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Games offer a fun and challenging test bed for algorithms and artificial intelligence, due
to their well-defined environment, potentially large complexity, and ’man vs machine’
dichotomy. Since vacuum-tube computers, scientists have used games to test how intelli-
gently they can make a computer play and to benchmark progress in hardware, computer
science, and mathematics.

In this study, a representation for ’Team Machine’ in the hidden information card game
’Moska’ is created. Moska is a multiplayer, non-sequential, shedding-type card game
with a large game tree complexity. It has similarities with the popular Russian card game
’Durak’.

We simulate Moska games and gather data from them to train a deep neural network to
evaluate how good a position is from the player’s perspective, i.e. with hidden informa-
tion. We use this neural network for move selection with a look-ahead of one and test
the performance of the agent by launching a website where people can play against the
agent. We observe the agent successfully employ multiple strategies used by humans and
reliably outplay even advanced human players.
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Pelit tarjoavat hauskan ja haastavan testialustan algoritmeille ja tekoälylle, koska niillä
on hyvin määritelty ympäristö, mahdollisesti suuri kompleksisuus ja ’ihminen vastaan

kone’-dikotomia. Jo tyhjiöputkitietokoneista lähtien tutkijat ovat käyttäneet pelejä tes-
tatakseen kuinka älykkäästi he saavat tietokoneen pelaamaan, sekä seuratakseen edistystä
laitteistossa, tietojenkäsittelytieteessä ja matematiikassa.

Tässä tutkimuksessa luomme pelaajan ’Tiimi Koneelle’ piilotetun tiedon korttipelissä
nimeltä ’Moska’. Moska on moninpeli, jossa pelivuorot eivät kulje järjestyksessä ja jossa
pelaajat pyrkivät eroon korteistaan. Moskalla on erittäin suuri pelipuu ja jo yhdestä aloitus
konfiguraatiosta voi saada saman verran pelejä kuin koko universumissa on atomeja.

Simuloimme Moska-pelejä ja keräämme niistä dataa syvän neuroverkon kouluttamiseksi
arvioimaan sitä, kuinka hyvä tilanne on pelaajan näkökulmasta - eli piilotetun tiedon
kanssa. Käytämme tätä neuroverkkoa siirtovalinnassa vertaamalla jokaisen mahdollisen
siirron hyvyyttä tutkimatta pelipuuta sen pidemmälle. Tutkimme luodun pelaajan taitoja
tekemällä verkkosivun, jossa ihmiset voivat pelata tätä tekoälyä vastaan. Havaitsemme
agentin käyttävän menestyksekkäästi useita ihmisten käyttämiä strategioita ja pelaavan
paremmin kuin jopa kokeneet ihmispelaajat.
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1 INTRODUCTION

1.1 Moska

Moska is a Finnish card game, which has likely originated from the more popular Russian
card game Durak. Moska is more complex than Durak since it is played with a full deck,
the target can play directly from the deck, the attacking turns are not sequential, and the
target player can attack themself. In this section, we will briefly go through the main rules
of the game. For a more comprehensive guide to Moska, see the Appendix.

1.1.1 Overview

Let us clarify some terminology for the game:

• Target is the player to whom cards are played.

• Attacker is a player that plays cards to the target from their own hand.

• Killing is the target’s way to get rid of cards that have been used in an attack. Card
A can ’kill’ card B, if card A has a higher rank than card B and they are of the same
suit or if card A is trump and B is not.

• Trump suit is the suit of cards, that can kill any card despite its rank, unless the
card to kill is also of trump suit.

• Bout is the set of turns taken by players where the target does not change. The
first move of a bout is the initializing play by the player on the target’s right-hand
side. The last move of a bout is when no attacker wants or can attack, and the target
chooses to end the bout.

• Table is the place where all the cards played on the current bout are. It consists of
not-killed and killed cards (which also contain the cards that were used to kill).

Each player is dealt 6 cards at the beginning of the game. The first target is chosen
randomly (or the last game’s loser is the first target). The player on the target’s right-hand
side initiates the game by playing cards to the target such that: There are at least two cards
of the same rank for each unique rank unless only a single card is played. For example,
valid initial plays could be: (♡2) or (♠14) or (♠5,♣5) or (♡8,♠8,♢8,♠10,♣10).
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After the player on the target’s right-hand side has attacked, every player can freely (non-
sequentially) attack, given that a card with the same rank is already on the table, and the
number of not-killed cards on the table is not greater than the number of cards in the
target’s hand. If any attacker attacks, they must always fill their hand to six from the deck,
if there are cards in the deck.

The target can also attack themself if there was deck left when the bout began, even if that
would mean there are more not-killed cards than there are in the target’s hand. The target
does not fill their hand to 6 cards until they end the bout.

