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Predicting the time at which a company is bound to receive money from their outstanding
sales invoices is a part of cash flow forecasting, which helps companies make better finan-
cial decisions. This study explores the feasibility of utilizing statistical learning methods
to predict late payments of sales invoices in advance, using a data set obtained from a
Finnish Enterprise Resource Planning (ERP) software product. Based on past studies on
the topic, several ensemble learning classifier models were evaluated for the task. In ad-
dition, a naive benchmark classifier was proposed, which based its prediction entirely on
the classes of previous invoices from the same customer, prioritizing their most recent
invoices with exponential discounting. The evaluated models narrowly outperformed this
benchmark on some experiments, while in others the benchmark performed slightly better.
The performance difference across the evaluated models was found to be relatively small
in any given task. Prior information from previous invoices paid by the same customer
was found to be the most significant contributor to the predictions.
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Avointen myyntisaatavien maksuajan ennustaminen on osa kassavirtaennustamista, joka
auttaa yrityksiä tekemään parempia taloudellisia päätöksiä. Tämä tutkimus selvittää,
kuinka hyvin suomalaisesta ERP-järjestelmästä kerättyjen avointen myyntilaskujen mak-
supäivää voitaisiin ennustaa statistisen oppimisen menetelmiä hyödyntäen. Aiempiin
tutkimuksiin perustuen arvioitavaksi valittiin useita kokoonpano-oppimiseen (ensemble

learning) perustuvia luokittelumalleja. Lisäksi kehitettiin naiivi vertailumenetelmä, jonka
ennuste perustui ainoastaan saman asiakkaan aiempien laskujen luokituksiin, painottaen
lähiaikoina maksettuja laskuja eksponentiaalisella diskonttauksella. Arvioitavat mallit
suoriutuivat osassa kokeista hieman vertailumenetelmää paremmin, mutta toisissa heikom-
min. Keskinäiset erot mallien suoriutumisessa olivat kaiken kaikkiaan melko pieniä.
Arvioitujen mallien luokittelutulokseen vaikutti eniten asiakkaan laskutushistoriasta koottu
tieto asiakkaan aiemmasta maksukäyttäytymisestä.
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1 INTRODUCTION

1.1 Background

One of the major challenges in managing the finances of a growing business comes from
maintaining sufficient liquidity while investing into growth [1]. Liquidity refers to a com-
pany’s ability to pay its short-term operating expenses, such as rent, salaries, debts, in-
surances and costs of goods sold. To meet these obligations, the business must always
maintain a sufficient supply of cash and/or assets that are easily convertible to cash as
needed, referred to as liquid assets. However, excess liquid assets typically provide little
financial value to the company compared to fixed assets: longer-term investments that
cannot be as easily converted back to cash, such as property, buildings, equipment and
machinery. Therefore, it would be ideal to maximize the amount of money invested,
while always keeping just enough liquid assets on hand to be able to meet all expected
and unexpected financial demands.

Cash flow forecasting is a process used to predict the incoming and outgoing cash flows of
a business over a period of time [2]. It can help a company make better financial decisions:
if a potential cash shortage is detected ahead of time, the company can make adjustments
such as borrowing additional money or selling off assets. Conversely, during times of
expected cash surplus, more money can be allocated into investments or paying off debts.
Being able to accurately predict future cash flow could thus bring a large competitive
advantage for a business, but the task is quite challenging due to a number of factors.
Overall cash flow is made up of many individual incoming and outgoing streams which
vary greatly across lines of businesses, making modeling all of them potentially very
complicated, and overall there is always an inherent degree of uncertainty in predicting
future events.

Accounts receivable (AR) refers to the money owed to a business from goods or services
that have been sold and invoiced, but not yet paid by the customer. It is a major stream of
incoming cash flow for many businesses. Forecasting cash flow from accounts receivable
requires modeling these customers’ payment behavior on a large scale to approximate the
date at which each outstanding invoice will be paid. While it is clear that this behavior
can be affected by variable factors that are impossible to model accurately, it is reasonable
to assume that some patterns are present. For instance, in business-to-business trade the
buyer generally prefers to delay payments as long as possible to maximize their own cash
reserves. This dynamic is evident from the popularity of various supply chain financing
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arrangements: sellers may provide motivation for early payments by offering discounts,
offer credit to the buyer to facilitate longer payment terms, or utilize third party financing
to arrange said credit (reverse factoring) [3, 4]. Without such arrangements in place, it
would be reasonable to assume that invoices are not often paid before the due date. Some
customers may also delay payments past the due date of the invoice due to cash shortages
or other reasons, and in some cases the late payments could potentially form a predictable
pattern.

A collection of recent studies [5–11] have attempted to model these patterns using sta-
tistical learning techniques, which have been an increasingly popular approach in finding
patterns in complicated data. This prior work has mainly focused on classification of sales
invoices to predict whether their payment will be on time, or delayed from the expected
due date. In some cases, multiple-class classification has been used to further categorize
the delayed invoices into multiple categories depending on the amount of lateness (1-14
days late, 15-30 days late, etc.). While such date ranges inherently leave a degree of un-
certainty within the model’s predictions, it is still a promising start to a very complicated
problem.

The work presented in this thesis aims to to improve cash flow forecasting within a Finnish
enterprise resource planning (ERP) system targeted towards small-to-medium enterprises
(SME). As the problem space is quite broad and complex for the purposes of a master’s
thesis, the scope of the project was narrowed to specifically improving accounts receiv-
able (AR) forecasting by making predictions on the expected payment dates of outstand-
ing sales invoices, building upon the mentioned studies. In addition to improving cash
flow forecasting, these predictions could also help companies manage the financial risks
associated with individual large invoices and take more proactive measures with invoices
that are expected to be paid late.

As the ERP system in question is operating primarily in the Finnish SME market, a large
portion of its users’ customers are also Finnish businesses. Some extra information about
these customers can be acquired through an open data service provided by the Finnish
Patent and Registration Office. The main areas of interest within the available data include
each company’s main line of business, as well as information about ongoing and past
bankruptcies, liquidations, or restructuring proceedings. These data could potentially be
used to acquire some additional insight about the customer, especially if information about
their prior payment behavior is not yet available.
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1.2 Objectives and delimitations

The main objectives of the thesis can be summarized with the following research ques-
tions:

• To what degree is it possible to predict delayed payments of sales invoices ahead of
time, utilizing data in the ERP system?

• Which factors are the most relevant predictors for payment delays?

• What is the relevance of openly available business data for improving the prediction
accuracy?

The aim of the work is to find a suitable method for prediction of payment delays within
the available data. If such a method is found, it could be used to provide warnings about
specific high-risk invoices in advance and/or improve cash flow estimation on a broader
scale.

As the work is done in collaboration with an accounting software business, it would be
preferable to arrive at a solution that can provide immediate value to the users of the
software. As such, it is likely that this study will focus on exploring whether results
obtained in prior studies done on the subject can be reproduced with the available data.
More novel approaches can then be experimented with in later studies if the results from
this one seem promising.

