}(u, v)|2. (2.4)

The image of the object f on the focal plane would be again convolved, but this time
with the aberrated PSF sϕ. For example, let us look at the simple static planar tip and
tilt aberration in the phase, that is, ϕ(x, y) = 2π(θ1x + θ2y). Now solving (2.4), with
tip-tilted ϕ, yields

sϕ(u, v) =

∣∣∣∣∫∫ χΩ(x, y)e
−2π(x(u−θ1)+y(v−θ2)) dx dy

∣∣∣∣2
= s0(u− θ1, v − θ2). (2.5)

We note that a tip-tilt aberration causes a linear shift in the image of an object. If this
aberration evolved during the exposure, the image would eventually be blurred beyond
the diffraction pattern.

2.3 Strehl ratio

The Strehl ratio (SR) is a common way to measure the quality of the PSF. It is defined as
the ratio between the peak intensity of observed PSF at the image plane and the theoretical
diffraction-limited PSF, that is,

SR =
sϕ(0, 0)

s0(0, 0)
. (2.6)
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The SR is connected to the variance of the phase aberration ϕ via two Marechal’s approx-
imations (Tyson and Frazier, 2022):

sϕ(0, 0)

s0(0, 0)
≈ eσ̂

2
ϕ , (2.7)

where σ̂2
ϕ is the ensemble variance (over time) of the phase errors, and

sϕ(0, 0)

s0(0, 0)
≈ 1− σ2

ϕ, (2.8)

where σ2
ϕ is the phase variance over the pupil on a given time instance. The approxi-

mation in Equation (2.8) follows from the Taylor series expansion (about ϕ = 0) of the
exponential in Equation (2.5) and is, hence, only valid for small phase aberration, i.e.,
high SR (> 80%). The approximation (2.7) is valid for larger phase errors, but it is used
exclusively for long-exposure SR. Consequently, for moderate and high SRs, minimizing
the wavefront error variance, i.e., the mean-square error (MSE), maximizes the SR.

2.4 Imaging through turbulence
On ground-based telescopes, the atmosphere is the primary source of phase aberrations in
the incoming light. Atmospheric turbulence is the random mix of air of different tempera-
tures in a constant motion driven by the wind. It introduces spatial and temporal variations
in the refractive index of air and, thus, in the optical path length of the stellar light. These
variations are governed by the Kolmogorov-Obukhov turbulence law.

In the early 1940s, Kolmogorov and Obukhov developed a statistical model to describe
turbulent air motion (Kolmogorov, 1991). The model is limited to a spatial frequency
band, called the inertial range, bounded by the outer and inner scales. Kolmogorov and
Obukhov supposed that the turbulence is initialized in the outer scale L0 and progresses
systematically to smaller scales as large whirls transfer energy to small whirls. When this
turbulence energy reaches the inner scale l0, it dissipates to heat energy due to viscous
friction. Kolmogorov and Obukhov suggested that inside the inertial range, the turbulence
field (fluctuations in the refractive index) can be modeled as a stationary and isotropic
Gaussian random field at any fixed time instance. Interested readers may refer to Lukin
(1995) for a comprehensive theoretical examination of adaptive optics-related turbulence
phenomena.

The vertical profile of the turbulence is often modeled as a finite set of thin, statistically
independent turbulent layers at a given height and with a given turbulence strength. More-
over, compared to changes depending on wind speed, the turbulence pattern changes are
relatively slow. Hence a good approximation of the time evolution is reached by Taylor’s
frozen flow hypotheses. Each turbulent layer is modeled as a thin static ’frozen’ layer
sliding over the telescope with an individual wind speed and direction.

A good approximation for most astronomical AO applications is the neglection of am-
plitude variations (or scintillation), and the turbulence is assumed only to induce phase
variations to the wavefront ψ (Davies and Kasper, 2012). For HCI systems (introduced in
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Section 3) the amplitude variations introduce an error term for the contrast performance
(Guyon, 2005). However, correcting for amplitude variations is beyond the scope of this
thesis and is not modeled by the numerical simulation. The phase errors ϕ are obtained
by integrating over the layers along the optical path to the telescope. For a more detailed
description of wave propagation through the atmosphere, the reader can refer to, e.g.,
Tatarski (2016); Roddier (1999); Tyson and Frazier (2022). By using a subtle variation
on the original Kolmogorov model, phase variations after each thin layer ϕ, modeled as a
two-dimensional Gaussian process (GP) follow so-called von Kàrmàn statistics, that is,

ϕ(x, y) ∼ GP(0, Cϕ((x, y), (x
′, y′))), (2.9)

where Cϕ only depends on the Euclidean distance between locations (x, y) and (x′, y′)
and the power spectral density (PSD), that is, the Fourier transform of the covariance
function is given by

Ĉϕ(κ) = a(|κ|+ 1/L2
0)

−11/6. (2.10)

Here κ is the spatial frequency, L0 is the outer scale of the layer, and a is a constant
defining the turbulence strength. The PSD expresses the amount of turbulent energy at a
given spatial frequency. In general, one could argue that the Kolmogorov spectrum (infi-
nite outer scale) is not physical and that a suitable typical largest spatial scale L0 has to be
introduced as done by the von Kàrmàn spectrum. Given (2.10), the corresponding covari-
ance function belongs to the family of Whittle-Matèrn random fields, with smoothness
parameter 5/6 (Doelman, 2020). We note here that the smoothness parameter 5/6 refers
to the smoothest of the covariance function, not the exponent (−11/6) in PSD.

In the near-field approximation, the final cumulative optical path aberrations ϕtotal

(henceforth referred to simply as ϕ) is a sum of aberrations along the line of sight. That
is, simply the sum of phase variations after each thin layer:

ϕ(x, y) =
L∑
l=1

clϕl(x, y), (2.11)

where L is the total number of layers and ϕl phase aberrations after the corresponding
layer, the collection of relative strengths [c1, c2, · · · , cL] at layers is called the discrete C2

N

profile (a typical notation in AO literature).

2.5 Atmospheric turbulence parameters

Regarding HCI, the two most essential atmospheric turbulence quantities are the Fried
parameter and the coherence time. The Fried parameter (Fried, 1966) was introduced
to describe the magnitude of the atmospheric turbulence effect on the telescope’s im-
age quality. It is the diameter of the circular aperture over which the root-mean-squared
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(RMS) wavefront phase aberration equals one radian. That is given by

r0 =

0.423 ·
(
2π

λ

)2

(sec ζ)

h∫
0

C2
n(z)dz

−3/5

, (2.12)

where λ is the wavelength and ζ is the zenith angle, that is, the view direction. The
refractive index structure constantC2

n describes the strength of the turbulence as a function
of the altitude 0 ≤ z ≤ h (a discrete vector in the layered model).

The Fried parameter can also be interpreted as the aperture size for which the diffraction
effect and the effect of turbulence cause an equivalent decrease in image resolution. That
is, phase aberrations smaller than one radian RMS mean diffraction-limited resolution.
Moreover, the r0 is closely related to so-called astronomical seeing, the full-width-at-
half-maximum (FWHM) of the turbulence-blurred PSF, usually measured in arcseconds
(′′). For example, in 1′′ seeing the Fried parameter is in order 10-cm at visible wave-
lengths.

Similar to the spatial variation of the turbulence, one can derive a corresponding param-
eter for the temporal evolution of the turbulence. The coherence time, also called the
Greenwood time delay, is given by

τ0 = 6.88−3/5 r0
v
, (2.13)

where r0 is the Fried parameter and v the average wind speed. The coherence time τ0
gives the time interval over which the phase aberration changes approximately one radian
of RMS.

The Fried parameter and coherence time set complexity requirements for the AO sys-
tem. The Fried parameter determines the spatial resolution requirement of phase correc-
tion, that is, the number of spatial frequencies the AO system has to be able to correct to
reach an adequate Strehl ratio. The coherence length determines the system’s temporal
correction bandwidth, ultimately defining the AO system’s loop speed. Typically the as-
tronomical seeing is reported at λ = 500nm (visual light), and the common median seeing
for a good astronomical site is from 0.6′′ to 0.7′′, corresponding to a Fried parameter of
14.4cm to 16.8cm. The corresponding coherence time for a typical average wind speed of
10m/s is approximately 5ms. Both, r0 and τ0 are proportional to λ6/5, i.e., r0 is typically
around 40cm at λ = 1.6µ. Figure 2.3 shows the effect of atmospheric turbulence on the
PSF under typical seeing conditions.
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Figure 2.3: The effect of atmospheric turbulence on the PSF at 1.6 µm with r0 = 16cm at
500nm. Upper left: Phase aberrations at a single time instance (frame). Upper right: the
diffraction-limited PSF for a circular telescope aperture with a small central obstruction
(e.g., the VLT). Lower row images: the corresponding PSF of the frame and the log
exposure PSF over 6000 frames. In a single time instance, the PSF is broken up into
many individual speckles. As phase aberrations change, the speckle patterns blur the
PSF, thus reducing the resolving power.
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3 High contrast imaging

Figure 3.1: Illustration of simplified HCI system.

This section gives an overview of HCI systems. It introduces the most relevant com-
ponents with emphasis on the XAO control. First, we introduce the XAO components,
namely the wavefront sensor (WFS) , the deformable mirror (DM), and the control prob-
lem, where we outline a standard control law called integrator and the related calibration
process. Then, we provide a brief introduction to coronagraphy and introduce the essen-
tial noise terms and the evaluation metrics used in the thesis.

An overview of a simplified HCI instrument is given in Figure 3.1. It comprises a single
WFS, a single DM, and a real-time computer (RTC), which together compensate for the
wavefront aberration. A coronagraph then suppresses the host star’s glare to make the
much fainter companion visible. However, modern XAO systems are usually much more
complex than this simplified design and may involve multiple DMs, WFSs, and sensing
techniques (Guyon, 2005, 2018; Males et al., 2018).

All HCI systems use a single guide star (the host star for the potential planet) as the
reference source because the targets are nearby and usually bright enough for a WFS
working at optical or near-infrared wavelengths. The WFS, which measures deviations
from a flat wavefront, is set downstream from the DM. This configuration allows a closed-
loop architecture – the WFS observes changes in the DM shape. More precisely, the DM
corrects the incoming light ϕtur

t at the timestep t. After this correction, the WFS measures
the residual wavefront ϕres

t . After receiving the wavefront sensor measurement, the RTC
calculates a set of control voltages and sends the commands to DM; see Figure 3.1. Fur-
ther, the AO control loop inherits a temporal delay. The delay consists of measurement
delay introduced by the WFS detector integration and control delay consisting of detector
readout, computations of the correction signal, and its application to the DM. These add
up to a typical total delay of two update steps of the AO system running at the maximum
speed of the WFS camera when the camera readout already takes about one update step
(or frame).
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Figure 3.2: Illustration SHS. The SHS consists of a lenslet array and a detector. Flat
wavefront reference points are the measurement of a non-aberrated wavefront. The SHS
measures the focus points’ displacement from the flat reference points.

3.1 Wavefront sensing
The WFS is one of the essential elements of an AO system. The function of the WFS is
to measure the spatial shape of the phase including the DM corrections, that is, residual
phase screen ϕres

t . There are different types of WFSs, and in this work, we introduce the
two most common ones – the pyramid wavefront sensor (PWFS) and the Shack-Hartmann
sensor (SHS).

Shack-Hartmann wavefront sensor

The SHS directs the incoming wavefront from the guide star to a lenslet array of small
identical lenslets. Each of these lenslets then forms an image of the star onto the image
plane. If the incoming wavefront is a plane wave, the images form a perfect grid on
the image plane; as soon as the wavefront is perturbed, the images get displaced as in
Figure 3.2. The displacement of an image is proportional to the average wavefront slope
over the area of the corresponding lens (sometimes referred to as sub-aperture). These
displacements from the flat wavefront focus points are the SHS measurements.

A simple model for SHS measurements is given by the average phase gradients over
each lenslet (or sub-aperture):

wx(i, j) =
1

|A(i,j)|

∫
A(i,j)

∂xϕ(r)dr (3.1)

and
wy(i, j) =

1

|A(i,j)|

∫
A(i,j)

∂yϕ(r)dr, (3.2)
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Figure 3.3: The working principle of PWFS. The focal plane PSF is directed to a four-
sided pyramid, with or without spatial modulation (circular motion around the tip). Then,
the light propagates to four different intensity images. The spatial shape of the phase can
be recovered from the intensity images.

where A(i,j) is the sub-aperture surface at the position (i, j) and |I| the total number of
sub-apertures. The collection of wx, wy at all possible locations is denoted by a measure-
ment vector w.

This simple mathematical model is entirely linear. However, in reality, each lenslet
has a corresponding detector area (or field of view, FoV) with a certain number of pixels
and, due to the residual phase errors, the image on the detector is not ideal. Therefore,
the SHS sensor’s linearity depends on the detector’s available FoV, the pixel size, and the
algorithm used to retrieve the spot displacement (e.g., Basden et al., 2011). However, in
the closed-loop regime of XAO operation, the SHS behaves very similarly to the average
gradient model.

Pyramid wavefront sensor

The PWFS (Ragazzoni, 1996; Ragazzoni and Farinato, 1999) is a Fourier Filtering type
of WFS, that operates in the focal plane (Fauvarque et al., 2016). In PWFS sensing, the
electric field of the incoming wavefront is directed to a transparent four-sided pyramid
prism. The prism is located in the focal plane of an optical system and the incoming
light is usually modulated around the tip of the pyramid to various degrees; see Figure
3.3. This four-sided pyramid divides the incoming light in four different directions, and
most of the light is propagated to four intensity images on the PWFS detector. Due to
the slightly different optical paths of the light, the intensity fields differ from each other.
These differences are then used as the data for recovering the disturbances in the incoming
phase screen.

The amount of modulation on the pyramid’s tip alters the properties of the PWFS. When
strong modulation is applied, the PWFS closely represents the SHS sensing. On the other
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hand, small modulation, or the extreme case of zero modulation, delivers better sensitivity
but compromises the dynamic range and linearity. However, the modulation amplitude
can be easily adjusted to given imaging conditions (Guyon, 2005). This flexibility and
high sensitivity make the PWFS a better choice for XAO. Newer XAO systems, such as
SCExAO and MagAO-X, have adopted this relatively new wavefront sensing concept.

Let us consider the mathematical model of a non-modulated standard four-sided PWFS.
The modulated PWFS would simply employ the following model along the circular mod-
ulation path. The PWFS can be viewed as a generalization of the Foucault knife-edge test
(Ragazzoni, 1996), and it can be modeled as a spatial Fourier filter that introduces specific
phase changes according to the shape of the prism (Fauvarque et al., 2017).

We denote the incoming phase screen by ϕ : R2 → R and the corresponding incoming
electromagnetic field ψ : R2 → C by

ψ(x, y) =
√
nχΩ(x, y) exp[−iϕ(x, y)], (3.3)

where n is the spatially averaged flux, and χ is the characteristic function of pupil. The
electric field is then directed to a transparent four-sided pyramid prism. We can then
estimate the intensity on the detector by using diffraction theory and the Fraunhofer ap-
proximations, that is,

I(x, y) =
∣∣ψ(x, y) ∗ (F−1{OTFpyr})(x, y)

∣∣2 , (3.4)

where F−1{OTFpyr} is the pupil plane point spread functions of the glass pyramid (PSFpyr).
The PSFpyr is defined as the inverse Fourier transform of its optical transfer function
OTFpyr that is characterized by the shape of the pyramid prism (Heritier, 2019; Sha-
tokhina et al., 2020).

A four-sided pyramid divides the incoming light in four different directions, and most
of the light is propagated to four intensity images on the PWFS detector. We denote these
pupil images, i.e., intensity fields, by I1, I2, I3, and I4. Due to the slightly different optical
paths of the light, the intensity fields differ from each other. As discussed before, we use
these differences as the data for recovering the disturbances in the incoming phase screen.

Commonly, PWFS data, the intensity fields, are processed to so-called slopes wx, wy

that correlate positively to actual gradients fields of the phase screen. In the articles of
this thesis, we follow the approach of Vérinaud (2004), where the slopes are normalized
with the global intensity,

wx(x, y) =
I1(x, y)− I2(x, y) + I4(x, y)− I3(x, y)

Iglob
(3.5)

wy(x, y) =
I1(x, y)− I4(x, y) + I2(x, y)− I3(x, y)

Iglob
(3.6)

In practice, we receive a vector w that is a collection of the measurements wx, wy at all
possible locations x, y.

Currently, most wavefront reconstruction algorithms, discussed in Sections 3.3, utilize
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a linearization of the PWFS model, inducing a trade-off between sensitivity and robust-
ness (modulated PWFS vs. non-modulated PWFS). Further, the PWFS is a diffraction-
limited wavefront sensor, meaning that its sensitivity varies depending on both the seeing
conditions and the level of AO correction itself (Korkiakoski et al., 2008). How to deal
with these properties is still an active field of research, where different (outside this thesis)
machine learning methods are also studied (e.g., Landman and Haffert, 2020).

3.2 Deformable mirror

Another critical component of AO systems is the DM which executes the required wave-
front correction, taking the shape of the phase aberrations but with half the amplitude. A
DM consists of a highly reflective cover that can be controlled from below with actuators
(typically in a Cartesian grid). A DM has four key parameters: stroke, response time,
actuator spacing, and the number of actuators. The requirements for actuator spacing
and the response time are governed by the atmospheric parameters r0, τ0, and the science
objective of the instrument, while the stroke (the difference between the highest and low-
est actuator position) and the number of actuators, also referred to as DMs Degrees of
Freedom (DoF) are scaled according to the aperture size.

Different DM designs are used to reach the astronomical AO requirements for these
parameters, combining different low-order and high-order DM as well as developing new
DM technologies. To this end, three leading DM technologies are the piezo-stack DMs
that use stacks of piezo-ceramic disks for actuation, the adaptive secondary mirrors, and
the micro-electromechanical system (MEOMS) devices. The reader can refer to, for ex-
ample, Madec (2012); Roddier (1999) for a more detailed description of the different DM
technologies.

We use here a relatively simple model for the piezo-stack type of DM. The DM actu-
ators are positioned into a cartesian grid. Each actuator is controlled by control voltage
defining the height of the actuator, and the deformations corresponding to a single ac-
tuator’s actuation define the mirror’s influence functions. The influence functions of the
mirror are simulated with Gaussian bell curves, and the mechanical coupling gives the
curve’s height on the neighboring actuator; see Figure 3.4. In numerical simulations, we
assume that the DM has enough stroke for the given imaging conditions, and DM satura-
tion does not happen.

Modal basis

Instead of considering DM commands as individual zonal commands on the actuators, it
is often more convenient to consider the commands on an orthogonal modal basis. Each
command in the modal basis is a set of control voltages for all actuators in such a way
that they together form a specific shape on the DM surface that is orthogonal to all the
other modes; see Figure 3.4. The modal approach is advantageous for various reasons
depending on the basis used. For example, the Zernike polynomials (Noll, 1976) are well
suited to describe the optical aberrations commonly seen in optics; on the other hand, the
Fourier basis gives a direct tool to analyze the spatial frequency content of the DM shape.
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Figure 3.4: Gaussian DM influence function with 0.3 mechanical coupling and modal
command. The simulated DM has 41 x 41 actuators across an 8-meter aperture (20cm
spacing). Panel a: cross-section of the DM influence function. The dashed black lines
mark the position of the neighboring actuators. Panel b: A single actuator pushed on the
DM. Panel c: A modal command on DM (KL mode #12)

Moreover, the modal basis approach provides better means to compare the performance
of different AO designs.

Any wavefront, that is, the phase aberrations ϕ ∈ L2(Ω) can be written as an infinite
set sum scaled of orthogonal basis functions (modes): ϕ(x, y) =

∑∞
i=1 bifi(x, y). The

DM only has a finite number of actuators and can only take shapes defined by the DM
influence functions (e.g., Gaussian influence functions, see Figure 3.4). Therefore, we
consider a finite set of N modes in the DM space:

ϕ(x, y) =
N∑
i=1

aimi(x, y) + ϕres, (3.7)

where mi are orthogonal DM space modes, ai the modal coefficients and ϕres is part of
the wavefront outside the finite set of DM modes.

The choice of the modal basis can be driven by the different system-dependent and user-
dependent needs. However, a natural goal for the modal basis designing is to construct
a modal basis that contains the maximum amount of turbulence energy for a given finite
number of modes. That is, for a given N in Equation 3.7, we want to minimize ϕres

in the least squares sense. Gendron and Léna (1994) showed that an optimal basis with
this respect is obtained by considering the atmosphere’s statistics and the DM influence
function properties. The outcome of this process is called the Karhunen-Loève (KL) basis.

The construction method is based on double orthogonalization. We start by computing
the ordinary KL decomposition of the atmosphere’s spatial statistics. For Gaussian ran-
dom fields such as the von Kàrmàn model, this is obtained with diagonalization of the co-
variance matrix of the discretized process. The KL decomposition yields the optimal basis
in that it minimizes the total mean squared error (MSE). However, considering the DM in-
fluence functions, this basis is not orthogonal in the DM space. The problem is solved by
projecting the modes on the influence functions of the mirror and re-orthogonalizing them
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(double orthogonalization). Details on the double diagonalization are found in Gendron
(1994).

3.3 Adaptive optics control
Classically, an AO system is controlled by combining a linear reconstructor with a proportional-
integral (PI) control law, often referred to as the integrator. As a starting point, it is
assumed that the controller operates in a regime where the dependence between WFS
measurements and DM commands is linear to a good approximation, satisfying

wt = Dvt + ξt, (3.8)

where wt = (δw1
t , · · · , δwn

t ) is the WFS data, vt the DM commands and D the so-called
interaction matrix. Moreover, ξt models the measurement noise typically composed of
photon and detector noise. The DM command vector vt defines the DM shape given in
the function subspace linearly spanned by the DM influence functions.

Calibration and the reconstruction matrix

The interaction matrix represents how the WFS sees each DM command (or the DM
shape), and likewise, it presents a linear approximation of how the WFS sees phase er-
ror introduced by the atmosphere. More generally, it is a linear approximation of how
the WFS sees any phase error introduced by the atmosphere or the DM (around small
wavefront aberration). It can be derived mathematically if we accurately know the sys-
tem components (WFS and DM) and the alignment of the system. But in practice, it is
usually measured by probing the DM actuators or modal commands on DM (inside the
linear range of the WFS) and recording the corresponding WFS measurements, as shown
in Algorithm 1.

Algorithm 1 Calibration procedure
Initialize interactions matrix D
for actuators act = 1 in 1 . . . N2 do

Set DM actuator act to v
Record WFS measurement w+

Set DM actuator act to −v
Record WFS measurement w−
Write the corresponding column in D as D[:, act] = (w+ + w−)/2v
set DM commands to zero

end for

The interaction matrix, obtained from the calibration, is generally ill-conditioned, and to
invert it, a regularization method is needed; see Section 6.

