
Evaluating theEnergyConsumption Impact of aCarbonAwareAutoscaling inMicroservice-

Based Applications on the Public Cloud

A Sustainability Perspective

Lappeenranta-Lahti University of Technology LUT

LUT School of Engineering Sciences

Master of Science (Tech.) in Software Engineering, Master’s thesis

2023

Haben Birhane Gebreweld

Examiners: Professor Jari Porras (LUT University)

Professor Henry Muccini (University of L’Aquila)

Professor Patricia Lago (Vrije Universiteit Amsterdam)

This thesis has been accepted by partner institutions of the consortium (619839-EPP-1-

2020-1-FI-EPPKA1-JMD-MOB).

Successful defence of this thesis is obligatory for graduation with the following national

diplomas:

• Master of Computer Science (University of L’Aquila)

• Master of Science in Technology (LUT University)

• Master of Computer Science (Vrije Universiteit Amsterdam)

ABSTRACT

Lappeenranta–Lahti University of Technology LUT

LUT School of Engineering Science

Software Engineering

Haben Birhane Gebreweld

Evaluating theEnergyConsumption Impact of aCarbonAwareAutoscaling inMicroservice-
Based Applications on the Public Cloud: A Sustainability Perspective

Master’s thesis

2023

76 pages, 26 figures, 8 tables and 0 appendices

Advisor & Co-Supervisors: Professor Henry Muccini (University of L’Aquila)
Dr. Karthik Vaidhyanathan (IIT Hyderabad)
Roberta Capuano (University of L’Aquila)

Examiners: Professor Jari Porras (LUT University)
Professor Henry Muccini (University of L’Aquila)
Professor Patricia Lago (Vrije Universiteit Amsterdam)

Keywords: Carbon Aware Autoscaling, Green Autoscaling, Carbon Efficiency, Kuber-
netes Event Driven Autoscaling(KEDA), Carbon Intensity, Microservices, Green Cloud

Background: The growing awareness of the environmental impact of the ICT industry,
including the software sector, and the emergence of sustainability policies and compliance
requirements have fueled an increasing interest in sustainable application development
and operation. Cloud computing has been widely acclaimed for its scalability, presenting
prospects for sustainable software operation. Nonetheless, existing research is deficient in

iii

carbon-aware scaling strategies, especially in the context of microservice-based applica-
tions. Bridging this gap can lead to the establishment of environmentally conscious and
efficient application scaling methods. This endeavor holds promise for advancing sustain-
ability in the field of cloud computing.

Aim: The aim of this research is to empirically evaluate the energy consumption impact
of Carbon-Aware Autoscaling on microservice-based applications in the Public Cloud.

Method: In this study, we conducted an empirical experiment to evaluate the impact of the
autoscaling strategy on a microservice-based application. The experiment was designed to
collect data on two dependent variables: energy consumption and response time. Through
this approach, we aimed to gain insights into how the chosen autoscaling strategy affects
these metrics.

Result: Our analysis resulted in three key discoveries regarding the impact of Carbon
Aware Autoscaling on microservice-based applications. Primarily, it presents substantial
energy cost efficiency, making it particularly advantageous in handling larger volumes of
microservices. Secondly, Carbon Aware Autoscaling demonstrates notably lower energy
consumption compared to HPA-based autoscaling, reducing energy usage by 42.9% on
average on application level and 38.24% on average on microservice level, especially ad-
vantageous for microservices with heavy workloads. Thirdly, the autoscaler significantly
impacts response time, showing an average increment of 30.68%, making it well-suited for
low-priority workloads that do not require real-time processing. These findings provide
essential insights for future research in the field of autoscaling strategies for microservice-
based applications.

Conclusion: our analysis suggests the following insights: a) Extending the experiment
to workload scheduling based on spatial and temporal carbon intensity values could yield
valuable findings. b) Validating the effectiveness of the autoscaling approach with real-
world microservices-based applications that do not require real-time processing is recom-
mended. c) Mixing the two autoscaling strategies based on microservice workload may
further improve energy consumption reduction and mitigate the impact on application re-
sponse time. These recommendations offer potential avenues for future research and opti-
mization in the field of autoscaling strategies for microservices-based applications.

iv

ACKNOWLEDGMENTS

The past two years have presented immense challenges in my life, as my home country has
been devastated by a genocidal war, and I faced the distressing uncertainty of not knowing
the whereabouts of my family for approximately 8 months. Despite these trying circum-
stances, I persevered and remained focused on my studies, pushing myself to the limits
to complete my academic journey. Throughout this difficult period, I am deeply grateful
for the unwavering support and care provided by my friends and colleagues, who stood by
me and helped me navigate through the setbacks. Their presence and encouragement have
been invaluable, and I extend my heartfelt thanks to each one of them.

I extend my heartfelt gratitude to my thesis advisor, Professor Henry Muccini, and my
co-supervisors Dr. Karthik Vaidhyanathan and Roberta Capuano for their invaluable guid-
ance and profound contributions throughout the thesis process. I am also deeply thankful
to the SE4GD program coordinators, Professor Jari Poras, Professor Henry Muccini, and
Professor Patricia Lago, for providing me with this incredible opportunity to be part of this
program. Their unwavering support and encouragement have been pivotal in shaping my
academic journey and research endeavors. Special appreciation goes to Susanna for her
exceptional coordination and assistance.

Lastly, I want to give special recognition to my family. Despite the challenges and uncer-
tainties in our home country over the past two years, your unwavering love and support
have kept me going. Your belief in me, words of encouragement, and sacrifices have been
my driving force. This achievement wouldn’t have been possible without you. A special
mention goes to my Mom, who has worked tirelessly to ensure my success, without ex-
pecting anything in return. Even though you couldn’t be here to celebrate with me, I want
you to know how profoundly grateful I am.

v

SYMBOLS AND ABBREVIATIONS

Roman / Greek characters

∀ for all

∃ there exists

µ mean

ρ population correlation coeffi-
cient

e energy

r response time

m microservices

c subsets of carbon aware com-
ponents

vi

Abbreviations

AKS Azure Kubernetes Services

ANOVA Analysis of Variance

API Application Program Interface

CLI Command Line Interface

CPU Central Processing Unit

DNS Domain Name Service

ePBF extended Berkeley Packet Filter

GHG Greenhouse Gases

GQM Goal-Question-Model

HPA Horizontal Pod Autoscaler

IaaS Infrastructure as a Service

ICT Information and Communication Technologies

KEDA Kubernetes Event-Driven Autoscaling

KEPLER Kubernetes Efficient Power Level Exporter

PaaS Platform as a Service

QOS Quality Of Service

SaaS Service as a Service

SDK Software Development Kit

SLA Service Level Agreement

SOA Service-Oriented Architecture

SSE Sustainable Software Engineering

vii

SusAF Sustainability Awareness Framework

VM Virtual Machine

YAML Yet Another Mark-up Language

viii

TABLE OF CONTENTS

ABSTRACT iii

ACKNOWLEDGMENTS v

SYMBOLS AND ABBREVIATIONS vi

1 Introduction 6

2 Background and Related Works 8
2.1 Sustainable Software Engineering . 8
2.2 Cloud Autoscaling . 12

2.2.1 Autoscaling Policies . 12
2.2.2 Autoscaling Components . 12
2.2.3 Types of Autoscaling . 13

2.3 Microservice Architectural Style . 14
2.4 Related Works: Carbon Awareness, Microservices & Cloud Autoscaling . 15

3 Study Design 17
3.1 Statement of Problem . 17
3.2 Study Definition . 18
3.3 Methodology . 21

4 Experiment Planning 28
4.1 Subject Selection . 28
4.2 Experiment Variable . 29
4.3 Experimental Hypothesis . 30
4.4 Experiment Design . 32
4.5 Data Analysis . 32
4.6 Study Replicability . 34

1

5 Experiment Execution 35
5.1 Experiment Preparation . 35
5.2 Infrastructure Setup . 36
5.3 Measurement . 37

6 Evaluation 39
6.1 Carbon Aware KEDA components and their energy overhead (RQ1) . . . 39
6.2 Energy comparison of HPA Based & Carbon Aware KEDA Autoscaling

(RQ2) . 42
6.3 Energy Saving impact on Response Time (RQ3) 46

7 Discussion 51
7.1 Results and Findings . 51
7.2 Sustainability Impact Assessment . 56

8 Threats To Validity 59
8.1 Internal Threats . 59
8.2 External Threats . 59
8.3 Construct Threats . 60
8.4 Conclusion Threats . 60

9 Conclusion 61

REFERENCES 62

LIST OF FIGURES

1 Carbon IntensityVisualization: Image usedwith permission fromMicrosoft
Learn . 10

2 Visual Representation of how horizontal scaling works with workload . . 17

2

3 visualization of how the scaling capacity of software changes for both Hor-
izontal Pod scaling and Carbon Aware Scaling 18

4 Visual Representation of the GQM . 20
5 Visual Representation of the Study Design 22
6 Visual Representation of the Carbon Aware KEDA Autoscaling for Sock