1.3 Structure of the thesis

Chapter 2 presents a short summary of machine learning fundamentals and some classi-
fication techniques relevant in the later chapters. Chapter 3 explores prior work done on
the prediction of sales invoice payment delays. The methods chosen for the study are then
introduced in further detail in Chapter 4. A description of available data and experiments
performed on the data is shown in Chapter 5. The results of the experiments are discussed
in Chapter 6, and conclusions made from the experiments are presented in Chapter 7.
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2 STATISTICAL LEARNING

2.1 Supervised learning

In a typical statistical learning problem, a mathematical model is used to predict one
or more output variables from a set of input variables (also referred to as features). As
an example, one might want to predict the sale price of a house on the basis of some
known information, such as its size, number of rooms and year of construction. The
parameters of the chosen statistical model are optimized against a training set consisting
of several example data points, with the goal of arriving at a model that can make accurate
predictions not only on this training set, but also on new unseen data points. The ability
to generalize predictions to unseen data is a crucial trait for the model to be useful in a
real-world setting. [12]

Supervised learning is one of the main paradigms of statistical learning. In supervised
learning, each data sample in the training set also contains the output variable to be pre-
dicted, referred to as a target variable. The training process aims to minimize the error
between these known labels and the model’s predictions across the training set. Conven-
tionally, a portion of training data is set aside as a test set, which is not used for training the
model. The test set is used after the training process to validate the model’s performance,
i.e. calculate the error between true labels and ones predicted by the model using data that
was not available to it during the training process. For a more robust measure of model
performance, this process of training and validating the model can be repeated multiple
times in a technique called cross-validation, where a different portion of the data is se-
lected as the validation set for each iteration and the average performance of all trained
models is chosen as the final result. [12]

If the variable to be predicted is categorical, meaning all possible outcomes can be de-
fined as a finite set of categories or classes (for example, an email could be categorized
as either spam or not spam), the prediction task is referred to as classification. A trained
classification model splits the input space into distinct regions that each represent one
class based on the class distribution present in the training data, using one or more deci-

sion boundaries (see Figure 1). Predictions on new data samples can then be obtained by
checking which region the sample falls into. Variables can also be continuous (i.e. the
aforementioned house sale price), in which case predicting an outcome is referred to as
regression. [12]
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Figure 1. Example of a two-class classification problem. The colors of the dots represent the
true class distribution within the training data. A logistic regression model is used to fit a linear
decision boundary (drawn in red) to the data, splitting the feature space into two regions which
can be used to classify future data samples.

Many statistical learning models have been proposed over the years, and no model has
been found to be clearly superior to all others. It is common practice to test many of
these models on any given set of data to find which ones are most suited for the task.
The following chapters focus on presenting the theory behind decision trees, which form
the basis for methods that have seemingly performed well in the task of invoice payment
delay classification, as will be shown in Chapter 3. The source material covers many more
statistical learning approaches in more detail.

2.2 Decision trees

Decision trees are simple statistical prediction models that can be fit to a set of data with
a supervised learning approach. The model begins from a single decision rule, in the
simplest form presented as a yes/no question which can be used to split the full set of
training data into two subsets. Usually the decision rule is a numerical threshold on one
of the input variables, creating two subsets: if the value of the chosen variable is above the
threshold, the sample belongs to the first subset, and if not, it belongs to the second one.
The decision rule is selected with the goal of increasing purity within each subset. A pure
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subset contains homogeneous values of the variable to be predicted (i.e. only examples of
a single class). [13, 14]

Impure subsets can be split repeatedly with additional decision rules, until they either
become pure or some other stopping condition is reached. The value contained in each of
these outcome sets is chosen as a prediction outcome for each new data point that matches
the decision rules leading to it. The resulting set of rules and outcomes can be visualized
as a tree graph, which is followed from the topmost decision node downwards until an
outcome node is reached (see Figure 2). [13]

Figure 2. A basic example of a classification decision tree. Two decision rules are used to assign
one of three class labels to the data.

The threshold value chosen for each decision split is selected to maximize Information
Gain (IG), which is a metric measuring how well the split separates classes from one
another [13]. It is defined as

IG(S1, S2) = I(S)− n1

n
I(S1)−

n2

n
I(S2) (1)

where S is the original set, S1 and S2 are subsets created by the split, n, n1 and n2 are
the number of samples contained in each respective set, and I(x) is an impurity function,
measuring class mixing within a set. A commonly used impurity function for classifica-
tion trees is the Gini index, defined as

Ig(S) = Σpi(1− pi) (2)

where pi is the fraction of samples within a set S that belong in class i. In summary, the
information gain is highest when the combined proportional impurity of the subsets is the
lowest in comparison to the original set. The impurity of a set decreases as the fraction of
samples belonging to a single class increases.
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Decision splits can be created repeatedly until the tree can accurately classify all examples
in the training set, but typically this leads to an overfit model that performs poorly on
unseen data [12, 13]. Trying to account for every outlier found in the initial training set
tends to create overly specific decision boundaries that fail to generalize well. Two main
regularization techniques exist to counteract this: the tree can either be grown to full size
first, after which some leaves are pruned, or the growth can be stopped early.

Decision trees are popular due to their ease of interpretability, ability to handle a mix-
ture of categorical and continuous input variables, robustness to outliers and low com-
putational complexity, among other factors. However, their prediction accuracy is often
relatively poor in comparison to other approaches, and they are known to be unstable,
meaning that small changes in input data can result in large changes in the tree struc-
ture. [14]

2.3 Ensemble models

An ensemble model arrives at a prediction by combining the results of multiple individual
predictive models [12,15]. Typically the base models used within an ensemble are simple
models such as decision trees, due to their low computational complexity. Ensemble-
based learners have gained popularity in recent years and are generally capable of achiev-
ing a higher predictive accuracy than would be possible with any single model contained
within the ensemble [15, 16]. They have also been noted to be a popular solution for
handling data with unbalanced classes [17].

Figure 3. A typical ensemble model architecture.
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The increased predictive power of an ensemble model results from disagreement among
the base learners, as clearly there is no benefit to be gained from combining predictions of
several models that produce identical results [15]. This disagreement can be achieved by
introducing variation into the training process. Bagging (short for bootstrap aggregation)
and boosting are two popular methods for creating such variation by altering the training
data shown to each learner.

In bagging, each learner is trained on a randomized subset of the full data where samples
can be selected multiple times (sampling with replacement). This aims to create individual
learners with a specialized understanding of different portions of the training data. In
boosting, the learners are trained sequentially such that erroneously predicted samples
from the previous learners are weighted to be selected more often for the next training
sets. In essence, this supplements the ensemble with models specialized in understanding
the specific portions of the data that it does not yet understand well. [12, 15]
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3 PREDICTING INVOICE PAYMENT DELAYS

3.1 Delayed payment prediction with classification techniques

Research into prediction of late invoice payments does not seem particularly active, but a
handful of prior studies on the topic have been conducted in recent years. In prior work,
statistical classification has been the most common approach of tackling the problem. In
most studies the problem was treated strictly as a binary classification task, where only
two classes were used: an invoice was either paid on time, or paid late. Some studies also
utilized multiple-class classification, where the late invoices were further divided into
several smaller categories (for example: 1-30 days, 31-60 days, and 61-90 days, and 90+
days late). In studies where the results of both approaches were reported [6,11], the multi-
class approach resulted in a noticeable decrease in overall prediction accuracy. It has not
been discussed whether the increased granularity of predictions warrants this trade-off,
but supposedly this depends on one’s business requirements for the task. Typically the
invoices with the longest expected delays were viewed as the most critical ones to classify
accurately from a business standpoint [5].