The problem can be regularized by projecting vt to a smaller dimensional subspace
spanned by, for example, the KL modal basis. We denote the modal transformation ma-
trix, which maps DM actuator voltages to modal coefficients by Bm. The modal inter-
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action matrix (how the WFS sees the modes) is now obtained as DB†
m, where B†

m is the
Moore–Penrose pseudo-inverse ofBm. A well-posed reconstruction matrix for the inverse
problem in (3.8) is then given by

Cm = (DPm)
†, (3.9)

where Pm = B†
mBm is a projection map to the KL basis. Regularization by projection is

a classical regularization with well-established theory (Engl et al., 1996). It is well-suited
to the problem at hand due to the physics-motivated basis expansion and the fixed finite
dimension of the observational data.

The integrator

Let us now give the full control law for the closed-loop system. In the following, we
include ∆ in the variable notations to highlight the residual variables in the closed-loop
control, i.e., we write, e.g., ∆wt for the residual WFS data.

Namely, at a given timestep t, the WFS observes the residual wavefront, and the new
control voltages ṽt are obtained from

ṽt = ṽt−1 + gCm∆wt, (3.10)

where g is so-called integrator gain. In literature, g < 0.5 is typically found to provide
stable control for a two-step delay system (Madec, 1999). The integrator controller is
constantly trying to drive down wavefront errors seen by the WFS toward zero. In the case
of static phase error, it would eventually converge to a zero WFS measurement solution.
However, it is a non-predictive control law; hence it is always lagging behind (due to the
time delay) the evolving atmospheric turbulence.

3.4 Coronagraph

Even with optimally working extreme adaptive optics, the faint planet would often be lost
within the much brighter diffraction rings of the host star; see Figure 3.5. The remedy for
this is a coronagraph that suppresses the light from the brighter object. First introduced
for observing hot gas surrounding the Sun by Lyot (1939), the fundamental principle of
the coronagraph in HCI is the same – the coronagraph suppresses light from an on-axis
source (e.g., the Sun or the host star) while preserving the off-axis companions’ signal
(e.g., the gas surrounding the sun or an exoplanet).

Nowadays, coronagraphy is an active research field in astronomical instrumentation,
and the concepts have matured well beyond Lyot’s basic design (Mawet et al., 2012).
However, this thesis discusses XAO control and its effect on post-coronagraphic con-
trast. To this end, in numerical simulations, we use a theoretical ideal coronagraph model,
where the coronagraphs suppress all light for an on-axis flat wavefront while preserving
the off-axis source (Cavarroc et al., 2006). With the ideal model, the complex wavefront
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Table 3.1: Simulations parameters for error term demonstration in Figure 3.6
Telescope

Parameter Value Units
Telescope diameter 8 m
Obstruction ratio 14 percent

Sampling frequency 1000 Hz
Active actuators 1364 actuators

PWFS subapertures 41× 41 apertures
PWFS modulation 0 λ / D
WFS wavelength 0.85 µm

Science camera wavelength 1.65 µm
NGS magnitude 0 & 10 low - & high noise
Integrator gain 0.6

Atmosphere
Fried parameter 16 cm @ 500 nm

Number of layers 3 · · ·
Layer altitudes 0 / 4 / 10 km

C2
N 50 / 35 / 15 percent (%)

Wind speeds 10 / 26 / 35 m/s
Wind directions 0 / 45 / 180 degrees

ψ after the coronagraph on the pupil plane is given by

ψ0(x, y) = χΩ(x, y)
(√

Ec − exp[−iϕ(x, y)]
)
, (3.11)

where χΩ is the aperture and Ec = exp[−σ2
ϕ] the instantaneous coherent energy, and

where σ2
ϕ is the spatial variance of the AO residual phase. The following focal plane PSF

is calculated with the Fraunhofer approximation (2.4).

3.5 Estimating performance

The AO system’s performance can be evaluated in several ways, of which the SR is prob-
ably the most common. As mentioned earlier, the SR is connected to residual wavefront
variance via the Marechal approximations. In the case of integrator law, we can split the
residual wavefront variance into four independent components:

σ2
ϕ = σ2

fit + σ2
rec + σ2

temp, (3.12)

where σfit is the standard deviation of the fitting error, σrec the reconstruction error (con-
taining the measurement noise, calibration noise, sampling errors, aliasing, chromaticity,
and the errors due to the reconstruction method itself) and σtemp the temporal error con-
trolled by the systems time delay and loop frequency. While the DM properties set the
fitting error, advanced control and reconstruction methods can mitigate the latter two error
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Figure 3.5: Normalised log-scale post-coronograph images showing image contrast.
Coronagraph suppresses the light from the on-axis source while preserving the fainter
off-axis source (located at 6λ/D). With no phase aberrations, the ideal coronagraph sup-
presses all the light from the on-axis source. When we add the atmospheric turbulence
and XAO control, the residual phase errors produce speckles in the image plane. On long
exposure, these atmospheric speckles change over time and leave a smooth halo of stellar
light in the image. The stellar light (speckles) in the post-coronagraph image limits sen-
sitivity to observing faint exoplanets.

terms.
With a relatively bright guide star (magnitude < 8), the fitting error dominates the

total phase variance and, consequently, the SR. On the other hand, with a faint star or
challenging imaging conditions, the reconstruction error (namely the measurement noise)
star is the dominating term. Typically, the temporal error has only a small impact on
the SR. However, the ultimate goal of HCI is not only to deliver high SR but also to
separate light from the exoplanet and the host star optically. To measure this ability, we
use so-called raw point spread function contrast. It is defined as the ratio between post-
coronagraphic PSF on the focal plane and a non-coronagraphic PSF peak intensity, that
is,

s0ϕ(u, v) =
|F{ψ0}(u, v)|2

sϕ(0, 0)
, (3.13)

where ψcoro is the post-coronagraphic wavefront (3.11) and sϕ the PSF without corono-
graph. The raw PSF contrast gives the relative intensity of the starlight that leaked through
the coronagraph to the image plane.

The wavefront errors are linked to the contrast by the superposition approximation
(Guyon, 2005, 2018). Minimizing the residual wavefront maximizes the raw PSF con-
trast. Figure 3.6 illustrates how different error terms appear in the raw PSF contrast. All
three main residual wavefront error terms show up in the raw PSF contrast as different
features:

• The wind-drive halo (WDH): Connected to temporal error, this halo appears as a
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butterfly-shaped pattern in the focal plane image, spearing along the main directions
of the wind; see the second row in Figure 3.6. It is most apparent when the wind is
strong and the AO loop cannot keep up with the temporal changes leaving a residual
phase with a clear directional pattern. When present, the WDH significantly reduces
the obtained contrast, especially at small angular separations from their host star.

• The control radius: The finite number of DM actuators can only correct a finite set
of spatial frequencies, from low-order frequencies up to so-called cut-off frequency.
Low-order phase aberrations create speckles at small angular separations, while
high-order errors create speckles further from the center. The first row in Figure
3.6 shows the raw PSF contrast of optimal XAO control; the only error is the fitting
error. In the focal plane, the fitting error creates a central square-shaped dark zone
defining the control radius. The speckles outside this area are due to the high-order
aberrations that the DM cannot correct.

• WFS measurement noise: On fainter guide stars, the WFS collects fewer photons
and, hence, the measurement contains more noise. The noise propagates into the
wavefront reconstruction and induces speckles inside the whole control domain set
by the control radius.

• The aliasing error: The WFS has a limited spatial sampling (e.g., the number of
lenslets in SHS and the number of pixels in the detector for PWFS). Consequently,
the atmosphere’s high-order features get projected to low-order modes in the recon-
struction. The efficiency of this aliasing process depends on the WFS type. For
example, the SHS shows much stronger aliasing the PWFS (e.g., Vérinaud, 2004).
The aliasing error can be mitigated with a spatial filter (Poyneer and Macintosh,
2004) or oversampling by the WFS, but a tiny amount of aliasing will already ap-
pear as features in the raw PSF contrast. Aliasing error is more substantial in the
direction of the spatial grid of DM actuators; hence it shows as a cross-like pat-
tern in the raw PSF contrast. Further, as high-order errors propagate slightly to the
lowest-order modes, such as tip and tilt, the focal plane PSF is not well centered
behind the coronagraphic mask, and starlight leaks through the coronagraph. The
low-order residuals cause a diffraction-like pattern close to the center of the raw
PSF contrast.

In addition to these error terms visible in numerical simulations, a real XAO system suf-
fers from other error terms, for example, chromatic errors and temporal vibration, non-
common path aberrations, as well as amplitude variations introduced by the atmosphere
(scintillation). Chromatic errors appear because the effect of the refractive index on the
atmosphere is not perfectly achromatic, and the WFS and science camera use different
wavelengths. In small wavefront errors of XAO, the chromatic errors on science wave-
length start to show up (Guyon, 2005). Further, in addition to atmospheric residuals, low-
order residuals may arise from telescope vibration and differential thermo-mechanical
effects. The low-order residuals, notably tip-tilt errors, push the PSF core away from the
center behind the coronagraph focal plane mask.
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Figure 3.6: The effect of AO control and its error terms on raw PSF contrast. The raw
PSF was calculated in three different cases: one with optimal AO control, i.e., only the
fitting error present, and the other two with a PWFS and the integrator with two different
noise levels; see parameter Table 3.1. Advanced control methods have the potential to
push the raw PSF contrast in the second and third rows closer to the one obtained with the
optimal XAO control (first row).
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4 Machine learning
In recent years, there has been a growing focus on Machine Learning (ML) methods in
the field of AO. ML is a research field that focuses on developing and understanding
methods that are capable of ”learning,” which means they can leverage data to improve
their performance on various tasks. Probably the most used and simplest to understand
sub-category of machine learning problems is so-called supervised learning (SL).

SL is a type of machine learning that deals with problems where the data is labeled,
meaning each data point contains features and an associated label (i.e., the output). The
main objective of SL algorithms is to learn a function that maps input feature vectors to
corresponding output labels based on example input-output pairs. The supervised learning
algorithm infers the function from the training data, which consists of labeled examples.
The algorithm then uses this inferred function to predict output labels for new input ex-
amples. The optimal scenario is for the algorithm to correctly predict the labels/outputs
for unseen examples, requiring it to generalize from the training data to new, unseen situ-
ations.

4.1 Regression task
SL problems in AO control usually fall under the subcategory of regression tasks, where
the inputs and outputs are continuously valued vectors. In a regression problem, the input
data consists of a set of features or predictors x = (x1, x2, ..., xn) and their correspond-
ing continuous output values y = (y1, y2, ..., yn). The goal is to learn a function fθ(x),
parameterized by a set of parameters θ, that can accurately predict y for new input data,
by utilizing a labeled data set. More precisely, give an indexed data set D = {(xi,yi}Ni=1,
we try to find a set of parameters θ that minimize a loss function L between the predicted
output and label output. We have

θ̂ = argmin
θ

N∑
i=1

L(fθ(xi),yi). (4.1)

In the case of a common MSE loss function, it takes the form:

θ̂ = argmin
θ

N∑
i=1

||fθ(xi)− yi||2

N
. (4.2)

To ensure that the learned model fθ does not simply memorize the data but instead cap-
tures the underlying concepts, it is important to avoid overfitting. To evaluate the model’s
ability to generalize to new data, the available data is typically divided into two parts: the
training data used to minimize the loss and find optimal parameters θ, and a separate set
of data used to test the model’s performance on unseen samples. A model is considered
to be overfitted if a model performs well on the training data but poorly on the test data.
Here’s a general overview of the steps involved in training a regression model:

• Splitting the data: The next step is to split the data into training and validation sets.
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The training set is used to fit the model, while the validation set is used to evaluate
its performance and tune its hyperparameters.

• Training the model: The model is trained, that is, the model parameters θ are op-
timized, using an optimization algorithm that minimizes a loss function, such as
mean squared error (MSE), on the training data. This involves updating the model
parameters such that they minimize the loss function.

• Model evaluation: Once the model is trained, it is evaluated on the validation set to
determine its performance.

• Hyperparameter tuning: The model’s performance can be improved by tuning its
hyperparameters, such as the learning rate, regularization strength, and the number
of hidden layers. This involves searching over a range of hyperparameters and
selecting the combination that produces the best performance.

• Model deployment: Once the model has been trained and its hyperparameters have
been tuned, it can be deployed to predict new input data.

There are many different types of models, including linear regression, polynomial re-
gression, neural networks, decision tree regression, and random forest regression, among
others. Training a regression model involves fitting the model parameters to the training
data to accurately predict the output values for new input data.

4.2 Neural networks
Artificial neural networks (ANNs), or shortly just neural networks (NN), are machine
learning models loosely based on the structure and function of the human brain. NNs
have become one of the most popular machine-learning techniques due to their ability
to solve complex problems by learning from data. This section briefly describes the NN
models used in this thesis, namely fully convolutional NNs. The interested reader can
refer to Goodfellow et al. (2016) for details on NNs and their optimization.

Let us start by defining a fully connected NN, also called a multilayer perceptron
(MLP). MLP is a feedforward NN, meaning the data flows in one direction from the
input layer through the hidden layers to the output layer. Each NN layer consists of an
affine transformation defined by the layer-wise weight matrix Wi, bias b, and a non-linear
element-wise applied activation function z. The full model of l layer MLP is given by:

y = Wlz(Wl−1 · · · z(W2z(W1x+ b1) + b2) · · · ) + bl, (4.3)

where x is the input vector, y is the output vector. Common choices for the activa-
tion function are Tanh, sigmoid, and the rectified linear unit (ReLU) defined by z(t) =
max(0, t). Another typical choice of activation function in image-to-image applications,
such as AO control, is so-called leaky rectified linear unit (LeakyReLU) (Maas et al.,
2013), defined by,

z(t) = max(s ∗ t, t), (4.4)
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where s ∈ (0, 1) defines the slope of the negative input values.
The parameters to be optimized in MLP are the weights and biases, that is, θ =

(W1,W2, · · ·Wl,b1,b2, · · ·bl). The related model fitting problem is to find good or
optimal parameters, θ in Equation 4.3 given some data set. The objective function in
equation 4.1 does not have a closed-form solution for NNs; hence the parameters are op-
timized with some form of gradient descent algorithm, starting with random initialization
of the parameters. This method involves computing the gradient of the cost function with
respect to the weights and biases and updating them iteratively in the negative direction
of the gradient. Give some initial value for the parameters θi ∈ Rk (usually sampled from
Gaussian distribution), where k is the total number of free parameters in the NN, the basic
gradient descent step update for θ is given by

θm+1 = θm − a

∑N
i=1 δL(fθi(xi),yi)

δθ
, (4.5)

where a is the so-called learning rate, andN is the size of the data set or the size of a mini-
batch sampled from the data set. There are several variants of gradient descent, including
batch gradient descent, and stochastic gradient descent, each of which updates the param-
eters differently based on the size of the training data set by, for example, modifying a
dynamic learning rate. The gradients of the neural network (NN) parameters are typically
calculated using the back-propagation algorithm (Bishop and Nasrabadi, 2006), which
utilizes the ordinary chain rule. Nowadays, the gradients are usually computed by using
automated differentiation tools, such as PyTorch (Paszke et al., 2019) and TensorFlow
(Dillon et al., 2017).

4.3 Convolutional neural networks

Convolutional neural networks (CNNs) are a type of NNs often used in, for example,
computer vision tasks, such as image classification, object detection and segmentation
(see, e.g., O’Shea and Nash, 2015). They are designed to process data with a grid-like
topology, such as images, by applying convolutional filters to extract local features.

A CNN layer typically consists of multiple convolutional layers, sometimes followed
by one or more fully connected layers. A CNN without a fully connected layer is called
a fully convolutional NN. The convolutional layers contain a set of learnable filters, also
known as kernels or weights, which are convolved with the input data to produce a feature
map. Each filter extracts a specific feature from the input data, such as edges or corners,
and the resulting feature maps are then passed to the next layer.

One advantage of CNNs is their ability to learn hierarchical representations of the in-
put data. The lower layers of the network learn low-level features, such as edges and
textures, while the higher layers learn more complex features, such as object parts and
shapes. This hierarchical representation allows CNNs to perform better than traditional
computer vision algorithms in tasks such as image recognition. Another key feature of
CNNs is their parameter sharing, where the same set of weights is used to convolve the
input data at different locations. This greatly reduces the parameters required to train the
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network, making it more efficient and less prone to overfitting. Further, in particular, for
AO control, parameter sharing makes CNNs a powerful tool for learning data with ho-
mogeneous structures and recognizing typical reconstruction errors due to, for example,
misregistration or optical gains.

More precisely, a single convolutional layer involves sliding the filters over the input
data and computing the dot product between the filter weights and the corresponding input
values at each location (discrete convolution). This operation produces a single output
value stored in the output feature map. The filters are typically small in size, such as 3×3
or 5 × 5, and are applied at each location in the input data to produce a corresponding
output value. The result of the convolution operation is a feature map that captures the
presence of specific features in the input data at various spatial locations. The size of the
feature map depends on the size of the input data, the size of the filters, and the stride
of the convolutional operation. For standard two-dimensional CNNs, the input vector
xi,j,l is a stack of two-dimensional images. Stack contains also referred to as features, for
example, the RGB channels of a color image for image recognition or the past time series
of phase maps for AO control. A single convolutional layer is defined by

hi,j,k = z

(
M∑

m=1

N∑
n=1

L∑
l=1

Km,n,l,kxi+m−1,j+n−1,l

)
(4.6)

where x is the input tensor, K is the tensor of learnable convolutional filters, h is the
output tensor, z is the activation function, M and N are the height and width of the filters,
L is the depth of the input tensor (i.e., the length of image stack), and k is the index
of the output channel (defining the number convolution of filters). The output tensor h
has dimensions (H,W,K), whereH andW are the height and width of the output feature
map, respectively. The vector h is then passed to the consecutive layer. In addition, CNNs
can contain skip-connections that connect non-consecutive layers together and pooling
layers that down or up-scale the layer outputs (see, e.g.,O’Shea and Nash, 2015).

4.4 Uncertainty-aware neural network

This section introduces Uncertainty-aware NNs. Using machine learning to capture a non-
deterministic system produces two types of uncertainty. The first one is called aleatoric
uncertainty, which arises due to the stochastic nature of a system, such as observation and
process noise. This type of uncertainty can be accounted for by mapping to a parame-
terization of a probability distribution while still training the network in a discriminative
manner.

The second type of uncertainty is called epistemic uncertainty, which arises due to the
lack of sufficient data to determine the underlying process exactly. In the limit of infinite
data, this type of uncertainty should vanish. However, for data sets of finite size, it remains
when predicting outputs from inputs. This thesis uses probabilistic networks to capture
aleatoric uncertainty and ensembles to capture epistemic uncertainty.
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Probablistic neural networks

In this thesis, we consider probabilistic NNs whose output neurons serve as parameters
for a probability distribution function. It is important to note that this concept should not
be mistaken for Bayesian inference - we do not set a prior distribution to NN parame-
ters. This type of probabilistic NN can capture the aleatoric uncertainty. The probabilistic
nature of NN does not restrict architecture; that is, they can be, for example, fully convo-
lutional or connected NNs.

Using any tractable probabilistic distribution class, in general, is possible. However,
assuming that the stochastic function we are trying to learn has a continuous output and a
unimodal probability distribution, approximation by a Gaussian distribution is a common
choice. We can represent the parameters of this distribution as nonlinear, parametric
functions of the input data; that is, the probabilistic NNs is a neural network that takes
data vector x as input and outputs a mean and variance for each output dimension in
y, defining a conditional multivariate Gaussian distribution with a diagonal covariance
matrix. That is,

p̂ω(y|x) ∼ N (µω(x), σ
2
ω(x)). (4.7)

Instead of minimizing the square distance between the prediction and the label, the model
is fitted by maximizing the log-likelihood of the parameters:

θ̂ = argmax
ω

log

(
N∏
i=1

p̂ω(y
i|xi,xi)

)
. (4.8)

The output of a network trained according to (4.8) models aleatoric uncertainty, where
the output distribution is a function of the input. However, it cannot model epistemic
uncertainty, which cannot be captured through solely discriminative training.

Ensembles

The common strategy to account for epistemic uncertainty is Bayesian inference, for ex-
ample, and Gaussian process models capture epistemic uncertainty by default (Williams
and Rasmussen, 2006). The Bayesian approach can also be applied to NNs (Neal, 2012).
However, due to factors such as training speed, ease of implementation, minimal need for
external parameter tuning, and acceptable performance, ensembles of bootstrapped mod-
els have become increasingly popular, especially in the field of reinforcement learning
(Efron and Tibshirani, 1994; Chua et al., 2018; Osband, 2016). The concept of an ensem-
ble of bootstrapped models is simple. Instead of using a single NN, we use a collection
(ensemble) of NN with identical architecture. Each model has its unique data set to be
trained upon that is bootstrap sampled (sampling with replacement) from the whole data.
In practice, each model sees a different subset of data, leading to different NN approx-
imations (especially in regions where data is sparse). We note here that the ensembles
and epistemic uncertainty are not limited to probabilistic NNs - ensembles can also be
composed of deterministic models.

In the case of probabilistic Gaussian NNs, the full ensemble defines a multimodal dis-
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tribution as the output. In the case of deterministic models, the output is simply a discrete
set of point estimates.
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5 Reinforcement Learning
This section introduces the concept of Reinforcement Learning (RL) and the notation
used in the articles. The idea is to introduce the central concept behind the methods used,
and for more comprehensive material on RL, the reader may look, for example, at the
book from Sutton and Barto (2018).

RL is an active branch of machine learning that learns a control task via interaction with
the environment. The principal idea is to let the learner, called the agent, feed actions to
the environment, observe the outcomes, and then improve the control strategy concerning
some predefined reward signal. RL learning usually considers problems that have three
essential characteristics: i) they are closed-loop problems where agents’ actions influence
their later inputs; ii) the agent does not have direct instructions as to what actions to take
but learns which actions yield the biggest reward via trial and error; iii) the consequences,
including the reward, of a specific action, play out over some future time horizon.

RL algorithms can be roughly divided into two categories, although the line between
the algorithms can be somewhat blurred: the model-based reinforcement learning (MBRL)
approach and the model-free reinforcement learning approach. The model-based ap-
proach uses a predictive environment model called the dynamics model (usually learned
from the interaction of the agent and the environment) to answer the question: what would
happen if action at were applied at a given state? The predictive model is then used to
determine the sequence of the following ”best possible” actions. The model-free methods
avoid the environment’s modeling by learning a control policy directly from the reward
signals. Model-based methods are known to be sample-efficient compared to model-free
methods (e.g., Atkeson and Santamaria, 1997; Kocijan et al., 2004; Deisenroth et al.,
2013). A model-free algorithm such as policy gradient methods may need several or-
ders of magnitude more iterations compared to model-based methods (Janner et al., 2019;
Chua et al., 2018). On the other hand, since the model-free methods avoid the dynamics
modeling step, they are unaffected by the restrictions in the predictive model, providing
better performance in some control problems. This thesis focuses on the model-based
approach.

5.1 Markov Decision Process
The de facto mathematical framework for the sequential decision problems in RL is the
Markov Decision Process (MDP, Bellman, 1957), an extension of Markov chains. It is
formulated as a 4-tuple (S,A, p,Rt), where S is a set of all possible states, A a set of
possible actions, p state transition dynamics and Rt the reward function.

