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Abstract
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The modeling and simulation of fluid power systems are essential parts of the real-time
simulation of virtual prototypes of mobile working machines. In several cases, in the dy-
namic simulation of such fluid power systems, a longer simulation time is required. This
makes the traditional mathematical models inefficient for real-time simulations, particu-
larly when simulating fluid power systems because of the small volumes in stiff differen-
tial equations of pressure. On the other hand, the accuracy and stability of the traditional
models also suffer from a numerical stiffness problem, while these models are accelerated
by a reduction of the integration time steps.

To solve the problem of small volumes in stiff fluid power circuits, different explicit and
implicit solvers are used. The most common methods are pseudo-dynamic methods and
singular perturbation theory-based solvers. This dissertation, in addition to the existing
methods, demonstrates various advanced methods and models to improve the simulation
speed of stiff fluid power circuits in the presence of small volumes, and to keep the ac-
curacy at a high level compared to the slower traditional mathematical models of such
circuits.

Based on the results of the experiments performed with several fluid power circuits, which
contained small volumes in their structure, the model for the Advanced Pseudo-Dynamic
Solver was formulated. There are two main differences between the Advanced Pseudo-
Dynamic Solver in comparison with the classical pseudo-dynamic solver. First, the cal-
culation of the outlet volume flow rate related to the small volume is included in the inner
loop of the solver, which allowed the numerical stability of the solution to be increased.
In addition, the adaptive convergence criterion is proposed in the model, which allowed
to increase the simulation speed and accuracy of pressure and piston position response.
Obtained simulation results confirmed that the proposed solver is much more efficient in
the solution of the fluid power circuits than the conventional lumped fluid theory-based
method, as well as the classical pseudo-dynamic solver. Finally, the Advanced Pseudo-
Dynamic Solver-based model can be calculated faster than the conventional model of the



fluid power circuit with small volumes owing to the possibility of the application of a
larger integration time step.

Another effective method for the simulation of fluid power circuits is the Method of Mul-
tiple Scales. This method is based on the singular perturbation method used earlier for
the real-time simulation of stiff fluid power circuits in the presence of small volumes. The
results of the research showed that the method of multiple scales is much more accurate
than the traditional mathematical model of fluid power circuits. Even more, the method
demonstrated better accuracy performance compared to the classical singular perturbation
theory-based method due to the elimination of cumulative error. The tested simulation
speed of the proposed method allows for the simulation of stiff fluid power systems in
real time and makes it possible to use this method in different real-time or faster than
real-time applications.

The third method proposed in this dissertation is a novel hybrid model for the simulation
of stiff fluid power circuits. The main feature of the model is the utilization of a recurrent
neural network instead of stiff differential equations of pressure with small volume. At
the same time, the dynamics of the rest system are traditionally presented with algebraic
and differential equations. The testing results of the introduced hybrid model showed that
this novel method can reduce the simulation time, which makes the model suitable for
real-time applications. Moreover, the accuracy of the model remains at a fairly high level
compared to traditional mathematical models.

Keywords: real-time simulation, small volume, numerical stiffness, fluid power system,
method of multiple scales, advanced pseudo-dynamic solver, recurrent neural network
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1 Introduction

1.1 Background of the research

Nowadays, computer simulation of mobile working machines and industrial robots is a
very important part of the global industry. Virtual models and prototypes are used to pre-
dict important parameters of machines and devices and to improve the business potential
of related companies. Mechanics and hydraulics play an important role in modeling such
machines. Fluid power systems, which are widely used in the real-life design of various
mobile machines, such as logging harvesters, cranes, excavators, and industrial robots,
are in strong need of modeling. The recent trend in modeling hydraulically driven digital
twins (Zhidchenko et al., 2018) and virtual prototypes (Mikkola, 1999; Park et al., 2020;
I. Malysheva et al., 2018; Zheng, Ge, and Liu, 2015) has shown that mathematical mod-
eling of fluid power systems plays a vital role in the development of industrial simulators
of such mobile working machines. For this purpose, real-time and faster than real-time
techniques (Liermann, Feller, and Lindinger, 2021) are often used to get a fast response
in the system. Real-time simulation in this case refers to the use of a computer or other
device to simulate a system or process in real time. In this type of simulation, the sim-
ulation model is run in parallel with the real system, and the output of the simulation is
used to control or interact with existing system. However, singularities may exist in the
computer simulation of fluid power circuits that directly affect the computational speed
of the whole virtual mobile working machine system and make a real-time simulation of
the system very difficult or totally impossible.

Generally speaking, there are two main problems with singularities arising in fluid power
circuit modeling and simulation. The first problem is related to the pressure drop ap-
proaching zero in fluid power circuits. This phenomenon is associated with difficulties in
the use of the traditional turbulent flow orifice equation in the mathematical model of the
circuit because of the infinite value of the flow rate derivative. To overcome this problem,
several combined orifice models were proposed by Ellman and Piché, 1996; Ellman and
Piché, 1999. Another computationally efficient solution was suggested in a research paper
by Åman, Handroos, and Eskola, 2008 in which the polynomial relation between the flow
rate and pressure drop was derived for cases when the pressure drop approaches zero. The
model got its name from the two-regime flow model in which the third-order polynomial
is used for describing the laminar and transition flow areas, whereas the traditional square
root turbulent orifice equation of flow is used for the turbulence regime.

Another important issue in the computer simulation of the dynamics of various fluid
power circuits is associated with the numerical stiffness of ordinary differential equations
(ODE) (Curtiss and Hirschfelder, 1952), for example in continuity equations of volumet-
ric flow. The numerical stiffness in fluid power circuits can be explained by the fact that
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Figure 1.1: Simple three-orifice fluid power circuit (Ustinov, Wu, and Handroos, 2022).

such circuits include volumes of different orders of magnitude. This can affect the nu-
merical integration of ODEs, and classical explicit integration solvers and subroutines are
not able to generate a stable dynamic response at a high integration time step in dynamic
simulation, slowing it down by implementing significantly small time steps. The numer-
ical stiffness of fluid power circuits can often be associated with small pipe volumes or
high values of effective Bulk modulus in a fluid power circuit. However, the problem
of small volumes is the most important due to existence of such pipe volumes in a big
number of industrial fluid power systems. The solution for the fluid power circuits with
one or more small volumes is necessary to be derived by using special numerical solvers
to avoid the problem of numerical instability in a dynamic simulation model of such stiff
circuits (Piché and Ellman, 1994).

To demonstrate the effect of small volume on the simulation, we may assume that a sim-
ple, three-orifice fluid power circuit, as depicted in Figure 1.1, contains a small pipe vol-
ume V2 between the second and third orifice. Generally, the circuit contains the constant
pressure variable displacement pump, which is assumed to be an ideal flow source and
tank for recovery of the fluid. We assume that circuits are modeled traditionally, with
Lumped-element modeling and a 4th order Runge–Kutta subroutine as the integrator for
solving differential equations existing in the system. In this case, the computer simula-
tion of such a circuit will be slower than the same circuit with volume V2, for instance,
one hundred times bigger than the small volume under consideration. Consequently, a
small volume in the circuit generates a stiff differential equation of pressure. This means,
that the pressure p2 response in a 50-second computer simulation of a circuit with a bigger
volume V2, which is equal to 1 liter, will be the same at both integrator time steps 1×10−4

s and 1×10−3 s, which is observable from Figure 1.2a. In its turn, the 50-second simu-
lation of the stiff fluid power circuit gives totally different pressure responses at the time
steps of 1×10−4 s and 1×10−3 s, as seen from Figure 1.2b. Hence, the simulation of a
fluid power circuit with small volume requires more real time to simulate the same time
period due to the difference in integrator time step in one order: the correct response of
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the stiff circuit can be achieved only at the time step of 1× 10−4 s. In the case of a mo-
bile working machine, which fluid power circuit may contain several small volumes, the
simulation in real time or faster than real time can be problematic.

The problem with small volumes, and, as a result, the numerical stiffness of differential
equations in the fluid power circuits, arises in various scientific papers, and special im-
plicit (Åman, 2011) solvers are developed. This problem was first mentioned in 1990 by
Bowns and Wang, 1990, who proposed an implicit iterative technique to overcome the
problem of numerical stiffness due to the small volumes in hydraulic pipes. However, the
technique was still computational time demanding due to a large amount of iterations in
the loop, which also affects simulation speed.

(a) (b)

Figure 1.2: Pressure p2 response at simulation time steps 1× 10−4 and 1× 10−3 with
big and small volume V2: (a) Volume V2 = 1 l (b) Volume V2 = 0.01 l (small volume)
(Ustinov, Wu, and Handroos, 2022).

Another effective iterative technique was first presented by Åman and Handroos, 2008;
Åman and Handroos, 2009; Åman and Handroos, 2010. This implicit solver was named
the Pseudo-Dynamic Solver. This solver consists of two loops, an outer (or main) loop,
and an inner (or pseudo) loop. The main loop contains algebraic and differential equations
of the whole fluid power system, excluding the stiff differential equation of pressure as-
sociated with the small volume in the circuit. The integration of such continuity equation
of volumetric flow occurs in the pseudo loop of the solver with an artificially enlarged
volume instead of the real small volume in the system’s mathematical model. The main
purpose of the pseudo loop is to receive the steady-state response of the pressure by it-
erating such pressure with artificial volume until the predefined convergence criterion for
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pressure derivative or pressure difference between two neighboring iterations is reached.

One of the most reliable methods proven to be computationally efficient in simulating
fluid power systems, in theory and practice, is the fluid power circuit model proposed by
Kiani-Oshtorjani, Mikkola, and Jalali, 2019. This model is based on the singular per-
turbation theory. In the concept of this approach lies the idea of the substitution of stiff
ODEs with small volumes for algebraic equations, modified for fluid power systems simu-
lation in accordance with this theory. The method was also tested in simulating multibody
systems with fluid power components (Rahikainen et al., 2018), and an accurate and fast
response of the system was achieved. However, the method has its own drawbacks related
to the cumulative error in certain cases of use. To solve the problem of cumulative error,
a special corrector factor for the model should be used.

A very significant contribution to the topic of simulation of fluid power circuits was made
by numerous research carried out by the research group of Petter Krus at Linkoping Uni-
versity (Krus et al., 1990; Krus, 2009; Axin et al., 2010; Braun and Krus, 2012; Braun
and Krus, 2013; Baer, Ericson, and Krus, 2020), which was started in the 1990s and
continues to the present day. The study led to the development of HOPSAN simulation
software. This software is based on the transmission line method, the main idea of which
is based on the statement that each physical element has a natural time delay. In the case
of fluid power circuits, the time delay is the same order of magnitude compared to the
time step utilized for numerically stable and accurate simulation of the fluid power circuit
(Braun, Nordin, et al., 2020). As the result, HOPSAN simulation software implements
this idea by use the discretization for hydraulic capacitive elements or, in simple words,
dividing the circuit into separate components and simulating these components separately.
Each separated component of the circuit is simulated with the implementation of a local
implicit solver, which allows the elimination of the problem of numerical stiffness in cir-
cuits with small volumes as well. As a result, the transmission line method is a robust and
convenient method that allows us to maintain the accuracy of simulation response and the
high speed of simulation at the same time with physically interpreted transmission delay
of pressure in fluid power elements by the limitation of speed of sound (Liermann, Feller,
and Lindinger, 2021). To the present day, the method is one of the excellent solutions for
simulating fairly complex hydraulic systems in real-time or faster than real-time applica-
tions. However, it is important to note that in this study we consider methods that have
no huge effect to the large-scale dynamics, and modifications that are done to the models
are minimal, since in case of transmission line method, all the components are calculated
separately with purpose to speed up the whole simulation of the system. Moreover, more
computational power can be used for this kind of co-simulation problem.

In several works (Bidini and Mariani, 1997; Krishna and Bares, 1999; Krishna and Bares,



1.2 Research questions 21

1998), the components of fluid power systems, or the entire fluid power circuits, were
introduced as Artificial Neural Networks(ANN) with input, output and multiple hidden
layers. The utilization of this type of system modeling showed that the use of neural net-
works in fluid power circuit modeling guarantees a fast response in the system that allows
a simulation of the system in real-time or faster than real-time applications. In addition,
predictive neural network models of various dynamic systems with ODEs were studied in
(Pan and Duraisamy, 2018) and (Chen et al., 2018). New methods were proposed in both
papers in order to improve the performance of ANNs based on simple ODEs and complex
nonlinear dynamic systems. Nevertheless, the most significant and beneficial simulation
results were obtained by using recurrent neural networks (RNN) (J. Malysheva, Li, and
Handroos, 2020; Vermaak and Botha, 1998; Patel and Dunne, 2003) in the modeling and
simulation of different dynamic systems, including fluid power circuits.

However, the systems based on neural networks are simulated as a black box, and the
dynamics of the system used in the network, are totally neglected. Substituting a stiff dif-
ferential equation with small volumes with a computationally efficient and accurate neural
network can be a viable solution for the problem of singularity arising in the simulation of
such stiff fluid power systems. It means that it is only possible to replace areas with stiff
differential equations with the ANN, and the dynamics of the entire system will be saved
in the rest of the mathematical model of fluid power circuit. At the same time, the speed
of simulation is supposed to be improved due to the absence of stiff differential equations
in the areas with small volumes.

Since the problem of numerical stiffness is a problem of current interest in the field of
modeling and simulation of hydraulically driven mobile working machines, the motiva-
tion of the research work done in this dissertation is associated with the possibility of
enhancement, or creation of stiffness elimination methods, solvers, and models. A lot of
existing methods and models have a great number of disadvantages that can be overcome
by modifying or by reinforcing the operation of such methods. In addition, new tech-
niques should be tested in order to find other fast and accurate solutions to the problem of
numerical stiffness.

1.2 Research questions

The research problem of the study is formed from the issue of the numerical stiffness
of fluid power circuits due to the small volumes inside. This is an actual problem that
still requires the reconsideration of existing methods of numerical stiffness elimination
and searching for new methods and models in order to improve the computer simulation
of mobile working machines and fluid power circuits in particular. The main research
questions of the study are as follows:
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1. Test the existing methods of stiffness elimination in fluid power circuits, for exam-
ple Pseudo-Dynamic Solver and Singular Perturbation theory-based model. Which
disadvantages exist in these methods and models, and what can be done to improve
the accuracy and speed-up practical fluid power circuits modeled with these meth-
ods?

2. How can a classical Pseudo-Dynamic Solver be improved to obtain a stable and fast
response from the pressure in small volumes in any type of fluid power circuits and
for each pressure level?

3. How can the problem of accuracy for Singularly Perturbed circuits be solved with-
out using any correcting factors?

4. Is it possible to use Artificial neural networks as surrogate in practical fluid power
circuits, substituting a stiff differential equation with small volumes with the above-
mentioned neural network to eliminate the system stiffness?

1.3 Research methods

The main objective of the literature review performed in subsection 1.1 of the introduction
was to analyze the state-of-the-art approaches, solvers, and fluid power models dealing
with the problem of numerical stiffness in presence of small volumes. It was investigated
that state-of-the-art methods still can have a number of disadvantages, for example, ac-
cumulated error, or poor simulation speed in particular cases and conditions. Provided
methods were analyzed in order to obtain the most significant issues and research meth-
ods for the problem solution were observed.

The main tools for the verification of proposed algorithms, solvers, and models were sim-
ulation experiments where models were based on mathematical modeling and computer
simulation using Lumped-element modeling as the main method for conventional fluid
power circuits mathematical modeling and simulation software for fluid power circuit pa-
rameter response observations. All the novel algorithms and methods were compared
with the conventional mathematical model of two different practical fluid power circuits
that were modeled and simulated, firstly using conventional Lumped-element modeling
and secondly, the algorithms and models developed in this research.
Through experiments and testing of the pseudo-dynamic solver, it was important to find
out what parameters affect the simulation and integration speed and the accuracy of the
pressure response, and what can be done to improve these significant values. Thus, an
improved AdvPDS-based model was formed with an adaptive criterion of convergence
depending on the empirically studied pressure calculated in the internal loop of the solver.
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In the case of the MMS-based model, the multiple-scale analysis approach was applied
to the singularly perturbed model of a practical fluid power circuit in order to eliminate
the cumulative error occurring in singularly perturbed systems. Experiments were not
only aimed at comparison of MMS-based and conventional Lumped-element modeling
method-based fluid power circuit model but also have taken into account singularly per-
turbed model to show the difference in simulation speed and accuracy of the proposed
model.

The use of artificial intelligence was considered a positive direction for the elimination of
numerical stiffness problem related to small volumes since RNNs are robust and reliable
in predicting time series problems (e.g. dynamic systems simulation through time). Then,
the RNN was used to formulate the Hybrid model, which particularly utilizes the network
as a surrogate to substitute stiff equation of pressure and other parts of the system work
with the conventional Lumped-element modeling method.

1.4 Scientific contribution

The main scientific contribution of the dissertation is associated with the development
of new methods and models that can be beneficial in the simulation of numerically stiff
fluid power circuits. These methods and models are developed in a way to find a trade-off
between simulation speed and accuracy of the system response. These research findings
are as follows:

• Advanced Pseudo-Dynamic Solver (AdvPDS). This solver is based on a classical
Pseudo-Dynamic Solver with reconsideration of its structure. Two new main prin-
ciples are lying in the basis of AdvPDS, comparing it to the classical solver: the
consistency and adaptivity. Consistency means that all flow rates and pressure in the
small volume itself are calculated inside the loop of the solver. Adaptivity means
the use of adaptive criterion of convergence, depending on the pressure levels of
the system. Adaptive criterion allows discovery of the trade-off between simula-
tion speed and accuracy of the system response, while using the single criterion in
a classical Pseudo-dynamic Solver in several cases can slow-down the system, or
vice-versa make it fast, but inaccurate.

• Method of Multiple Scales (MMS). This method works together with the Singular
Perturbation Theory. MMS was tested in the simulation of practical fluid power
circuits, and the results of the testing showed that numerically stiff fluid power
circuits can be speed up by substitution of a stiff differential equation by an MMS
based equation; at the same time, there is no cumulative error, which may exist in
Singularly Perturbed fluid power systems.
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• Hybrid fluid power circuit model. The word "Hybrid" is related to the utilization
of pre-trained RNN inside the traditional fluid power circuit model, where it sub-
stitutes the stiff equation of pressure in a small volume. The method allows for the
reduction of numerical stiffness of the whole system and significantly speeds up the
simulation with a high accuracy of pressure response.

1.5 Dissertation outline
The main purpose of the dissertation is to demonstrate the results of multiple research
related to the development of advanced models for the numerical stiffness elimination of
fluid power circuits in the presence of small volumes. The structure of the dissertation is
divided into the following parts:

1. Section 1 - Introduction. The current section describes the background of the re-
search and sheds light on the research problem, the main research questions, and
scientific contribution of the dissertation.

2. Section 2 - Research methods. This section of the dissertation describes all research
methods used in research related to the topic of the dissertation. Research methods
include the Lumped-element modeling, which is used in the traditional mathemat-
ical modeling of fluid power circuits, the existing method of numerical stiffness
elimination, such as Pseudo-Dynamic Solver of pressure in small volumes, and Sin-
gular perturbation theory. The theoretical background of Recurrent neural networks
for hybrid fluid power circuit modeling is also included in this section.

3. Section 3 - Fluid power circuits under investigation. This section contains the main
issues in traditional mathematical modeling of fluid power circuits used in research
tests related to this dissertation. The section includes detailed models of such cir-
cuits with equations and system parameters.

4. Section 4 - Advanced methods for numerical stiffness elimination: Tests and results.
This section is related to the introduction of the main findings of the current research
study. The Advanced Pseudo-Dynamic solver, Method of Multiple Scales, and
Hybrid method of modeling fluid power circuits are introduced and tested in this
section. Results of the tests are also presented.

5. Section 5 - Conclusion. This section is a short summary of the dissertation, which
contains the research discussion and the direction for the future studies and re-
search.
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2 Theoretical background

This section is a collection of the theoretical background of the present dissertation. The
theory of the section includes the conventional methods, such as lumped-element mod-
eling, used in traditional mathematical modeling of fluid power circuits. The Pseudo-
dynamic solver and Singular Perturbation Theory used in the development of the Ad-
vanced Pseudo-Dynamic Solver and the Method of Multiple Scales model are described
as the main existing methods of numerical stiffness elimination. A theoretical detailed de-
scription of recurrent neural network architecture models, considered in the development
of the hybrid model, was also included in to the present section.

2.1 Lumped-element fluid power modeling

Lumped-element modeling is a prevalent method used in the traditional modeling of fluid
power circuits of various complexity. All hydraulic components and volumes in fluid
power circuits can be represented in accordance with this method, which assumes that a
fluid power system can be divided into sections with separate volumes, where the pres-
sure can be distributed. Such sections are separated by orifices or throttles, which are
representatives of volumetric flows in a fluid power circuit. Flow control valves, direc-
tional valves, or any valve-type component of fluid power circuits are also expressed as
throttles. A differential equation is formed for each pressure in such a fluid power sys-
tem, where the derivative of pressure can be expressed with the general formula (Merritt,
1967):

ṗi =
Be

Vi
(Qi −Qi+1 −

dVi

dt
) (2.1)

where pi is the pressure in ith section, Be is the effective bulk modulus, Vi is the volume
in the same section, Qi and Qi+1 are the inlet and outlet volumetric flows, and dVi

dt is the
time rate changes of volume Vi.

The common equation for the expression of turbulent flow for classic run-off orifice can
be calculated as follows (Borutzky, Barnard, and Thoma, 2002):

Qi =CdAi

√
2(pi−1 − pi)

ρ
(2.2)

where Cd denotes the discharge coefficient, Ai is the cross-sectional area of orifice i, ρ

is the density of the hydraulic fluid, and pi and pi−1 are the outlet and inlet pressures,
respectively. In this research study, this equation appears in the modeling of simple three-
orifice fluid power circuits. The modified version of the equation is used in the modeling
of the directional and flow control valves in related fluid power circuits, described later in
Section 3.
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2.2 Numerical stiffness determination

Assume that we have simple fluid power circuit of three orifices in series, described in
Section 1 and depicted in figure 1.1. The circuit contains a small pipe volume V2 between
the second and third orifice. Pressures and flows in such system are calculated with equa-
tions (2.1) and (2.2), respectively. We can analyze the numerical stiffness, as well as the
influence of volume size on the stiffness of the presented fluid power circuit, by deriving
the Jacobian matrix and estimating the dominant eigenvalues of the matrix. The initial
step is to derive the state-space representation of the circuit. It is assumed, that we have
constant effective bulk modulus Be, and the orifices are identical, which leads to the same
discharge coefficient Cd and area for all three orifices. In the case of state variables vector
as x = [x1 x2]

T = [p1 p2 ]T and input u = ps (input pressure), we may derive the state
equations as follows:

ẋ1 =
BeCdA

V1

(√
2(u− x1)

ρ
−
√

2(x1 − x2)

ρ

)
(2.3)

ẋ2 =
BeCdA

V2

(√
2(x1 − x2)

ρ
−
√

2(x2 − pt)

ρ

)
(2.4)

Then, Jacobian matrix is formed by extracting partial derivatives of state equations, as
follows:

J =
∂F
∂x x=x̄,u=ū (2.5)

where F is the left-hand side of the first and second equation of (state space) , x is the
model state vector, u is the model input vector, and (x̄, ū) is the operating point. The
Jacobian matrix for the considered three orifice fluid power circuit can be written as fol-
lows:



− BeCdA√

2ρV1
( 1√

(x1−x2)/ρ
+ 1√

(u−x1)/ρ
) BeCdA√

2ρV1
√

(x1−x2)/ρ

BeCdA√
2ρV2

√
(x1−x2)/ρ

− BeCdA√
2ρV2

( 1√
(x2−pt)/ρ

+ 1√
(x1−x2)/ρ

)


 (2.6)

To assess the degree of numerical stiffness of the model, we utilize a condition number of
the Jacobian matrix, which can be expressed as per the principles of numerical analysis
theory:
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κ(J) =
|λmax(J)|
|λmin(J)|

(2.7)

where λmin(J) and λmax(J) are the maximum and minimum eigenvalues of the Jacobian
matrix, respectively, which for J∈Mn×n should satisfy |J−λ I|= 0, where I is the identity
matrix. The condition number provides insight into the disparity of the system’s eigen-
values, wherein low values of κ indicate favorable conditioning of the problem, while
high values of κ suggest that the problem is ill-conditioned and that the system can be
numerically stiff. Determining the condition number requires specifying the system con-
figuration, or operating point selection. Under physical restrictions of the system we can
select operating point, where our state variables and inputs are determined.