The target can freely kill not-killed cards. The card can either be played from the top of
the deck or the target’s hand. If the card is played from the deck, and it can’t kill any card
on the table, the card is left to the table as a not-killed card, and the target can’t play from
the deck again until they kill the card with a card from their hand.

When the target doesn’t want to kill any cards on the table (or there are none), and none of
the attackers want to attack anymore, the target can end the bout by picking the not-killed
cards (can be empty), or picking every card on the table. After ending the bout, the target
fills their hand to 6 cards from the deck if they have less than six cards and there are cards
in the deck. If the target doesn’t lift any cards from the table one rotation is performed, so
the player on the target’s left-hand side is the new target, and the target becomes the new
initial attacker. Two rotations are performed if the target lifts any cards from the table, so
the second player from the target’s left side becomes the target.

The objective of the players is to not be the last person with cards in their hand. The
specifics of the rules are fairly complex, but the general idea is quite simple.

1.1.2 Complexity

Game tree complexity is the size of a tree search needed to evaluate the initial position,
and can be estimated by calculating the average number of possible moves from a position
(branching factor) and the average length of the game. For example, the estimated game
tree complexity of Chess is 3580 ≈ 10123 [1].

Moska is fairly complex but isn’t comparable to chess in terms of game tree complexity.
From simulations, we observed that the game tree complexity goes down, as the number
of players is increased, which is expected. Figure 1 shows the game tree complexity for 2
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to 8 players.

Four-player games, which are the focus of this thesis, had an average of 81 moves per
game, with a branching factor of 5.4, giving a game tree complexity of 5.481 ≈ 1059,
which is a lot, but nothing compared to chess’ 10123. The complexity of two-player Durak,
on the other hand, was calculated to have a branching factor of 2.17 and an average length
of 44, which results in a game tree complexity of 2.1744 ≈ 6× 1014 [2].

The complexity results from the simulations do not account for the non-sequential nature
of the game, where often multiple players want to play cards, but only one of them can,
which would increase the complexity. Also, these results are hardly comparable, since for
example four player Moska has up to

(
52
6

)
+

(
46
6

)
+

(
40
6

)
+

(
34
6

)
+ 28! ≈ 1029 different

starting configurations, whereas chess has just one.

Figure 1. The game tree complexity of playing Moska with different amounts of players. Two-
player Moska has a game tree complexity of ≈ 1081.
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1.1.3 Literature

There are no publications about Moska, but we identified studies about Durak. Most
notably, about analysis and playing algorithms by Zarlykov (2023) [2] and complexity of
Durak by Bonnet (2016) [3].

Zarlykov compared the performance of different heuristic evaluations, Monte Carlo, and
Minimax methods in playing Durak. It also discusses analytical and logical results of
Durak. For example that a game must terminate, and hence the same state can not occur
twice in a game.

Bonnet showed that in perfect information (PIF) two-player version of Durak, whether an
attack was defensible, was NP-hard to solve, and generalized PIF two-player Durak was
polynomial space (PSPACE) -complete, similarly to Chess and Go.

1.2 AI in games

Humans like playing games for a variety of reasons. Some play for enjoyment, others
competitively, and some for socializing. In computer science and mathematics, games are
studied because they provide a set of rules, clear goals, and are often hard to model. The
strategies used by players can be very complex and require abstract thinking. Machines
have a hard time thinking, so often they have to decide moves by some combination of
learning to evaluate game states, searching the game tree and simulating games. Multiple
game problems are computationally complex making games appealing to humans and a
fruitful test bed for studying algorithms and Artificial Intelligence (AI) [4].

In the early days of computer science playing games was often done with a hand-crafted
algorithm, because it wasn’t possible to perform complex optimizations, or run multiple
simulations. Nowadays, AI in games is often about searching the game tree and sim-
ulating games. The most common algorithms are Minimax and Monte Carlo. Perhaps
the simplest version of the Monte Carlo tree search, called pure Monte-Carlo tree search,
plays some number of random games from the current state to termination for each legal
move, and chooses the move which led to the highest number of wins. Minimax on the
other hand, in its simplest form, searches all possible combinations of moves up to some
number of moves ahead and then evaluates the state of the game in each of the nodes
and chooses the move resulting in the best evaluation. In these simplest forms, these al-
gorithms can be very slow in complex games, and often different methods are used to
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reduce the game tree to make better decisions with fewer computations.

1.2.1 State evaluation functions

A state evaluation function is a function, that provides an evaluation of a state with re-
spect to a goal. As humans, we naturally evaluate how good some positions are. In
popular culture, a famous state evaluation happens in "Star Wars - Revenge of The Sith",
where during a duel against Anakin, Obi-Wan declares that he has "the high ground"
because he physically reached a higher positioning and consequently had the figurative
"high ground", i.e. a better position. In the context of humans and games, Holding et.
al (1982) observed that a distinguishing ability in good and bad chess players was the
efficiency and ability to evaluate a game state [5].