While each of these studies was conducted on a different set of data, a common finding
across many has been that the data is heavily unbalanced. Typically, most invoices across
each data set were paid on time, and in multiple-class classification cases the class with the
highest amount of delay was unilaterally a small minority. This presents a major challenge
for classification, as classifiers tend to ignore the minority class when optimizing for
overall accuracy. In some studies classification performance was evaluated with metrics
other than overall accuracy, such as accuracy for the minority class only [5], F1-score
[8–11] and/or area under the Receiver Operating Characteristic curve (AUC) [9, 10].

Table 1 summarizes the methodology across previous studies on the topic where clas-
sification techniques were used, noting whether binary or multi-class classification was
used, the best performing classifier according to the performance metric chosen in the
study, and techniques chosen to counteract the class imbalance. While each study has
been conducted on a different set of data, making it difficult to compare approaches be-
tween studies or draw conclusions about their effectiveness, some clear trends can be
seen. The following subsections in this chapter further cover a brief introduction into the
most commonly appearing techniques across the studies found.
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Table 1. Methodology used in previous studies on invoice payment delay prediction utilizing
statistical classification.

Study Year Problem type Selected classifier Class imbalance mitigation

[5] 2008 5-class C4.5 Cost-sensitive learning

[6] 2013 Binary, 4-class Random forest Cost-sensitive learning

[7] 2014 Binary Random forest Cost-sensitive learning

[8] 2018 5-class LightGBM Cost-sensitive learning

[9] 2019 Binary Random forest Oversampling

[10] 2019 Binary Ensemble (Random
forest + XGBoost)

None

[11] 2021 Binary, 3-class,
5-class

LightGBM Synthetic Minority Oversam-
pling Technique (SMOTE),
undersampling

3.1.1 Classifier performance

According to Table 1, decision tree-based algorithms have unilaterally performed the best
on the performance metrics measured in each study. C4.5 is an algorithm that is used to
construct a single decision tree, while random forests and the various gradient boosting
methods (XGBoost, LightGBM) used in the later studies are ensemble classifiers based
on a combined prediction obtained from a large number decision trees.

From a practical standpoint, a major difference between utilizing random forests and gra-
dient boosting methods is the importance of hyperparameter tuning. A comparative anal-
ysis on recent gradient boosting algorithms concluded that while random forests have
relatively few parameters to tune and perform notably well with the default settings, the
boosting approaches require extensive tuning to create accurate models [18]. Across 28
datasets, boosting algorithms were found to perform slightly better than random forests
on average with hyperparameter tuning, but slightly worse when default parameters were
used. The authors noted that hyperparameter tuning utilizing a grid search took up over
99.9% of computational effort for training, and that the time required to find a reasonable
set of hyperparameters must be taken into consideration when measuring the training time
of a model.
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3.1.2 Accounting for class imbalance

Across the studies presented in Table 1, most authors recognized the class imbalance
present in their respective datasets and the challenges it presented for classifying the mi-
nority classes accurately. In general, some basic strategies well-known to improve learner
performance in class-imbalanced tasks include:

• Random undersampling: samples from majority classes are randomly excluded
until there is an equal number of samples in each class.

• Random oversampling: samples from minority classes are randomly duplicated
until there is an equal amount of each class.

• Synthetic Minority Oversampling Technique (SMOTE): synthetic data points
with minor variations are generated from minority classes until there is an equal
amount of each class.

• Cost-sensitive learning: the cost of misclassifying minority classes is increased in
the learning algorithm, often defined as a cost matrix.

The most often utilized technique for handling class imbalance across these studies was
cost-sensitive learning. In the earliest of the studies [5], the cost of misclassification was
increased for only the class of invoices paid more than 90 days late, which were noted
to be the most critical from a business perspective. Three different cost matrices with
increasingly large costs of misclassification for the 90+ class were tested, using weights
that were seemingly hand-selected by the authors, and it was found that higher costs
increased classification accuracy for the targeted class at the expense of overall accuracy.
The authors noted that desired performance objectives for the classifier can be used to
balance the right trade-off between these two factors.

Another study [6] experimented with both cost-sensitive learning and random undersam-
pling (implemented in the Balanced Random Forests classifier). Both approaches were
found to improve classification accuracy in the minority class, called "long delay" in this
study, at the cost of overall accuracy. As shown in Table 2, undersampling with Balanced
Random Forests resulted in a more drastic increase in the accuracy of the "long delay"
class, but also a large decrease in overall accuracy, while cost-sensitive learning achieved
a more modest, yet still sizeable improvement in the minority class with very little impact
in overall accuracy.
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Table 2. Comparison of the effects of undersampling and cost-sensitive learning on classification
accuracy in the same study [6].

Baseline Undersampling Cost-sensitive learning

Overall 81.6% 61.0% 81.2%

"Long delay" class 51.9% 83.5% 61.9%

To explore the difference between resampling methods and cost-sensitive learning on a
broader scale, a comparative analysis concluded that both approaches improved perfor-
mance over the baseline across classification tasks performed on 66 datasets using AUC
as the performance metric [19]. However, neither approach was found to perform clearly
better than the other. In a literature review analyzing classification techniques with class-
imbalanced data across 527 articles, cost-sensitive learning was found to be far less pop-
ular compared to resampling [17]. The authors noted that the implementation of cost-
sensitive learning requires expert knowledge to define the weights of the cost matrix and
sometimes modification of the learning algorithm, which could be a cause for its relative
unpopularity.

3.1.3 Role of feature engineering

Across multiple studies, it has been found that features based on customer-level payment
history provide a noticeable increase in classification accuracy over using features inferred
from a single invoice only. Table 3 presents a majority of the features used across the
studies. Commonly used customer level features include the mean payment delay of
previous invoices in days, the number of past late invoices, the monetary sum of past late
invoices, and the ratio of late invoices versus paid-on-time invoices. In studies where the
influence of individual features has been considered, these features have generally showed
up among the most important features. [6, 7, 11].

Typical invoice-level features included the monetary sum of the invoice and the payment
term, i.e. the number of days from the date of the invoice to the due date. The payment
term was found to be one of the most valuable features in one study [11]. Multiple studies
also utilized a binary feature indicating whether the due date of an invoice is in the last
three days of the month, originally proposed in [6], where the author noted that almost
30% of late invoices in their dataset had their due date within this three-day window. They
theorized that businesses typically need to pay their salaries during this time, which could
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Table 3. Summary of features used in previous studies on invoice payment delay prediction.
Studies are presented in chronological order.