In case of particular three-orifice circuit, we shall examine two scenarios in selected op-
erating point. In the first scenario, V2 = 10−3 m3, which implies that the volume between
second and third orifice is relatively substantial. In this case, the condition number κ will
be small, showing that system is not stiff. On the other hand, in the second scenario,
the volume is reduced to V2 = 10−5 m3, and the corresponding condition number surges
significantly to larger numbers. An assessment of the system Jacobian matrix reveals that
this phenomenon results from the small volume V2, which emerges in the denominator
of the Jacobian matrix elements, leading to substantial differences in the magnitude of
the eigenvalues and causing the mathematical model to become numerically stiff. Thus,
we get a rather high numerical stiffness for systems in which there is at least one small
volume

2.3 Existing methods of numerical stiffness elimination

2.3.1 Pseudo-dynamic method

The Pseudo-Dynamic Solver, which belongs to a family of implicit iterative solvers, was
initially proposed by Åman and Handroos, 2008. The solver was also studied and im-
proved in subsequent research, particularly in (Åman and Handroos, 2009; Åman and
Handroos, 2010). The main concept of the pseudo-dynamic solver lies in searching for a
steady-state solution for pressures related to small volumes in stiff fluid power circuits. At
the same time, the pressures built up in larger volumes are solved with the conventional
integration algorithms, e.g., 4th order Runge–Kutta integrator. To provide such function-
ing of the system, two integration loops are used in the system: the main loop, which
contains algebraic and differential equations related to larger volumes, and the inner loop,
associated with the model of pressure with the small volume. The inner loop, using an ar-
tificially enlarged fluid volume, searches for the steady-state value of pressure passing by
the transition process of pressure formation. The steady-state value of pressure is sought
out during the single time step of the main loop (J. Malysheva, Ustinov, and Handroos,
2021).
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In the inner loop of the Pseudo-Dynamic Solver, the continuity equation of pressure is
utilized as a main pressure-modeling equation, as follows:

ṗ =
Be

Vpseudo
(Qin −Qout) (2.8)

where Vpseudo is the artificial pseudo-volume, Be is the effective bulk modulus of the
oil, and Qin and Qout are the inlet and outlet volumetric flows, respectively. According to
Åman and Handroos, 2009, the pseudo-volume is recommended to be set at least 10 times
higher than the actual small volume used in the mathematical model. The inlet and outlet
volumetric flows in the inner loop of the solver can be defined as a function of pressure
drop accordingly:

Q = f (∆p) (2.9)

The integration of differential equation 2.8 inside the inner loop of the solver occurs by
using an explicit fixed-step, fourth-order Runge–Kutta integration subroutine, with inde-
pendent sufficiently small time step ti. The operation of the inner loop continues until the
convergence criterion is satisfied. The criterion is a parameter, which is pre-defined by
the user and represents the first derivative of the pressure. It is important to note that the
activation of the inner loop suspends the main loop until the steady-state pressure value
in the inner loop is found.

2.3.2 Singular perturbation theory

Singular perturbation theory (SPT), as a valid method for numerical stiffness elimina-
tion, was first mentioned by Åman, 2011. Later, the fluid power circuit model, based on
the modification of SPT, was firstly introduced by Kiani-Oshtorjani, Mikkola, and Jalali,
2019.

In SPT problems, a small parameter existing in the governing equation plays a key role.
The regular perturbation treats the problems in which the solution can be obtained by as-
signing the small parameter to zero, whereas in the singular perturbation problems, the
mentioned parameter cannot be ignored without a considerable loss of accuracy in the
results. For instance, in such cases, when the bulk modulus divided into hydraulic vol-
ume is small, the continuity equations of volumetric flow fall into the latter category. A
well-known approach for perturbation problems of the latter type is the SPT. As men-
tioned in the work of Kiani-Oshtorjani, Mikkola, and Jalali, 2019, with this theory, the
ordinary differential equations, that contain the infinitesimal parameter ε , are converted
into a quasi-steady state model based on Tikhonov’s theorem (Tikhonov, 1952) in SPT.
Consider the following system of singular equations:
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φ̇ = f (φ ,ψ, t,ε) φ(t0) = ζ (ε) (2.10a)
ψ̇ = g(φ ,ψ, t,ε) ψ(t0) = ξ (ε) (2.10b)

where φ ∈ Rm and ψ ∈ Rn and ε is an infinitesimal parameter. Then, the quasi-steady
state model of the system in 2.10a is (Noethen and Walcher, 2011):

φ̇ = f (φ ,h(t,φ), t,ε) φ(t0) = ζ (ε) (2.11a)
ψ̄(t) = h(t, φ̄) (2.11b)

where the over-bar denotes the perturbed variables, and h is an algebraic equation that is
determined during the order reduction. The i-th volume can be considered as a small fluid
volume in comparison with the neighboring volumes in the circuit. Consequently, apply-
ing the SPT to this volume, we can get (Kiani-Oshtorjani, Mikkola, and Jalali, 2019):

pi =
pi+1 +α pi−1

1+α
(2.12)

where, α =
(Ai−1

Ai+1

)2. The substitution of this relation to the volumetric flow continuity
equation with the small volume reducing the stiffness of the whole circuit due to the
replacement of stiff differential equation by the algebraic. However, the model is not
perfect, and it requires a corrector factor in order to avoid the accumulative error that may
be produced by the model.

2.4 Recurrent neural networks for fast simulation of fluid power cir-
cuits

Speaking about the fast and accurate simulation of fluid power circuits, the use of Arti-
ficial Neural Networks (ANN) should be considered. The most suitable type of neural
network used for the simulation of dynamic systems, and fluid power circuits as well, is
the Recurrent Neural Networks (RNN). Several studies prove that dynamic systems based
on RNNs are quite fast and can be simulated in real time or faster than real time, which
can be beneficial for different related simulation applications. However, recurrent neural
networks can be different types or architectures, and selection of RNN architecture is a
very important issue in the modeling of dynamic systems.

The most common RNN architectures used in modeling dynamic systems are the nonlin-
ear finite impulse response (NFIR), the nonlinear autoregressive network with exogenous
inputs (NARX), and the nonlinear autoregressive moving average network with exoge-
nous inputs (NARMAX). There are also more complex and advanced architectures used
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in dynamic systems modeling, which are Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU) neural networks (Ustinov, Wu, and Handroos, 2022).

The NFIR architecture, described in (Schram, Verhaegen, and Krijgsman, 1996), is the
simplest RNN architecture of all the architectures mentioned above. The operating pro-
cess of this network occurs through feeding all values of past inputs to achieve the current
output value. The defining equation for the network is formulated as follows:

y(t) = ΨH(x(t −1), ...,x(t −d)) (2.13)

where y(t) is the RNN output vector at time t, ΨH is mapping performed by a multilayer
feedforward network, d is the past values of series x(t), and x(t) is the RNN input vector
at time t. The main advantage of the NFIR architecture is its stability, while all past inputs
are fed to the network.

The NARX neural networks principle is related to the utilization of the outputs of the
network for feeding the input with past states of the outputs and inputs, while saving the
state of the system at every step of the network operation. The ordinary NARX RNN can
be defined by the following equation (Siegelmann, Horne, and Giles, 1997):

y(t) = ΨH(x(t −1), ...,x(t −d),
y(t −1), ...,y(t −d)) (2.14)

where y(t) is the RNN output vector at time t. The main feature of the NARX RNN
is an accurate approximation of output values, which make it more accurate than NFIR.
However, in certain cases, it can be inherently less stable due to operation in a closed loop
using the past values of the output.

Another architecture that can be presented as an advanced NARX structure is NARMAX
RNN. The main difference with NARMAX RNN architecture is the ability to use the
error of previous values in the loop through the feedback. Thus, the defining equation for
NARMAX networks is the following (Lacny, 2012):

y(t) = ΨH(y(t −1), ...,y(t −d),
x(t −1), ...,x(t −d),
e(t −1), ...,e(t −d))

(2.15)

where e(t − 1) is an RNN error vector at time t − 1. In the NARMAX architecture, all
elements defined by x and e are sometimes called controlled and uncontrolled inputs (J.
Malysheva, Li, and Handroos, 2020). This means that NARMAX is the most prevalent
architecture in cases with real-world data, including the system error generated by noise.
The structure also uses the error supplied through the system feedback as an input dataset,
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which makes the method more complex than the above-mentioned NFIR and NARX.

In addition to the mentioned RNN architectures, more complex architectures are used
in dynamic systems modeling. These architectures are more suitable for training and
may easily store long-term dependencies. Such architectures, which are LSTM and GRU
neural networks, were studied and compared (Tuttle et al., 2021). Both architectures show
significantly good performance in the case of complex dynamics persisting in the system.
In the case of LSTM networks, the accuracy of predictions is at a high level, but selecting
numerous hyperparameters can affect the performance of the network. GRU networks are
similar to LSTM due to their functionality; however, in several cases, it can be applied in
less time to train the network.
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Figure 3.1: Two-way flow control valve schematic (J. Malysheva, Ustinov, and Handroos,
2021).

3 Stiff fluid power circuits under investigation

In this subsection, the two fluid power circuits that were utilized in simulation experiments
of advanced stiffness elimination methods were introduced. First, the circuits were mod-
eled as a conventional mathematical model based on Lumped-element modeling method
with 4th order Runge–Kutta integration subroutine. These mathematical models of the
circuits will be marked as "Reference" models in further tests and simulations. Both cir-
cuits contain a small pipe volume. The modified versions of the circuits were used in
demonstration of AdvPDS, MMS and Hybrid methods, and models of stiffness elimina-
tion.

3.1 Circuit 1: Two-way flow control valve

The first circuit investigated in the study is a two-way flow control valve. The fluid power
circuit related to the corresponding system is schematically depicted in Fig. 3.1. The cir-
cuit scheme contains of a pressure power source, two-way flow control valve, orifice, and
a 2/2 directional control valve. A two-way flow control valve, in its turn, consists of two
main components: pressure compensator and control throttle. The volume between the
components of two-way flow control valve is assumed to be a small volume in continuity
equation of volumetric flow, the presence of which increases the stiffness of the whole
circuit. The power source is assumed to be an ideal flow source with constant pressure. It
is composed of a hydraulic accumulator, pump, pressure relief valve, and tank. To reach
the tank, the hydraulic fluid flow passes through a two-way control valve and two orifices
after the valve. One of the orifices is an ordinary sharp-edged orifice, whereas the other
is a 2/2 directional control valve, the opening of which is controlled by signal Ud . Pres-
sure in the circuit under consideration can be integrated from the following continuity
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equations of volumetric flow:

ṗ1 =
Be

V1
(Q1 −Qt) (3.1)

ṗ2 =
Be

V2
(Qt −Qe1 −Qe2) (3.2)

where Be is the effective bulk modulus of oil, V1 and V2 are volumes of pipelines, where
V1 is a small volume between the pressure compensator and control throttle, Q1 and Qt
are volumetric flows through the pressure compensator and control throttles, respectively,
and Qe1 and Qe2 are orifice and directional control valve volumetric flows, respectively.
Volume flows Q1 and Qt can be obtained as follows:

Q1 = K
√

|ps − p1|sign(ps − p1) (3.3)

Qt = kt
√
|p1 − p2|sign(p1 − p2) (3.4)

where ps is the supply pressure, K and kt are the semi-empirical flow coefficients for the
pressure compensator throttle and for the control throttle, respectively, which are inte-
grated from the following differential equations:

K̇ =
C5 − p1 + p2 − (C1 +C2(ps − p1))K

C3
(3.5)

k̈t = (Ue −C9)C6C2
7 −2k̇tC8C7 − ktC2

7 (3.6)

where C1, C2, C3, C5, C6, C7, C8, C9 are empirical constants (Handroos and Vilenius,
1991) and Ue is the signal applied to control the throttle, in other words, throttle opening.
Volume flows Qe1 and Qe2 are obtained according to the following flow equations:

Qe1 = k1
√

p2 − pt (3.7)

Qe2 = k2
√

p2 − pt (3.8)

where k1 and k2 are semi-empirical flow coefficients for the orifice and directional control
valve, respectively, and pt is the pressure in the tank. The initial values and constants of
the system described in the following equations are shown in Table 3.1.
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Table 3.1: Circuit 1 parameters

Be 1.5·109 Pa C1 4.65·107

V1 1.0·10−5 m3 C2 -1.79·104

V2 1.0·10−3 m3 C3 4.0·1011

k1 5.62·10−7 C5 1.02·106

k2 5.73·10−7 C6 5.26·10−7

pt 0 Pa C7 200
K 0.05·10−9 C8 0.45
kt 1.0·10−7 C9 1.2

3.2 Circuit 2: Hydraulic cylinder controlled by a directional control
valve

The second circuit under consideration is the practical fluid power system with a more
complex architecture and which is applicable for real-time simulation. The circuit contain
two-chamber, double-acting hydraulic cylinder with a mass attached to the end of the
horizontal cylinder’s rod. The mass is not totally fixed, having one degree of freedom
to slide with the cylinder piston’s movements. The control of the cylinder occurs by
the 4/3-proportional directional control valve. The pressure in the system is supported
by the constant pressure pump, which is assumed to be an ideal flow source. A pressure
compensator is also used in the circuit between the pump and the directional control valve.
All the components in the system are connected with the hydraulic pipes of different
volumes.

The circuit contains one extremely small pipe volume, located between the pressure com-
pensator and the directional control valve. Fig. 3.2 depicts the whole circuit; the small
volume is denoted as Vv. All the initial and constant parameters of the described system
are listed in Table 3.2. The mathematical model of the circuit is represented with vari-
ous differential and algebraic equations. Activation of the circuit occurs by the applied
voltage signal U , obtained from the following equation:

Üs = Kvω
2
nU −2ζ ωnU̇s −ω

2
nUs (3.9)

where Kv is the valve gain, Us is the signal proportional to the valve spool displacement,
ζ is the valve damping ratio, and ωn is the natural angular frequency. The volumetric
flow Qv through the throttle of the pressure compensator is calculated according to a
semi-empirical approach, expressed by following algebraic and differential equations, as
in (Handroos and Vilenius, 1991):
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Figure 3.2: Circuit 2 schematic (Ustinov, Wu, and Handroos, 2022).

Qv = K
√

ps − pv,

K̇ =
1

C3
(C5 − pv + pshuttle − (C1 +C2(ps − pv))K)

(3.10)

where K is the semi-empirical flow coefficient, C1, C2, C3, and C5 denote empirical con-
stants (Handroos and Vilenius, 1991), ps and pv are the constant pump pressure and the
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pressure in small volume between the pressure compensator and directional flow con-
trol valve, respectively. The output pressure of the shuttle valve between way A and B
(Fig. 3.2) pshuttle is dependent on the maximum value of pressures p1 and p2 and can be
expressed as: pshuttle = max(p1, p2).

The volume flow rates Q1 and Q2 of the 4/3-proportional directional control valve are cal-
culated with the use of the turbulent orifice model with a triangular groove cross-section,
as follows:

Q1 =





Cν(Us −Ud)
√
|pv − p1|sign(pv − p1),Us ≥Ud

Cν(Us −Ud)
√
|p1 − pt |sign(p1 − pt),Us ≤−Ud

0,otherwise

Q2 =





−Cν(Us −Ud)
√
|p2 − pt |sign(p2 − pt),Us ≥Ud

−Cν(Us −Ud)
√
|pv − p2|sign(pv − p2),Us ≤−Ud

0,otherwise

(3.11)

where Cν is the flow constant that accounts for cross-sectional areas and the geometry of
the valve orifices, Ud is the insensitivity area for the applied signal, and p1, p2, pv, and
pt are the pressures in two cylinder chambers, the pressure in small volume Vv, and the
pressure in the tank, respectively.

Pressures in the system are integrated from the continuity equations of volumetric flow in
accordance with the lumped-element modeling, as follows:

ṗ1 =
Be1

V1

(
Q1 −A1ẋ

)

ṗ2 =
Be2

V2

(
−Q2 +A2ẋ

)

ṗv =
Be3

Vv

(
Qv −Q3

)
(3.12)

where Vv is the small volume between the pressure compensator and directional control
valve, Qv is the volumetric flow rate through the throttle of pressure compensator, ẋ is the
sliding speed of the piston, A1 and A2 are cross-sectional areas for two chambers of the
cylinder, V1 and V2 are volumes of the pipes and cylinder chambers in way A and way B,
respectively. Be1, Be2, and Be3 are effective bulk moduli for each pressure in the circuit,
which can be represented as follows:

Bei = a1Emax log
(

a2
pi

pmax
+a3

)
(3.13)

where Emax is the maximum bulk modulus of the oil, pmax is the maximum pressure in the
system, pi denotes pressure corresponding to the specific bulk modulus, and a1, a2, and
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a3 are the empirical constants (Jelali and Kroll, 2003). Volumes V1 and V2, in its turn, are
calculated as follows:

V1 = A1x+Vdead

V2 = A2
(
Sc − x

)
+Vdead

(3.14)

where Sc is the full stroke of the cylinder, x is the position of the cylinder piston, and
Vdead is the dead volume, which represents the pipelines volume. The outlet flow Q3 from
(3.12) is defined based on the valve position, which can be determined as follows:

Q3 =





Q1,Us ≥Ud
−Q2,Us ≤−Ud
0,otherwise

(3.15)

The equation of motion for the system with a total force acting on it can be represented
by the following relation:

Ftot = p1A1 − p2A2 −Fµ = mẍ (3.16)

where Fµ denotes friction between the walls of the cylinder and piston, m is the mass of
the load attached to the end of the piston’s rod, and ẍ is the acceleration of the piston. The
friction model used for the simulation is based on the LuGre friction model, described in
the following works (Canudas de Wit et al., 1993; Canudas de Wit et al., 1995; Olsson,
1996). LuGre model can be introduced with the following set of equations:

ż = ẋ− |ẋ|
g(ẋ)

z

g(ẋ) =
1

σ0

(
Fc +(Fs −Fc)e

(−| ẋ
vs |)

2)

Fµ = σ0z+σ1ż+ kvẋ

(3.17)

where Fµ is the total friction force; z is the non-measurable internal state, Fc is the
Coulomb friction force, ẋ is the sliding velocity of the piston, vs is the sliding speed
coefficient, Fs is the static friction force, kv is the viscous friction coefficient, and σ0 and
σ1 are the flexibility and damping coefficients, respectively.

Table 3.2: Circuit 2 parameters

ps 140×105 Pa C1 4.65×107 A1 8.04×10−4 m2 Cv 2.315×10−9

p1 9×105 Pa C2 −1.79×104 A2 4.24×10−4 m2 Ud 2 V
p2 9×105 Pa C3 4.0×1011 m 200 kg Kv 0.99
pv 9×105 Pa C5 106 Vdead 1.0×10−3 m3 ωn 331 rad/s
pt 9×105 Pa K 0.05×10−9 Vv 1.0×10−5 m3 ζ 0.62
Sc 1 m σ0 320 N/m kv 1.28×103 Ns/m Fc 2.15×106 N
x0 0.75−1 m σ1 6.368 Ns/m vs 347 m/s Fs 1.1376×1010 N
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4 Summary of research findings

This section of the present work demonstrates the methods and models that were de-
veloped and studied during the preparation of this dissertation. Advanced methods in-
clude The Advanced Pseudo-Dynamic solver (AdvPDS), the Method of Multiple Scales
(MMS), and the Hybrid method of modeling and simulation of fluid power circuits, which
uses the Recurrent Neural Network (RNN) to substitute the areas with small volumes
with the artificial neural network. The results of computer simulations of all the advanced
methods are provided and discussed in detail. All the simulation results for the study
were produced in MATLAB 2020 Mathworks software in an environment with the fol-
lowing characteristics: Intel Core i5-8400 CPU, 2.80 GHz with 8 GB of RAM, running
OS Windows 10 64-bit.

4.1 Advanced Pseudo-Dynamic solver

4.1.1 Description of the solver

Advanced Pseudo-Dynamic Solver or AdvPDS is solver that is initially developed and
presented in Publication I. This solver belongs to the family of iterative implicit solvers.
AdvPDS is designed to find the pressure of small fluid volumes at relatively high simu-
lation speeds, compared to the traditional mathematical models and solvers. The solver
was developed on the basis of the classical Pseudo-Dynamic Solver, described earlier in
Section 2 and differs from it only in two features (J. Malysheva, Ustinov, and Handroos,
2021):

1. Consistency - Volumetric flow calculations are moved into the inner loop of the
solver

2. Adaptivity - Adaptive criteria of convergence is applied

AdvPDS in its current form was developed during the tests of classical Pseudo-Dynamic
Solver in different fluid power circuits, particularly, in both Circuit 1 and 2. The solver
was used with the aim of speeding up the simulation process of the circuit. During the sim-
ulation of Circuit 1, with the Pseudo-Dynamic solver, it was investigated that sometimes
it takes a lot of time to use this solver due to its iterative nature. An unstable response
was also obtained. Empirically, through the tests of the solver, it was investigated as to
whether the solver may use more iterations when the volumetric flows are calculated in
the Outer loop of the Pseudo-Dynamic solver. In addition, to overcome this problem, it
was decided to make the calculation of the whole pressure more consistent by moving
flow equations into the Inner loop of the solver.

Another feature of AdvPDS, compared to classical Pseudo-Dynamic Solver, is the use
of adaptive criteria of convergence. The adaptivity of the criteria can be explained by the
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Figure 4.1: Pressure at different criteria of convergence in low-pressure areas (J. Maly-
sheva, Ustinov, and Handroos, 2021).

usage of different numbers for the criterion at different levels of pressure in the fluid power
circuit. Experimentally, it was established that using classical Pseudo-Dynamic Solver
with the first modification creates fluctuations of pressure at low-pressure levels (less
than 22 bar for both Circuit 1 and Circuit 2). The effects of the criteria of convergence
on pressure fluctuations was investigated and studied through the experiments and are
illustrated in Figure 4.1. The experiments showed that the use of the smaller number
of criterion in the inner loop of the solver causes fewer fluctuations in pressure, making
the model more accurate, as the reference traditional mathematical model. Otherwise,
the bigger criterion increases the amplitude of pressure fluctuations, increasing the model
average error (J. Malysheva, Ustinov, and Handroos, 2021).

However, use of the small criterion can slow down the simulation due to the need for
more iterations inside the inner loop to reach the convergence. To overcome this problem,
it was decided to make the criteria adaptive, which allows small criteria usage only at low-
pressure levels, which should be less than 22 bar. At higher levels of pressure, the bigger
criterion should be used. The adaptivity of the criterion allows the system to be more
accurate and fast enough to be considered for real-time and even faster than real-time
applications. This principle of a trade-off in accuracy-speed relation makes the AdvPDS
one of the most efficient solvers for solving pressures in small fluid volumes.

The algorithm of the inner loop of AdvPDS differs from the classical Pseudo-Dynamic
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Solver and is presented in Algorithm 1. Circuit 2 was taken as the example for demon-
stration of the algorithm. The circuit contain small pipe volume Vv between the pressure
compensator and directional control valve. It means that the pressures p1 and p2 are cal-
culated with usual integration subroutine in the outer loop, while pressure in small volume
pv is calculated in the inner loop of AdvPDS. The inner loop starts with the calculations of
volumetric flows Q3 and Qv. After that, the derivative of pressure ṗv is calculated accord-
ing to the continuity equation of volumetric flow. Pressure pv is integrated with inner loop
integrator time step ∆ti, which differs from the outer loop time step, using classical ex-
plicit integrator subroutines (e.g., Runge-Kutta 4th order). Then, the pressure difference
∆pv of the current and previous iteration is calculated as follows(J. Malysheva, Ustinov,
and Handroos, 2021):

∆pv = piter
v − pprev

v (4.1)

If pressure is higher than the predetermined low pressure limit p low limit , the big criterion
of convergence pv tol high should be used. Vice versa, the small criterion is used in the case
of a low pressure level. However, in both cases, if the criterion is satisfied, the last values
of pressure pv and flow Qv are returned to the outer loop and the inner loop break. If not,
the loop starts the next iteration with saving the value of pressure as pprev

v . In this case,
the calculation of the pressure and flow will continue until the criterion of convergence,
which has to be smaller than the iteration pressure difference ∆pv, is satisfied.
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Algorithm 1 Inner loop of AdvPDS(MATLAB)
Inputs: ∆ti, ti max, Vpseudo, Be3, p1, p2, pprev

v , (Previous outer loop value of pv)
1. ti0 = 0;
Inner Loop:
2. for ti = ti0 : ∆ti : ti max: (From start to end simualtion time with time step of ∆ti)
3. Calculate Q3, Qv
4. Calculate ṗv (piter

v at current iteration)
5. Integrate ṗv (piter

v at current iteration, integrator, e.g., Runge-Kutta 4th order)
6. Calculate: ∆pv = piter

v - pprev
v (Pressure difference ∆pv)

7. if (piter
v < p low limit):

8. if (∆pv < pv tol low):
9. return pv, Qv (Return values to the outer loop)
10. break (Break the inner loop)
11. else:
12. pprev

v = piter
v (Save value of pprev

v for the next iteration)
13. continue (Continue loop)
14. end
15. else:
16. if (∆pv < pv tol high):
17. return pv, Qv (Return values to the outer loop)
18. break (Break the inner loop)
19. else:
20. pprev

v = piter
v (Save value of pprev

v for the next iteration)
21. continue (Continue loop)
22. end
23. end
24. end
Outputs: pv, Qv

4.1.2 Simulation results

To demonstrate the results of the simulation experiments, also partially described in Pub-
lication I, both Circuit 1 and Circuit 2, described in Section 3, were selected for the
experiments. To show the advantages and efficiency of AdvPDS, the classical or refer-
ence Lumped-element modeling-based models of Circuit 1 and Circuit 2 were simulated
and compared with the AdvPDS-based model. The reference and AdvPDS model are
compared in terms of simulation speed and accuracy, which is represented by the Relative
Root-Mean-Square Error (RRMSE), defined as follows:
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Figure 4.2: Input values of ps, Ud , and Ue for simulation of Circuit 1 through the time
(J. Malysheva, Ustinov, and Handroos, 2021).

