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The theoretical study considers chiral spin textures induced in a 2D electron gas (2DEG) by
magnetic skyrmions. We calculate the electron gas spin density as a linear response to the exchange
interaction between the 2DEG and the magnetization field of a magnetic skyrmion. Two physically
distinct regimes occur. When the size of the skyrmion is larger than the inverse Fermi wavevector
k−1
F , the spin density response follows the magnetization profile of the skyrmion. In the opposite

case of a small skyrmion the emerging spin structure of 2DEG has a characteristic size of k−1
F and

the response becomes non-local, it can be viewed as chiral Friedel oscillations. At that, the emerging
spin structure of the oscillations appears to be more complex than that of the skyrmion itself.

I. INTRODUCTION

Magnetic skyrmions are stable chiral spin excitations
which are formed in ferromagnetic thin films with a
significant Dzyaloshinki-Morya interaction. Nowadays
skyrmions are intensively studied in various systems1–7.
Along with the fundamental interest magnetic skyrmions
are recognized to have a potential in practical applica-
tions in magnetic memory. Skyrmions are topologically
protected spin textures, hence, they are rather robust.
Having also small size, which can be decreased at best be-
low ten nanometers8 they are attractive for storage appli-
cations such as magnetic racetrack memory3. Skyrmions
along with other chiral configurations of immobile mag-
netic moments in a ferromagnet have been widely stud-
ied both theoretically and experimentally with a focus on
their fabrication, observation and dynamics3,4,9,10 as well
as the electron transport properties of skyrmionic system
including topological Hall effect11–13.

Much less attention has been focused on the equilib-
rium properties of the electron gas itself due to an ex-
change coupling with chiral spin textures. It has been
realized that chiral electron gas oscillations would appear
in a vicinity of a defect or an impurity in a solid with
broken time reversal symmetry14. It has been shown in
Ref.14 that a 2D electron gas with a parabolic or Dirac-
like energy spectra with spin-orbit and exchange spin
splitting forms chiral Friedel-like oscillations of spin den-
sity around a charged defect. One can expect a similar
effect for a free electron gas interacting with magnetic
skyrmions, having also a prominent impact on the whole
system. For instance, it has been recently demonstrated
that the redistribution of an electron gas spin density in
a multilayered system can lead to a specific RKKY inter-
action between skyrmions in neighboring layers15. The
study of general features associated with a free carriers
spin polarization pattern driven by magnetic skyrmions
is thus of a high interest. It is particularly timely in light
of the recent advantages in spin polarized scanning tun-
neling microscopy with its state of the art capability to
resolve chiral spin textures below 10 nm in size16. An
experiment aiming at observation of the real space struc-
ture of an electron spin density induced by chiral spin

textures therefore would give a direct access to the pa-
rameters of the electron gas and magnetic properties in
such a system.

In this work we show that the chiral oscillations of the
electron spin density exist for a purely parabolic electron
spectrum with no spin-orbit interaction if the defect it-
self is chiral. We consider the exchange interaction of free
electrons in a 2D ferromagnetic film with skyrmions. Us-
ing the linear response theory we show that a magnetic
skyrmion induces chiral Friedel-like oscillations of the free
electron spin density. At that there can be two distinct
cases. For a large skyrmion the response of the electrons
spin density is local, it follows the magnetization profile
of the skyrmion. A different situation appears when the
skyrmion size a goes below the inverse Fermi wavevector
k−1F . At that the response becomes non-local and the
spatial size of the chiral perturbation of the electron spin
density maintains the characteristic size of k−1F .

II. MODEL

Let us consider a degenerate 2DEG coupled by ex-
change interaction with a skyrmion in a ferromagnetic
layer. The Hamiltonian of 2DEG reads:

Ĥ =
p̂2

2m
− αM̄(r) · σ̂, (1)

where p̂ is the momentum operator, m is the electron
effective mass, α is the exchange interaction constant,
M̄(r) is the skyrmion field and σ̂ is the vector of Pauli
matrices acting on electron spin. The skyrmion field
M̄(r) has the following form

M̄(r) =

M̄‖(r) cos(κϕ+ γ)
M̄‖(r) sin(κϕ+ γ)

M̄z(r)

 ,

{
M̄‖(r) = sin θ(r)
M̄z(r) = cos θ(r)

,

(2)
where r and ϕ are the polar coordinates in the film plane
r = (r, ϕ), κ ∈ {0,±1,±2, ...} is the skyrmion vortic-
ity, γ ∈ {0...2π} is the skyrmion helicity. θ(r) is the
out of plane angle of the magnetization field; the follow-
ing boundary conditions are assumed: θ(r)|r=0 = π and
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FIG. 1. Parabolic spectrum with two subbands of spin-up (-)
and spin down (+) states.