Shop microservice-based application . 24
7 Comprehensive Visualization of the Carbon Aware KEDA Operator from

the official open-source documentation on GitHub by Microsoft Azure . . 25
8 Use Case visualization of of both Read intensive and write intensive work-

load scenarios . 26

9 Visual Representation of the Analysis Decision 33

10 Visual Representation of Experiment Setup 37

11 Box Plot visualization of energy consumption overhead by Carbon Aware
KEDA components as per the number of Microservices 40

12 Histogram visualization for distribution of energy consumption overhead
by Carbon Aware KEDA components as per the number of Microservices 41

13 Q-Q Plot visualization for normalized data of energy consumption over-
head by Carbon Aware KEDA components as per the number of Microser-
vices . 41

14 Box Plot visualization of energy consumption by the microservice based
application as per the Autoscaling strategy employed 44

15 Histogram visualization for distribution of Energy Consumption of the mi-
croservice based application for both HPA based and CarbonAware KEDA
Autoscalers . 45

16 Q-Q Plot visualization for normalized data of Energy Consumption of the
microservice based application for both HPA based and Carbon Aware
KEDA Autoscalers . 45

17 Box Plot visualization of response time by the microservice based appli-
cation as per the Autoscaling strategy employed 47

3

18 Histogram Visualization . 48
19 Q-Q Plot visualization . 48
20 Histogram & Q-Q plot visualization of response time for both HPA based

and Carbon Aware KEDA Autoscalers 48
21 Density Curve visualization of energy usage for both HPA based and Car-

bon Aware KEDA Autoscalers . 49
22 Density Curve visualization of response time for both HPA based and Car-

bon Aware KEDA Autoscalers . 51

23 Line graph visualization of Number of microservices and energy usage by
Carbon Aware KEDA Autoscalers with and without workload 53

24 Box Plot visualization of all microservices and their energy usage under
both Carbon Aware KEDA and HPA Based Autoscalers 54

25 Box Plot visualization of response time for both test scenarios 55
26 SusAF visualization of the Carbon Aware Autoscaler Sustainability Impact 57

LIST OF TABLES

1 Overview of Sock ShopMicroservices Components, CoveringVariousUse
Cases from Frontend to Persistence and their technology stack 29

2 Dependent variables considered for this research 30

3 Virtual machine specification used for the Azure infrastructure 36

4 Descriptive Statistics for RQ1 - Number of Microservices and their Energy
overhead . 39

5 One way ANOVA for RQ1 - Number of Microservices Vs Energy Overhead 42
6 Descriptive Statistics for RQ2 - Energy Consumption comparison of HPA

based and Carbon Aware KEDA Autoscalers as per each microservices . 43
7 Descriptive Statistics for RQ2 - Energy Consumption comparison of HPA

based and Carbon Aware KEDA Autoscalers for microservice based ap-
plication . 43

4

8 Descriptive Statistics for RQ3 - Response time of both HPA based and
Carbon Aware KEDA Autoscalers . 48

5

1 Introduction

In today’s world, sustainability is not merely a choice but a vital necessity. The growing
concerns about climate change and its environmental effects have made it critical to take
action to reduce our impact on the planet. Additionally, new policies and compliance reg-
ulations[1] in various regions have sparked an increasing interest in sustainability among
industries and organizations. In the software industry, there is also a rising momentum to-
wards sustainable application development. As the number of applications grows, so does
the awareness of their environmental impact on the underlying infrastructure [2]. The rise
of Cloud-native development, with its dynamic scaling and Kubernetes-based technolo-
gies, is enabling efficient workload and resource management. Beyond their historical use
for cost management and accelerated development[3], these cloud-native approaches now
present avenues for optimizing application development to enhance sustainability.

Cloud autoscaling, despite being in its early stages, has seen the development and adop-
tion of various widely utilized approaches in the industry. These approaches include cost-
aware, load-aware, resource-aware, data-aware, Quality Of Service (QOS)-aware, Service
Level Agreement (SLA)-aware, and budget-aware autoscaling approaches[4]. In recent
times, due to increased awareness of the environmental impact of the Information and
Communication Technologies (ICT) industry[5], Carbon Aware approaches are becoming
more prominent and gaining momentum in autoscaling and scheduling of workloads.[6][7]

The term ”carbon aware software” refers to a software that adapts its behavior based on the
carbon intensity of the energy it consumes[8] according to the definition given by Green
Software Foundation1 for Software Carbon Intensity technical specification. In cloud en-
vironments, horizontal scaling2 is a commonly defined practice, but it not carbon aware.
Horizontal scaling typically has a maximum scaling capacity specified in the Scaler defini-
tion, which is often constrained by resource availability and budgetary limit of the software

1https://greensoftware.foundation/
2https://www.techopedia.com/definition/7594/horizontal-scaling

6

https://greensoftware.foundation/
https://www.techopedia.com/definition/7594/horizontal-scaling

owners, and does not adjust it behaviour in response to changes in the carbon intensity of
the energy it consumes.

This thesis presents the implementation and empirical experimentation of both Horizontal
Pod Autoscaler (HPA) and Carbon Aware Autoscaler on a microservice-based web appli-
cation deployed in the public cloud. The objective is to investigate the influence of carbon
aware autoscaling on the energy consumption and response time of the microservice-based
application, as compared to the HPA-based autoscaling.

The study provides significant contributions, including:

3 Practical implementation of Carbon Aware Autoscaling for microservice-based ap-
plications on the public cloud.

3 Empirical experimentation of Horizontal Pod Autoscaler (HPA) and Carbon Aware
Scaler, analyzing energy consumption and response time.

3 Development of reusable Read Intensive andWrite Intensive workload scenarios for
the Sock Shop microservice-based web application.

3 Detailed energy consumption measurement at a granular level (energy consumption
per pod) using Kepler to assess the autoscaler’s impact on individual pods.

The thesis is organized as follows: Chapter 2 provides the research context with back-
ground information. Chapter 3 discuses the problem with the current autoscalers in detail
and proposes a solution. Chapter 4 outlines the experiment definition and planning. In
Chapter 5, we discuss the execution of the experiment. We present a summary of experi-
ment results, addressing each research question and associated hypotheses using statistical
analysis in Chapter 6, followed by a detailed analysis of the findings in Chapter 7. The
analysis aims to make sense of the results and convey the main insights gained from the
study. Chapter 8 thoroughly discusses the threats to the validity of our study. Finally,
Chapter 2.4 reviews previous studies that have explored Horizontal Pod Autoscaling and
Carbon awareness in the cloud, and Chapter 9 provides our conclusion.

7

2 Background and Related Works

This research focuses on evaluating the impact of Carbon-Aware Autoscaling on reducing
the energy consumption of microservice-based applications deployed on the public cloud.
This topic holds enormous significance in the context of sustainable software engineering
and cloud computing.

2.1 Sustainable Software Engineering

Sustainable Software Engineering (SSE) is an emerging discipline at the intersection of
climate science, software, hardware, electricity markets, and data-center design. It en-
compasses core philosophies and principles necessary to define, build, and run sustainable
software applications [9]. Sustainable Software Engineering combines two core philoso-
phies and six principles in tandem[10][11].These six principles are independent of appli-
cation domain, organization size or type, cloud vendor or self-hosted, and programming
language or framework.[12]

These philosophies are:

• Collective responsibility for climate action: Sustainable Software Engineering
places importance on inclusivity by acknowledging that everyone, irrespective of
their sector, industry, role, or technology, can play a role in tackling climate chal-
lenges. It emphasizes that each individual can make a significant impact.[10]

• Sustainability as the intrinsic motivation: Developing sustainable applications
offers multiple benefits such as cost-effectiveness, enhanced performance, and in-
creased resilience. However, the primary motivation behind Sustainable Software
Engineering is the pursuit of sustainability itself, with other advantages being sec-
ondary considerations. [10]

The Six principles of Sustainable Software Engineering are essential across all domains[13]
and discussed thoroughly below:

8

1. Carbon Efficiency: The first principle of Sustainable Software Engineering is to
develop applications that minimize carbon emissions, known as carbon efficiency.
Greenhouse Gases (GHG) contribute to an increase in Earth’s temperature, mainly
due to human activities. GHG quantities are converted to carbon dioxide equivalent
(CO2eq) to simplify measurements. For instance, one ton of methane is equivalent
to approximately 25 tons of CO2, so it is represented as 25 tons CO2eq.[14] In some
cases, the term ”carbon” is used to encompass all GHGs, streamlining the discussion.
The objective is to optimize the value derived from each gram of carbon emitted into
the atmosphere, acknowledging that carbon emissions are inevitable in our activities.
Being carbon-efficient involves reducing the amount of carbon released per unit of
work.[15] In other words, it means creating applications that provide equivalent
value to you or your users while emitting a lesser amount of carbon.