At time step t, MDP is in a state st ∈ S and an agent then takes an action at ∈ A based
on the current state, and the environment changes to the next state st+1 with respect to the
transition dynamics p : (at, st) 7→ st+1, represented by a conditional probability density
function Pt = p(st+1|st,at)

2. The transition dynamic only depends on the last state;
hence they form a Markov sequence. At each time step, a reward Rt = r(st,at) is also
observed, which is a (possibly stochastic) function of the current state and action. The

2The initial state is drawn from the initial state distribution s0 ∼ p0(s0)
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modeler usually designs the reward to make the agent produce some favorable behavior
(e.g., correcting for turbulence distortions).

The standard MDP formulation assumes that the agent observes all relevant information
on the state of the environment st. However, this is not the case in many real-world
domains, such as adaptive optics control, where the state is observed through a partial
or indirect observation ot. The so-called Partially Observed Markov Decision Process
(POMDP) is a refined formulation for these problems. In POMDP, the agent has to decide
the action based on the observations instead of the complete state. The underlying process,
governed by the dynamics p(st+1|st,at), is still Markovian, but the observations ot do
not have to be. Consequently, past observations can still contain helpful information for
the decision of the following action.

5.2 Model-Based Reinforcement Learning
This section details the MBRL framework and the notion. The essential element of model-
based RL is to learn the approximate dynamics model for the true transition dynamics.
The approximate model predicts how the system would behave if a specific sequence of
actions were applied. The model is then used either to control the system with a planning
algorithm or to train so-called policy, πθ : st 7→ at, which is a parameterized function
that maps states into actions.

This thesis considers dynamics that are parameterized as artificial NNs. The model
can either be probabilistic NN or deterministic NN. More precisely, we approximate the
conditional distribution p(st+1|st,at) with a member of the parameterized distribution
family p̂ω(st+1|st,at) satisfying

p̂ω(st+1|st,at) ∼ N (µω(st,at), σ
2
ω(st,at)), (5.1)

where the mean µω(st,at) and the variance σ2
ω(st,at) of the Gaussian field are outputs

of a neural network, and θ the NN weights and biases. For the deterministic approxi-
mation, we represent the dynamics simply with a parameterized function f̂ω(st+1|st,at),
outputting the vector representing the next state. Again parameters ω are the NN weights
and biases. The deterministic approximate can be considered as a point estimator (e.g.,
conditional mean) of the true probabilistic dynamics.

Training the dynamics model

In MBRL, the dynamics model is learned from data collected by controlling the system
itself and recording the outcome, that is, from interaction with the system. More pre-
cisely, the data is collected by sampling trajectories τ = (s0,a0, . . . ,aT−1, sT ), that is,
controlling the system for a certain number of timesteps and recording the sequence of
states (observations for POMDP) and actions applied. These chunks of data are called
episodes. The first few trajectories τ are collected by executing random actions, while
the following trajectories are collected by controlling with a planning algorithm or policy.
After episodes the trajectories τ are then sliced into timestep-wise training data inputs
(st,at) and corresponding output label st+1. The data is collected into a data set D.
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The probabilistic dynamics model is trained by maximizing the log-likelihood of a
Gaussian for which the parameters are outputs of the neural network model. More specif-
ically, given a dataset ofN transitions D = {(sit,ai

t), s
i
t+1}Ni=1 we maximize the following

objective function

θ̂ = argmax
ω

log

(
N∏
i=1

p̂ω(s
i
t+1|sit,ai

t)

)
(5.2)

where p̂ω is given by equation (5.1). The deterministic model is trained simply by mini-
mizing MSE between the prediction and data set labels:

1

|N |
∑
D

∥∥∥st+1 − f̂ω(st,at)
∥∥∥2 = 1

|N |
∑
D

∥st+1 − ŝt+1∥2 , (5.3)

where ot+1 is obtained from the state st+1 and ŝt+1 is the observation predicted by
f̂ω(st,at). Both optimization problems, (5.2) and (5.3), can be solved via backpropaga-
tion with stochastic gradient decent algorithms, such as the Adam algorithm. The Adam
optimizer is a stochastic gradient descent algorithm that utilizes an adaptive learning rate,
and it has shown great performance in many deep learning applications in computer vi-
sion, natural language processing, and RL (Kingma and Ba, 2014).

It is well-known that model-based RL, with NN models, unfavorably exploits an over-
fitted dynamics model in control, especially in the early stages of training (Nagabandi
et al., 2018). This arises from the fact that ordinary NNs cannot capture epistemic un-
certainty. To discourage this behavior, we employ an ensemble of several models (de-
terministic or probabilistic), each of which is trained using different bootstrap datasets,
that is, subsets of the observations collected during training. Ensemble of models is a
coarse approximation of epistemic uncertainty but still provides reasonable, effective un-
certainty estimates for MBRL; see Chua et al. (2018) for a more detailed discussion. In
the following sections, we denote both the deterministic and probabilistic dynamics by
p̂ω.

Model Predictive Control

Once we have collected the first trajectories of data and trained a reasonable approxi-
mation of the system dynamics, we may use the learned dynamics model to plan for a
sequence of actions to be applied. The goal of the planning algorithm is to optimize a
sequence of actions {at, at+1 · · · at+T} such that it maximizes the expected reward inside
some planning horizon T (Camacho and Alba, 2013). In planning, the dynamics model
is used in a recursive manner – a Markov state will evolve from one timestep to the next
with respect to the approximate predictive model, e.g., st+2 ∼ p̂ω(st+2|st+1,at+1), where
st+1 ∼ pω(st+1|st,at). The planning task can be formulated as an optimization problem:

(at,at+1, . . . ,at+H) = argmax
at:t+H

Ep̂ω

[
H∑

h=0

r(s̃t+h,at+h)

]
, (5.4)



48 5 Reinforcement Learning

where
s̃1 = s and s̃t+1 = p̂ω(s̃t,at).

and (at,at+1, . . . ,at+H) = at:t+H . We note here that the state propagation (5.2) depends
on the dynamics model and propagation method used. The next state can either be a
distribution or a point estimate, and the details for different cases can be found in the
articles. Instead of planning the optimized action sequence once, at every timestep, the
controller only executes the first action, receives a new state/observation from the system,
and then recalculates the optimal action sequence. This procedure of re-planning at each
timestep is referred to as model predictive control (MPC). The pseudo-code of MBRL
with MPC planning is given in Algorithm 2.

Algorithm 2 Model-based RL with MPC
1: Initialize dynamics model parameters ω randomly
2: Initialize gradient iteration length K, batch size B < |D| and planning horizon H
3: Generate samples {st+1, st, at} by taking random actions for T timesteps (an episode)

and append to D
4: while not converged do
5: Fit dynamics by minimizing Eq. (5.3) w.r.t. ω using Adam
6: for iteration t = 1 to T do
7: Observe current state st
8: Use the dynamics p̂ω to optimize the action sequence w.r.t. (5.4)
9: Save the interaction data (st,at, st+1)

10: end for
11: end while

Model-based Policy Optimization

The MPC algorithm of model-based RL is often iterative and could, therefore, be too slow
for some applications, such as the XAO control. However, if the chosen reward function
is differentiable, the dynamics model can be used to optimize a policy function π. In
particular, we optimize a set of parameters of policy πθ, where θ is the set of parameters
of the policy, in our case, the weights and biases of a neural network. The control decision
is then only a single forward pass of a neural network, given by at = πθ(st). In policy
optimization, we wish to find the parameters θ that maximize the expected cumulative
reward the agent receives, that is,

argmax
θ

Epθ(s0,...,sT )

[
T∑
t=0

r(st, πθ(st))

]
, (5.5)

where

pθ(s0, ..., sT ) = p0(s0)
T∏
t=1

p(st|st−1, πθ(st−1))
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with the initial distribution s0 ∼ p0 and convention πθ(s−1) = a0 for a fixed initial action
a0. However, as we do not have access to the true dynamics model p, we must approx-
imate it with the learned dynamics model p̂ω. Since the full length of the experiment T
might not be fixed or/and very long, like in MPC, the policy is optimized only on actions
over an extended time horizon H ≪ T . Let us define

r̂ω(st,at) = E(g(s̃t+1)) (5.6)

where s̃t+1 = p̂ω(st,at) and g(.) a function that evaluates the reward of next state. This
leads to the approximate policy optimization problem

argmax
θ

∑
s∈D

H∑
t=1

r̂ω(s̃t, πθ(s̃t)), (5.7)

where H the planning horizon and

s̃1 = s and s̃t+1 = p̂ω(s̃t, πθ(s̃t)).

Again the state propagation (5.2) depends on the choice of dynamics model and the
method itself, and the details are left for the articles themselves. Model-based optimiza-
tion utilizes the differentiable nature of both our models and the reward function. The
gradients of policy parameters ω can be calculated by back-propagating through rewards
collected along the planning horizon. The optimization (5.7) is then carried out with
stochastic gradient descent, such as the Adam algorithm. A pseudo-code for generic pol-
icy optimization is given in Algorithm 3.

Algorithm 3 Model-based Policy Optimization
1: Initialize policy and dynamics model parameters θ and ω randomly
2: Initialize gradient iteration length K, batch size B < |D| and planning horizon H
3: Generate samples {st+1, st, at} by taking random actions for T timesteps (an episode)

and append to D
4: while not converged do
5: Fit dynamics by minimizing Eq. (5.3) w.r.t ω
6: Improve the Policy (i.e., optimize model parameters θ) by minimizing Eq. (5.5)

with update dynamics
7: Generate samples {st+1, st, at} by running policy πθ(at|st) for T timesteps (an

episode) and append to D
8: end while
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6 Adaptive optics as an RL problem

Let us recall the main RL problem characteristics: i) closed-loop problem; ii) ”No in-
struction” on actions that maximize the reward; iii) delayed the consequences of actions.
Keeping these characteristics in mind, in principle, RL for XAO provides a path to resolve
control strategies that understand the dynamic range and sensitivity of the WFS, do not
rely on accurate calibration of the system, and learn the temporal bandwidth and delay of
the system. Further, not studied in the thesis, RL also provides a flexible framework for
design controllers that utilize reward functions from multiple sensors (sensor fusion) to
tackle, for example, chromatic or non-common path errors in the XAO loop.

The XAO control, by its nature, differs from standard ”benchmark” RL problems. The
usual reward functions for XAO control are not sparse in the environment but distributed
rather evenly through time, and the effective time horizon (the consequence of action) is
relatively short. In the case of a simple two-frame delay, no DM dynamic, and no noise,
we would plan to minimize the observed wavefront sensor measurements two steps into
the future; that is, we would implicitly predict the best control action by the DM at the
time of the corresponding WFS measurement. However, the effective planning horizon
is longer in the presence of DM dynamics and temporal jitter since the control voltage
decisions are not entirely independent. The choice of the planning horizon compromises
two effects: too short a planning horizon jeopardizes the loop stability, and too long a
planning horizon makes the method prone to overfitting. Planning horizon H = 4 is a
reasonably well-working compromise experiment (Nousiainen et al., 2021).

The challenge of XAO control comes from 1) the vast control space (1000 – 10k actu-
ators), 2) the cross-correlation of the actuators, 3) the indirect observation of the system,
4) extreme time constraint on control (from kilohertz to several kilohertz ), and 5) the
method’s ability to adapt to atmospheric conditions online. Therefore, RL algorithms for
XAO need special consideration. We may approach the RL for XAO challenges by ask-
ing two related questions: ”how to model the XAO as an MDP?” and ”how to design an
RL algorithm that archives the XAO requirements?”. The solutions for both of the ques-
tions determine the properties of the controller. In the following, we discuss the MDP
formulation and XAO-specific solutions used in this thesis.

Adaptive optics as a Markov decision process

Before formulating AO as an MDP, let us first consider a discrete-time state-space model
of an AO system with one WFS and DM; the science camera is not included in the ob-
servation model. The states consist of all the information needed to ensure the Markov
property. Taylor’s frozen flow model combined with step-wise linear DM response yields
the following Markov model. We denote the turbulence at each layer, that is, a collection
of phase aberration after each layer, by vector Φt = [ϕ1, ϕ2, . . . , ϕL], where L is the num-
ber of turbulence layers, and the DM surface by φDM . The state of the system xt is the
DM shape and the turbulence Φt over the telescope, that is, xt = [Φt, φ

DM
t ]⊤. Neglecting
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the control delay, we may formulate AO control as follows,

xt+1 =

[
T 0
0 I

]
xt +

[
0
F

]
vt + ϵt (6.1)

wt+1 = Γ ([P,−I]xt+1) + βt+1,

where ϵ and β are Gaussian i.i.d. noise, T an operator that shifts each turbulence layer with
respect to their wind speed and direction, F the projection of voltages to DM influence
functions, P a projection of all turbulence layers along the line of sight and I the identity
matrix. Further, the Γ represents the WFS measurement model (see Section 3.1). We note
that the time evolution model operates with a full turbulence profile. The control delay
can be added to this model by extending the state space with past commands v. The most
common AO simulators simulate XAO with this kind of evolution model. However, it is
still a simplified approximation of the accurate AO system and atmosphere. Moreover,
information required for such an evolution model ( i.e., the C2

N profile and wind speeds
and directions) is unknown a priori, and an accurate estimate of these is difficult to obtain.

Let us next consider an alternative state space model with MDP notation and formu-
lation. The measurement model in (6.1) is indirect in two ways: first, WFS measures
the cumulative phase aberration through the layers, and second, the measurement itself is
indirect. Using this Markov model would require a full reconstruction of Φ. However,
XAO control aims to apply DM commands that minimize the future (cumulative) phase
errors observed in the sensor. In other words, the target state of the system is a state that
gives a flat reference measurement (calibrated for optimal PSF). A natural goal, defined
by the reward function, is the negative distance between the observation and the target
state observation – the closer to flat reference, the more reward. Assuming that flat refer-
ence gives zero WFS measurement (no NCPA), the reward for an action at at a state st is
given by

r(st,at) = −Ep∥ot+1∥2, (6.2)

where ot is the post-processed WFS measurement (either camera intensities, slopes, or
projection to voltages), referring to the observation of MDP, and p is the true dynamics
of the system. Using this reward function, we do not need to approximate the full state of
the system but only how actions and atmosphere affect the following observations (WFS
measurements). However, the observations from the system do not follow Markovian
statistics – the future observation ot+1 is not only dependent on previous observation ot

and action at. One solution to non-Markovian dynamics is to extend the state space with
past observations and actions to guarantee approximately Markovian behavior. That is,
we concatenated previous observations and actions to form the MDP’s state such that

st =
(
ot,ot−1, . . . ,ot−k,at−1,at−2, . . . ,at−m

)
, (6.3)

The action of the MDP is simply the set of integral control voltages send to DM actuators

at = ∆ṽt. (6.4)
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With this formulation, we can replace the high dimensional state space model (6.1), by
approximate dynamics p(ot+1|st,at) and bypass the reconstruction for complete phase
profile Φ. However, the problem of indirect WFS remains.

Ill-posed observation model

Let us consider an indirect WFS measurement of the DM commands. As discussed in Sec-
tion 3.1, on closed-loop residuals, the measurement model can be approximately modeled
by a linear equation:

w = Dv + ξ, (6.5)

where ξ is a noise term and D the interaction matrix; see Section 3.3. Further, v ∈ Rn

and w ∈ Rm, where n is the number of DM actuators and m/2 the number of SHS
lenslets/PWFS pixels (2 slope measurement for each subaperture). The interaction matrix
models how WFS measurements w and control voltage (DM commands) v are related
via physics. The field of inverse problems considers the inverse of the direct modeling
problem (6.5). That is, to solve v, given the related measurement w. This task is non-
trivial since the underlying mathematical model is ill-posed (Engl et al., 1996). By the
classical definition of Hadamard, a problem is called ill-posed (as opposed to well-posed)
when at least one of the following conditions is violated: i) a solution exists ii) the solution
is unique, (iii) the solution has to depend continuously on the data.

The problems with existence i) and uniqueness conditions ii) can be dealt with using
the Moore-Penrose pseudoinverse. However, the violation of the stability condition iii)
typically leads to numerical challenges in inverse problems that for problem (6.5) appear
as a high condition number of the matrix. Consequently, even if D were invertible (no
pseudoinverse needed), a naive reconstruction by D−1w = v+D−1ξ, would lead to use-
less reconstruction since the size of the noise term would be potentially multiplied by the
big conditioning number of the D. This phenomenon is called noise amplification and
is also prominent for pseudoinverse. For reinforcement learning with ill-posed observa-
tion, noise amplification means that actions arbitrarily far from each other can yield very
similar observations. The RL agent is ”blind” to some consequences of actions it takes.
Consequently, if not dealt with, it jeopardizes the stability of RL.

A widely used solution to deal with noise amplification is to use so-called truncated
singular value decomposition (TSVD). In TSVD, the interaction matrix D is first factor-
ized with standard SVD, that is, D = V SU⊤, where V is am×m orthogonal matrix, S is
a m× n diagonal matrix containing min(n,m) singular values (if D is not full rank then
rank(D) singular values) and U an n × n orthogonal matrix. Then, the inverse of the di-
agonal matrix is truncated so that the diagonal elements below some certain threshold are
set to zero. Let us denote the truncated inverse of S by S†

α, where the α is the truncation
threshold. Now we can define a well-posed reconstruction function Fα by the formula

Fα(w) = US†
αV

⊤w. (6.6)

The corresponding reconstruction v̂ = Fα(w) is a linear combination of the columns
in V corresponding to the non-truncated singular values. The reconstructed solution
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v̂ = Fα(w) in the subspace is spanned by these column vectors, that is, the problem
is regularized by projection to a smaller subspace (Mueller and Siltanen, 2012). We de-
note a collection of these column vectors by Vα. Similarly, for RL if the command vector
v is projected to these column vectors (i.e., modes), the consequences (i.e., phase aberra-
tions introduced by the DM) of the action are ”seen” in the measurement. This projection
turns an ill-posed observation of the RL problem into a well-posed one. More precisely,
for MBRL, we add a constraint to MPC optimization (5.4) as follows,

(at,at+1, . . . ,at+H) = argmax
at:t+H∈span{Vα}

Ep̂ω

[
H∑

h=0

r(s̃t+h,at+h)

]
, (6.7)

where Vα is a collection of singular vectors corresponding to non-truncated singular val-
ues. For model-based optimization, we restrict the policy model output to the subspace
spanned by the singular vectors Vα. That is, we add a filter to the output layer of the
generic NN policy in Equation (5.7):

πθ(st) = PαGθ(st), (6.8)

where Pα is an orthogonal projection onto span{Vα} and Gθ is a standard NN, where the
output is vectorized.

The truncation parameter α determines the number of singular vectors (modes) used in
the reconstruction. It balances the inversion between stability and accuracy, that is, the
level of noise amplification and reconstruction details. The standard TSVD only considers
the measurement modality – it does not encode any prior information on the reconstruc-
tion. However, in adaptive optics, we know that the atmospheric turbulence approximately
follows von Kàrmàn statistics. By utilizing the KL modes introduced in Section 3.2, we
can truncate the inversion matrix in such a way that it contains the required turbulence
energy (reconstruction accuracy) with a minimal number of modes (noise amplification).

From the inverse problem perspective, one could consider alternative regularization
strategies, such as the Tikhonov regularization (Engl et al., 1996) of the Bayesian ap-
proach (Kaipio and Somersalo, 2006). These could be implemented by adding a regu-
larization term in the optimization problem (5.4). However, the TSVD of the KL basis
has some advantages in the framework of XAO control. Firstly, the number of KL modes
needed for stable reconstruction covers enough turbulence energy for XAO control. In
other words, optimal reconstruction in the subspace spanned by these modes is adequate
for XAO, and truncating the number of modes removes the part of the control space which
is most insignificant for the control of atmospheric turbulence. Secondly, the basis com-
putation (SVD) can only be done before the science operations, and any modern hardware
on the telescope has the computational capacity to do it.
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7 Discussion on results

7.1 Article I
This thesis aimed to develop data-driven control techniques that learn predictive and
noise-robust control straight from the system feedback without prior knowledge of the
system’s modeling errors, such as the misregistration of DM and WFS. A natural frame-
work for such algorithms is RL. This article was a starting point for using model-based
RL algorithms for XAO control. Along with Landman et al. (2020, 2021), it was also
the first paper that discussed the prospect of using RL for XAO to suppress the temporal
error.

Our key result in the article is the formulation of the adaptive optics task as an MDP and
a way to deal with an ill-posed observation. Further, using this formulation, we adapted
a standard state-of-the-art MBRL algorithm, Probabilistic Ensemble Trajectory Sampling
(PETS, Chua et al., 2018), to solve the AO task. We showed that the method suppresses
temporal error and measurement noise and also learns to compensate for the misregistra-
tion between the WFS and the DM. The algorithm and MDP formulation presented was
only one way to solve the control loop with RL but already hinted at the great potential of
MBRL control for AO. The paper also discusses the limitations of the proposed method,
especially the significant hurdle of inference time and computational jitter.

7.2 Article II
This article continues on the same topic. Notably, it focuses on the shortcomings of the
first paper’s method. Instead of running a computationally costly MPC algorithm at each
time step, we utilize the dynamics model to train a policy NN to control the system. The
policy NN scales to sub-millisecond inference for both VLT-scale and ELT-scale XAO
systems. This refined method is called algorithm Policy Optimization for Adaptive Optics
(PO4AO).

We introduced the PO4AO and studied its properties in extensive numerical simulation,
confirming the predictive power, noise reduction, and its ability to compensate for the
modeling errors of linear reconstruction, such as the optical gain effect of non-modulated
PWFS. Further, we implemented PO4AO in a laboratory setup using the Magellan Adap-
tive Optics eXtreme system (MagAO-X, Males et al., 2018), and observed that the results
were in line with the results from numeric simulations.

The work presents a significant step forward for XAO control with RL. The results
indicate that RL is a promising approach for XAO control and can potentially solve many
challenges in XAO control simultaneously. Further, the results show that it is possible to
control the current and future XAO systems with existing hardware.

7.3 Article III
The PCS instrument for ELT will have a cascaded XAO design, meaning that the XAO
system is placed after a regular AO system. The temporal dynamics of this second-stage
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system are also affected by the first-stage AO system. This paper discusses the prospect of
running such a system with MBRL. For this, the algorithm was implemented on the GPU-
based High-order adaptive OpticS (GHOST) bench at ESO headquarters, which simulates
a second-stage AO system by running numerically simulated residual turbulence-phase
screens across a programmable Spatial Light Modulator (SLM). Further, we introduced
refinements to the original algorithm (PO4AO), derived tuned hyperparameters, analyzed
corresponding results against a well-tuned integrator controller, and discussed future work
briefly.

The paper demonstrates the method’s ability to reproduce the promising results from
stable numeric simulation in a laboratory setup with real PWFS and DM. The highly ro-
bust method performs better than a well-tuned integrator in challenging conditions (high
wind speeds, faint NGS) with less predictable second-stage turbulence. A natural conclu-
sion of the paper is that PO4AO is ready for on-sky testing.