Feature [5] [6] [7] [9] [10] [11]

1. Invoiced amount x x x x x

2. Average invoiced amount over all
prior invoices

x x x

3. Payment term x x x

4. Number of prior invoices x x x x x x

5. Number of prior invoices paid late x x x x x x

6. Ratio of Feature 5 over Feature 4 x x x x x

7. Total invoice amount of prior in-
voices

x x x x x x

8. Total invoice amount of prior in-
voices paid late

x x x x x x

9. Ratio of Feature 8 over Feature 7 x x x x x

10. Average delay of prior late invoices x x x x

11. Average delay of all prior invoices x x x

12. Number of currently outstanding
invoices

x x x x

13. Number of currently outstanding
invoices that are late

x x x

14. Ratio of Feature 13 over Feature 12 x

15. Total invoice amount of currently
outstanding invoices

x x x x

16. Total invoice amount of currently
outstanding invoices that are late

x x x

17. Ratio of Feature 16 over Feature 15 x

18. Due date is within the last three
days of the month

x x x

19. Due date is within the latter half of
the month

x x

20. Average payment term of prior in-
voices

x x x

21. Sales representative of the invoice x
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potentially lead to short-term liquidity challenges. However, in later studies where this
feature was used, it ranked quite low on feature importance scores [7, 11].

In addition to using customer and invoice level features, one study [9] embedded invoicing
history between all businesses in their data set into a graph utilizing the node2vec [20]
framework. They proposed that especially in cases where no invoicing history has been
established with the customer directly, some indication of their payment behavior could be
inferred from their invoicing history with other businesses in the graph. Utilizing features
from the payment graph at the node level (i.e. both parties’ payment history towards all
of their customers, not just each other) resulted in some increases in accuracy over the
baseline classifier that only utilized invoice-level features and history data between the
parties.

3.2 Other approaches for invoice payment delay prediction and re-
lated topics

One related study [21] approached late invoice classification from the accounts payable
perspective, trying to detect invoices that a large accounts payable department would most
likely have trouble paying on time. Similarly to the accounts receivable case, many of the
most important predictors for a delayed invoice were related to whether prior invoices
from the vendor had been delayed.

Instead of classifying invoices into date range categories based on the degree of lateness,
one study instead used a survival analysis model to calculate the cumulative probability
of an invoice being paid by a given date [22]. The author concluded that the machine
learning based Random Survival Forest model outperformed the more traditional Cox
Proportional Hazards model for the task, but both models were able to rank payment
times to an acceptable degree.

Some parallels from late invoice detection can also be drawn to the much better researched
problem of bankruptcy prediction or credit scoring. In credit scoring, various statistical
models are used by financial institutions to decide upon the creditworthiness of a bor-
rower. A large literature survey [23] reviewed various machine learning approaches that
have been researched as a possible replacement to the logistic regression model, which
is traditionally used in the industry due to its transparency (a regulatory requirement for
decisions made by these institutions) and low complexity. The study concluded that en-
semble classifiers and convolutional neural networks generally outperformed other mod-
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els across the studies reviewed, and suggested Local Interpretable Model-agnostic Ex-
planations (LIME) [24] as a method for providing the required transparency into their
decisions.

3.3 Summary

Based on the previous studies on invoice payment delay prediction, a classification-based
approach was selected as the most widely researched, and therefore most promising one to
focus on. Both binary and multiple-class approaches seemed worth experimenting with.
Random forests and gradient boosting algorithms were selected as the main prediction
algorithms to focus on, as they have been commonly found to outperform other methods
at the task.
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4 PROPOSED METHODS

4.1 Naive benchmark classifiers

To evaluate the necessity of more complex statistical learning approaches, two simple
benchmark classifiers were developed to set the baseline. These classifiers were devel-
oped based on the observation found within literature that a customer’s past payment
behavior serves as a strong predictor for their current situation: i.e. if a customer has
recently shown signs of financial difficulty, the payment of their next invoice is also more
likely to be delayed.

The first naive classifier was designed to be as simple as possible, serving as the baseline.
It selects the class of the most recent invoice sent to the customer as its prediction. If no
invoices have been sent to the customer, the classifier predicts that the invoice is paid on
time.

The second classifier extends the idea slightly by considering the class distribution of
multiple previous invoices within the customer’s invoicing history, weighted such that the
contribution of most recent invoices is heavily prioritized over ones further in the past. To
achieve this, each previous invoice’s class label is assigned a weight calculated with the
exponential decay formula

w(t) = e−λt, (3)

where λ is a positive constant parameter that controls the rate of decay, and t is a vari-
able describing the passage of time. In this case, t was selected to be the difference in
days from the invoice to be classified. The optimal value for λ can be determined with
a hyperparameter search. The classifier sums these weights per class for each invoice
across the customer’s invoicing history and selects the class with highest total weight as
its prediction. If no history is available, it is again assumed that the invoice is paid on
time.

4.2 Random forests

A random forest [25] is an ensemble learning model consisting of many small decision
trees. The trees are trained on randomized subsets of the full training data, each sampled
from the full data through bagging (see Section 2.3). Trees are good candidates for bag-
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ging as they can learn complex interaction structures in the data, but are noisy. Averaging
the results of many trees reduces the noisiness.

To further reduce correlation between the trees, the tree learning algorithm is also mod-
ified: at each decision split, only a randomly chosen subset of all input variables is used
for determining the best variable and threshold for the split. Because of this, the optimal
choice can be randomly left out of the consideration, resulting in more unique trees. The
full training algorithm is outlined in Algorithm 1. [12]

Algorithm 1 Random forest algorithm, adapted from [12].

Definitions: Let x denote a set of data, and y denote the corresponding labels.

Hyperparameters: Amount of trees in the ensemble B. Bootstrap sample size N .
Minimum leaf node size nmin. Amount of randomly chosen variables per decision split
m.

1: function GROW_TREE(node, x, y)
2: xr ← a subset of x containing only m randomly chosen input variables
3: rule← optimal variable and split-point in xr to maximize purity across y
4: x1, x2, y1, y2 ← split x, y according to rule
5: node1, node2 ← new binary tree nodes
6:
7: if |x1| >= nmin then
8: grow_tree(node1, x1, y1)
9: end if

10: if |x2| >= nmin then
11: grow_tree(node2, x2, y2)
12: end if
13:
14: assign rule as the value of node
15: assign node1, node2 as the children of node
16: return node
17: end function

18: function RANDOM_FOREST(x, y)
19: forest[B]← new array
20: for b← 1 : B do
21: nodeb ← new binary tree node
22: xb, yb ← a bootstrap sample of size N drawn from x, y
23: forest[b]← grow_tree(nodeb, xb, yb)
24: end for
25: return forest
26: end function

The method can be adapted for both regression and classification with minor changes. In
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the case of classification, the class prediction from a random forest ensemble is decided
by majority vote. Predictions are first obtained from each individual tree, and the most
often predicted class is selected as the result. [12]

The main adjustable parameters for the training process are the amount of variables con-
sidered for the decision split m, and the minimum node size nmin. For classification,
m =

√
p and nmin = 1 are recommended as a starting point [12]. The total number

of trees to be generated B can also be adjusted, with higher numbers of trees generally
smoothing out variance within the model and therefore increasing the accuracy of predic-
tions. However, this increase has been observed to stabilize such that extensive tuning of
the variable provides little practical benefit, so long as it is set to a high but computation-
ally feasible number [12, 26]. Similarly, the performance benefits from controlling tree
sizes with nmin have been found to be rather small [12].

4.3 Gradient boosting

Gradient boosting is a generalized form of several boosting algorithms. As discussed in
Section 2.3, boosting is a popular ensemble learning approach that builds many weak
learner models iteratively to create a stronger combined model. The learners are trained
and added to the model sequentially, such that each new learner corrects the errors of
the previous ones. LightGBM [27], XGBoost [28] and CatBoost [29] are three currently
popular state-of-the-art implementations of gradient boosting, each sharing the same basic
principles but introducing some further algorithmic developments.

