This is a version of a publication
in
Please cite the publication as follows:
DOI:
Copyright of the original publication:
This is a parallel published version of an original publication.
This version can differ from the original published article.
published by
Multibody Dynamics and Control using Machine Learning
Hashemi Arash, Orzechowski Grzegorz, Mikkola Aki, McPhee John
Hashemi, A., Orzechowski, G., Mikkola, A. et al. Multibody dynamics and control using machine
learning. Multibody Syst Dyn (2023). https://doi.org/10.1007/s11044-023-09884-x
Author's accepted manuscript (AAM)
Springer Nature
Multibody System Dynamics
10.1007/s11044-023-09884-x
© 2023 Springer Nature
This version of the article has been accepted for publication, after peer review (when applicable)
and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does
not reflect post-acceptance improvements, or any corrections. The Version of Record is available
online at: http://dx.doi.org/10.1007/s11044-023-09884-x
Multibody System Dynamics manuscript No.
(will be inserted by the editor)
Multibody Dynamics and Control using Machine
Learning
Arash Hashemi · Grzegorz Orzechowski ·
Aki Mikkola · John McPhee
Received: date / Accepted: date
Abstract Artificial intelligence and mechanical engineering are two mature
fields of science that intersect more and more often. Computer-aided mechan-
ical analysis tools, often multibody system software, are very versatile and
have revolutionalized many industries. However, as shown by the literature pre-
sented in this review, combining the advantages of multibody system dynamics
and machine learning creates new and exciting possibilities. For example, the
multibody method can assist machine learning by providing synthetic data,
while machine learning can provide fast and accurate subsystem models. The
intersection of both approaches results in surrogate and hybrid modeling tech-
niques, advanced control algorithms, and optimal design applications. A no-
table example is the development of autonomous systems for vehicles, robots,
and mobile machinery. In our review we have found nontrivial, innovative,
and even surprising applications of machine learning and multibody dynam-
ics. This review focuses on applying neural networks, mainly deep learning, in
connection with the multibody system method. Over one hundred and fifty pa-
pers are covered, and three main research areas are identified and introduced:
data-driven modeling, model-based control and estimation, and data-driven
control. The paper starts with a primer on machine learning and concludes
with future research directions. The main goal is to provide a comprehensive
and up-to-date review of existing literature to inspire further research.
Keywords Machine learning · Multibody system · Deep learning · Data-
driven modeling · Model-based control · Data-driven control
Arash Hashemi
University of Waterloo, Canada
Grzegorz Orzechowski
LUT University, Finland
Aki Mikkola
LUT University, Finland
John McPhee
University of Waterloo, Canada
2 Arash Hashemi et al.
Acronyms
AI Artificial Intelligence. 3, 4, 13, 14, 22, 32
ANN Artificial Neural Network. 5, 6, 15, 20, 23, 35
CNN Convolutional Neural Network. 5–7, 15, 16, 20, 29, 35
DeLaN Deep Lagrangian Network. 34
DL Deep Learning. 4, 7, 8, 10, 15, 22, 24, 29, 31, 32
DNN Deep Neural Network. 4, 11, 27, 30
DOF Degree of Freedom. 28, 33, 36
DRL Deep Reinforcement Learning. 12, 27, 28, 31
EKF Extended Kalman Filter. 25
FFNN Feed-Forward Neural Network. 5, 15, 17
GAN Generative Adversarial Network. 13, 15, 18, 30
GNS Graph Network-Based Simulator. 36
IL Imitation Learning. 29
IRL Inverse Reinforcement Learning. 29, 30, 33
KF Kalman Filter. 25
LQR Linear Quadratic Regulator. 23, 25, 26, 29, 31
LSTM Long Short-Term Memory. 8, 22, 35
MBRL Model-Based Reinforcement Learning. 23, 24, 33
MFRL Model-Free Reinforcement Learning. 27–29, 33
MHE Moving Horizon Estimator. 25, 26
ML Machine Learning. 4, 8–10, 14, 16–23, 25, 26, 31, 33, 35, 36
MLP Multilayer Perceptron. 5, 6, 22
MPC Model Predictive Control. 21, 23, 24, 26–28, 31, 33
MSD Multibody System Dynamics. 3, 13, 15, 27, 34–37
NARX Nonlinear Auto-Regressive with Exogenous Input. 25
NMPC Nonlinear Model Predictive Control. 26, 27, 31
NN Neural Network. 5, 9, 10, 13, 24, 25, 31–34, 36
PDE Partial Differential Equation. 34
PID Proportional Integral Derivative. 27, 31, 33
RBF Radial Basis Function. 32, 33
ReLU Rectified Linear Unit. 5, 21, 24
RL Reinforcement Learning. 11, 12, 23, 27, 28, 30, 31
RNN Recurrent Neural Network. 7, 8, 15, 18, 20, 32, 35
SMC Sliding Mode Controller. 26, 31, 33
Multibody Dynamics and Control using Machine Learning 3
1 Introduction
Rapid growth in Artificial Intelligence (AI) has radically altered a number of
mechanical engineering applications. Autonomous vehicles, automated harbor
cranes, robotic systems, and unmanned mining are examples of applications
that have been significantly impacted. The development of sufficient artificial
intelligence for autonomy is critically dependent on the capability of the ma-
chinery to describe its actions and to percept its environment. This pathway
will lead to machines capable of autonomous operation (e.g., performing tasks
automatically, individually, or as a fleet) enabled by wireless machine com-
munication. A critical step towards autonomously-operated systems relates to
fully or partly automated actions, which can be accomplished by employing
AI-based solutions. The aim of automated actions is to simplify the control and
operation of the machines with semi-autonomous operator assistance systems.
This can be used to enhance safe operation of a machine and to reduce cogni-
tive stress on the operator and consequently improve an operator’s well-being.
Simplifying the control and operation also reduces stress on the machine, which
will extend machine life, availability, and productivity.
AI can be connected to Multibody System Dynamics (MSD) such that
a well-trained neural network can describe a sub-model such as friction. In this
way, AI-based technologies in the form of hybrid models can take multibody
simulations to another level in terms of computational efficiency and accuracy.
This surrogate model can be based on practical experiments and/or detailed
models. Surrogate models can also be used to replace an entire multibody
model. This makes it possible to combine data from experiments with data
obtained from multibody-based simulations. The combination of measured and
simulated data could also evolve over a machine’s lifetime as more is learned
about its usage.
A critical bottleneck in the widespread implementation of AI in mechanical
engineering and autonomy, in particular, relates to data production. Many
AI-based technologies, such as deep and reinforcement learning, rely on large
amounts of training data to function well. For example, more than ten million
work cycles are needed to teach an excavator to operate autonomously for
a single work cycle using a reinforced learning procedure [1]. Although in
some cases, the data can be obtained from measurements, in general cases, it
may be cumbersome to obtain [2]. The use of high-efficiency multibody system
simulation can be connected to AI, and multibody system dynamics can offer
data for AI training. To achieve this end, physics-based multibody simulation
can produce data for AI needs accurately and efficiently. Multibody tools will
then encourage more effective and more extensive AI implementations. As
multibody system simulation can produce data more quickly than experiments
on prototypes, it is possible to efficiently evaluate, tune and select an AI-based
algorithm for each application.
This paper presents AI technologies in the framework of multibody system
dynamics. In particular, the objective is to provide a comprehensive, up-to-
date review of existing literature that explores the combination of AI and
4 Arash Hashemi et al.
multibody system dynamics. The paper also discusses the enormous potential
of an AI and multibody system dynamics combination in terms of hybrid
models. This combination has been investigated for more than a decade. Well
over 100 journal articles covering this topic are discussed here. There is a
myriad of AI, Machine Learning (ML), and Deep Learning (DL) methods
applied to multibody dynamics and control. However, this paper considers
only the application of shallow and deep neural networks to multibody system
dynamics.
2 Primer on machine learning
Artificial intelligence, a term which was coined in 1956 [3], refers to any tech-
nique that enables a machine to mimic human behavior. The definition applies
to any rule-based or data-driven approach. Machine learning, which is a sub-
set of AI, includes using mathematics, statistics, and optimization rules to
come up with a data-driven approach for the previous goal; in this sense, ML
does not consider rule-based approaches. Lastly, deep learning utilizes a Deep
Neural Network (DNN) to empower ML data-driven methods to solve more
complex problems (Fig. 1). It should be noted that shallow neural networks
also provide good solutions in particular problems and these classes of solu-
tions are considered under the category of ML.
DL has recently gained the spotlight in the fields of science and engineering.
With improved sensor technology and massive computer storage capabilities,
large-scale acquisition of data has been made possible. This amount of data,
coupled with advanced computing powers and recently developed complex
algorithms, has been offering practical solutions to big real-world problems.
The “learning” component in DL is the process of training the underlying
algorithms to perform a desirable task.
Fig. 1 AI vs ML vs DL
Multibody Dynamics and Control using Machine Learning 5
2.1 Different neural network structures
A Neural Network (NN) is a nonlinear function approximator formulated by
a group of parameters θ. The optimal set of parameters are obtained by op-
timization algorithms. Researchers have come up with different structures of
NNs for solving various problems.
Artificial neural networks
The structure of an Artificial Neural Network (ANN) is inspired by the hu-
man brain. It includes artificial neurons arranged as multiple layers; the ANN
consists of three types of layers: the input layer (which includes the input of
the network), the output layer (which includes the network output), and the
hidden layers (which include the middle layers of the network between input
and output). The input is fed through these layers and processed by multiple
mathematical operations. The output of each layer acts as the input to the
next layer; the operation continues until the final output, see Fig. 2. Networks
with up to three hidden layers are often called shallow and the ones with more
than three hidden layers are often called deep neural networks. Furthermore,
the network with a feed-forward structure, i.e., with no loops or recurrent
connections, are called Feed-Forward Neural Network (FFNN). A vanilla NN,
often called Multilayer Perceptron (MLP), has a feed-forward structure and
is fully connected with the nodes in one layer being connected to all nodes in
adjacent layers. The input of each layer goes through an initial linear filter,
consisting of multiplication by a weight matrix and summation with a bias
matrix; the weights and biases compose the overall parameters of the NN.
The filter is followed by a nonlinear activation function acting on the result:
yi = f (Wixi + bi) (1)
where xi and yi are the input and output vectors to the ith layer. In equa-
tion (1), Wi and bi denote the weight matrix and the bias vector for the
ith layer, respectively. Note that the ANN’s input should always be arranged
as a 1-dimensional (1D) vector. In equation (1), f is the nonlinear activation
function; various functions including but not limited to the sigmoid, Rectified
Linear Unit (ReLU) (zero output for negative input and a linear function for
positive input), and tangent hyperbolic have been used in the deep learning
community based on the specific purpose of the network [4].
Convolutional neural networks
Convolutional Neural Network (CNN) is one of most common NNs currently
used in research and industry [5]. Firstly introduced by LeCun et. al [6], the
main advantage of this structure is that the feature extraction is automat-
ically done by the network, meaning that no human knowledge/supervision
is required for the determination of the features. In addition, CNNs include
6 Arash Hashemi et al.
Fig. 2 The scheme of an ANN. The inputs go through the hidden layers where they are
linearly transformed by weights and biases and nonlinearly transformed by the activation
functions to generate the outputs. Note that all the nodes in hidden layers are fully connected
to the inputs to that layer in a conventional ANN.
the weight sharing characteristic; multiple parts of the network have the same
parameters. This important distinction from MLPs results in fewer overall
parameters and simplified training, which makes CNNs applicable to larger
datasets. The CNN has been applied in many fields including object detection
and face recognition [7], [8], image classification [9], environment recognition
[10], pose detection [11], and speech processing [12].
The structure of a CNN consists of convolution filters (kernels) with size
nK × nK . This filter convolves with a small part of a nI × nI input at a time:
SI = WK ∗XI (2)
where SI is a scalar filtered part of the data after each convolution, WK are
the filter parameters, XI is the part of the input on which the filter is acting,
and ∗ denotes convolution operation. Then depending on the chosen stride
(which determines the number of input elements that the filter passes after
each move), the filter slides on the other parts of the input. Given the structure
of the filter, the output after the filter has a smaller size than the input. This
limits the use of many kernels in deeper networks as the input size turns to
zero. Plus, the standard convolution implementation uses edge and corner data
values less than middle values and the final network may lose performance.
To solve these problems, a padding technique is applied before the filter, in
which a zero layer is added to the edge of the data, hence preserving the size
of the output. The last layers include multiple fully connected (FC) layers for
the classification purpose. The scheme of a CNN can be seen in Fig. 3.
Multibody Dynamics and Control using Machine Learning 7
Fig. 3 The scheme of a CNN. The feature extraction layers are responsible for obtaining
meaningful groups from raw input data; for instance, feature extractors in a face recognition
CNN extract face components like eyes, nose, etc. The classification layers map the extracted
features to the desired classes (in the face recognition example, the features are mapped to
the corresponding individual). The input goes through multiple convolution layers (here,
one is depicted) where a filter is swept through the input to generate a smaller data. Often,
a pooling layer is also added to take the maximum (or average in case of average pooling)
of neighboring data elements and make the data even more compact. The final filtered data
is then fed through a fully-connected network to generate the output.
Recurrent neural networks
A Recurrent Neural Network (RNN) is tailored towards sequential data or
time series. This networks is designed for applications in which the temporal
characteristics of data is a necessary factor for the success of DL algorithms.
Its unique format makes it applicable for speech segmentation [13] and nat-
ural language processing [14]. Also, due to its temporal aspect and hidden
implementation of feedback in their network, RNN is a good candidate for
modelling and control of dynamical systems [15], [16]. Unlike other structures,
in RNN there is no assumption that the inputs and outputs are independent,
meaning that each input does not only contribute to one output. In RNN, the
outputs are divided into time-steps. The output of the time-step t is dependent
on the inputs from previous time-steps t − 1, t − 2, t − 3, etc (Fig. 4). While
this structure facilitates the implementation of networks that can predict the
next word in a sentence (or similar applications), it imposes a major prob-
lem, commonly known as vanishing/exploding gradients [17]. As the gradients
backpropagate through the hidden layers (the gradient is calculated backward
through the layers using the chain rule), depending on their initial values, they
can get very large or small for the previous time-step weights. In the former
case, the training becomes unstable. In the latter case, the weights of the pre-
vious time-steps are updated much slower than the later time-steps, making
the training much slower for those sections of the network. As the previous
time-step information is used in later time-step layers, the untrained parts of
the network affect the training of the faster parts as well. Long Short-Term
8 Arash Hashemi et al.
Memory (LSTM) and gate recurrent units have been developed to solve this
problem [18], [19], [20].
2.2 Optimization algorithms for ML/DL
To find the parameters of a neural network, namely weights and biases that
determine the mapping between the input and output, an optimization prob-
lem is solved to minimize (or maximize in some cases) an objective function.