2. Energy Efficiency: Electricity is convenient, but it is mostly generated by burning
fossil fuels, which is the biggest contributor to carbon emissions.1 Electricity can be
considered one of the proxies for carbon. Software, whether it runs on smartphones
or in data centers for training machine learning models, requires electricity for its
operation. A highly effective approach to minimizing electricity consumption and
the resulting carbon emissions from our software is to enhance the energy efficiency
of our applications. This is why building energy-efficient applications is considered
the second principle of sustainable software engineering.[16][17]

3. Carbon Awareness: Electricity production varies based on different locations and
times, utilizing diverse sources with varying carbon emissions. Certain sources, like
wind, solar, or hydroelectric, are considered clean and renewable, emitting no car-
bon during generation. However, other sources may have different environmental
impacts, resulting in varying carbon emissions associated with electricity produc-
tion.[18]

Carbon Intensity is a measure of how many carbon (CO2eq) emissions are pro-
duced per kilowatt-hour of electricity consumed. Electricity generation methods

1https://www.eea.europa.eu/data-and-maps/daviz/change-of-co2-eq-emissions-2\
#tab-chart_4

9

https://www.eea.europa.eu/data-and-maps/daviz/change-of-co2-eq-emissions-2\##tab-chart_4
https://www.eea.europa.eu/data-and-maps/daviz/change-of-co2-eq-emissions-2\##tab-chart_4

vary across different locations and time periods, resulting in varying carbon emis-
sions. Certain sources, such as wind, solar, and hydroelectric power, are considered
clean and renewable, emitting no carbon during electricity production. Conversely,
fossil fuel sources exhibit different levels of carbon emissions. For instance, gas-
burning power plants generally release less carbon compared to coal-burning power
plants.[18][19]

Figure 1: Carbon Intensity Visualization: Image used with permission from Microsoft
Learn2, sourced from the module on ”Principle: Carbon Awareness”[18]

Carbon intensity varies across different locations as the energy mix differs, with
some regions incorporating a higher proportion of clean energy sources compared
to others. Furthermore, carbon intensity fluctuates over time due to the inherent
variability of renewable energy. For instance, when there are cloudy conditions or
minimal wind, carbon intensity tends to rise as a larger portion of the electricity mix
originates from carbon-emitting sources.[19]

4. Hardware Efficiency: This term ”Embodied Carbon” refers to the carbon emis-
sions that are produced during the entire lifecycle of hardware components, including
computer servers, networking equipment, and devices. This includes the energy and
resources used during the extraction of rawmaterials, manufacturing, transportation,
use, and disposal or recycling processes.[20] Minimizing the environmental impact
of the technology ecosystem is critical for sustainable software engineering. One

10

way to be more hardware efficient is to extend the lifespan of hardware, as comput-
ers do not wear out; they only become obsolete due to constantly updated software
that pushes their limits.[21]

5. Measurement: The greenhouse gas accounting standard classifies emissions into
three distinct scopes[22]:

• Scope 1 encompasses direct emissions arising from an organization’s owned
or controlled operations, such as on-site fuel combustion or fleet vehicles.

• Scope 2 covers indirect emissions related to purchased energy, like heat and
electricity generation.

• Scope 3 represents other indirect emissions originating from a wide array of
activities, including an organization’s supply chain, business travel, and elec-
tricity consumption by customers.

Scope 3, or value chain emissions, are significant and complex for organizations to
calculate. They cover all activities from product conception to distribution.[23]

6. Climate Commitments: Numerous methods exist to lower emissions. It is crucial
to comprehend the specific reduction approach when aiming to achieve emission re-
duction targets. At highest level, it can be achieved through offsets or abatement
mechanisms. Offsetting involves reducing emissions elsewhere, while reduction or
elimination focuses on avoiding carbon emissions. Since complete elimination of
carbon emissions is challenging in modern society, offsets offer a way to comple-
ment reduction efforts.[24] Offsets can be achieved through compensation or neu-
tralization. Compensation, also known as avoidance, entails paying others not to
emit carbon. On the other hand, neutralization involves removing carbon from the
atmosphere, such as through enhancing natural carbon sinks or employing direct air
capture techniques.[25]

11

2.2 Cloud Autoscaling

Cloud computing has become a widely-used and efficient technology. Scalability is key
to success for cloud-based businesses. Auto scaling enables the adjustment of cloud re-
sources in response to changes in demand. By improving fault tolerance, availability, and
cost management, auto scaling can significantly improve an organization’s service level
agreements, resulting in better performance and reliability.[26]

The autoscaling feature in cloud environments enables automatic adjustment of resource
capacity for applications. Auto-scaling is widely available as a desirable feature in cloud
Infrastructure as a Service (IaaS) and Platform as a Service (PaaS) offerings provided by
various cloud vendors. It allows for seamless and dynamic scaling of resources based on
application demands, ensuring optimal performance and resource utilization.[27]

2.2.1 Autoscaling Policies

Scaling an application can be achieved through two primary policies:[28]

• Vertical Autoscaling, also known as scaling up and down, involves adjusting the
capacity of a resource. [29] For instance, migrating an application to a larger Virtual
Machine (VM) size. Vertical scaling often requires temporarily making the system
unavailable during redeployment, making it less common to automate this type of
scaling.

• Horizontal Autoscaling, also referred to as scaling out and in, focuses on adding
or removing instances of a resource. The application continues running seamlessly
as new resources are provisioned. Once the provisioning process is completed, the
solution is deployed across these additional resources.[30] In case of reduced de-
mand, the additional resources can be efficiently shut down and deallocated without
interrupting the application’s operation.

2.2.2 Autoscaling Components

Typically, a cloud autoscaling strategy includes the following components[31]:

12

• Instrumentation and monitoring systems at the application, service, and infrastruc-
ture levels. These systems capture important metrics such as response times, queue
lengths, Central Processing Unit (CPU) utilization, and memory usage.

• Decision-making logic that evaluates these metrics against predefined thresholds or
schedules and decides whether to scale.

• Components that enable the system to scale.

• Regular testing, monitoring, and tuning of the autoscaling strategy to ensure that it
works as intended.

2.2.3 Types of Autoscaling

In a nutshell, autoscaling can be of the following types[32]:

1. Reactive Autoscaling: In a reactive autoscaling approach, resources are adjusted
dynamically in response to sudden increases in traffic. This method relies on con-
tinuous real-time monitoring of available resources.[33] A cooldown period is often
implemented to handle potential future traffic spikes. During this period, resources
are maintained at maximum capacity, even if the traffic temporarily decreases. The
purpose is to handle any further unexpected surges in traffic effectively.

2. Predictive autoscaling: This approach leverages machine learning and artificial in-
telligence techniques to assess traffic patterns and forecast resource requirements.
Predictive models are employed to analyze historical workload data and anticipate
future resource needs for the upcoming days.[34][35] Scheduled scaling actions are
then performed based on these predictions, ensuring that sufficient resource capac-
ity is available before it is required by the application.[34] In essence, predictive
autoscaling utilizes predictive analytics, past usage data, and current usage patterns
to automatically scale resources in alignment with projected future demands.[36][37]

3. Scheduled autoscaling: This approach allows users to define specific time ranges
for adding additional resources. Scheduled scaling works best when there are pre-
dictable fluctuations in traffic at specific times of the day, although these changes

13

are typically sudden.[38] For instance, resources can be provisioned in advance for
a significant event or a peak period throughout the day, eliminating the need to scale
up resources as demand increases. This proactive approach ensures readiness and
avoids any potential delays in resource scaling. The approach combines real-time
monitoring, prediction of anticipated traffic changes, and pre-defined intervals for
resource adjustments.

4. Manual Scaling: With manual scaling, you can manually adjust the number of in-
stances either through a CLI or console. This is a great option if automatic scaling
isn’t necessary for your users.[32]

5. Dynamic Scaling: Dynamic scaling is another type of auto scaling where the num-
ber of instances changes automatically based on received signals. This is a great
option when dealing with a high volume of unpredictable traffic.[39]

2.3 Microservice Architectural Style

The profusion of impactful publications and case studies centered around microservice-
based architectures, exemplified by Lewis and Fowler’s seminal work in 2014 Lewis and
Fowler[40], and the valuable insights shared by Cockroft[41] during a Silicon Valley Mi-
croservices Meetup, likely played a significant role in driving the broad acceptance and
adoption of microservices within the industry.

At the heart of microservice-based architecture lies the concept of building complex appli-
cations by composing small, loosely coupled components that encapsulate specific busi-
ness capabilities and communicate through language-agnostic Application Program Inter-
face (API), inspired by Service-Oriented Architecture (SOA) principles[42]. This archi-
tectural style has gained significant popularity in cloud-based Service as a Service (SaaS)
offerings, offering advantages such as enhanced software development agility and im-
proved scalability of deployed applications [40][43]. According to Beck et al.[44], break-
ing down large applications into individual microservices fosters greater independence for
agile teams , reducing synchronization efforts and enabling each team to autonomously
deploy changes to production as per their schedule.