In a gradient boosting algorithm, new models added to the ensemble of learners are not
trained to predict the output variable directly. Instead, after making an initial guess, a
loss function is used to calculate an error measure for each prediction, and a new learner
is fit against the negative gradient of this loss function. Thus, the new learner outputs
prediction values that are inversely correlated with the errors of the current ensemble.
These error values are sometimes referred to as pseudo-residuals, drawing parallels to
residuals used in linear regression. The predictions of the new learner are then combined
with the previous ones, which nudges the ensemble’s combined prediction towards the
direction where the loss is minimized. Repeating this process multiple times iteratively
minimizes the loss and has been shown to result in a model that is stronger than any
of its individual components. The generic gradient boosting algorithm is presented in
Algorithm 2. [12, 14]
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Algorithm 2 Gradient Boosting algorithm, adapted from [12, 14].

Definitions: Let x denote a set of data, y the corresponding labels, and N the number
of samples in {x, y}. Let F (x) denote an individual weak learner, f(x) the ensemble
of learners, and L(y, F (x)) a differentiable loss function.

Hyperparameters: Learning rate ν (0 < ν < 1). Number of learners in the ensemble
M .

1: function GRADIENT_BOOST(x, y)
2: f0(x) = argminF

∑N
i=1 L(yi, F (xi)). ▷ Initialize the ensemble.

3: for m← 1 : M do
4: for i← 1 : N do
5: rim = −

[
∂L(yi,f(xi))

∂f(xi)

]
f=fm−1

▷ Compute the "pseudo-residuals" r.

6: end for
7: Fm = argminF

∑N
i=1(rim − F (xi))

2 ▷ Fit a weak learner to predict r.
8: fm(x) = fm−1(x) + νFm(x) ▷ Update the ensemble with the predictions.
9: end for

10: return f(x) = fM(x)
11: end function

Various loss functions L(y, f(x)) have been proposed to be used with Algorithm 2, re-
sulting in a variety of more specific gradient boosting algorithms. The rationale behind
certain types of functions having desirable properties for certain tasks is discussed further
in [12, 14]. In classification tasks, multinomial deviance is typically used [12]:

L(y, p(x)) = −
K∑
k=1

I(y ∈ Ck) log pk(x)

= −
K∑
k=1

I(y ∈ Ck)fk(x) + log(
K∑
l=1

efl(x)).

(4)

Here C = {C1...Ck} represents the set of all prediction outcomes (classes), and I(y ∈ Ck)

is an indicator function returning 1 if the sample belongs in class Ck, 0 otherwise. In
multiple-class prediction tasks, K separate trees are built at each step of the prediction
algorithm, one for each class. Each tree Fkm is fit to the negative gradient of the deviance
[12]:

−rikm = −
[
∂L(yi, f1(xi), ..., fK(xi)

∂fk(xi)

]
f(xi)=fm−1(xi)

= I(yi ∈ Ck)− pk(xi),

(5)

where pk(xi) is a logistic function representing the probability of sample xi belonging in
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the kth class [12]:

pk(x) =
efk(x)∑K
i=1 e

fi(x)
. (6)

The tree producing the largest value of p(x) is selected as the classification result. [12]

Contrary to bagging, where increasing the amount of trees averages out the variance of in-
dividual learners within the ensemble (as they are all trained on an identical distribution),
in gradient boosting each iteration of added trees fits the ensemble more tightly to the
training data [12]. This can lead to an overfit model if too many iterations are made. The
model can be regularized by limiting either the amount of iterations M , or the maximum
amount of leaf nodes allowed for each tree. Additionally, the contributions of each tree
are scaled by a learning rate parameter ν, 0 < ν < 1. Small values of ν have been found
to lead to better results, with ν = 0.1 being commonly suggested [12, 30].

4.4 Tree-structured Parzen Estimation

Hyperparameters refer to various settings or variables of a statistical learning algorithm
that can be used to influence the training process and are set before training. These vari-
ables can have a large impact on the model’s tendency to over- or underfit to the training
data, and a balance between the two is necessary for good model performance. The pro-
cess of finding optimal hyperparameters for a given model and dataset involves repeatedly
training the model with a set of hyperparameters, evaluating the performance, changing
the parameters according to some strategy, and repeating the process. After the search is
stopped, the best-performing combination of parameters is chosen for the final model.

Tree-structured Parzen Estimation (TPE) [31] is a novel strategy for exploring the hyper-
parameter space that attempts to direct the search towards the most promising parts of the
space. In contrast to a traditional grid search, which explores each possible combination
of hyperparameters in order, TPE is not guaranteed to arrive to the global optimum within
the space, but in practice it allows searching across a wider range of parameters in a com-
putationally feasible manner and usually arriving at a "good enough" solution across that
range.
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4.5 Shapley additive explanations

One of the core benefits of individual decision trees is the ability to easily interpret the
model’s outputs: one can simply follow the decision splits from start to finish to see on
what basis the model arrived to a given prediction. However, this becomes infeasible for
a more complex ensemble model, so alternative approaches are needed. Shapley Additive
Explanations (SHAP) [32] is a recently developed method for this task, unifying ideas
from several previously proposed methods such as LIME [24] and classic Shapley value
explanation. The method presents SHAP values as an unified, model-agnostic metric for
explaining an individual feature’s contribution to a prediction outcome. SHAP values
provide both local and global interpretability to a model: they are calculated at the level
of individual predictions, giving insight into how each specific prediction was reached,
and across a large set of predictions the values can be summarized to visualize the overall
feature importance of the model.

Figure 4. A SHAP summary plot visualizing feature importance for a classifier trained on the
UCI adult income dataset. The goal of the task is to predict whether a person’s income exceeded
$50000. The plot shows that age and relationship status are the most significant predictors, with
older and married people more likely to exceed the threshold. [33]

The original article [32] states that computing the exact SHAP values is difficult, but
proposes both model-agnostic and model-specific approximations that can be used to es-
timate them with reasonable computational complexity. A later development into the
SHAP framework introduced TreeExplainer [34], which uses the inherent properties of
tree-based ensembles to compute exact SHAP values for these models in low-order poly-
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nomial time.

The SHAP package provides many visualizations that aid in explaining the predictions
of a model. The commonly used one is a summary plot, also called a beeswarm plot.
An example is presented in Figure 4. In the summary plot, the SHAP values for a group
of predictions are drawn on the x-axis per feature, indicating the change in the prediction
caused by each given feature: dots far to the left from the center line signify large changes
in the negative direction, and dots far to the right signify large changes to the positive
direction. The dots are color-coded based on the value of the feature. The y-axis ranks
the features in order of importance, with the ones causing the largest change on average
appearing highest.
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5 EXPERIMENTS

5.1 Data

The dataset used to perform the following experiments consisted of approximately 100 000
sales invoices from the ERP system. The dataset was constructed for this task with the
goal of obtaining a representative sample of the companies using the software, with suf-
ficient invoicing history data present for making predictions, while also remaining light
enough for quick experimentation. As customer-level invoicing history has been pre-
viously shown in literature to be a significant factor in making accurate predictions, the
invoices were selected from a random subset of companies using the accounting software,
such that the entire invoicing history of each chosen company over a three-year period was
selected. The maximum amount of invoices chosen per company was limited to 5 000, to
prevent the inclusion of one large company from skewing the dataset too much.