θ(r)|r=∞ = 0, which by the definition of M̄ result in

M̄(r)
∣∣
r=0

= −ez, M̄(r)
∣∣
r=∞ = ez. (3)

ez is the unit vector in out of plane z direction.
We treat the electron gas exchange interaction with a

skyrmion core as a perturbation V̂ , at that the unper-
turbed Hamiltonian Ĥ0 of 2DEG includes spin splitting
due to the uniform background magnetization:

Ĥ = Ĥ0 + V̂ , (4)

Ĥ0 =
p̂2

2m
− ασ̂z, V̂ = −αM(r) · σ̂,

where M(r) ≡ M̄(r) − ez. The Hamiltonian Ĥ0 has
parabolic spectrum with two shifted spin subbands: (see
Fig. 1):

ε±p =
p2

2m
± α, (5)

here index ± corresponds to |↓〉, |↑〉 states. With EF
being the Fermi energy the Fermi wavevectors for each
spin subband are given by:

k±F = kF
√

1∓ α/EF , kF =

√
2mEF
~2

. (6)

In this paper we analyze the structure of 2DEG spin
density δS(r) emerging around a magnetic skyrmion
M(r). As a starting point we make use of the lin-
ear response theory assuming linear coupling between
δS(q),M(q) Fourier images (which implies the electron
kinetic energy at the Fermi level exceeds the exchange
interaction strength) :

δS(q) = αχ̂(q)M(q), (7)

where χ̂ is a spin susceptibility matrix, which depends on
the electron distribution function and the Ĥ0 spectrum.

III. RESULTS AND DISCUSSION

The spin density response in real space can be found
from:

δS(r) = α

∫
dq

2π
eiqrχ̂(q)M(q). (8)

Note that χ̂ depends only on q = |q| (the 2DEG is ho-
mogeneous), therefore δS(r) can be written in the form

δS(r) =

δS‖(r) cos(κϕ+ γ)
δS‖(r) sin(κϕ+ γ)

δSz(r)

 . (9)

With this being said the equations (7) and (8) can be
rewritten as

δS‖,z(q) = αχ̂(q)M‖,z(q), (10)

δS‖,z(r) = α

∫
dq

2π
J1,0(qr)χ̂(q)M‖,z(q). (11)

Let us note that the direction of the in-plane component
of the electron spin density δSx,y(r) coincides with that
of the skyrmion magnetization. This is a consequence
of the exchange coupling, whereas spin-orbital coupling
would have resulted an additional phase shift added to
γ. However, the spin texture formed by the electron spin
density does not necessarily follow the skyrmion struc-
ture. The additional phase shift emerges in the case when
the coupling becomes non-local.

The behaviour of δSz,‖(r) in real space strongly de-
pends both on kFa (here a is the skyrmion radius), which
defines a spatial scale, and on α/EF which controls the
filling of the spin split subbands (Fig. 1). In order to ana-
lyze these dependencies we calculate numerically δSz,‖(r)

using the skyrmion radial profile θ(r) (Ref.17,18)

θ(r) = −2 arcsin

(
tanh

r

a/2

)
+ π, (12)

where a > 0 is the radius of M(r) localization.

A. Two subbands

Let us consider the case when the Fermi energy EF >
α, so that both spin subbands are occupied. The spin
susceptibility matrix has only diagonal non-zero elements

χ̂(q) =

χ‖(q) 0 0
0 χ‖(q) 0
0 0 χz(q)

 , (13)

The functions χz,‖(q) are given by (the details of deriva-
tion are summarized in the Appendix A):

χ‖ = χ+
‖

(
q

2k+F

)
+ χ−‖

(
q

2k−F

)
, (14)
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FIG. 2. Susceptibility functions χz,‖ at α/EF = 0.8 (two subbands are filled).