RRMSE(%) =

√
1
N

N
∑

i=1
(xi − xm

i )
2

N
∑

i=1
(| xi |)

×100 (4.2)

where N is the number of points, xi is the value of the reference model at the operating
point, and xm

i is the value of any comparable model at the same point.

Circuit 1 was simulated within 100.5 s, using both the reference and AdvPDS-based mod-
els. Inputs for the circuits were ps, Ud , and Ue, which were randomly distributed through
the simulation time in ranges between 140-200 bar, 0 and 1 Volt, and -10 and 10 Volts,
respectively. The inputs of the circuit are depicted in Figure 4.2. The simulation of the
reference model held at a time step of 1.0× 10−6 s that showed a numerically stable re-
sponse of the system and was the largest time step possible to use. The simulation of 100.5
s, using this model, took around 5 h of real time, which is very slow, and it is definitely
impossible to simulate the model in real-time or faster than real-time applications.

The stiffness of Circuit 1 was reduced by implementation of AdvPDS in the model of the
circuit. Numerical stiffness, that appears in the stiff differential equation of pressure p1 in
a small volume of 1.0×10−5 m3, was eliminated by embedding equations of pressure p1
and volumetric flow Qt to the inner loop of the AdvPDS-based model. Other differential
equations in the model were integrated as usual with the Runge-Kutta 4th order integration
subroutine. According to several experimental tests, the adaptive criteria for AdvPDS was
selected as 300/10 Pa, where 300 Pa was used for high levels of pressure and 10 Pa for low
levels of pressure. Due to the elimination of the numerical stiffness in the AdvPDS-based
model, integrator time steps of 1.0×10−4 s and 1.0×10−5 s were set for the outer loop
and inner loop, respectively, which made the model work much faster than the reference
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Figure 4.3: Pressure p1 responses comparison of Reference model and AdvPDS-based
model with enlarged areas (J. Malysheva, Ustinov, and Handroos, 2021).

model with a smaller time step of 1.0× 10−6 s. In total, it took only 147.98 s of real
time for the AdvPDS-based model to complete the simulation of 100.5 seconds, which is
around 122 times faster than it took for the reference model.

The responses of the pressure p1, built up in the small volume in the AdvPDS model and
pressure p1 in the reference model, were plotted and compared in Fig. 4.3. The figure
also displays enlarged areas of the plot, where one can observe the high accuracy of the
AdvPDS-based model, due to the coincidence of the plot lines. A high accuracy of the
response can be associated with use of adaptive criteria of convergence in the inner loop
of AdvPDS, which allows simulation of the circuit without loss of accuracy in the low
pressure areas. The overall error of the pressure p1 of the circuit represented by RRMSE is
only 0.6186 %, which proves that the AdvPDS-based model achieves a trade-off between
a high simulation speed and very high accuracy of the model.

Circuit 2 was simulated within 20 s with an integrator time step of 1.0× 10−5 s for the
reference model. The integrator time step was selected due to the numerical stability of
the system and was the maximum possible time step for Circuit 2. The AdvPDS-based
model was run at an integrator time step of 1.0×10−4 s for the outer loop of the solver.
The inner loop integrator time step was selected as 1.0×10−4 s, which gave a numerically
stable result for the system. The input signal of the model varied between -5 and 8 V, and
its propagation through the time is visible in Figure 4.4. The input is repeatable and each
change of voltage occurs every 1 s of time.

The inner loop of AdvPDS was used to substitute the equations used for calculations of
pressure pv built up in the small volume Vv due to its numerical stiffness. To select the
adaptive criteria of convergence for the inner loop in the model, several tests of single-
criterion AdvPDS were performed. The results of the tests are displayed in Table 4.1.
From the results, it is seen that the difference in the system speed with the use of criteria
value from 200 Pa to 1000 Pa is not significant; however, the accuracy of the system
with criteria of 200 Pa is better than the accuracy of systems with a higher criterion of
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Figure 4.4: Input signal for Circuit 2 through time.

convergence (e.g., 300-1000 Pa). And vice versa, the accuracy of the system with a
criterion of 50 Pa is not significantly worse than the accuracy of the system with a criterion
of 10 Pa. Nevertheless, the speed of the system with the criterion of 50 Pa is much better
(systems with criteria of 50 Pa and 10 Pa are simulated for real 95.94 s and 167.63 s,
respectively). According to the test, it was decided to select adaptive criteria of 200/50
Pa, where the first criterion is used for high pressures in the system (higher than 22 bar)
and 50 Pa criterion is used for low pressures (lower that 22 bar). This means that the
system will be fast enough, and, at the same time, its accuracy will be at a high level in
low-pressure areas.

The response of the pressure pv built up in the small volume, as well as the cylinder po-
sition piston xs against the responses obtained with the reference model, are plotted in
Fig. 4.5. The obtained responses of the AdvPDS-based model in pressure and cylinder
piston position were accurate in a high level and differed from the reference responses
with RRMSEs of 4.6835% and 0.2117% for the pressure pv and cylinder piston posi-
tion xs, respectively. As in the simulation of Circuit 1, the high level of accuracy of the
AdvPDS-based model was achieved by the use of adaptive criteria of convergence in the



46 4 Summary of research findings

Table 4.1: Relationship between criteria value, simulation time, and calculation accuracy
for the AdvPDS with a single criterion

Criterion, Pa Simulation time, s RRMSExs, %
10 167.63 0.2099
20 157.09 0.2120
50 95.94 0.2136
100 27.57 0.2155
200 24.60 0.2185
300 23.90 0.2213
400 23.50 0.2239
500 23.94 0.2263
600 23.13 0.2289
700 24.27 0.2313
800 23.40 0.2334
900 23.81 0.2358
1000 22.80 0.2379

Figure 4.5: Piston position xs and pressure pv responses comparison of Reference model
and AdvPDS-based model for Circuit 2

inner loop, which provided more precise results in numerical calculations of pressure in
the low-pressure areas. In addition to the high accuracy of the AdvPDS-based model,
the simulation speed of the circuit improved almost 10 times, compared to the reference
model. For instance, the usage of the AdvPDS model with criteria of 200/50 Pa took only
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Table 4.2: Simulation results of Circuit 1 and Circuit 2 using the reference model and the
AdvPDS-based model (J. Malysheva, Ustinov, and Handroos, 2021)

Circuit Solver Real Time, Time Step (s) Simulation RRMSE
seconds (outer/inner) Time w.r.t. Ref.

1 Reference 100.5 10−6/− ∼ 5 h −
AdvPDS 100.5 10−4/10−5 147.98 s RRMSEp1 = 0.6186%

2 Reference 20 10−5/− 202.99 s −
AdvPDS 20 10−4/10−4 24.3 s RRMSEpv = 4.6835%

RRMSExs = 0.2117%

24.3 s of real time to simulate 20 s; however, for the reference model, it took 202.99 s.
The results of the simulation of both Circuit 1 and Circuit 2, using the reference and the
AdvPDS model, are also presented in Table 4.2.

4.2 Method of multiple scales

Another efficient method of numerical stiffness elimination, which works coupled with
the Singular Perturbation Theory, is the Method of Multiple Scales (MMS). The method
and its derivation are described in detail in Publication II.

The SPT-based method is able to give the steady-state solution of the systems only in
the largest time scale, while the system should display the behavior of various dynamic
scales. For each scale that can be appealed as an independent variable, a set of equations
can be reproduced instead of one. For example, t and εt can be two independent variables,
each of them representing a scale of time. However, the SPT-based fluid power model
returns the steady-state response, the accumulative error generated due to the smaller
scales creates the deviation of the response comparing to the actual situation, especially
in cases where the dynamic behavior of systems cannot be neglected. To overcome the
accumulative error of the SPT-based model, the special corrector factor should be used
(Kiani-Oshtorjani, Mikkola, and Jalali, 2019). Another alternative of using the corrector
factor is to develop a more precise model which will operate without any modifications.
For instance, the Method of Multiple Scales (MMS) can be utilized to derive a fluid power
model operating on the small hydraulic volumes. According to the method, the new
independent time variables can be introduced as (Kiani-Oshtorjani, Ustinov, et al., 2020):

Tn = ε
nt n = 0,1,2, ... (4.3)

Thus, all derivatives in the equation can be rewritten in the following way:

d
dt

=
dT0

dt
∂

∂T0
+

dT1

dt
∂

∂T1
+ ... (4.4)
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In addition, one can assume that the solution of the equation can be written as:

pi(t,ε) = p0(T0,T1, ...)+ ε p1(T0,T1, ...)+O(ε2) (4.5)

It is important note that the number of time scales is a function of the accuracy that should
be achieved. In case of expanding the solution until the 2nd order O(ε), the time scales
of T0 and T1 are required. Replacement of Eq.(4.5) to (4.4) and then inserting the output
to Eq. 2.1 yields to:

( ∂

∂T0
+ ε

∂

∂T1
+ ε

2 ∂

∂T2

)(
p0 + ε p1 + ε

2 p2
)
=

Be

Vi

(
Qi− 1

2
−Qi+ 1

2

)
(4.6)

On the contrary, volumetric flows Qi− 1
2

and Qi+ 1
2

are the functions of pressure built up in
the small pipe volume. If these volumetric flows are computed based on the SPT pressure,
they will have an error. Therefore, they have to be calculated by applying the exact value
of pi. Considering Eq. (2.2), the Qi+ 1

2
can be obtained as follows:

Qi+ 1
2
=CcA

√
pi − pi+1 =CcA

√
p0 − pi+1 + ε p1 + ε2 p2 (4.7)

Consequently, by getting p0 − pi+1 out of the square root and by using the Taylor series
for

√
1+ x ≊ 1+ x

2 − x2

8 in which x < 1, it is concluded:

Qi+ 1
2
=CcA

√
p0 − pi+1

(
1+

p1ε + p2ε2

2(p0 − pi+1)
− p2

1ε2

8(p0 − pi+1)2

)
=

Q̄i+ 1
2

(
1+

p1ε + p2ε2

2(p0 − pi+1)
− p2

1ε2

8(p0 − pi+1)2

) (4.8)

in which Q̄i+ 1
2
=CcA

√
p0 − pi+1 is the volumetric flow computed based on the SPT-based

pressure and further mentioning as perturbed volumetric flow. The similar statement is
actual for Qi− 1

2
resulting in the following dependence:

Qi− 1
2
= Q̄i− 1

2

(
1− p1ε + p2ε2

2(pi−1 − p0)
− p2

1ε2

8(pi−1 − p0)2

)
(4.9)

Substitution of the volumetric flows in Eqs. (4.8) and (4.9) in Eq. (4.6) and separating the
equations of order O(ε0), O(ε1), and O(ε2) sum up to the following equations:
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O(ε0) :
∂ p0

∂T0
=

Be

Vi

(
Q̄i− 1

2
− Q̄i+ 1

2

)
(4.10)

O(ε1) :
∂ p1

∂T0
+

Be

Vi
p1

( Q̄i− 1
2

2(pi−1 − p0)
+

Q̄i+ 1
2

2(p0 − pi+1)

)
=−∂ p0

∂T1
(4.11)

O(ε2) :
∂ p2

∂T0
+

Be

Vi
p2

( Q̄i− 1
2

2(pi−1 − p0)
+

Q̄i+ 1
2

2(p0 − pi+1)

)
=

Be

Vi

( Q̄i+ 1
2

p2
1

8(p0 − pi+1)2 −
Q̄i− 1

2
p2

1

8(pi−1 − p0)2

)
− ∂ p1

∂T1
− ∂ p0

∂T2

(4.12)

Equation (4.10) is equivalent in the SPT-based model due to the existence of small pipe
volume Vi, producing pressure in SPT equation as obtained in Eq. (2.12) as p0 =

pi+1+α pi−1
1+α

.

As a result, ∂ p0
∂T1

= 0, also recalling the Q̄i− 1
2

and Q̄i+ 1
2

relations, Eq. (4.11) will be re-
solved as:

p1 = Λ(T1)exp
(
−
∫ T0

0

Be

Vi

[ Q̄i− 1
2

2(pi−1 − p0)
+

Q̄i+ 1
2

2(p0 − pi+1)

]
dT0

)
(4.13)

Considering d p1
p1

= d(ε p1)
ε p1

, and expecting the constant pressure drop through the small pipe
volume

√
pi−1 − pi+1, Eq. (4.13) is determined as follows:

∂ p2

∂T0
+

Be

Vi
p2

( Q̄i− 1
2

2(pi−1 − p0)
+

Q̄i+ 1
2
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)
=
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2
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+

Q̄i+ 1
2

8(p0 − pi+1)

)
Λ
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−2
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2
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∂Λ
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2
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dT0

)
(4.14)
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The terms on the right sight of Eq. (4.14) are secular, which denotes the growing of these
terms to infinity with time, and it means that they have to be assigned to zero. Thus, we
can get:

∂Λ

∂T1
−Λ

2 Be

Vi

( Q̄i− 1
2

8(pi−1 − p0)
+

Q̄i+ 1
2

8(p0 − pi+1)

)
exp
(
−
∫ T0

0

Be

Vi

[ Q̄i− 1
2

2(pi−1 − p0)
+

Q̄i+ 1
2

2(p0 − pi+1)

]
dT0

)
= 0

(4.15)

As a result:

Λ =− 1
f T1

(4.16)

in which f = Be
Vi

(
Q̄

i− 1
2

8(pi−1−p0)
+

Q̄
i+ 1

2
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)
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(
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Q̄
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2
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+

Q̄
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2
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]
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)
.

Substituting Eq. (4.16) into (4.13) yields to the following:

p1 =− 1
T1

8Vi

Be

( Q̄i− 1
2

(pi−1 − p0)
+

Q̄i+ 1
2

(p0 − pi+1)

)−1
(4.17)

By considering T1 = εt and combining p0 and ε p1 according to Eq. (4.5), the pressure
built up in small volume pi is taken as:

pi =
pi+1 +α pi−1

1+α
− 1

t
8Vi

Be

( Q̄i− 1
2

(pi−1 − p0)
+

Q̄i+ 1
2

(p0 − pi+1)

)−1
(4.18)

This means the dependence of SPT-based model deviation from the precise solution,
mainly on the pressure drop pi−1 − pi+1, bulk modulus Be, and volume Vi, which can
be disclosed by the Eq. 4.18. In the case where the pressure drop passing through the
small volume tends to zero pi−1 − pi+1 → 0 denotes that there is no pressure change from
pi−1 to pi+1, then ε p1 → 0 then the SPT-based model can run without error, performing
as a precise solution (Kiani-Oshtorjani, Ustinov, et al., 2020).

The similar statement is correct for bulk modulus and the pipe volume size, which means
that the SPT-based model is more precise in calculations if the size of the small volume
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tends to zero as ε p1 → 0 if Vi → 0. Finally, the substitution of the stiff differential equa-
tion of pressure in a fluid power circuit with Equation 4.18 should give a more accurate
response of this pressure in simulation.

4.2.1 Simulation results

To demonstrate the features and benefits using MMS in fluid power circuit computer
simulation, several simulations of numerically stiff Circuit 2, with three different input
signals, were performed. Results of all three simulations are also presented in Publication
II. The input signals used in all simulations were as follows: sin(0.25t), sin(0.75t), and
u(t). All three sets of input signals were applied to the reference, or original model, SPT-
based model and MMS-based model. All the models were simulated for 200 s at every
set of inputs.

The first simulation of all three models was made at the input signal of sin(0.25t). The
largest possible integrator time step of the reference model with this input signal was
10−4, due to the stiffness of the differential equation of pressure pv in small volume Vv.
The same integrator time step was used for the SPT-based model. In the case of the
MMS-based model, it was possible to enlarge the integrator time step to 4×10−4 without
making the model numerically unstable and saving a very high level of accuracy, which
is expressed through the RRMSE, defined in Eq. 4.2 and equals 1%. In the case of the
SPT-based model, the response is not accurate enough (RRMSE = 10.9%), which can
also be observed in Figure (4.6a), where the cylinder piston position x for three models is
plotted. The perturbed model requires a corrector factor for the flow rate coming out of
the small volume to work in a reliable way, otherwise the accumulative error will make
the model numerically unstable. The MMS-based model does not need a corrector factor.
The RRMSE through time is plotted in Figure (4.6b). This plot proves the existence of
the accumulative error in the case of the SPT-based model, while the MMS-based model
has a smooth and low error response.

The responses of pressures p1 and p2 inside cylinder chambers 1 and 2 are also plotted
in Figures. (4.6c) and (4.6d), respectively. The plots show that the MMS-based model
pressure response is close to the response of the reference model, whereas the pressures
obtained by the SPT-based model is underestimated compared to the reference model. In
addition, it is important to note the possibility of increasing the integrator time step of the
MMS-based model in order to run it faster. This means that a simulation with a similar
input signal (sin(0.25t)) can be performed at an integrator time step of 5×10−5 s for an
MMS-based model yielding the increase of RRMSE to 1.64%, which can also be found
in the second row of Table (4.3). This can be a good trade-off between the simulation
speed and accuracy of the simulation, and as a result, it is possible to adjust the time step
to find the best match for both simulation speed and accuracy.

The second simulation of reference, the SPT-based and MMS-based models, was held us-
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(a) (b)

(c) (d)

Figure 4.6: The results of the simulation with the input signal of sin(0.25t) (a) piston po-
sition comparison between original(reference) model, SPT-based, and MMS-based model
and (b) their RRMSE (c) pressure in cylinder chamber 1 p1 and (d) pressure in cylinder
chamber 2 p2 (Kiani-Oshtorjani, Ustinov, et al., 2020).

ing an input signal of sin(0.75t). The values for integrator time steps remained the same
as in the first simulation, and were 5× 10−4 s, 5× 10−4 s and 4× 10−4 s for reference,
SPT-based, and MMS-based models, respectively. The response of cylinder piston posi-
tion x can be observed in Figure (4.7a). As in the first simulation with an input signal of
sin(0.75t), one can observe the accurate response of the MMS-based model in compari-
son with the reference model, while the SPT-based model, after 30 sec, started to deviate
with growing accumulative error. The error can be visualized in Fig. 4.7b in the form of
RRMSE for MMS-based and SPT-based models. By the 200-th second of the simulation,
the RRMSE of the SPT-based model accumulates to 10.6%, while the response of the
RRMSE of the MMS-based model is smooth through the time and equals to only 0.6%.

The third simulation of the models was performed using a pulse input of u(t), where
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(a) (b)

Figure 4.7: The results of the simulation with the input signal of sin(0.75t) (a) piston
position comparison between original(reference) model, SPT-based model, and MMS-
based model and (b) their RRMSE (Kiani-Oshtorjani, Ustinov, et al., 2020).

the signal is varied from -10 to 10 V, and it is plotted in Fig. (4.8a). The use of the
pulse input allowed for the running of the stiff reference model at a very small time step
of 5× 10−5 s due to the numerical instability of the model with larger integrator time
steps. At the same time, it was possible to run the SPT-based model with a maximal
time step of 1×10−4 s. The MMS-based model in its turn was able to run at the largest
possible integrator time step of 1 × 10−3 s. The response of the pressure in cylinder
chamber p1 can be observed from Figure (4.8b) for reference, SPT-based and MMS-based
models. The plot shows that the MMS-based model pressure response almost repeats
the reference model pressure response, while the SPT-based model does not perform as
accurately as the MMS-based model. Moreover, from the position and RRMSE plots,
depicted in Fig. (4.8c) and Fig. (4.8d) respectively, one can observe that the MMS-based
model is simulated accurately with an extremely small RRMSE of 0.09% with respect
to the reference model. In comparison with the SPT-based model, where the RRMSE is
accumulated to 13.2% by the end of the simulation, the MMS-based model has almost
negligible deviation. The possibility to run the MMS-based model at very large integrator
time step makes it an acceptable choice for real-time or faster than real-time simulation.
In addition, the accuracy of the model is very high. Finally, the results of all simulations
of the three above-mentioned models, in the form of the difference in integrator time step
and RRMSE, can be observed in Table 4.3.

4.3 Hybrid method of simulation utilizing recurrent neural network
The stiffness of a fluid power circuit in the presence of small volumes can be eliminated
with a so-called hybrid model of such a circuit, presented in Publication III. The main
difference of the hybrid model compared to the traditional mathematical model is the
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(a) (b)

(c) (d)

Figure 4.8: (a) Pulse input u(t) from -10 to 10 Volts and (b) pressure in cylinder chamber
1 p1 (c) the piston position obtained by small time step referred to as original (refer-
ence) model, SPT-based model, and the MMS-based model (d) the RRMSE of SPT-based
and MMS-based models with respect to the original (reference) model (Kiani-Oshtorjani,
Ustinov, et al., 2020).
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Table 4.3: Results of comparison of reference, SPT-based and MMS-based model (Kiani-
Oshtorjani, Ustinov, et al., 2020)

Input signal Time step (s) RRMSE %
U
Ud

Reference SPT-based MMS-based SPT-based MMS-based
model model model model model

sin(0.25t) 10−4 10−4 4×10−4 10.9 1.0
sin(0.25t) 10−4 10−4 5×10−4 10.9 1.64
sin(0.75t) 10−4 10−4 4×10−4 10.6 0.6

u(t) 5×10−5 10−4 10−3 13.2 0.09

Figure 4.9: Schematic representation of hybrid model in simple fluid power system

presence of an Artificial neural network (ANN), substituting the stiff differential equation
of pressure. The schematic representation of the hybrid model is represented in Figure 4.9.
The most efficient ANN dealing with dynamic systems are RNN, and the architectures are
described in more detail in 2.4. The RNN should be trained based on the original fluid
power circuit simulation parameters. This section gives an example of the development
of hybrid models in more detail.

4.3.1 Hybrid model development example

The features of selection of RNN architecture for fluid power system simulation were
also described in J. Malysheva, Li, and Handroos, 2020. According to the author, the data
obtained from the simulation model of the circuit similar to Circuit 3 does not contain real
system noise, and the use of a large number of RNN parameters can affect the simulation
time and speed. At the same time, the maximal accuracy of the system with the embedded
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Figure 4.10: Structure of the NARX RNN used in hybrid model (Ustinov, Wu, and Han-
droos, 2022).

RNN is required. In such a case, the NARX RNN is the most suitable architecture of
neural network for fluid power system simulation, even in the case of the simulation of
one stiff differential equation, since it is more accurate than NFIR due to the use of output
data as feedback. Ultimately, the NARX architecture provides a trade-off between speed
and accuracy in simulating the final system, which is the main objective of any simulation.
However, other options of RNN architectures can be studied more in future research, and
the selection of the best performance RNN architecture for Hybrid models is still an open
question.

Fig. 4.10 illustrates the basic structure of the NARX RNN that can be used in the model-
ing of the fluid power circuit. Note that the structure of such a network can be different,
and number of neurons and layers should be selected depending on the complexity of the
circuit. In this example, the RNN consists of one input layer with four input values, and
one feedback value that can be used only during the training of the network, two hidden
layers with 40 neurons, and one output layer with one output activated with a linear func-
tion. Because the system has to be modeled as a mathematical model of one differential
equation of pressure, the number of layers and neurons are manually selected by trial
and error during the training process to ensure the accuracy of the network. The sigmoid
function σ(x) is selected as the activation function for hidden layers of the network; the
function is defined as follows:

σ(x) =
1

1+ e−x (4.19)

where x is the argument of the function σ(x) and e is the Euler’s number.

The whole development of the hybrid model is divided into two stages. The first stage
of development included the collection of the training data and training of the NARX
RNN. The second stage of the development is related to the implementation of the neural
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network to the stiff fluid power circuits from Section 3. In this development example, the
modeling and simulation of the systems were performed in MATLAB R2020a software
in a form of MATLAB code, and the formulation of the RNN was performed through the
embedded MATLAB Deep Learning Toolbox.