Generally speaking, a logarithmic/cross-entropy cost function is used for clas-
sification problems and mean squared error or similar functions are utilized for
regression problems. Depending on the convexity of the optimization problem,
the solution might have one (global) or multiple (local) optima. Gradient-based
methods [21] are one of the main approaches for solving optimization problems.
Stochastic gradient descent [22] along with adaptive momentum optimizer [23]
have been used extensively in the literature. While gradient-based methods are
a common solution in the deep learning community, they are susceptible to
converging to local optima and saddle points. In addition, the performance of
these methods degrade considerably with noisy gradients, a common feature
in dynamical system and controls applications. Streams of research have fo-
cused on combining evolutionary algorithms with gradient-based approaches
for solving optimization problems, especially in reinforcement learning ap-
plications, semi-supervised data-driven methods, where the aforementioned
problems have larger impact on the performance of the algorithm [24].
Fig. 4 The scheme of RNN. X, HS, W, Y refer to the input, hidden state, weight, and
output vector, respectively. i denotes the time step at which the vectors are represented.
When an input sequence is fed through the network, each input element is used to generate
the output, while going through a hidden state. The hidden state from previous input
elements are then fed into the next layers. This way, the inputs will have information about
previous input/outputs.
Multibody Dynamics and Control using Machine Learning 9
2.3 Important issues in NN training
Overfitting
In the ML research, the data is split in three sections: the training data is used
to train the network for a given task; the validation data is used to tune the
network hyperparameters (number of layers, number of hidden units, etc.) for
the highest performance; and finally, the test data is used to evaluate the per-
formance of the network on unseen data. A successfully-trained network offers
good accuracy on all data. Although a high training accuracy is valued on the
training data, fitting a NN exactly to this sample data is not desired. Overfit-
ting results in very good accuracy on the training data and poor performance
on the test data. In other words, the model only memorizes the structure of
the training data and cannot generalize well to new unseen data, which is
ultimately the goal of using data-driven approaches. Overfitting stems from
multiple factors; usually, if the model is trained too much or the algorithm is
too complex for the sample data, the NN even learns the irrelevant structures
on the data, like the noise, and hence loses it generalizability. Various methods
exist for avoiding overfitting including but not limited to:
– Simplifying the network structure by reducing the number of layers or the
number of hidden units.
– Stopping the training earlier whenever a certain training/testing accuracy
is reached; also known as “early stopping”.
– Adding a regularization term to the cost function to penalize high weight
and bias values.
– Adding dropout layers, which randomly disable part of the network by
setting the corresponding weights and biases to zero during training.
Underfitting
Underfitting has the opposite effect to overfitting and happens when the model
has a poor performance on the training and test samples. It usually occurs
when the model is not complex enough for the structure of the data or the
model is not trained enough. As a result, adding more layers/units to the model
and/or adding more training epochs are common solutions. Based on the pre-
vious section, there is an optimum complexity of the model and the training
epochs (a measure for the number of times the training vectors are used once
before updating the weights) for each problem. Using validation and test sets
and trying different network settings is therefore of utmost importance. More-
over, a stream of research is focused on optimization-based hyperparameter
tuning [25].
10 Arash Hashemi et al.
2.4 Learning schemes in ML/DL
Depending on the application, DL algorithms make use of three general learn-
ing schemes: supervised learning, unsupervised learning, and semi-supervised
learning, which differ in terms of whether the true outputs are available and
how they are used.
Supervised learning
Supervised learning is a suitable method when the true outputs (also called ex-
pert labels) are available for a set of inputs. An approximate mapping between
input-output pairs is of interest to replace the experiments or computationally
intractable models. To this end, NNs act as parameterized nonlinear function
approximators and the mapping is found by acquiring a suitable set of parame-
ters θ. Hence, supervised learning obtains the following approximate function:
yˆ = ψ(x; θ) (3)
where yˆ is the approximate output to replace the real output y, ψ is the over-
all NN function, which depends on the input x and parameters θ. Broadly
speaking, studies that use supervised learning can be classification or regres-
sion problems; the former predicts a discrete output, like whether an image is
a cat or dog, and the latter predicts a continuous quantity, like the exoskeleton
assistive torque for a given human pose.
Supervised learning is the dominant method used in the DL community.
Many applications, like object detection, image segmentation, and natural
language processing make use of this approach. Moreover, most of the DL
research in multibody dynamics takes advantage of this method, since the
true labels are usually available from physical models or experiments.
Unsupervised learning
In some applications, the labels are not available and only a set of input data
exists. However, it is of interest to find/change the underlying structure of
data, for example, to group the emails into spam and non-spam categories
from the data or to reduce the dimension of the input data for faster training.
Unsupervised learning algorithms are utilized for this purpose. Depending on
the structure of data, different subcategories of unsupervised learning can be
used. If the goal is to categorize the data into distinct groups, the problem is
considered as a clustering. K-means, mean-shift, DBSCAN, mixture models,
and hierarchical clustering are among the most common clustering algorithms
[26]. Another category of unsupervised learning problems are called embed-
ding, where the data has a continuous distribution. The linear versions of
this approach lead to the quite well-known singular value decomposition and
principal component analysis methods [27]. The nonlinear versions include Au-
toEncoder networks [28]. Embedding algorithms are a powerful tool for model
and dimensionality reduction.
Multibody Dynamics and Control using Machine Learning 11
Semi-supervised learning
There are two categories to this method. Semi-supervised learning can be
associated with the class of learning methods where the expert labels are not
available prior to the training but are generated (approximated) during the
training; a function approximator is responsible for generating/correcting the
labels and another approximator is responsible for creating the correct output
based on the approximate labels. The second category looks into the ways to
improve accuracy where the amount of labeled data is substantially smaller
than the unlabeled data. The two most well-known methods that are based on
semi-supervised learning are reinforcement learning and generative adversarial
networks.
Reinforcement learning
Reinforcement Learning (RL) is based on the first category of semi-supervised
learning. In this method, the agent (the algorithm, controller, or the brain)
interacts with an environment by generating an action and observing the en-
vironment’s next state. Each agent interaction with the environment is evalu-
ated; being in the state St and executing the action At, where the subscript
t is the time index, obtains an immediate reward from the environment (See
Fig. 5). The goal of the RL algorithm is to maximize the cumulative reward,
i.e., the reward obtained starting from the initial state St0 and proceeding
until the terminal state Stf is met. This is achieved by obtaining the value
function V(S) for each state, which determines the quality of a given state.
This value can be considered as the true label, which is usually not known
before the training. As a result, it is estimated; the algorithm aims to make
the estimations close to the true values. The value functions are updated at
each iteration by the Bellman equation [29]:
V(St) = E[Rt+1 + γV(St+1) | St = S] (4)
where V(St) is the value function for the state St at the iteration t; Rt+1
is the immediate reward for being in the state and V(St+1) is the value of
the successor state. γ is the discount factor used to emphasize on short-term
rewards. This formulation can also be rewritten for state-action pairs instead
of just the states.
Multiple function approximators have been utilized to estimate the value
functions. For instance, linear functions have been selected as follows:
V(S) ≈ Vˆ(S; W) = φ(S)TW (5)
In this representation, φ(S) can be any nonlinear function of the states;
however, the value function approximation with the parameters W is linear.
A common RL method in control applications that uses linear approximation
is least square policy iteration [30]. The specific use of DNNs as a nonlin-
ear function approximation has led to the emergence of Deep Reinforcement
12 Arash Hashemi et al.
Fig. 5 The schematic of RL. The agent refers to the component that does the decision-
making based on a policy, which is the algorithm that defines the mapping between the states
and actions. Based on the current policy pit, the current state St, and the current reward
signal Rt, the agent calculates the current action At and applies it to the environment. It
then receives the next state St+1 and reward signal Rt+1 for the next iteration.
Learning (DRL) research, which dominates the current studies in the field of
computer science and engineering.
RL has recently gained the spotlight with the seminal work of David Sil-
ver, in which an agent beat a human master in the game of AlphaGo [31]. The
use of deep neural networks as function approximators has been popularized
in RL by the introduction of deep Q networks [32]. Recently, modifications
to actor-critic methods have been proposed to work with continuous state-
action environments; these approaches use an actor to approximate the policy
(the controller), which is updated based on the value function approximate
value coming from the critic. Deep deterministic policy gradient and twin-
delayed policy gradient methods are among these approaches [33], [34]. This
achievement has made RL algorithms directly applicable to continuous physi-
cal domains, like multibody dynamic systems, without the need for state-action
discretization.
Generally speaking, RL can be categorized into model-free and model-
based methods, both of which rely on interactions with the environment.
Having said that, model-based methods use a model of the environment for
prediction/planning, while model-free methods do not require a model repre-
sentation of the environment and depend solely on environment interactions.
Both variations will be discussed in more detail in future sections.
Multibody Dynamics and Control using Machine Learning 13
Generative adversarial networks
Developed by Ian Goodfellow [35], Generative Adversarial Network (GAN) is
an interesting category of deep learning algorithms that is used for generative
modeling. At its core, GAN is an unsupervised learning task with unlabeled
data. There are no expert labels provided with the input data. Having said
that, an updated version of GANs adds a small amount of labeled data and uses
the second category of semi-supervised learning. The goal is to extract patterns
of the input data and generate new data containing the same pattern; the
first part fits well with the unsupervised learning scheme previously discussed.
Having said that, this problem is posed as a supervised learning problem in
GANs. There are two networks in any GAN, namely a generator network
and a discriminator network; as the name suggests, the generator network
is trained to produce new examples that are similar to the input data. The
discriminator network is responsible for determining whether the output of the
generator network is a real example (sampled from the input distribution), or
a fake example. Drawing inspiration from game theory, these two networks
are trained together as a zero-sum game in an adversarial manner, i.e. the
generator network keeps improving on generating good fake examples and the
discriminator network keeps improving on detecting fake examples. A well-
trained GAN contains a discriminator network that labels fake outputs as
real examples half the time erroneously. This means that the generator is
capable of producing examples that are highly similar to the input data. GANs
have shown potential in MSD community. They have been used, for example,
to decrease the computation for data-driven inverse-kinematics and inverse-
dynamics approximation [36].
3 AI-powered high-fidelity multibody modeling
This section examines studies in which data-based models are incorporated
into multibody formulations to enhance computational efficiency and/or ac-
curacy. Data required to create such models are generated synthetically or
acquired by measurements. A data-driven model made with simulation-based,
synthetic data trades intensive precomputations and a large memory footprint
for the improved efficiency of the data-driven solution. Correspondingly, real-
life measurement data allows for improved accuracy by model identification.
A neural network based on a trained data set can provide accurate solutions
for multibody applications. This makes it ideal for building surrogate rep-
resentations of a submodel within the multibody framework, or for building
entire multibody models. A global approximation procedure that covers points
from the whole domain of interest can be used in the multibody framework.
This chapter introduces studies where a multibody model or its submodel is
replaced by surrogate models based on the NN representation.
Firstly, some overview works on data-driven modeling will be presented in
Section 3.1. Next, papers devoted to black-box data-driven surrogate submod-
14 Arash Hashemi et al.
els are discussed in Section 3.2. Following, work dedicated to the data-driven
representation of complete multibody system models in inverse and forward
dynamic simulations is shown in Sections 3.3 and 3.4, respectively. Finally,
Section 3.5 presents hybrid methods, combining the deep learning technique
with a physics-based modeling approach. Table 1 reviews some paper examples
of data-driven modeling of multibody systems.
3.1 Thematic reviews
ML has a long history in computational mechanics, and several domain-specific
reviews are already available. As shown below, this ranges from personalized
medicine [59], through aerospace applications [60], to autonomous driving [61].
Saxby et al. [59] have reviewed personal musculoskeletal modeling that
employs the data-driven approach. Their study has targeted the personalized
medicine domain – to match the individual and the biomechanical model. To
this end, the investigation has taken the AI-based approach, which has resulted
in fast, personalized computational models for a human neuromusculoskeletal
system. In addition, the study has discussed types of computational models,
a framework for customized model generation and operation, ML applications
in model personalization, and implementation details.
Brunton et al. [60] have introduced a comprehensive literature review on
data-driven approaches in aerospace applications. Their study has taught
concept-based strategies for various production processes, including design and
design optimization. They have highlighted multiple possibilities on how ML
can enhance the solution of engineering optimization problems. Similarly, they
have explained how ML can be applied in aerospace design, manufacturing,
service, and the concept of digital twins. The paper offered several case studies.
Similarly, the paper by Hashemi et al. [61] has discussed the application of
various artificial learning techniques. The study focuses on “black-box” model-
ing, model-based control (including deep reinforcement learning), and vision-
based systems (including human pose recognition) in autonomous driving and
biomechatronics.
3.2 Surrogate subsystem models in the multibody framework
This section presents papers that utilize black-box ML techniques to approx-
imate multibody model subsystems. Condition monitoring studies were also
included under the surrogate model category as they must internally repre-
sent the main characteristic of the monitored system. Studies have shown good
accuracy and efficiency in their domains.
Ardeh et al. [37] and Han et al. [40] have reported that their surrogates
trained on synthetic data offered high accuracy and efficiency compared to the
full, nonlinear simulation models. Ardeh et al. [37] have built a surrogate of
a tire using a feed-forward neural network. The surrogate model was designed
Multibody Dynamics and Control using Machine Learning 15
Table 1 Summary of papers on data-driven modeling of multibody systems using deep
learning. The right-most columns refer to data types employed to train and verify data-
driven models: synthetic, simulation-based data (SD), measurement-based data (MD), and
a hybrid approach, where synthetic data are used for model training while measurement
data are used in model verification (SM). In the methods column, FFNN, RNN, CNN, and
DCNN refers to, respectively, feed-forward, recurrent, convolutional, and deconvolutional
neural networks. SOUL is a self-organizing unsupervised learning method. GAN refers to
the generative adversarial network, RAE is recurrent auto-encoder architecture, SVM is
support vector machine, while NNDTW is nearest-neighbor dynamic time warping.