Despite the relatively long period of invoicing history chosen, repeat invoicing to the
same customers was still relatively scarce across the dataset. 27.5% of customers were
only invoiced once over the three-year period, and 53.1% were invoiced five times or less.
This could be because the ERP system is targeted mainly towards small and medium-sized
enterprises, and the companies were selected randomly besides the limitations discussed
earlier.

Figure 5. Amount of invoices sent to a given customer by a given company within the dataset.
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Figure 6. Class distribution across the data.

Alongside the invoice data, payment data linked to each invoice was used to determine the
dates of payment. According to the data, 59.9% of invoices within the dataset were paid
on time, and another 33.8% were paid less than 14 days late. Invoices with long delays
were a clear minority, similar to the datasets used in previous studies.

5.2 Experiments

Several experiments were conducted to find answers to the research questions, utilizing
the methods presented in Chapter 4. The classification algorithms evaluated were the
two naive classifiers proposed in Section 4.1, random forests, XGBoost, LightGBM and
CatBoost. In the results, the baseline naive model that predicts the class of the customer’s
previous invoice is referred to as "Naive 1", and the model utilizing the entire invoicing
history with exponential discounting is referred to as "Naive 2".

At the start of each experiment, the hyperparameters of each model were optimized with
the Tree-Structured Parzen Estimator algorithm implemented in the Optuna framework.
The ranges for the hyperparameters were chosen based on the documentation for each
classifier, and are reported in Appendix 1. The chosen hyperparameters for each classifier
are presented in Appendix 2.

Nested 5-fold cross-validation was used to improve the robustness of the performance
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evaluation. In k-fold cross-validation, the data is split into k equally sized folds, of which
k-1 are used for training a model, and one is left out as an evaluation set. The evaluation
process is repeated such that each fold is used as a testing set once, and the average
of the evaluation metrics is reported as the final score. In nested cross-validation [35,
36], this idea is applied in two stages: an outer loop evaluates the performance of the
model with each of the cross-validation folds in turn, and an inner loop searches for the
optimal combination of hyperparameters utilizing the training data from the outer loop.
The inner loop also utilizes cross-validation to evaluate the goodness of each given set
of hyperparameters, splitting the given training data further into multiple folds, training a
corresponding number of models, and taking their average result as the evaluation metric
for the set of hyperparameters. After the search concludes, a final model is trained with
the best found combination of parameters from the inner loop, and evaluated against the
evaluation fold of the outer loop.

Balanced accuracy was selected as the main performance metric of the models, and there-
fore also the target variable for hyperparameter optimization, due to the class imbalance
observed within the data. For binary classification it is defined as

BA =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
, (7)

where TP refers to the amount of true positives (samples of the positive class that were
correctly predicted by the model), TN to the amount of true negatives (samples of the
negative class that were correctly predicted), FP to the amount of false positives (sam-
ples of the positive class that were incorrectly predicted), and FN to the amount of false
negatives (samples of the negative class that were incorrectly predicted) within the data.
F1-score was also reported as a secondary evaluation metric for binary classification tasks,
defined as

F1 = 2 ∗ precision ∗ recall
precision+ recall

, (8)

where precision = TP
TP+FP

and recall = TP
TP+FN

. For multiple-class classification, only
balanced accuracy was reported, defined as the average recall across all classes.

Based on conclusions drawn from the literature review (see Section 3.1.3) and availabil-
ity of information within the dataset, a list of baseline features was constructed. These
features, presented in Table 4, were used in all of the experiments.
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Table 4. Features constructed from the available data.

Feature name Description

1. InvoiceSum The monetary amount of the invoice.

2. PaymentTerm Payment term given to the invoice recipient, measured
in days.

3. IsPrivateCustomer Determines whether the invoice recipient is an orga-
nizational entity or a private customer.

4. NumberOfPaidInvoices Number of times the recipient has been invoiced pre-
viously.

5. NumberOfLateInvoices Number of prior invoices paid late by the recipient.

6. LateInvoiceRatio Ratio of feature 5 over feature 4.

7. TotalInvoiceAmountPaid Total invoice amount of prior paid invoices.

8. TotalInvoiceAmountLate Total invoice amount of prior invoices paid late.

9. LateInvoiceAmountRatio Ratio of feature 8 over feature 7.

10. MeanDelay Average delay of all prior invoices paid by the cus-
tomer.

11. MeanDelayOfLateInvoices Average delay of prior invoices that the customer has
paid late.

5.2.1 Experiment 1: Binary classification utilizing base features

For initial experimentation, the task was reduced to a two-class problem, where the goal
would be to simply distinguish late invoices from ones paid on time. Only features found
in the original dataset were considered, so that the relevance of additional features con-
structed from Finnish Business Information System data could be verified separately.

The class imbalance was relatively mild in the two-class case: 59.9% of the invoices were
paid on time, and 40.1% late. Before classification, the class distribution was balanced
using random undersampling. This approach was selected for all binary classification
experiments due to its simplicity, and the relatively low amount of data being discarded.
The naive models were evaluated against the original non-resampled data set due to their
method of prediction: given that predictions are solely based on the classes of preced-
ing instances within the data, modifying the class distribution could have skewed their
outcomes.

The results of the experiment, presented in Table 5, showed very similar performance
measurements across all of the evaluated classifiers. Interestingly, the simplest naive
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benchmark predicting the class of the previous invoice was able to achieve similar results
as the evaluated classifiers, and the second one with exponential decay came out ahead of
all classifiers. In terms of SHAP feature importance, the features LateInvoiceAmountRatio

(the total monetary amount of invoices paid late divided by the total monetary amount
of all invoices for the customer) and MeanDelay (average payment delay in days) were
selected as the two most important features by all classifiers. Besides that, each classifier
seemed to value different features, but the relationships between the low/high value of
a given feature and the prediction outcome seemed to remain similar across classifiers.
Figure 7 presents the SHAP beeswarm plot for the XGBoost classifier, which achieved
the highest balanced accuracy besides the benchmarks.

Table 5. Classifier performance in binary classification with the baseline features. Standard de-
viation is presented for classifiers that were evaluated with nested cross-validation. The naive
approaches were evaluated only once with the entire data set.

Balanced accuracy F1-score

Naive 1 0.716 0.653

Naive 2 0.725 0.660

Random forest 0.717 ± 0.012 0.706 ± 0.018

LightGBM 0.716 ± 0.014 0.704 ± 0.017

XGBoost 0.723 ± 0.011 0.699 ± 0.013

CatBoost 0.719 ± 0.016 0.709 ± 0.020

Figure 7. SHAP feature importance graph for the XGBoost classifier trained in Experiment 1.
The left side of the graph corresponds to the class "on time", while the right side of the graph
corresponds to the class "delayed". For example, the graph suggests that an invoice is more likely
to be paid on time if the values of the features LateInvoiceAmountRatio and MeanDelay are low.
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5.2.2 Experiment 2: Relevance of Finnish Business Information system data

For this experiment, additional features were added into the dataset based on Finnish
Business Information System data published by the Finnish Patent and Registration Of-
fice. Among other things, the system publicizes information about bankruptcies and liqui-
dation or restructuring proceedings for several types of companies. This information was
extracted for each customer found within the dataset that had a valid Finnish Business ID
and then converted into four binary features: IsBankrupt, IsInLiquidation, IsInRestruc-

turing and IsActivitySuspended. The value for the feature was 1 if the customer had a
given marking active at the time of receiving the invoice, 0 otherwise. Unfortunately only
11 out of 3 151 invoiced companies had any kind of a marking in the register within the
2019-2022 time period chosen for the data set.