7.4 Article IV
Another goal of the dissertation was to open discussion on RL methods for XAO. To
this end, we prepared an open-source OpenAI Gym (Brockman et al., 2016) interface for
several AO simulators called FitAO. FitAO is a concept platform designed to enable al-
gorithmic development on multiple end-to-end AO simulation environments. Moreover,
it is configured to utilize the interface specifications of the OpenAI Gym to allow the in-
tegration of modern control algorithms in the Gym library. We reviewed the functionality
and design of FitAO and demonstrated its capabilities with a simple tutorial on applying
reinforcement learning to the classical integrator control in a closed-loop SCAO system.

7.5 Conclusion
To summarize, RL offers a promising alternative for XAO control schemes. If well for-
mulated, RL can simultaneously solve several challenges in XAO control, such as misreg-
istration, photon noise, and temporal error. Additionally, RL is resilient to issues that arise
when transitioning from simulations to real-world scenarios, such as data mismatch and
non-Gaussian noise. The algorithms we developed in this thesis could be implemented
in on-sky systems with existing hardware. Further, the methods discussed in this thesis
are highly parallelizable and scale up to systems with 104 DoF, both the performance and
inference time-wise. Once the RL method is implemented and tuned, it turns AO control
into a turn-key operation - it adapts to changing conditions and dynamic misregistration.

Even though the main contribution of the thesis is in the field of astronomical instru-
mentation, the thesis results can also be positioned concerning inverse problems and RL
research fields. For RL, AO control provides an interesting application for two reasons.
Firstly, it is an example of a control problem with unusually high-dimensional action
space but short planning horizon, giving variability to existing ”benchmark” RL problems.
Secondly, and more importantly, as deep learning and RL methods are transforming many
fields, such as protein folding, inverse problems, and robotics, there is potential for the
same for direct exoplanet imaging. This thesis shows that RL can mitigate several decisive
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error terms that set limits for direct exoplanet imaging. Hence, when further developed
and implemented in ELT-era telescopes, RL solutions may be instrumental in achieving
the first direct images of habitable exoplanets – RL methods can play a significant role in
obtaining revolutionary astronomical observations.

Further, the most classical practical applications of inverse problems, such as com-
putational and electrical impedance tomography, are static and non-invasive, where the
reconstruction does not affect the measurements. For the inverse problems research com-
munity, AO control is an interesting example of a control problem (RL problem) where
the reconstruction (action) at a given state affects the subsequent measurement, and the
system’s state is observed through an ill-posed measurement. This enables more theoret-
ical work on RL with ill-posed observations with a practical application.
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Abstract: Reinforcement learning (RL) presents a new approach for controlling adaptive optics
(AO) systems for Astronomy. It promises to effectively cope with some aspects often hampering
AO performance such as temporal delay or calibration errors. We formulate the AO control
loop as a model-based RL problem (MBRL) and apply it in numerical simulations to a simple
Shack-Hartmann Sensor (SHS) based AO system with 24 resolution elements across the aperture.
The simulations show that MBRL controlled AO predicts the temporal evolution of turbulence
and adjusts to mis-registration between deformable mirror and SHS which is a typical calibration
issue in AO. The method learns continuously on timescales of some seconds and is therefore
capable of automatically adjusting to changing conditions.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Atmospheric turbulence distorts astronomical imagery obtained with ground-based telescopes.
Adaptive optics (AO) [1–3] is a technique that aims at minimizing the distortions caused by the
turbulence. In AO, a wavefront emitted by an astronomical object, such as a star, and distorted by
the atmosphere is directed to one or more deformable mirrors (DM) before it propagates to the
scientific camera. The distortions are measured with a wavefront sensor (WFS), and optimal
image quality is obtained by setting the DM to a shape that partially cancels the distortions
after reflection. In this work, we consider the classical single conjugated AO (SCAO) system,
which requires a bright star that is close to an object of interest. This reference star is used to
calculate distortion caused by the atmosphere along the propagation path. Since the atmosphere
is continuously evolving, the mirror’s shape has to be controlled in real-time, often from 300 to
more than 1000 times a second.

Most AO systems run in a closed-loop configuration, where the WFS measures the wavefront
distortions after DM correction (see Fig. 1). The goal of such a control-loop is to minimize the
distortions in the measured wavefront; i.e., the residual wavefront. For high contrast imaging
(HCI) the wavefront error budget (within the AO controlled region) is often dominated by the
temporal delay error [4]. Also real systems often suffer from a dynamic mis-alignment between
DM and WFS called mis-registration [5]. Reinforcement learning (RL) provides an automated
approach for control, which promises to cope with these limitations of current AO systems.
Unlike the classical control methods, RL methods aim to learn a successful closed-loop control
strategy via interacting with the system. Hence they do not require accurate models of the
components in the control loop and adapt to a changing environment.

In recent years, the merger of RL and deep neural networks (NN), called deep RL, has become
increasingly popular due to its effectiveness in problems with large state- and action-spaces. This
type of RL has been used, for example, to play video- and board-games on a superhuman level
[6,7] and for vision-based real-world robot control [8,9]. Much of the success can be specifically

#420270 https://doi.org/10.1364/OE.420270
Journal © 2021 Received 21 Jan 2021; revised 20 Mar 2021; accepted 22 Apr 2021; published 4 May 2021



Research Article Vol. 29, No. 10 / 10 May 2021 / Optics Express 15328

Fig. 1. Overview of the task and method. The distorted wavefront is propagated into the
deformable mirror (DM), which is controlled by our control algorithm. The algorithm reads
the wavefront sensor (WFS) input, simulates how it will evolve using the learned dynamics
model, and plans for the next DM commands with a process called model predictive control
(MPC).

attributed to model-based RL (MBRL), where a model of the environment is learned using data
obtained by interaction, and a planning algorithm is used in conjunction to decide the next action.
Inspired by these successes, we attempt to generalize the adaptive optics problem to the general
framework of reinforcement learning and apply existing algorithms in solving it.

Our starting point is to formulate the closed-loop AO system as a Markov decision process
(MDP), the prevailing mathematical framework for reinforcement learning [10]. We describe the
state of the AO system as a finite time series of past control voltages and WFS measurements and
assume that such a state exhibits Markovian statistics to a good approximation; i.e., each state
depends only on the previous state, where a state can also include data from several timesteps from
the past. The key to successful prediction lies in finding a reliable model for the system dynamics.
Here, we parameterize the dynamics model describing the conditional distribution of the next
state given the current state and action using standard NN architectures. This parameterization is
fitted to closed loop data in a process called training. Using this framework, we adapt a standard
state-of-the-art MBRL algorithm, Probabilistic Ensemble Trajectory Sampling (PETS) [11], to
train the model and optimize for the next action; i.e., the set of control voltages.

The paper’s structure is as follows: In Section 2, we state the novelty of our method and
position our work with respect to existing literature. In Section 3, we give a short description
of an AO control loop and the baseline method. Section 4 describes MDP formulation of the
AO control loop, setting a platform for RL. Further, we describe the algorithm used and how
we adapt it to AO. For small details and a general more in-depth justification of the method, the
authors strongly encourage the reader to have a look at the original paper on the algorithm [11].
In Section 5, we demonstrate the performance of our method, through simulation of a small
and simple SCAO system controlled either by RL or by the baseline integrator controller. The
algorithm and MDP formulation presented is only one way to solve the control loop with RL but
already hints at the great potential of MBRL control for AO. Finding the optimal formulation and



Research Article Vol. 29, No. 10 / 10 May 2021 / Optics Express 15329

Fig. 2. Learning curves for the proposed RL method. Each learning curve represents the
episode performance in H-band Strehl ratios (left) or total reward (right), defined as the sum
of rewards at each frame. The red lines are the mean performance of the integrator (Section
3.) and blue lines the performance of PETS after each episode. The learning process itself
tries to maximize the total reward and the corresponding improvement in Strehl ratios is a
consequence of this process. Our model converges in around 10 episodes, or 4000 frames.
The performance level of the integrator control is passed already in after 4 episodes; i.e.,
1600 frames.

bringing the computational time of the controller to the required level are left for future research.
Finally, Section 6. discusses the topic, especially how MBRL could be implemented in a real
system and how to overcome the significant hurdle of inference time and computational jitter.

2. Related work

In order to mitigate the measurement noise and temporal error, predictive controller methods have
been proposed for ground-based adaptive optics. These methods include the Kalman filter-based
linear quadratic Gaussian control (LQG) [12,13] and its variants [14–18] and predictive filters
operating on separate modal coefficients such as Zernike polynomials or Fourier modes [19–21],
which provide up to a factor of 1000 gain in raw point spread function contrast in an idealized
simulation environment for an extremely large telescope at very small angular separations and
using a very bright AO guide star [20]. The contrast performance gets shallower for larger angular
separation, smaller telescopes or fainter stars. More recently, data-based predictive methods have
emerged in AO literature. Examples include linear predictive filter methods such as empirical
orthogonal functions [22], the low-order linear minimum mean square error predictor [23–25],
as well as NN-based methods [26–29].

Many of the existing machine learning-based predictive control methods [26–28] have not been
studied in a closed-loop configuration, but in principle, they can be integrated into closed-loop
systems by utilizing a so-called pseudo-open loop telemetry [22,30]. These procedures consist
roughly of two steps: collecting open-loop wavefront estimates from pseudo-open loop telemetry



Research Article Vol. 29, No. 10 / 10 May 2021 / Optics Express 15330

and learning a predictive filter as a supervised learning task. This procedure assumes accurate
knowledge of system time lags and DM response, as well as close to linear behavior of the
WFS. As a consequence, the predictive filter will inherit the errors in system calibration. These
methods, therefore, learn the temporal evolution of the turbulence from the data but rely on
modelling of the system components and interactions between them, which leads to the need for
external tuning and re-calibration of the predictive controller to ensure robustness. Moreover,
some AO systems operate at framerates which are high enough that usually neglected system
dynamics (e.g., the finite response time of the DM) become important. Consequently, a control
algorithm suffers from the simplifying assumption of a temporal step-wise response.

In contrast to these methods, we present a technique that learns predictive and noise-robust
control straight from the system feedback without the set of prior assumptions mentioned earlier
and eliminating the need for accurate calibration or modeling assumptions. Our RL formulation
uses a generic neural network (NN) architecture to build the dynamics model. NNs have been
applied to various aspects of AO before. The topics vary from open-loop systems to the extraction
of Zernike coefficients directly from the images and to non-linear wavefront reconstruction (see
[31–35]).

Also RL-based concepts have already been applied to AO. Self-adaptive control has been
studied in [36], where a deep learning control model is proposed to mitigate alignment errors in
the calibration. Model-free RL methods for wavefront sensorless AO have been studied in [37,38],
where the method is compared against stochastic parallel gradient descent providing improved
correction speed. Finally, model-free RL for ground-based AO was implemented to control tip
and tilt only [39]. The model-free RL method they used learns a policy NN that directly outputs
the two values for the tip and tilt mirror given the observations. Such methods often require a
large number of interactions with the environment, which increase exponentially with the degrees
of freedom to be controlled if no additional measures are taken. In contrast, we control each
actuator of a high-order DM via model-based RL, formulate ground-based astronomical AO as a
general MBRL task, and discuss its potential benefits. We show that state-of-the-art model-based
RL learns a self-calibrating noise-robust predictive control law using only a few seconds of past
telemetry data.

3. Adaptive optics and the classical integrator

We first present the adaptive optics task, along with useful notation, and then frame it in the
reinforcement learning setting. An overview of the AO control loop is given in Fig. 1. The
incoming light ϕtur

t at the timestep t gets corrected by the DM. After this correction the WFS
measures the residual wavefront ϕres

t . Commonly, a linear relationship between the WFS
observation and the residual wavefront is assumed; i.e.,

∆wt = Dϕres
t + ξt, (1)

where∆wt = (δwt
1, δwt

2, . . . , δwt
n) is the WFS data and D is so-called interaction matrix modelling

the WFS measurement and ξt is the measurement noise typically composed of photon and detector
noise. Depending on the type of WFS, a component δwi of the residual wavefront can represent;
e.g., a wavefront modal coefficient, a wavefront slope or the wavefront phase itself. Classical
control algorithms are often modelled by a linear mapping of the WFS measurements ∆w to the
residual DM control voltages ∆v; i.e.,

∆vt = C∆wt, (2)

where C is so-called reconstruction matrix. To obtain the reconstruction matrix, we decompose
the DM on a Karhunen–Loeve (K-L) modal basis. Each mode of the K-L basis has a representation
in terms of actuator voltages. This relation is fully determined by a linear map B from voltages to
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modes. The B matrix is computed by a double diagonalization process, which takes into account
the geometrical and statistical properties of the telescope [40]. In the following, we utilize a
reconstruction matrix defined by the Moore–Penrose pseudo-inverse

C = (DB)+. (3)

We truncate the number of K-L modes in B to have a stable inversion and a reasonably low noise
amplification by C.

Let us now consider a simple non-predictive control algorithm known as the integrator law.
At a given timestep t, the WFS measures the residual wavefront. The new control voltages ṽt are
obtained from

ṽt = ṽt−1 + gC∆wt, (4)

where g is the integrator gain. In order to stabilize the loop, the value of g is often fixed below a
value of about 0.5 for a two-step delay system [41]. Large values of g increase the correction
bandwidth; i.e., the loop reacts faster. On the other hand, a large gain reduces the control loop’s
stability margin and amplifies noise propagation. The challenge in classical integrator control is
in balancing these two effects to minimize the average error of the method [40].

In the following we denote the vector concatenating the past m control voltages

Vm(t) = (ṽt−1, ṽt−2 . . . ṽt−m)⊤, (5)

and the vector concatenating the past k residual voltages, constructed from the WFS slopes, by

∆Vk(t) = (C∆wt−1, C∆wt−2, . . . , C∆wt−k)⊤. (6)

This quantity merely represents WFS measurements in the voltage space projected on the K-L
modal basis defined by B. It does not represent voltages applied to the DM.

On the millisecond time scale of AO operations a big part of turbulence is presumably in
frozen flow and the turbulence evolution is predictable to some extend [42]. Control methods
that use past telemetry data have shown a great potential both in turbulence prediction and noise
reduction [22]. In a closed-loop set-up, these methods would, for example, utilize past control
and residual voltages in Eqs. (5) and (6), respectively, to construct a pseudo-open loop data
stream used for the prediction. This paper aims to obtain a controller with similar properties
but without the need for neither an accurate knowledge of time delay, accurate calibration nor a
linear response of the WFS to wavefront errors.

4. Adaptive optics as model-based reinforcement learning

4.1. Markov decision process and the dynamics model

We model the closed-loop adaptive optics control problem as an MDP. An MDP consists of a set
of states S, a set of actions A(s) at the given state s, a set of transition probabilities p(st+1 |st, at)

and a reward function r(st, at).
In AO, the set of actions consists of different combinations of control voltages, and the

state consists of the prevailing atmospheric turbulence and the shape of the mirror during the
measurement. In practice, we do not have access to the full state of the AO system; i.e., full
turbulence, wind speeds and DM shape. We only partially observe the state through a noisy
WFS measurement. Consequently, past observations and actions are still valid information for
the prediction of the next observation. To account for partial observation and to ensure the
Markovian property of state formulation, we define the state as a sequence of previous voltages
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and residual voltages derived from WFS measurements:

st =
⎛⎜⎝

Vm(t)

∆Vk(t)
⎞⎟⎠ , (7)

where we typically choose k = m. The state includes data from the previous m (or k) time steps
and the reconstruction matrix C. We stress that the residual voltages are not applied to the DM.
They are merely a quantity closely related to the residual wavefront through Eq. (6), and which
the MBRL control approach (see Section 4.3) will try to minimize. The matrix C must only
be chosen such that the residual voltages are well observable by the WFS. It does not have to
match the actual registration of DM and WFS precisely and could be given by either a previous
calibration or derived from a system model. Moreover, previous studies have shown that the
neural network-based wavefront reconstructor benefits from involving a linear control matrix
with a non-linear WFS [35], and we observe below that MBRL is robust to errors or perturbations
in the reconstruction matrix; see Section 5.4.

The action of the MDP is simply a vector of the changes to the control voltages

at = ∆ṽt. (8)

Let us now represent the true transition probability p(st+1 |st, at); i.e., the conditional distribution
of the next state (including the next WFS residual) given the current state and action as a
parameterized distribution family p̂θ (st+1 |st, at). The aim of MBRL is to find the optimal
approximative model p̂θ given a data set from the real environment. We solve this problem
by fitting NNs using straightforward supervised learning, detailed in Section 4.3. In our case,
the parameters θ represent the weights of the neural networks. The transition probability
approximations p̂θ represent our probabilistic dynamics and are hence called the dynamics model.
It provides an estimation of the next state (of which only the next WFS measurements are new)
from the current state and the control voltages. The dynamics model involves information about
the interaction of voltages with WFS measurement as well as the system’s temporal evolution,
including the turbulent wavefront.

In adaptive optics we aim to minimize the residual wavefront φres over the the whole time
interval. The most natural reward for an AO system would be the Strehl ratio, or for a high
contrast imaging (HCI) instrument the contrast obtained. Since we are considering a control
system with just one WFS, we can only choose a reward function observable on that specific
sensor. We choose a reward for a state-action pair as the residual voltages’ negative squared norm
corresponding to the next measurement:

r(st, at) = −∥C∆wt+1∥2. (9)

This quantity is proportional to the observable part of the negative norm of the true residual
wavefront. The WFS measurement is blind to some modes; e.g., the waffle mode for a Shack-
Hartmann Sensor (SHS). We ensure that we do not control these modes by projecting each action;
i.e., set of control voltages to the control space. That is,

at = B+B∆ṽt, (10)

where B+B projects the control voltages onto the control space defined by the K-L modes.

4.2. Model-based reinforcement learning

Now that we have defined the MDP components and the dynamics model, we can outline our
MBRL approach. First, we initialize an empty data set, and we initialize the dynamics model
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parameters θ (the weights of the NN) randomly from a zero-mean Gaussian distribution. Then,
we collect our first data set by running the AO loop for a particular time interval (an episode) with
random actions (DM control voltages) sampled from a zero-mean Gaussian distribution as well.

After the first episode we have the first data set and use it to train the dynamics model. The
training is described in more detail in Section 4.3.

We now have a first reasonable guess for the dynamics model and start to use it during the
second episode to find the action that maximizes the expected future reward (minimizes the
residual voltages) for a given state. This optimization task is called planning and replaces the
regulator/controller in classical AO. We detail the methods used for this in Section 4.3.2.

After the second and subsequent episodes, the previous data set is concatenated with the new
data and the dynamics model is trained again and updated. When the data set gets sufficiently
long, old data is removed to ensure that the NNs are trained on sufficiently fresh data only. The
dynamics model is entirely learned from data obtained while running the loop; i.e., during the
experiment; no simulation or modeling steps are involved.

4.3. PETS algorithm

We implement the MBRL control for AO approach described above following the PETS algorithm
[11]. We use OOMAO [43] to simulate the AO system plant (turbulence, telescope, DM, WFS),
and the probabilistic ensemble trajectory sampling (PETS) algorithm replaces the classical
reconstruction, control and calibration. The algorithm combines a probabilistic ensemble (PE)
neural network dynamics model and model predictive control (MPC) [44] that is based on
trajectory sampling (TS). We combine the TS with the cross-entropy method (CEM) as described
in Section 4.3.2.

4.3.1. Dynamics model

Our choice of the dynamics model, an ensemble of probabilistic NNs, can model two types of
uncertainty. Firstly, it models the uncertainty associated with the predictions; e.g., the stochastic
behavior of the turbulence and measurement noise, by outputting a variance estimate in addition
to a mean prediction. Secondly, it models the uncertainty associated with the model’s parameters
by learning an ensemble of bootstrap models. Each model has its unique data set to be trained
upon that is bootstrap sampled (a statistics term meaning sampling with replacement) from the
whole data set recorded so far [45,46].

In preparation for the experiment, we verified that using an ensemble of NNs leads to a superior
correction performance as a single NN. Then, we also ran tests and confirmed that estimating the
next state’s variance improves the performance compared to a fixed variance. Both measures
combined stabilize training by a fair amount and eventually reach a higher reward; i.e., a better
correction performance.

Each neural network in the ensemble defines a parameterized distribution family p̂θ (st+1 |st, at)

satisfying
p̂θ (st+1 |st, at) ∼ N(µθ (st, at),σ2

θ (st, at)), (11)

where the mean µθ (st, at) and the variance σ2
θ (st, at) of the Gaussian field are outputs of a neural

network. We train the dynamics model ensemble by maximizing the log-likelihood of a Gaussian
for which the parameters are outputs of the neural network model. More specifically, given a
dataset of N transitions D = {(si

t, ai
t), si

t+1}
N
i=1 we maximize the following objective function

θ̂ = arg max
θ

log
N∏︂

i=1
p̂θ (si

t+1 |s
i
t, ai

t) (12)

where p̂θ is given by Eq. (11). Each network that is a part of the ensemble is trained similarly, but
with different bootstrap sampled data set from D. Each network is modelled as a convolutional
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neural network with 2 hidden layers of 8 feature maps each. Both layers are activated by a
leaky rectified linear unit (LReLU) [47]. We use the concatenated vector [st, at] as an input and
output the mean and log-scale variance of a normal distribution: the distribution of the next
state. The maximization in Eq. (12) is done using an extension of stochastic gradient descent
called the Adam algorithm [48]. The neural network hyperparameters (e.g., number of layers,
convolutional features maps, activation function used) provided relatively fast implementation
and performed well in our experiments. We did not tune them further because of the large
number of hyperparameters and that the method was not very sensitive to them. However, moving
to more complex numeric simulations or lab experiments, hyperparameters have to be more
extensively studied. A full pseudocode is given in Algorithm 1, where ∅ stands for empty set
and D ← D ∪D(new) for concatenation of previous dataset and new data set that was collected
during the last episode.

Algorithm 1 PETS for adaptive optics
1: function PETS
2: Initialize dataset D ← ∅
3: for episode in 1 . . . do
4: Initialize dynamics model p̂θ randomly
5: Train p̂θ on D for L epochs using Eq. (12)
6: Record transitions D(new) = (st, st+1, at, rt), t ∈ 1 . . . T by running CEM(s0, p̂θ ) in

simulator for T timesteps
7: Set D ← D ∪D(new)

4.3.2. Planning control

We use the learned dynamics model to plan for the action; i.e., the mirror commands to apply
at each timestep. The goal of the planning algorithm is to optimize a sequence of actions
{at, at+1 · · · at+T } such that it maximizes the expected reward inside some planning horizon T
[44].