Paper Topic DL Methods SD MD SM
Surrogate models
Ardeh et al. [37] Submodel of a tire FFNN 3
Azzam et al. [38] Virtual sensor for loads on wind tur-
bine gearbox
FFNN 3
Garc´ıa Peyrano et
al. [39]
Mechanical unbalance of the flexible
rotor of a steam turbine
FFNN, SVM 3
Han et al. [40] Submodel of a flexible component
based on the floating frame of reference
FFNN 3
Kahr et al. [41] Condition monitoring of roller bearings CNN 3
Ma et al. [42] Contact/impact model between the
barrel and bourrelet
FFNN 3
Sobie et al. [43] Condition monitoring and failure de-
tection of roller bearings
CNN,
NNDTW
3
Ye et al. [44] Diagnosis of wheel out-of-roundness in
high-speed trains
CNN, FFNN 3
Inverse dynamics
Polydoros et
al. [45]
Inverse dynamics of robotic manipula-
tors
SOUL, RNN 3
Rane et al. [46] Internal forces in musculoskeletal mod-
els during motion
CNN, FFNN 3
Ren and Ben-
Tzvi [36]
Inverse kinematics and dynamics of
robotic manipulators
GAN 3
Nasr et al. [47] Inverse muscle dynamics in muscu-
loskeletal models
RNN 3
Forward dynamics
Byravan and
Fox [48]
Approximate rigid body motion due
to SE(3) transformation from the raw
point cloud data
FFNN,
CNN,
DCNN
3
Choi et al. [49] A general solution to replace rigid
MSD simulations with a data-driven
approach
FFNN 3
Hegedu¨s et al. [50] Road vehicle model for real-time tra-
jectory planning
FFNN 3
Kraft et al. [51] Railway vehicle acceleration approxi-
mation
RNN 3
Martin et al. [52] Wheel-rail force approximation RNN 3
Pan et al. [53] Longitudinal dynamics of a vehicle FFNN 3
Nasr et al. [54] Muscle dynamics approximation ANN, CNN,
RNN, RCNN
3
Hybrid approaches
Angeli et al. [55] Reduction of multibody system’s di-
mensionality from full to minimal co-
ordinates
RAE 3
Hosking and
McPhee [56]
Model and control of a powertrain of a
hybrid vehicle
FFNN 3
Oishi and Ya-
gawa [57]
Extract rules inherent in a computa-
tional mechanics application
FFNN 3
Ye et al. [58] General MSD simulation without con-
tact with railway applications
CNN, RNN,
FFNN
3
16 Arash Hashemi et al.
for use in a quarter-car vehicle model. Han et al. [40] have proposed a deep
learning approach to flexible multibody simulations. However, massive data
is required to achieve high-fidelity models for deformable bodies, mainly due
to fine model discretization in time and space. To solve the issue, the authors
have proposed a two-stage learning procedure. In the first stage, the training
was performed using small-size, randomly selected data. In the second stage,
data-driven model performance was improved by training a second network
designed to provide error corrections. The new approach was tested on several
models. In addition, Han et al. [40] reports on the computational time of
trained data-driven models in comparison with physics-based simulations. It
is noted that the efficiency of the data-driven solution depends mostly on
the number of prediction points (nodes) requested. All analyzed data-driven
models have lower execution times than classical simulations. For the most
complex model (excavator’s arm) and prediction for 10 nodes, the data-driven
model was 80 times faster than classical simulation on average.
Ma et al. [42] have introduced a deep learning model based on experimen-
tal data for the normal contact force. The proposed solution can approximate
contact forces on complex surfaces and offers high accuracy and good gen-
eralization properties. The study, motivated by the lack of an appropriate
physics-based model for such an application, has analyzed contact between
a gun barrel and a bourrelet projectile.
Multibody simulations often generate synthetic data for training ML-based
condition monitoring systems. Monitored systems include bearing fault detec-
tion (Sobie et al. [43], Kahr et al. [41]), wind turbine gearbox (Azzam et
al. [38]), flexible rotors (Garc´ıa Peyrano et al. [39]), and diagnosis of wheel
out-of-roundness in high-speed trains (Ye et al. [44]). The main reason to use
synthetic data instead of measurements for model learning is the difficulty in
data acquisition for various failure scenarios.
Sobie et al. [43] developed a detailed bearing simulation model to generate
training data for a given physical realization. The study compares feature-
based methods (such as random forests, shallow neural networks, and logistic
regression) with deep learning convolutional neural networks and the nearest-
neighbor classifier using dynamic time warping. The nearest-neighbor classifier
is a supervised learning method that classifies data based on what class the
known data points nearest to it belong to. The algorithm relies on distance
for classification, and to consider the varying speed of the time series, a dy-
namic time warping similarity measure is employed. The trained models were
verified using measurements of the speed faults. Simulation data makes it
possible to build a classifier for any model and bearing configuration, giving
good classification results. However, as the authors pointed out, experimen-
tal data should be included to improve classification accuracy. Moreover, the
traditional feature-based data-driven models were outperformed by newly in-
troduced models that lacked features.
Similarly, Karh et al. [41] have used a three-dimensional multibody model
of the bearing to simulate various failure scenarios. The failure classification
was based on CNN fed with an image of wavelet transform generated from the
Multibody Dynamics and Control using Machine Learning 17
data. The model was verified on measurement data. The trained network had
easily distinguished between healthy and defective bearings, but the source of
failure was not always appropriately identified.
Azzam et al. [38] created a virtual sensor to estimate all six components of
loads on a wind turbine gearbox because an actual sensor is costly. All data
for training and verifying neural network-based virtual sensors were generated
in multibody simulation. Six networks were designed, one for each gearbox’s
load component.
Garc´ıa Peyrano et al. [39] have analyzed the mechanical imbalance of the
flexible rotor of a steam turbine. The multibody model considers various im-
balance conditions and bearing stiffness. In addition, two ML models were
trained based on synthetic data: a feed-forward neural network and a support
vector machine. Support vector machine is a robust supervised learning model
for classification and regression analysis. Both methods have shown accurate
predictions of the system imbalance.
Ye et al. [44] have studied the problem of the train’s wheel out-of-roundness.
Traditional out-of-roundness measurement is laborious and time-consuming.
Therefore, the authors presented a concept of a ML-based online monitoring
system of wheel out-of-roundness. Axle box acceleration is used as the input.
Proposed network architectures include five neural networks, convolutional and
fully connected, to process time and frequency domain signals. The solution
has shown good accuracy in condition monitoring of wheel out-of-roundness.
3.3 Inverse dynamics applications
ML methods applied to inverse dynamics problems are mostly related to the
modeling of robotic manipulators. The works of Polydoros et al. [45], Zhou
and Schoellig [62], and Ren and Ben-Tzvi [36] fall into this category. Various
ML techniques are used in this context.
The solution by Polydoros et al. [45] was based on a network architecture
with a self-organized layer (which employs the Generalized Hebbian Learning
algorithm – a learning rule for linear FFNN in unsupervised learning primarily
used to approximate principal components of the input) and a recursive layer.
Self-organizing unsupervised learning is a type of FFNN used to produce a dis-
crete, low-dimensional representation of a higher-dimensional data set while
preserving the relative distance between the points. Moreover, the Bayesian
linear regression was applied to update the weights between the recursive layer
and the outputs. Validation was performed on five measurement data sets from
four robots. The proposed approach illustrated a state-of-the-art generaliza-
tion ability and better adaptability than the existing real-time state-of-the-art
learning solutions. Moreover, it robustly adapted to changes in the robot and
its environment due to, e.g., mechanical wear or moving objects.
Similarly, Zhou and Schoellig [62] introduced a framework for trajectory
generation for a robotic manipulator to train deep learning inverse dynam-
ics models. The authors have discussed the problem of insufficient coverage
18 Arash Hashemi et al.
of experimental data for data-driven model training. They have proposed an
adaptive approach for data collection to train deep neural networks. The intro-
duced procedure was based on a ML technique called active learning (not to
be confused with the method of automatic label generation), closely related to
optimal experimental design, which makes it possible for the learner to query
the training data to increase information content actively. Their data-driven
model’s data efficiency and training quality were superior to that obtained
using a trial-and-error methodology where the trajectories are selected manu-
ally.
Ren and Ben-Tzvi [36] recognized that data collection for data-driven in-
verse kinematics and dynamics models are the most time-consuming task in
model development. Therefore, they have proposed an algorithm based on gen-
erative adversarial networks (consult Section 2.4) already widely applied in the
computer vision community to overcome this concern. The authors used several
GAN architectures to aid data creation in inverse kinematics and dynamics
problems and performed experimental validation on two robotic manipulators.
Rane et al. [46] used deep learning techniques to compute internal forces
during motion in musculoskeletal models based on kinematic inputs. In mus-
culoskeletal modeling, data-driven models offer three main advantages: low
computational cost (once the model is trained), recognition of the most signif-
icant model inputs (which may reduce the number of required measurements),
and development of a data-driven model that makes it possible to assess re-
lationships at the population level. The positions of the lower limb markers
(18 in total) and ground reaction forces with center of pressure data from a
force plate served as input for the network. Internal forces for the network
labels were computed using existing modeling software. Moreover, the elec-
tromyographic signal of an electrical activity produced by skeletal muscles
was also used as network output based on processed raw data. As a result,
the final model has shown good accuracy and superior efficiency. However, the
authors have emphasized that limited data decreases the performance of the
data-driven model in scenarios where subject information was used only in the
testing phase and not in training.
Similarly, Nasr et al. [47] used deep learning to approximate inverse muscle
activation dynamics. In their black-box model called InverseMuscleNet, biome-
chanical kinematic (joint angle, joint velocity, joint acceleration) and dynamic
(joint torque, activation torque) variables are fed into an RNN, which esti-
mates the electromyographic signals. To decrease the number of inputs and
find the most dominant ones, a sensitivity analysis on the input space is done
using a backward selection algorithm. Moreover, the network configuration
is optimized by trying different input sets and model weights. The resulting
RNN can replace the inefficient static optimization that is often used for this
purpose, and is computationally efficient enough for real-time applications like
rehabilitation and sports engineering. Also, this model bypasses the need for
time-consuming and invasive electromyographic electrode setup on subjects.
Multibody Dynamics and Control using Machine Learning 19
3.4 Forward dynamic applications
Studies in this section focus on time-varying responses of complete multibody
systems without directly solving the equations of motion. The primary mo-
tivation behind those papers is increased efficiency compared to the original
simulation model. The works of Urda et al. [63] and Byravan and Fox [48] build
the system-level model from experimental data. Compared with surrogates in
Section 3.2, those models represent the whole system.
The development of ML models has had a long history in railway applica-
tions. In 2007, Martin et al. [52] proposed substituting the multibody model
with a neural network to approximate the forces on a wheel-rail interface based
on track geometry and train characteristics. The study used a recurrent neu-
ral network and multibody simulation software to generate synthetic training
data. Good agreement was observed between simulation results and neural
network computations.
Similarly, Kraft et al. [51] studied the possibility of using black-box mod-
eling in railway vehicle simulation in the presence of track irregularities. The
authors evaluated several linear and nonlinear models against multibody sim-
ulation responses and measurements. While all models have reproduced verti-
cal (primarily linear) motion, the highly nonlinear lateral movement required
nonlinear modeling; the recurrent neural networks provided the most accurate
results. Moreover, relative to the standard multibody simulation, computa-
tional times were shorter for the data-based model. The study emphasized
that the performance of the data-driven model depends on the availability of
training data.
Urda et al. [63] introduced a neural network-based estimation method for
lateral wheel-rail contact forces. Their findings have shown that deep learning
techniques are computationally efficient and easy to apply to the description
of wheel-rail contact forces. They have compared two methods for lateral force
estimation: the classical approach based on a harmonic elimination technique
and the application of a deep neural network. The paper also offered an exper-
imental validation of the data-driven model compared to simulation results.
The authors concluded that the deep learning approach, compared with the
classical harmonic elimination technique, is computationally more efficient and
requires fewer sensor inputs.
Alternatively, Choi et al. [49] proposed a method to replace the multibody-
based equations of motion of arbitrary systems using a deep neural network-
based modeling technique. As for other findings, the main goal of their pro-
cedure was to improve computational efficiency. In addition, the authors have
emphasized the smoothness of the solution at the displacement, velocity, and
acceleration levels. Trained data-driven models are valid for the range of de-
sign variables and initial configurations of the system under consideration. The
study has applied the procedure to three simple academic examples and one
practical case.
An interesting perspective is introduced by Byravan and Fox [48], where
rigid body motion was predicted based on point cloud data from a depth cam-
20 Arash Hashemi et al.
era. The motivation for this work was to observe physics rather than derive it
from first principles. The study represents the kinematics of the rigid bodies as
a SE(3) (Special Euclidean Group representing 3D rotations and translations)
transformation. The authors have used a deep learning architecture with con-
volutional, fully connected, and deconvolutional layers (deconvolutional neural
networks, often called transposed convolutional networks, use convolution to
perform upsampling to find lost features) to predict how the environment
changes due to applied forces. This results in higher accuracy and is more
general than solutions obtained from data-driven models developed with no
assumptions regarding the motion under investigation. The ML solution was
verified with experimental data.
Hegedu¨s et al. [50] and Pan et al. [53] proposed a neural-network-based road
vehicle model that can substitute a classic road vehicle model. In both stud-
ies, the data-driven solution was based on standard deep neural networks and
showed good agreement with the full multibody model. Adequate efficiency
and accuracy made the vehicle model suitable for real-time model-based mo-
tion planning and control. Hegedu¨s et al. [50] modeled a single-track vehicle
and used ML to predict the overall behavior of the car, whereas Pan et al. [53]
modeled a complete vehicle but predicted only fundamental quantities like the
distance traveled and output velocity.
Nasr et al. [54] developed MuscleNet for fast approximation of forward mus-
cle models. Taking electromyographic signals and delayed joint kinematics as
input, MuscleNet estimates the current joint kinematics (angle, velocity, accel-
eration) and joint/muscle dynamics (net joint torque, joint activation torque).
Multiple network structures including ANNs, CNNs, RNNs, and Recurrent
CNNs are tested for this purpose. Two configurations of electromyographic
inputs (raw, filtered) are also considered to evaluate the filtering capabilities
of networks. RNNs with filtered electromyographic inputs showed the best
performance among all network structures. MuscleNet represents muscle acti-
vation dynamics, muscle contraction dynamics, musculoskeletal geometry, and
skeletal dynamics; it bypasses complex muscle modelling and model parameter
identification and is computationally feasible for real-time application.
One of the main reasons for using data-driven models instead of classical
simulations is a decrease in computational time. Therefore, it is worth point-
ing out that Choi et al. [49] and Hegedu¨s et al. [50] introduced computational
time comparisons between physics-based simulations and data-driven models.
Choi et al. [49] reports on computational time for their most complicated
mechanical system (vibrating transmission with bearing contact) as it is not
expected to note the computational advantage of the data-driven model for
very simple mechanical systems. However, for the reported example, the data-
driven model was over 110 times faster than the physics-based simulation.
Hegedu¨s et al. [50] also reported that their data-driven models (of a planar,
rigid, single-track vehicle) are faster than physics-based simulation. The com-
putational advantage of the data-driven models depends on total simulation
times. It ranges from around 3 times speedup for 1 s simulation to 1.3 speedup
for 20 s.