4.3.2 Data collecting and training of the RNN

The data collected for the training is based on the simulation results of the practical fluid
power Circuit 2, described in Section 3. The reference system, based on a traditional
mathematical model, was simulated for 3,000 seconds, with an integrator time step of
1.0×10

-5
s and an input voltage that was supplied randomly in a range between -10 and

10 Volts. The integrator time step was selected empirically to ensure the correct response
of the system in the presence of small volume. The data set of 300 million samples was
created from several parameters of the system, where each sample displayed the data of
the parameters obtained at every time step of the simulation. The number of samples was
reduced to 3 million by saving each 100th sample to reduce the computational load of the
computer and provide relatively fast training of the neural network. The input data chosen
for the training were data arrays of volumetric flows, effective bulk modulus of oil, and
the fixed small volume obtained from the simulation of the original system mentioned
above. Pressure in the small volume was also saved and utilized as the output data for the
training of the neural network. This data was chosen for training, validation, and testing
of the neural network. Since all the input data, except the small volume, is variable,
the neural network based on such data will work with any system with similar variable
parameters. In the case of changes of the small volume, new training of the network might
be required (Ustinov, Wu, and Handroos, 2022).

At the beginning of the training, the training data has to be distributed for training, val-
idation, and testing sets, for instance in the proportion of 70/15/15 percent. The input
and output data has to be normalized in a range between -1 and 1 to achieve effective
training results. The NARX RNN is trained multiple times in order to find the appro-
priate number of neurons in hidden layers for the most accurate and effective simula-
tion. The Levenberg-Marquardt algorithm is utilized in the training process as a main
backpropagation-based training algorithm due to its relatively fast training of the network
and accurate results (Wilamowski and Irwin, 2011). The Early-Stopping technique is
also utilized in cases when the generalization stopped improving. The network should be
trained several times, for a maximum of 1,000 epochs with a different number of neurons
in each hidden layer. The results of the training are displayed in Table 4.4. The results
show that the number of neurons affects the training time of the neural network, and at
the same time, the most accurate validation performance was obtained at training 8 and 9
with 40 and 45 neurons in a hidden layer, respectively. Based on the obtained data, the
number of neurons in the RNN was selected to achieve the most accurate result, and the
most accurate network in terms of Mean-Square error (MSE) was selected for the Hybrid
model simulation.
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Table 4.4: Hybrid model development example: results of the training of the NARX RNN
with normalized data (Ustinov, Wu, and Handroos, 2022)

Training Number of neurons Validation stop Mean-Square Error Training time
in hidden layers (Epoch) (MSE)

1 5 472 0.000313 17 min
2 10 474 0.000290 28 min
3 15 1000 0.000241 1 h 19 min
4 20 1000 0.000266 1 h 50 min
5 25 1000 0.000237 2 h 18 min
6 30 1000 0.000248 1 h 58 min
7 35 1000 0.000241 2 h 33 min
8 40 1000 0.000216 3 h 33 min
9 45 1000 0.000229 3 h 39 min

10 50 1000 0.000243 4 h 30 min

In this example, the most accurate network (see Fig. 4.11a and 4.11b) contains 40 neurons
in hidden layers. The validation performance of the network was expressed in the form
of MSE, equal to 0.000216 (normalized data). The training time of the selected network
was 3 hours and 33 minutes.

(a) (b)

Figure 4.11: Hybrid model development example: validation, train and test performance
of the selected NARX RNN (a) full performance between 1 and 1000 epochs (b) a close
look at the performance plot between 800 and 1000 epochs (Ustinov, Wu, and Handroos,
2022).
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4.3.3 Implementation of the RNN in the hybrid model

After the training, the most accurate and fastest network should be implemented in the
code of the traditional or reference mathematical model of the studied fluid power circuit.
The network should be added to the code, for example in the form of a MATLAB function,
as a substitute for the numerically stiff equation with small volume. As a first step, the
traditional mathematical model is simulated to obtain the input dataset for the hybrid
system simulation. The dataset of inputs consists of effective bulk modulus, volumetric
inlet and outlet flows, and small volume.

Note that the simulation of each hybrid system should be performed after obtaining the
inputs for the network, and this means that the simulation of the traditional mathematical
model should be completed and input values should be saved. After that, the hybrid
system can be simulated an unlimited number of times.

The simulation of the hybrid system includes the stage of preprocessing the RNN before
the main model simulation with the use of the data obtained from the previous simulation.
The whole system is automatically simulated using the pressure data obtained from the
RNN preprocessing stage at the corresponding simulation time step (Ustinov, Wu, and
Handroos, 2022).

4.3.4 Simulation results

To demonstrate the advantages of the hybrid model, trained NARX RNN is implemented
to the practical Circuit 2. The goal of the simulation of Circuit 2 is to test the hybrid
model at different input data, to ensure the reliability of the model and to demonstrate the
ability of RNN in the hybrid model to operate correctly despite the input parameters. The
comparison of the hybrid model with the traditional reference model, based on traditional
Lumped-element modeling-based model, should also be done. To examine the hybrid
model, two different sets of input signals (Fig. 4.12a and 4.12b) are applied to Circuit 2.
First, the circuit is simulated for 50 seconds with a randomly distributed input signal in a
range between -10 and +10 volts (Fig. 4.12a). The maximal simulation time step of the
reference model that can be applied to the system is 1.0×10−5 s. The hybrid model runs
at a time step of 1.0×10−4 s, due to the elimination of numerical stiffness of the system
by substitution of stiff differential equation into NARX RNN.

As the result, the actual simulation time for the real 50 seconds is 501.47 seconds for
the reference model. Compared to the simulation time of the hybrid model (53.27 s), the
reference is almost ten times slower. Nevertheless, the simulation time difference between
the two models is associated with the time step difference at the same level of accuracy,
which can be observed among the simulation results in Table 4.5 (see Fig. 4.13).

The responses of pressure pv related to small volume as well as the cylinder piston po-
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(a) (b)

Figure 4.12: Signal U for Circuit 2 simulations: (a) random input signal and (b) repeatable
input signal (Ustinov, Wu, and Handroos, 2022).

Figure 4.13: Circuit 2 responses of cylinder piston position xs and pressure pv at random
input voltage comparing the reference model and hybrid model with utilized RNN (Usti-
nov, Wu, and Handroos, 2022).

sition xs for the reference and hybrid models with a random input signal are illustrated
by plots in Fig. 4.13. The accuracy of the hybrid model in comparison to the reference
is well-observed in the plot. The RRMSE for the reference model defined in (4.2) and
represented in the simulation results (Table 4.5) was calculated for the hybrid system and
equals 0.089% for the cylinder piston position xs and 1.479% for pressure in small volume
pv.

Another simulation of Circuit 2 is performed within 10 seconds, utilizing the repeatable
input signal in a range between -6 and +9 Volts, with a time period of 2.5 seconds. Both
reference and hybrid models of Circuit 2 are simulated. The simulation time steps remain
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Figure 4.14: Circuit 2 responses of cylinder piston position xs and pressure pv at repeat-
ing input voltage comparing the reference system and hybrid system with utilized RNN
(Ustinov, Wu, and Handroos, 2022).

the same for the reference and hybrid models, which are 1.0× 10−5 s and 1.0× 10−4 s,
respectively. The responses of cylinder piston position xs and pressure in small volume pv
are plotted in Fig. 4.14. It is clear from the plot that the hybrid model piston position and
pressure in small volume responses are accurate enough compared to the reference model
responses, with a resultant RRMSE of 0.260% and 2.441% for cylinder piston position xs
and pressure pv, respectively.

The simulation times of the circuit, with a repeatable input signal for the reference and
hybrid models, are presented in Table 4.5. The actual time of hybrid model simulation is
only 9.89 seconds, while the simulation of the reference model requires almost ten times
as much time (102.96 seconds).

At the end of the simulation, it can be concluded that, at both the random and repeatable
sets of input signals, the performance of the hybrid model is stable and accurate despite
the RNN being utilized instead of the stiff differential pressure equation, trained on the
random data obtained from the 3,000-second simulation. Moreover, the simulation time
of the hybrid system is significantly shorter than with the traditional mathematical model.
It means that the conversion of the model, for instance to C++ code, may allow simulating
it in real-time, or even faster than real-time applications.

However, it is also important to note that a hybrid model based on the same neural network
and used to simulate other fluid power circuits may behave differently. For example,
in a simple three-orifice circuit simulation scenario, the simulation speed of the hybrid
model is usually higher than that of the reference model, with a simulation time step of
1.0× 10−3 s and 1.0× 10−4 s for the hybrid and reference models, respectively, but the
rise time slightly increases, as shown in Figure 4.15. This effect is similar to what happens
when increasing the size of a small volume to achieve stable numerical integration. This
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Table 4.5: Circuit 2 simulation results (Ustinov, Wu, and Handroos, 2022)

Input System Real time, Time step, Simulation RRMSE, %
s s time, s

Random Reference 50 1.0×10−5 501.47 -
Hybrid 1.0×10−4 53.27 RRMSExs = 0.089%

RRMSEpv = 1.479%
Repeatable Reference 10 1.0×10−5 102.96 -

Hybrid 1.0×10−4 9.89 RRMSExs = 0.260%
RRMSEpv = 2.441%

Figure 4.15: Simple three orifice fluid power circuit pressure responses of reference and
hybrid models (Ustinov, Wu, and Handroos, 2022).

effect may occur due to the use of a single neural network for different fluid power circuits
and can be solved by retraining the neural network on another model.
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5 Conclusion

The purpose of this dissertation is to present three new methods of simulation fluid power
circuits in the presence of singularities, particularly, the numerical stiffness of differential
equations of pressure with small pipe volumes in such equations. First of all, examples of
stiff fluid power circuits are presented and the most common methods and techniques of
overcoming numerical stiffness are studied. Then, to develop new methods of numerical
stiffness elimination, several old techniques already existing in the field of fluid power
circuit computer simulation were studied in detail and tested. Due to the imperfection
of these methods, new advanced methods and models were developed. Such methods
are Advanced Pseudo-Dynamic Solver(AdvPDS), Method of Multiple Scales(MMS) and
the hybrid method of simulation, utilizing neural networks instead of the stiff differential
equation of pressure built up in small volumes. New methods were applied to the classical
Lumped-element modeling-based models of such circuits in order to improve the simu-
lation in terms of simulation speed and system output response accuracy. New models,
based on the above-mentioned advanced methods of numerical stiffness elimination were
tested in multiple simulations of such circuits. The summary of the tests are described
below.

In Publication I, the Advanced Pseudo-Dynamic Solver with adaptive criterion has been
proposed for the fast and accurate solution of stiff fluid power circuits. The solver is based
on the classical Pseudo-Dynamic Solver and differs from it in two main aspects. The first
difference, is the transfer of volumetric flow calculations in the mathematical model, from
the main integration loop of the solver to the inner loop with the stiff differential equa-
tion of pressure in small volumes. Second, the AdvPDS solver has the adaptive criteria
of convergence in the inner loop, which brings the rise of output response accuracy in
low pressure areas and improvement of the system simulation speed. These changes are
made according to the multiple tests of the classical Pseudo-Dynamic Solver in stiff fluid
power circuits described in this dissertation. In addition, due to the unstable response
of the classical Pseudo-Dynamic Solver in several complex circuits, the most preferable
method of simulation of such circuits can be the AdvPDS-based model of the circuit. The
AdvPDS was also tested in practical stiff fluid power circuits (Circuit 1 and Circuit 2)
and showed great possibility for the simulation to achieve a trade-off between the simu-
lation speed and output pressure or cylinder piston position accuracy. This precision in
calculations is ensured by the adaptive criteria of convergence, as mentioned above. De-
spite the fact that both accuracy and speed of AdvPDS-based model have a fairly good
trade-off, this method also has limitations, for example, such a scenario is possible that
for some systems it will be necessary to pre-determine the pressure limits and, accord-
ingly, the convergence criteria for effective use of the method in practice. This problem
can be solved by improving the method using optimization algorithms for efficient search
for convergence criteria. However, the study results shown that the solver can be used in
different real-time or faster than real-time applications, for instance, as a part of multi-
body dynamic simulation of hydraulically driven mobile working machines or robots, in
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digital twin or virtual prototype of such a machine.

In Publication II, the Method of Multiple Scales(MMS) for time-efficient and accurate
simulation of stiff fluid power circuits, in which stiffness is associated with small volumes,
was proposed. To demonstrate the features and advantages of the method, the compari-
son between the reference Lumped-element modeling-based, SPT-based, and MMS-based
models are considered for three different input signals. A practical stiff fluid power circuit
(Circuit 2) was studied as an example in the simulation. The same fluid power circuit is
used to investigate the effects of the SPT-based and MMS-based models, applied to the
differential equation of pressure built up in the small hydraulic volume, on the computa-
tional efficiency expressed through the integrator time step of the model and the accuracy
of the system response. The experimental simulation of the three above-mentioned mod-
els implemented in the stiff fluid power circuit demonstrates that the SPT-based model re-
quires the corrector factor to achieve an accurate output pressure and position responses,
otherwise the accumulative error occurs through the simulation time of the model. In its
turn, the MMS-based model reveals the potential of the simulation of the stiff fluid power
circuits and shows an accurate response of the cylinder piston position at different input
signals, even at large integrator time steps. However, despite acceptable accuracy and
excellent simulation speed, the possibilities of the method can be limited, for example,
by using several orifices connected to the volume. One further study might be to test the
method in this setup.

Publication III proposes a novel so-called hybrid method to solve the fundamental prob-
lem of numerically stiff differential equations in the dynamic simulation of fluid power
circuits. The idea of the method lies in the use of the NARX recurrent neural network in
the simulation model, which acts as a substitution for the stiff continuity equation of vol-
umetric flow with a small volume. The dynamics of the remaining parts of the system are
preserved and modeled with conventional differential and algebraic equations. The neural
network is trained using data from the practical stiff fluid power circuit (Circuit 2) simula-
tion for receiving an accurate response from the system. To demonstrate the features and
advantages of the hybrid method of fluid power circuit simulation, the classical Lumped-
element modeling-based model and the hybrid model are compared. The practical Circuit
2 is experimentally tested at random and repeating inputs to show the features of hybrid
model. In this demonstration, the response of the hybrid model is several times faster
than the conventional reference model due to the elimination of the numerical stiffness
problem by substitution of the stiff differential equation by the NARX recurrent neural
network. At the same time, the accuracy of the hybrid model is relatively high, which
allows a trade-off between the accuracy of the response and speed of the simulation. This
model also has limitations associated with the time spent on training, as well as on tuning
the neural network, which will act as a surrogate model built into the main fluid power
circuit model. In addition, this model is dependent on the conditions and parameters of
the system on which the training takes place, for example, in some cases it will be dif-
ficult to use a model trained on the data collected from one system with another system
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with totally different parameters (for example, a different volume). Performance of the
model depends on the training process of the neural network and the quality of dataset
utilized for training. In other words, it will be difficult to use the same neural network in
systems with radically different parameters, and the model will fully reveal itself in such
applications as digital twins of a particular machine.

Finally, all the methods and models presented in this dissertation can be used in different
real-time, faster than real-time, or multibody dynamic applications, such as digital twins
or virtual prototypes of mobile working machines, cranes, and robots. The main advan-
tage of the models is the possibility to reduce or eliminate the numerical stiffness of fluid
power circuits in the presence of small volumes in pressure differential equations, which
can slow down the simulation. As a result, the trade-off between the simulation speed,
time-efficiency, and the accuracy of system outputs can be achieved. Future studies or
development of new methods or models can be associated, for instance, with the use of
the AdvPDS-based model of fluid power circuits as a part of the simulation model of a
mobile working machine for real-time applications. Testing and comparison of various
time series RNN architectures (e.g., LSTM, GRU architectures) to find the most time-
efficient and accurate network for hybrid models for real-time simulation of fluid power
circuits can also be an important topic in further research.
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Computationally Efficient Practical Method for
Solving the Dynamics of Fluid Power Circuits in

the Presence of Singularities
Julia Malysheva , Stanislav Ustinov , and Heikki Handroos , Member, IEEE

Abstract—In this article, a practical method is proposed
for the efficient solution of fluid power systems with singu-
larities originating (in particular) from the presence in the
system of small volumes. The method is based on the use
of an enhanced version of the pseudodynamic solver (the
advanced pseudodynamic solver), which seeks the steady-
state solution of pressure building up in the small volume.
This solver can be attributed to the class of explicit solvers.
There are two main advantages of the proposed solver. The
first is the higher accuracy and numerical stability of the so-
lution compared with the classical pseudo-dynamic solver,
owing to the enhanced solver structure and the use of an
adaptive convergence criterion. The second is the faster
calculation time compared with conventional integration
methods such as the fourth-order Runge–Kutta method,
owing to the obtained possibility of larger integration time
step usage. Thus, the advanced pseudodynamic solver can
become a preferred method in the simulation of complex
fluid power circuits. Simulation results of the C code im-
plementation confirm that the advanced pseudodynamic
solver is better than conventional solvers for the solution of
the real-time systems that include fluid power components
with small volumes.

Index Terms—Advanced pseudodynamic solver (Ad-
vPDS), real-time systems, Runge–Kutta integration, small
hydraulic volumes modeling, stiff fluid power system mod-
eling and simulation.

I. INTRODUCTION

THE LEVEL of automation of mobile working machines,
such as excavators, logging harvesters, or hydraulically

driven cranes, as well as their complexity, have increased sig-
nificantly over the past few decades. In the machine industry,
this has led to emergence of novel approach in the new prod-
uct development process, such as virtual prototyping [1]–[3].
Essentially, a virtual prototype of a mobile machine is the
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mathematical representation of all machine elements as well
as their interactions. To estimate the performance of a mobile
machine under development, a simulation of the virtual proto-
type is used. However, a major problem of virtual prototypes
is often the speed of their simulation, which in particularly is
related to the complexity and characteristics of the employed
mathematical models. A number of studies have been dedicated
to the problems of real-time [2], [4]–[6], and faster than real-time
simulation [7] of the virtual prototypes of mobile machines.

The mechanical and fluid power components are the essential
parts of any virtual prototype of mobile machines [1], [2], [8],
[9], as well as various other types of mechatronic systems, such
as aircrafts, heavy industrial process machines, ships, off-shore
cranes, etc. The mathematical model of fluid power components
can be presented with sets of algebraic and differential equations.
By nature, such differential equations are highly nonlinear [10],
and often contain singularities that make the model mathe-
matically stiff. In particular, the stiffness in the modeling of
fluid power systems is often associated with high values of the
bulk modulus or with the presence of small volumes in the
components of the circuit. Numerical stiffness of the model
directly affects the simulation time, which is the vital aspect in
real-time simulation in mechatronic applications. For instance,
such problem is highlighted in [11], where authors try to solve
a problem of real-time simulation of the excavator which is
related to numerical stiffness in fluid power model. In order to
achieve the real-time simulation speed, the model was divided
into multiple submodels for parallel execution and a local stiff
integration solver was applied to the hydraulic submodels. The
same problem has been recently highlighted in a number of
works dedicated to human-in-the-loop and hardware-in-the-loop
systems that have fluid power components. For example in [12],
authors had to simplify the fluid power model of the mechatronic
component and to use third-order explicit solver with small
time step in order to ensure the hardware-in-the-loop real-time
simulation for developed controller strategy testing. Thus, the
described above mechatronic applications showed the need for
the development of the method that can provide a generic prac-
tical solution to accelerate simulation of mechatronic systems
including small hydraulic volumes with a minor cost in the
accuracy.

In [13], Bowns and Wang were the first to formulate the math-
ematical stiffness problem that arises during the solution of fluid
power systems in the presence of small volumes, particularly in
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hydraulic pipes. Physically, the mathematical stiffness occurs
when the pressure is rapidly changing, owing to the low com-
pliance of the fluid in the pipe. According to their observations,
this causes the solutions of the system differential equations to
decay at widely varying rates. In addition, it should be noted
that the mathematical stiffness of the problem is often a local
phenomenon, meaning it only occurs occasionally. Thus, if the
orifice is located in the hydraulic circuit, a stiffness approaching
infinity arises if the relation ∂Δp/∂Q is small, which is true
when the volume flow Q tends to zero. Moreover, according
to [14]–[16], if the purely turbulent description of the orifice is
used, the mathematical stiffness occurs also when the pressure
drop Δp approaches zero.

To simulate the virtual prototype, meaning to obtain a so-
lution for the mathematical model, numerical integration is
used. The family of explicit Runge–Kutta methods that use an
integration time step of fixed size are well established in the
solution of systems of ordinary differential equations. However,
it was shown in [17] that numerical integrators based on ex-
plicit Runge–Kutta methods are not A-stable (the numerical
stability of the method is not guaranteed for any integration
step size), which is apparently why they are not very efficient
on stiff problems unless a very small integration time step is
used. At the same time, integrators based on implicit methods
have established themselves as A-stable or even L-stable, which
allows the accurate solution of such problems. However, implicit
methods are much more computationally expensive. In general,
they involve solving a nonlinear system of algebraic equations at
each time step. This in turn requires a modified Newton iteration
scheme, which includes the calculation of iteration matrix of
the form (I−Δtβ0J), where I is the identity matrix, J is the
Jacobian, and Δtβ0 is a scalar, and also further its factorization.
The iteration scheme is repeated until a convergence criterion
is reached [18]. Due to such iteration scheme the amount of
computations can vary from step to step which can result in
simulation time overflows. Thus, implicit methods cannot be
used directly in real-time applications. In contrast to implicit
methods the previously mentioned explicit methods can ensure
a constant simulation time in time-critical real-time applications.

On the other hand, the integration in fluid power systems can
be performed with the help of special solvers [19]. To overcome
the stiffness of differential equations in fluid power systems
with small volumes, a pseudodynamic solver was proposed by
Åman and Handroos [20]–[22]. This solver can be related to the
class of explicit solvers. The goal of the solver algorithm was
to increase the accuracy and to reduce the computational time
for the simulation of stiff fluid power circuits. The proposed
solver was based on the assumption that if the considered volume
was small enough, the build-up pressure can be substituted by a
steady-state pressure. The goal was achieved by implementing
an iterative technique with substituting the small volume with
a volume that is large enough to obtain a numerically stable
response in pressure. The solver showed its applicability at
relatively large integration time steps, whereas conventional stiff
models used very small time steps to simulate the circuit without
numerical instability, affecting the computational time of the
simulation. However, in their work, only a short-term simulation

(about 2 s) with predefined inputs was considered, which did not
give a full picture of the solver characteristics.

Another interesting method of solving pressures in small vol-
umes in fluid power systems was recently introduced by Kiani–
Oshtorjani et al. [23] and further applied for the mechatronic sys-
tem accelerated simulation in [6] and [24]. The proposed method
was based on singular perturbation theory. The modified version
of this theory was used for the algorithm. The main principle of
the algorithm was the replacement of stiff differential equation
of pressure by the algebraic equation in accordance with singular
perturbation theory. The replacement of the differential equation
allows a numerically stable response of the pressure to be
achieved at different integrator time steps. Consequently, the
time step of the integration can be increased without significant
losses in calculation accuracy, which allows the method to be
implemented in real-time simulations. Moreover, in the works
[6] and [24], Rahikainen et al. emphasized that the fluid power
system due to its stiffness needs much smaller integration time
step than the multibody system during the coupled simulation
which sufficiently increases the simulation speed of the whole
mechatronic system. However, the method based on singular
perturbation theory may have limited applicability, such as it
only can be applied under certain conditions of the system when
the boundary layer is exponentially stable [23].

The objective of the present research is to develop a method
that quickly finds an accurate and numerically stable solution
for stiff fluid power circuits with increased modeling accuracy,
to accelerate their simulation. For this purpose, the classical
pseudodynamic solver [20]–[22] was selected as a basis for the
research. In this work, the characteristics of the pseudodynamic
solver are studied in more detail by applying long-term simula-
tion together with random inputs to the test fluid power circuits.
Based on the obtained results the new advanced pseudodynamic
solver (AdvPDS) of the enhanced structure is proposed. The
developed solver provides a fast and accurate solution of more
complex fluid power circuits in the presence of singularities
caused by small volumes.

The rest of this article is organized as follows. Section II-B
describes the systems under investigation. Section III contains
a brief description of the classical pseudodynamic solver. The
development and features of the AdvPDS are described in Sec-
tion IV. Results and discussion are presented in Section V, where
the results obtained by the developed method are compared
with the results obtained using conventional way models of stiff
fluid power circuits and classical pseudodynamic solver. Finally,
Section VI concludes this article.

II. FLUID POWER CIRCUIT MODELING

Fluid power circuit modeling can be approached from the
point of view of lumped fluid theory [9], [25]. According to this
theory, any fluid power circuit can be considered as a number of
separate volumes with evenly distributed pressures. The volumes
are separated by throttles and orifices that create pressure drops
in the fluid when passing through them. In turn, the pressure
drop together with orifice geometrical parameters are used for
the volume flow calculation. Finally, pressure built up in each
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Fig. 1. Schematic representation of Circuit 1.

volume can be calculated using a continuity equation that relates
the effective bulk modulus with respect to the considered volume
and the difference between inletQin and outletQout volume flows
[10], [26].