Evaluation functions can be hand-made functions, optimized functions, or be based on
simulations. These strategies can be used in conjunction with each other to complement
each other’s flaws. For example, OpenAI used a neural network to get an initial approxi-
mate evaluation for states to better target an MCTS tree search in Go [6].

Hand-made evaluation functions are game specific and can be hard to make. A simple
hand-made evaluation function can be made by choosing a set of features S and cor-
responding weights w̄ for the features. A simple approach is then to evaluate a state s̄

(values for each selected feature in S) as a linear combination of the state and respective
weights s̄ · w̄.

Evaluation based on simulations is a strategy that performs so-called roll-outs and uses
results from multiple simulations (from the given state to the terminal state) to evaluate
the state. For example, the evaluation of a state can be the number of games won when
simulating random play to a terminal state between players, starting from some state.
There are multiple different ways to do and prioritize the simulations and infer knowledge
from them. This class is known as Monte-Carlo Tree Search (MCTS) in games [7]. One
of the simplest ones is pure Monte-Carlo tree search, which for some random turn games
(for example Hex) converges to optimal play as the number of simulated games tends to
infinity [8]. It is not clear whether it converges to optimal play in Moska.

Neural networks are also frequently used to computationally evaluate a position. Such
neural networks can be trained by supervised learning from a dataset of (possibly human)
games. The neural network learns to associate positions as either a winning position or a
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losing position.

1.2.2 Tree search optimization

Tree search algorithms are used to look ahead and evaluate the possible future states
deeper in the game tree to account for an imperfect evaluation function and the horizon

effect where moves that appear good at first sight, are not good when evaluated further [9].
This is a problem especially with hand-crafted evaluation functions, for example threat-
ening a king in chess is good, but bad if you get eaten on the next turn. Traditional
tree-search methods, such as minimax, require an evaluation function to provide informa-
tion at the leaves of the tree-search. A notable use of minimax, with a hand-made static
evaluation function is the Stockfish chess AI [10].

In this study, a greedy algorithm (where depth is one) is used instead of a tree search, due
to the large complexity of tree search in hidden information games [11] and the compu-
tational simplicity of this method. This method can be thought of as approximating the
results of Monte-Carlo rollouts, where the neural network gives an approximation of how
often the player will win given a position, without actually having to simulate the games.

1.3 Neural networks

Artificial Neural networks (NN) are a collection of connected nodes and weights. In this
thesis, we use supervised learning with a feed-forward deep neural network to evaluate
how good a player’s position is from their perspective.

In a feed-forward neural network, data flows only in one direction, and there is no re-
currence. Each input tensor goes through the network, and the network gives an output
tensor. To predict a Moska state, the input is a vector with 442 elements, representing a
game state from the perspective of some player (See 2.2.1), and the output is a real value
between 0 and 1 describing how good the position is from the player’s perspective.

Training a neural network by supervised learning is done with multiple examples. An
example consists of some measured features, and the observed value of the target vari-
able (can be a class or a real value). A measurement is given to the neural network, and
the error between the model’s output and the observation is measured with a loss func-
tion. The weights in the neural network are then updated with an optimization algorithm
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minimizing the loss function, typically some version of gradient descent.

Most neural network optimization methods adjust the weights based on batches of data to
speed up and stabilize the optimization process. Since neural networks are not the focus
of this paper, we only introduce these concepts for single sample optimization, which is
the core concept.

Convolutional neural networks (CNN) [12] have been more or less the standard type of
NN to evaluate a game state. CNNs have been succesfully used for example in Chess
[13] [14], Go [15] and Hex [16]. In this study, CNNs are experimented with, but no
improvement was observed compared to regular deep neural networks.

1.3.1 Loss function

The loss function is the function, that measures how incorrect the model’s prediction is
with respect to the observed value. In this thesis, we use the binary cross entropy loss (also
known as a logarithmic loss) function, which is often used for binary classification [17].
The formula for binary cross entropy is given by:

L(y, ŷ) = −[y log(ŷ) + (1− y) log(1− ŷ)] (1)

where y is the true label (0 or 1) and ŷ is the predicted probability of the positive class
(range from 0 to 1). The binary cross entropy loss penalizes predictions that are further
from the true labels with higher values, illustrated in Figure 2.

1.3.2 Stochastic gradient descent

Stochastic gradient descent (SGD) is a stochastic approximation of gradient descent op-
timization. In gradient descent (GD), the gradient is calculated for the entire dataset, but
in SGD an approximation of the actual gradient is calculated based on a single sample.
Stochastic gradient descent calculates the effects of each neuron’s weights and adjusts
them based on how much they affected the calculated loss. There is also a parameter
called ’learning rate’ associated with optimizers, which is a real value between 0 and
1, used to adjust the step size taken towards the gradient. The SGD update rule for the



14

Figure 2. Binary cross-entropy loss (equation 1), when the actual label is 1 (y = 1).

weights W at iteration t is given by:

Wt+1 = Wt − α∇J(Wt, xi) (2)

where α is the step size and J(W,xi) is the loss function evaluated on a single training
sample xi.