For the AO case, the action at taken at timestep t takes one timestep to be executed, and
one additional timestep for the corresponding observation to be recorded. Therefore, we are
essentially doing planning to minimize the observed wavefront sensor measurements up to st+2;
i.e., we implicitly predict the best control action by the DM at the time of the WFS measurement
(two frames into the future in this case). This planning horizon of two steps provides stable
control to time delays smaller or equal to 2 frames. On a real AO system the time delay is to
some extend stochastic and/or non integer. Therefore, the planning horizon should include the
longest time delays that may occur in the control loop. Further, in the presence of DM dynamics
the effective planning horizon might be a couple of time steps longer, since the control voltage
decision are not fully independent.

Starting at the given initial state, the CEM works as follows. We first sample a trajectory of
actions at, at+1 from a Gaussian distribution parameterized by some starting µ and σ2. Next
we use the learned dynamics model p̂θ to produce a sequence of potential next states given the
actions and the initial state; i.e., st+2 ∼ p̂θ (st+1, at+1), where st+1 ∼ p̂θ (st, at). Since the dynamics
model is approximated by an ensemble, these states will include samples trained using different
bootstrapped training datasets. The algorithm then chooses the so-called elites: actions that
produce the best rewards, and recalculates the sampling distribution parameters µ,σ2 to adjust to
the elites using a maximum likelihood estimate. Finally, the mean of the sampling distribution is
returned as the best trajectory. Note that in the actual task only the first action is executed, after
which another transition is observed, and the algorithm is run again using the new observation
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Algorithm 2 Cross-entropy method (CEM) for planning in AO
1: procedure CEM(s′, p̂θ )
2: µ← at−1,σ2 ← σ2

0
3: for i in 1 . . . niters do
4: Sample actions at,...,t+2 ∼ N(µ,σ2

0 )
5: Set st ← s′
6: for t in 1 . . . T = 2 do
7: Sample possible next states st+1 ∼ p̂θ (st, at)

8: Observe rewards r(st, at)

9: Select elites â1, . . . , ânelites corresponding the largest rewards
10: Update µ← mean(â) and σ2 ← Var(â)

return µ

as the starting state. This procedure of re-planning at each timestep is often referred as model
predictive control (MPC). The full pseudo-code is given in Algorithm 2.

5. Results

5.1. Simulation set-up

In the following numerical simulations, the OOMAO simulator serves as the plant of the control
system - it only provides the WFS measurements and receives a vector of the control voltages.
The PETS algorithm runs in Python and interacts with the plant via Python/MATLAB interface.

We compare the results against the ones obtained by a well-tuned integrator controller as well
as a theoretical controller that suffers neither from time delay nor measurement noise. This
theoretical controller is computed from the non-delayed noiseless measurement; i.e., it still
contains errors due to the aliasing and uncontrolled high order modes. The same limitation also
applies to the MBRL and integrator controllers. The optimum integrator gain is always tuned
globally to give the best performance (Strehl ratio) at each simulation set-up [GS magnitude and
misregistration (MR)] separately. This is done manually, and typical values were between 0.3-0.6
for our simulation setups.

We simulated an 8m telescope observing a single natural guide star (NGS), equipped with a
23×23 SHS, and a 24×24 DM with a Fried geometry (actuators on the subaperture corners). The
DM actuator influence functions are assumed to be Gaussian with a 45% coupling. Atmospheric
turbulence is simulated as a sum of three frozen flow layers with Von Karman power spectra
combining a Fried parameter r0 of 15 cm at 550 nm wavelength. The parameters of the atmosphere
are listed in Table 1. The loop is running at a framerate of 500 Hz with a time delay of 2 steps.
We pick the simulation parameters to demonstrate three key properties of the proposed method:

• The predictive capacity of the method is shown on a system with a negligible measurement
noise (see Figs. 5(a) and 3, and Table 2).

• The robustness of the method against observation noise is shown by observing natural
guide stars of different magnitudes (see Fig. 4, 5 and Table 2).

• The self-calibrating property is demonstrated by running the same simulations but
introducing (MR) between the WFS and DM (see Fig. 7 and Table 1).

We model MR in calibration by changing the alignment between the WFS and the DM in
two different directions and shift amplitudes (see Table 1). All images and contrast plots are
calculated at λ = 1.65µm (H-band), and the WFS measures at λ = 551nm (V-band). Wind
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Fig. 3. Predictive control at low-noise (0th mag ngs) regime. We plot a short section of the
control voltage time series during the evaluation of each control method: the RL method
(blue), the integrator (red), and the theoretical limit of having no noise nor delay (dashed
green line). Here we see that the integrator suffers from the time delay, whereas the RL
method closely follows the non-delayed signal.

Fig. 4. Results summary. A comparison of H-band Strehl ratios (SR), with respect to
star magnitude (GS). The red lines correspond to adapted Integrator and the blue lines the
RL method. The dotted green line is the theoretical limit of having no noise nor delay
(dashed green line). The RL algorithm always outperforms the integrator and is close to the
theoretical limit in the low noise regime.

Table 1. Parameters of the atmosphere

Atmospheric turbulence layers

C2
N (%) speed (m/s) direction (◦) L0 (m) altitude (km)

Layer 1 70 15 0 30 0

Layer 2 25 3 45 30 4

Layer 3 5 7.5 90 30 10

Misregistration parameters

shift (%) direction (◦)

Case 1 - 14 225 - -

Case 2 - 28 135 - -
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Fig. 5. Contrast benefit on three different noise levels. Left: Raw PSF contrast on the pupil
plane for RL method (upper panel) and Integrator (lower panel). Right: Azimuthal average
of the images. The blue lines are for RL method and red for the integrator. The green dashed
line is the contrast obtained with theoretical instantaneous control. The RL method provides
a gain in contrast in particular in the direction of the dominant wind. Moreover, in low noise
regime, RL provides raw contrast that is close to the theoretical limit of aliasing error.
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Table 2. Simulation and MPC parameters

Parameter types Value Units

Simulation parameter

Telescope diameter 8 m

Obstruction ratio 14 percent

Sampling frequency 500 Hz

Active actuators 448 actuators

WFS subapertures 23 × 23 apertures

WFS pixels 10 × 10 pixels

WFS diffraction limited FWHM 2 × 2 pixels

Read-out noise 5 photo-events rms

Photon flux 0/9/10 mag 2033k /511/ 210 photons / frame / lenslet

MPC

Planning horizon (T) 2 steps

Past DM commands (m) 4 commands

Past WFS measurements (k) 4 frames

CEM elites/particles 200/2000

CEM iterations 20

PETS ensemble size 3

speed and MR are somewhat pessimistic to prevent the error budget from being dominated by the
significant aliasing error of the SHS [49].

We set the state of the MDP st to include the last four actions and four WFS measurements
and set the episode length to 400 frames giving a balance between a fast iteration and a reliable
performance estimate. We validate our proposed algorithm by running multiple simulations in
the simulator. Each simulation starts with the knowledge of the reconstruction matrix, but zero
knowledge of temporal behavior including the time lag. Note here that the sole purpose of the
reconstruction matrix is to implement the control space filtering by mapping WFS measurements
on residual voltages to be included in the state. We never change it when running the MBRL
control, in particular we do not update it to match the MR. Our model learns to compensate
for the measurement noise, misregistration in the reconstruction matrix, and the atmosphere’s
temporal behavior by interacting with the environment.

5.2. Training

To demonstrate how fast the method learns a successful control strategy in different noise
conditions and MRs, we compare the learning curve of the method to the baseline of the integrator
(see Figs. 2 and 6). In terms of loss; i.e., the negative reward over the episode, our model
outperforms the integrator baseline after about 1600 frames and reaches its full potential in
about 4000 frames, in all of the test cases. The total loss in the figure corresponds to the sum of
normalized residual voltages computed from the WFS measurements. For the simulated system
running at 500 Hz, 1600 timesteps is equivalent to 3.2 seconds of actual time, while 4000 is 8
seconds. As described in Section 4.2, we train and update the dynamics model after each episode.
The loop is suspended during this time, which amounts for a several seconds given our rather
shallow NN architecture and moderate computational power. At the telescope with typically
variable observing conditions (wind speed and directions, seeing, guide star magnitudes), the
dynamics model has to be trained in parallel to the observation, for example using a separate
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computer. The available time for training is then set by the episode length and should not exceed
the time-scale of environment variability.

Fig. 6. Learning curves under MR for proposed RL method. The performance vs time of
the MBRL controller is shown in blue, and the mean Strehl ratio of the integrator is shown
in red (solid: subject to MR, dashed: no MR). Due to the non optimal geometry some
high order modes are not visible in the WFS anymore and learning curves contain more
variance. Nevertheless, in both cases, the RL algorithm reaches a better performance than
the Intergrator with no MR.

5.3. Prediction and noise robustness

We compare the correction performance of the fully converged PETS models to the integrator in
terms of raw point spread function (PSF) contrast [50] and Strehl ratio [3]. Each simulation run
consists of 8000 frames; i.e., 16 s. The resulting H-band Strehl ratios are computed from the
wavefront error maps by Marechal’s approximation [3], and are presented in Fig. 4. The MBRL
control outperforms the integrator in all cases. A predictive capacity of the MBRL algorithm
should result in an improved raw PSF contrast by reducing the notorious wind-driven halo (WDH)
[51]. The raw PSF contrast is given by the intensity ratio of the perfect coronagraphic PSF [52]
at a certain angular separation over to the peak intensity of the non-coronagraphic image. In
Fig. 5(a), we see that the RL method significantly reduces the WDH in all noise cases and hence
delivers a better raw PSF contrast especially along the dominant wind direction. We also analyze
a time series of one randomly picked actuator shown in Fig. 3, and see that the RL method follows
the non-delayed signal much closer than the integrator which exhibits the expected 2-frame delay
between incident wavefront and correction by the DM.

5.4. Performance under misregistration

Besides the predictive power, MBRL may provide other benefits for AO. One such benefit could
be the automatic adaptation to dynamic MR between DM and WFS. MR is often introduced
through mechanically or thermally induced flexure in a real AO system and negatively affects
the performance if left uncompensated. Algorithms to detect and compensate for MR exist
[5], but combining these with a data-driven predictive control, might not be trivial or at least
might need online tuning of hyper-parameters involved. In turn, RL does not make a specific
assumption on the origin of error terms. Consequently, altogether the same algorithm with the
same hyperparameters, including the reconstruction matrix C, also learns errors due to MR.
Prospects are that RL might also learn to minimize some error terms we are not expecting.
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In order to verify this claim, we ran a simulation of the bright guide star case while shifting the
WFS with respect to the DM by 14% to the upper left (1 px up and 1 px right on the WFS) and in
another case by 28% to the lower right (2 px down and 2 px right). Note that the reconstruction
matrix C does not include the MR; i.e., the residual voltage presentation of WFS measurement
does not match the mirror’s voltage presentation anymore. The results are shown in Figs. 6 and 7.
The MBRL control maintains its performance and predictive capacity even when a serve MR of
28% of a subaperture is applied. Only at high spatial frequencies close to the DM correction
radius [50], we see a small contrast degradation in the 28% MR case. This is due to the non
optimal alignment geometry; i.e., some higher order modes on the DM are not anymore visible
in the WFS. The RL method also learns to stabilize these modes.

Fig. 7. Predictive control under mis-registration. Left: Raw PSF contrast on the pupil plane.
Right: Radial averages over the image. The blue lines are for PETS algorithm and red for the
integrator with non corrected MR. The PETS maintains the performance under a sever MR.

6. Discussion

We have formulated the control task of a closed-loop adaptive optics system as a Markov decision
process and evaluated the performance of standard deep reinforcement learning algorithms on
such a system. Our simulation results demonstrate that a state-of-the-art MBRL algorithm
PETS robustly performs well with no environment-specific assumptions, apart from a generic
reconstruction matrix. Moreover, the MBRL method predicted the turbulence evolution to a
good approximation and automatically adapted to misregistration between DM and WFS, and
was robust to measurement noise. Even though the algorithm itself is rather complicated to
implement, its usage is simple: the algorithm calibrates, tunes, and maintains itself automatically.

The MBRL method operates on control voltages and residual voltages which are derived from
the residual WFS measurements and takes into account closed-loop dynamics along with the
temporal evolution of the atmosphere. All the data needed is recorded on the control system
itself eliminating dependencies on any numerical simulator or assumptions on the physics of
the system. The MBRL control also outperformed classical integrator control in all simulation
environments considered in Section 4.3.2. The simulated performance is limited by the aliasing
error of the SHS. With our single sensor setup and the objective to null future measurements, the
correction of the DM unavoidably includes low spatial frequency aberrations which cancel the
SHS signal of high spatial frequency turbulence [53]. Finally, the MBRL method learns quickly
requiring only 1600 timesteps in the simulator to surpass the baseline controller and converges at
around 4000 timesteps.

We simulate a relatively low order system with 24 actuators across the pupil. On the one hand,
this keeps the execution times low with our moderate computational resources. On the other hand,
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the chosen system size is very relevant, because it simulates the size foreseen for the second AO
stages currently planned or under development [54–56] and to be added to already existing first
AO stages. While here we consider a single stage SCAO system, our method could be extended
to control such 2nd-stage AO by including the first stage’s voltages in the state as well.

In future work, we plan to extend the algorithm and comprehensively study a system with
more complex DM dynamics, non-linear WFS such as the Pyramid WFS, saturations, alignment
errors, turbulence boiling, and a cascaded AO system with a fast second stage. In particular,
the future extreme AO systems on the upcoming generation of extremely large telescopes will
control more than 104 degrees of freedom; as such, scalability of the method shall be considered.

Future work should also address the challenges imposed by a variable turbulence. Under-
standing the trade-off between model complexity and fast training is essential for a successful
implementation. Our MBRL method already learns continuously on a timescales of several
seconds. Therefore, prospects are good that it is capable of automatically adjusting to changing
conditions on timescales where atmosphere parameters typically change [42]

Finally, we believe that, the biggest and most important challenge for a successful on-sky
implementation of MBRL control for AO is the computational complexity of the method. In
this work, the computational time at each timestep of the MPC on 448 degrees of freedom is
around 80-120 ms using a laptop equipped with a single NVIDIA Quadro RTX 3000 GPU and a
straightforward implementation in PyTorch [57]. Both, the delay and the temporal jitter are too
large for a stable control of a real system. In contrast to a real system whose cadence is defined
by the atmosphere and WFS framerate, our simulations are stepwise and, therefore, not sensitive
to the jitter, and no strategies to minimize it was devised. Jitter could, for example, be mitigated
by exiting the planning algorithm after a given time rather than after a fixed number of iterations
(20 in our simulations).

The large computational cost could be alleviated by reducing the number of parameters in
the dynamics model, employing fewer samples in the planning phase, and tuning the CEM
procedure’s hyperparameters. It seems feasible that these points combined with better hardware
and optimized low-level implementation are sufficient to bring the running time of our method
with 448 degrees of freedom down into the range needed for an on-sky system.

However, the algorithm’s brute force approach could possibly be improved. A promising
approach to speed up the MBRL control system, could be to replace the dynamics model and/or
the planning algorithm to reduce computational complexity. We proposed a dynamics model
composed of an ensemble of convolutional NNs. If the non-linear property of NNs turns out
not to be needed, a much simpler linear model; e.g., an autoregressive model, could be used
instead. Also, we are already investigating other methods that replace the planning phase of
MBRL with a so-called policy function [58], which could be implemented as a NN and therefore
avoid iterations and make the controller fast.

Finally, an efficient possible direction to reduce computational effort is to apply MBRL control
only to a low-dimensional subset of the controlled parameters. For example, modal control could
allow us to control a small set of modes with MBRL, while other modes are controlled classically.
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ABSTRACT

Context. The direct imaging of potentially habitable exoplanets is one prime science case for the next generation of high contrast
imaging instruments on ground-based, extremely large telescopes. To reach this demanding science goal, the instruments are equipped
with eXtreme Adaptive Optics (XAO) systems which will control thousands of actuators at a framerate of kilohertz to several kilohertz.
Most of the habitable exoplanets are located at small angular separations from their host stars, where the current control laws of XAO
systems leave strong residuals.
Aims. Current AO control strategies such as static matrix-based wavefront reconstruction and integrator control suffer from a temporal
delay error and are sensitive to mis-registration, that is, to dynamic variations of the control system geometry. We aim to produce control
methods that cope with these limitations, provide a significantly improved AO correction, and, therefore, reduce the residual flux in the
coronagraphic point spread function (PSF).
Methods. We extend previous work in reinforcement learning for AO. The improved method, called the Policy Optimization for
Adaptive Optics (PO4AO), learns a dynamics model and optimizes a control neural network, called a policy. We introduce the method
and study it through numerical simulations of XAO with Pyramid wavefront sensor (PWFS) for the 8-m and 40-m telescope aperture
cases. We further implemented PO4AO and carried out experiments in a laboratory environment using Magellan Adaptive Optics
eXtreme system (MagAO-X) at the Steward laboratory.
Results. PO4AO provides the desired performance by improving the coronagraphic contrast in numerical simulations by factors of
3–5 within the control region of deformable mirror and PWFS, both in simulation and in the laboratory. The presented method is also
quick to train, that is, on timescales of typically 5–10 s, and the inference time is sufficiently small (<ms) to be used in real-time control
for XAO with currently available hardware even for extremely large telescopes.

Key words. instrumentation: high angular resolution – instrumentation: adaptive optics – atmospheric effects –
methods: data analysis – techniques: high angular resolution – methods: numerical

1. Introduction

The study of extrasolar planets (exoplanets) and exoplanetary
systems is one of the most rapidly developing fields of modern
astrophysics. More than 3000 confirmed exoplanets have been
identified mainly through indirect methods by NASA’s Kepler
mission1. High-contrast imaging (HCI) detections are mostly
limited to about a dozen very young and luminous giant exo-
planets (e.g., Marois et al. 2010; Lagrange et al. 2009; Macintosh
et al. 2015) due to the challenging contrast requirements at a

? NASA Hubble Fellow
1 Exoplanet Orbit Database: http://exoplanets.org/

fraction of an arcsecond angular distance from the star which
could be a billion times brighter than the exoplanet.

High-contrast imaging aims to separate the exoplanet light
from stellar light optically, thereby dramatically increasing the
signal-to-noise ratio (S/N) over the one provided by indirect
methods. However, significant advances in HCI technology are
needed to address two major scientific questions: the archi-
tectures of outer planetary systems, which remain essentially
unexplored (e.g., Dressing & Charbonneau 2015; Fernandes
et al. 2019); and the atmospheric composition of small exo-
planets outside the solar system, which is especially interesting
because it addresses the question of habitability and life in the
universe.
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For ground-based observations, HCI combines eXtreme
Adaptive Optics (XAO, e.g., Guyon 2005, 2018) and coron-
agraphy (Mawet et al. 2012) with a way to distinguish stellar
quasi-static speckles (QSS) produced by imperfect instrument
optics from the exoplanet such as spectral and angular differ-
ential imaging (Marois et al. 2004, 2006) or high-dispersion
spectroscopy (Snellen et al. 2015). With an optimized instru-
ment design, the XAO residual halo may be the dominant source
of noise (Otten et al. 2021). Therefore, minimizing the XAO
residuals is a key objective for ground-based HCI.

Adaptive optics systems typically run in a closed-loop con-
figuration, where the wavefront sensor (WFS) measures the
wavefront distortions after deformable mirror (DM) correction.
The objective of this control loop is to minimize the distor-
tions in the measured wavefront, that is, the residual wavefront,
which, in theory, corresponds to minimizing the speckle inten-
sity in the post-coronagraphic image. In the case of a widely used
integrator controller, temporal delay error and photon noise usu-
ally dominate the wavefront error budget in the spatial frequency
regime controlled by the DM (Guyon 2005; Fusco et al. 2006).
A big part of the turbulence is presumably in frozen flow con-
sidering the millisecond timescale of AO control, and hence a
significant fraction of wavefront disturbances can be predicted
(Poyneer et al. 2009). Therefore, control methods that use past
telemetry data have shown a significant potential for reducing
the temporal error and photon noise (Males & Guyon 2018;
Guyon & Males 2017; Correia et al. 2020). Further, real systems
suffer from dynamic modeling errors such as misregistration
(Heritier et al. 2018), optical gain effect for the Pyramid WFS
(Korkiakoski et al. 2008; Deo et al. 2019), and temporal jitter
(Poyneer & Véran 2008). Combined, these errors lead to a need
for external tuning and recalibration of a standard pseudo-open-
loop predictive controller to ensure robustness.

An up-and-coming field of research aimed at improving AO
control methods is the application of fully data-driven control
methods, where the control voltages are separately added to the
learned control model (Nousiainen et al. 2021; Landman et al.
2020, 2021; Haffert et al. 2021a,b; Pou et al. 2022). A signifi-
cant benefit of fully data-driven control in closed-loop is that it
does not require an estimate of the system’s open-loop temporal
evolution and that it is, therefore, insensitive to pseudo-open-
loop reconstruction errors, such as the optical gain effect (Haffert
et al. 2021a). In particular, reinforcement learning (RL) has also
been shown to cope with temporal and misregistration errors
(Nousiainen et al. 2021). RL is an active branch of machine
learning that learns a control task via interaction with the envi-
ronment. The principal idea is to let the method feed actions
to the environment, observe the outcome, and then improve the
control strategy regarding the long-term reward. The reward is a
predefined function giving a concrete measure of the method’s
performance. By learning this way, RL methods do not require
accurate models of the components in the control loop and,
hence, can be viewed as an automated approach for control.

Previous work in RL-based adaptive optics control has
focused on either controlling DM modes using model-free meth-
ods that learn a policy πθ : st 7→ at parameterized by θ that maps
states st (or observations) into actions at directly (Landman et al.
2020, 2021; Pou et al. 2022), or using model-based methods that
employ a planning step to compute actions (Nousiainen et al.
2021). The model-free methods have the advantage of being fast
to evaluate, as the learned policies are often neural networks that
support sub millisecond inference. However, they suffer from the
large space of actions resulting from the number of actuators that
need to be controlled in adaptive optics systems – learning to

control each actuator simultaneously with a model-free method
is difficult. On the other hand, model-based RL approaches ben-
efit from being simple to train using even off-policy data, that is,
data obtained, while using a different (e.g., classical integrator)
control method. A Model-based method may only need hundreds
of iterations while a model-free algorithm such as policy gradi-
ent methods may need millions of iterations (Janner et al. 2019).
However, the planning step of model-based RL is often itera-
tive and could, therefore, be too slow for AO control, even with
expensive hardware (Nousiainen et al. 2021).

In this paper, we unify the approaches described above by
learning a dynamics model and using the model to train a pol-
icy that is fast to evaluate and scales to control all actuators in a
system. We call this hybrid algorithm Policy Optimization for
Adaptive Optics (PO4AO). We do this by employing an end-
to-end convolutional architecture for the policy, leveraging the
differentiable nature of the chosen reward function, and directly
backpropagating through trajectories sampled from the model.
Our method scales to sub-millisecond inference, and we present
promising results in both a large pyramid-sensor-based simu-
lation and a laboratory setup using Magellan Adaptive Optics
eXtreme system (MagAO-X, Males et al. 2018), where our
method is trained from scratch using interaction.