A. Circuit 1: Two-Way Flow Control Valve

The first system under investigation is a two-way flow control
valve. The fluid power circuit related to the system is schemati-
cally depicted in Fig. 1. The circuit consists of a pressure power
source, two-way flow control valve, orifice, and 2/2 directional
control valve. A two-way flow control valve consists of two
components: pressure compensator and control throttle. The
volume between the pressure compensator and control throttle is
assumed to be a small volume, the presence of which increases
the stiffness of the system. The power source is assumed an
ideal pressure source with constant pressure. It is composed of
a hydraulic accumulator, pump, pressure relief valve, and tank.
To reach the tank, hydraulic fluid flow passes through a two-way
control valve and two orifices after the valve. One of the orifices
is an ordinary sharp-edged orifice, whereas the other is a 2/2
directional control valve, the opening of which can be controlled
by signal Ud. Pressure in the system can be integrated from the
following continuity equations:

ṗ1 =
Be

V1
(Q1 −Qt) (1)

ṗ2 =
Be

V2
(Qt −Qe1 −Qe2) (2)

whereBe is the oil effective bulk modulus,V1 andV2 are pipeline
volumes, where V1 is a small volume, Q1 and Qt are volumetric
flows through the pressure compensator and control throttles,
andQe1 andQe2 are orifice and directional control valve volume
flows, respectively. Volume flows Q1 and Qt can be obtained as
follows:

Q1 = K
√

|ps − p1|sign(ps − p1) (3)

Qt = kt
√

|p1 − p2|sign(p1 − p2) (4)

where ps is the supply pressure, K and kt denote the semiem-
pirical flow coefficients for the pressure compensator throttle
and for the control throttle, respectively. Both coefficients can
be integrated from the following differential equations:

K̇ =
C5 − p1 + p2 − (C1 + C2(ps − p1))K

C3
(5)

k̈t = (Ue − C9)C6C
2
7 − 2k̇tC8C7 − ktC

2
7 (6)

TABLE I
CIRCUIT 1 PARAMETERS

where Ue is the signal applied to control throttle (opening), C1,
C2, C3, C5, C6, C7, C8, C9 are empirical constants [27]. Volume
flows Qe1 and Qe2 are obtained according to the following flow
equations:

Qe1 = k1
√
p2 − pt (7)

Qe2 = k2
√
p2 − pt (8)

where k1 and k2 are semiempirical flow coefficients for the ori-
fice and directional control valve, and pt is the tank pressure. The
initial values and constants of the system described in following
equations are shown in Table I. To analyze the mathematical
stiffness of the developed model of Circuit 1, its state-space
representation should be derived. If we assign the state and
input vectors as x = [x1 x2 x3 x4 x5]

T = [p1 p2 K kt k̇t]
T and

u = [u1 u2 u3]
T = [ps Ue ε]

T , respectively, then the state equa-
tions can be written as follows:

ẋ1 =
Be

V1
(x3

√
u1 − x1 − x4

√
x1 − x2)

ẋ2 =
Be

V2
(x4

√
x1 − x2 − k1

√
x2 − u3(k2

√
x2))

ẋ3 =
1
C3

(x2 − x1 + C2x1x3 − C2x3u1 − C1x3 + C5)

ẋ4 = x5

ẋ5 = C6C
2
7u2 − 2C7C8x5 − C6C

2
7C9 − C2

7x4. (9)

The obtained state-space representation (9) is a multi-input–
multi-output nonlinear model, where ε is the parameter that
describes the binary input of the 2/2 directional control valve.
If ε is equal to 0 the valve is closed and the term k2

√
x2 will be

also equal to zero.
One way to detect the stiffness in the problem is to estimate the

dominant eigenvalues of its Jacobian directly. In linear system
theory, the eigenvalues of the system Jacobian describe the
behavior modes inherent in the model. In nonlinear systems,
eigenvalues and eigenvectors are time-varying. Nevertheless, it
is possible to apply this approach to nonlinear problems through
model linearization. Linearization means that constantly differ-
entiating nonlinearities are linearly approximated about their
operating points. As the linearized solutions can be considered
as a good approximation of nonlinear system solutions about
the operating point, the observations obtained locally can be
generalized to the rest of the system. Further, to simplify the
model we also assume that flows through the compensator and
control throttles have constant coefficients K and kt, which
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is often valid and frequently employed in fluid power systems
design. The Jacobian of the system can be calculated as

J =
∂F

∂x

∣∣∣∣∣
x=x̄,u=ū

(10)

where F is the left-hand side of the first and second equation of
(9) , x is the model state vector, u is the model input vector, and
(x̄, ū) is the operating point. The Jacobian for the considered
system can be written as follows:
⎡
⎣−

Be
2V1

(
K√

u1−x1
+ kt√

x1−x2

)
Be
2V1

kt√
x1−x2

Be
2V2

kt√
x1−x2

Be
2V2

(
k1+k2√

x2
+ kt√

x1−x2

)
⎤
⎦ .

(11)
To characterize the level of numerical stiffness of the model,

we employ a condition number of the Jacobian, which, according
to numerical analysis theory, can be written as

κ(J) =
|λmax(J)|
|λmin(J)|

(12)

where λmax(J) and λmin(J) are the maximum and mini-
mum eigenvalues of the Jacobian, respectively, which for J ∈
Mn×n should satisfy |J− λI| = 0, where I is the identity
matrix. The condition number shows how much the eigen-
values of the system differ, i.e., small values of κ show
that the problem is well-conditioned, whereas large values of
κ indicate the ill-conditioned problem and the system can
be considered as stiff. The condition number can be de-
termined for the certain configuration of the system. This
means that the Jacobian should be calculated in the operat-
ing point (x̄, ū). To define such a point, the physical char-
acteristics of the state variables should be considered. Thus,
the following physical restrictions should be imposed on
the state variables and inputs: x1, x2 > 0, x3 ∈ [ 0, 10−6] , x4 >
10−7, u1 > 0, u2 ∈ [ 0, 10] , u3 ∈ {0, 1}. Under the restrictions,
the operating point can be chosen as x = [198 · 105, 1.5 ·
105, 10−6, 10−7, 0]T and u = [200 · 105, 6]T . Note, that x1

and x2 are calculated from first and second equation of (9) by
substituting x3 and x4 with the constant values and assuming
that all the rates are equal to zero.

At this point, let us consider the two cases. In the first
case V1 = 10−3 m3, i.e., the volume between compensator and
control throttle is quite large. The condition number of (11)
in the chosen operating point for this case is κ = 1.28. In the
second case the volume is reduced to V1 = 10−5 m3 and the
corresponding condition number becomes as large asκ = 77.81.
Analyzing the system Jacobian (11), this effect can be seen
through the fact that the small volume V1 appears in the denomi-
nator of the Jacobian elements, and thus, makes the eigenvalues
differ significantly in magnitude and the mathematical model
(9) become numerically stiff.

B. Circuit 2: Pressure Compensating Proportional Valve

The next fluid power system considered here has a more
complex structure and is more practical. The system is the

Fig. 2. Hydraulic crane PATU 655 actuated by the fluid power system.

Fig. 3. Schematic representation of Circuit 2.

part of the fluid power circuit of the hydraulic crane PATU
655 (Fig. 2), the modeling of which was considered in [4] and
[7]. The considered part includes a differential cylinder with
an attached sliding load, a 4/3-proportional directional valve
with a pressure compensator, and a constant pressure pump. In
the system, the small volume appears between the directional
valve and pressure compensator. In Fig. 3, the small volume
and the pressure developing within it are denoted by V3 and p3,
respectively. The system is controlled through the voltage signal
U supplied to the valve solenoids

Üs = Kvω
2
nU − 2ζωnU̇s − ω2

nUs (13)

where Kv is the valve gain, Us is the signal proportional to the
valve spool displacement, ζ is the valve damping ratio, and ωn

is the natural angular frequency. The volume flow rates model
of the 4/3-proportional directional valve using turbulent orifice
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model with triangular groove cross section can be presented as

Q1

=

⎧
⎨
⎩

Cν(Us − Udb)
2sign(ps − p1)

√
|ps − p1|, Us ≥ Ud

Cν(Us − Udb)
2sign(p1 − pt)

√
|p1 − pt|, Us ≤ −Ud

0, otherwise

Q2

=

⎧
⎨
⎩

−Cν(Us − Udb)
2sign(p2 − pt)

√
|p2 − pt|, Us ≥ Ud

−Cν(Us − Udb)
2sign(ps − p2)

√
|ps − p2|, Us ≤ −Ud

0, otherwise
.

(14)

In (14), Cν is the flow constant that accounts for cross-sectional
areas of the valve orifices, Udb is the dead band voltage of the
valve, and p1, p2, ps, and pt are the pressures in two cylinder
chambers, the supply pressure, and the pressure in the tank,
respectively. In this work, the directional valve is assumed
ideal, such that there are no internal leakages. The volume flow
Q3 related to the pressure compensator is modeled using the
semiempirical approach developed in [27]

Q3 = K
√
ps − p3,

K̇ =
1
C3

(C5 − p3 + pshuttle − (C1 + C2(ps − p3))K) (15)

where pshuttle = max (p1, p2) is the output of the shuttle valve
(see Fig. 3). The volume flow Q4 between valve and pressure
compensator can be considered as equal to Q1 if Us ≥ Udb, and
equal to −Q2 if Us ≤ −Udb.

According to Newton’s second law, the equation of motion of
a hydraulic cylinder can be written as

mẍp = p1A1 − p2A2 − Ff (16)

where ẍp is the acceleration of the cylinder piston, m is the load
mass, p1 and p2 are the pressures in the cylinder chambers, A1

and A2 are the piston-side and rod-side areas, respectively, and
Ff is the cylinder friction force. In turn, the friction formed in
the cylinder can be represented using the LuGre friction model
[28], [29]
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ff = σ0z + σ1ż + kν ẋp

ż = ẋp −
|ẋp|
g(ẋp)

z

g(ẋp) =
1
σ0

(
FC + (Fst − FC) exp

(
−
(
ẋp

vst

)2
))

(17)
where σ0 is the flexibility coefficient, σ1 is the damping coeffi-
cient, kν is the friction coefficient, FC is the Coulomb friction,
Fst is the Stribeck friction, and vst is the Stribeck velocity. More
specifically, z represents the nonmeasurable internal state, g(ẋp)
describes the friction behavior during constant velocity motion,
and kν ẋp is the viscous friction.

The internal leakage flow QLi (m3/s) between the cylinder
chambers can be approximated as

QLi = Li(p1 − p2) (18)

where Li is the laminar leakage flow coefficient.

TABLE II
CIRCUIT 2 PARAMETERS

The pressures that are building up in the circuit can be calcu-
lated from

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V1

βe1
ṗ1 = Q1 −A1ẋp +QLi

V2

βe2
ṗ2 = −Q2 +A2ẋp −QLi

V3

βe3
ṗ3 = Q3 −Q4

(19)

where the chamber volumes V1 and V2 are calculated as
{
V1 = A1xp + V01

V2 = A2(H − xp) + V02
. (20)

Here, H is the cylinder stroke and V01, V02 are the dead volumes
connected to the respective ports. In (19), the compressibility
of hydraulic oil is accounted for by the effective bulk modulus
βei (i = 1, 2, 3). The effective bulk modulus for each part of
the system is calculated regarding the local pressure using the
empirical formula [30]

βei = a1Emax log

(
a2

pi
pmax

+ a3

)
(21)

where Emax denotes the maximum bulk modulus of the oil, pmax

is the maximum pressure in the system, and ai (i = 1, 2, 3) are
the empirical constants. The values of parameters used in the
hydraulic model described in this section are listed in Table II.

Equations (13)–(21) make up the mathematical model of
Circuit 2. The presence in the model of the pressurized small
volume makes the mathematical equations stiff and, hence,
computationally costly.

III. PSEUDODYNAMIC SOLVER OF PRESSURE

IN SMALL VOLUMES

The main idea of the pseudodynamic solver proposed in [16]
lies in searching for a steady-state solution for pressures related
to small volumes in fluid power circuits. At the same time,
the pressures built up in larger volumes are solved with the
conventional integration algorithms. Thus, the pseudodynamic
solver includes two integration loops: the main loop, which
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Fig. 4. Input signals for Circuit 1.

contains algebraic and differential equations related to larger
volumes, and the inner loop. The inner loop, using artificially
enlarged fluid volume, searches for the steady-state value of
pressure passing by the transition process of pressure formation.
The steady-state value of pressure is sought out during the single
time step of the main loop.

The pressure inside the inner loop can be calculated from
the classical continuity equation using artificially enlarged fluid
volume as follows:

ṗ =
Be

Vpseudo
(Qin −Qout) (22)

where Vpseudo is the artificial pseudovolume, Be is the effective
bulk modulus of the oil, and Qin and Qout are the inlet and outlet
volume flows, respectively. According to [21], the pseudovol-
ume is recommended to be set at least ten times higher than the
actual volume. Inlet and outlet volume flows can be expressed
as a function of pressure drop as follows:

Q = f(Δp). (23)

The integration of differential equation (22) inside the inner
loop occurs by using an explicit fixed-step fourth-order Runge–
Kutta integration routine with independent sufficiently small
time step ti. The integration routine continues until the con-
vergence criterion is reached. The criterion is a predefined user
parameter, which represents the first derivative of the pressure. It
is important to note that the activation of the inner loop suspends
the main loop until the steady-state pressure value is found.

IV. DEVELOPMENT OF THE ADVPDS WITH

ADAPTIVE CRITERION

To study the characteristics of the pseudodynamic solver
described in Section III, a simple fluid power system (Circuit
1) was employed. Circuit 1 is a more complicated variant of the
fluid power circuit used in [21]. The three random signals in
the form of pseudorandom multilevel signals were supplied as
the inputs: supply pressure ps in the range 14–20 MPa, control
voltage to the control throttle Ue in the range −10 to +10 V, and
directional valve control signal Ud, which took either 1 when it
is open or 0 when it is closed (see Fig. 4). The signals were
supplied asynchronously with a period of 0.5 s. The system
was simulated using a conventional fourth-order Runge–Kutta
integrator with sufficiently small time step of 10−6 s for 100.5 s.
During the simulation, the small volume V1 is equal to 10−5 m3.
The simulation took about 5 h using the following simulation
environment: MATLAB 2018b, Intel Core i5-4590 3.30 GHz

Fig. 5. Main loop sequence for Circuit 1.

with 16 GB of RAM, running OS Windows 7 64-b. The fourth-
order Runge–Kutta solver is considered further in this work as
a reference solver and the solutions obtained with its help thus
also considered as a reference. The solution for the pressure p1

was obtained under such conditions and was used as a reference
in the case of Circuit 1.

The classical pseudodynamic solver (described in Section III)
was introduced in the same simulation using recommended
parameters. Unfortunately, it could not achieve a stable so-
lution compromising its speed and accuracy. While studying
the reasons for such a behavior, it was discovered that the
solver becomes numerically unstable in areas of sudden pressure
change owing to fixed Qout in (22) during integration in the
inner loop. To stabilize the numerical solution it was decided to
move the calculation of Qout into the inner loop. Thus, in terms
of Circuit 1, the pressure build-up in the small volume (1) as
well as inlet and outlet volume flows described by (3) and (4),
respectively, are calculated in the inner loop. However, it was
also found that the calculation of other system elements such as
K and kt inside the inner loop does not have much of an effect on
the solution accuracy, moreover it makes the simulation longer.
These findings formed the basis for the AdvPDS.

Further, in order to describe the operating principle of the Ad-
vPSD Circuit 1 is used as an implementation example. Similar
to the classical pseudodynamic solver, the AdvPDS consists of
two integration loops.The main loop (see Fig. 5) begins with the
reading of the current control signals ps(t), Ue(t), and Ud(t).
Then, the initial values of pressures p1 and p2, as well as current
control signal ps(t) are sent to the inner loop, and the inner loop
starts to execute. Initial values of pressures, volume flows, and
flow coefficients are used in the main and inner loops during
the first iteration. In the following iterations, the pressure and
flow values are updated every time step. The inner loop (see
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Fig. 6. Inner loop sequence for Circuit 1.

Fig. 6) first saves the previous value of the pressure p1. The
value of pressure should be saved every iteration to calculate
the rate of pressure change between the adjacent iterations. The
running of the inner loop occurs at its own integration time
step Δti that may differ from the main loop time step Δt. It
is important to note that the main loop is suspended during the
execution of the inner loop. Further calculation of the volume
flows through the pressure compensator (Q1pseudo) and control
throttle (Qt) is performed only inside the inner loop using (3)
and (4), respectively. Next, the pressure p1 is integrated from
(1). Note, that the small volume from (1) is substituted with
the pseudovolume as in (22). Obtained pressure value is used to
calculate the pressure difference, which is further compared to
the convergence criterion value.

In the classical pseudodynamic solver the single convergence
criteria was used. The criteria was based on the rate of pressure
change between the iterations in the inner loop. The rate of
pressure change between the iterations Δp1 can be written as

Δp1 = p1 − p1prev (24)

where p1 is the pressure from the current iteration, and p1prev

is the pressure from the previous iteration of the inner loop.
The rate of pressure change is compared with the convergence
criterion value to detect the beginning of the steady-state process
of the pressure. The captured steady-state value is further passed
to the main loop.

The effect of the single criterion value in the inner loop of
the AdvPDS on the solution accuracy was also studied. It was
discovered that applying a smaller convergence criterion in the
inner loop produces a more numerically stable result when the
pressure approaches its lower values during the simulation. In
Fig. 7, the effect of the criterion value on the calculation of the
low pressures using the AdvPDS is shown. At the same time,
it was noticed that the computational time of the simulation
increases with the criterion decrease owing to the large number
of iterations performed inside the inner loop. Thus, the adap-
tive convergence criterion was proposed. The idea behind the

Fig. 7. Effect of the criterion value on the low-pressure calculation
using the AdvPDS.

adaptive criterion is that depending on the pressure level, the
criterion with the most suitable time-efficient and numerically
stable effect on the pressure is automatically selected during
the fluid power circuit simulation. According to Fig. 6 when
the pressure difference between the iterations Δp1 is calculated
using (24) the current pressure level p1 is compared to assigned
low-pressure level plow limit. If the current pressure level is low the
smaller criteria is used, i.e., inner loop continues to iterate until
the change in the pressure is less then p1 tol low. If p1 > plow limit

the inner loop proceeds with criteria p1 tol high. In other words,
at low pressure levels in the system, the smaller criterion is
implemented to achieve a more numerically stable result. At
pressure levels higher than the low-pressure limit, the bigger
criterion is used to reduce the computational time of the simu-
lation. The low-pressure level was defined experimentally and
for both Circuits 1 and 2 it was 22 bar. Both criteria have to
be predefined by the user before the simulation, based on the
recommendations given further in this work. When the criterion
is satisfied, the value of pressure p1 and flow Qt are updated for
subsequent calculations in the main loop. The main loop further
updates the pressure p2, and flows Qe1 and Qe2 according to (2),
(7), and (8), respectively. Then calculation of flow coefficients
(K and kt) according to (5) and (6) is performed. The next
iteration of the main loop begins at the next time step Δt. The
process continues for all specified simulation time.

V. RESULTS AND DISCUSSION

In this section, the results of the simulation of the two fluid
power circuits described in Section II-B are presented. The
results are represented through a comparison of the responses of
the considered fluid power circuits obtained using the reference
solver and the AdvPDS. The results demonstrate the features of
the proposed method and its advantages compared with the tra-
ditional method of fluid power system modeling and simulation.

A. Circuit 1 Simulation

Circuit 1 was simulated for 100.5 s using the AdvPDS and
the reference solver with the inputs described in Section IV.
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Fig. 8. Sensitivity analysis of p1 solution to the changes in Vpseudo.

The presence of the small volume (V1 = 10−5 m3) in the circuit
between the pressure compensator and control throttle increased
the stiffness of the whole system, and also determined the
selection of the integration time step for the reference solver.
The integration time step of the reference system was set to the
largest possible value of 1 × 10−6 s, at which the solution for
the pressure appeared numerically stable.

The use of the AdvPDS with Circuit 1 allows the stiffness of
the system to be reduced owing to substitution of the small vol-
ume by the larger artificial volume. In the mathematical model of
Circuit 1 the artificial volume Vpseudo substitutes the real volume
V1 in (1). This volume directly affects the resulting pressure p1.
In order to analyze how the size of the artificial volume affects
the respective pressure solution a simple sensitivity analysis was
carried out. The sensitivity analysis was performed in a way
that Circuit 1 is simulated five times with the same input signals
and parameter values except for the pseudovolume value. In the
experiment Vpseudo took the following values: 0.5 × 10−2 m3,
1 × 10−3 m3, 0.5 × 10−3 m3, 1 × 10−4 m3, and 0.5 × 10−4 m3.
The upper bound of the pseudovolume range was limited by the
system stability while holding the condition Δti = 10−5 s. In
Fig. 8, the results of five simulations are presented. For better
visibility only short range of the simulation time is shown in
the figure. It should be noted that the biggest difference in the
pressure solutions of five simulations is observed in the transition
areas, when one of the control signals was changed. One of such
areas is shown in Fig. 8. It can be seen from the figure that the four
solutions that refer to the smaller pseudovolumes are rather close
to the reference one. Only the solution obtained using the biggest
volume 0.5 × 10−2 m3 compromised the accuracy. Taking into
account the obtained results the artificial volume was set to
Vpseudo = 1 × 10−3 m3. On the one hand, the pseudovolume of
this size ensured quite high accuracy of the solution. On the other
hand, it allowed the integration time steps for the main and inner
loops to be increase significantly and to be set to the values of
10−4 s and 10−5 s, respectively.

As it was previously mentioned, the number of iterations
performed in the inner loop at each time step has also a direct

Fig. 9. Number of iterations performed by the AdvPDS in the inner loop
during the first 20 s of the simulation with 10 (upper plot) and 300/10
(lower plot) criteria.

effect on the simulation time. The transition process is more
oscillatory, and the larger the pressure changes, the more iter-
ations are performed in the inner loop. At the same time, the
number of iterations is dependent on the chosen convergence
criterion. It was found experimentally that the larger criterion is
associated with the smaller number of iterations. Thus, to speed
up the simulation of the AdvPDS-based system, the adaptive
convergence criterion 300 Pa/10 Pa was selected based on exper-
imental results. In Fig. 9, the number of iterations performed by
the AdvPDS using a single convergence criterion in comparison
with the use of the adaptive criterion is shown for the first 20 s of
the simulation. It can be seen from the figures that the AdvPDS
executed a higher number of iterations in transition areas with the
single criterion than with the adaptive criterion, which resulted
in a shorter simulation time.

Fig. 10 shows the pressure responses p1 of Circuit 1, obtained
with the reference solver and the AdvPDS. One can observe that
the two curves are highly coincident with each other. Now the
high accuracy of the AdvPDS-based system was also achieved
on the low-pressure areas. The accuracy of the system was
represented through root-mean-square error (rmse). The overall
error was rmse = 1.12 · 104Pa, which is insignificant for such
high pressure levels in the system.

Thus, the use of larger integration time steps together with the
adaptive convergence criteria allowed the computational time
of the simulation to be reduced compared with the reference
system. The simulation time with the reference solver was about
5 h, whereas only 147.983 s was spent for the same simulation
using the AdvPDS. Moreover, it should be noted that the system
with the AdvPDS (in contrast to the use of the classical pseudo-
dynamic solver) is numerically stable during the whole 100.5 s
of simulation (i.e., the solver kept the same pressure level as the
reference system).

B. Circuit 2 Simulation

Circuit 2 was simulated for 10 s with input signals, which
are a constant supply pressure of 14 MPa and voltage signal
for the directional control valve that varies from −5 to 8 V
with 1 s period. The simulation of the system in the presence
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Fig. 10. Pressure responses of Circuit 1 obtained using the reference solver and AdvPDS (with enlarged areas).

TABLE III
RELATIONSHIP BETWEEN CRITERIA VALUE, SIMULATION TIME, AND

CALCULATION ACCURACY FOR THE ADVPDS
WITH A SINGLE CRITERION

of the small volume between the pressure compensator and
directional control valve using the reference solver was run with
the safe integration time step of 10−5 s. Such time step ensured
a numerically stable solution for the system.