SGD is an integral part of most neural network optimization algorithms (optimizers),
albeit with multiple different variations.

Optimizer is the algorithm used to adjust the weights of the neural network to minimize
the selected loss function during training. There are multiple available optimizers. In this
thesis, we use the Adam (Adaptive Moment Estimation) optimizer, since it is a powerful,
widely used optimizer [18]. Adam uses a combination of stochastic gradient descent,
exponential moving average, and adaptive learning rate to tune each weight of the neural
network.
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1.3.3 Regularization

Regularization is frequently used in machine learning to balance the trade-off between
variance and bias. A high variance (overfit) means that a model has too closely fit the
training data (e.g. 10th degree polynomial on 10 data points), and a high bias (underfit)
means that the differences between the model and training data are large (e.g. linear fit
on quadratic data). Both mean, that the model will do poorly on new data. Regulariza-
tion makes it possible to use more complex models, which can better capture complex
relationships, without the model overfitting. Overfitting is not usually a problem if the
training dataset is large enough with respect to the complexity of the underlying relation-
ships. Overfitting can usually be mitigated by regularization methods, such as L1, L2,
dropout, and many others [19].

Shortly, L1 and L2 regularization add a term to the loss function, that is proportional to
the regularized weight thus discouraging large weights, while a dropout layer randomly
sets weights to 0, making the model depend less on single connections.
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2 METHODOLOGY

In this section, we introduce the methodology used to simulate games, gather data, and
train the neural network. We also apply the methodology to the game of Tic-Tac-Toe to
show the overall methodology in a simple game. The general approach is to use a multi-
agent simulation with hand-crafted agents and gather data from the simulations. In this
thesis, hand-crafted agents are used instead of starting from random play to essentially
skip some of the early iterations when starting from random play. The gathered data con-
tains perfect card counting information, including which cards each player has publicly
lifted to their hand, and which cards have been discarded from the game. An evaluation
function is then modeled to the gathered data, where each state is labeled with 1 (didn’t
lose) and 0 (lost). The evaluation function is then implemented to an agent using a greedy
algorithm, which evaluates each possible next state of the game (to a depth of one), and
plays the move resulting in the highest state evaluation.

2.1 Software

The simulation is a parallelizable multi-agent system implemented in Python. The sim-
ulation implements a game engine and different player interfaces. The used software is
open source and available in GitHub [20]. A simplified UML graph can be found in
Figure A1.2.

Simulation speed can be anywhere from 0.1 - 10 games per second on a single Intel(R) i5
core (12th Gen), largely depending on the parameters of the simulation. The simulation
scales well, and has good CPU core utilization as seen in Figure 3.

The software is oriented towards simulations, rather than playing as a human. The effect
of a player’s speed is not studied in this thesis, and players can’t affect when they play,
because the turns are assigned randomly. The game engine works so that each player
will get a turn before the current target can end the bout if after they have last played
something, another player has made a move other than skip. The only known exception
to the regular rules in Moska is that players can only play to themselves if there is deck
left. In normal Moska, players can play to themselves also, if the deck ran out when they
are the target, until the end of their role as target.

The software allows for 2-8 player games, but in this thesis, we only discuss four-player
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Figure 3. CPU utilization when running 40 simulation process batches on 40 Intel(R) Xeon(R)
CPU E5-2698 v4 @ 2.20GHz processors.

games, unless otherwise specified. Four-player games are selected, as a middle ground
between the length of the preparation phase, and the end game (See Appendix 2.4).

Next, we discuss the different interfaces that are used to implement agents to the game
engine.

2.1.1 AbstractPlayer

The AbstractPlayer interface is the base class for all playing agents. It implements the
necessary logic to use an agent with the game engine. Subclasses must implement logic
to choose which class of moves to play (for example, play to self, kill from hand, etc.),
and the logic to select the cards to play after deciding which class of moves to play. The
AbstractPlayer interface allows full customization of the playing logic and possibly very
fast simulations. For example, MoskaBot3 (Bot3) uses this interface.

2.1.2 AbstractEvaluatorBot

The AbstractEvaluatorBot (MIF) interface implements logic to generate the possible le-
gal moves, with fairly efficient combinatorial- and graph algorithms. This implements the
greedy logic (i.e. no look-ahead) of the main approach. This interface only requires an
instance to implement an evaluation function, which takes in a list of game state objects
and returns the evaluations corresponding to the states. If this interface is used directly,
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the agent will have extra information about the future state of the game. For example,
when thinking of attacking the target, this interface gives extra information to the evalu-
ation function about the next state, which a human wouldn’t have. A similar interface is
the AbstractHIFEvaluatorBot (HIF), which hides the excess information by sampling
several possible immediate next states for each move and using the average evaluation of
those samples as its evaluation for the move. The MIF interface is faster and designed for
simulations, but has more information than a human would making the game unfair.