In addition to these binary features, each company’s main line of business was extracted
as a categorical feature. The lines of business were reported with a five-digit code defined
in Standard Industrial Classification TOL 2008 by Statistics Finland. These codes were
grouped under the top-level categories defined in the standard, of which 20 appeared in
the data set. The categories were one-hot encoded, thus resulting in 20 additional binary
features.

Table 6 presents the classification results with these features added. The naive bench-
marks perform identically to Experiment 1, as this additional data has no effect on their
predictions. The addition of these features seemed to improve the results of the classi-
fiers somewhat, allowing them to now very narrowly outperform the naive benchmarks.
The SHAP plot of the XGBoost model presented in Figure 8 suggests that the model is
picking up on certain lines of businesses to some degree, but their contribution is minimal
compared to the more important features.

Table 6. Classifier performance with the additional features added.

Balanced accuracy F1-score

Naive 1 0.716 0.653

Naive 2 0.725 0.660

Random forest 0.727 ± 0.016 0.722 ± 0.014

LightGBM 0.726 ± 0.014 0.715 ± 0.010

XGBoost 0.732 ± 0.016 0.727 ± 0.011

CatBoost 0.728 ± 0.015 0.720 ± 0.011
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Figure 8. SHAP feature importance for the XGBoost model in Experiment 2. Each feature name
in lowercase represents a possible value of the added line of business feature, which was one-hot
encoded. The feature seems to carry minimal predictive value compared to the others.

5.2.3 Experiment 3: Effect of customer invoicing history

For this experiment, all invoices of customers with low amounts of invoicing history were
cut from the data set. Three cutoff points were evaluated to assess correlation between
amount of invoicing history and the quality of predictions. While not a part of the original
research questions, the goal of this experiment was to find whether the models would be
able to make more reliable predictions for customers with large invoicing volumes.

The results, presented in Table 7, seem to indicate that the predictions are more accu-
rate for customers with more history data available, but even with high amounts of prior
history there is a significant degree of uncertainty inherent to the task. The naive bench-
marks achieved the highest balanced accuracy scores, while the XGBoost model scored
highest in terms of F1-score in two out of three cases. Feature importance for the XG-
Boost model, presented in Figure 9, painted a similar story as previous experiments, with
the feature LateInvoiceAmountRatio carrying most importance for prediction.



37

Table 7. The results of Experiment 3.

Prior invoices Metric Naive 1 Naive 2 Random forest LightGBM XGBoost CatBoost

At least 5 BA 0.737 0.747 0.711 ± 0.014 0.717 ± 0.014 0.723 ± 0.011 0.715 ± 0.017

F1-score 0.679 0.688 0.690 ± 0.017 0.700 ± 0.018 0.704 ± 0.014 0.698 ± 0.021

At least 20 BA 0.770 0.779 0.734 ± 0.014 0.752 ± 0.012 0.754 ± 0.013 0.739 ± 0.010

F1-score 0.721 0.730 0.708 ± 0.017 0.736 ± 0.016 0.740 ± 0.018 0.720 ± 0.013

At least 50 BA 0.834 0.833 0.768 ± 0.007 0.783 ± 0.006 0.789 ± 0.009 0.779 ± 0.006

F1-score 0.808 0.806 0.747 ± 0.010 0.772 ± 0.008 0.780 ± 0.012 0.764 ± 0.007

Figure 9. SHAP feature importance plot for the XGBoost model in Experiment 3, with the cutoff
set to only include customers with at least 50 prior invoices.

5.2.4 Experiment 4: Multiple-class prediction

For this experiment, the invoices were divided into five classes, as presented in Figure 6.
The additional features from the Finnish Business Information System were also included
in this experiment. In the multiple-class classification case, the heavy class imbalance
caused random undersampling to shrink the training set from 80 000 to just 2 000 samples,
so several other oversampling-based class imbalance mitigation methods implemented
in the imbalanced-learn Python library were evaluated in addition. The results
obtained with each method are reported in Table 8. Naive benchmarks 1 and 2 were also
evaluated against the full data set, both achieving an identical score of 0.388.

The combination of random oversampling with the LightGBM classifier seemed to per-
form best with this data, but again the differences in performance were quite minor across
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Table 8. Balanced accuracy scores of evaluated classifiers, utilizing a variety of data balancing
techniques.

Random forest LightGBM XGBoost CatBoost

Random undersampling 0.418 ± 0.013 0.421 ± 0.016 0.411 ± 0.018 0.408 ± 0.007

Random oversampling 0.430 ± 0.011 0.432 ± 0.004 0.431 ± 0.008 0.418 ± 0.021

SMOTE 0.420 ± 0.006 0.421 ± 0.005 0.419 ± 0.007 0.401 ± 0.018

SMOTE-ENN 0.412 ± 0.017 0.425 ± 0.012 0.421 ± 0.012 0.409 ± 0.017

the classifiers. The confusion matrix of this LightGBM classifier, presented in Figure 10,
indicates that the classifier tries to predict the minority classes quite often compared to the
class distribution of the holdout set, but the true class of most of these predictions is one
of the majority classes. Other evaluated classifiers showed a similar trend. In essence, this
seems to be an over-correction for the typical minority class problem, where classifiers
tend to ignore the minority classes entirely in favor of prediction the majority classes.

The SHAP feature importance presented in Figure 11 shows similar tendencies to the
binary classification problem, but the feature NumberOfPaidInvoices has risen as the most
important one. It seems to have an especially large impact on the classification into the
two smallest classes (61-90 days late and 90+ days late).

Figure 10. Confusion matrix for the LightGBM model in Experiment 4.
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Figure 11. SHAP feature importance for the LightGBM model in Experiment 4.
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6 DISCUSSION

6.1 Current study

This study explored methods for improving the accuracy of cash flow forecasts by predict-
ing the lateness of sales invoices. Based on past studies on the topic, a classification-based
approach was selected as the area of focus. The goal of the study was to replicate the re-
sults of previous studies with the set of data available, and hopefully improve on them
with the help of the additional data from the Finnish Business Information System. All
classifiers that performed well in the previous studies were evaluated, with the goal of
finding the best-performing one for this set of data. The introduction of the naive base-
line classifier was a somewhat novel contribution to the topic, as only one of the previous
studies had reportedly used one. In this study [11], the baseline was even simpler than
presented here, predicting all invoices to be on time.