The adaptive criterion values for the AdvPDS under the
condition of tradeoff between the accuracy and simulation time
was experimentally chosen using Circuit 1. In order to verify
the applicability of the chosen criterion values to other fluid
power circuits which also include small volumes Circuit 2 with
the AdvPDS was used in another experiment. In the experiment
the circuit was simulated 14 times with the different values of
the criterion of the AdvPDS while the simulation times and
solution accuracy for the cylinder position piston xp (against the
responses obtained with the reference solver) were measured.
The use of AdvPDS for the solution of the system allowed
the integration time step to be increased to 10−4 seconds for
both the main and inner loops. The single criteria value was
used in order to the dependence (criterion value/accuracy versus
simulation time) showed itself more clearly. The experimental
results are summarized in Table III and graphically illustrated
by Fig. 11. It can be seen from the figure that the calculation
accuracy and simulation time have exponential dependence.
Thus, it can be concluded that a larger criterion reduces the
simulation time but decrease the calculation accuracy, which is
expressed by an increased rmse. In this case, the criterion equal

Fig. 11. Dependence between simulation time and rmse using Ad-
vPDS with a single criterion value.

to 100 can be considered as optimal. However, according to the
results, as the increase in overall accuracy was not significant
in contrast with the decrease in simulation time, which in our
work is the more advantageous system performance. While also
taking into account the solution problems in the low-pressure
areas, which were solved by use of a smaller criterion, it became
clear that the adaptive criteria 300/20 Pa was the most suitable
choice. Consequently, the simulation time was 27.572 s, which
is a better result compared with the reference system and with
systems having a single convergence criterion. The response
of the pressure p3 built up in the small volume as well as the
cylinder position piston xp against the responses obtained with
the reference solver can be observed in Fig. 12. The obtained
responses of the AdvPDS-based system in pressure and cylinder
piston position were accurate and differed from the reference
responses with rmses of 1.12 · 105 Pa and only 4.24 · 10−4 m
for the pressure and piston position, respectively. The obtained
accuracy of the responses was ensured, in particular, by the
adaptive criteria, which provided more precise solution in the
low-pressure areas. In Table IV, the resulting simulation times
for both circuits using reference solver and AdvPDS are pre-
sented. The appropriateness of the adaptive criterion chosen was
confirmed by a number of experiments that were carried out also
with Circuit 2.

C. Real-Time Implementation

To investigate the possibilities of the use of the developed
method in real-time and faster than real-time implementations,
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Fig. 12. Circuit 2 responses in pressure p3 and cylinder piston position xp using the reference solver and the AdvPDS.

TABLE IV
SIMULATION TIME OF CIRCUIT 1 AND CIRCUIT 2 USING THE REFERENCE SOLVER AND THE ADVPDS

MATLAB codes for Circuit 2 with the reference solver and the
AdvPDS were translated into standalone C code using MATLAB
Coder 4.1. Both codes were compiled and run outside MATLAB
on a PC with an Intel Core i5-4590 3.30 GHz with 16 GB RAM.
As a result, to simulate an interval of 10 s of real time, it took
219 ms for the reference system, whereas for the AdvPDS-based
system it took only 47 ms to simulate the same time interval.
Thus, the introduction of the developed AdvPDS solver allowed
Circuit 2 to be simulated 4.7 times faster in comparison with the
use of the reference solver usage. It should be noted that in our
case, both implementations were calculated much faster than real
time. However, in virtual prototypes the fluid power system are
usually employed in conjunction with mechanical components
(i.e., multibody dynamic representation of the mobile machine
structure). Thus, the mechanical component should also be
calculated at each time step of the real-time simulation. Based
on the results, it can be concluded that the use of the AdvPDS for
the solution of the real-time and faster than real-time systems,
which include fluid power components with the small volumes,
can be more beneficial than the reference solver application.

VI. CONCLUSION

In this article, the AdvPDS with adaptive criterion has been
proposed for the efficient solution of fluid power systems with
singularities originating (in particular) from the presence in the
system of small volumes. Based on the results of the experiments
performed with two test fluid power circuits, which contained
small volumes in their structure, the model for the AdvPDS was
formulated. There are two main differences of the AdvPDS in
comparison with the classical pseudodynamic solver. First, the
calculation of the outlet volume flow rate related to the small vol-
ume is included into the inner loop of the solver, which allowed

the numerical stability of the solution to be increased. Second,
the adaptive convergence criterion is introduced, which allowed
the simulation time to be decreased and the calculation accuracy
to be increased. Side-by-side simulation results confirmed that
the proposed solver is much more efficient in solution of the
fluid power circuits than the conventional method as well as
the classical pseudodynamic solver. The main advantage of the
proposed solver is that it produces the lower error than the clas-
sical pseudodynamic solver with single criteria. In addition, the
AdvPDS-based model can be calculated faster than the conven-
tional model of the fluid power circuit with small volumes owing
to the possibility of the application of a larger integration time
step. Moreover, the AdvPDS solver can be the preferable method
in modeling of more-detailed fluid power circuits, especially in
such cases when the classical pseudodynamic solver may show
numerically unstable and slow response. The described advan-
tages in solution of the fluid power systems with small volumes
of the developed solver allow to use AdvPDS in simulations
of mobile machines in the real time and faster than real-time
applications. Moreover, mechatronic applications such as [4],
[6], and [7] can directly benefit from the usage of the developed
solver. In these applications in particular, the solver can ensure
the accurate real-time or faster than real-time simulation of the
multibody systems with the fluid power actuation. Future studies
will be associated with the use of the AdvPDS-based fluid power
model as a part of the simulation model of a mobile machine for
the real-time applications.
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model for control of systems with friction,” IEEE Trans. Autom. Control,
vol. 40, no. 3, pp. 419–425, Mar. 1995.

[29] H. Olsson, “Control systems with friction,” Ph.D. dissertation, Dept.
Autom. Control, Lund Inst. Technol., Lund, Sweden, 1996.

[30] M. Jelali and A. Kroll, Hydraulic Servo-Systems: Modelling, Identifica-
tion and Control (Advances in Industrial Control Series). London, U.K.:
Springer-Verlag, 2002.

Julia Malysheva received the M.Sc. degree
in computational engineering and technical
physics with an emphasis in computer vision
and pattern recognition from the Lappeenranta-
Lahti University of Technology (LUT), Lappeen-
ranta, Finland, in 2017.

She is currently working as a Researcher with
the Laboratory of Intelligent Machines, LUT Uni-
versity. Her current research interests include
simulation of multibody systems with hydraulic
components and deep neural networks.

Stanislav Ustinov received the B.Sc. degree
in mechanical engineering and production tech-
nology from the Saimaa University of Applied
Sciences, Lappeenranta, Finland, in 2016, and
the M.Sc. degree in mechatronic system design
from Lappeenranta-Lahti University of Technol-
ogy (LUT), Lappeenranta, Finland, in 2018.

He is currently working as a Researcher with
the Laboratory of Intelligent Machines, LUT
University. His research interests include fluid
power systems, real-time simulation of multi-

body systems, and artificial intelligence.

Heikki Handroos (Member, IEEE) received the
M.Sc. and D.Sc. degrees in hydraulics and au-
tomation from the Tampere University of Tech-
nology, Tampere, Finland, in 1985 and 1991,
respectively.

He has been a Professor of machine automa-
tion with the Lappeenranta-Lahti University of
Technology, Lappeenranta, Finland, since 1993.
He has authored or coauthored about 250 sci-
entific journal and conference papers. His re-
search interests include mechatronic systems to

off-road vehicle transmissions and robotics.
Mr. Handroos is a Member of the ASME and has served in several

editorial boards of journals and conferences in the field of mechatronics.

Authorized licensed use limited to: Lappeenrannan Teknillinen Korkeakoulu. Downloaded on June 25,2022 at 07:25:07 UTC from IEEE Xplore.  Restrictions apply. 





Publication II

Kiani-Oshtorjani, M., Ustinov, S., Handroos, H., Jalali, P., and Mikkola, A.
Real-Time Simulation of Fluid Power Systems Containing Small Oil Volumes,

Using the Method of Multiple Scales

Reprinted with permission from
IEEE Access

Vol. 8, pp. 196940-196950, 2020
© 2020, IEEE





Received October 7, 2020, accepted October 27, 2020, date of publication October 29, 2020, date of current version November 10, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3034698

Real-Time Simulation of Fluid Power
Systems Containing Small Oil Volumes,
Using the Method of Multiple Scales
MEHRAN KIANI-OSHTORJANI 1, STANISLAV USTINOV 2,
HEIKKI HANDROOS 2, (Member, IEEE), PAYMAN JALALI 1, AND AKI MIKKOLA 2
1Laboratory of Thermodynamics, School of Energy Systems, LUT University, 53850 Lappeenranta, Finland
2Department of Mechanical Engineering, School of Energy Systems, LUT University, 53850 Lappeenranta, Finland

Corresponding author: Mehran Kiani-Oshtorjani (mehran.kiani@lut.fi)

This work was supported by the SIM-Platform at LUT University.

ABSTRACT Machinery devices often consist of mechanical mechanisms that are actuated by fluid power
systems. In many applications, the mechanical system can be modelled and analysed in terms of the
multi-body system dynamics. Fluid power systems, in turn, can be analysed via the lumped-fluid theory, with
which simulation of fluid power systems requires smaller integration time steps than needed by multi-body
solvers. This leaves simulation of the entire machinery device beyond reach for a real-time framework, with
the main reason for the very small time steps in modelling of fluid power systems being the presence of
a small hydraulic volume, which creates a numerical stiffness problem. The stiffness issue may arise from
numerical singularity emerging in the fluid power system, which implies that solving the governing equations
involves different time scales – small and large. To resolve the numerical singularity in hydraulic circuits,
the authors developed a perturbed model to alleviate the stiffness problem demonstrated that it can increase
the integration time step by an order of magnitude. Since the perturbed model does necessitate a correction
factor for the volumetric flow rate, the method of multiple scales is applied to compute the pressure within the
small volume to second-order accuracy, O(ε2), in comparison with the perturbed model’s O(ε). The results
reveal that if the correction parameter is not set, the perturbed model’s cumulative error leads to considerable
deviation in piston position with respect to the reference model, whereas the multiple-scale model eliminates
the issue of cumulative error without demanding any flow-rate correction factor.

INDEX TERMS Fluid power system, real-time simulation, singular perturbed model, small volumes.

I. INTRODUCTION
Fluid power systems have been widely used for decades
in such mechanical-engineering applications as mechatron-
ics, robotics, manufacturing, and road machinery, in which
using fluid power systems still remains the most commonly
employed method of power transmission. The design of
machines of this nature is strongly linked with real-time
simulation, a tool necessary for improving the controllability
of the machine, its work conditions, and the specification
process, by means of online feedback from simulations. This
concept is frequently referred to as using a ‘digital twin’,
referring to two-way coupling of a physical machine with a
‘twin’ to improve its functionality [1], [2].
When considering a machinery device as a combination

of mechanical mechanisms and fluid power systems, one

The associate editor coordinating the review of this manuscript and

approving it for publication was Zheng Chen .

finds that the mechanical mechanisms can be modelled in
a straightforward manner in terms of multi-body system
dynamics [3], whereas a fluid power system is often modelled
via the theory of lumped fluids, in which the system gets
divided into hydraulic volumes with evenly distributed pres-
sure [4]. The integration time step applied for a fluid power
system is usually smaller than that in a multi-body solver
[5]–[7], so managing fast response for the fluid power system
is crucial to real-time simulation for vehicles [8]. There are
two popular approaches to dealing with assemblies com-
prising a mechanical mechanism and fluid power system,
known as the unified approach and the multi-rate integration
approach [8]. In the unified approach [3], [9] the hydraulic
and mechanical equations are combined into a single set of
equations to be solved via an identical-integration scheme
with a single time step. In contrast, in the multi-rate inte-
gration approach [10], [11], a distinct time step is used
for each mechanical or hydraulic subsystem. The multi-rate
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integration method can be less computationally expensive,
as fluid power system simulations usually require a smaller
time step [12] thanmechanical parts do. The computation cost
connected with fluid power is mainly due to three parame-
ters: the orifice model, the presence of a small hydraulic-oil
volume in the circuit, and bulk modulus models. These
increase the system’s numerical stiffness and render the set
of equations numerically singular.
If the pressure drop approaches zero, the traditional

turbulent-flow orifice equation is inefficient because of
the infinity value of the volumetric flow-rate derivative.
To overcome this difficulty, Ellman and Piché [13], [14]
proposed several orifice models involving laminar- and
turbulent-orifice equations. Then, a computationally efficient
solution was offered by Åman et al. [15], who posited that a
polynomial relationship exists between flow rate and pressure
drop for small pressure drops. This is a so-called two-regime
flow-rate model, in which a third-order polynomial is utilised
for describing the laminar- and transition-flow area while the
traditional square-root relation of flow rate is kept for the
turbulence regime. To obtain the constants for the model, one
considers the boundary conditions where the laminar and tur-
bulent model meet. This method provides a continuous finite
partial derivative of flow rate with respect to the pressure
drop in all conditions. In addition, some experimental orifice
models have been presented in the literature. For instance,
Borutzky et al. [16] proposed an empirically obtained polyno-
mial function for the orifice volumetric flow rate that displays
a smooth transition between the laminar- and turbulent-flow
regime. With this approach, numerical singularities can be
avoided when the pressure difference approaches zero.
The most significant problemwith the lumped-fluid theory

in dynamic simulation of fluid power circuits is numerical
stiffness connected with the pressure-governing differential
equations, due to either the presence of a small volume in the
system or the highly stiff oil (high bulk modulus values). The
presence of different orders of hydraulic volume in a fluid
power circuit is the reason that the response terms are on
different time scales, making the system numerically singular
and stiff. Consequently, classical integrators cannot resolve
the integration-related numerical difficulties in generating
a stable response with high integration time steps, so the
simulation gets slowed down by setting of quite small time
steps [17]. Therefore, the solution for systems with small
volumes should be derived by means of specific numerical
solvers if one wishes to avoid the problem of instability in
dynamic models for a fluid power circuit. Implementation
of bespoke integrators to handle numerical singularities, iter-
ative methods, machine-learning algorithms, and use of a
perturbed model can be highlighted as the approaches that
alleviate the numerical stiffness of hydraulic systems.
The accuracy and instability of various two-stage

semi-implicit Runge–Kutta methods were investigated by
Piché and Ellman [17], who recognised that it is hard to solve
ordinary differential equations governing different volume
sizes. They proposed an L-stable integrator as the most

suitable tool. Later, Esqué et al. [18] studied real-time simu-
lation of a hydraulic crane in terms of an L-stable Rosenbrock
integration scheme. They found that themaximum integration
time step should be selected on the basis of stability and
computation-time criteria. These two factors led them to
choose a 0.1 ms time step for their application.
Iterative methods have been investigated by many

researchers too. Bowns and Wang [19], reporting on dif-
ficulties that arise in simulation of hydraulic pipe systems
with small volumes, indicated that if the volume of one or
several pipes is small, the required simulation time steps
grow very small. To overcome this problem, they proposed
iterative models; however, these methods are computation-
ally costly and similar to applying small time steps in the
integration. Another iterative method introduced and studied
is the ‘pseudo-dynamic one’ [20]–[22]. The goal with this
algorithm is to reduce the numerical problems by seeking
a steady-state pressure value within the small volume. The
main idea is to replace the small volume in traditional conti-
nuity equations with an artificial one that is large enough for
producing a stable response of pressure. Then, the pressure is
integrated in a separate loop until the convergence criterion
is met. Although this algorithm provides a suitable response,
its inherently iterative nature renders it costly, in that several
iterations are needed at each time step.
In addition to the above-mentioned models intended to

alleviate the numerical stiffness of hydraulic systems, there
have been several efforts to model hydraulic components
by using machine-learning tools, such as a neural network
[23]–[25]. However, these tools would seem time-consuming,
as the number of neuron layers increases in line with response
resolution and the complexity of the system. Moreover, these
models have significantly restricted operating conditions,
depending on the algorithms’ training data. In addition,
the lack of physical modelling and treatment of the fluid
power system as a black box imposes hurdles to system
development related to neural-network models.
Kiani-Oshtorjani et al. [4] introduced an algorithm based

on singular perturbation theory, to increase the simulation
time step in circumstances wherein a small volume is found in
the circuit. As they mentioned, this algorithm substitutes an
algebraic equation for a non-linear differential equation for
pressure. In consequence, the perturbed model can function
with a larger time step while maintaining the stability of the
system. Although this model is fast and stable for various
hydraulic circuits, its accuracy is limited to an order of mag-
nitude as O(ε1). This model requires a correction factor for
adjusting the rate of flow from the small volume.
In contrast to singular perturbation theory, which rules out

the fast response of the system, a method involving multiple
scales can maintain any level of accuracy. This method of
multiple scales, or MMS, is a mathematical tool that can
address non-linear singular systems on both small and large
time scales. The approach has been widely implemented in
vibration [26], [27], hydraulic [28], [29] and pneumatic [30],
fluid [31], [32], and thermal [33], [34] analyses to determine
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FIGURE 1. Orifice and pipe hydraulic circuit schematic.

a system’s non-linear behaviour. For instance, Nayfeh and
Bouguerra [35] used this method to model the non-linear
response of a relief valve.
To eliminate the need for a correction factor such as

that described above for the perturbed model, this paper
introduces an MMS technique for fluid power systems. The
model does not require any flow-rate modifications and can
resolve the numerical stiffness problem associated with a
small hydraulic volume, for calculation of its pressure to
second-order accuracy, O(ε2), within a real-time framework.
To demonstrate this, we derive the multi-scale hydraulic
model in Section II and present its implementation for a fluid
power system in Section III. Further on in Section III, stabil-
ity analysis for fluid power system is investigated, to shed
some light on the factors that lead to a numerically stiff
circuit. Section IV presents the results, and some concluding
thoughts, in Section V, round out the paper.

II. HYDRAULIC FORMULATION
The lumped-fluid theory is an essential tool for modelling
and simulation of fluid power system. However, it either
fails to simulate hydraulic circuits that contain small vol-
umes or demands small time steps that are infeasible for
real-time platforms. For overcoming this difficulty, the per-
turbed hydraulic system was recently proposed [4], and this
is where we begin our discussion. We start by detailing the
lumped-fluid theory and perturbed model and, in turn, derive
the multiple-scale hydraulic model’s equations.

A. THE LUMPED-FLUID THEORY
The theory of lumped fluids is often used in modelling of
hydraulic systems. In the lumped-fluid theory, the hydraulic
circuit is divided into volumes in which the pressure is
assumed to be evenly distributed. Differential equations are
formed for the volumes with which the pressure of the system
at a certain time can be solved for, directly or indirectly. Indi-
vidual volumes are assumed to be separated by a throttling
mechanism through which the fluid can flow. For the model,
the directional, pressure, and flow-control valves are replaced
with throttles that control the rate of flow between the various
volumes, as are the long pipelines used in real-world systems.
Figure 1 illustrates a set of orifices connecting hydraulic

pump pP to tank pT . The pressure in a volume within the
hydraulic circuit can be calculated by means of differential
equations as:

ṗi =
Be
Vi

(Qi− 1
2
− Qi+ 1

2
−
dVi
dt

) (1)

where the t term is time, pi is the pressure in the ith orifice,
Be is the effective bulk modulus, Vi is the hydraulic volume,
Qi− 1

2
and Qi+ 1

2
are the incoming and out-bound volumetric

flow, and dVi
dt is the change in volume over time. The effective

bulk modulus represents the fluid bulk modulus such that

the effects of the container flexibility and any dissolved and
entrained air are taken into account.
The volumetric turbulent-flow rate Qi+ 1

2
across a throttle

can be written in the following form [16], [36]:

Qi+ 1
2
= K

√
pi − pi+1 (2)

where K = CdAt
√

2
ρ
, Cd denotes the discharge coefficient,

At is the valve cross-section area, and ρ is the fluid den-
sity. The volumetric flow rate is usually described through
semi-empirical methods in which the valve parameters are
determined from data collected in manufacturer experiments.
Our work follows a valve specified in the literature [37].

B. THE SINGULAR PERTURBED MODEL
In singular perturbation problems, a small-valued parame-
ter appearing in the governing equation plays a key role.
Cases of regular perturbation involve problems in which one
can obtain the solution by equating that small parameter to
zero, whereas in singular perturbation problems it cannot
be neglected without a significant loss of accuracy in the
results. If the hydraulic volume divided to the bulk modulus
is small, the pressure-variation equations of the lumped-fluid
theory fall into the latter category. Awell-known approach for
perturbation problems of this type is the singular perturbation
technique. As scholars have noted [4], this approach takes the
ordinary differential equations that contain the infinitesimal
parameter ε and transfer them into a quasi-steady-state model
based on Tikhonov’s theorem [38]. Consider the following
system of singular equations:

φ̇ = f (φ,ψ, t, ε) φ(t0) = ζ (ε) (3a)

ψ̇ = g(φ,ψ, t, ε) ψ(t0) = ξ (ε) (3b)

where φ ∈ Rm and ψ ∈ Rn, with ε being an infinitesimal
parameter. The quasi-steady-state model of the above system
[39] is

φ̇ = f (φ, h(t, φ), t, ε) φ(t0) = ζ (ε) (4a)

ψ̄(t) = h(t, φ̄) (4b)

The over-bar denotes the perturbed variables, and h is an alge-
braic equation that is determined during the order reduction.
The ith volume in Figure 1 is considered a small volume
in comparison with the neighbouring ones. In consequence,
as the literature explains [4], applying singular perturbation
theory to this volume yields

pi =
pi+1 + αpi−1

1+ α
(5)

where α =
(Ai−1
Ai+1

)2.
C. THE METHOD OF MULTIPLE SCALES
The singular perturbation method only gives the solution
corresponding to the largest time scale, leaving out other time
scales, corresponding to other dynamic behaviours. Each
scale can be treated as an independent variable reproducing
a set of equations instead of a single equation. For instance,
t and εt can be treated as two independent variables, each
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of them representing a scale of time. Although the perturbed
hydraulic model returns the steady-state response, the error
arising from the smaller scales can accumulate over time to
create a substantial deviation from the precise response actu-
ally involved, especially for those circumstances in which the
dynamic behaviour of systems should not be simply ignored.
The error of perturbed model should be compensated for
through the correction factor mentioned above [4]. However,
another option is to introduce a more accurate model, one not
needing any modification. To this end, the MMS can be used
to derive the hydraulic model governing small hydraulic oil
volumes. In this method, the new independent time variables
are introduced as

Tn = εnt n = 0, 1, 2, . . . (6)

Therefore, the time derivative can be expressed in terms of
the chain rule thus:

d
dt
=
dT0
dt

∂

∂T0
+
dT1
dt

∂

∂T1
+ . . . (7)

In addition, one may assume that the solution to Equation 1
can be written as
pi(t, ε) = p0(T0,T1, . . .)+ εp1(T0,T1, . . .)+ O(ε2) (8)

It is worth mentioning that the number of time scales is a
function of the accuracy required. If we want to expand the
solution up to the second order, O(ε2), the T0 and T1 time
scales are required. Substituting Equation 8 into 7 and then
plugging the result into Equation 1 yields( ∂
∂T0
+ε

∂

∂T1
+ε2

∂

∂T2

)(
p0+εp1+ε2p2

)
=
βe

Vi

(
Qi− 1

2
−Qi+ 1

2

)
(9)

On the other hand, the flow rates Qi− 1
2
and Qi+ 1

2
are

functions of the pressure in the small volume. If these flow
rates are calculated in line with the perturbed pressure, errors
are going to arise. Consequently, they have to be calculated
with reference to the true, exact value of pi. Considering
Equation 2, one can obtain Qi+ 1

2
as

Qi+ 1
2
= CcA

√
pi − pi+1 = CcA

√
p0 − pi+1 + εp1 + ε2p2

(10)

Therefore, by getting p0− pi+1 from the square-root func-
tion and implementing Taylor series for

√
1+ x u 1+ x

2−
x2
8

in which x < 1, we have

Qi+ 1
2
= CcA

√
p0−pi+1

(
1+

p1ε + p2ε2

2(p0−pi+1)
−

p21ε
2

8(p0−pi+1)2

)
= Q̄i+ 1

2

(
1+

p1ε + p2ε2

2(p0 − pi+1)
−

p21ε
2

8(p0 − pi+1)2

)
(11)

Here, Q̄i+ 1
2
= CcA

√
p0 − pi+1 is the flow rate calculated on

the basis of the perturbed pressure, referred to as the perturbed
flow rate from here on. The same logic is valid for Qi− 1

2
,

resulting in the following relation:

Qi− 1
2
= Q̄i− 1

2

(
1−

p1ε + p2ε2

2(pi−1 − p0)
−

p21ε
2

8(pi−1 − p0)2

)
(12)

Substituting the flow rates calculated via equations 11
and 12 into Equation 9 and separating the equations forO(ε0),
O(ε1), and O(ε2) produces the following set of equations:

O(ε0) :
∂p0
∂T0
=
βe

Vi

(
Q̄i− 1

2
− Q̄i+ 1

2

)
(13)

O(ε1) :
∂p1
∂T0
+
βe

Vi
p1

( Q̄i− 1
2

2(pi−1 − p0)
+

Q̄i+ 1
2

2(p0 − pi+1)

)
= −

∂p0
∂T1

(14)

along with

O(ε2) :
∂p2
∂T0
+
βe

Vi
p2

( Q̄i− 1
2

2(pi−1 − p0)
+

Q̄i+ 1
2

2(p0 − pi+1)

)
=
βe

Vi

( Q̄i+ 1
2
p21

8(p0 − pi+1)2
−

Q̄i− 1
2
p21

8(pi−1 − p0)2

)
−
∂p1
∂T1
−
∂p0
∂T2
(15)

Equation 13 is equivalent to the perturbed model because
of the presence of small volume Vi, giving us the perturbed
pressure as obtained in Equation 5, as p0 =

pi+1+αpi−1
1+α . As a

result, ∂p0
∂T1
= 0, and when we recall the Q̄i− 1

2
and Q̄i+ 1

2
relations, Equation 14 can be solved as

p1=3(T1)exp
(
−

∫ T0

0

βe

Vi

[ Q̄i− 1
2

2(pi−1−p0)
+

Q̄i+ 1
2

2(p0−pi+1)

]
dT0

)
(16)

Considering dp1
p1
=

d(εp1)
εp1

and assuming a constant pressure
drop through the small volume

√
pi−1 − pi+1, one can solve

Equation 16 thus:

∂p2
∂T0
+
βe

Vi
p2

( Q̄i− 1
2

2(pi−1 − p0)
+

Q̄i+ 1
2

2(p0 − pi+1)

)
=
βe

Vi

( Q̄i− 1
2

8(pi−1 − p0)
+

Q̄i+ 1
2

8(p0 − pi+1)

)
32

× exp
(
− 2

∫ T0

0

βe

Vi

[ Q̄i− 1
2

2(pi−1 − p0)
+

Q̄i+ 1
2

2(p0 − pi+1)

]
dT0

)
−
∂3

∂T1
exp
(
−

∫ T0

0

βe

Vi

[ Q̄i− 1
2

2(pi−1−p0)
+

Q̄i+ 1
2

2(p0−pi+1)

]
dT0

)
(17)

The terms on the right-hand side in Equation 17 are secular,
meaning that they can grow to infinity over time. To avoid
such infinities, one must set these terms to zero. Therefore,
we have

∂3

∂T1
−32 βe

Vi

( Q̄i− 1
2

8(pi−1 − p0)
+

Q̄i+ 1
2

8(p0 − pi+1)

)
× exp

(
−

∫ T0

0

βe

Vi

[ Q̄i− 1
2

2(pi−1 − p0)
+

Q̄i+ 1
2

2(p0 − pi+1)

]
dT0

)
=0

(18)
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This yields

3 = −
1
fT1

(19)

in which f =
βe
Vi

( Q̄
i− 1

2
8(pi−1−p0)

+

Q̄
i+ 1

2
8(p0−pi+1)

)
exp
(
−∫ T0

0
βe
Vi

[ Q̄
i− 1

2
2(pi−1−p0)

+

Q̄
i+ 1

2
2(p0−pi+1

]
dT0

)
. Substituting

Equation 19 into Equation 16 gives us

p1 = −
1
T1

8Vi
βe

( Q̄i− 1
2

(pi−1 − p0)
+

Q̄i+ 1
2

(p0 − pi+1)

)−1
(20)

By considering T1 = εt and combining p0 and εp1 in
accordance with Equation 8, we can express small-volume
pressure pi as

pi =
pi+1 + αpi−1

1+ α
−

1
t
8Vi
βe

( Q̄i− 1
2

(pi−1 − p0)
+

Q̄i+ 1
2

(p0 − pi+1)

)−1
(21)

This equation reveals that the deviation from the exact
solution under the perturbed model depends primarily on the
pressure drop through the small volume pi−1 − pi+1, bulk
modulus βe, and volume Vi. If said pressure drop approaches
zero, pi−1 − pi+1 → 0, meaning that there is no pressure
change from pi−1 to pi+1, then εp1 → 0, and hence the
perturbed model yields results identical to exact-solution
procedures.
The same logic is valid for the bulk modulus and the

volume size. Obviously, the perturbedmodel is more accurate
as the size of the small volume approaches zero, as εp1 → 0
if Vi→ 0.