Two important classes, that use this logic, are NNHIFEvaluatorBot (NN-HIF) and NNEval-
uatorBot (NN-MIF). They are designed to use a neural network to evaluate a state.

An agent using either one of these interfaces has a max_num_states parameter (de-
faults to 1000), which controls the maximum number of different moves to consider. The
generation of all possible moves has an exponential worst-case complexity and it would
be infeasible to create all the possible plays and evaluate them.

The HIF interface also has a max_num_samples parameter (defaults to 100), which
controls the number of random samples to sample from the deck to create the average
evaluation of a move.

Algorithm 1 Move Selection Logic of NN-HIF Player: In this algorithm description,
MV_IDS contains the identifiers of all classes of moves, the get_possible_moves(move_id)
returns all the legal moves that the player can make that belong to the class of move_id,
get_next_states(move) returns a list of the possible next states after playing a move, and
evaluate_state(state) returns an evaluation of the state. The player plays the move that
results in the highest evaluation (or highest average).

1: best_moves← {}
2: for move_id in MV _IDS do
3: moves_to_scores← {}
4: for move in get_possible_moves(move_id) do
5: states← get_next_states(move)
6: eval← 0
7: for state in states do
8: eval← eval + evaluate_state(state)
9: end for

10: eval← eval/len(states)
11: moves_to_scores[move]← eval
12: end for
13: best_move, best_eval← max(moves_to_scores)
14: best_moves[move_id]← (best_move, best_eval)
15: end for
16: Play(max(best_moves))
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2.2 Data collection

In a game, each player records all the game states from their perspective. After each
game, all the player’s recorded states are gathered. All the loser’s states are taken, and
the same amount of randomly selected states from not-losers are selected to reduce data
and balance the data set labels. The states are then shuffled, and each state is written to
a randomly named file in a numeric vector format, along with a binary value (the label)
representing whether the player lost (0) or didn’t lose (1).

Two iterations of neural networks were trained, and hence two datasets were created. Both
datasets were created by randomly selecting agents and their hyperparameters to reduce
bias in the dataset. The used agents ranged from random play to best play so far (Bot3 for
the first dataset and NN-MIF with a neural network based on the previous dataset for the
second dataset). The datasets had 50 M labeled states, gathered from 1M games.

2.2.1 Vector representation

The state vector contains all the information about the current state of the game from
the player’s perspective. The vector contains general information, for example, who is
the target, and what is the trump suit, as well as lists of cards. A single list of cards is
encoded as a vector of length 52, where each index corresponds to a specific card in a
reference deck, which is sorted from values 2 - 14 and suits in order ♣,♢,♡,♠. Each
index in the card vector is marked as 0 if the card is not known or is not in the game and
else it is marked as 1.

The perspective vector includes:

• Number of cards still in the deck (including trump card at the bottom) : integer

• How many cards each player has in their hand : 4 x integer

• Which players have played (and won’t play again until someone plays a move other
than skip) : 4 x boolean

• Which players are still in the game : 4 x boolean

• Whether there is a card played from the deck in unfallen cards : boolean

• Which player is the target : 4 x boolean
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• Which suit is the trump suit : 4 x boolean

• Whose perspective this vector is : 4 x boolean

• Which cards are still in the game : 52 x boolean

• not-killed cards : 52 x boolean

• killed cards, and cards used to kill : 52 x boolean

• Each player’s known cards; the cards the player has publicly lifted from the table :
4 x 52 x boolean

• The player’s cards : 52 x boolean

This vector representation is simple, and there is no information, that a real player couldn’t
have. There are no implied connections (for example encoding cards according to their
strength) in the vector. In chess, this type of encoding (bitmap) has led to better chess
evaluations than algebraic representation, where the pieces are encoded according to their
strength [14].

2.3 Neural network

Multiple neural network architectures were non-systematically experimented with. The
dataset was split into train/validation/test with 92/6/2 % split and the models with the
lowest binary cross entropy (equation 1) loss on the test dataset were benchmarked to see
the percent of games they win.

The neural networks were very prone to overfitting the noise in the data since it is im-
possible to know whether a player will win in the early stages of the game. To address
these issues of noise and bias, a very large batch size of 16384 was used in an attempt to
essentially cancel out the noise.

To gain 100-fold performance improvements on neural network inference and to improve
parallelism, the trained TensorFlow models were converted to TensorFlow Lite models.
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2.4 Example on Tic-Tac-Toe

In this section, we discuss the results of this methodology, when applied to the game of
Tic-Tac-Toe, and the lessons learned and applied to Moska.