Multibody Dynamics and Control using Machine Learning 21
3.5 Hybrid modeling techniques
Including expert knowledge of the system results in so-called gray-box or hy-
brid models. When available and applicable, specialist knowledge can enhance
the model’s properties and allow for easier ML model creation. Expert knowl-
edge can be included as a regularization term (like in the work of Angeli et
al. [55]), as a part of the model (as in Hosking and McPhee [56]), or can be
exploited to design an appropriate structure for the ML model (as was done
by Ye et al. [58] and Oishi and Yagawa [57]). This section presents a variety
of applications and modeling designs.
Angeli et al. [55] proposed a deep learning architecture to reduce the dimen-
sionality of the multibody system from full to minimal coordinates to enable
the use of space observers. While the description of the system in minimal
coordinates has many advantages, obtaining suitable representation is gen-
erally challenging and depends critically on the multibody formulation used.
Therefore, the authors have proposed using a recurrent auto-encoder deep
learning architecture to approximate the mapping between full system coor-
dinates and a minimal set of coordinates. Recurrent auto-encoder implements
an auto-encoder for sequential data using an encoder-decoder recurrent neural
network. The encoder structure compresses (encodes) input into a fixed-length
vector. The original sequence can then be reconstructed through the decoder
structure. A critical characteristic of the proposed solution is that the learn-
ing process uses the multibody model directly. Therefore, it was not based
only on data. Moreover, the authors selected sigmoid activation functions for
their network instead of the more commonly used ReLU because the sigmoid
functions provide smooth first and second-order derivatives. Their proposed
solution was verified using two numerical examples. It showed good accuracy
for the range of motion within the training data.
Hosking and McPhee [56] proposed a mixed approach to model the power-
train of a hybrid passenger car (Lincoln MKZ Hybrid). The car uses a complex
power-split powertrain, which is challenging to model robustly using analytic
modeling or experimental identification. Therefore, the authors have proposed
combining analytical and experimental approaches. The drivetrain model was
physics-based, while the control system and power source were approximated
using neural networks, and parameters were obtained from measurements. The
model was developed with limited knowledge of the system, and identification
was made end-to-end based on vehicle road testing. The proposed solution
proved to be an adequate approximation of the actual vehicle, and supported
the development of model-based controllers for the autonomous vehicle.
Nasr et al. [64] used InverseMuscleNet [47] (see Section 3.3) as part of the
high-fidelity model to which a Model Predictive Control (MPC) is applied. In
this paper, MPC acts as the human central nervous system controller. The
human model is coupled with an upper-limb exoskeleton, which uses a mid-
level controller based on model-based and fuzzy logic techniques to adjust
the exoskeleton assistance. InverseMuscleNet estimates the approximated elec-
tromyographic signals in the high-fidelity model.
22 Arash Hashemi et al.
Ye et al. [58] proposed a general deep learning model for multibody sys-
tems. Their solution comprises three parts: a 3D convolutional neural net-
work, a recurrent Long Short-Term Memory (LSTM) network, and a standard
MLP feed-forward, fully connected network. The design of their networks was
physics-informed, that is, based on the fact that the system is described with
second-order differential equations and that the resulting state depends on
previous states and external interference. The resulting DL model was applied
to a vehicle-track system in which the vehicle had 10 degrees of freedom, and
no constraints were present in the system.
Oishi and Yagawa [57] proposed a general framework for extracting rules
inherent to computational mechanics. The introduced procedure was based
on deep learning techniques. While interesting and applicable to phenomena
existing in multibody systems, the authors have demonstrated their method
by developing a new numerical quadrature for a finite element stiffness matrix
calculation. The number and placement of the quadrature points were opti-
mized for each finite element in the model to achieve superior efficiency as
compared with a classical approach.
4 Control-oriented DL models for model-based control and
estimation
Model-based controllers have been extensively used in multibody dynamics
research. These controllers utilize a model internally, usually referred to as
the “control-oriented” model. The performance and stability of model-based
controllers rely heavily on the accurate representation of the system dynamics.
For complex multibody systems, obtaining an accurate physical model is not
always feasible. Even in cases when a model can be acquired, it may not be
utilized for real-time control due to computational complexity. Moreover, the
inherent dynamics and model parameters may change over time, for example
in different control scenarios. While obtaining a physics-based model requires
doing extensive experiments to find the model parameters, for each scenario
and for each system (when modeling vehicles for example, each vehicle por-
trays a different dynamic behavior which necessitates individual tests on each
vehicle [65]), online estimation algorithms suffer from high computation for
complex systems. Given that a great amount of data is available when these
systems are operated by human experts, ML methods offer a viable solution
to approximate the control-oriented model offline/online. These approaches
are capable of extracting hidden patterns in the data and hence can capture
higher-order and varying dynamics.
In this section, we will discuss how ML has been used to approximate the
control-oriented model. Different controllers that have used AI-driven inter-
nal models will be reviewed. In addition, research on data-driven models for
estimation will be studied.
Multibody Dynamics and Control using Machine Learning 23
4.1 Model-based reinforcement learning
Model-Based Reinforcement Learning (MBRL) is one of the main categories
of RL. This method is dependent on the interactions with the environment
but also uses an internal model to predict state trajectories (often called “roll-
outs”) and plan future action sequences [66]. A powerful method to facilitate
this prediction and planning is to use receding horizon control; the optimal
sequence of future actions is calculated in a defined horizon window but only
the first action is applied to the environment, after which the same proce-
dure is continued for future horizons. This is achieved by solving the following
optimization for each prediction horizon:
max
[At0 ,At1 ,At2 ,...,Atf]
tf∑
t=t0
r(St,At) (6)
where [At0 ,At1 ,At2 , ...,Atf] is the action sequence in the horizon window
and r(St,At) is the reward function. This optimization can be solved us-
ing derivative-free and sample-based approaches like random shooting [67]
and cross entropy method [68]; it can also be tackled using ideas from opti-
mal control and trajectory optimization [69], where the first and second order
derivative of the reward function and the internal model are utilized [70], [71].
This idea is the main structure used in Linear Quadratic Regulator (LQR)
[72], iterative LQR [73], and MPC [74]. While MPC is sometimes interchange-
ably used with MBRL, it is not the only method for applying model-based
planning. It should be noted that the aforementioned methods can be, and
have been, integrated. More information on the MBRL can be found in the
review papers [70], [71], and [75].
As discussed, a crucial component of MBRL is the use of an internal model;
this model can be known a priori using physical rules. It can also be learned
using ML, where a surrogate model is used for planning (similar to the discus-
sions in Section 3.2). In addition, only part of the model can be approximated,
like an aerodynamic drag coefficient or a static friction term (refer to Section
3.5). In this section, we discuss the MBRL research in the field of multibody
dynamics.
To develop a variable impedance controller for efficient human-robot inter-
action, Roveda et al. [76] used a neural network approach to approximate the
human-robot dynamics. To avoid overfitting in low-data regimes and capture
the uncertainty in the data, an ensemble of ANNs has been utilized to learn
the model; the ANNs will produce different outputs in data regimes where
there is uncertainty. The model is trained offline based on previously-gathered
data but is also updated online to account for human motor adaptation. The
resulting human-robot interaction model is utilized within an MPC optimized
by cross entropy method to dynamically obtain the stiffness and damping
parameters of the impedance controller by minimizing the human effort.
Model-free approaches, which we review in Section 5.2, do not require
a mathematical representation of the system dynamics. While these approaches
24 Arash Hashemi et al.
can obtain the optimal policy based on data patterns, they are highly sample-
inefficient. On the other hand, MBRL uses model information, rendering better
sample-efficiency but less accurate controllers. To combine the capabilities of
these two methods, Nagabandi et al. [77] used MBRL with model-free fine-
tuning. First, a deep neural network-based surrogate model is trained to ap-
proximate the dynamics. Then an MBRL algorithm is utilized to obtain an
acceptable policy. This policy is then used as the initial solution of a model-free
learner to compute the near-optimal solution. The integrated method achieved
high tracking accuracy and sample-efficiency on multiple complex locomotion
tasks of the openAI gym environment [78].
MPC has been utilized for real-time aggressive driving maneuvers in [79].
The model predictive path integral approach, which is usually applied with a
control-affine assumption, was combined with general nonlinear dynamics with
the aid of information-theoretic control. As this approach requires a model of
the system, a multi-layered NN is used to approximate the dynamics. While
the NN-approximated multibody dynamics is initially trained using random
policies, it is later re-trained by the data gathered from applying model pre-
dictive path integral to the current dynamic model. The process is repeated
until no further improvement is observed in the model accuracy. The resulting
model-based controller achieves good empirical tracking for a complex mobile
robot driving task.
4.2 Other model-based controllers
Aside from learning the control-oriented models (surrogate models) for MBRL
(MPC in particular), a limited stream of research has focused on other con-
trollers. Richards et al. [80] have used a feed-forward neural network in a meta-
learning scheme to approximate an integrated model and adaptive controller.
The approximate multibody model of a planar fully actuated rotorcraft in-
cludes the uncertain dynamic terms; it also comprises the aerodynamic dis-
turbance. The learning is done on past data in an offline manner. The meta-
learning (or the colloquially used term “learning how to learn”) tracks several
trajectories with desirable performance. Each trajectory is assigned to a base-
learner, which learns the specific task. The meta-learner is then defined to
minimize the average trajectory error in all tasks.
In [81], the model of a helicopter was obtained using a ReLU network,
which combines a quadratic lag model (mapping the current state and mul-
tiple past inputs to the current helicopter linear/angular acceleration) and
a two-layer neural network with ReLU activation functions. This multibody
model has been successful in capturing the nonlinear dynamic terms, aerody-
namic terms, engine model, vibration, and external disturbances. State-action
pairs from expert demonstrations were used for training the network. Contrary
to simple linear models, the NN-based model is able to handle complex aer-
obatic maneuvers. The DL-based model has enabled the use of model-based
controllers.
Multibody Dynamics and Control using Machine Learning 25
A simple two-layer fully-connected NN was used to approximate the trans-
lational and rotational components of a quadrotor dynamics [82]. To collect
the training data, the quadrotor moved along multiple trajectories using an
LQR with a low-level proportional-derivative controller. The LQR controller
uses a near-hover linear approximate model to derive the feedback control law.
The trained NN model was utilized within a sequential convex optimization
to calculate the open-loop control signal. The authors have shown that the
combination of the feedforward controller (with an NN-based control-oriented
model) with the feedback LQR-proportional-derivative controller works bet-
ter than only the feedback term on the test trajectories (unseen in training).
Moreover, the simple structure of NN enables the high online computation of
sequential convex optimization.
Researchers have implemented a Nonlinear Auto-Regressive with Exoge-
nous Input (NARX) network to approximate nonlinear vehicle dynamics [83].
Instead of using an internal feedback signal, as in recurrent neural networks,
NARX feeds the delayed control inputs and outputs as extra inputs to a clas-
sic multi-layer perceptron. They have studied the effect of initial weights and
the optimum network size on the network accuracy. Both offline and online
training schemes are tested and it is concluded that it is possible, with the
addition of a greater online computational cost, to use NNs for online system
identification and control of complex vehicle systems.
The same problem was studied in [65] but for changing vehicle dynamics
at the limit of multiple friction surfaces; these conditions affect the vehicle
stability and controllability and must be captured in the model to ensure good
controller performance in all driving scenarios. A two-layer NN was trained to
approximate vehicle dynamics. Exploiting the data from both low- and high-
friction driving scenarios, this model was able to perform well on different road
surfaces and bypass the need for explicit friction estimation. The NN-based
model was utilized within a feedforward-feedback controller, rendering better
control results than with a physics-based alternative.
4.3 Model-based estimators
A subset of estimation techniques requires a model of the system. Kalman
Filter (KF) and Extended Kalman Filter (EKF) are among these approaches.
ML approaches are then utilized when obtaining a model is not possible or
convenient. The work of Angeli et al. [55] on obtaining minimal coordinates
using AutoEncoders was presented in Section 3.5. The minimal ordinary differ-
ential equations obtained from this method were used in an EKF to estimate
the states of a slider-crank mechanism [84].
KFs are limited to linear systems and assume Gaussian distributions for
the noise, disturbance, and state estimates. Also EKFs, the nonlinear version
of KFs, require iterative local linearization of the plant around the new mean
and covariance estimates. To overcome these issues, researchers have been
developing the Moving Horizon Estimator (MHE) [85], [86]. While KFs are the
26 Arash Hashemi et al.
reformulation of LQRs, MHEs are the reformulation of MPCs; using the past
states in a finite horizon window, MHEs estimate the current state by solving
an optimization problem. Similar to MPC, MHE enables the use of a nonlinear
plant model and explicit inclusion of constraints. To approximate the control-
oriented model in the MHE estimator, Sun et al. [87] used a type-2 Fuzzy
neural network. In this research, MHE estimates the external force/torque
in a bilateral telerobotic system. The output of the estimator is used in a
Sliding Mode Controller (SMC) for nonlinear control of the plant. Type-2
Fuzzy neural network enables the application of model-based estimators on a
complex robotic system without the need to derive an accurate mathematical
model.
5 Data-driven control
An alternative to using model-based controllers with learned models (as men-
tioned in Section 3), is directly using model-free data-driven control approaches
that do not explicitly require a dynamics model for design. This method is ap-
plicable to situations in which learning a model requires an extensive and
challenging data acquisition.
5.1 ML-based MPC Optimization
In Section 4.1, we discussed how ML methods can be used to train a control-
oriented model for MPC implementation. There exists another challenging
problem in real-time application of this controller; the online optimization of
the MPC may be computationally intensive and hence solving it on embedded
systems and micro-controllers may not be feasible, especially for high-state
dynamic systems. Some of the derivative-free and sample-based methods for
MPC optimization are mentioned in Section 4.1. Here, however, we discuss the
research on approximating the optimization solution specifically using neural
networks.
Inspired by explicit MPC [88], where the feedback policy is obtained offline
by solving the optimization problem for various ranges of operation, neural
networks have been used to train a controller that mimics an MPC controller
based on synthetic data generated from an offline MPC. Winqvist et al. [89]
presented a general framework for training and validation of neural networks
for MPC. They proposed using PyTorch with the CVXPY optimization tool
[90] for constrained explicit MPC. They also offered a hit-and-run sampler to
systematically generate the input data for the network. Lastly, the authors
explore the idea of adding domain knowledge to the network training.
In [91], Varshney et al. presented DeepControl: a two-layer fully connected
neural network that replaces a Nonlinear Model Predictive Control (NMPC)
for online quadrotor control. The training synthetic data is generated from
a simulated model of the quadrotor using Gazebo. This model is obtained
Multibody Dynamics and Control using Machine Learning 27
by matching the simulation transfer function with that of the real physical
system for some manual movements of the quadrotor. Offline MPC is used in
simulation as the high-level controller to generate the corresponding roll, pitch,
yaw rate, and thrust commands for following a given desired trajectory. A low-
level Proportional Integral Derivative (PID) is then applied to obtain motor
speed commands. The DNN controller has a close performance to NMPC for
three different desired trajectories; on the other hand, it has a much lower
online computation compared to NMPC. As a result, the DNN controller was
applied in real-time, which led to less power consumption for computations
and more flight time, compared to NMPC implementation.