14

Microservice-based architectures offer advantages like independent deployment and in-
dividual scaling based on increasing traffic[45][46] [47] [48]. This approach enhances
fault-tolerance, preventing defective microservices from disrupting the entire application
[49] [50][46] [51]. These characteristics are crucial for achieving carbon-aware scaling,
ensuring resource efficiency and sustainability in cloud-based systems.

2.4 Related Works: Carbon Awareness, Microservices & Cloud Autoscaling

The related work section explores various initiatives aimed at achieving sustainability in
cloud computing, with a specific focus on Carbon Aware autoscaling. Although this area is
still in its early stages, we have identified a limited number of published papers in the last
year and a half. In the following review, we examine pioneering works that have addressed
challenges in this domain, analyze their contributions, establish connections to our current
study, and highlight any points of differentiation. By delving into these existing efforts,
we aim to contextualize our research within the broader landscape of sustainable cloud
computing practices.

Observing, the existence of a noticeable gap in addressing both performance and energy as-
pects to support the execution of microservices applications in the cloud, Nardin et al.[52]
proposed ”Elergy,” a lightweight proactive elasticity model designed for cloud-based mi-
croservices applications. Elergy adopts a differential approach by periodically reorganiz-
ing resources to execute the application with an optimal amount of resources while main-
taining or improving the performance of CPU-bound applications. Their research demon-
strated a reduction in energy consumption and competitive cost when compared to a non-
elastic scenario. Our study shares a common goal with the aforementioned study as we
also aim to enhance the energy consumption of microservices-based applications in the
public cloud. However, our approach differs in that we explore the use of carbon aware
autoscaling to achieve this objective, instead of periodically adjusting resource allocation.
Moreover, in addition to energy consumption, our empirical assessment also focuses on
analyzing the response time of the microservices-based application, providing a compre-
hensive evaluation of its performance.

15

The challenge of optimizing energy consumption and reducing carbon emissions in cloud
computing is a hot topic for researchers nowadays. Recently, James et al.[7] focused on
demand-side management by implementing a low carbon scheduling policy in Kubernetes.
They migrated energy consumption to regions with the lowest carbon intensity of electric-
ity, aiming to minimize carbon emissions. Their study provided a generic model for work-
load placement optimization based on carbon intensity and evaluated its performance in a
case study with a major public cloud provider. Similarly, our study also leverages carbon
intensity data to optimize energy consumption through autoscaling. We assess the perfor-
mance of our approach in a case study on a public cloud. However, a key difference lies in
the objective: we determine how far to scale based on carbon intensity, whereas their ap-
proach involves spatially moving the workload to regions with low carbon intensity. Both
studies contribute to the broader goal of sustainability in cloud computing, addressing the
challenge of reducing environmental impact.

With the growing popularity of temporal shifting of workloads in cloud platforms to utilize
greener electricity supply, a new challenge has emerged, leading to extended job comple-
tion times due to the suspend-resume approach. In response, Hanafy et al.[6] proposed the
concept of carbon scaling, dynamically adjusting job server allocations based on fluctua-
tions in the carbon cost of electricity supply. They developed CarbonScaler, an optimal
greedy algorithm to minimize job emissions, and successfully implemented it in Kuber-
netes using autoscaling capabilities. Their evaluation demonstrated significant carbon sav-
ings, achieving up to 50% compared to carbon agnostic execution and up to 35% improve-
ment over suspend-resume policies. Our study aligns with Hanafy et al. in leveraging
Kubernetes autoscaling based on carbon intensity data. However, we differentiate our-
selves by focusing on microservice-based web application workloads, with a significant
emphasis on analyzing the impact on response time, unlike their focus on non-real-time
workloads. Additionally, our main focus is on energy efficiency, while their emphasis lies
primarily on carbon efficiency.

16

3 Study Design

This chapter presents the study design, which includes the statement of the problem, formal
definition of the study, and the methodology employed to address the research questions.

3.1 Statement of Problem

Autoscaling offers users an automated method for dynamically adjusting the allocation
of compute, memory, or networking resources in response to fluctuations in traffic and
usage patterns[53]. As previously discussed (see Chapter 2), autoscaling encompasses two
policies: Horizontal and Vertical Autoscaling. Historically, autoscaling primarily aimed at
cost management and performance optimization. By operating in a dynamic environment,
autoscaling effectively avoids resource underutilization or overprovisioning. As depicted
in Figure 2, the horizontal autoscaler functions by creating additional software instances
in response to increased workload, and scales down when workload decreases.

Figure 2: Visual Representation of how horizontal scaling works with workload

17

The horizontal autoscaling approach efficiently manages workloads and responds to de-
mands on the software system. However when we evaluate it in terms of sustainability, it
assumes a constant carbon intensity of the energy used, leading to a fixed level of carbon
emissions. In reality, the carbon intensity can vary spatially (based on deployment location)
and temporally (time of the day)[54]. In traditional scalers with horizontal autoscaling pol-
icy (Figure 3(a)), the limit to scaling capacity remains constant and independent of carbon
intensity. On the other hand, with carbon aware scaling (Figure 3(b)), the scaling capac-
ity changes in response to the carbon intensity value, allowing the software to scale more
during low carbon intensity periods and scale less during high carbon intensity periods,
making scaling decisions based on both resource demand and carbon intensity.

(a) Horizontal Pod Scaling (b) Carbon Aware Scaling

Figure 3: visualization of how the scaling capacity of software changes for both Horizontal
Pod scaling and Carbon Aware Scaling

3.2 Study Definition

We used the Goal-Question-Model (GQM) approach to clearly define the thesis as pro-
posed by Basili et al.[55] as follows:

Investigate Carbon-Aware KEDA Autoscaling
For the purpose of Energy Consumption Evaluation
With respect to Microservice based applications
From point of view of Sustainable Software Engineer
In the context of Public Cloud

The Goal of the thesis is:

18

To Investigate Carbon-Aware KEDA Autoscaling for the purpose of Energy Consump-
tion Evaluation with respect to Microservice-Based Applications from point of view of
sustainability in the context of Public Cloud.

In order to accomplish the aforementioned Goal, we identified two primary domains that
could potentially be influenced, namely energy consumption and performance. As a result,
we formulated three main research questions to further refine our goal:

1. What is the relationship between the number of microservices and the energy con-
sumption overhead imposed by Carbon Aware KEDA Autoscaling components in
the public cloud?

In comparison to the HPA-based autoscaling, the Carbon Aware KEDA autoscaling
incorporates additional components to facilitate its intended functionality. This re-
search question aims to explore the energy consumption overhead caused by these
components and how this impact varies with changes in the number of microservices
and workloads.

2. How does the Carbon-Aware KEDA Autoscaling compare to HPA-Based Autoscal-
ing strategies in terms of energy consumption?

In order to evaluate the influence of carbon-aware autoscaling on energy consump-
tion of the microservice based application, our approach involves deploying two
distinct versions of a microservice-based application, each utilizing a different Au-
toscaling strategy. Through execution on identical workload scenarios, we will col-
lect energy consumption data for both instances. Subsequently, a comparative analy-
sis will be conducted to identify the specific impact of the carbon-aware Autoscaling
strategy on energy consumption.

3. How does the carbon-aware KEDA Autoscaling impact the response time of the
microservice based application in the public cloud?

(a) Is there a statistically significant correlation between the energy consumption
and response time of the microservice-based application when using eirher of
the autoscalers?

19

Figure 4: Visual Representation of the GQM

Performance is a key aspect to examine, and to analyze the performance impact of the
scaling strategy, we will primarily focus on gathering performance test data, specif-
ically response time, for each strategy. Subsequently, we will conduct comparative
tests to assess the performance costs associated with the scaling strategies. And fi-
nally we will investigate if there is any correlation between the energy consumption
and response time of the microservice based application.

For this purpose we have identified the following metrics:

• Energy Consumption: To assess the energy consumption of pods1 within a spe-
cific namespace of an application deployed on a public cloud, we will employ Ke-

1https://kubernetes.io/docs/concepts/workloads/pods/

20

https://kubernetes.io/docs/concepts/workloads/pods/

pler2 Kubernetes Efficient Power Level Exporter (KEPLER) as our measurement
tool. This approach will enable us to gather energy consumption data on granular
level(pod level) as it runs in Kubernetes cluster and capable of collecting energy
consumption of Kubernetes components(Pods, Nodes).

• Performance Metrics: We will mainly collect the response time of the application
from Locust3 performance testing tools.

3.3 Methodology

We provide a five-phase research methodology in order to address the RQs. Figure 5 shows
an overview, which is expanded upon below.

In Step (1) of the experiment, a rigorous selection process was employed to identify a
suitable subject for deployment on a Kubernetes cluster. Ultimately, the chosen subject
was the Sock Shop: A Microservice Demo Application(Table 1), a renowned open-source
application licensed under Apache License, Version 2.0, and freely available for testing
and demonstration purposes.