2. Related work

The adaptive optics control problem differs from the typical
control problems considered by modern RL research. The main
challenges of AO control are two-fold: first, the control space
is substantially larger than in classical RL literature and is typ-
ically parameterized by 500–10 000 degrees of freedom (DoF).
Secondly, the state of the system is observed through an indirect
measurement, where the related inverse problem is not well-
posed. On the bright side, it has been observed in the literature
that simple differentiable reward functions with a relatively short
time horizon can lead to good performance (Nousiainen et al.
2021).

Recently, progress has been made toward full reinforcement
learning-based adaptive optics control. Landman et al. (2020)
use the model-free recurrent deterministic policy gradient algo-
rithm to control the tip and tilt modes of a DM and a variation
of the method to control a high order mirror in the special case
of ideal wavefront sensing. Pou et al. (2022) implemented a
model-free multi-agent approach to control a 40 × 40 Shack-
Harmann-based AO system and analyzed the robustness against
noise and variable atmospheric conditions. On the other hand,
Nousiainen et al. (2021) present a model-based solution that
learns a dynamics model of the environment and uses it with
a planning algorithm to decide the control voltages at each
timestep. This method shows good performance but requires
heavy computation at each control loop iteration, which will be a
problem in future generations of instruments with more actuators
per DM. PO4AO aims for the best of both worlds: it requires only
a small amount of training data and has a high inference speed,
capable of scaling to modern telescopes. Further, we analyze the
performance of our method in different noise levels and varied
wind conditions combined with nonlinear wavefront sensing.

In RL terms, model-based policy optimization is an active
area of research. Work that tackles the full reinforcement learn-
ing problem without assuming a known reward function includes
Heess et al. (2015), and Janner et al. (2019). In contrast, PILCO
and the subsequent deep PILCO (Deisenroth & Rasmussen 2011;
Gal et al. 2016) are methods that directly backpropagate through

A71, page 2 of 15



J. Nousiainen et al.: Toward on-sky adaptive optics control using reinforcement learning

rewards. Our method is similar to deep PILCO in the sense that
it learns a neural network policy from trajectories sampled from
a neural network dynamics model.

In addition, significant progress has also been made in AO
control methods outside RL and fully data-driven algorithms.
Linear-quadratic-Gaussian control (LQG) based methods have
been studied in Kulcsár et al. (2006); Paschall & Anderson
(1993); Gray & Le Roux (2012); Conan et al. (2011); Correia
et al. (2010a,b, 2017), sometimes combined with machine learn-
ing for system identification (Sinquin et al. 2020). Predictive
controllers have been studied in Guyon & Males (2017); Poyneer
et al. (2007); Dessenne et al. (1998); van Kooten et al. (2017,
2019). Methods vary from linear filters to filters operating on sin-
gle modes (such as Fourier modes) to neural network approaches
(Swanson et al. 2018; Sun et al. 2017; Liu et al. 2019; Wong
et al. 2021). Predictive control methods have also been studied
in a closed-loop configuration. Males & Guyon (2018) address a
closed-loop predictive control’s impact on the postcoronagraphic
contrast with a semianalytic framework. Swanson et al. (2021)
studied closed-loop predictive control with NNs via supervised
learning, where a NN is learned to compensate for the temporal
error.

Finally, other RL-based methods have been developed for
different types of AO. In order to mitigate alignment errors in
calibration, a deep-learning control model was proposed in Xu
et al. (2019). A model-free RL method for wavefront sensorless
AO was studied in Ke et al. (2019). The method is shown to pro-
vide faster corrections speed than a baseline method assuming a
relatively low-order AO system, while our work focuses on the
case of XAO for HCI.

3. Reinforcement learning applied to adaptive
optics

Since we introduce a novel approach (RL) to the field of AO,
we present hereafter some of the standard notations and terms
used in RL. The de facto mathematical framework for modeling
sequential decision problems in the field of RL is the “Markov
Decision Process” (MDP). An MDP is a discrete-time stochas-
tic process which, at time step t, is in a “state” st ∈ S where S
is the set of all possible states. A “decision-maker” then takes
an “action” at ∈ A (again, A is the set of possible actions)
based on the current state, and the “environment” changes to the
next state st+1. As the transition dynamics (at, st) 7→ st+1 is ran-
dom in nature (influenced e.g. by the turbulence evolution) it is
represented here by the conditional probability density function
p(st+1|st, at)2. At each timestep a “reward” Rt = r(st, at) is also
observed, which is a (possibly stochastic) function of the cur-
rent state and action. The modeler usually designs the reward to
make the decision-maker produce some favorable behavior (e.g.,
correcting for turbulence distortions).

The actions our decision-maker takes are determined by a
“policy” πθ : st 7→ at, which is a function that maps states into
actions. For example, the matrix-vector multiplier (MVM) can
be viewed as a policy, taking a wavefront sensor measurement
as input and outputting the control voltages. The objective of
reinforcement learning is to find a policy such that

arg max
θ
Epθ(s0,...,sT )

 T∑
t=0

r(st, πθ(st))

, (1)

2 The initial state is drawn from the initial state distribution s0 ∼
p0(s0).

where

pθ(s0, ..., sT ) = p0(s0)
T∏

t=1

p(st |st−1, πθ(st−1))

with the initial distribution s0 ∼ p0 and convention πθ(s−1) = a0
for a fixed initial DM commands a0. In particular, we focus here
on parametric models of πθ where θ is the set of parameters of
the policy, for example, the weights and biases of a neural net-
work. That is, given that the actions are given by πθ, we wish
to find the parameters θ that maximize the expected cumula-
tive reward the decision-maker receives. Here T is the maximum
length of an episode or a single run of the algorithm in the
environment.

The transition dynamics is usually not known in adaptive
optics control: it includes a multitude of unknowns including
the atmosphere turbulence, dynamics of the WFS and DM, and
the jitter in the computational delay. In order to solve Eq. (1)
efficiently, model-based RL algorithms estimate the true dynam-
ics model p(st+1|st, at) in Eq. (1) by an approximate model
p̂(st+1|st, at). Model-free methods, in turn, only learn a policy
– they do not attempt to model the environment.

The standard MDP formulation assumes that all informa-
tion about the environment is contained in the state st. This
is not the case in many real-world domains, such as adaptive
optics control. A more refined formulation is then the “partially
observed” MDP or POMDP, where the decision-maker observes
ot, which is some subset or function of the true underlying state.
The Markov property, that is, the assumption that the next state
depends only on the previous state and action, does not neces-
sarily apply to the observations in a POMDP. This work uses
the standard method of having our state representation include
a small number of past observations (WFS measurements) and
actions (control voltages) to deal with this issue. This allows the
policy to use knowledge of past actions to predict the next action.
The exact form of the observations ot and the full state st for
adaptive optics control will be given in Sect. 5.1.

Finally, it is common in RL to use reward functions that
are not differentiable (such as 1 for winning a game, 0 other-
wise) or functions that do not depend directly on the state. In
high-contrast imaging, we would like to minimize the speckle
intensity in the post-coronagraphic PSF. However, this can be
difficult to estimate at the high frequencies of modern HCI
instruments. We discuss the specific choices in this regard in
Sect. 5.1.

4. Adaptive optics control

This section introduces AO control aspects that are relevant to
our work. First, we introduce the AO system components and
then outline a standard control law called the integrator and the
related calibration process. An overview of the AO control loop
is given in Fig. 1; the incoming light φtur

t at the timestep t gets
corrected by the DM. Next, the WFS measures the DM corrected
residual wavefront φres

t . After receiving the wavefront sensor
measurement, the control computer calculates a set of control
voltages and sends the commands to the DM.

Further, the AO control loop inherits a temporal delay. The
delay consists of a measurement delay introduced by the WFS
integration and a control delay consisting of WFS readout, com-
putation of the correction signal by the control algorithm, and its
application to the DM. These add up to a total delay of at least
twice the operating frame-time of the AO system (Madec 1999).
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Fig. 1. Overview of the AO control loop and the performance of
PO4AO. The method, PO4AO, feeds actions to the environment,
observes the outcome, and then improves the control regarding the
reward. Starting from a random behavior at first (frame 0), the method
learns a predictive control strategy in only 5000 frames of interaction.

4.1. Pyramid wavefront sensor for adaptive optics

The function of the WFS is to measure the spatial shape of
the residual phase of a wavefront φres

t . There are several differ-
ent types of WFSs, but in this work, we focus on the so-called
pyramid WFS (PWFS), which is a mature concept providing
excellent performance for HCI (Guyon 2005). In the following,
we give a short description of the PWFS.

The PWFS can be viewed as a generalization of the Foucault
knife-edge test (Ragazzoni 1996). In pyramid wavefront sens-
ing, the electric field of the incoming wavefront is directed to
a transparent four-sided pyramid prism. The prism is located in
the focal plane of an optical system and, hence, can be modeled
as a spatial Fourier filter that introduces specific phase changes
according to the shape of the prism (Fauvarque et al. 2017). This
four-sided pyramid divides the incoming light into four different
directions, and most of the light is propagated to four intensity
images on the PWFS detector. Due to the slightly different opti-
cal paths of the light, the intensity fields differ from each other.
These differences are then used as the data for recovering the
disturbances in the incoming phase screen.

Commonly, pyramid data, that is, the intensity fields, are
processed to so-called slopes wx, wy that correlate positively to
actual gradients fields of the phase screen. In this paper, we
follow the approach of Vérinaud (2004), where the slopes are
normalized with the global intensity. In practice, we receive a
vector w that is a collection of the measurements wx, wy at all
possible locations x, y.

Both modulated and nonmodulated pyramid sensor obser-
vations are connected to the incoming wavefront via a nonlin-
ear mathematical model. This study considers nonmodulated
PWFSs, where the nonlinearity is stronger, but the sensitivity is
better at all spatial frequencies (Guyon 2005). Currently, most
wavefront reconstruction algorithms utilize a linearization of
this model, inducing a trade-off between sensitivity and robust-
ness (modulated PWFS vs. nonmodulated PWFS). Machine

Fig. 2. Modal optical gains for the case of an 8-m telescope with
zero-modulation and integrator control and considering two different
wavefront sensor wavelengths.

learning techniques have the potential to overcome this trade-off
and increase PWFS performance without a decisive robustness
penalty.

Another feature of the PWFS is that its sensitivity varies
depending on both the seeing conditions and the level of AO
correction itself (Korkiakoski et al. 2008) which is mainly intro-
duced by high spatial frequency aberrations which the DM
cannot control. The presence of these aberrations reduces the
signal strength of the measurement also for the controlled modes,
and the strength of the reduction depends on the mode’s spatial
frequencies (Korkiakoski et al. 2008).

To illustrate the OG effect of the Pyramid sensor, we use
a preliminary version of a semi-analytical model code-named
“AO cockpyt” (in prep.). This model is based on the work of
Fauvarque et al. (2019), describing the sensitivity of the Pyra-
mid sensor in the presence of residuals, and on an adaptation of
Fourier models from Jolissaint (2010) and Correia et al. (2020).
Figure 2 shows the analytically predicted modal optical gains for
the case of an 8-m telescope with zero-modulation and integrator
control and considering two different wavefront sensor wave-
lengths. The assumed AO system for this analytical prediction
is the same as the one used for our numerical simulations pre-
sented in Sect. 6 (41 × 41 actuators correct for seeing of 0.7′′ at
550 nm at 1000 Hz framerate using a 0th magnitude guide star).
The figure shows how the optical gain depends on the spatial fre-
quency of the control modes (the K-L are numbered from low-
to high spatial frequencies) and on the WFS Strehl ratio, which
is lower at the shorter wavelength.

A modal optimization of the controller gains using the
knowledge of Fig. 2 can solve most of the problems (diago-
nality assumption in Chambouleyron et al. 2020) and applying
the usual control theory margins (gain and phase) for ensuring a
robust system. Determining optical gains in real-time is possible
but complex (Deo et al. 2021; Chambouleyron et al. 2020), and
the relative variations shown in Fig. 2 are of the order 10–20%
for our XAO case. Hence, compensation for the mode-dependent
optical gains with a single integrator gain may lead to accept-
able results. However, an aggressive static integrator gain could
impair loop robustness when the correction improves, and the
optical gains increase. Section 6 presents evidence that PO4AO
takes the PWFS OG effect into account for improved perfor-
mance. Further, modal gain compensation of OG is a solution
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that is expected to work in favorable cases, but still, the non-
linearities after OG compensation will remain and can only be
treated with nonlinear methods as the one studied in this paper.

4.2. Classical adaptive optics control

Classically, an AO system is controlled by combining a linear
reconstructor with a proportional-integral (PI) control law. We
call this controller the integrator and use it as the reference
method for the comparison with PO4AO. As a starting point,
the controller assumes to operate in a regime where the depen-
dence between WFS measurements and DM commands is linear
to a good approximation, satisfying

wt = Dvt + ξt, (2)

where wt = (δw1
t , . . . , δw

n
t ) is the WFS data, vt the DM com-

mands and D is so-called interaction matrix. Moreover, ξt models
the measurement noise typically composed of photon and detec-
tor noise. The DM command vector vt represents the DM shape
given in the function subspace linearly spanned by the DM
influence functions.

The interaction matrix D represents how the WFS sees each
DM command. It can be derived mathematically if we accurately
know the system components (WFS and DM) and the align-
ment of the system. In practice, it is usually measured by poking
the DM actuators with a small amplitude staying inside the lin-
ear range of the WFS, and recording the corresponding WFS
measurements (Kasper et al. 2004; Lai et al. 2021).

The interaction matrix D is generally ill-conditioned, and
regularization methods must be used to invert it (Engl et al.
1996). Here, we regularize the problem by projecting vt to
a smaller dimensional subspace spanned by Karhunen–Loéve
(KL) modal basis. The KL basis is computed via a double
diagonalization process, which considers the geometrical and
statistical properties of the telescopes (Gendron 1994). This pro-
cess results in a transformation matrix Bm which maps DM
actuator voltages to modal coefficients.

We observe that the modal interaction matrix is now obtained
as DB†m, where B†m is the Moore–Penrose pseudo-inverse of Bm.
A well-posed reconstruction matrix for the inverse problem in
Eq. (2) is then given by

Cm = (DPm)†, (3)

where Pm = B†mBm is a projection map to the KL basis. Regu-
larization by projection is a classical regularization with well-
established theory Engl et al. (1996). It is well-suited for the
problem at hand due to the physics-motivated basis expansion
and fixed finite dimension of the observational data.

With ∆wt denoting the residual error seen by the WFS
in closed loop, and t denoting the discrete time step of the
controller, the integrator control law is

ũt = ũt−1 + gC∆wt, (4)

where g is so-called the integrator gain. In literature, g < 0.5
is typically found to provide stable control for a two-step delay
system Madec (1999).

5. Learning to control using a model

Here we detail the control algorithm including optimization for
the dynamics model pω(st, at) and the policy πθ(at |st). In stan-
dard AO terms, the policy combines the reconstruction and

control law (e.g., a least-squares modal reconstruction followed
by integrator control); in our case, a nonlinear correction to
a least-squares modal reconstruction (MDP formulation) and a
predictive control law. The key idea is to learn a dynamics model
that predicts the next wavefront sensor measurement given the
previous measurements and actions and to use that model to
optimize the policy. Our method iterated the following three
phases3:
1. Running the policy: we ran the policy in the AO control loop

for T timesteps (a single episode).
2. Improving the dynamics model: we optimized the dynamics

model using a supervised learning objective Eq. (9).
3. Improving the policy: we optimized the policy using the

dynamics model Eq. (12).
At each iteration of our algorithm, we collected an episode’s
worth of data, e.g., 500 subsequent sensor measurements and
mirror commands, by running the policy in the AO control
loop for T timesteps. We then saved the observed data and
given actions and trained our policy and dynamics model using
gradients computed from all previously observed data.

The following sections discuss how we represented each
observation, our convolutional neural network architecture for
both the dynamics model and the policy, and the optimization
algorithm itself.

5.1. Adaptive optics as a Markov decision process

We defined the adaptive optics control problem as an MDP by
following the approach of Nousiainen et al. (2021). As discussed
in Sects. 3 and 4, we do not directly observe the state of the
system but instead observe a noisy WFS measurement. In addi-
tion, adaptive optics systems suffer from control delay resulting
from the high speed of operation, which means that the system
evolves before the latest action has been fully executed. Hence,
we set our state presentation to include a small amount of past
WFS measurements and control voltages.

We denote the control voltages applied to DM at a given time
instance t by ũt and the preprocessed PWFS measurements by wt.
We defined the set of actions to be the set of differential control
voltages:

at = ∆ũt. (5)

In adaptive optics, at each timestep t, we observe the wave-
front sensor measurement wt. We project the measurement into
voltage space by utilizing the reconstruction matrix C. The
observation is then given by the quantity:

ot = Cwt. (6)

To represent each state, we concatenated previous observations
and actions. That is,

st =
(
ot, ot−1, . . . , ot−k, at−1, at−2, . . . , at−m

)
, (7)

where we chose k = m (as in the typical pseudo-open-loop pre-
diction). The state includes data from the previous m time steps
and the reconstruction matrix C. Here the reconstruction matrix
serves solely as a preprocessing step for WFS measurements.
It speeds up the learning process by simplifying the convolu-
tional NN (CNN) architecture (same dimensional observations
and actions). However, It does not directly connect the mea-
surement to actions and, therefore, using it does not imply a
sensitivity to misregistration (Nousiainen et al. 2021).
3 See Algorithm 1 for more details.
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Fig. 3. Neural network architectures. Both the dynamics model and the policy NN take same input: concatenations of past actions and observations.
They also share the same fully convolutional structure in the first layers. At the output layer, the policy model includes the KL-filtering scheme
(upper right corner) and the dynamics model output is multiplied with the WFS mask (lower right corner). See Sect. 5.2 for details.

For a state-action pair, the reward was chosen as the residual
voltages’ negative squared norm corresponding to the following
measurement:

r(st, at) = −Ep(st+1 |st ,at)‖õt+1‖2, (8)

where õt+1 was obtained from s̃t+1 ∼ p(·|st, at).
This quantity is proportional to the observable part of the

negative norm of the true residual wavefront. This reward func-
tion does not capture all error terms such as aliasing and
non-common path errors (NCPA), and hence, the final contrast
performance will always be limited by these. The aliasing errors
could be mitigated with traditional means, e.g., by introducing
a spatial filter (Poyneer & Macintosh 2004) or by oversampling
the wavefront, that is, by using a WFS with finer sampling than
the one provided by the DM. We also already eluded on the fact
that minimizing the residual wavefront seen by the WFS does
not necessarily minimize the residual halon in the science image
because of NCPA between the two. The PO4AO could treat
NCPA by including science camera images in the state formu-
lation, but these would have to be provided at the same cadence
as the WFS data, which is usually not the case. Still, NCPA can
be handled by PO4AO in the usual way by offsetting the WFS
measurements by an amount determined by an auxiliary image
processing algorithm (e.g., Give’on et al. 2007; Paul et al. 2013).
Finally, the reward does not include an assumption on the time
delay of the system, so the method learns to compensate for any
delay and predict the wavefront.

5.2. The dynamics model

An adaptive optics system inherits strong spatial correlations in
observations and control space – neighboring actuators and WFS
pixels close to each are more correlated than actuators further
apart due to the steep negative slope of the turbulence temporal
PSD (Fried 1990) and the frozen flow hypothesis. We employed
a standard fully convolutional neural network (CNN), equipped
with a leaky rectified linear unit (LReLU, Maas et al. 2013) acti-
vation functions that predicts the next wavefront sensor readout.
The CNN should work well for our setup with DM actuators and
WFS subapertures aligned on a grid in a spatially homogeneous
geometry.

In practice, the state is a 3D tensor (matrices stack along the
third dimension, that is, a (N × N × (k + m)) tensor) with the
channel dimension corresponding to DM actuator grid (2D) and
the number of previous observations (k) and actions (m). See
Fig. 3 for an illustration.

The deterministic dynamics model p̂ω(st, at) estimates the
next state st+1 given the previous state and action. The model
parameters ω (i.e., the NN weights and biases) were trained by
first running the policy π in the environment, that is, controlling
the AO system with the policy, collecting tuples of (st, at, st+1)
into a datasetD, and minimizing the squared difference between
the true next states and the predictions∑
D
‖st+1 − p̂ω(st, at)‖2 =

∑
D
‖ot+1 − ôt+1‖2, (9)

where ot+1 is obtained from the state st+1 and ôt+1 is the observa-
tion predicted by p̂ω(st, at). The optimization was done using the
Adam algorithm (Kingma & Ba 2014). Again we did not assume
any integer time delay here, but as the past actions are included
in the state formulation, we learned to compensate for it.

It is well-known that model-based RL performance unfavor-
ably exploits an overfitted dynamics model in the control (e.g.,
planning or policy optimization), especially in the early stages
of training (Nagabandi et al. 2018). To discourage this behavior,
we employed an ensemble of several models, each of which is
trained using different bootstrap datasets, that is, subsets of the
observations collected during training. In practice, this means
that each model sees a different subset of observations, leading
to different NN approximations. During policy training, predic-
tions are averaged over the models (line 9 of Algorithm 1). See,
for example, Chua et al. (2018) for a more detailed discussion on
ensemble models.

5.3. The policy model

Again, we employed a fully convolutional neural network as the
policy, similar to the dynamics model. The input is a 3D tensor
representing the state, and the output a 2D tensor (a matrix) rep-
resenting the actuator voltages. The WFS measurement is blind
or insensitive to some shapes of the mirror, such as the well-
known waffle mode and actuators on the boundary. We ensured
that we do not control these modes by projecting each set of
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control voltages to the control space, that is, we reshaped the
2D output to a vector, multiplied it by a filter matrix, and then
reshaped the output back to a 2D image. The full policy model π
is given by

πθ(st) = B†BFθ(st), (10)

where B†B projects the control voltages onto the control space
defined by the K-L modes and Fθ is the standard fully convolu-
tional NN, where the output is vectorized. Figure 3 gives more
detailed overview of the network architecture of Fθ.

5.4. Policy optimization

Ideally, the policy πθ(st) would be optimized based on the
expected cumulative reward function Eq. (1). However, as we do
not have access to the true dynamics model p, we must approx-
imate it with the learned dynamics model p̂ω. To stabilize this
process, we introduced an extended time horizon H � T over
which the performance was optimized. Let us define

r̂ω(st, at) = −‖õt+1‖2, (11)

where õt+1 is obtained from s̃t+1 = p̂ω(st, at). This leads to the
approximative policy optimization problem

arg max
θ

∑
s∈D

H∑
t=1

r̂ω(s̃t, πθ(s̃t)), (12)

where H the planning horizon and

s̃1 = s and s̃t+1 = p̂ω(s̃t, πθ(s̃t)).

Here the planning horizon H was chosen based on the properties
of the AO system. More precisely, for AO control, the choice of
the planning horizon H is driven by the system’s control delay.
In the case of a simple two-frame delay, no DM dynamic, and no
noise, we would plan to minimize the observed wavefront sen-
sor measurements two steps into the future, that is, we would
implicitly predict the best control action by the DM at the time
of the corresponding WFS measurement. However, the effec-
tive planning horizon is longer in the presence of DM dynamics
and temporal jitter since the control voltage decisions are not
entirely independent. The choice of the planning horizon is a
compromise between two effects: too short a planning horizon
jeopardizes the loop stability, and too long a planning horizon
makes the method prone to overfitting. We used H = 4 frames in
all our experiments (numerical and laboratory) as a reasonably
well-working compromise.