Across the various experiments, all evaluated classifiers performed very similarly to one
another. The results of the naive benchmarks were also surprisingly comparable, and in
many cases even slightly better than those of the more complex classifiers. This clearly
suggests that the customer’s recent payment behavior is an especially strong predictor for
whether their next invoice will be delayed, and it seems like many of the other features
suggested in literature might be contributing much less additional predictive information
than previously thought. There is certainly a significant degree of randomness and noise
inherent in this task, and it is a possibility that there simply are not clear enough pat-
terns present in the noise for a model to learn. This points towards the conclusion that
attempts to tune the method of classification (algorithm selection, hyperparameter opti-
mization etc.) are not currently a viable avenue for improving the quality of predictions
to a meaningful degree, and future improvements should be sought through other means.

In each binary classification experiment, the features LateInvoiceAmountRatio and Me-

anDelay were found to contribute to the predictions the most out of the chosen features
across all evaluated classifiers. Both of these features are customer-level history features,
supporting the previous observation in literature that these features contribute to the out-
come the most. The real-world connection seems rather straightforward: if a customer
has previously delayed their invoice payments, it is quite logical to assume that they are
more likely to also delay the next payment. However, in the multiple-class classification
experiment, the highest performing feature was NumberOfPaidInvoices, which seems far
less sensible. While it is definitely possible that long-standing customers are either more
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or less likely to delay invoice payments than ones with less payment history, this con-
nection seems difficult to explain. Reflecting on the low overall accuracy achieved in the
multiple-class task, it seems more likely that the classifier has fixated on a pattern in the
training data that does not generalize to the real world.

The effect of Finnish Business Information System data was found to be rather limited, as
very few customers within the dataset had information about bankruptcies or liquidations.
There could be multiple possible explanations for this: either this data is not added to the
system frequently or for all types of businesses, or it could be that the demographic of
the users of the accounting software makes them less likely to conduct business with
financially troubled companies.

At first reaction, the misclassification rates of the models can seem rather high even in the
"simple" binary classification case, and if one tries to draw comparisons to the multitudes
of complex problems that can already be solved with a near perfect accuracy with statis-
tical learning, the applicability of the models may seem limited. However, in the case of
any financial predictions the level of uncertainty and randomness is very high, and perfect
accuracy is not necessarily needed for a model to be useful. Due to the low accuracies
obtained, any individual prediction from the created models should not be used without
criticism, but over a sufficiently large number of invoices the predictions could provide a
much better estimation of future accounts receivable cash flow than what has been pre-
viously available. As such, these estimations would be most useful for businesses with
large invoicing volumes: if a company is awaiting payment from only a few large invoices
at a given time, it would likely be unwise to make any future investment decisions based
on these predictions, but companies with dozens to hundreds of incoming payments at a
given time could be able to benefit from the ability to predict general trends within the
mass of payments.

6.2 Future work

This study seems to suggest that classifier algorithms matter very little for this task with
the current set of features found in literature. Although novel classification methods such
as deep learning architectures for tabular data have seemingly not yet been evaluated for
this task and could be worth exploring, it appears that the time would be better spent
working on other areas for now. For instance, it could be a good idea to try weighting the
history features such as the mean delay of previous invoices, such that they cover only
a certain amount of months or only the past n invoices from the customer. Additional
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sources of data could also be explored, such as customer credit information from com-
mercial agencies, stock prices, or some other broad indicators of the current economic
situation across an industry.

Another avenue for future study could be trying to explore the potential seasonal fluctu-
ations within the data, as the current approach does not account for seasonality. It could
be possible that invoices are more likely to be paid late during certain times of the year,
either across certain industries or as a whole.

For the purposes of estimating time to invoice payment, it might also be interesting to
tackle the problem with regression methods instead of classification. Regression would
provide an estimation for the time of payment that is more specific than the date range of-
fered by multiple-class classification, and it would be interesting to compare the accuracy
of these predictions to ones obtained from multiple-class classification.
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7 CONCLUSION

With the data available, it was shown that statistical learning methods can be used to
estimate payment delays of sales invoices to some degree. In a binary classification task,
where invoices were classified as "late" or "on time" based on prior information about
the customer’s payment behavior, a XGBoost model was used to classify invoices with a
balanced accuracy score of 72.3% and a F1-score of 69.9%. Notably, a naive benchmark
predicting the most frequently appearing class in the customer’s recent invoicing history
achieved a slightly higher balanced accuracy score of 72.5%, but a slightly lower F1-
score of 66.0% in the same task. With a 5-class approach, dividing the invoices into
classes "on time", "1-30 days late", "31-60 days late", "61-90 days late" and "90+ days
late", a LightGBM model reached a balanced accuracy of 43.2% across the classes.

According to SHAP values obtained from the classifiers, the two most significant fea-
tures that contributed to the prediction of a late payment were the average delay of pre-
vious invoices by the customer, and the percentage of money that had been paid late out
of all money previously paid by the customer. Additional features obtained from the
Finnish Business Information System did not seem to provide any meaningful benefit to
the predictions. The amount of available bankruptcy and liquidations proceedings data
was extremely small, and it remains inconclusive whether these features would improve
the predictions if obtained from another source with more data available. The customers’
line of business data was readily available, but the feature extracted from this data had
minimal impact on the classifiers’ predictions.
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Appendix 1. Hyperparameter search ranges

Table A1.1. Parameters chosen for the hyperparameter search and the chosen search ranges for
each of the evaluated models.

Model Parameter name Type Range of values

Naive 2 lambda float [0, 1]

Random forest max_depth integer [8, 32]

n_trees integer [50, 200]

max_features categorical ’sqrt’, ’log2’

LightGBM n_leaves integer [2, 100]

min_child_samples integer [1, 100]

max_depth integer [2, 32]

max_bin integer [16, 512]

XGBoost learning_rate float [0.01, 0.4]

min_split_loss integer [0, 10]

max_depth integer [2, 32]

colsample_bytree float [0.2, 1]

CatBoost iterations integer [500, 1500]

learning_rate float [0.01, 0.4]

depth integer [4, 10]

l2_leaf_reg float [0.1, 0.5]

random_strength float [0.5, 2]



Appendix 2. Hyperparameter search results

Table A2.1. Hyperparameter search results for all experiments. For Experiment 4, results are
provided for the run where random oversampling was used.

Model Parameter name Exp. 1 Exp. 2
Exp. 3,

5 invoices

Exp. 3,

20 invoices

Exp. 3,

50 invoices
Exp. 4

Naive 2 lambda 0.350 0.350 0.355 0.258 0.696 0.760

Random forest max_depth 10 8 8 8 8 9

n_trees 168 51 191 150 123 121

max_features log2 sqrt sqrt sqrt sqrt sqrt

LightGBM num_leaves 12 12 5 2 2 7

min_data_in_leaf 19 12 68 18 13 16

max_depth 23 14 15 27 25 20

max_bin 319 101 22 304 242 485

XGBoost learning_rate 0.133 0.092 0.028 0.045 0.090 0.185

min_split_loss 8 2 6 0 9 10

max_depth 7 3 2 2 2 3

colsample_bytree 0.561 0.320 0.575 0.0708 0.849 0.560

CatBoost iterations 1015 745 1253 605 918 566

learning_rate 0.016 0.017 0.010 0.010 0.010 0.036

max_depth 6 5 4 4 4 5

l2_leaf_reg 0.349 0.299 0.241 0.387 0.102 0.453

random_strength 0.532 0.550 1.995 1.758 1.487 1.239
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