III. A NUMERICAL EXAMPLE
The fluid power circuit depicted in Figure 2 is a practical
example of a hydraulic actuator that considers real-world
valve leakage. The circuit contains a 4/3 proportional
directional control valve, a pressure compensator, and a
two-chamber double-acting hydraulic cylinder. The mobile
massm is attached to the end of a horizontal cylinder rod. The
system has an ideal tank and pumpworking at a constant pres-
sure of pt = 9 bar and pp = 200 bar, respectively. The small
volume Vp is situated between the pressure-compensator
throttle and the orifice of the directional control valve.

A. HYDRAULIC CIRCUIT MODEL
The hydraulic circuit was modelled and simulated in the
Simulink R2018 environment. The initial values and con-
stants for the system are presented in Table 1. The mathe-
matical model of the fluid power circuit considered is fully
represented by a set of algebraic and differential equations.
The flow Qp through the pressure compensator’s throttle
is calculated in accordance with a semi-empirical approach
presented in the literature [40]:

Qp = K
√
ps − pp,

K̇ =
1
C3

(C5− pp + pshuttle − (C1+ C2(ps − pp))K )

(22)

FIGURE 2. Schematic representation of the practical fluid power circuit.

where K is a semi-empirical flow coefficient; C1, C2, C3,
and C5 are empirical constants [40]; ps is pump pressure; and
pp is the pressure in the small volume. The output pressure of
the shuttle valve between points A and B pshuttle is dependent
on the maximum value of pressures p1 and p2 and can be
expressed as pshuttle = max(p1, p2).
The 4/3 proportional directional valve’s volume flow rates

Q1 and Q2 are presented by means of a turbulent-orifice
model with a triangular groove cross-section as follows:

Q1 =


Cν(Us − Ud )

√
|pp − p1|sign(ps − p1), Us ≥ Ud

Cν(Us − Ud )
√
|p1 − pt |sign(p1−pt ), Us ≤−Ud

0 otherwise

Q2 =


−Cν(Us − Ud )

√
|p2−pt |sign(p2−pt ), Us ≥ Ud

−Cν(Us − Ud )
√
|pp−p2|sign(ps−p2), Us ≤−Ud

0 otherwise
(23)

whereCν is the flow constant that accounts for cross-sectional
areas and the geometry of the valve orifices; Ud is the insen-
sitivity area for the signal applied; and p1, p2, pp, and pt
are the pressures in, respectively, the two cylinder chambers,
the small volume Vp, and the tank.
The pressures in this example fluid power circuit are

integrated from the following pressure-continuity equations:

ṗp =
Be
Vp

(
Qp− Q3

)
ṗ1 =

Be
V1

(
Q1 − A1ẋ

)
ṗ2 =

Be
V2

(
− Q2 + A2ẋ

)
(24)

196944 VOLUME 8, 2020



M. Kiani-Oshtorjani et al.: Real-Time Simulation of Fluid Power Systems

TABLE 1. Fluid power circuit constants and initial conditions.

where pp is the pressure in the pipeline between the pressure
compensator and directional control valve, p1 and p2 are
the pressures in the two cylinder chambers, Vp is the small
volume between the pressure compensator and directional
control valve, V1 and V2 are the volumes of the pipelines and
chamber for path A and B, Be is the effective bulk modulus of
oil, A1 and A2 are the cross-sectional areas of the chambers
of the cylinder, and ẋ is the sliding velocity of the piston. The
outlet flow Q3 is determined by the following relation:

Q3 =


Q1, Us ≥ Ud
−Q2, Us ≤ −Ud
0 otherwise

(25)

The volumes in the circuit can be calculated thus:

V1 = A1x + Vdead
V2 = A2

(
Sc−x

)
+ Vdead (26)

where Sc is a full stroke of the cylinder; x is the position of
the piston; A1 and A2 are the area of the first and of the sec-
ond chamber, respectively; and Vdead is the dead volume,
which represents the volume of the pipelines from directional
control valve to cylinder.
The total force generated by the piston is described by the

system-force equation as follows:
Ftot = p1A1 − p2A2 − Fµ = mẍ (27)

Here, Fµ denotes the friction between the walls of the cylin-
der and the piston,m is the loadmass, and ẍ is the acceleration
of the piston.
The friction model applied for the simulation is based

on the LuGre friction model [41]–[43]. This model can be
introduced by the following set of equations:

ż = ẋ −
|ẋ|
g(ẋ)

z

g(ẋ) =
1
σ0

(
Fc + (Fs − Fc)e

(−| ẋvs |)
2)

Fµ = σ0z+ σ1ż+ kvẋ (28)

where Fµ is total friction force, z denotes a non-measurable
internal state, Fc is the force of Coulomb friction, ẋ is the
sliding velocity of the piston, vs is the sliding speed coeffi-
cient, and Fs is static friction. The viscous friction coefficient
is included as kv, and σ0 and σ1 are the flexibility and damping
coefficient, respectively.

TABLE 2. State variables.

B. STABILITY AND NUMERICAL STIFFNESS ANALYSIS
The numerical singularity problem occurs in circumstances
wherein both a ‘fast’ term and ‘slow’ ones contribute to
the solution for independent variables. The eigenvalues
associated with a set of differential equations determine
how quickly their corresponding terms develop. Therefore,
the comparison of extremum eigenvalues will determine
the speed of the ‘fastest’ term relative to the ‘slowest’.
Consequently, the system is numerically stiff whenever the
ratio of the largest to the smallest eigenvalues obtained from
the Jacobian is large. The set of equations represented as
Equation 24 and the one for motion, Equation 31, together
form the set of equations for stability analysis. This set of
equations is transformed to the state space by means of the
state variables in Table 2 in the following manner:

2x1ẋ1 =
Be
Vp

(
CvUx3 − Kx1

)
2x2ẋ2 =

Be
A2
(
Sc − x25

)
+ Vdead

(
CvUx3 + A2x24

)
2x3ẋ3 =

Be
A1x25 + Vdead

(
A1x24 − CvUx3

)
2x4ẋ4 = −

A1
m

(
x21 + x

2
3
)
−
A2
m
x22 −

kv
m
x24 +

A1
m
ps −

A2
m
pt

2x5ẋ5 = x24 (29)

in which the flow coefficient for the pressure compensator
(K ) is assumed to be constant and the friction model is
overlooked for purposes of simplifying the Jacobian matrix
derivation. It should be highlighted that the set of state-space
equations presented is a representation of the system with a
positive valve position (U >= 0). Stability analysis for a
negative valve position (U < 0) follows the same approach
apart from minor changes in the equations.
After the Jacobian matrix is formed through taking the

partial derivative of the state equations with respect to the
state variables as J = ∂F

∂x , the eigenvalues of the system
can be calculated (five eigenvalues for a 5 × 5 Jacobian
matrix). For investigation of the system numerical stiffness,
a condition number, κ , is computed:

κ(J ) =
|λmax(J )|
|λmin(J )|

(30)

Thismeasures the ‘speed’ of the ‘fastest’ term (corresponding
to the maximum eigenvalue λmax) of the solution relative
to that of the ‘slowest’ one (corresponding to the minimum
eigenvalue λmin). Note that a higher condition number at
the given operating point implies that the system is more
numerically stiff.

VOLUME 8, 2020 196945



M. Kiani-Oshtorjani et al.: Real-Time Simulation of Fluid Power Systems

FIGURE 3. Stability analysis curves showing the condition number (κ)
contours in the 1p− Vp plane for x = [1p 1p 1p 0.2 0.5] (a) and for
x = [1p 5× 105 5× 105 0.2 0.5] (b).

For conditions of an identical pressure drop over all three
hydraulic volumes,1p1 = 1p2 = 1p3 = 1p, the state vari-
ables x = [x1 x2 x3 x4 x5] are set to [1p1 p1 p 0.2 0.5],
and the corresponding stability graph is plotted in Figure 3a.
The x-axis of this figure shows the small hydraulic volume
varying between 0 and 10−5 m3, for depicting the effects
of the pressure drop on the condition number, κ . As this
figure suggests, where there is a constant pressure drop,
the smaller volume Vp produces a higher κ value: the system
becomes more numerically stiff. On the other hand, for a
fixed volume smaller than 6.5 × 10−6 m3, less of a pres-
sure drop makes for a higher condition number and greater
numerical stiffness of the system. One can conclude that a
small hydraulic volume or a small pressure drop through the
volumes increase the numerical stiffness.
We can perform the same analysis while varying only

the pressure drop through the small volume 1p1 and set-
ting 1p2 = 1p3 = 5 × 105 Pa. In this case, the state
variables become x = [1p 5 × 105 5 × 105 0.2 0.5].
The corresponding stability graph is depicted in Figure 3b.

TABLE 3. The simulation results.

This figure exhibits the same trend visible in Figure 3a with
regard to the volume and pressure drop. There is a difference,
however, in that, for a certain volume and pressure drop,
Figure 3b predicts a more numerically stiff system than does
Figure 3a.

IV. RESULTS AND DISCUSSION
This section describes the results of fluid power circuit sim-
ulation. The results are represented through comparison of
three simulation models – namely, a model that addresses
the small volume in terms of the lumped-fluid theory, with
a relatively small integration time step; the perturbed model,
based on singular perturbation theory; and our multiple-scale
model derived by means of the MMS. The first of these is
a reference model that, while yielding the exact solution,
is computationally expensive since the integration time step
used should be very small. For the comparison, we set the
time step for that original model to the largest value that does
not render the system unstable. Below, we will demonstrate
the advantages of the proposed MMS model over both this
traditional one and the perturbation method in circumstances
wherein the presence of small volumes creates challenges for
the real-time simulation of fluid power systems.
We performed the simulation for a time interval of 200 s,

with three distinct input signals: sin(0.25t), sin(0.75t),
and u(t). For all three models, input sine excitation of
sin(0.25t) was used for the opening of the valve in the sim-
ulation conditions. The differences in simulation time step
and the corresponding error values are presented in Table 3.
For the original model, the largest possible time step proved
to be 10−4 s, while for the MMS model we can make it
four times greater with only 1% error. As Figure 4a illus-
trates, the perturbed model, in contrast, accumulates nearly
10.9% error by the end of the period. Recall that appropriate
operation of the perturbed model demands correction of the
flow rate from the small volume, to prevent cumulative error
from rendering the results inaccurate, while the MMS model
does not require such a factor and maintains second-order
accuracy, O(ε2). The error values shown in Figure 4b for
the perturbed and MMS model with respect to the reference
model were calculated by means of the following relation:

error% =
100
Sc

√√√√ 1
N

N∑
i=1

(xpi − x
r
i )

2 (31)

where xri and xpi are the reference- and the perturbed-model
signal, each broken down into N data points. The pressures
in chamber 1 and in chamber 2 are presented in figures 4c
and 4d, respectively, which show the MMS to be in good
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FIGURE 4. The results corresponding to the input signal of sin(0.25t). a) Comparison of piston position among the original model (solid black line),
perturbed model (dashed red line), and multiple-scale model (blue dot-dashed line). b) Their relative error. c) The pressure in chamber 1 (p1) and d) the
pressure in chamber 2 (p2).

FIGURE 5. The results corresponding to the input signal of sin(0.75t): a) Comparison of piston position among the original, perturbed, and multiple-scale
model (denoted as in the previous figure). b) Their relative error.

agreement with the original model whereas the pressure
values obtained via the perturbed model are underestimated.
It is worth highlighting the possibility of increasing the

integrator’s time step under theMMSmodel, while the largest
one possible was used for the reference model. For instance,
when this simulation is performed with the same input signal,
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FIGURE 6. a) Pulse input u(t); b) its corresponding pressure in chamber 1, p1; c) the piston position obtained with the small time step in what is referred
to as the original model (black line with squares), the perturbed model (broken red line), and the multiple-scale model (dashed blue line with circles);
and d) the relative error of the latter two models relative to the original model.

increasing the time step for the MMS model to 5 × 10−5 s,
causes the error to rise to just 1.64%, as the second row
in Table 3 indicates.
Figure 5a shows the position response of the system with

a sin(0.75t) input signal under all three methods. The figure,
depicting the piston position, indicates a good match across
all of the models for the first 40 s, after which the perturbed
model starts to diverge from the reference exact solution.
According to this figure, the positions produced via the tradi-
tional and MMS model roughly coincide while the response
of the perturbed model deviates from the original one. The
phenomenon is visible in Figure 4b also: the relative error of
the MMS model is below 1% while the perturbed model’s
error rises almost linearly with time.
Additionally, the methods were tested with a pulse

input of u(t), which signal is presented in Figure 6a.

The corresponding pressure in chamber 1 is shown in
Figure 6b for all three models. We found that theMMSmodel
is entirely consistent with the original model, while there
is significant deviation in the pressure response of singular
perturbed model. Furthermore, one can observe from both
Figure 6c and Figure 6d that the MMS model produces a
stable piston-position response with relative error of 0.09%
only. The deviation under the MMS model cannot be con-
sidered critical in comparison to the perturbed model, which
accumulates error values as high as 13.2% after a 200 s
interval. As the tabulation in Table 3 attests, the MMS model
copes with a much bigger simulation time step (10−3 s) than
do both the original model (5×10−5 s) and the perturbed one
(10−4 s). Thereby, the MMS model is amenable to real-time
simulation of fluid power systems while retaining acceptable
accuracy.
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V. SUMMARY AND CONCLUSION
With this paper, we have introduced the MMS as a suitable
technique for time-efficiently arriving at accurate solutions
for numerically stiff fluid power systems, specifically when
small volumes appear in their modelling. Comparison of
a reference exact approach, singular perturbation, and our
MMSmodel serves to demonstrate the novel method, consid-
ered for several valve-input signals. For this purpose, a prac-
tical fluid power circuit including a two-chamber hydraulic
cylinder, a 4/3 proportional directional valve, and a pres-
sure compensator was implemented in Simulink. The same
fluid power circuit was used to investigate how applying
the perturbed and the MMS model to the small hydraulic
volume affects the computation efficiency and integrator time
step. Comparing all of the models with regard to the same
fluid power system demonstrates nicely that the perturbed
model cannot achieve acceptable results without a correction
factor – through cumulative error, its results deviate from the
exact solution otherwise. In addition, considering the MMS
model alongside the exact technique demonstrates the novel
model’s ability to eliminate the numerical stiffness problem
brought by fluid power systems and increase computation
efficiency to the levels demanded by real-time simulation
conditions.
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ABSTRACT The modeling and simulation of fluid power systems are essential parts of the real-time
simulation of virtual prototypes of mobile working machines. In several cases in the dynamic simulation
of such fluid power systems, a longer simulation time is required. This makes the traditional mathematical
models inefficient for real-time simulations, particularly when simulating fluid power systems because of
the small volumes in stiff differential equations of pressure. To overcome this issue, a novel hybrid model
is proposed for stiff fluid power systems simulation. The main feature of the model is the utilization of a
recurrent neural network instead of stiff differential equations of pressure with small volume. At the same
time, the dynamics of the rest system are traditionally presentedwith algebraic and differential equations. The
testing results of the introduced hybrid model showed that the novel method can reduce the simulation time,
which makes the model suitable for real-time applications. Moreover, the accuracy of the model remains at
a fairly high level compared to traditional mathematical models.

INDEX TERMS Dynamic simulation, fluid power system, real-time simulation, recurrent neural network,
small volumes.

I. INTRODUCTION
Fluid power systems are widely used in the real-life model-
ing of various mobile machines such as logging harvesters,
cranes, excavators, and industrial robots. The recent trend in
modeling digital twins [1] and virtual prototypes [2]–[4] has
shown that mathematical modeling of fluid power systems
plays a vital role in the development of industrial simulators
of such mobile working machines. For this purpose, real-
time and faster than real-time techniques [5] are used to get
a fast response in the system. However, fluid power circuits
can contain singularities that directly affect the computational
speed of the whole system and make a real-time simulation
of the system impossible.
In general, there are two main problems in fluid power

circuits modeling and simulation. The first problem is related
to the pressure drop approaching zero. This phenomenon
is associated with difficulties in the use of the traditional
turbulent flow orifice equation because of the infinite value
of the flow rate derivative. To solve this problem, several
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combined orifice models were proposed by Ellman et al.
at the end of the 1990s [6], [7]. Another computationally
efficient solution was proposed by Aman et al. in 2008 [8] in
which the polynomial relation between flow rate and pressure
dropwas derived for cases when the pressure drop approaches
zero. The model was named the two-regime flow model in
which the third-order polynomial is used for describing the
laminar and transition flow areas, whereas the traditional
square root turbulent orifice equation of flow is used for the
turbulence regime.

Another problem in the dynamic simulation of fluid power
circuits can be associated with the numerical stiffness of
ordinary differential equations [9]. The numerical stiffness in
fluid power systems can be explained by the fact that such
circuits include volumes of different orders of magnitude.
This results in difficulties in the numerical integration of
ordinary differential equations, and classical explicit inte-
gration solvers are not able to generate a stable dynamic
response at a high integration time step, slowing down the
simulation by implementing significantly small time steps.
The numerical stiffness of the system can often be associated
with small volumes in a hydraulic circuit. The solution for
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the systems with small volumes should be derived by using
specific numerical solvers to avoid the problem of instability
in a dynamic model of a fluid power circuit [10].
The problem of small volumes and the resulting numeri-

cal stiffness of fluid power circuits arises in various scien-
tific papers, and as a result, special solvers are developed.
This problem was first mentioned in 1990 by Bowns and
Wang [11], who proposed an iterative technique to solve the
problem of numerical stiffness due to the small volumes in
hydraulic pipes. However, the technique was still computa-
tionally costly.
Another iterative technique was first presented by Aman

and Handroos [12]–[14]. This implicit solver was named the
pseudo-dynamic solver. This solver consists of two loops—
an outer (or main) loop and an inner (or pseudo) loop. The
main loop contains algebraic and differential equations of the
whole fluid power system, except for the pressure and flows
that are associated with the small volume. The integration of
such pressure occurs in the inner loop of the solver with an
artificially enlarged volume instead of the real small volume.
The idea of the inner loop is to receive the steady-state
response of the pressure by iterating such pressure with arti-
ficial volume until the convergence criterion is reached.
The advanced version of the pseudo-dynamic solver

(AdvPDS) was proposed by Malysheva et al. in 2020 [15].
The main difference of this approach from the original
pseudo-dynamic method is the implementation of adaptive
criterion of convergence. The criterion depend on the pressure
levels in the system, and it was experimentally proven that
with small levels of pressure, the smaller criterion have more
accurate results; and at the same time, the bigger criterion
can accelerate the computational speed of the fluid power
system. Ultimately, the method is a trade-off between accu-
racy and speed suitable for real-time or faster than real-
time applications. The method has also been improved by
Malysheva and Handroos [16], where it was investigated that
different integrators can also affect the computational speed
of AdvPDS.
One of the most reliable methods proven to be excellent

in simulating fluid power systems in theory and practice
is the method proposed by Kiani-Oshtorjani et al. [17]. This
method is based on the singular perturbation theory. The
main idea of this approach is to substitute stiff ordinary
differential equations with small volumes for algebraic equa-
tions modified for fluid power systems simulation in accor-
dance with this theory. The method was tested in simulating
multibody systems [18], and an accurate and fast response
of the system was achieved. However, the method has its
own drawbacks related to the accumulative error in certain
cases of use. To overcome the error, a special corrector factor
for the model should be used. To solve this problem and
allow the simulation without a corrector factor definition,
a novel method based on the combined singular perturbation
theory and Method of multiple scales (MMS) was proposed
by Kiani-Oshtorjani et al. [19]. This robust method allows
the elimination of the accumulative error and makes the

simulation faster and more accurate than the original method
based on the singular perturbation theory.

In several works [20]–[22], the components of fluid power
systems were introduced as neural networks with basic inputs
and outputs. This type of system modeling showed that the
use of neural networks in fluid power circuits modeling pro-
vides a fast response in the system that allows a simulation of
the system in real-time or faster than real-time applications.
In addition, predictive neural network models of various
dynamic systems with ordinary differential equations (ODE)
were studied in [23] and [24]. Both papers are based on
the studies of new methods for improving the performance
of neural networks based on simple ODEs and complex
nonlinear dynamic systems. Nevertheless, the most signifi-
cant results were shown by using recurrent neural networks
(RNN) [25]–[27] in the modeling and simulation of different
systems.

However, the systems based on neural networks are sim-
ulated as a black box, and the dynamics of the system are
totally neglected. Substituting a stiff differential equation
with small volumes with a computationally efficient and
accurate neural network can solve the problem of singularity
arising in the simulation of such stiff fluid power systems.
It means that only the stiff equation will be replaced with
the neural network and the system dynamics of the entire
system will be saved in the mathematical model. And at the
same time, the simulation is supposed to be faster due to the
absence of stiff differential equations in the areas with small
volumes.

The main purpose of this research paper is to introduce
a novel hybrid model for a fast simulation of fluid power
systems with small volumes using the RNN only for the
pressure continuity equation with small volume in calcula-
tions. Section II describes the fluid power systems under con-
sideration in the research. Section III provides information
about the RNN used in the development. Section IV describes
the development in detail, from the collected data and the
RNN training to the implementation of the neural network
in the fluid power circuits from Section II. Finally, sections V
andVI provide the results of the simulations, and a conclusion
is made about the model developed.