χz =
1

2

(
χ0

(
q

2k+F

)
+ χ0

(
q

2k−F

))
, (15)

where the spin susceptibility functions for each of the
subbands are as follows

χ±‖ (z) = − m

2~2π
1

z

[(
z ∓ α±

z

)
− θ

(∣∣∣z ∓ α±
z

∣∣∣− 1
)
×

×
√(

z ∓ α±
z

)2
− 1 · sign

(
z ∓ α±

z

)]
, (16)

χ0(z) = − m

~2π

[
1− θ(z − 1)

√
1− 1/z2

]
. (17)

Here α± = α/2(EF ∓ α), the function χ0 (q/2kF ) is an
ordinary 2D Lindhard function,

Let us comment on the structure of the out-of-plane
and in-plane spin susceptibilities χz,‖. The function χz
is a half-sum of two χ0 Lindhard functions with differ-
ent k±F wave-vectors in the argument (see Fig. 3). As
a result χz has two critical points corresponding to the
nesting vectors of the Fermi surface, so the spin density
δSz would exhibit Friedel oscillations with two spatial
periods given by π/k−F and π/k+F . The function χ‖ has a
more complex structure. Although both spin subbands
are filled, the total χ‖ function turns out to have only
one critical point, thus, only one type of oscillations is
expected, the corresponding period is 2π/q∗, where q∗ is
given by:

q∗ = 2kF ·

√
1 +

√
1− 4β2

2
, 2k+F ≤ q∗ ≤ 2k−F . (18)

The susceptibilities introduced above allow us to ana-
lyze the spatial structure of 2DEG spin density nearby
a magnetic skyrmion. Two regimes can be distinguished
depending on kFa parameter. If kFa� 1 (equivalent to
k±F a � 1, as α/EF < 1) the M‖,z(q) in the momentum
representation is localized within the range q � kF . Fig-
ures (2) show that the spin susceptibility functions are
constants within the scale of k+F . Consequently, in this
case the formula (Eq. 7) shows that δS(r) and ∼M(r)

are locally coupled. Fig. 3 shows the calculated spin den-
sity response δS(r) following the skyrmion magnetiza-
tion profile M(r). The amplitude of Friedel oscillations
in this regime is negligible compared to the amplitude of
the perturbed electron spin density.

The situation is different when kFa . 1 (equivalent to
k±F a . 1, as α/EF < 1). This case is shown in Fig. 4. The
spin density response δS‖,z(r) has a characteristic spatial
scale of ∼ 1/kF , which is larger than the localization a of
the magnetization field M‖,z. This non-local dependence
has a clear physical explanation. When the electrons
try to screen the impurity they can not come closer than
their minimal wave length, which is 2π/kF (or ∼ 2π/k±F ).
Significant Friedel oscillations emerge and decay as 1/r2.
As mentioned above δS‖ oscillates with the spatial period

2π(q∗)
−1 while δSz oscillates with periods two π(k+F )−1

and π(k−F )−1.

As we have previously noted, the spin density response
has the form of Eq. 9, which looks similar to that of
the skyrmion magnetization field Eq. 2. However, there
is an important difference between the amplitudes M̄‖,z
and δS‖,z. As our calculations show, a phase difference
emerges between the δS‖ and δSz Friedel oscillations
(Fig. 5). Therefore, a local spin density vector would
rotate along any given direction when passing through
the center of the skyrmion. So, the skyrmion induces a
chiral spin structure in the electron gas, which appears
to be different and more complex than the structure of
the skyrmion itself.

B. One subband case

Let us now consider the case when only one spin sub-
band is occupied by the electrons. At that, we shall keep
the Fermi energy positive so that (EF + α) /α > 1 and
the linear response theory still can be applied. For
EF ≤ α there is no contribution of the upper spin sub-
band (+) (see Fig. 1). Consequently, the function χz has
only one critical point, the corresponding Friedel oscilla-
tions are characterized by a single spatial period π/k−F .
The function χ‖ also has a different shape (see Fig. 6).
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FIG. 3. Spin density response δS‖,z induced by a large skyrmion: kF a = 10. Two subbands are filled: α/EF = 0.8.

FIG. 4. Spin density response δS‖,z induced by a small skyrmion: kF a = 0.5. Two subbands are filled: α/EF = 0.8;

FIG. 5. Phase difference of δS‖ and δSz oscillations. Small
skyrmion: kF a = 0.5. Two subbands are filled: α/EF = 0.8.

Namely, the absence of critical points for χ‖ results in
the absence of the oscillating structure of δS‖ decaying as

∝ r−2. Instead, the amplitude of the oscillations having
spatial period 2π/k−F decreases exponentially (see Fig. 7).
The magnitude of the δS‖ response is proportional to
(α+EF ) and vanishes when EF approaches the bottom
of the lower subband. This is due to the fact that only one
subband is filled, so it is harder to mix both states to get
the spin response in the xy plane. In the case kFa � 1
the physical picture does not change much from the case
of the two filled subbands, the local dependence between
spin density response δS andM remains. When kFa . 1
the spin density response has the effective size 1/kF .