Public cloud providers exhibit variances across a range of factors such as computing and
storage capabilities, availability, security, accessibility, adaptability, guaranteed scalabil-
ity, interoperability, and cost. These distinctions contribute to their comparative position-
ing and necessitate careful evaluation when selecting a provider[56]. Hence, we have opted
to restrict our experiment to a single public cloud service provider, specifically Azure.
Azure currently possesses the second largest4 share in the global cloud service market, of-
fering an extensive array of regions for provisioning, alongside a multitude of cloud-native
services. Among the various container orchestration tools available, our choice has landed
on Kubernetes5 due to its exceptional popularity6, open-source nature, and substantial de-

2https://sustainable-computing.io/
3https://locust.io/
4https://aag-it.com/the-latest-cloud-computing-statistics/
5https://www.cisco.com/c/en/us/solutions/cloud/what-is-container-orchestration.

html
6https://www.ibm.com/topics/container-orchestration

21

https://sustainable-computing.io/
https://locust.io/
https://www.cisco.com/c/en/us/solutions/cloud/what-is-container-orchestration.html
https://www.cisco.com/c/en/us/solutions/cloud/what-is-container-orchestration.html
https://www.ibm.com/topics/container-orchestration

Figure 5: Visual Representation of the Study Design

22

veloper community support. We are specifically using managed Kubernetes service by
Azure Kubernetes Services (AKS).

In Step (2)we set up the microservice application in public cloud, for this purpose we used
Azure cloud provider, and set up two Azure Kubernetes Clusters (AKS)7 on identical type
of virtual machines using Terraform8. And finally we setup the two AKS clusters with
the different Autoscaling strategy. For the Carbon Aware KEDA autoscaling we install
Kubernetes Event-Driven Autoscaling (KEDA)9, a component that provides event driven
scale for any container running in Kubernetes, and deploy Carbon Aware KEDA Operator,
an operator that helps KEDA scale Kubernetes workloads based on carbon intensity and
Kubernetes Carbon Intensity Exporter10 operator, which builds on the carbon-aware-sdk
11, to provide carbon intensity data in the Kubernetes cluster.

In order to make horizontal scaling carbon aware, we need to incorporate a mechanism
that deals with the change in behaviour we want in response to the carbon intensity value
of the energy it is consuming. Figure 6 provides an overview of the carbon-aware KEDA
autoscaler’s design, featuring essential components such as the Carbon Aware Software
Development Kit (SDK), which acquires current and forecasted carbon intensity data from
the public cloud infrastructure. This information is then utilized by the Carbon Aware
KEDA operator. Additionally, Grafana is employed for visualizing key metrics, KEDA
executes events, Prometheus collects relevant application metrics, and the microservice-
based application is integrated. For a more in-depth understanding of the Carbon Aware
KEDA operator’s operation, refer to Figure 7.

Figure 7 illustrates the Carbon Aware KEDA operator’s capability to adapt its scaling be-
havior dynamically using carbon intensity data from third-party sources like WattTime12,
or other providers. Importantly, this operator does not necessitate any changes in appli-
cation or workload code and is compatible with any KEDA scaler. The carbon aware

7https://learn.microsoft.com/en-us/azure/aks/
8https://www.terraform.io/
9https://keda.sh/
10https://github.com/Azure/kubernetes-carbon-intensity-exporter/
11https://github.com/Green-Software-Foundation/carbon-aware-sdk
12https://www.watttime.org/

23

https://learn.microsoft.com/en-us/azure/aks/
https://www.terraform.io/
https://keda.sh/
https://github.com/Azure/kubernetes-carbon-intensity-exporter/
https://github.com/Green-Software-Foundation/carbon-aware-sdk
https://www.watttime.org/

Figure 6: Visual Representation of the Carbon Aware KEDA Autoscaling for Sock Shop
microservice-based application

KEDA operator retrieves carbon intensity data from a ConfigMap, generated by a third-
party component. In our experiment, we utilized the Kubernetes Carbon Intensity Exporter
Operator13, leveraging the carbon-aware-sdk, to provide carbon intensity data within the
Kubernetes cluster for carbon-aware decision making. The ”Kubernetes carbon intensity
exporter” retrieves 24-hour carbon intensity forecast data every 12 hours from WattTime
third party grid carbon intensity data provider, updating the configmap accordingly. The
current scaling logic based on carbon intensity alone remains independent of workload
usage.

To set the thresholds, the idea is to find ranges between minimum and maximum carbon
intensity and divide them into “buckets”, based on the demo provided in the official docu-
mentation. For our experiment, we use 3 thresholds that represent “low”, “medium”, and
“high” buckets where :

• The 3 buckets size is defined by: max − min/3 = (400 − 150)/3 = 83.3
13https://github.com/Azure/kubernetes-carbon-intensity-exporter

24

https://github.com/Azure/kubernetes-carbon-intensity-exporter

• Low bucket: carbon intensity is ≤ 233 (≤ 120 + 83)

• Medium bucket: carbon intensity is > 203 and ≤ 316 (≤ 120 + 83 + 83)

• High bucket: carbon intensity is > 286 and ≤ 400 (or higher > 400, since this is the
highest threshold defined in the array)

Configuring thresholds in an array like this gives you flexibility to create as many thresh-
olds/buckets as needed.

Figure 7: Comprehensive Visualization of the Carbon Aware KEDA Operator from the
official open-source documentation on GitHub by Microsoft Azure14.[57]

In Step (3): We prepare workloads that simulate actual end user usage of the application,
which are used to validate the overall functionality and can also be used to put simulated
load on the system using Locust15.

we run the experiment on both instances of the microservice based application, with the
identified workload scenario. As mentioned above Sock Shop is a demo implementation of
an ecommerce application in a microservice architectural style. As we were investigating

15https://locust.io/

25

https://locust.io/

(a) Read-Intensive Workload Scenario (b) Write-Intensive Workload Scenario

Figure 8: Use Case visualization of of both Read intensive and write intensive workload
scenarios

best test case scenarios to generate workload, we considered two aspects. one the type of
the application which is an ecommerce website and The API endpoint provided in the of-
ficial documentation of the Sock shop. Based on these, we identified two test scenarios to
generate workload for the microservice based application. These are Read Intensive work-
load Scenario andWrite intensiveworkload scenario (Figure 8). We particularly think these
workload scenarios are ideal for the task, as they mimic realistic simulation of e-commerce
websites, as they often experience varying degrees of read and write operations due to cus-
tomer interactions. By using these scenarios, we can more accurately simulate real-world
user behaviours, such as browsing products(read-intensive) and placing orders(write inten-
sive), they also provide comprehensive testing that covers critical aspects of the sock-shop,
allowing us to assess the system’s performance under different types of user interactions,

26

it also suits the scalability assessment of the sock shop by gauging the system’s scalability
by measuring its ability to handle increased loads and different system microservices is af-
fected by read and write intensive scenarios which is what we want in for our experiment.
For this experiment we used 300 virtual users and 30 Spawn rate to generate the needed
workload. Detail description of this process is given in section 4.

In Step (4), we performed data analysis using R scripts, which included data exploration,
statistical description of the independent variable for each hypothesis, normality checks,
data normalization, one-way Analysis of Variance (ANOVA), Welch two-sample t-test,
Cohen’s d effect size test, correlation tests, and necessary visualizations. Detail description
of this process is given in section 6.

In Step (5), we conduct a thorough analysis of the results to identify and communicate the
key findings of the study. This is achieved through proper visualization and description
of the data. The practical review concludes by summarizing the main takeaways from the
analysis. Detail description of this process is given in section 7.

27

4 Experiment Planning

With the primary aim of exploring the energy consumption of carbon-aware autoscaling
for microservice applications within the realm of the public cloud, we have meticulously
devised a well-structured and reproducible experiment. The experimental design has been
thoughtfully crafted to ensure that our objectives are pursued in a systematic manner, en-
abling reliable replication of the study.

4.1 Subject Selection

To ensure an appropriate subject selection for our experiment, we evaluated severalmicroservice-
based applications. After careful consideration, we opted to focus on the sock-shop mi-
croservice exemplar1. This particular application serves as a widely utilized resource in
both industry and academia, aiding in the demonstration and testing of microservice and
cloud-native technologies. The sock-shop application boasts a design that encompasses
minimal expectations, utilizing Domain Name Service (DNS) for service discovery(Table
1). Furthermore, its compatibility with deployment on a Kubernetes cluster makes it well-
suited for integration with Kepler. This integration enables us to capture and analyze vari-
ous energy consumption metrics pertaining to different Kubernetes components, including
Pods and Nodes.

During the initial phase of our study involving public cloud service providers, we con-
ducted an extensive evaluation of the top 10 largest cloud providers, as listed in the tech-
nologymegazine2. Among these providers, we specifically selected Azure due to its robust
offerings. Azure encompasses a comprehensive portfolio of over 200 products and cloud
services, encompassing four distinct categories of cloud computing: Infrastructure as a
Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS), and Serverless.
Additionally, Azure’s reputation and technical expertise, particularly with our esteemed

1https://microservices-demo.github.io/
2https://technologymagazine.com/top10/top-10-biggest-cloud-providers-in-the-world-in-2023

28

https://microservices-demo.github.io/
https://technologymagazine.com/top10/top-10-biggest-cloud-providers-in-the-world-in-2023

thesis advisor specializing in this domain, led us to choose Azure as the public cloud in-
frastructure for our experiment.