II. FLUID POWER CIRCUIT DESCRIPTION
This section describes the systems studied in the current
research. Overall, two fluid power circuits were investigated.
Both systems have one thing in common—the content of
one small volume inside. The first circuit is a simple fluid
power system with multiple orifices located in series. The
second fluid power circuit is a simple pressure-compensated
system with a 2-chamber hydraulic cylinder controlled by a
directional control valve.
The systems were modeled in accordance with the lumped

fluid theory, which assumes that a fluid power system can
be divided into sections with separate volumes where the
pressure can be distributed. A differential equation is formed
for each pressure in such a fluid power system where the
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derivative of pressure can be expressed with the general
formula:

ṗi =
Be
Vi

(Qi − Qi+1 −
dVi
dt

) (1)

where pi is the pressure in at ith section,Be is the effective bulk
modulus,Vi is the volume in the same section,Qi andQi+1 are
the inlet and outlet volumetric flows, and dVi

dt is the time rate
changes of volume Vi. The detailed description of the fluid
power circuits studied will be in the following subsections.

A. CIRCUIT 1: MULTIPLE ORIFICES
The first fluid power circuit is related to the system of three
identical orifices in series. The system contains the constant
pressure pump, which is assumed as an ideal pressure source
and tank for recovery of the fluid. Fig. 1 shows the schematic
representation of the circuit. The position of a small volume in
such a system is between the orifice number 2 and 3. The total
simplicity of this circuit allows the use of a large integrator
time step for the dynamic simulation of the circuit even with
a small volume inside, and it requires less computational time
than more complex fluid power systems.
Each pressure in the circuit can be represented by the

lumped fluid theory and a general formulation (1). Therefore,
pressures in this circuit are integrated from the following
formulations:

ṗ1 =
Be1
V1

(
Q1 − Q2

)
ṗ2 =

Be2
V2

(
Q2 − Q3

)
(2)

where V1 and V2 are pipe volumes in two pressure sections;
Q1, Q2, and Q3 are volume flows through orifices 1, 2,
and 3, respectively, and Be1 and Be2 are pressure-dependent
effective bulk modulus for pressures p1 and p2, respectively.
The effective bulk modulus in such a system can be derived
as follows:

Bei = a1Emax log
(
a2

pi
pmax

+ a3

)
(3)

where Emax is the maximum bulk modulus of the oil, pmax
is the maximum pressure in the system, pi denotes pressure
corresponding to the bulk modulus, and a1, a2, and a3 are the
empirical constants [28]. Volume flows in the circuit can be
calculated with the orifice equation as follows:

Qi = CdAi

√
2(pi−1 − pi)

ρ
(4)

where Cd denotes the discharge coefficient, Ai is the
cross-sectional area of orifice i (where i = 1, 2 or 3), ρ
is the density of the hydraulic fluid, and pi and pi−1 are
the outlet and inlet pressures, respectively. The system has
a total of 3 volumetric flow variables corresponding to each
orifice. The values of all parameters used in the modeling
and simulation of the multiple orifice fluid power circuit are
represented in Table 1.

TABLE 1. Circuit 1 parameters.

B. CIRCUIT 2: HYDRAULIC CYLINDER CONTROLLED BY A
DIRECTIONAL CONTROL VALVE
The second circuit under consideration is the system with a
more complex architecture and which is more practical and
applicable for real-time simulation. The circuit consists of a
two-chamber double-acting hydraulic cylinder with a mass
attached to the end of the horizontal cylinder’s rod. The mass
is not totally fixed, having 1 degree of freedom to slide in
a piston movement direction. The cylinder is controlled by
the 4/3-proportional directional control valve. The pressure
in the system is supported by the constant pressure pump,
which is assumed to be an ideal pressure source. A pressure
compensator is also used in the circuit between the pump
and the directional control valve. All the components in the
system are connected with the hydraulic pipes of different
volumes.

The circuit contains one extremely small pipe volume,
located between the pressure compensator and the directional
control valve. Fig. 2 depicts the whole circuit; the small
volume is denoted as Vv. All the parameters of this system are
presented in Table 2. The mathematical model of the circuit
is represented with differential and algebraic equations. The
system is controlled and activated by the voltage signal U ,
obtained from the following equation:

Üs = Kvω2
nU − 2ζωnU̇s − ω2

nUs (5)

where Kv is the valve gain,Us is the signal proportional to the
valve spool displacement, ζ is the valve damping ratio and
ωn is the natural angular frequency. The flow Qv through the
throttle of the pressure compensator is calculated according
to a semi-empirical approach, as in [27]:

Qv = K
√
ps − pv,

K̇ =
1
C3

(C5 − pv + pshuttle − (C1 + C2(ps − pv))K ) (6)

where K denotes the semi-empirical flow coefficient, C1,
C2, C3, and C5 denote empirical constants [29], ps and pv
are the constant pump pressure and the pressure in small
volume, respectively. The output pressure of the shuttle valve
between way A and B (Fig. 2) pshuttle is dependent on the
maximum value of pressures p1 and p2 and can be expressed
as pshuttle = max(p1, p2).
The volume flow rates Q1 and Q2 of the 4/3-proportional

directional control valve are calculated with the use
of the turbulent orifice model with a triangular groove
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FIGURE 1. Three-orifice fluid power circuit.

cross-section, as follows:

Q1 =



Cν(Us − Ud )
√
|pv − p1|sign(pv − p1),

Us ≥ Ud
Cν(Us − Ud )

√
|p1 − pt |sign(p1 − pt ),

Us ≤ −Ud
0,

otherwise

Q2 =



−Cν(Us − Ud )
√
|p2 − pt |sign(p2 − pt ),

Us ≥ Ud
−Cν(Us − Ud )

√
|pv − p2|sign(pv − p2),

Us ≤ −Ud
0,

otherwise

(7)

whereCν is the flow constant that accounts for cross-sectional
areas and the geometry of the valve orifices, Ud is the insen-
sitivity area for the applied signal, and p1, p2, pv, and pt are
the pressures in two cylinder chambers, the pressure in small
volume Vv, and the pressure in the tank, respectively.
Pressures in the system are integrated from the pressure

continuity equations in accordance with the lumped fluid
theory, as follows:

ṗ1 =
Be1
V1

(
Q1 − A1ẋ

)
ṗ2 =

Be2
V2

(
− Q2 + A2ẋ

)
ṗv =

Be3
Vv

(
Qv − Q3

)
(8)

where Vv is the small volume between the pressure compen-
sator and directional control valve, Qv is the volume flow
through the throttle of pressure compensator, ẋ is sliding
speed of the piston, A1 and A2 are cross-sectional areas of
chambers of the cylinder, V1 and V2 are volumes of the
pipelines and chamber in way A and way B, respectively. Be1,
Be2, and Be3 are effective bulk moduli for each pressure in

FIGURE 2. Hydraulic cylinder controlled by a directional control valve.

the system and are represented by (3). Volumes V1 and V2 are
calculated as follows:

V1 = A1x + Vdead
V2 = A2

(
Sc−x

)
+ Vdead (9)

where Sc is the full stroke of the cylinder, x is the
position of the piston, and Vdead is the dead volume,
which represents the volume of pipelines. The outlet flow
Q3 from (8) depends on the valve position, which can be
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determined as follows:

Q3 =


Q1, Us ≥ Ud
−Q2, Us ≤ −Ud
0, otherwise

(10)

The equation of motion for the system with a total force
acting on it can be represented by the following relation:

Ftot = p1A1 − p2A2 − Fµ = mẍ (11)

where Fµ denotes friction between the walls of the cylinder
and piston, m is the mass of the load attached to the end of
the rod, and ẍ is the acceleration of the piston. The friction
model used for the simulation is based on the LuGre friction
model [30]–[32]. This model can be introduced with the
following set of equations:

ż = ẋ −
|ẋ|
g(ẋ)

z

g(ẋ) =
1
σ0

(
Fc + (Fs − Fc)e

(−| ẋvs |)
2)

(12)

where Fµ is the total friction force; z is the non-measurable
internal state, Fc is the Coulomb friction force, ẋ is the sliding
velocity of the piston, vs is the sliding speed coefficient, Fs is
the static friction force, kv is the viscous friction coefficient,
and σ0 and σ1 are the flexibility and damping coefficients,
respectively.

III. RECURRENT NEURAL NETWORK ARCHITECTURE
DESCRIPTION
In this section, the features of the RNN selection are pre-
sented. In addition, the description of the selected RNN is
provided in detail. The most common RNN architectures
used in modeling dynamic systems are the nonlinear finite
impulse response (NFIR), the nonlinear autoregressive net-
work with exogenous inputs (NARX), and the nonlinear
autoregressive moving average network with exogenous
inputs (NARMAX). There are also more complex and
advanced architectures used in dynamic systems modeling,
which are Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU) neural networks.
The NFIR architecture, described in [33], is the simplest

RNN architecture of all the architectures mentioned above.
The operating process of this network occurs through feed-
ing all values of past inputs to achieve the current output
value. The defining equation for the network is formulated
as follows:

y(t) = 9H (x(t − 1), . . . , x(t − d)) (13)

where y(t) is the RNN output vector at time t ,9H is mapping
performed by a multilayer feedforward network, d is the past
values of series x(t), and x(t) is the RNN input vector at time
t . The main advantage of the NFIR architecture is its stability
while all past inputs are fed to the network.

The NARX neural networks principle is related to the
utilization of the outputs of the network for feeding the input
with past states of the outputs and inputs while remembering
the state of the system at every step of the network operation.
The ordinary NARX RNN can be defined by the following
equation [34]:

y(t)=9H (x(t − 1), . . . , x(t − d), y(t − 1), . . . , y(t − d))

(14)

where y(t) is the RNN output vector at time t . The main
feature of the NARX RNN is an accurate approximation of
output values. However, in certain cases, it can be inherently
less stable due to operation in a closed loop using the past
values of the output.

Another architecture that can be presented as an advanced
NARX structure is NARMAX RNN. The main difference
with this RNN architecture is the ability to use error of
previous values in the loop. Thus, the defining equation for
NARMAX networks is the following [35]:

y(t) = 9H (y(t − 1), . . . , y(t − d),

x(t − 1), . . . , x(t − d),

e(t − 1), . . . , e(t − d)) (15)

where e(t − 1) is an RNN error vector at time t − 1.
In the NARMAX architecture, all elements defined by x
and e are sometimes called ‘‘controlled’’ and ’’uncontrolled’’
inputs [25]. This means that NARMAX is the most prevalent
architecture in cases with real-world data, including the sys-
tem error generated by noise. The structure also uses the error
as an input dataset, which makes the method more complex
than the above-mentioned NFIR and NARX.
In addition to the mentioned RNN architectures, more

complex architectures are used in dynamic systems model-
ing. These architectures are more suitable for training and
may easily store long-term dependencies. Such architectures,
which are LSTM and GRU neural networks, were studied
and compared [36]. Both architectures show significantly
good performance in case of complex dynamics persisting
in the system. In the case of LSTM networks, the accuracy
of predictions is at a high level, but selecting numerous
hyperparameters can affect the performance of the network.
GRU networks are similar to LSTM due to their functionality,
however, in several cases, it can be applied less time to train
the network.
The features of the selected RNN architecture for fluid

power system simulationwere also described in [25]. Accord-
ing to the author, the data obtained from the simulation model
of a similar fluid power system does not contain real system
noise, and the use of a large number of RNN parameters can
affect the simulation time and speed. At the same time, the
maximal accuracy of the system with the embedded RNN
is required. In such a case, the NARX RNN is the most
suitable architecture of neural network for fluid power system
simulation even in the case of the simulation of one stiff
differential equation since it is more accurate than NFIR due
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TABLE 2. Circuit 2 parameters.

to the use of output data as feedback. Ultimately, the NARX
architecture provides a trade-off between speed and accuracy
in simulating the final system, which is the main objective of
the research.
Fig. 3 illustrates the basic structure of the NARX network

used in the modeling of the system. The RNN consists of one
input layer with four input values, and one feedback value
that can be used only during the training of the network,
two hidden layers with 40 neurons, and one output layer
with one output activated with a linear function. Because the
system has to be modeled as a mathematical model of one
differential equation of pressure, the number of layers and
neurons were manually selected by trial and error during the
training process to ensure the accuracy of the network. The
sigmoid function σ (x) was selected as the activation function
for hidden layers of the network; the function is defined as
follows:

σ (x) =
1

1+ e−x
(16)

where x is the argument of the function σ (x) and e is the
Euler’s number.

IV. HYBRID MODEL DEVELOPMENT
The whole development of the hybrid model was divided
into two stages. The first stage of development included the
collection of the training data and training of the NARX
RNN. The second stage of the development is related to
the implementation of the neural network to the fluid power
systems from Section II. The modeling and simulation of the
systems were performed in MATLAB R2020a software in a
form of MATLAB code, and the formulation of the RNNwas
performed through the embedded MATLAB Deep Learning
Toolbox.

A. DATA COLLECTING AND TRAINING OF THE RNN
The data collected for the training was based on the simu-
lation results of the practical fluid power circuit 2 described
in Section II. The original system was simulated for 3,000
seconds with an integrator time step of 1.0 × 10

-5
s and an

input voltage that was supplied randomly in a range between
−10 and 10 Volts. The integrator time step was selected
empirically to ensure the correct response of the system in
the presence of small volume. The data set of 300 million
samples was created from several parameters of the system,
where each sample displayed the data of parameters obtained
at every time step of the simulation. The number of samples

was reduced to 3 million by saving each 100th sample to
reduce the computational load of the computer and provide
relatively fast training of the neural network. The input data
chosen for the training were data arrays of volumetric flows
Q3 and Qv, effective bulk modulus Be3 and the fixed small
volume Vv obtained from the simulation of the original sys-
tem mentioned above. Pressure in small volume pv was also
saved and utilized as the output data for the training of the
neural network. This data was chosen for training, validation,
and testing of the neural network. Since all the input data,
except the small volume, is variable, the neural network based
on such data will work with any system with similar variable
parameters. In case of changes of the small volume, new
training of the network might be required.

At the beginning of the training, the training data was
distributed for training, validation, and testing sets in the pro-
portion of 70/15/15 percent. The input and output data were
normalized in a range between -1 and 1 to achieve effective
training results. The NARX RNN was trained multiple times
in order to find the appropriate number of neurons in hidden
layers for the most accurate and effective simulation. The
Levenberg-Marquardt algorithm was utilized in the training
process as a main backpropagation-based training algorithm
due to its relatively fast training of the network and accurate
results [37]. The Early-Stopping technique was also utilized
in cases when the generalization stopped improving. The net-
work was trained a total of ten times, for a maximum of 1,000
epochs with a different number of neurons in each hidden
layer. The results of the training are displayed in Table 3. The
results show that the number of neurons affects the training
time of the neural network, and at the same time, the most
accurate validation performance was obtained at training
8 and 9 with 40 and 45 neurons in a hidden layer, respectively.
Based on the obtained data, the number of neurons in the
RNNwas selected to achieve the most accurate result, and the
most accurate network in terms of Mean-Square error (MSE)
was selected for the Hybrid model simulation.

The most accurate network (see Fig. 4a and 4b) contains
40 neurons in hidden layers. The validation performance of
the network was expressed in the form of MSE, equal to
0.000216 (normalized data). The training time of the selected
network was 3 hours and 33 minutes.

B. IMPLEMENTATION OF THE RNN IN THE HYBRID
MODEL
After the training, the most accurate and fastest network
was implemented in the MATLAB code of the traditional or
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FIGURE 3. Structure of the NARX RNN.

TABLE 3. Results of the training of the NARX RNN with normalized data.

reference mathematical model of both circuits described in
Section II. The network was added to the code in the form
of a MATLAB function as a substitute for the numerically
stiff equation with small volume. First, the traditional math-
ematical model was simulated to obtain the input dataset for
the hybrid system simulation. Such inputs are effective bulk
modulus Be3, volumetric flows Q3 and Qv, and volume Vv.
Note that the simulation of each hybrid system should be

performed after obtaining the inputs for the network, and
this means that the simulation of the traditional mathematical
model should be completed and input values should be saved.
After that, the hybrid system can be simulated an unlimited
number of times.
The simulation of the hybrid system includes the stage of

preprocessing the RNN before the main model simulation
with the use of the data obtained from the previous simula-
tion. The whole system is automatically simulated using the
pressure data obtained from the RNN preprocessing stage at
the corresponding simulation time step.

V. RESULTS AND DISCUSSION
This section presents the results of the simulation of the fluid
power circuits described in Section II. In the case of Circuit 1,
the simulation was performed with two variations of the inte-
grator time step to show the responses of the pressure of the
reference and hybrid systems at different simulation speeds.

Circuit 2 was simulated with a different input signal to ensure
the ability of the hybrid system with the RNN was accurate
and fast with any set of input signals. The results are presented
in the form of a comparison of plots related to the responses
of the traditional system modeling and the hybrid approach
of system modeling. The results obtained in the simulation
also provide an understanding of the advantages and features
of the hybrid method compared to the classical mathematical
modeling and simulation of fluid power circuits.

A. CIRCUIT 1: RESULTS
Circuit 1 was simulated for 50 seconds using the reference
and hybrid model. The first simulation of the circuit was
performed using the reference model at integrator time steps
of 1.0×10−4 s, and 1.0×10−3 s. Fig. 5 illustrates the response
of the pressure in small volume p2 for above-mentioned time
steps in the reference model. It is seen from the figure that
the responses of the reference model at different integrator
time steps are different, which is the effect of the small
volume described in [10], [11]. In this case, the response of
the pressure at the time step of 1.0× 10−4 is correct. In other
words, it is impossible to use the model at large time steps
due to its numerical instability.

The Table 4 represents the results of the simulation in the
form of the simulation time and Relative Root-Mean-Square
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FIGURE 4. Validation, train and test performance of the selected NARX
RNN. (a) Full performance between 1 and 1000 epochs. (b) A close look at
the performance plot between 800 and 1000 epochs.

Error (RRMSE), defined as follows:

RRMSE =

√
1
N

N∑
i=1

(xi − xmi )
2

N∑
i=1

(| xi |)

× 100 (17)

where N is the number of points, xi is the value of the
reference model at operating point and xmi is the value of any
comparable model (reference at different time steps or hybrid
model) at the same point. The RRMSE of the reference model
at the time step of 1.0×10−3 in comparisonwith the reference
model at the time step of 1.0×10−4 is 802.06%. A high error

FIGURE 5. Comparison of responses of the reference model at 1.0 × 10−4

and 1.0 × 10−3 integrator time steps.

percentage proves the numerical instability of the reference
system at time steps larger than 1.0× 10−4.

The hybrid model was simulated at a time step of
1.0 × 10−4. The simulation shows an accurate pressure
response with an RRMSE of 0.895% with respect to the
reference system (time step of 1.0×10−4), which is observed
from the plot in Fig. 6a. The simulation time of the hybrid
system is 23.56 s, which is shorter than the reference system
(24.63 s) even at the same simulation time step.

The plot for the next simulation of the hybrid model per-
formed at a time step of 1.0 × 10−3 s is depicted in Fig. 6b.
The plot shows the stable response of the hybrid model in
relation to the reference model at the integrator time step of
1.0× 10−4. The simulation time of the hybrid system is only
2.32 s which is 10 times shorter than the numerically stable
response of the reference system, which was obtained at the
1.0× 10−4 s integrator time step (24.63 s). The RRMSE for
the pressure response of the hybrid system at the time step of
1.0× 10−3 s is 7.333%.
According to the plots in Figures 6a and 6b, the only

difference between the responses of the hybrid system at
different time steps is the longer pressure rise time, which
indicates the stability of the hybrid model. In other words,
the difference between the responses of the hybrid model
at time steps of 1.0 × 10−4 and 1.0 × 10−3 is neglectable
compared to the reference model at the same time steps.
At the same time, responses of the hybrid model are close
to the reference at the time step of 1.0× 10−4. It means that
the hybrid model can be used without significant accuracy
losses at larger simulation time steps, whichmakes this model
a trade-off between accuracy and simulation speed.

B. CIRCUIT 2: RESULTS
Circuit 2 was simulated with a constant pressure supply
of 1.4 × 107 Pa and two different sets of input signals
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TABLE 4. Circuit 1 simulation results.

FIGURE 6. Circuit 1 pressure in small volume p2 response of the
reference model and hybrid model at time step: (a) both reference and
hybrid models: 1.0 × 10−4 seconds and (b) reference model: 1.0 × 10−4

seconds; hybrid model: 1.0 × 10−3 seconds.

(Fig. 7a and 7b) using both traditional (reference) and hybrid
models. First, the circuit was simulated for 50 seconds with
a randomly distributed input signal in a range between −10
and +10 volts (Fig. 7a). The numerical stiffness of the ref-
erence system with a small volume between the pressure
compensator and the directional control valve allowed the
maximal simulation time step of 1.0 × 10−5 s to obtain
a numerically stable response. The stiffness of the hybrid

FIGURE 7. Signal U for Circuit 2 simulations: (a) random input signal and
(b) repeatable input signal.

model was generally reduced by using the RNN instead of
the stiff differential equation related to the pressure in small
volume, which allowed an increase in the time step of the
simulation to 1.0× 10−4 s.
As the result, the simulation time for the real 50 seconds

was 501.47 seconds for the reference model. Compared to the
simulation time of the hybrid model (53.27 s), the reference
was almost ten times slower. However, the simulation time
difference between the twomodels is associated with the time
step difference at the same level of accuracy, which can be
observed among the simulation results in Table 5 (see Fig. 8).
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FIGURE 8. Circuit 2 responses of cylinder piston position xs and pressure pv at random input voltage comparing the reference
model and hybrid model with utilized RNN.

FIGURE 9. Circuit 2 responses of cylinder piston position xs and pressure pv at repeating input voltage comparing the reference
system and hybrid system with utilized RNN.

TABLE 5. Circuit 2 simulation results.

The responses of pressure pv related to small volume as
well as the cylinder piston position xs for the reference and
hybrid models with a random input signal are illustrated by
plots in Fig. 8. The accuracy of the model is well-observed
in the plot. The RRMSE for the reference model defined
in (17) and represented in the simulation results (Table 5) was
calculated for the hybrid system and equals 0.089% for the
cylinder piston position xs and 1.479% for pressure in small
volume pv.
The second simulation of Circuit 2 was performed within

10 seconds utilizing the reference and hybrid models. The
repeatable input signal in a range between −6 and +9 Volts
with a time period of 2.5 seconds was set for both systems.

The simulation time steps remained the same for the reference
and hybrid models, which were 1.0×10−5 s and 1.0×10−4 s,
respectively. The responses of cylinder piston position xs
and pressure in small volume pv are plotted in Fig. 9. The
plots clearly represent the accurate responses of the hybrid
model with respect to the reference with a resultant RRMSE
of 0.260% and 2.441% for cylinder piston position xs and
pressure pv, respectively.
The simulation times of the second simulation for the

reference and hybrid models are presented in Table 5. Hybrid
model simulation was performed for only 9.89 seconds, while
the simulation of the reference model required almost ten
times as much time (102.96 seconds).

VOLUME 10, 2022 48833



S. Ustinov et al.: Hybrid Model for Fast and Efficient Simulation of Fluid Power Circuits

At the end of the simulation, it can be concluded that at
both the random and repeatable sets of input signals, the per-
formance of the hybrid model is stable and accurate despite
the RNN utilized instead of the stiff differential pressure
equation was trained on the random data obtained from the
3,000-second simulation. Moreover, the simulation time of
the hybrid system is significantly shorter than with the tradi-
tional mathematical model. And the conversion of the model,
for instance to C++ code, may allow simulating it in real-
time, or even faster than real-time applications.

VI. CONCLUSION
This paper proposes a novel hybrid method to solve a fun-
damental problem in the dynamic simulation of fluid power
circuits. The problem is associated with the existence of
stiff differential equations in the mathematical model of the
system in the presence of small volumes that restrict the
simulation speed for real-time applications. The method is
based on the use of the NARX recurrent neural network
in the model, which substitutes the stiff pressure continuity
equation. The dynamics of the remaining parts of the system
are preserved and modeled with conventional differential and
algebraic equations. The network was trained using data from
the practical fluid power circuit simulation in order to receive
an accurate response.
To demonstrate the features and advantages of the method,

the classical mathematical model and the hybrid method were
compared. The simple circuit of three orifices in series and the
practical circuit with a two-chamber cylinder controlled by a
directional control valve were modeled and simulated using
the two above-mentioned approaches. A simple circuit was
tested at different simulation time steps, whereas the practical
circuit was tested at random and repeating inputs. In both
case studies, the response of the hybrid method was several
times faster than the conventional reference model due to the
elimination of the numerical stiffness problem. At the same
time, the accuracy of the hybrid method is relatively high,
which allows a trade-off between accuracy and simulation
speed. Finally, the hybrid method performance allows us to
use it in real-time applications, and future research can be
associated with the testing and comparison of different time
series RNN architectures (e.g. LSTM, GRU architectures in
comparison with the NARX architecture) to find the most
efficient method for real-time simulation of fluid power cir-
cuits.
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