For Tic-Tac-Toe this method was applied from scratch, starting from random play. For
each iteration, 5000 games were simulated between a random player, and a neural network
player (initially random), and a neural network was trained on data from the simulations.
Only data from the most recent iteration was used.

Figure 4. The win portion of the trained Tic-Tac-Toe model against random play after some
amount of iterations.

In Tic-Tac-Toe, a CNN highly outperformed a regular NN. The highest win percentage
against random play was 92% with two convolutional layers and 2 dense layers, and only
65% for 4 dense layers.

It was also noticed, that adding randomness when gathering data is essential for good per-
formance because it reduces bias in the dataset. Hence in each iteration, the trained model
played a random move 20% of the time when gathering data. If no randomness is added,
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the new dataset will be biased and the model will have easy exploits, since the trained
model only makes certain moves and there is no exploration to discover its weaknesses.
For Moska, this exploration was achieved by varying the agents and parameters of agents
in the dataset.

It is important to note, that we only applied this approach to Tic-Tac-Toe to demonstrate
it’s usage. We didn’t vary many parameters, try multiple different neural networks, and
only used a small number of games. Undoubtedly, this approach can create stronger
agents to Tic-Tac-Toe than observed here.
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3 RESULTS

In this section, we present results from training the neural network and the performance
results of implementing the neural network on an agent for the card game of Moska.

3.1 Neural network performance

A neural network’s performance is initially measured by the loss on a test dataset, and
later by using it as an evaluation function on the AbstractEvaluatorBot (MIF) and Ab-
stractHIFEvaluatorBot (HIF) interfaces to create a playing agent.

Surprisingly, the traditional neural networks, with no convolutions, consistently outper-
formed the more sophisticated methods.

The neural network architecture had a batch normalization layer, 4 hidden layers, and
three dropout layers with rates of 0.4, 0.4, and 0.35 after the first three hidden layers,
totaling roughly 1 million parameters (See Figure A1.1). The default learning rate of
0.001 seemed to overfit too quickly, and so 0.0001 was chosen along with a very large
batch size of 16384.

Going forward, we will use these names for agents using the MIF or HIF interface with
the evaluations provided by a neural network with the aforementioned architecture:

• NN1-MIF and NN1-HIF use the first iteration of the trained neural network (NN1).
NN1-HIF uses the HIF interface (HIF referring to ’hidden information) and NN1-
MIF uses the MIF interface (MIF referring to ’more information’).

• NN2-MIF and NN2-HIF use the second iteration of the trained neural network
(NN2), so the data used to train this model contained simulated games with NN1-
MIF.

The NN2 neural network could predict the winner from the test dataset with 73.5% accu-
racy and 0.504 binary-cross-entropy loss, containing states anywhere from the beginning
of the game (hard to predict) to the end of the game (easier to predict).



24

Figure 5. Loss and validation loss during the training process of NN2 for 70 epochs. Due to the
dropout layers, the loss on the validation dataset is lower than the loss on the validation dataset.
Further training did not reduce validation loss anymore.

3.2 Agent performance

The performance of an agent is assessed with three methods: standardized benchmarks,
games against humans, and individual game analysis.

3.2.1 Benchmarks

Benchmarking is a fast and objective measure of an agent’s performance. A benchmark
consists of a set of predefined agents, either hand-crafted or previously trained models.
The agent to benchmark is defined, and 2000 games are simulated between the predefined
agents and the agent to benchmark. The benchmark then reports the percent of losses the
benchmarked agent had.

The agents in the benchmarks, and the agent to be benchmarked, used the default
max_num_states (1000) and max_num_samples (100) if applicable to the agent.

The first benchmark has three of the strongest hand-crafted agents (Bot3). The third
benchmark has three NN1-MIF agents, so they have some additional information making
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them stronger. The third benchmark has one agent from the first and second benchmarks
and a weaker hand-crafted agent. The fourth benchmark only has random players.

The loss percentages for some agents in each benchmark can be seen in table 1. From
the table, it can be seen that both NN1 agents are better than Bot3, which was the best
agent used in training the first iteration, and respectively both NN2 agents are better than
NN1-MIF, which was the best agent used in the training of NN2.

Table 1. The percent of lost games out of 2000 played games on each benchmark for some players.
On each benchmark, there are four players, and one of the players plays against the benchmark.
Hence, if the benchmarked player is as good as the other three players, the expected portion of
games the player loses is 25%.

Player Benchmark 1 Benchmark 2 Benchmark 3 Benchmark 4
NN2-MIF 13.65 15.35 12.65 0
NN2-HIF 14.25 18.45 15.65 0.05
NN1-HIF 23.8 26.3 21.15 0.25
Bot3 25.15 27.55 24.75 0.4
Random 90.75 90.2 87.7 24.95

3.2.2 Tests on humans

Tests on humans reveal the actual performance of the trained NN models, and whether
Team machine, or humans win this battle.