FIG. 6. χ‖ spin-density response function at α
EF

= 10 (only

one subband is filled). At zero the function is quadratic, at
infinity inverse quadratic.

IV. SUMMARY AND DISCUSSION

We have studied the spin structure of an electron gas
induced by a magnetic skyrmion. We have shown that
the skyrmion induces a chiral distribution of the electron
gas spin density. This spin density spatial distribution
turns out to be more complex than the skyrmion struc-
ture itself. There are two physically different regimes de-
pending on the size of the skyrmion and the Fermi energy.
At kFa � 1 the electron spin response and the magne-
tization field of the skyrmion are locally coupled, that is
the ’classical’ regime. The opposite case of kFa . 1 can
be referred as ’quantum’ regime as in this case the wave
nature of the electrons comes to the fore. The induced
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FIG. 7. δS‖,z spin density response induced by a small skyrmion: kF a = 0.5. Only one subband is filled: α/EF = 2.

electron spin structure has now a minimal size of 1/kF
and pronounced Friedel oscillations. In the case of only
one occupied spin subband δS‖ Friedel oscillations are
suppressed.

Let us estimate the considered effect of skyrmions on
the electron spin density for various systems. The stabi-
lization of individual skyrmions up to the room tempera-
ture has been recently achieved in stack heterostructures
consisting of atomically thin metal layers (Ir,Fe,Co) in
contact with heavy metal elements, such as Pt3,19. With
a typical skyrmion size being 50 nm9 we expect an elec-
tron gas in any of the metallic layers to be locally cou-
pled with magnetization (the parameter kFa � 1). On
the other hand, an intriguing situation can be realized
in so-called proximitized materials20 if a ferromagnetic
layer hosting skyrmions is put in a contact with a semi-
conductor cap. Taking a typical Fermi wavelength for
2DEG in a semiconductor media as kF ∼ 106 cm−1 and
skyrmion size a = 10 nm we get kFa ≈ 1, which indicates
that the non-local regime is realized. As a consequence,
one would expect the emergence of RKKY-like interac-
tion between two skyrmions in the same ferromagnetic
layer due to the non-locality of 2DEG response in the
proximitized semiconductor layer.
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Appendix A: Response functions

The general expression for the spin susceptibility is as
follows

χαβ(q) =
1

Ld

∑
k,s,s′

fsk − fs
′

k+q

εsk − εs
′

k+q + i0
×

× 〈usk| Ŝα |us
′

k+q〉 〈us
′

k+q| Ŝβ |usk〉 , (A1)

where d = 2 is the dimension of our system, L is the
normalization length, s and s′ are spin indexes, Ŝ is
the electron spin operator, fsk is the electron distribu-
tion function; εsk and usk are the energy and the spin
state, respectively. The mentioned above variables relate
to the unperturbed system with Hamiltonian Ĥ0. Given
the system energy spectrum and the distribution function
the spin-density response function χ̂ can be obtained. We
assume zero temperature, so f±k = θ

(
k±F − k

)
.

Appendix B: Structure of χ‖

The expression for χxx with contributions from both
spin subbands appears to be

χxx = − m

2~2π
1

z

[
2z − θ

(
z2 +

β2

z2
− 1

)
×

×
√
z2 +

β2

z2
− 1(sign(z − β/z) + 1)

]
, (B1)

where z = q
2kF

and β = α
2EF

< 1
2 , as the equation re-

mains valid when both subbands are occupied. The q∗
critical point appear when the second term in the above
equation becomes non-zero. The second term is non-
zero when both sign(..) = 1 and θ(..) = 1. Solving the
quadratic equation in the argument of Heaviside θ func-
tion we get a solution z∗, which satisfies the equation in
the Sign function argument, i.e. z∗−β/z∗ > 0, assuming
β < 1

2 .
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z2∗ +
β2

z2∗
− 1 = 0⇒ z∗ =

√
1 +

√
1− 4β2

2
>
√
β, (B2)

q∗ = 2kF ·

√
1 +

√
1− 4β2

2
, 2k+F ≤ q∗ ≤ 2k−F . (B3)
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7 L. Rózsa, E. Simon, K. Palotás, L. Udvardi, and L. Szun-
yogh, Physical Review B 93, 024417 (2016).

8 P.-J. Hsu, L. Rózsa, A. Finco, L. Schmidt, K. Palotás,
E. Vedmedenko, L. Udvardi, L. Szunyogh, A. Kubetzka,
K. von Bergmann, and R. Wiesendanger, Nature Com-
munications 9, 1571 (2018).

9 A. Soumyanarayanan, M. Raju, A. G. Oyarce, A. K. Tan,
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