Data-driven NMPC has been applied to other dynamic systems and the
same ideas can be implemented in MSD. Pan et al. [92] iteratively linearized
the nonlinear system model and changed the optimization problem from non-
convex nonlinear to convex quadratic programming; they then used a recurrent
neural network to approximate the solution to the new optimization. This
controller was applied to a polymerization reaction problem. Cao et al. [93]
presented the idea of “optimize and train” for NMPC approximation with deep
feed-forward networks. In this approach, the process of generating the training
data by offline NMPC and training the network is done simultaneously. As
they discussed, the conventional “optimize then train” methods tend to lead
to divergent (or inaccurate) networks when there exists multiple solution for a
given initial state. The data-driven controller is applied to a quadtank system
for numerical case study.
5.2 Model-free reinforcement learning
Model-Free Reinforcement Learning (MFRL) has been recently studied for the
control of multibody systems. As mentioned in Section 2.4, MFRL finds the
optimal policy based on the interaction with the environment and does not
require an internal model. Therefore, if the environment reflects the changing
dynamics, the DRL controller can generalize to multiple situations.
To review, RL formulates the problem as a Markov Decision Process (MDP),
in which the transition dynamics to the next state depend only on the previous
state. Mathematically speaking:
P(St+1|At,St) = P(St+1|At,St,St−1,St−2, ...,S1) (7)
where P is the transition probability function, which is a general formulation
for stochastic systems. S and A are the states and actions in the corresponding
time indexes, respectively. The same formulation can be applied to determin-
istic dynamics.
DRL has been recently suggested for feedback control systems [94], [95],
and has been applied to robotic applications [96], [97], [98].
A stream of research has focused on using DRL for the purpose of con-
trolling musculoskeletal systems. In particular, a team of researchers at Stan-
ford University have integrated an openSim musculoskeletal environment with
28 Arash Hashemi et al.
DRL-based controller platforms. The resulting platform has been used in
NeuralIPS 2019 challenge: “Learn to Move-Walk Around” [99]. Multiple re-
searchers have since studied DRL algorithms to control a full musculoskeletal
system with 8 Degree of Freedom (DOF) and 22 muscles.
Combining RL with imitation learning, which we discuss in later sections,
has enabled realistic human movements on a complex muskuloskeletal sys-
tem with 346 muscles [100]. This data-driven controller has led to predictive
simulations of various human movements. In addition, multiple anatomical
conditions including bone deformity, muscle weakness, and contracture were
studied. This method has successfully simulated pathological gait patterns
and human-prosthethis movement. In [101], DRL was coupled with curricu-
lum learning [102] for simulating natural human gait. This approach splits
the overall reward function into smaller portions and trains the agent sequen-
tially; hence, it is highly applicable to human movement problems in which
the human (is assumed) to optimize a different function at each stage of move-
ment (standing up, walking, picking up objects for example). In this manner,
curriculum learning is similar to the general multi-stage optimization method.
DRL has also been used in autonomous vehicle research. In [103], DRL
was applied to an autonomous vehicle for adaptive cruise control. The results
show comparable performance with MPC when there are no uncertainties and
better performance in the presence of delays, disturbances, and unmodelled
dynamics.
From the control-theoretic perspective, the focus is mostly on stability;
however, the computer science community has concentrated on convergence
properties [104]. This is one of main research gaps between the control-theoretic
approach to reinforcement learning, often categorized as approximate dynamic
programming, and the conventional RL used in the computer science commu-
nity. Moreover, there is no explicit constraint handling in MFRL formulation.
As a result, there are still safety concerns for MFRL, mainly on safety-critical
applications. Recent studies have examined the possibility of combining MPC
and MFRL to address this issue. For instance, the idea of safe learning-based
MPC was presented in a recent review by Hewing et al. [105]. Based on this
idea, the optimal control input is calculated based on MFRL and another opti-
mization is solved in series. This optimization minimizes the deviation between
the solution and the MFRL output; the problem constraints are included in
this optimization to ensure safety.
MFRL is a powerful method as it can operate without a system transition
model and can learn a policy from experiments. However, a main drawback is
that a reward function should be defined; in some cases, this function is not
straightforward to acquire, i.e. it is not clear what metric is being optimized
to perform a certain task. Fortunately, two other research streams can offer
a solution: imitation learning (Section 5.3) and inverse reinforcement learning
(Section 5.4).
Multibody Dynamics and Control using Machine Learning 29
5.3 Imitation learning
Imitation Learning (IL) attempts to learn a policy from human demonstra-
tions. In contrast to MFRL, which generates the training data using random
(and partially-trained) policies as the experience, IL uses the data from a hu-
man expert performing a task so as to mimic that behavior [106]. Having access
to optimal human demonstration bypasses the need to set a reward function.
Wu et al. [107] used imitation learning for robot impedance regulation.
They stated that the problem of Cartesian impedance control can be formu-
lated as an LQR with the stiffness coinciding with the LQR weighting matrix.
Inspired by how humans dynamically regulate their arm impedance while in-
teracting with the environment, IL was utilized with human demonstration
data to learn to adaptively modify the stiffness parameter.
In [108], researchers utilized IL to increase the adaptive capacity of robots
to unseen situations. Human demonstrations can be used to teach the robots
various motor skills. Invariant motion patterns in the data are then extracted
and reproduced in new unseen scenarios. This method was used for trajectory
modulation in various unseen situations.
Similarly, Finn et al. [109] used IL to improve the generalizability of robots
to unstructured complex environments. As it is impractical to train a DL for
each specific task, they proposed training a meta-imitation learning scheme to
teach the robots how to learn new skills more efficiently. They used a one-shot
learning approach, which is learning a policy from a single demonstration. The
authors used a CNN structure, which takes camera data and robot configura-
tion as inputs and outputs the actions (robot torques) for reaching scenarios.
Meta-learning has resulted in faster and more efficient learning of new skills
by robots.
Kebria et al. [110] used imitation learning on an autonomous vehicle vi-
sion problem. Using the simulation data from three different camera views of
a vehicle controlled by a human, a CNN structure was trained to map the raw
image data to the final steering angle. Since the configuration of CNNs has
a great impact on their performance, the researchers on this study compared
96 CNN configurations with different layers, number of filters, and filter sizes
in terms of mean squared error to find the best configuration and explore the
effect of each parameter. Finally, an ensemble of CNN models was used for
steering angle prediction.
5.4 Inverse reinforcement learning
So far, the bulk of research has focused on obtaining accurate and fast con-
trollers that can minimize or maximize the intuitively-defined metrics. Recent
advances in optimization-based control and deep learning, however, have led to
posing a new question: What is the underlying metric that an expert minimizes
or maximizes to do a certain task? This research direction aspires to obtain
more accurate cost/reward functions. Inverse Reinforcement Learning (IRL),
30 Arash Hashemi et al.
which is the model-free version of inverse optimal control, has been utilized
for this purpose [111]. This approach follows a reverse methodology of RL; the
already running policy is considered as an optimal controller and the input-
output tuples generated from this policy are used to find the reward/cost
function that is optimized to find the policy.
Autonomous driving can take good advantage of IRL. To design reliable
controllers for autonomous vehicles, it is imperative to mimic human behavior
in driving by deriving the human reward function. Nevertheless, this function
is complex, stochastic, and varies greatly between drivers [112], [113], [114]. To
remedy this, IRL has been used based on gathered human expert data. You et
al. [112] used a DNN to approximate the reward function that humans mini-
mize in driving using an IRL setting. The optimal DNN parameters were ob-
tained by gradient-based optimization and maximum entropy principle (MEP).
Wu et al. [113] improved upon previous IRL algorithms for autonomous driving
by introducing a continuous trajectory sampler, which uses prior knowledge
on vehicle kinematics and motion planning algorithms. This addition enables
the use of IRL in a continuous formulation, making it applicable to large-scale
continuous problems. In addition, this study has used real traffic data; while
previous research has assumed optimal (near-optimal) policies for real data,
this study considers the uncertainty in the human demonstrations to account
for the terms that interfere with ideal human driving.
Woodworth et al. [115] took advantage of IRL to find the preferences of
different users to an assistive robot. While previous applications of robots
in healthcare have focused on imposing a certain task, like finishing a cer-
tain exercise by the user, this research has focused on finding a user-specific
preference while performing each task. The underlying algorithm should be
able to adapt to a multitude of tasks and subjects. This research has used
observational repeated inverse reinforcement learning to perform long-term,
task-independent preference learning in scenarios with incomplete informa-
tion (only partial knowledge about the task and the environment is available).
The algorithm observes each subject’s data while doing multiple rehabilitation
exercises to infer their motor learning scheme. This study enables the subject-
specific control of these devices and their compatibility to each subject.
IRL is applied to a very complex and highly redundant snake-like robot
in [116]. An RL controller was first used to find energy-efficient and realistic
gait at various velocities. An adversarial IRL was then trained based on the
demonstrations from the RL controller using a GAN. By improving upon the
initial reward function, the IRL controller is able to preserve the efficiency
and natural gait resulting from the RL controller while adapting to chang-
ing dynamics due to damaged body parts. In this sense, the IRL controller
outperforms both the RL and model-based controllers.
Multibody Dynamics and Control using Machine Learning 31
5.5 Other applications
So far, the papers in Section 5 have discussed data-driven methods to substi-
tute a control policy. The summary of these approaches are provided in Table 2.
There are, however, other sections that complete/augment the closed-loop sys-
tem; controller tuners, state observers, and disturbance observers are among
the important components of a closed-loop system. In this section, we discuss
the ML research on these components.
Data-driven controller weights adjustment
In many cases, existing control approaches are sufficient for obtaining the
desired performance in multibody dynamics systems. However, every control
method has multiple parameters (gains) that require meticulous tuning. This
process is usually done manually, which results in a time-intensive manual
trial and error adjustment; moreover, the manual tuning does not achieve the
optimal set of weights. Current tuning techniques are limited to simple con-
trollers and cannot generalize to all approaches. Plus, they still suffer from
repetitive trial and error iterations [117]. Recently, automatic tuning methods
have been studied; general data-driven methods are exploited for this purpose.
In [118], the bees algorithm was used to tune an LQR controller on an inverted
pendulum control problem. Researchers in [119] took advantage of Gaussian
optimization, namely simultaneous perturbation stochastic approximation, to
tune the same controller for a robot arm balancing an inverted pole. Parti-
cle swarm optimization was also investigated to tune a PID controller [120].
The resulting controller has been applied to a ball on plate trajectory track-
ing system. Recently, a genetic algorithm was integrated with an SMC for
rehabilitation robot control [121].
While the above approaches work on a variety of problems, more complex
approximators are usually required for large-scale problems. In addition, most
of above data-driven approaches utilize static optimization, which cannot be
used for adaptive dynamic weight adjustment. DL, and more specifically DRL,
methods have been used to remedy these issues. Several works have taken
advantage of DRL for tuning a PID controller in single-agent [122], [123], [117],
and multi-agent problems [124]. DRL has also been applied to more advanced
controllers. Specifically, a learning automata RL algorithm has been integrated
with a linear MPC for autonomous vehicle control and mobile robotics. The
resulting controller has been tested in simulation [125] and experiments [126],
[127]. An NMPC has also been automatically tuned using incremental DRL
for unmanned aerial vehicle control [128]. Liu et al. [129] used a NN approach
to dynamically approximate the switching gain of a SMC for an uncertain
robot control. The neural network SMC adapts to unknown dynamics and
disturbance, and can resolve the chattering and high-input issue of SMC.
The cited papers have focused on low-level controller tuning. On the other
hand, several studies have used DRL for tuning mid-level controllers. These
controllers are extensively used in rehabilitation robotics and assistive devices
32 Arash Hashemi et al.
as they directly adjust the compliance in human-robot interactions. In par-
ticular, online tuning of mid-level controllers are investigated in the form of
impedance [98], [130], [131] and admittance [132] controllers. These intelli-
gent controllers have enabled online personalization of assistive devices and
exoskeletons to different subjects, resulting in less muscle effort and from the
subject and more comfort during use.
NN-based observers and estimators
Various issues may arise in real-time control of multibody dynamics systems.
First, exact kinematic and dynamic parameters are usually not available; the
uncertainty around the parameter values can degrade the performance of the
controller. Moreover, the values of some of the parameters may vary during
system operation. Second, external disturbances can affect the system sta-
bility (and performance). In the control community, robust control methods
are utilized to mitigate this issue. The controller is usually augmented with
a disturbance estimator, which usually requires some knowledge about the dis-
turbance characteristics (e.g. its model). NN-based estimators rely solely on
the sensor data to approximate the disturbance and are advantageous when no
knowledge about the disturbance model can be obtained. Third, while most
controllers work with system states (state-feedback controllers for example),
measured outputs cannot obtain all the states in a variety of problems. As
a solution, state observers are developed to approximate some (or all) of the
states. We talked about state-based observers using DL-based AI models in
Section 3.5 with the work of [55]. This work is applicable to problems where an
approximate system model can be acquired. Researchers have also worked on
complete data-driven observers, discussed below, that do not require a model.
Wu et al. [133] presented the idea of using neural-network-based observers
in rehabilitation robotics. Radial Basis Function (RBF) network was used as
a disturbance observer. The network was also utilized to account for robot
modeling errors. Using this scheme, the authors were able to implement an
adaptive admittance controller on the rehabilitation robot without concerns
about closed-loop stability.
A recurrent neuro-adaptive state observer was proposed in [134]. This
RNN-based scheme was applied to a flexible-joint manipulator and was trained
by modified backpropagation; to ensure the stability of the observer, an e-
modification term was added to the optimization; this term is derived from
robust adaptive control theory for systems with bounded disturbances. The
advantage of the RNN-based observer is the fact that it does not require
a model; hence it is applicable to complex nonlinear systems for which an
accurate representation of the system is not easy to acquire.
RBF networks were also utilized to estimate the unknown parameters of
cooperative multiple manipulators [135]. They were also incorporated as the
disturbance observers when the torques reach their upper-bounds. Almost all
actuated systems are susceptible to input saturation. As a result, this research
proposed a data-driven approach to resolve this problem.
Multibody Dynamics and Control using Machine Learning 33
Adaptive data-driven controllers
In most real-time control applications, both the dynamics of the plant and the
environment change during system operation. We previously discussed how
data-driven approaches can estimate the change in the dynamics. Alterna-
tively, the changing conditions can be taken into consideration by using an
adaptive controller, therefore improving the performance of the closed-loop
system. Here, we discuss the research on data-driven adaptive controllers.