Tests on humans were conducted against the NN2-HIF model. The tests were conducted
by creating a simple website, where people could go and play against the agents. The hu-
mans could play anonymously, or by registering and rating their Moska skills as beginner,
intermediate, or advanced before playing.

Unfortunately, the period to allow playing was poorly timed due to student events and
exams, and only seven unique people played a total of 260 games. 85% of the games
were played by self-rated ’advanced’ players.

From all the games, humans lost 29.8 % of the games, indicating that the NN2-HIF agent
is stronger than even advanced human players! Due to the relatively small number of
games played, we estimate the 95% confidence interval for the true percentage of human
losses to be between 25% and 35% with the Agresti-Coull formula [21].
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3.3 Game analysis

The NN2-HIF agent makes very reasonable moves and employs many of the strategies
used by human players such as gathering combinations, luring other players to attack
with high cards at the preparation phase, delaying possible plays to have opponents make
decisions with less information, sparing high combinations and trump cards until the end,
preferring to kill with ranks that are already on the table, as well as using all standard
possible moves at the agent’s disposal.

Contrary to our own strategies with Moska, individual agents seem to preferentially bully
people with weaker hands, most likely to weaken one opponent and ensure at least one
player has a worse hand. Sometimes the agent plays unlike a human if they have a basi-
cally guaranteed win or loss because the evaluations for any move are equal - it isn’t in a
hurry to lose or win.

Figure 6. Player evaluations as a function of the number of turns played. In this figure, the line
labeled ’pave’ is a human player. The human player has a good initial hand, but blunders in the
face of superior AIs.

We also spoke with the people who played against the agents and asked them for feedback
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about the agent’s behavior and the overall playing experience with Moska. The partici-
pants hadn’t found any consistently exploitable playing styles (as is also evident from the
loss percentage) and generally considered it a well-made and a realistically playing agent.
They also didn’t report any inconsistencies about the rules or the general setup, except for
the minor rule deviation discussed in 2.1 and a rare rule exception that is used in some
versions of Moska, which allows people to attack from the deck.
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4 DISCUSSION

4.1 Improving results

There are many possible improvements for the agent, so we limit ourselves to only con-
sider improvements that would be generalizable and not limited to a particular game.

The single most influential addition would likely be the addition of a tree search that
traverses the game tree further than one move ahead. For example, the raw neural network
behind AlphaGo Zero had an Elo rating of just 3055, but with the addition of MCTS it
reached a staggering 5185 rating [6]. Both minimax and MCTS methods should work for
Moska, however, it is not clear how to implement a minimax tree search for Moska due
to the hidden information.

Also, more data, more iterations, and trying different neural network architectures would
very likely improve the evaluation function, and thus agent performance.

There was also a very minor flaw discovered in the distribution of turns in the game
engine, which effectively increased the effect of chance on the result of the game. This
lead to worse players doing slightly better, and good players doing slightly worse. The
results described in this thesis do not take this fix into account, but it is reasonable to
assume (and preliminary results show) that humans do worse when this issue is fixed,
since humans are worse than machines, and thus beneficiaries of the bug.

4.2 Generalization to other games

Our approach can be used for any number of players and many other games. It is also
versatile and robust for some rule changes since it simply evaluates a game state and
doesn’t explicitly care what are its current choices. Implicitly it does matter, since a
model trained on games with some set of rules, assumes other players follow those rules.

This method can be applied to games with discrete options, but for games, where the
options are continuous some conversion is required. For example, the betting amount
in Poker is a continuous value, and to use this method the betting amounts should be
bundled, where for example only bets with a $100 difference are evaluated. Furthermore,
this method requires the generation of possible moves, which can be computationally very
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complex and programmatically hard. In the game of Moska generating initial plays, or kill
combinations from hand both have exponential complexity and use a form of depth-first
search.

4.3 Conclusions

The literature on multiplayer hidden information games is not vast, and successful appli-
cations are still quite rare. This thesis shows an approach to creating agents for multiple
types of games, including hidden information and multiplayer games, by creating a static
evaluation function from simulations without requiring human expertise about the game,
or data about human games.

Our application of the method to the multiplayer card game of Moska is successful and
can outperform even advanced human players.

Our method can be used as a standalone method to purely evaluate each possible next
state, or as an assisting method in conjunction with other methods, for example as an
initial guide to direct a tree search.

As is ever more common, we bow to Team Machine for winning this battle, and as hu-
mans, we prepare to bow down to our ever more capable AI overlords.
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Appendix 1. Images

Figure A1.1. The architecture used in both NN1 and NN2 neural networks. Created with Netron
[22].
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Appendix 2. Images

The rules introduced here, are the rules, that are played most commonly at Lappeenranta
University of Technology among Computational Engineering students.