Component Language / Framework(Port) Database / Broker(Port)

Carts Java / Spring Boot (80) MongoDB (27017)
Catalogue Go (80) MySQL (3306)
Frontend HTML + Javascript (80) Redis (6379)
Orders Java / Spring Boot (80) MongoDB (27017)
Payment Go (80)
Queue Master Java / Spring Boot (80) RabbitMQ (5672)
Shipping Java / Spring Boot (80) RabbitMQ (5672)
User Go (80) MongoDB (27017)

Table 1: Overview of Sock ShopMicroservices Components, Covering Various Use Cases
from Frontend to Persistence and their technology stack

4.2 Experiment Variable

In order to address the research questions outlined in Section 3.2, our study focuses on
Autoscaling strategies as the primary independent variable. As a result, we have identified
two key treatments derived from the autoscaling approach:

1. Carbon-Aware KEDA autoscaling strategy

2. HPA-Based autoscaling strategy

The experiment involves the utilization of a microservice application served with either
the Carbon-Aware KEDA Autoscaling strategy, which incorporates the Carbon Intensity
Exporter through Kubernetes Event Driven Autoscaling (KEDA)3, or the HPA-Based au-
toscaling strategy. To ensure consistency across both treatments, we employKepler, Prometheus4,
and Grafana5 as common components while deploying the microservice application on the

3https://keda.sh/
4https://prometheus.io/docs/introduction/overview/
5https://grafana.com/

29

https://keda.sh/
https://prometheus.io/docs/introduction/overview/
https://grafana.com/

Azure platform. To enhance the experiment’s reliability, we leverage Terraform6 for iden-
tical cloud resource provisioning, enabling us to create a standardized infrastructure for
deploying the microservice application.

Name Description

Energy consumption
The energy consumption, measured in joules (J), refers to
the amount of energy utilized by the public cloud to exe-
cute the workloads across various microservices’ pods.

Response Time
The response time, measured in milliseconds (ms), de-
notes the duration taken by the microservice application
server to handle requests generated by the workload.

Table 2: Dependent variables considered for this research

4.3 Experimental Hypothesis

Based on the experiment definition, the mean value (µ) of {vwc} will be used to calculate
the difference for each variable. v represents the dependent variables {e, r} described in
Table 3. w indicates different workloads, while c represents a subset of enabled carbon-
aware settings for a microservice application {true, false}. The nature of the experiment
is a two-tailed hypothesis.

Let µewm represent the average value of a dependent variable(e) when running different
workloads(w), and a subset of microservices configuration (m), The null and alternative
hypotheses for the research questions are formulated as follows:

For microservices configuration:
H0,wm : µewm = µewm, ∀w ∧ ∀m

Ha,b : µewfalse ̸= µewtrue, ∀w

The null hypothesis (H0,wc) posits that there is no significant difference in the average
energy consumption values of the Carbon Aware KEDA components for different con-
figurations of microservices. Conversely, the alternative hypothesis (Ha,b) suggests that

6https://www.terraform.io/

30

https://www.terraform.io/

there is a significant difference in in the average energy consumption values of the Carbon
Aware KEDA components for different configurations of microservices.

Given that µewc represents the average value of a dependent variable (e) when running
different workloads(w), and a subset of enabled carbon-aware settings (c), the null and al-
ternative hypotheses for the research questions is formulated as follows:

For energy consumption:
H0,wc : µewc = µewc, ∀w ∧ ∀c

Ha,b : µewfalse ̸= µewtrue, ∀w

The null hypotheses (H0,wc) states that, there is no significant difference in the average
energy consumption values of the microservice-based application between Carbon Aware
KEDA and HPA Based Autoscaling methods. Conversely, the alternative hypotheses
(Ha,b) states that there is significant difference in the average energy consumption val-
ues of the microservice-based application between Carbon Aware KEDA and HPA Based
Autoscaling methods.

The null and alternative hypotheses for the research questions are formulated based on
the average response time value of the dependent variable (r), denoted by µrwc, while
considering different workloads (w) and a subset of enabled carbon-aware settings (c).

For Response Time:
H0,wc : µrwc = µrwc, ∀w ∧ ∀c

Ha,b : µrwfalse ̸= µrwtrue, ∀w

The null hypothesis (H0,wc) suggests that there is no significant difference in the average
response time values of the microservice-based application between Carbon Aware KEDA
and HPA Based Autoscaling methods. Conversely, the alternative hypothesis (Ha,b) pro-
poses that there is a significant difference in the average response time values of themicroservice-
based application between Carbon Aware KEDA and HPA Based Autoscaling methods.

Similarly for the correlation, where ρ represents the population correlation coefficient, the
null and alternative hypotheses for the research questions is formulated as follows:

For Energy and Response Time Correlatoin:

31

H1 : ρ = 0
Ha : ρ ̸= 0

The null hypothesis (H1) posits that there is no statistically significant correlation between
the energy consumption and response time of the microservice-based application when
operating on either of the autoscalers. Conversely, the alternative hypothesis (Ha) sug-
gests that there is a statistically significant correlation between the energy consumption
and response time of the microservice-based application when operating on either of the
autoscalers.

4.4 Experiment Design

We conducted a rigorous 2x2 factorial design experiment to assess the influence of different
autoscaling strategies on the dependent variables (energy consumption and response time)
in a microservice application. We thoroughly measured the dependent variables for each
combination of autoscaler, workload scenarios, and hypotheses, ensuring comprehensive
analysis of the impacts.

To address RQ1, we conducted four configurations of microservices (1 MS, 4 MS, 8 MS,
and 14MS), with measurements taken both with and without workload to assess the energy
overhead imposed by Carbon Aware KEDA components. To ensure accuracy and account
for variability[58], each trial was repeated six times for every microservice configuration.
For RQ2 and RQ3, we tested the microservice-based application with all combinations of
autoscaler and workload scenarios. To mitigate bias and account for computational re-
sources, the application was cleared and redeployed after each trial. To enhance precision,
each trial was measured six times, focusing solely on dependent variables during workload
processing.

4.5 Data Analysis

The collected data consists of numerical values for each dependent variable under different
workload scenarios with both autoscaler treatments. This data is subjected to quantitative

32

analysis, and the decision process for its analysis is illustrated in figure 9, with a detailed
explanation provided below.

Data Exploration: The collected data is initially subjected to descriptive statistics, calcu-
lating key metrics such as the minimum value, first quartile, median, mean, third quartile,
maximum value, and standard deviation for each variable, namely, energy consumption
and response time. The data is then visualized using histograms to gain insights into the
distribution and dispersion of each metric.

Figure 9: Visual Representation of the Analysis Decision

Normality Check: Subsequently, a Shapiro-Wilk test7 is conducted to assess whether the
data approximates a normal distribution. The resulting p-value from the test indicates the
likelihood of the data being normally distributed. If the p-value is less than 0.05, it suggests
that the data is not normally distributed. Conversely, if the p-value is greater than or equal
to 0.05, it indicates that the data can be assumed to follow a normal distribution.

Non-Normal Data Transformation: If the data is found to be not normally distributed, the
bestNormalize R package is utilized to transform it into a normalized form. Specifically,
the orderNorm8 transformation option is selected for this experiment. The transformation
process is visualized using a Q-Q plot, where the data should approximate a diagonal line
if it is normally distributed. The Shapiro-Wilk normality test is then performed on the
transformed data to verify normality. If the p-value from this test is greater than 0.05, it
indicates that the data can be considered normally distributed.

7https://en.wikipedia.org/wiki/Shapiro%E2%80%93Wilk_test
8https://www.rdocumentation.org/packages/bestNormalize/versions/1.9.0/topics/

orderNorm

33

https://en.wikipedia.org/wiki/Shapiro%E2%80%93Wilk_test
https://www.rdocumentation.org/packages/bestNormalize/versions/1.9.0/topics/orderNorm
https://www.rdocumentation.org/packages/bestNormalize/versions/1.9.0/topics/orderNorm

Normality Assumption: For RQ1, since there are four different treatments representing the
number of microservice configurations (01 MS, 04 MS, 08 MS, and 14 MS), a one-way
ANOVA is employed to assess the statistical significance of differences among these pop-
ulations. On the other hand, the Welch two-sample t-test is utilized to test the significance
between the populations of energy consumption and response time for the two instances of
autoscaler treatments. As the Welch two-sample t-test only shows the overall significant
difference in result. Cohen’s D test is done to show the effect size of the result.