Luan et al. [136] applied an RBF network adaptive controller to a SCARA
robot. This controller was combined with SMC to guarantee robustness against
uncertainties and disturbance. The same idea was also applied to three-link in-
dustrial robot manipulators [137]. The resulting controller outperformed PID
and fuzzy controllers both in terms of tracking accuracy and input expendi-
ture. An adaptive NN tracking controller was designed in [138] for robotic
manipulators with dead-zones. A RBF neural network was used to augment
a back-stepping controller by approximating the intermediate control func-
tions. Neural networks were also used in [139] for adaptive control of a 2-DOF
helicoper with input dead-zone and output constraint. Adaptive control the-
ory was used to update the NN weights and hence, introduce adaptivity to
the closed-loop system. The integral barrier Lyapunov function was utilized
to ensure output constraint satisfaction. Another study focused on robotic
manipulators with external disturbances and time-varying outputs [140]. A
Model-based backstepping controller was augmented to an adaptive NN-based
controller.
Table 2 Summary of the data-driven control methods. ML Opt refers to ML-based MPC
Optimization discussed in Section 5.1
Method Model? Data ef-
ficiency
Description Example
papers
ML Opt 3 high Approximates the the MPC com-
pletely by training a neural network on
synthetic data from a simulated MPC
[89], [91], [93]
MBRL 3 high MPC is implemented by approximat-
ing the control-oriented model using a
neural network
[76], [78], [77]
MFRL 7 low Uses the data from interaction with the
environment to find the optimal policy
[98], [99], [103]
IM 7 low Trains a neural network based on ex-
pert data to replicate the expert action
[107], [110],
[141]
IRL 7 low Uses the input/output from the opti-
mal policy to find the underlying re-
ward/cost function
[112], [115],
[116]
34 Arash Hashemi et al.
6 Future directions and ideas
Although there has been a myriad of recent research in using deep learning in
multibody dynamics and control, many opportunities exist for future studies.
In this section, we examine two promising research paths that can be explored
by the multibody dynamics community. These areas have been investigated in
other fields; we believe they have the potential to advance the field of multi-
body system dynamics.
6.1 Physics-informed neural networks
Raissi et al. [142] have recently introduced physics-informed neural networks,
in which laws of physics are considered in the training of a neural network
as the surrogate model. They have shown that the neural network-based ap-
proximation of any physical system that is described by a nonlinear Partial
Differential Equation (PDE) can exploit the physics of the system (as prior
knowledge) in the training. To this end, they have proposed a second neural
network with the same weights as the primary network that approximates the
system variable. The second neural network enforces the right hand side of
the PDE to be zero. In other words, the same weights that approximate the
system variable enforce the PDE equation.
As any multibody system follows certain dynamic laws, we suggest using
the system physics (model equations) as a regularization scheme; the addi-
tional constraint would avoid unrealistic networks, and would enable the train-
ing with fewer samples. The idea of physics-informed models has already been
tested in MSD and it has shown potential opportunities for future research.
Lutter et al. [143] have introduced Deep Lagrangian Network (DeLaN), which
impose Lagrangian mechanics on the training. The augmentation has led to
more robust neural networks, capable of generalizing to new samples with fewer
training cases; the resulting network is also physically plausible. DeLaN has
been used to represent the inverse dynamics of a robot for a trajectory track-
ing problem; the lower-triangular matrix L(q) composing the inertia matrix
M(q) is represented by a deep neural network as:
Mˆ(q) = Lˆ(q;θ)Lˆ(q;θ)T (8)
where q is the robot joint angle and θ are the NN parameters. An optimization
problem is then solved to find the best set of parameters while ensuring the
positive-definiteness of the inertia matrix. The inertia matrix, resulted from the
matrix Lˆ(q;θ), is utilized to generate the system equations. The optimization
then aims to minimize the error between the multibody model and torque
sample data.
DeLaN is one example of general physics-informed networks and many
other solutions exist. For example, Hamiltonian Neural Networks presented
by Greydanus et al. [144] can learn an arbitrary conservation law based on
Hamiltonian mechanics. While DeLaN requires existence of the mass matrix
Multibody Dynamics and Control using Machine Learning 35
M(q), Cranmer et al. [145] provides a neural network architecture for learning
arbitrary Lagrangians. However, as pointed out by Krishnapriyan et al. [146],
special learning techniques may be required for accurate training of physically-
informed neural networks in many real-life scenarios.
6.2 More complex networks
Most research in data-driven multibody dynamics and control has used com-
mon network structures: ANNs, CNNS, RNNs, and autoencoders. With recent
advances in network configurations, we believe that the MSD community can
benefit from new structures. In this section, we present the application of new
neural networks to multibody dynamic modeling and control.
Temporal convolutional neural networks
To combine the feature extraction and expression capabilities of CNNs with
the temporal modelling capabilities of RNNs, temporal convolutional neural
networks have recently been developed [147]. While solving the gradient van-
ishing/explosion problem (similar to LSTM networks), Temporal CNNs also
introduce more efficiency by adding more parallel computations; unlike the
conventional dependency on previous timesteps for current timestep calcula-
tion (as in RNNs, LSTMs, gate recurrent units), temporal CNNs use the same
filter for the whole sequence, hence enabling parallel computations. Temporal
CNNs have been investigated for system identification in [148]. The result-
ing data-driven approach has been successfully used for the Silverbox dataset,
which is the electronic version of the Duffing oscillator, and to identify an F-16
ground vibration test.
Transformers
With more focus on the attention mechanism, recently developed transformer
networks have added considerable improvements to machine translation, com-
puter vision, and other applications [149], [150]. While LSTM networks solve
the problem of vanishing/exploding gradients to some extent, for some ap-
plications like machine translation where longer output dependency to earlier
elements in the sequence is observed, this issue is not completely resolved. To
this end, the attention mechanism utilizes all the hidden states, instead of only
the last one, and decides what elements of the hidden states are relevant to gen-
erating the output; roughly speaking, the attention mechanism learns where
to focus when given a long sequence of data (hence the name). In addition to
resolving the long-dependency issue, similar to TCNNs, the unique structure
of transformers allows for parallelization of computations on sequential data.
Due to their temporal component, transformers have the potential to improve
the previous work on ML-based MSD modelling and control, especially in
cases where the output from the current timestep has a high dependency on
input/output from timesteps in the past.
36 Arash Hashemi et al.
Graph network-based simulators
Modelling challenges are expected as the number of components in a multibody
system increases. Hence, solutions with more expressive capabilities should
be used. For complex physical systems, like MSD systems with many DOF
and components, finding an accurate model is difficult and simulating it is
computationally expensive. Using NN-based surrogate models (Section 3) with
conventional network structures may still lead to high computations during
inference.
Hence, a network with an inherent structure to handle higher input com-
ponents is preferred. Recently, an interesting class of networks called Graph
Network-Based Simulator (GNS) was developed for modelling complex physi-
cal systems with very high input size [151]. These networks are a special kind of
graph neural networks. A unique feature of graph neural networks is that they
can accept an unstructured graph as input, i.e. no constraint on the topology
or size of the input is imposed. This enables structuring the physical system
as a graph and feeding it to the network. In the GNS network, the physical
states are represented as graphs of interacting particles structured as nodes
and the message-passing between nodes are learned using data. GNS has been
implemented on a range of complex physical systems including fluid dynam-
ics, rigid solids, and deformable materials. We believe GNS has potential for
modelling complex multibody dynamics with higher states and components.
7 Conclusions
The use of ML in multibody system dynamics is growing rapidly. In this paper,
we discussed the multiple streams of research on the integration of these two
fields and the ways in which data-driven solutions can provide improvements
to MSD research.
Neural networks may provide surrogate dynamic models with comparable
accuracy to multibody models but with higher computational efficiency. More-
over, they can be utilized in hybrid models where part of the system is difficult
to model analytically and is replaced with a data-driven blackbox alternative.
ML-based solutions can also improve the controllers applied to multi-
body systems. Efficient control-oriented models within a model-based con-
troller can be obtained from data. In addition, the control policy itself can be
approximated using data-driven approaches. Other aspects of control design
can also be improved by ML. Neural networks can replace the conventional
state/disturbance estimators. They can also be used for online controller pa-
rameter adjustment, facilitating the use of adaptive controllers.
Although ML methods have improved the accuracy/efficiency of multibody
system models and controllers, there is a huge potential for further integration
of these two fields. While new network structures and data-driven solutions
can potentially improve the current state of this integration, physical models
can also be used to improve the network learning. More research is needed
Multibody Dynamics and Control using Machine Learning 37
to move towards the optimal combination of physics-based and data-driven
solutions in MSD systems.
Acknowledgements The first and last authors gratefully acknowledge funding provided
by the Canada Research Chairs program and the Natural Sciences and Engineering Research
Council of Canada. The second and third authors gratefully acknowledge funding provided
by Business Finland (Santtu project).
Declarations
Ethical approval
Not applicable.
Competing interests
Not applicable.
Authors’ contributions
– Arash Hashemi: conceptualization, visualization, writing (Sections 2,4,5,6,7),
review and editing.
– Grzegorz Orzechowski: conceptualization, visualization, writing (Abstract,
Sections 1,3), review and editing.
– Aki Mikkola: conceptualization, funding acquisition, supervision, writing
(Abstract, Sections 1,3), review and editing.
– John McPhee: conceptualization, funding acquisition, supervision, writing
(Sections 2,4,5,6,7), review and editing.
Funding
The first and last authors gratefully acknowledge funding provided by the
Canada Research Chairs program and the Natural Sciences and Engineering
Research Council of Canada. The second and third authors gratefully acknowl-
edge funding provided by Business Finland’s “Kumppanuusmalli – SANTTU
– LUT” project under grant 8859/31/2021.
Availability of data and materials
Not applicable (review paper).
38 Arash Hashemi et al.
References
1. I. Kurinov, G. Orzechowski, P. Hamalainen, and A. Mikkola, “Automated Excavator
Based on Reinforcement Learning and Multibody System Dynamics,” IEEE Access,
vol. 8, pp. 213998–214006, 2020.
2. D. Kalashnikov, J. Varley, Y. Chebotar, B. Swanson, R. Jonschkowski, C. Finn,
S. Levine, and K. Hausman, “MT-Opt: Continuous Multi-Task Robotic Reinforcement
Learning at Scale,” Apr. 2021. arXiv:2104.08212 [cs].
3. R. Cordeschi, “AI turns fifty: revisiting its origins,” Applied Artificial Intelligence,
vol. 21, no. 4-5, pp. 259–279, 2007.
4. C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation Functions: Com-
parison of trends in Practice and Research for Deep Learning,” pp. 1–20, 2018.
5. J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang,
J. Cai, and T. Chen, “Recent advances in convolutional neural networks,” Pattern
Recognition, vol. 77, pp. 354–377, 2018.
6. Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio, “Object recognition with gradient-
based learning,” in Shape, contour and grouping in computer vision, pp. 319–345,
Springer, 1999.
7. A. Dhillon and G. K. Verma, “Convolutional neural network: a review of models,
methodologies and applications to object detection,” Progress in Artificial Intelligence,
vol. 9, no. 2, pp. 85–112, 2020.
8. H. C. Li, Z. Y. Deng, and H. H. Chiang, “Lightweight and resource-constrained learning
network for face recognition with performance optimization,” Sensors (Switzerland),
vol. 20, no. 21, pp. 1–20, 2020.
9. H. Salman, J. Grover, and T. Shankar, “Hierarchical Reinforcement Learning for Se-
quencing Behaviors,” vol. 2733, no. March, pp. 2709–2733, 2018.
10. B. Laschowski, W. McNally, A. Wong, and J. McPhee, “Preliminary design of an
environment recognition system for controlling robotic lower-limb prostheses and ex-
oskeletons,” IEEE International Conference on Rehabilitation Robotics, vol. 2019-
June, pp. 868–873, 2019.
11. W. McNally, K. Vats, A. Wong, and J. McPhee, “EvoPose2D: Pushing the Boundaries
of 2D Human Pose Estimation using Neuroevolution,” 2020.
12. D. Palaz, M. Magimai-Doss, and R. Collobert, “End-to-end acoustic modeling using
convolutional neural networks for HMM-based automatic speech recognition,” Speech
Communication, vol. 108, no. June 2016, pp. 15–32, 2019.
13. O¨. Batur Dinler and N. Aydin, “An optimal feature parameter set based on gated re-
current unit recurrent neural networks for speech segment detection,” Applied Sciences
(Switzerland), vol. 10, no. 4, 2020.
14. W. Yin, K. Kann, M. Yu, and H. Schu¨tze, “Comparative Study of CNN and RNN for
Natural Language Processing,” 2017.
15. S. Chandar and H. Sunder, “Dynamic Systems Simulation and Control Using Con-
secutive Recurrent Neural Networks,” Communications in Computer and Information
Science, vol. 1290, pp. 92–103, 2020.
16. A. P. Trischler and G. M. D’Eleuterio, “Synthesis of recurrent neural networks for
dynamical system simulation,” Neural Networks, vol. 80, pp. 67–78, 2016.
17. Y. Hu, A. Huber, J. Anumula, and S.-C. Liu, “Overcoming the vanishing gradient
problem in plain recurrent networks,” no. Section 2, pp. 1–20, 2018.
18. S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation,
vol. 9, no. 8, pp. 1735–1780, 1997.
19. C. Gao, J. Yan, S. Zhou, P. K. Varshney, and H. Liu, “Long short-term memory-based
deep recurrent neural networks for target tracking,” Information Sciences, vol. 502,
pp. 279–296, 2019.
20. H. Hewamalage, C. Bergmeir, and K. Bandara, “Recurrent Neural Networks for Time
Series Forecasting: Current status and future directions,” International Journal of
Forecasting, vol. 37, no. 1, pp. 388–427, 2021.
21. S. Wright, J. Nocedal, et al., “Numerical optimization,” Springer Science, vol. 35,
no. 67-68, p. 7, 1999.
Multibody Dynamics and Control using Machine Learning 39
22. L. Bottou, “Stochastic gradient descent tricks,” in Neural networks: Tricks of the trade,
pp. 421–436, Springer, 2012.
23. Z. Zhang, “Improved Adam Optimizer for Deep Neural Networks,” 2018 IEEE/ACM
26th International Symposium on Quality of Service, IWQoS 2018, pp. 1–2, 2019.
24. F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and J. Clune, “Deep
Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep
Neural Networks for Reinforcement Learning,” 2017.
25. J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian Optimization of Ma-
chine Learning Algorithms,” pp. 1–9.
26. X. Wu, V. Kumar, Q. J. Ross, J. Ghosh, Q. Yang, H. Motoda, G. J. McLachlan,
A. Ng, B. Liu, P. S. Yu, Z. H. Zhou, M. Steinbach, D. J. Hand, and D. Steinberg, Top
10 algorithms in data mining, vol. 14. 2008.