The policy π was optimized by sampling initial states from
previously observed samples, computing actions for them, and
using the dynamics model to simulate what would happen if
we were to take those actions. We could then use the differ-
entiable nature of both our models and the reward function to
backpropagate through rewards computed at each timestep. More
specifically, at each iteration, we sampled a batch of initial states
sτ and computed the following H states using the dynamics
model. We then had H rewards for each initial state, and we used
the gradients of the sum of those rewards with respect to the pol-
icy parameters θ to improve the parameters. The full procedure
of training the dynamics and the policy is given in Algorithm 1,
where the while-loop (line 3) iterates over episodes and lines
6–16 execute an update of policy via policy optimization.

Algorithm 1 Policy Optimization for Adaptive Optics (PO4AO)
1: Initialize policy and dynamics model parameters θ and ω

randomly
2: Initialize gradient iteration length K, batch size B < |D| and

planning horizon H
3: while not converged do
4: Generate samples {st+1, st, at} by running policy πθ(at |st)

for T timesteps (an episode) and append toD
5: Fit dynamics by minimizing Eq. (9) w.r.t ω using Adam
6: for iteration k = 1 to K do
7: Sample a mini batch of B < |D| states {sτ} fromD
8: for each sτ in the mini batch do
9: Set s̃τ1 = sτ

10: for t = 1 to H do
11: Predict at = πθ(st)
12: Predict st+1 = p̂ω(st, at)
13: Calculate Rt = r̂ω(st, at)
14: end for
15: end for
16: Update θ by taking a gradient step according to
∇θ ∑τ+H

t=τ Rt with Adam.
17: end for
18: end while

6. Numerical simulations

6.1. Setup description

We evaluate the performance of PO4AO by numerical simula-
tions. We used the COMPASS package (Ferreira et al. 2018) to
simulate an XAO system at an 8-m employing a nonmodulated
Pyramid WFS in low noise (0 mag) and moderately large noise
(9 mag) conditions. For comparison, we also considered the the-
oretical case of an “ideal” wavefront sensor where the wavefront
reconstruction is simply a projection of the 2D-turbulence screen
onto the DM’s influence functions.

We also include a simulation of a 40-meter telescope XAO
with PWFS to confirm that PO4AO nicely scales with aperture
size and XAO degrees of freedom. Comprehensive error analysis
and fine-tuning are left for future work. In order to stabilize the
performance of the integrator, we added 2λ/D modulations to
the PWFS.

For all simulations, we simulated the Atmospheric turbu-
lence as a sum of three frozen flow layers with Von Karman
power spectra combining for Fried parameter r0 of 16 cm at
500 nm wavelength. The complete set of simulation parameters
is provided in Table 1.

We compare PO4AO against a well-tuned integrator and
instantaneous controller, not affected by measurement noise or
temporal error. For the Pyramid WFS, it still propagates aliasing
and the fitting error introduced by uncontrolled or high-spatial
frequency modes. For the idealized WFS, it acts as a spatial
high-pass filter, instantaneously subtracting the turbulent phase
projected on the DM control space (DM fitting error only).

In particular, we chose the simulation setups to demonstrate
the following key properties of the proposed method. Firstly, The
method achieves the required real-time control speed while being
quick to train. This property enables the controller to be trained
just before the science operation and be further updated dur-
ing the operation. Consequently, the method is trained with the
most relevant data and does not need to generalize to all possible
conditions at once; furthermore, the method retains these prop-
erties with an ELT-scale instrument. Secondly, The method is a
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Table 1. Simulations parameters.

Telescope “VLT”

Parameter Value Units

Telescope diameter 8 m
Obstruction ratio 14 percent
Sampling frequency 1000 Hz
Active actuators 1364 actuators
PWFS subapertures 41 × 41 apertures
PWFS modulation 0 λ/D
Photon flux 0/9 mag 1.25 × 108/3.1 × 104 photons/frame/aperture
DM coupling 0.3 percent
DM influence functions “Gaussian” · · ·
WFS wavelength 0.85 µm
Science camera wavelength 1.65 µm

Telescope “ELT”

Telescope diameter 40 m
Obstruction ratio 30 percent
Sampling frequency 1000 Hz
Active actuators 10 556 actuators
PWFS subapertures 121 × 121 apertures
PWFS modulation 2 λ/D
Photon flux 0th mag 2.7 × 109 photons/frame/aperture
DM coupling 0.3 percent
DM influence functions “Gaussian” · · ·
WFS wavelength 0.85 µm
Science camera wavelength 1.65 µm

Atmosphere parameters

Fried parameter 16 cm at 500 nm
Number of layers 3 · · ·
Layer altitudes 0/4/10 km
C2

N 50/35/15 percent (%)
Wind speeds 10/26/35 m/s
Wind directions 0/45/180 degrees
L0 (m) 30/30/30 m

PO4AO parameters

Planning horizon (H) 4 steps
Past DM commands (m) 15 commands
Past WFS measurements (k) 15 frames
CNN ensemble size 5 · · ·
Dynamics iterations/episode 15 steps
Policy iterations/episode 10 steps
Training mini batch size 32 · · ·

Fixed CNN parameters

Number of conv. layers 3 layers
Filter size 3 × 3 pixels
Padding 1 pixels
Activation functions Leaky ReLU · · ·

predictive controller, robust to nonlinear wavefront sensing and
photon noise. Thirdly, The method can cope with the optical gain
effect of the pyramid sensor.

6.2. Algorithm setup

We chose the state st (in MDP) to consist of 15 latest obser-
vations and actions and set the CNN (dynamics and policy)
to have 3-layers with 32 filters each. For further details on

these choices, see Sect. 6.3. The episode length was set to
500 frames.

Each simulation started with the calibrations of the system
and the deriving of the reconstruction matrix C and the K-L basis
B; see Sect. 4. We note that the reconstruction matrix C serves
solely as a filter that projects WFS measurement to control space.
It does not have to match the actual registration of DM and WFS
(Nousiainen et al. 2021). In particular, the reconstruction matrix
is measured around the null point in the calibrations and, hence,
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(a) (b)

(c) (d)

Fig. 4. Raw PSF contrast in VLT-scale telescope experiments. Upper images: raw PSF contrast. Lower plot: the radial averages over the image. The
blue lines are for the integrator and red for the PO4AO. The raw PSF contrast was computed during the 1000 frames of the experiment. Panel a:
performance of PO4AO with ideal WFS. We see that P04AO delivers a factor of 20–90 improvement inside the AO control radius compared to
well-tuned integrator. Panel b: performance of PO4AO on 0th mag guide star and a nonmodulated PWFS. PO4AO delivers a factor of 4–7 better
contrast inside the AO control radius. Panel c: performance of PO4AO on 9th mag guide star. We see a factor of 3–9 improvement in the raw PSF
contrast. Panel d: performance of PO4AO under heavy data mismatch. PO4AO was trained with drastically different wind conditions. The PO4AO
still delivers better contrast with small angular separations.

it suffers from the optical gain effect Korkiakoski et al. (2008).
For PWFS simulations, the K-L filter was set to include 85% of
total degrees of freedom, and for ideal wavefront sensing to filter
matrix was an identity, that is, no filtering included.

For all different conditions and instruments, we let sim-
ulations run until the performance of PO4AO is converged.
That is 46 000 frames (46 s in real-time (theoretical)) with an
episode length of 500 frames. While the final contrast per-
formance shown in Figs. 4b–d and 5 is calculated from the
last 1000 frames, we note that the correction performance
very quickly passes the integrator performance as shown in
Figs. 6a–c, and 7. After each episode, as described in Sect. 5.4,

we halted the simulations and updated the dynamics and policy
models. Given the shallow convolutional structure (3 – layers
and 32 filters per layer) of the NN models and our moderate
hardware, the combined (dynamic and policy) training time after
each episode was about 1.5 s for VLT (and 7 s for ELT with the
same training hyperparameters). For real-time implementation,
training the NN models should be completed in the duration of
an episode, that is, in 0.5 s (500 frames at 1 kHz). Given that
we do not use the latest GPU hardware, and a NN update could
also be done at a slower rate than after each episode, it is con-
ceivable that this small gap can be overcome, and a real-time
implementation of PO4AO is already possible.
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Fig. 5. Raw PSF contrast in ELT-scale experiment.

The dynamics model can also be trained with data obtained
with a different controller, such as, the integrator or random
control. Therefore, to improve the stability of the learning pro-
cess, we “warm-up” the policy by running the first ten episodes
with the integrator and added binary noise to develop a coarse
understanding of the system dynamics:

ũt = ũt−1 + gC∆wt + σx, (13)

where x is binary noise (−1 or 1 with the same probability) and
σ ∈ [0, 1] is reduced linearly after each episode such that the first
episode was run with high binary noise and the 10th episode with
zero noise.

6.3. CNN design and MDP state definition

The PO4AO includes two learned models: the policy and the
dynamics model. This paper aims to introduce an optimizations
method called PO4AO to train the policy (from scratch) that
minimizes the expected reward. The algorithm works for all dif-
ferentiable function classes, for example, neural networks. For
simplicity, we chose to model the environment dynamics and
policy using generic 3-layer fully convolutional neural networks.
While further research is needed in finding the best possible
architectures, we experimented with the number of convolutional
filters per layer and the number of past telemetry data by testing
the algorithm in the “VLT” environment with different combi-
nations; see Table 2. We chose the model CNN 2 to compromise
between the overall performance, inference speed for VLT and
ELT, and training speed. The chosen model performed well in
all simulations and provided fast inference speed and fast train-
ing speed such that it could be completed during a single episode.
Full model architecture optimization is left for future work (see
Sect. 8 for more details).

The inference speed in Table 2 is the speed of the fully convo-
lutional NN architecture inside the policy model (see Fig. 3). The
total time control time includes two standard MVMs (prepro-
cessing to voltages + KL filtering in the output layer) in addition
to the inference time below. The inference time and training time
were run with PyTorch on NVIDIA Quadro RTX 3000 GPU.

Note here that given enough parallel computational power (e.g.,
GPU), the inference time of a fully convolutional NN is more
determined by the number of layers and filter (same for VLT and
ELT) than the input image’s size. We observe that for CNN with
fewer filters, the inference speed is very similar for VLT and ELT
cases, while for heavier CNNs, the inference speed differs more
with the given hardware. The computational time of MVMs is
naturally dependent on the DoF.

6.4. Results

6.4.1. Training

To evaluate the training speed of the method, we compare the
learning curves (from which 5000 frames are obtained with
the integrator + noise controller) of the method to the baseline
of the integrator performance under the same realization of
turbulence and noise (see Figs. 6b, c, a and 7). Since the simu-
lations are computationally expensive, in the 40-meter telescope
experiments, we compare the performance of the PO4AO only
to average integrator performance (see Fig. 7).

We plotted the training curves with respect to total reward
(the sum of normalized residual voltages computed from the
WFS measurements) and Strehl ratio side by side. The method
tries to maximize the reward, and consequently, it also maxi-
mizes the Strehl ratio. In all our simulations, the method achieves
better performance than the integrator already after the integrator
warm-up of 5000 frames (5 s on a real telescope), and the perfor-
mance stabilizes at around 30 000 frames (30 s). Since the fully
convolutional NN structure can capture and utilize the homo-
geneous structure of the turbulence, the number of data frames
needed for training of VLT and ELT control are on the same
scale. However, training the same amount of gradient steps is
computationally more expensive (although very parallelizable)
for the ELT scale system.

6.4.2. Prediction and noise robustness

Here, we compare the fully converged PO4AO, the integra-
tor, and ideal control in raw PSF contrast. We ran each
controller for 1000 frames, and the wavefront residuals for
each controller were propagated through a perfect coronagraph
(Cavarroc et al. 2006). The raw PSF contrast was calculated as
the ratio between the peak intensity of noncoronagraphic PSF
and the post-coronagraphic intensity field. A nonpredictive con-
trol law suffers from the notorious wind-driven halo (WHD)
(Cantalloube et al. 2018), that is, the butterfly-shaped contrast
loss in the raw PSF contrast in Figs. 4a–c and 5.

Figure 4a assumes using the ideal WFS, that is, the incom-
ing phase is measured by a noiseless projection of the incoming
phase onto the DM. Therefore, the ideal WFS eliminates aliasing
and noise in the wavefront reconstruction process, only consider-
ing temporal and fitting errors. Further, we can easily eliminate
temporal error in a simulation by directly subtracting the mea-
sured from the incoming phase. The “no noise, no temporal
error” curve (black dashed) in Fig. 4a is therefore only limited
by the ability of the DM to fit the incoming wavefront. The
integrator with a 2-frame delay (blue curve) is then limited by
the temporal error in addition. The PO4AO (red curve) largely
reduces the WHD by predicting the temporal evolution of the
wavefront but does not fully recover the fitting error limit (black
dashed). Figure 4a, therefore, demonstrates the ability of PO4AO
to reduce the temporal error.

Figure 4b replaces the ideal WFS with the nonmodulated
PWFS, which is affected by aliasing and requires some filtering
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(a)

(b)

(c)

Fig. 6. Training plots for 8-meter telescope experiments. Panel a: for ideal wavefront sensor, panel b is for the 0th magnitude guide star, and panel c
for the 9th magnitude guide star. The red lines correspond to performance of PO4AO during each episode and blue lines for the integrator. The
gray dashed line marks the end of integrator warm up for PO4AO. In all cases the PO4AO outperforms the integrator all ready after the warm
up period, in both the Strehl ratio and rewards. An optimized implementation of the PO4AO could run the training in parallel to control, and the
training time would then be included in the plot (see Sect. 6.2).

Fig. 7. Training plots for the 40-m telescope experiment. The red lines correspond to performance of the PO4AO during each episode and blue
lines for the average integrator performance. The gray dashed line marks the end of integrator warm up for PO4AO. Similarly to 8-meter telescope
experiments the PO4AO outperforms the integrator after the warm up.
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Table 2. Performance of 11 different 3-layer CNNs.

CNN design

Filters Past frames (k & m) Inf. speed (VLT/ELT) Tr. time/episode (VLT) Strehl/reward (VLT 0-mag)

CNN 1 32 10 0.29/0.35 ms 1.4 s 95.61/−4101
CNN 2 32 15 0.30/0.37 ms 1.5/7 (ELT) s 95.69/−3340
CNN 3 32 20 0.30/0.40 ms 1.6 s 95.74/−3029
CNN 4 32 25 0.30/0.43 ms 1.8 s 95.75/−2934

CNN 5 64 10 0.30/0.67 ms 2.0 s 95.60/−4002
CNN 8 64 15 0.31/0.70 ms 2.2 s 95.75/−3253
CNN 7 64 20 0.31/0.74 ms 2.5 s 95.75/−3052
CNN 8 64 25 0.32/0.79 ms 2.5 s 95.76/−2845

CNN 9 128 10 0.36/1.52 ms 3.7 s 95.65/−3656
CNN 10 128 15 0.37/1.58 ms 3.8 s 95.71/−2943
CNN 11 128 20 0.38/1.63 ms 4.7 s 95.76/−2847

Notes. All CNN models were trained from scratch with the same PO4AO parameters (see Table 1) and VLT 0-mag simulation environment (see
Sect. 6.1 and Table 1). The Strehl and reward were calculated from the last 1000 steps of the experiment. The inference time was also calculated
for VLT and ELT-scale systems, while the training time after each episode was only calculated for the VLT-scale system due to computational
limitations. The corresponding integrator performance (dominated by the fitting and temporal error) for the “VLT” simulation was 93.59/−10 085
(Strehl/Reward).

of badly seen K-L modes during the reconstruction. Therefore,
the “no noise, no temporal error” contrast performance is worse
than for the ideal WFS in Fig. 4a. The integrator with a 2-frame
delay (blue curve) performs at a very similar contrast as in the
ideal WFS case, so it is still limited mostly by temporal error.
Again, PO4AO (red curve) lies about halfway between the inte-
grator and “no noise, no temporal error” controllers but performs
at a reduced contrast compared to the ideal WFS case. Therefore,
the PO4AO performance with the nonmodulated PWS is affected
by aliasing and reconstruction errors as well as the temporal
error.

Figure 4c adds a significant amount of measurement noise.
While this obviously does not affect the “no noise, no tem-
poral error” case, the contrast performance of both integra-
tor and PO4AO is strongly reduced and dominated by noise.
Still, PO4AO outperforms the integrator, which demonstrates
the resilience of PO4AO against noise-dominated conditions.
Finally, Fig. 5 demonstrates that PO4AO maintains its properties
in an ELT scale simulation.

Unfortunately, a “black box” controller like PO4AO does not
allow us to cleanly separate all individual terms in the error bud-
get because the controller’s behavior is to some extent driven
by the error terms themselves. However, as discussed above,
we explored the relative importance of the individual terms by
switching them on and off in our numerical experiments.

6.4.3. Robustness against data mismatch

So far, we have focused on static atmospheric conditions and size
of the data setD is not limited, that is, “ever-growing”. However,
in reality, the atmospheric conditions are constantly changing,
creating a so-called data mismatch problem – the prevailing
atmospheric conditions are slightly different from the conditions
in which the model was trained. To ensure the method’s robust-
ness to data mismatch, we trained the model with very different
conditions and then tested the model with the original wind pro-
file by plotting the raw PSF contrast averaged over 1000 frames.
We altered the wind by reducing the wind speed by 50 percent
and adding 90-degree variations to directions for training, that

is, we altered the spatial and temporal statistics of the atmo-
sphere. We do not show the corresponding training plot since
it was very similar to Fig. 6b. The result of this experiment is
shown in Fig. 4d. The integrator has naturally the same perfor-
mance as before. The PO4AO still delivers better contrast close
to the guide star but suffers from pronounced WDH further from
the guide star. Most importantly, the PO4AO is robust and main-
tains acceptable performance even with heavy data mismatch,
which could occur in the unlikely case that atmospheric condi-
tions drastically change from one episode to the next, that is, on
a timescale of seconds. Anyhow PO4AO with limited data set
size (old data irrelevant data removed) would adapt to such a
change and recover the performance within the typical training
times discussed in the previous paragraph.

6.5. Sensitivity to the PWFS optical gain effect

The PO4AO uses convolutional NNs and is, therefore, a non-
linear method. Prospects are that it can adapt to nonlinearities
in the system, such as the optical gain effect observed for the
Pyramid WFS. To examine this property, we run the following
experiment. We control the nonmodulated PWFS with PO4AO
at 850 and 600 nm and record the policy after training. Then we
control the PWFS with the integrator and record, in parallel, the
actions PO4AO would have taken. The integrator control results
in a correction performance similar to the Strehl ratios derived
by the semi-analytical model (Fig. 2). At the shorter wavelength,
the PWFS sees larger residuals wavefront errors (in radian) and
a stronger effect on the optical gains. However, if the controller
can cope with such an effect, which we would expect for PO4AO,
the suggested actions should counteract the dampened measure-
ment. In order to validate this, we compare the ratios between the
standard deviation of the observations (PWFS measurements)
and the standard deviation of suggested PO4AO actions. We
define an estimate for the optical gain compensation:

eλ ∝ std
(
oλint

)
/std

(
aλpo4ao

)
, (14)

where std is the temporal standard deviation, oλint the observa-
tions while running the integrator, λ the observing wavelength,
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Fig. 8. Sensitivity to the PWFS optical gain effect. The blue line corre-
sponds to ratio between the optical gain estimates between the different
wavelengths. The red line is the ratio between the semi-analytically
derived optical gains at the two wavelengths (see Sect. 4.1 and Fig. 2).

and aλpo4ao the PO4AO suggested actions. As PO4AO is a pre-
dictive control method, this quantity also includes the effect of
the prediction, that is, it includes compensation for the temporal
error as well. However, we can approximately cancel out the tem-
poral error by comparing the ratio between optical gain estimates
obtained at different wavelengths. The result of this experiment
is shown in Fig. 8. We see that the empirical estimate for the opti-
cal gain sensitivity of PO4AO follows roughly the corresponding
ratio of the two semi-analytically derived curves plotted in Fig. 2.
In particular, we see that the lower order modes are compen-
sated more than high order modes. We, therefore, conclude that
PO4AO adequately compensates for the optical gain effect of the
PWFS.

7. Magellan adaptive optics extreme system

In addition to running the numerical simulations presented
in the previous section, we also implemented PO4AO on the
MagAO-X instrument. MagAO-X is an experimental corona-
graphic extreme adaptive optics system that uses woofer-tweeter
architecture (ALPAO-97 DM as the woofer and Boston Micro-
machines 2 K as the tweeter). We use a point source in the f/11
input focus to illuminate the DMs, Pyramid WFS, and scientific
camera. Further, we place a classical Lyot coronagraph with a
2.5 λ/D Lyot mask radius in front of the science camera. We
set PWFS’s modulation ratio to 3λ/D, and the brightness of the
guide star is adjusted to match the flux per frame which a 0th
magnitude star would provide in 1 ms (i.e., for a system running
at 1 kHz.) We used a similar test setup as Haffert et al. (2021b)
and ran our experiment by only controlling the woofer DM and
injecting disturbances by running simulated phase screens across
it. The phase screens were simulated as single-layer frozen flow
turbulence with r0 of 16 cm at 500 nm. We experimented with
three different single-layer wind profiles: 5, 15, and 30 m s−1,
where the wind speeds correspond to a 1 Khz framerate again.

The PO4AO is implemented with PyTorch and utilizes the
Python interface of the MagAO-X RTC to pass data from CPU
to GPU memory, do the PO4AO calculations on the GPU, and
transfer them back. The data transfer takes time and limits the
achievable framerate in this setup to 100 Hz. RTC software
that would run entirely on GPUs would not suffer from this
limitation.

7.1. The integrator

To retrieve the interactions matrix, we used the standard calibra-
tions process described in Sect. 4. From the interactions matrix,
we derived the reconstruction matrix by Tikhonov regularization
given by,

C = (D>D + αI)−1D>, (15)

where α is tuned manually. We also tuned the integrator gain
manually for each wind profile.

7.2. Policy optimization for adaptive optics

The structure of the MagAO-X experiment is similar to
our numerical simulations. First, we trained the PO4AO for
50 episodes (25 000 frames) and then ran for an additional
5000 frames to compare the post-coronagraphic PSFs. We also
used the 10 episode warm-up with noisy integrator and the same
NN architectures. Given the low number of actuators and the
high-order PWFS, we set the number of past telemetry data (k
and m) to 10, and instead of filtering 20% of the K-L modes,
for maximum performance, we only filter the piston mode in the
policy output (see Fig. 3).