4.6 Study Replicability

To facilitate experiment verification and replication, we publicly share the replication pack-
age on GitHub9. The package includes (i) YAML scripts for microservice application de-
ployment, HPA scalers, KEDA Scalers, and Carbon Aware KEDA Scalers, (ii) raw data
from the experiment, (iii) R scripts for data analysis, (iv) relevant diagrams not included
in the paper, and (v) a README file providing guidelines for replicating the experiment.

9https://github.com/HabsB/Green-Autoscaling

34

https://github.com/HabsB/Green-Autoscaling

5 Experiment Execution

This section presents the technical setup employed for conducting the experiment. It covers
the tools, infrastructure, and software used for deploying microservices and measurements.
The experiment execution is divided into three main steps: (1) experiment preparation, (2)
infrastructure setup, and (3) experiment execution and measurement. Each step is detailed
in the following paragraphs.

5.1 Experiment Preparation

The experiment utilized theAzure public cloudwith virtualmachines of type Standard_D2s_v5,
as detailed in Table 3. All experimental trials were conducted on this infrastructure. Energy
consumption of the microservices was measured using Kepler. Prometheus was employed
for metric recording and Grafana for visualization. Remote code execution was facilitated
through the Azure Command Line Interface (CLI). The Azure server operated on Common
Base Linux Mariner, VERSION=”2.0.20230621”.

The experiment preparation begins by installing Azure AKS on both application instances.
The selected subject’s microservice-based application, along with all its microservices, is
then deployed using the kubectl command. After ensuring that the application is running,
the scalers are deployed in a similar manner. For the Carbon Aware KEDA instance, a
custom resource called ”CarbonAwareKedaScaler” is also deployed to set the maximum
replicas that KEDA can scale up to based on carbon intensity. Figure 4 presents a schematic
overview of the experiment infrastructure, comprising two components: (1) an Azure in-
frastructure responsible for deploying the subject and all carbon-awareKEDA components,
as well as collecting experimental data, and (2) a client-side from a laptop that initiates,
concludes, and visualizes the test results of the experiment.

35

Size Standard_D2s_v5
vCPU 2
Memory: GiB 8
Temp storage (SSD) GiB Remote Storage Only
Max data disks 4
Max uncached disk throughput: IOPS/MBps 3750/85
Max burst uncached disk throughput: IOPS/MBps2 10000/1200
Max NICs 2
Max network bandwidth (Mbps) 12500

Table 3: Virtual machine specification used for the Azure infrastructure

5.2 Infrastructure Setup

To control the experiment environment, we installedMicrosoft Azure CLI1, a cross-platform
command-line tool, on the laptop. The deployment of the microservice-based application,
KEDA scalers, and custom resources was prepared in Yet Another Mark-up Language
(YAML)2 files to be executed by Azure CLI. Workload scenarios were managed using Lo-
cust, a scriptable and scalable performance testing tool written in Python. Prometheus,
Grafana, Kepler, and all custom scraping resources were preinstalled on both servers. Ad-
ditionally, KEDA, Carbon Aware KEDA operator, and the Carbon Intensity Exporter were
preinstalled on the AKS cluster to leverage the Carbon Aware KEDA autoscaling strategy
in one of the servers.

First, all deployments and services of the Sock Shop microservices-based application are
installed in the ”sock-shop” namespace, as shown in Step 1a of Figure 10. Next, the ap-
propriate Scaler script, either HPA or Carbon Aware KEDA, is applied depending on the
instance of the application, as shown in Step 1b. In the case of Carbon Aware KEDA au-
toscaling, custom scalers are applied (Step 1c). Once all deployments are ready, the work-
load scenarios are executed using Locus in Step 2. Energy consumption data is collected

1https://github.com/Azure/azure-cli
2https://yaml.org/

36

https://github.com/Azure/azure-cli
https://yaml.org/

Figure 10: Visual Representation of Experiment Setup

using Kepler, which leverages extended Berkeley Packet Filter (ePBF) to probe CPU per-
formance counters and Linux kernel tracepoints. This data is then exported to Prometheus
along with other performance metrics (Step 3). Energy consumption can be visualized
in Grafana using the ”port-forward” command, accessible through any browser (Step 4).
Each treatment and workload scenario combination is repeated 6 times, and between each
run, all deployments are removed, and resources are released to ensure a clean environment
for each iteration.

5.3 Measurement

During each run of the experiment, measurements of energy consumption and response
time are collected and stored. To obtain the energy consumption, the average energy con-
sumed by each replica during the workload’s time stamp is calculated, and the sum of the
averages for all replicas in the pod is determined. The average response time is measured
using Locust after each run. Data for each treatment is then aggregated. To ensure accurate
measurement and data collection, certain conditions were implemented in the execution en-
vironment. To avoid biases caused by network instability, all other browsers were closed,

37

and the only device connected to the WiFi was the laptop conducting the experiment. Each
trial was performed separately to prevent caching or unreleased resources from affecting
the results. The experiment environment was kept clean after each trial, and all resources
were redeployed for the next round of the experiment.

38

6 Evaluation

In this section, we present the experiment results, exploring the collected data to gain in-
sights into its distribution. Subsequently, the data is assessed for normality, and the hy-
potheses defined in Section 4 are tested. The outcomes concerning energy consumption
and response time are displayed through appropriate plots and tables.

6.1 Carbon Aware KEDA components and their energy overhead (RQ1)

Data Exploration: Table 4 displays descriptive statistics for energy consumption of the
Carbon Aware Keda components with varying microservices configurations (one, four,
eight, and fourteen microservices). The mean energy consumption remains consistent,
ranging from approximately 8.86 to 8.91, as the number of microservices increases. The
standard deviations (SD) of energy consumption across different configurations vary slightly,
ranging from approximately 1.873 to 1.950, indicating some variability in energy con-
sumption among setupswhile remaining relatively close to themean. To provide an overview
of energy consumption based on the number of microservices, a box plot is used (Figure
11).

1 Microservice 4 Microservices 8 Microservices 14 Microservices

Minimum 6.41 6.347 6.552 6.368
1st Quartile 7.212 7.278 7.322 7.233
Median 9.619 9.615 9.614 9.614
Mean 8.866 8.867 8.911 8.86
Standard Deviation 1.949 1.941 1.873 1.95
3rd Quartile 10.327 10.327 10.325 10.326
Maximum 10.573 10.564 10.563 10.563

Table 4: Descriptive Statistics for RQ1 - Number of Microservices and their Energy over-
head

39

26.50

26.55

26.60

26.65

26.70

01 MS 04 MS 08 MS 14 MS
Number of Microservices

E
ne

rg
y

C
on

su
m

pt
io

n(
J)

Microservices 01 MS 04 MS 08 MS 14 MS

Energy Usage (J) Carbon Aware KEDA extra components as per number of Microservices

Figure 11: Box Plot visualization of energy consumption overhead by Carbon Aware
KEDA components as per the number of Microservices

Normality Check: Before testing the hypothesis, it is crucial to assess normality, as it de-
termines the choice between parametric or non-parametric tests and influences measures
of central tendency and dispersion[59]. Figure 12 displays a histogram of the energy us-
age distribution obtained from the microservices experiment, indicating non-normality. To
confirm this, the Shapiro-Wilk normality test[60] was conducted, resulting inW= 0.73858
and a p-value < 3.408e-05, confirming non-normality, as the p-value is below the signifi-
cance threshold of 0.05.

Prior to conducting the ANOVA test[61], the data undergoes orderNorm1 transformation
to achieve normal distribution, as demonstrated in the Q-Q plot2 (Figure 13. The normality
is further confirmed by the Shapiro-Wilk test for the transformed data, withW = 0.99605
and p-value = 1.

1https://rdrr.io/github/petersonR/bestNormalize/man/orderNorm.html
2https://it.wikipedia.org/wiki/Q-Q_plot

40

https://rdrr.io/github/petersonR/bestNormalize/man/orderNorm.html
https://it.wikipedia.org/wiki/Q-Q_plot

Figure 12: Histogram visualization for distribution of energy consumption overhead by
Carbon Aware KEDA components as per the number of Microservices

Figure 13: Q-Q Plot visualization for normalized data of energy consumption overhead by
Carbon Aware KEDA components as per the number of Microservices

41

Hypotheses Testing: H01: The null hypothesis posits that the average energy consumption
values for the Carbon Aware Keda components with varying numbers of microservices are
equal. To test this hypothesis, a one-way ANOVA test is conducted on the components,
considering four treatments. As shown in Table 5, the p-value exceeds the significance
level of 0.05, leading to the failure to reject the null hypothesis.