27. X. Xu, T. Liang, J. Zhu, D. Zheng, and T. Sun, “Review of classical dimensionality
reduction and sample selection methods for large-scale data processing,” Neurocom-
puting, vol. 328, pp. 5–15, 2019.
28. G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with
neural networks,” science, vol. 313, no. 5786, pp. 504–507, 2006.
29. Richard Bellmann, “The theory of dynamic programming,” Bulletin of the American
Mathematical Society, vol. 60, pp. 503–515, 1954.
30. M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,” Journal of Machine
Learning Research, vol. 4, no. 6, pp. 1107–1149, 2004.
31. D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,
J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu,
T. Graepel, and D. Hassabis, “Mastering the game of Go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.
32. V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,
I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-
level control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–
533, 2015.
33. J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra, “On-
tinuous learning control with deep reinforcement,” 2016.
34. S. Fujimoto, H. Van Hoof, and D. Meger, “Addressing Function Approximation Error
in Actor-Critic Methods,” 35th International Conference on Machine Learning, ICML
2018, vol. 4, pp. 2587–2601, 2018.
35. I. J. Goodfellow, J. Pouget-abadie, M. Mirza, B. Xu, and D. Warde-farley, “Generative
Adversarial Nets,” pp. 1–9.
36. H. Ren and P. Ben-Tzvi, “Learning inverse kinematics and dynamics of a robotic ma-
nipulator using generative adversarial networks,” Robotics and Autonomous Systems,
vol. 124, p. 103386, 2020.
37. H. A. Ardeh, M. Tupy, and D. Negrut, “On the Construction and Use of Surrogate
Models for the Dynamic Analysis of Multibody Systems,” in Volume 13: New De-
velopments in Simulation Methods and Software for Engineering Applications; Safety
Engineering, Risk Analysis and Reliability Methods; Transportation Systems, vol. 13,
pp. 17–26, ASMEDC, 1 2009.
38. B. Azzam, R. Schelenz, B. Roscher, A. Baseer, and G. Jacobs, “Development of a wind
turbine gearbox virtual load sensor using multibody simulation and artificial neural
networks,” Forschung im Ingenieurwesen/Engineering Research, vol. 85, pp. 241–250,
6 2021.
39. O. Garc´ıa Peyrano, J. Vignolo, R. Mayer, and M. Marticorena, “Online unbalance
detection and diagnosis on large flexible rotors by svr and ann trained by dynamic
multibody simulations,” Journal of Dynamics, Monitoring and Diagnostics, Jun. 2022.
40. S. Han, H. S. Choi, J. Choi, J. H. Choi, and J. G. Kim, “A DNN-based data-driven mod-
eling employing coarse sample data for real-time flexible multibody dynamics simula-
tions,” Computer Methods in Applied Mechanics and Engineering, vol. 373, p. 113480,
2021.
40 Arash Hashemi et al.
41. M. Kahr, G. Kova´cs, M. Loinig, and H. Bru¨ckl, “Condition monitoring of ball bearings
based on machine learning with synthetically generated data,” Sensors, vol. 22, no. 7,
2022.
42. J. Ma, S. Dong, G. Chen, P. Peng, and L. Qian, “A data-driven normal contact force
model based on artificial neural network for complex contacting surfaces,” Mechanical
Systems and Signal Processing, vol. 156, p. 107612, 2021.
43. C. Sobie, C. Freitas, and M. Nicolai, “Simulation-driven machine learning: Bearing
fault classification,” Mechanical Systems and Signal Processing, vol. 99, pp. 403–419,
1 2018.
44. Y. Ye, B. Zhu, P. Huang, and B. Peng, “Oornet: A deep learning model for on-board
condition monitoring and fault diagnosis of out-of-round wheels of high-speed trains,”
Measurement, vol. 199, p. 111268, 2022.
45. A. S. Polydoros, L. Nalpantidis, and V. Kruger, “Real-time deep learning of robotic
manipulator inverse dynamics,” IEEE International Conference on Intelligent Robots
and Systems, vol. 2015-Decem, no. October, pp. 3442–3448, 2015.
46. L. Rane, Z. Ding, A. H. McGregor, and A. M. Bull, “Deep Learning for Musculoskeletal
Force Prediction,” Annals of Biomedical Engineering, vol. 47, no. 3, pp. 778–789, 2019.
47. A. Nasr, K. A. Inkol, S. Bell, and J. McPhee, “Inversemusclenet: Alternative machine
learning solution to static optimization and inverse muscle modeling,” Frontiers in
Computational Neuroscience, vol. 15, 2021.
48. A. Byravan and D. Fox, “SE3-nets: Learning rigid body motion using deep neural net-
works,” in 2017 IEEE International Conference on Robotics and Automation (ICRA),
pp. 173–180, IEEE, 5 2017.
49. H. S. Choi, J. An, S. Han, J. G. Kim, J. Y. Jung, J. Choi, G. Orzechowski, A. Mikkola,
and J. H. Choi, “Data-driven simulation for general-purpose multibody dynamics using
Deep Neural Networks,” Multibody System Dynamics, vol. 51, no. 4, pp. 419–454, 2021.
50. F. Hegedu¨s, P. Ga´spa´r, and T. Be´csi, “Fast Motion Model of Road Vehicles with
Artificial Neural Networks,” Electronics, vol. 10, p. 928, 4 2021.
51. S. Kraft, J. Causse, and A. Martinez, “Black-box modelling of nonlinear railway ve-
hicle dynamics for track geometry assessment using neural networks,” Vehicle System
Dynamics, vol. 57, no. 9, pp. 1241–1270, 2019.
52. T. P. Martin, K. E. Zaazaa, B. Whitten, and A. Tajaddini, “Using a Multibody Dy-
namic Simulation Code With Neural Network Technology to Predict Railroad Vehicle-
Track Interaction Performance in Real Time,” in Volume 5: 6th International Confer-
ence on Multibody Systems, Nonlinear Dynamics, and Control, Parts A, B, and C,
vol. 5 PART C, pp. 1881–1891, ASMEDC, 1 2007.
53. Y. Pan, X. Nie, Z. Li, and S. Gu, “Data-driven vehicle modeling of longitudinal dynam-
ics based on a multibody model and deep neural networks,” Measurement, vol. 180,
p. 109541, 2021.
54. A. Nasr, S. Bell, J. He, R. L. Whittaker, N. Jiang, C. R. Dickerson, and J. McPhee,
“Musclenet: mapping electromyography to kinematic and dynamic biomechanical vari-
ables by machine learning,” Journal of Neural Engineering, vol. 18, no. 4, p. 0460d3,
2021.
55. A. Angeli, W. Desmet, and F. Naets, “Deep learning for model order reduction of
multibody systems to minimal coordinates,” Computer Methods in Applied Mechanics
and Engineering, vol. 373, p. 113517, 2021.
56. B. A. Hosking and J. McPhee, “Powertrain Modeling and Model Predictive Longitudi-
nal Dynamics Control for Hybrid Electric Vehicles,” SAE Technical Papers, vol. 2018-
April, pp. 1–10, 2018.
57. A. Oishi and G. Yagawa, “Computational mechanics enhanced by deep learning,”
Computer Methods in Applied Mechanics and Engineering, vol. 327, pp. 327–351, 12
2017.
58. Y. Ye, P. Huang, Y. Sun, and D. Shi, “MBSNet: A deep learning model for multi-
body dynamics simulation and its application to a vehicle-track system,” Mechanical
Systems and Signal Processing, vol. 157, p. 107716, 2021.
59. D. J. Saxby, B. A. Killen, C. Pizzolato, C. P. Carty, L. E. Diamond, L. Modenese,
J. Fernandez, G. Davico, M. Barzan, G. Lenton, S. B. da Luz, E. Suwarganda, D. De-
vaprakash, R. K. Korhonen, J. A. Alderson, T. F. Besier, R. S. Barrett, and D. G.
Multibody Dynamics and Control using Machine Learning 41
Lloyd, “Machine learning methods to support personalized neuromusculoskeletal mod-
elling,” Biomechanics and Modeling in Mechanobiology, vol. 19, no. 4, pp. 1169–1185,
2020.
60. S. L. Brunton, J. Nathan Kutz, K. Manohar, A. Y. Aravkin, K. Morgansen,
J. Klemisch, N. Goebel, J. Buttrick, J. Poskin, A. W. Blom-Schieber, T. Hogan, and
D. McDonald, “Data-Driven Aerospace Engineering: Reframing the Industry with Ma-
chine Learning,” AIAA Journal, vol. 59, no. 8, pp. 1–26, 2021.
61. A. Hashemi, Y. Lin, W. McNally, B. Laschowski, B. Hosking, A. Wong, and J. McPhee,
“Integration of Machine Learning with Dynamics and Control : From Autonomous Cars
to Biomechatronics,” Canadian Society for Mechanical Engineering (CSME) Bulletin,
pp. 9–10, 2019.
62. S. Zhou and A. P. Schoellig, “Active Training Trajectory Generation for Inverse Dy-
namics Model Learning with Deep Neural Networks,” Proceedings of the IEEE Con-
ference on Decision and Control, vol. 2019-Decem, no. i, pp. 1784–1790, 2019.
63. P. Urda, J. F. Aceituno, S. Mun˜oz, and J. L. Escalona, “Artificial neural networks
applied to the measurement of lateral wheel-rail contact force: A comparison with a
harmonic cancellation method,” Mechanism and Machine Theory, vol. 153, p. 103968,
2020.
64. A. Nasr, A. Hashemi, and J. McPhee, “Model-based mid-level regulation for assist-as-
needed hierarchical control of wearable robots: A computational study of human-robot
adaptation,” Robotics, vol. 11, no. 1, p. 20, 2022.
65. N. A. Spielberg, M. Brown, N. R. Kapania, J. C. Kegelman, and J. C. Gerdes, “Neural
network vehicle models for high-performance automated driving,” Science Robotics,
vol. 4, no. 28, 2019.
66. D. Bertsekas, Reinforcement learning and optimal control. Athena Scientific, 2019.
67. A. G. Richards, Robust constrained model predictive control. PhD thesis, Mas-
sachusetts Institute of Technology, 2005.
68. P.-T. De Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, “A tutorial on the
cross-entropy method,” Annals of operations research, vol. 134, no. 1, pp. 19–67, 2005.
69. M. Kelly, “An introduction to trajectory optimization: How to do your own direct
collocation,” SIAM Review, vol. 59, no. 4, pp. 849–904, 2017.
70. C.-V. Pal and F. Leon, “Brief survey of model-based reinforcement learning tech-
niques,” in 2020 24th International Conference on System Theory, Control and Com-
puting (ICSTCC), pp. 92–97, IEEE, 2020.
71. T. Wang, X. Bao, I. Clavera, J. Hoang, Y. Wen, E. Langlois, S. Zhang, G. Zhang,
P. Abbeel, and J. Ba, “Benchmarking model-based reinforcement learning,” arXiv
preprint arXiv:1907.02057, 2019.
72. H. Kwakernaak, R. Sivan, and B. N. D. Tyreus, “Linear optimal control systems,”
1974.
73. Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of complex behaviors
through online trajectory optimization,” in 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 4906–4913, IEEE, 2012.
74. J. H. Lee, “Model predictive control: Review of the three decades of development,”
International Journal of Control, Automation and Systems, vol. 9, no. 3, pp. 415–424,
2011.
75. M. Schwenzer, M. Ay, T. Bergs, and D. Abel, “Review on model predictive control:
An engineering perspective,” The International Journal of Advanced Manufacturing
Technology, vol. 117, no. 5, pp. 1327–1349, 2021.
76. L. Roveda, J. Maskani, P. Franceschi, A. Abdi, F. Braghin, L. Molinari Tosatti, and
N. Pedrocchi, “Model-Based Reinforcement Learning Variable Impedance Control for
Human-Robot Collaboration,” Journal of Intelligent and Robotic Systems: Theory and
Applications, vol. 100, no. 2, pp. 417–433, 2020.
77. A. Nagabandi, G. Kahn, R. S. Fearing, and S. Levine, “Neural Network Dynamics for
Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning,” Proceed-
ings - IEEE International Conference on Robotics and Automation, pp. 7579–7586,
2018.
78. G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba, “OpenAI Gym,” pp. 1–4, 2016.
42 Arash Hashemi et al.
79. G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots, and E. A.
Theodorou, “Information theoretic MPC for model-based reinforcement learning,”
Proceedings - IEEE International Conference on Robotics and Automation, pp. 1714–
1721, 2017.
80. S. Richards, N. Azizan, J.-J. Slotine, and M. Pavone, “Adaptive-Control-Oriented
Meta-Learning for Nonlinear Systems,” 2021.
81. A. Punjani and P. Abbeel, “Deep learning helicopter dynamics models,” in 2015 IEEE
International Conference on Robotics and Automation (ICRA), pp. 3223–3230, 2015.
82. S. Bansal, F. J. Jiang, C. J. Tomlin, and S. Y. Oct, “Learning Quadrotor Dynamics
Using Neural Network for Flight Control,” no. 0931843.
83. S. J. Rutherford and D. J. Cole, “Modelling nonlinear vehicle dynamics with neural
networks,” vol. 53, no. 4, pp. 260–287, 2010.
84. A. Angeli, W. Desmet, and F. Naets, “Deep learning of multibody minimal coordinates
for state and input estimation with Kalman filtering,” Multibody System Dynamics,
vol. 53, no. 2, pp. 205–223, 2021.
85. A. Alessandri, M. Baglietto, G. Battistelli, and V. Zavala, “Advances in Moving Hori-
zon Estimation for Nonlinear Systems,” pp. 5681–5688, 2010.
86. C. Jin, A. Maitland, and J. McPhee, “Hierarchical Nonlinear Moving Horizon Esti-
mation of Vehicle Lateral Speed and Road Friction Coefficient,” ASME Letters in
Dynamic Systems and Control, 2020.
87. D. Sun, Q. Liao, T. Stoyanov, A. Kiselev, and A. Loutfi, “Bilateral telerobotic system
using Type-2 fuzzy neural network based moving horizon estimation force observer for
enhancement of environmental force compliance and human perception,” Automatica,
vol. 106, pp. 358–373, 2019.
88. A. Alessio and A. Bemporad, “A survey on explicit model predictive control,” Lecture
Notes in Control and Information Sciences, vol. 384, pp. 345–369, 2009.
89. R. Winqvist, A. Venkitaraman, and B. Wahlberg, “On Training and Evaluation of
Neural Network Approaches for Model Predictive Control,” 2020.
90. S. Diamond and S. Boyd, “Cvxpy: A python-embedded modeling language for convex
optimization,” The Journal of Machine Learning Research, vol. 17, no. 1, pp. 2909–
2913, 2016.
91. P. Varshney, G. Nagar, and I. Saha, “DeepControl: Energy-Efficient Control of a
Quadrotor using a Deep Neural Network,” IEEE International Conference on In-
telligent Robots and Systems, pp. 43–50, 2019.