7.3. Results

We compare the performance of the PO4AO to the integrator
in two ways: by looking at the training curves (see Fig. 9a)
and by comparing the post-coronagraphic speckle variance (see
Fig. 9c). The PO4AO achieves better performance in all wind
conditions than the integrator after 10 k (10 s in theoretical real-
time) data frames. The reward is proportional to the mean RMS
of the reconstructed wavefront. We further examine the perfor-
mance by comparing the post-coronagraphic images with the
30 m s−1 wind profile; see Figs. 9b,c. The residual intensities of
the images (see Fig. 9b) are limited by NCPA. Therefore, instead
of comparing the raw PSF contrast, we compare the temporal
speckle variance of the method (see Fig. 9c). We see a factor of
3−7 improvement in the speckle variance at 2.4−6λ/D. Given
the inner working angle of the coronagraph and DM’s control
radius, that is where we would also expect to see the improve-
ment. Further, these results are in line with the results from
numeric simulations.

8. Discussion

In conclusion, reinforcement learning is a promising approach
for AO control that could be implemented in on-sky systems with
already existing hardware. The algorithm we propose requires
only a small amount of training data and maintains an acceptable
performance even when the training conditions differ heavily
from test time. Further, it has a high inference speed, capable
of scaling to high-order instruments with up to 10k actuators.
Thanks to the use of relatively shallow convolutional NN, the
inference time is just 300 µs with a modern laptop GPU. The
inference time is also similar for an ELT scale system with
more than 10k actuators and for a VLT scale system with “just”
1400 actuators.

The method was tested in numerical simulations and a lab
setup and provides significantly improved post-coronagraphic
contrast for both cases compared to the integrator. It is entirely
data-driven, and in addition to predictive control, it can cope
with modeling errors such as the optical gain effect and
highly nonlinear wavefront sensing. Due to the constantly self-
calibrating nature of the algorithm it could turn AO control into a
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(a)

(b)

(c)

Fig. 9. MagAO-X experiment results. Panel a: training curves for PO4AO in the lab setup. The red lines are for PO4AO performance and dashed
blue line represents the average integrator performance over an episode. The dashed gray vertical line is where the policy is switch from noisy
integrator to PO4AO. For all different wind conditions the PO4AO passes the integrator performance after 10 k frames of data. Panel b: MagAO-X
post-coronagraphic PSFs of the methods. Left is for the Integrator and right for the PO4AO. The PSFs are limited by NCPA and, in order to
validate the method, we examined the temporal variance of the PSFs (see panel c). Panel c: temporal variance of MagAO-X post-coronagraphic
PSFs. Upper images: temporal speckle variance at image plane for both control methods (left: integrator, right: PO4AO). Lower image: radial
average over the images. The blue line is for the integrator and the red line for the PO4AO. The gray vertical line represents the inner working angle
of the coronagraph (radius 2.5λ/D).

turnkey operation, where the algorithm maintains itself entirely
automatically.

We showed that our method is robust to heavy data mis-
match, but the performance is reduced for a short time while
PO4AO is adapting to the evolution of external conditions. These
abrupt changes in wind conditions will rarely occur in the real
atmosphere. Therefore, future work should also address main-
taining the best possible performance under reasonably varying
turbulence. The model learns on a scale of several seconds and
can presumably adapt to changing atmospheric conditions at
the same time scale. However, more research on the trade-off
between model complexity and training speed is still needed.
For example, a deeper NN model could generalize better to
unseen conditions, while shallower NN models could learn new
unseen conditions faster. Currently, the CNN model architec-
tures themselves are not thoroughly optimized, and an exciting

research topic would be to find the optimal CNN design to cap-
ture the AO control system dynamics for model-based RL. For
example, a U-net type CNN architectures (Ronneberger et al.
2015) and mixed-scale dense CNNs (Pelt & Sethian 2018) have
shown excellent performance on imaging-related applications.
On the other hand, we could utilize similar NN structures that
have shown excellent performance in pure predictive control
(Swanson et al. 2018, 2021). Such a study should consider a vari-
ety of different, preferably realistically changing atmospheric
conditions and misalignments as well as prerecorded on-sky
data.

As a caveat, the algorithm, like most deep RL methods, is
somewhat sensitive to the choice of hyperparameters (e.g., num-
ber of layers in neural networks, learning rates, etc.). Moreover,
control via deep learning is hard to analyze, and no stability
bounds can be established.
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Further, development is needed to move from the laboratory
to the sky. The method currently runs on a Python interface that
has to pass data via the CPU on MagAO-X. To increase the speed
of the implementation and the maximum framerates, we must
switch to a lower-level implementation that runs both the real-
time pipeline and the PO4AO control on the GPU using the same
memory banks. In addition, the training procedure needs to run
in parallel with the inference, which should be straightforward to
implement.

To summarize, this work presents a significant step forward
for XAO control with RL. It will allow us to increase the S/N,
detect fainter exoplanets, and reduce the time it takes to observe
them on ground-based telescopes. As astronomical telescopes
become larger and larger, the choice of the AO control method
becomes critically important, and data-driven solutions are a
promising direction in this line of work. Deep learning and RL
methods are transforming many fields, such as protein folding,
inverse problems, and robotics, and there is potential for the same
to happen for direct exoplanet imaging.
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ABSTRACT
Direct imaging of Earth-like exoplanets is one of the significant scientific drivers of the next generation of ground-based
telescopes. Typically, Earth-like exoplanets are located at tiny angular separations from their host stars rendering their
identification difficult. Consequently, the adaptive optics (AO) system’s control algorithm must be carefully designed to
distinguish the exoplanet from the residual light produced by the host star.

A new promising avenue of research aimed at improving AO control builds on data-driven control methods such as
Reinforcement Learning (RL) methods. It is an active branch of the machine learning research field, where control of a
system is learned through interaction with the environment. Thus, RL can be seen as an automated approach for AO control.
In particular, model-based reinforcement learning (MBRL) has been shown to cope with both temporal and misregistration
errors. Similarly, it has been demonstrated to adapt to non-linear wavefront sensing while being efficient to train and
execute.

In this work, we implement and adapt an RL method called Policy Optimizations for AO (PO4AO) to the GHOST
test bench at ESO headquarters, where we show strong performance on cascaded AO system lab simulation. Further, the
results align with the previously obtained results with the method.

Keywords: adaptive optics, high contrast imaging, reinforcement learning

1. INTRODUCTION
High contrast imaging (HCI) is an imaging technique that combines eXtreme Adaptive Optics (XAO) with coronagraphy
to produce images of faint sources located near bright point sources such as exoplanets next to their host stars. With current
HCI instruments, direct images of exoplanets have been mostly limited to about a dozen very young and luminous giant
exoplanets.1–3 However, more planets could be directly imaged if the sensitivity close to the host star is improved, and the
performance of the XAO system is the main limiting factor of this sensitivity close to the host star.

In HCI, for imaging close to the star, the main limiting factor of the performance of a well-tuned adaptive optics (AO)
system is photon noise, and temporal error.4 The temporal delay error of AO systems controlled by standard methods arises
from wavefront sensor detector integration, detector readout, computation of the correction signal, and its application to
the DM. This delay amounts to at least two AO system operating cycles. During this time window, atmospheric turbulence
has evolved and no longer perfectly matches the DM correction.

The temporal delay error can be dampened in two ways: either by raising the operating frequency of the AO system
or utilizing predictive control. The acceleration of the AO system can be achieved by installing the so-called second-
stage downstream from a classical first-stage AO system.5 The second-stage system only observes the residual from the
first-stage AO system and, operating independently from the first-stage, can utilize DMs that can handle faster control
loops. This approach is, for example, proposed for the upgrade of SPHERE (called SPHERE+;6) and is expected to deliver
significantly improved raw point-spread function (PSF) contrast near the star.
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Lately, predictive control algorithms have gained significant attention in the field of HCI instrumentation. Remarkable
progress has been achieved with various different approaches,7–30 some methods have also been tested in laboratory setups
or on-sky.31 The advantage of predictive control is its ability to denoise non-correlated WFS measurements along with
temporal error corrections. On the other hand, a classically controlled faster AO loop is always limited by the trade-off
between photon noise and temporal error. However, if the algorithm is fast enough, it is possible to operate the faster
second-stage system with predictive control.

This paper discusses a purely data-driven predictive control algorithm called the Policy Optimizations for AO (PO4AO)
and the prospect of operating a second-stage AO system with it. A significant advantage of fully data-driven control, such
as PO4AO, is that it does not require an estimate of the system’s open-loop temporal evolution. Hence, it is insensitive
to pseudo-open-loop reconstruction errors such as the optical gain effect, and misregistration.29, 32, 33 Our contributions
are three-fold: first, we operate PO4AO on the GPU-based High-order adaptive OpticS (GHOST) bench, which simulates
a second-stage AO system by running numerically simulated residual turbulence phase screens across a programmable
Spatial Light Modulator (SLM). Second, we introduce refinements to the original algorithm and, third, derive tuned hyper-
parameters and analyze corresponding results against a well-tuned integrator controller. Further, we give a short discussion
on future work.

2. CLASSICAL ADAPTIVE OPTICS CONTROL
An AO system is commonly controlled with a linear proportional integrator (PI) controller, later referred simply as the
integrator. We consider it here as our reference method against the PO4AO as it is still widely used in AO. The integrator
relies on a linear approximation of so-called interaction matrix mapping DM commands to WFS measurements, i.e., we
have that

∆wt = Dvt + ξt, (1)

where ∆wt = (δwt
1, δw

t
2, · · · , δw

t
n) is the WFS data, vt the DM commands and D is the interaction matrix and ξt is the

measurement noise typically composed of photon and detector noise.

Once the interaction matrix is estimated, the inverse problem, i.e., reconstruction vt given ∆wt, needs to be considered.
As D is generally not invertible, some regularization approach is needed. Here, we restrict ourselves to linear methods
described by a reconstruction matrix C mapping WFS measurements to DM commands. As our regularization method
we project D to a smaller dimensional subspace spanned by Karhunen–Loéve (KL) modal basis.34 Each KL mode in the
basis has a representation in terms of actuator voltages. This relation is fully determined by a transformation matrix Bm

mapping DM actuator voltages to m first modal coefficients. The regularized reconstruction matrix is now defined by the
Moore–Penrose pseudo-inverse

Cm = (DPm)†, (2)

where Pm = B†mBm is a projection map to the KL basis. The role of m is to improve stability at the cost of resolution;
smaller m results in lower noise amplification while producing a reconstruction with less modal basis functions. An
optimal m balances the error produced by these two effects.

Let us now define the integrator for AO control. At a given time step t, the WFS measures the residual wavefront. The
new control voltages ṽt are obtained from

ṽt = ṽt−1 + gCm∆w
t, (3)

where g is the integrator gain, typically fixed below a value of about 0.5 for a two-step delay system.35

3. ADAPTIVE OPTICS AS A MARKOV DECISION PROCESS
In RL the AO control loop is modelled as a Markov decision process (MDP). As the WFS data wt does not fully identify
vt, the AO control must be considered as a partially observed MDP.26, 27, 32, 33 However, the state space can be expanded to
include a history WFS measurement and DM control voltages to guarantee approximately markovian statistics. This paper
follows the expanded state space approach.

Let us denote the control voltages applied to DM at a given time instance t by ṽt and the preprocessed WFS measure-
ments by wt. We define the set of actions as the differential control voltages

at = ∆ṽt. (4)
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The state st of the ordinary (not partially observed) MDP is set according to

st =
(
ot,ot−1, . . . ,ot−k,at−1,at−2, . . . ,at−k

)
, (5)

where ot = Cmwt, i.e., the wavefront measurement projected to DM space and k the number of history frames used in state
formulation.

For a state-action pair, the reward is the residual voltages’ negative squared norm corresponding to the following
measurement

r(st,at) = −∥õt+1∥
2, (6)

where õt+1 is the next wavefront measurement projected to DM space. For more details of these choices, see Nousiainen
et al.33

4. MODEL-BASED POLICY OPTIMIZATION
This section gives a brief description of PO4AO. The key idea is to learn a non-linear control law considered as the mapping
from past telemetry to new DM commands from data collected from the AO loop. In RL, we note that this approximation
is referred to as the policy and will be formulated as a mapping from the current state st to the next action at. In AO terms,
the policy is a controller combining the reconstruction and control law (e.g., a least-squares modal reconstruction followed
by integrator control).

In this work the policy is constructed as a neural network and its parameters are specified indirectly via model-based
policy optimizations. More precisely, the method learns so-called dynamics model that predicts the subsequent wavefront
sensor measurement given the previous measurements and actions and uses this dynamics approximation to optimize the
policy.33 The method iterates following three phases:

1. Running the policy: the method collects data by running the policy in the AO control loop for T timesteps (a single
episode).

2. Improving the dynamics model: the dynamics model parameter are optimized via a supervised learning objective.

3. Improving the policy: the policy parameters are optimized by utilizing the dynamics model.

Let us now describe this process in more detail. In PO4AO the dynamics model p̂ω : (st,at) 7→ st+1 parametrized by ω
is expressed as an ensemble, i.e., a collection of deterministic convolutional neural networks (CNNs), where ω represents
the weights and biases of the networks. Moreover, the policy mapping πθ : st 7→ st+1 parametrized by θ is constructed as a
fully CNN followed by modal filter layer, i.e.,

πθ(st) = PmFθ(st), (7)

where Pm is the projection map to the KL basis defined above and Fθ is a fully CNN, where the output is vectorized. Again,
the parameter θ represents the weights and biases of the CNN.

In Step 1, telemetry (tuples of (st,at, st+1) saved into a dataset D) is collected by operating the AO control loop with
the current (or initial) parametrization of the policy map.

Utilizing this data, in Step 2, the dynamics model is trained, i.e., the parametrization is optimized by minimizing the
squared difference between the true next states and the predictions according to∑

D

∥st+1 − p̂ω(st,at)∥2 =
∑
D

∥ot+1 − ôt+1∥
2 , (8)

where ot+1 is obtained from the state st+1 and ôt+1 is the observation predicted by p̂ω(st,at). The parameters are optimized
by the Adam algorithm.36

The objective of Step 3 is to find policy parameters θ that maximize the expected reward within some pre-defined time
horizon H given the dynamics of the environment (in our case the approximate model p̂ω), that is

arg max
θ

∑
s∈D

H∑
t=1

r̂ω(s̃t, πθ(s̃t)), (9)
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where H is so-called planning horizon and

s̃1 = s and s̃t+1 = p̂ω(s̃t, πθ(s̃t)).

In practice, this is carried out by sampling from previously observed data points, computing the actions and using the
dynamics model to simulate the future. Moreover, we use the differentiability of the reward, and backpropagate through
the models. Algorithm 1 gives a full pseudo-code for the procedure. For more details of the method, see Nousianen et al.33

Algorithm 1 Policy Optimization for Adaptive Optics (PO4AO)

1: Initialize policy and dynamics model parameters θ and ω randomly
2: Initialize gradient iteration length K, batch size B < |D| and planning horizon H
3: while not converged do
4: Generate samples {st+1, st, at} by running policy πθ(at |st) for T timesteps (an episode) and append toD
5: Fit dynamics by minimizing Eq. (8) w.r.t ω using Adam
6: for iteration k = 1 to K do
7: Sample a mini batch of B < |D| states {sτ} fromD
8: for each sτ in the mini batch do
9: Set s̃τ1 = sτ

10: for t = 1 to H do
11: Predict at = πθ(st)
12: Predict st+1 = p̂ω(st,at)
13: Calculate Rt = r̂ω(st,at)
14: end for
15: end for
16: Update θ by taking a gradient step according to ∇θ

∑τ+H
t=τ Rt with Adam.

17: end for
18: end while

4.1 PO4AO for GHOST
Let us describe some modifications applied here to the algorithm presented in Nousiainen et al.33 We found that the
original algorithm occasionally produced oscillations on the DM, especially in the early stage of the training. As a remedy,
we introduced small regularizing term to the reward function used in policy optimization. More precisely, we added a
small reward term to favor small actions such that

r̂ω(st,at) = −∥õt+1∥
2 − α∥at∥

2. (10)

This modification stabilized the training procedure and no oscillations were observed on the DM afterwards. The value
α = 0.1 provided enough regularization without affecting the performance.

Another observation was related to DM saturation. The POAO saturated the DM while learning the system by increas-
ing the norm of high-order modes outside the KL basis. Since the policy output is filtered with the KL basis, it cannot
recover these high-order modes. We solved this problem by implementing a standard garbage collector in the loop,37 that
is, we clean the modes outside our control radius from the full control voltages applied to the mirror.

5. RESULTS
5.1 Simulations set-up
We implemented PO4AO to the GHOST instrument, located in ESO headquarters in Garching, Germany, and compared
it against a well-tuned integrator. GHOST is an experimental adaptive optics system to explore new AO control meth-
ods (particularly predictive control) for the ELT Planetary Camera and Spectrograph (PCS). It is a simple single-source
on-axis system equipped with a pyramid WFS and DM Boston Micromachines (BMC) DM-492 deformable mirror. A
programmable Spatial Light Modulator (SLM) injects turbulence with HD resolution. We experimented with two temporal
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delays of two and three frames. The algorithm remains the same for both experiments - it automatically adapts to temporal
delay.

The GHOST was used to simulate a faster second-stage system as follows. First, we numerically generated the residual
phase screens for the lab setup. We simulated an 8-meter telescope with 41x41 DM and a PWFS observing a 6.16 magni-
tude natural guide star. Atmospheric turbulence was simulated as a sum of nine frozen flow layers with Von Karman power
spectra combining a Fried parameter r0 of 15 cm at 550 nm wavelength. The simulation parameters are listed in Table 1.
We controlled the simulated system with an integrator and recorded the residual turbulence after DM correction. Then, we
replayed these residual phase screens with the SLM during the GHOST experiments.

We set the episode length (the rate of model updates) to 500 frames and the number of history frames to 20. The number
of history frames was tuned to give to maximize rewards. Both experiments started with measuring the interaction matrix
by poking the DM actuators (inside the linear range of the WFS) and recording the corresponding WFS measurements.
More precisely, we calibrate the system with Hadamard patterns,38 and the reconstructions matrix and the KL-filter were
calculated with 300 KL modes.

We let both experiments run for 50 episodes (i.e., 25 000 frames in total); see Figs. 1a and 1b. After each episode, the
simulation is halted for training the dynamics and policy. The first ten episodes execute so-called warm-up for the policy
(collected initial data-set and trained the models) with noisy integrator control, i.e., integrator with some added noise in the
control voltages. The noise is reduced linearly after each episode such that the first episode was run with high binary noise
and the 10th episode with zero noise (see the dashed gray line in Figs. 1a and 1b).

With the given hyperparameters, hardware, and implementation, training (after each episode) took 0.72 seconds. In
practice, the training procedure should be implemented parallel to control, enabling a ”real-time” version of the method.
After the 50 episodes, we ran the policy for 6 000 extra frames to record the science camera PSF and compare it to PSF
obtained with the integrator over a similar time interval; see Fig 2. We tuned the integrator gain manually for both time
delays.

5.2 PO4AO performance
We evaluate the performance of PO4AO in rewards (proportional to the WFS slopes variance) and with the science camera
images. Figures 1a and 1b show both the training speed and the performance (in rewards) of the method. The PO4AO
outperforms the integrator after the warm-up, i.e., the first 5000 frames, and improves a bit until 40 episodes. It provides
a factor of 2.4 improvement in reward compared to the integrator for the 2-frame delay experiment and a factor of 2.6 for
3-frame delay experiment.

We further evaluate PO4AO’s performance with the science camera image. The coronagraph was not installed during
the experiments; thus, the airy rings dominate the images. However, we can still see the two control radius’ (outer from the
numerical simulation and inner from the GHOST second-stage control) nicely as well as some temporal halo, i.e., e., the
extra light in the direction of the dominant wind (horizontal). For both time delays, we see that PO4AO lowers the light
intensity inside the inner control radius, especially in the horizontal direction, making the inner control radius more clearly
visible. We expect the improvement to be more visible once the coronagraph is installed and well-aligned.

The real-time frame rate of the experiment was 100Hz. We had to trigger the SLM update through a remote server,
and that set the limiting factor for the loop speed. With the current python-based PyTorch implementation, the policy
model added 0.68 ms of extra inference time at every timestep. As discussed before, the training of the models could be
implemented in parallel to control and, hence, would not theoretically add any extra time to the procedure.

6. DISCUSSION AND FUTURE WORK
To conclude, we implemented PO4AO to the GHOST test bench and introduced the slight modifications needed for the
setup. We showed that the method is fully applicable for cascaded AO systems, where the algorithm controls the second
stage. The results show strong performance in terms of rewards and training speed. We also compared the science camera
images (dominated by the airy rings) and observed an improvement. However, we expect more significant improvement
once the coronagraph is installed and well-aligned. Further, all the results also align well with previous results on the
methods.33
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Table 1: Simulations parameters
Numerically simulated first-stage

Parameter Value Units
Telescope diameter 8 m
Obstruction ratio 0 percent

Sampling frequency 1000 Hz
NGS magnitude 6.16 · · ·

WFS wavelength 0.79 µm
Actuators 41 across the pupil

PWFS modulation 3 λ/D
KL modes 900 modes

Integrator gain 0.5 · · ·

GHOST (second-stage)
Parameter Value Units

Sampling frequency (simulation) 2000 Hz
Sampling frequency (real-time) 100 Hz

Actuators 24 across the pupil
PWFS modulation 4 λ/D

KL modes 300 modes
Atmosphere parameters

Fried parameter 15 cm @ 500 nm
Number of layers 9 · · ·

C2
N 0.52 / 0.19 / 0.07 / 0.06 / 0.03 / 0.04 / 0.04 / 0.03 / 0.02 percent (%)

Average wind speeds 34 m/s
L0 (m) 30 m

PO4AO parameters
Planning horizon (H) 4 steps

Past DM commands (m) 20 commands
Past WFS measurements (k) 20 frames

CNN ensemble size 5 · · ·

Dynamics iterations / episode 30 steps
Policy iterations / episode 18 steps
Training mini batch size 32 · · ·

CNN parameters
Number of conv. layers 3 layers
Number of filt./layers 64 filters

Filter size 3 × 3 pixels
Padding 1 pixels

Activation functions Leaky ReLU · · ·

Further development and research are needed, most notably, in two directions. First, we need to implement (preferably
with a lower lever programming language) the training procedure parallel to control to enable the ”real-time” training.
Second, the atmospheric statistics were fixed during the experiments. Future work should address maintaining the best
possible performance under varying turbulence conditions.
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(a) (b)
Figure 1: Training plots for the GHOST experiments. Panel a is for 2 frame delay in the system and Panel b for 3 frame
delay. The red lines correspond to performance of PO4AO during each episode and blue dashed lines for average integrator
performance. The gray dashed line marks the end of integrator warm up for PO4AO. In both experiments, the PO4AO
outperforms the integrator in reward (proportional to WFS slopes variance) all ready after the warm up period.
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(a) Integrator (b) Integrator

(c) PO4AO (d) PO4AO
Figure 2: Science camera images captured during the last 6000 frames of the experiments.Panel a: The integrator with
2-frame delay. Panel b: integrator with 3-frame delay Panel c: PO4AO with 2-frame delay Panel d:PO4AO with 2-frame
delay.
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