The Finnish rules which are described in ’Korttipeliopas’ are slightly different [23].

Here we will use the same terminology as defined in 1.1.1.

2.1 Goal

The goal of the game is to not be the last player with cards in hand. The winners are equal
winners, and it only matters if a player is the loser or not.

2.2 Dealing

At the beginning of the game, each player is dealt 6 random cards from the deck. The
next card in the deck will be lifted and the suit will be chosen as the trump suit. If a player
has the 2 of the trump suit in their initial hand, he can switch it with the trump card of
the deck (getting a larger trump card in exchange), before the game starts. The ace is the
highest card (14), and 2 is the lowest card.

2.3 Flow of the game

2.3.1 Initiating a bout

At each stage, one player is the target. The player on the target’s right-hand side is
the initiating player. The initiating player can play any single card, multiple cards of
the same rank, or combinations of multiple cards. For example valid moves could be:
(♡2) or (♠14) or (♠5,♣5) or (♡8,♠8,♢8,♠10,♣10).

2.3.2 Attacking

After the bout is initiated, every player can attack the target, but the cards played MUST
have the same rank as some card currently on the table.
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Attackers can play cards to the target, as long as there are at most as many not-killed cards
on the table, as the target has cards in hand.

Each attacker fills their hand to 6 cards from the deck (if there is a deck left) immediately
after playing the cards. The target will not fill their hand.

2.3.3 Defending

Killing a card

The target can defend himself by killing a card on the table, with a greater card of the
same suit, or any card of the trump suit unless the card to kill is also trump suit.

Playing cards to self

The target can also play cards to themselves to get rid of bad cards and limit the number
of cards others can play. The target can ONLY play cards to themselves if there was a
deck left at the beginning of the bout. Also, similar to attackers they can only play cards
to themself if a card with the same rank already exists on the table.

Playing from deck

The target can also choose to pick the top card of the deck to kill a card on the table.
If the picked card can kill any card on the table, the picked card must be used to kill a
card. If the picked card can not fall any card on the table the card is left on the table as
if an attacker had played it. The player can not pick the top card of the deck if they have
already picked a card from the deck during the bout and the card is still on the table as a
not-killed card.

2.3.4 Ending the bout

The target can end the bout once every player has confirmed that they do not want to play
more cards. At the end of the bout, the target must pick either the not-killed cards (could
be empty) or the full table. The target must also fill their hand to 6 cards from the deck
if they have less than 6 cards in hand after ending the bout. If the target doesn’t have to
pick any cards, the player on the target’s left-hand side is the new target and the current
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target is the new initiating player. If the target has to or chooses to pick cards, the player
on the target’s left-hand side is the new initiating player. The initiating player is always
the player on the target’s right-hand side.

2.3.5 Ending the game

When the deck is finished, the game continues as before, except playing from deck or
filling is not possible. Also playing to self as a target is not allowed. In this stage, players
attempt to play their cards intelligently, so they will not be the last player with cards in
hand. The last person with cards in hand is the loser.

2.4 General techniques

The game can be thought of as having 2 phases: The preparation phase and the end-game
phase. A game is in the preparation phase when there are still cards in the deck. In
the preparation phase, players try to get a good hand for the end game. A good hand is
a hand with high cards and combinations. This allows the player to kill cards played to
them, and play multiple cards simultaneously to others. Personally, in this phase, there are
many variables to consider, and I just try to assess whether a move likely results in a better
hand. The evaluation process is purely an approximation based on previous experience.
The end of the preparation phase is also important since the trump card is the bottom card
on the deck (This is visible to all players). So the player who gets to lift the last card is
guaranteed to have the trump card in their hand for the end-game.

An example of a simple evaluation process in the preparation phase:

Q: I could play 2 10s, neither is trump suit. Should I play them to get 2 random cards
from the deck?

A: Usually, if I don’t have a trump card, I would play them for a chance at a trump card.
If I have at least two trump cards, I would probably not play them, since I would rather
have a hand with this combination. This also depends on whether 10s have already been
played and several other factors.

The end-game phase starts when the deck is empty. In the end-game phase, players try
to get rid of their cards. In this phase, more logic, and knowledge from previous moves
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can be used (for example which cards a player has lifted), especially when the number of
players left in the game is small (2-4) and there are few cards left. Players generally try to
assess the future of the game in a tree Search manner. This can be quite hard since there
is hidden information and the number of plays is usually too large for humans.

For a simple example,

Q: All other players are finished, except me and 1 other. I have a trump 10, and 2 5s (not
trump). The other player has 1 card. He is the target. How should I play my cards?

A: I can only play one card, since he only has one card in hand. If I play a card, that he
can fall, then I lose. If I play my trump 10 and he cant fall it, I win, because he has to lift
the card, leaving him with 2 cards in hand. I can then play my pair of 5s and win.
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