92. Y. Pan and J. Wang, “Nonlinear model predictive control using a recurrent neural
network,” Proceedings of the International Joint Conference on Neural Networks,
no. July, pp. 2296–2301, 2008.
93. Y. Cao and R. B. Gopaluni, “Deep neural network approximation of nonlinear model
predictive control,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 11319–11324, 2020.
94. J. W. Roberts, I. R. Manchester, and R. Tedrake, “Feedback controller parameteri-
zations for Reinforcement Learning,” IEEE SSCI 2011: Symposium Series on Com-
putational Intelligence - ADPRL 2011: 2011 IEEE Symposium on Adaptive Dynamic
Programming and Reinforcement Learning, pp. 310–317, 2011.
95. F. L. Lewis and D. Vrabie, “Adaptive dynamic programming for feedback control,”
Proceedings of 2009 7th Asian Control Conference, ASCC 2009, pp. 1402–1409, 2009.
96. J. Kober, J. A. Bagnell, and J. Peters, “Kober IJRR 2013,” pp. 1–73, 2013.
97. C. Sun, J. Orbik, C. Devin, B. Yang, A. Gupta, G. Berseth, and S. Levine, “Fully
Autonomous Real-World Reinforcement Learning for Mobile Manipulation,” pp. 1–16,
2021.
98. M. Li, Y. Wen, X. Gao, J. Si, and H. Huang, “Toward Expedited Impedance Tuning
of a Robotic Prosthesis for Personalized Gait Assistance by Reinforcement Learning
Control,” IEEE Transactions on Robotics, pp. 1–13, 2021.
99. S. Song, L. Kidzin´ski, X. B. Peng, C. Ong, J. Hicks, S. Levine, C. G. Atkeson, and
S. L. Delp, “Deep reinforcement learning for modeling human locomotion control in
neuromechanical simulation,” Journal of NeuroEngineering and Rehabilitation, vol. 18,
no. 1, pp. 1–17, 2021.
100. S. Lee, M. Park, K. Lee, and J. Lee, “Scalable muscle-actuated human simulation and
control,” ACM Transactions on Graphics, vol. 38, no. 4, 2019.
Multibody Dynamics and Control using Machine Learning 43
101. J. Weng, E. Hashemi, and A. Arami, “Natural Walking with Musculoskeletal Models
Using Deep Reinforcement Learning,” IEEE Robotics and Automation Letters, vol. 6,
no. 2, pp. 4156–4162, 2021.
102. Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learning,” in Pro-
ceedings of the 26th annual international conference on machine learning, pp. 41–48,
2009.
103. Y. Lin, J. McPhee, and N. L. Azad, “Comparison of Deep Reinforcement Learning
and Model Predictive Control for Adaptive Cruise Control,” IEEE Transactions on
Intelligent Vehicles, vol. 6, no. 2, pp. 221–231, 2021.
104. L. Bus¸oniu, T. de Bruin, D. Tolic´, J. Kober, and I. Palunko, “Reinforcement learning for
control: Performance, stability, and deep approximators,” Annual Reviews in Control,
vol. 46, pp. 8–28, 2018.
105. L. Hewing, K. P. Wabersich, M. Menner, and M. N. Zeilinger, “Learning-Based Model
Predictive Control: Toward Safe Learning in Control,” Annual Review of Control,
Robotics, and Autonomous Systems, vol. 3, no. 1, pp. 269–296, 2020.
106. A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne, “Imitation learning: A survey of
learning methods,” ACM Computing Surveys, vol. 50, no. 2, pp. 1–35, 2017.
107. Y. Wu, F. Zhao, T. Tao, and A. Ajoudani, “A Framework for Autonomous Impedance
Regulation of Robots Based on Imitation Learning and Optimal Control,” IEEE
Robotics and Automation Letters, vol. 6, no. 1, pp. 127–134, 2020.
108. Y. Huang, L. Rozo, J. Silverio, and D. G. Caldwell, “Non-parametric imitation learning
of robot motor skills,” Proceedings - IEEE International Conference on Robotics and
Automation, vol. 2019-May, pp. 5266–5272, 2019.
109. C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine, “One-Shot Visual Imitation
Learning via Meta-Learning,” no. CoRL, pp. 1–12, 2017.
110. P. M. Kebria, A. Khosravi, S. M. Salaken, and S. Nahavandi, “Deep imitation learning
for autonomous vehicles based on convolutional neural networks,” IEEE/CAA Journal
of Automatica Sinica, vol. 7, no. 1, pp. 82–95, 2020.
111. N. Ab Azar, A. Shahmansoorian, and M. Davoudi, “From inverse optimal control
to inverse reinforcement learning: A historical review,” Annual Reviews in Control,
vol. 50, pp. 119–138, 2020.
112. C. You, J. Lu, D. Filev, and P. Tsiotras, “Advanced planning for autonomous vehicles
using reinforcement learning and deep inverse reinforcement learning,” Robotics and
Autonomous Systems, vol. 114, pp. 1–18, 2019.
113. Z. Wu, L. Sun, W. Zhan, C. Yang, and M. Tomizuka, “Efficient Sampling-Based Maxi-
mum Entropy Inverse Reinforcement Learning with Application to Autonomous Driv-
ing,” IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 5355–5362, 2020.
114. S. Sharifzadeh, I. Chiotellis, R. Triebel, and D. Cremers, “Learning to Drive using
Inverse Reinforcement Learning and Deep Q-Networks,” no. Nips, pp. 1–7, 2016.
115. B. Woodworth, F. Ferrari, T. E. Zosa, and L. D. Riek, “Preference Learning in Assistive
Robotics: Observational Repeated Inverse Reinforcement Learning,” Proceedings of
Machine Learning Research, vol. 85, pp. 1–19, 2018.
116. Z. Bing, C. Lemke, L. Cheng, K. Huang, and A. Knoll, “Energy-efficient and damage-
recovery slithering gait design for a snake-like robot based on reinforcement learning
and inverse reinforcement learning,” Neural Networks, vol. 129, pp. 323–333, 2020.
117. E. Okafor, D. Udekwe, Y. Ibrahim, M. Bashir Mu’azu, and E. G. Okafor, “Heuristic and
deep reinforcement learning-based PID control of trajectory tracking in a ball-and-plate
system,” Journal of Information and Telecommunication, vol. 5, no. 2, pp. 179–196,
2021.
118. H. H. Bilgic, M. A. Sen, and M. Kalyoncu, “Tuning of LQR controller for an exper-
imental inverted pendulum system based on the bees algorithm,” Journal of Vibro-
engineering, vol. 18, no. 6, pp. 3684–3694, 2016.
119. A. Marco, P. Hennig, J. Bohg, S. Schaal, and S. Trimpe, “Automatic LQR tuning
based on Gaussian process global optimization,” Proceedings - IEEE International
Conference on Robotics and Automation, vol. 2016-June, pp. 270–277, 2016.
120. S. U. Hussein, B. M. Muhammed, T. H. Sikiru, I. J. Umoh, and A. T. Salawudeen,
“Trajectory tracking control of ball on plate system using weighted Artificial Fish
44 Arash Hashemi et al.
Swarm Algorithm based PID,” 2017 IEEE 3rd International Conference on Electro-
Technology for National Development, NIGERCON 2017, vol. 2018-Janua, no. June
2018, pp. 554–561, 2018.
121. A. Hashemi and J. McPhee, “Assistive sliding mode control of a rehabilitation robot
with automatic weight adjustment,” in 2021 43rd Annual International Conference of
the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 4891–4896, 2021.
122. W. J. Shipman and L. C. Coetzee, “Reinforcement Learning and Deep Neural Networks
for PI Controller Tuning,” IFAC-PapersOnLine, vol. 52, no. 14, pp. 111–116, 2019.
123. I. Carlucho, M. De Paula, and G. G. Acosta, “An adaptive deep reinforcement learn-
ing approach for MIMO PID control of mobile robots,” ISA Transactions, vol. 102,
pp. 280–294, 2020.
124. A. El Hakim, H. Hindersah, and E. Rijanto, “Application of reinforcement learning on
self-tuning PID controller for soccer robot multi-agent system,” Proceedings of the 2013
Joint International Conference on Rural Information and Communication Technology
and Electric-Vehicle Technology, rICT and ICEV-T 2013, 2013.
125. N. K. Ure, M. U. Yavas, A. Alizadeh, and C. Kurtulus, “Enhancing situational aware-
ness and performance of adaptive cruise control through model predictive control
and deep reinforcement learning,” IEEE Intelligent Vehicles Symposium, Proceedings,
vol. 2019-June, no. IV, pp. 626–631, 2019.
126. P. T. Jardine, S. N. Givigi, and S. Yousefi, “Experimental results for autonomous
model-predictive trajectory planning tuned with machine learning,” 11th Annual IEEE
International Systems Conference, SysCon 2017 - Proceedings, 2017.
127. P. T. Jardine, M. Kogan, S. N. Givigi, and S. Yousefi, “Adaptive predictive control of
a differential drive robot tuned with reinforcement learning,” International Journal of
Adaptive Control and Signal Processing, vol. 33, no. 2, pp. 410–423, 2019.
128. M. Mehndiratta, E. Camci, and E. Kayacan, “Automated Tuning of Nonlinear Model
Predictive Controller by Reinforcement Learning,” IEEE International Conference on
Intelligent Robots and Systems, no. October, pp. 3016–3021, 2018.
129. C. Liu, G. Wen, Z. Zhao, and R. Sedaghati, “Neural-Network-Based Sliding-Mode
Control of an Uncertain Robot Using Dynamic Model Approximated Switching Gain,”
IEEE Transactions on Cybernetics, vol. 51, no. 5, pp. 2339–2346, 2021.
130. Y. Wen, J. Si, A. Brandt, X. Gao, and H. H. Huang, “Online Reinforcement Learning
Control for the Personalization of a Robotic Knee Prosthesis,” IEEE Transactions on
Cybernetics, vol. 50, no. 6, pp. 2346–2356, 2020.
131. W. Wu, K. R. Saul, and H. Huang, “Using reinforcement learning to estimate human
joint moments from electromyography or joint kinematics: An alternative solution to
musculoskeletal-based biomechanics,” Journal of Biomechanical Engineering, vol. 143,
no. 4, pp. 1–9, 2021.
132. X. Tu, M. Li, M. Liu, J. Si, He, and Huang, “A Data-Driven Reinforcement Learning
Solution Framework for Optimal and Adaptive Personalization of a Hip Exoskeleton,”
2020.
133. Q. Wu, B. Chen, and H. Wu, “Adaptive admittance control of an upper extremity
rehabilitation robot with neural-network-based disturbance observer,” IEEE Access,
vol. 7, pp. 123807–123819, 2019.
134. F. Abdollahi, H. A. Talebi, and R. V. Patel, “A stable neural network observer with
application to flexible-joint manipulators,” ICONIP 2002 - Proceedings of the 9th In-
ternational Conference on Neural Information Processing: Computational Intelligence
for the E-Age, vol. 4, no. 1, pp. 1910–1914, 2002.
135. W. He, Y. Sun, Z. Yan, C. Yang, Z. Li, and O. Kaynak, “Disturbance Observer-Based
Neural Network Control of Cooperative Multiple Manipulators with Input Saturation,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 31, no. 5, pp. 1735–
1746, 2020.
136. F. Luan, J. Na, Y. Huang, and G. Gao, “Adaptive neural network control for robotic
manipulators with guaranteed finite-time convergence,” Neurocomputing, vol. 337,
pp. 153–164, 2019.
137. V. T. Yen, W. Y. Nan, and P. Van Cuong, “Robust Adaptive Sliding Mode Neural Net-
works Control for Industrial Robot Manipulators,” International Journal of Control,
Automation and Systems, vol. 17, no. 3, pp. 783–792, 2019.
Multibody Dynamics and Control using Machine Learning 45
138. Q. Zhou, S. Zhao, H. Li, R. Lu, and C. Wu, “Robotic Manipulators With Dead Zone,”
IEEE Transactions on Neural Networks and Learning Systems, vol. PP, no. 12, pp. 1–
10, 2018.
139. Y. Ouyang, L. Dong, L. Xue, and C. Sun, “Adaptive control based on neural net-
works for an uncertain 2-DOF helicopter system with input deadzone and output
constraints,” IEEE/CAA Journal of Automatica Sinica, vol. 6, no. 3, pp. 807–815,
2019.
140. Y. Wu, R. Huang, X. Li, and S. Liu, “Adaptive neural network control of uncertain
robotic manipulators with external disturbance and time-varying output constraints,”
Neurocomputing, vol. 323, pp. 108–116, 2019.
141. Y. Pan, C.-A. Cheng, K. Saigol, K. Lee, X. Yan, E. Theodorou, and B. Boots, “Agile
Autonomous Driving using End-to-End Deep Imitation Learning,” 2018.
142. M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations,” Journal of Computational Physics, vol. 378, pp. 686–
707, 2019.
143. M. Lutter, C. Ritter, and J. Peters, “Deep Lagrangian networks: Using physics as model
prior for deep learning,” 7th International Conference on Learning Representations,
ICLR 2019, pp. 1–17, 2019.
144. S. Greydanus, M. Dzamba, and J. Yosinski, “Hamiltonian neural networks,” in
Advances in Neural Information Processing Systems (H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alche´-Buc, E. Fox, and R. Garnett, eds.), vol. 32, Curran Asso-
ciates, Inc., 2019.
145. M. Cranmer, S. Greydanus, S. Hoyer, P. Battaglia, D. Spergel, and S. Ho, “Lagrangian
Neural Networks,” July 2020. arXiv:2003.04630 [physics, stat].
146. A. Krishnapriyan, A. Gholami, S. Zhe, R. Kirby, and M. W. Mahoney, “Characterizing
possible failure modes in physics-informed neural networks,” in Advances in Neural
Information Processing Systems, vol. 34, pp. 26548–26560, Curran Associates, Inc.,
2021.
147. C. Lea, M. D. Flynn, R. Vidal, A. Reiter, and G. D. Hager, “Temporal convolutional
networks for action segmentation and detection,” in proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp. 156–165, 2017.
148. C. Andersson, A. H. Ribeiro, K. Tiels, N. Wahlstrom, and T. B. Schon, “Deep Convo-
lutional Networks in System Identification,” Proceedings of the IEEE Conference on
Decision and Control, vol. 2019-Decem, pp. 3670–3676, 2019.
149. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin, “Attention is all you need,” Advances in neural information processing
systems, vol. 30, 2017.
150. T. Lin, Y. Wang, X. Liu, and X. Qiu, “A survey of transformers,” arXiv preprint
arXiv:2106.04554, 2021.
151. A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec, and P. Battaglia,
“Learning to simulate complex physics with graph networks,” in International Con-
ference on Machine Learning, pp. 8459–8468, PMLR, 2020.