Df Sum Sq Mean Sq F value p-value

Microservices 1 0.384 0.3844 0.379 0.544
Residuals 22 22.318 1.0145

Table 5: One way ANOVA for RQ1 - Number of Microservices Vs Energy Overhead

6.2 Energy comparison of HPA Based & Carbon Aware KEDA Autoscaling
(RQ2)

Data Exploration: Table 6 presents the results of the data exploration for the energy con-
sumption of the two Autoscalers - Carbon Aware KEDA and HPA Based as per microser-
vices. Each method comprises 336 data points, providing a robust sample size for analysis.
The descriptive statistics offer valuable insights into the distribution of energy consumption
within each method. For the Carbon Aware KEDA Autoscaler, the energy consumption
ranges from 3.11 to 29.94, with a mean value of 9.66. The standard deviation, which mea-
sures the spread of data points around the mean, is calculated to be 7.266. This indicates a
moderate level of variability in energy consumption across the data points. In comparison,
the HPA Based method exhibits a wider range of energy consumption, spanning from 3.13
to 65.58. The mean energy consumption for this autoscaler is higher at 15.642, and the
standard deviation is larger, measuring at 16.079. These results suggest a greater variation
in energy consumption within the HPA Based method, with some data points experiencing
significantly higher energy usage compared to others. To present a comprehensive view
of energy consumption relative to the autoscaler employed, a box plot is employed (Fig-
ure 14). Similarly, The statistical summary table 7 compares two autoscaling approaches,
”Carbon Aware KEDA” and ”HPA Based”. Carbon Aware KEDA generally demonstrated

42

lower values for key metrics such as minimum, median, mean, and maximum, suggesting
its potential efficiency and effectiveness compared to HPABased.

Carbon Aware KEDA HPA Based

Minimum 3.11 3.13
1st Quartile 4.252 3.245
Median 6.59 7.17
Mean 9.66 15.642
Standard Deviation 7.266 16.079
3rd Quartile 13.67 28.422
Maximum 29.94 65.58

Table 6: Descriptive Statistics for RQ2 - Energy Consumption comparison of HPA based
and Carbon Aware KEDA Autoscalers as per each microservices

Autoscaling Carbon_Aware_KEDA HPA_Based

Minimum 104.0 175.01
1st Quartile 114.0 181.0
Median 115.0 221.0
Mean 125.01 219.01
Standard Deviation 21.1 38.6
3rd Quartile 138. 256.
Maximum 164.0 260.0

Table 7: Descriptive Statistics for RQ2 - Energy Consumption comparison of HPA based
and Carbon Aware KEDA Autoscalers for microservice based application

Normality Check: The energy consumption data obtained from the experiment was as-
sessed for normality using both a histogram and the Shapiro-Wilk test. The histogram
displayed in Figure 15 revealed that the data is not normally distributed. The Shapiro-
Wilk test further supported this finding, yielding a significant p-value of 9.157e-16, well
below the significance threshold of 0.05.

To enable t-test analysis, the data was transformed into a normal distribution using the
orderNorm transformation. The effectiveness of the transformation was confirmed through
the Q-Q plot in Figure 16, which displayed a visually normal distribution. Subsequently,

43

100

150

200

250

 Carbon_Aware_KEDA HPA_Based
Autoscaling

E
ne

rg
y

C
on

su
m

pt
io

n(
Jo

ul
e)

Autoscaling Carbon_Aware_KEDA HPA_Based

Energy Usage (J) of Sock Shop as per the Autoscaling strategy emplyed

Figure 14: Box Plot visualization of energy consumption by the microservice based appli-
cation as per the Autoscaling strategy employed

44

Figure 15: Histogram visualization for distribution of Energy Consumption of the mi-
croservice based application for both HPA based and Carbon Aware KEDA Autoscalers

the Shapiro-Wilk test for the transformed data yielded a high p-value of 0.9912, further
confirming its normality.

Figure 16: Q-Q Plot visualization for normalized data of Energy Consumption of the mi-
croservice based application for both HPA based and Carbon Aware KEDA Autoscalers

45

Hypotheses Testing: H01: The null hypothesis states that there is no significant differ-
ence in the average energy consumption values of the microservice-based application be-
tween Carbon Aware KEDA and HPA Based Autoscaling methods. AWelch two-sample t-
test[62]was conducted to compare the average energy consumption values of themicroservice-
based application for Carbon Aware KEDA and HPABased Autoscaling methods. The test
resulted in a p-value of 0.002497, which is less than the significance level of 0.05, indi-
cating a significant difference between the two autoscalers. Therefore, we reject the null
hypothesis and accept the alternative hypothesis, concluding that there is a significant dif-
ference in the average energy consumption values between the two methods.

Effect Size: To assess the magnitude of the alternative hypothesis, we examine the Cohen’s
d effect size[63], which yields a value of -2.42, indicating a large effect size. The 95%
confidence interval for the effect size is [-3.93, -0.85]. This indicates a substantial differ-
ence in the average energy consumption of the microservice-based application between the
two autoscalers being compared. The autoscaling strategy has a significant impact on the
outcome, demonstrating its importance in influencing energy consumption.

The density curves of energy usage for both autoscalers is illustrated by Figure 21

6.3 Energy Saving impact on Response Time (RQ3)

Data Exploration: The statistical summary table 8 presents data for two autoscaling meth-
ods, Carbon Aware KEDA and HPA Based. For the Carbon Aware KEDA method, the
response time ranges from 1740 to 2792 (ms), with a mean of 2206.433 and a standard
deviation of 443.471. On the other hand, the HPA Based method shows a narrower re-
sponse time range, from 1404.9 to 1854.2, with a lower mean of 1639.133 and a smaller
standard deviation of 187.083. To provide a comprehensive perspective on response time
concerning the autoscaler utilized, a box plot is employed for visualization (Figure 17).

Normality Check: Normality of the response time data obtained from the experiment was
evaluated using a histogram and the Shapiro-Wilk test. While the histogram and Q-Q plot
in Figure 20 did not clearly indicate the distribution’s normality, the Shapiro-Wilk test

46

1600

2000

2400

2800

 Carbon_Aware_KEDA HPA_Based
Autoscaling

R
es

po
ns

e
T

im
e(

m
s)

Autoscaling Carbon_Aware_KEDA HPA_Based

Response Time (ms) of Sock Shop as per the Autoscaling strategy emplyed

Figure 17: Box Plot visualization of response time by the microservice based application
as per the Autoscaling strategy employed

47

yielded a p-value of 0.0551, which is greater than the significance threshold of 0.05. This
result suggests that the data can be considered as normally distributed.

Figure 18: Histogram Visualization Figure 19: Q-Q Plot visualization

Figure 20: Histogram & Q-Q plot visualization of response time for both HPA based and
Carbon Aware KEDA Autoscalers

Carbon Aware KEDA HPA Based

Minimum 1740 1404.9
1st Quartile 1911.125 1409.9
Median 2054.8 1485
Mean 2206.433 1688.35
Standard Deviation 443.471 187.083
3rd Quartile 2564.025 1758.425
Maximum 2792 1854.2

Table 8: Descriptive Statistics for RQ3 - Response time of both HPA based and Carbon
Aware KEDA Autoscalers

Hypotheses Testing: H01: The null hypothesis states that there is no significant differ-
ence in the average response time values of the microservice-based application between
Carbon Aware KEDA and HPA Based Autoscaling methods. A Welch two-sample t-test

48

Figure 21: Density Curve visualization of energy usage for both HPA based and Carbon
Aware KEDA Autoscalers

49

was performed to compare the average energy consumption values of the microservice-
based application for Carbon Aware KEDA and HPA Based Autoscaling methods. The
test yielded a p-value of 0.02447, which is less than the significance level of 0.05, indicat-
ing a significant difference between the two autoscalers. Consequently, we reject the null
hypothesis, which posited no significant difference, and accept the alternative hypothesis,
concluding that there is a notable distinction in the average energy consumption values
between the two methods.

Effect Size: The Cohen’s d effect size of 1.67 denotes a significant impact size. The 95%
confidence interval [0.30, 2.98] indicates a substantial difference in means between the
response time of the microservice-based application for the two autoscalers. The density
curves of energy usage for both autoscalers is illustrated by 22

Hypotheses Testing: H02: The null hypothesis postulates that there is no statistically sig-
nificant correlation between the energy consumption and response time of themicroservice-
based application when operating on either of the autoscalers. The Pearson’s product-
moment correlation coefficient[64] for the relationship between Energy Consumption and
Response Time variables is -0.6029, indicating a moderate negative correlation between
the two. The statistically significant p-value of 0.03798 at a significance level of 0.05
supports the existence of this correlation. The 95% confidence interval for the correlation
coefficient [-0.8743, -0.0443] further confirms the significant negative association between
Energy Consumption and Response Time. In summary, the findings suggest that as the En-
ergy consumption of themicroservice-based application decreases, the response time of the
application tends to increase, with a moderate level of correlation between the variables.
These results provide evidence to reject the null hypothesis (H02) and indicate that there
is indeed a correlation between energy consumption and response time when running on
both the Carbon Aware KEDA and HPA Based autoscalers.

50

Figure 22: Density Curve visualization of response time for both HPA based and Carbon
Aware KEDA Autoscalers

7 Discussion

This section delves into the implications and interpretations of the results discussed in
Section 6, organized according to the respective research questions. Each interpretation is
presented in detail to provide a comprehensive understanding of the findings.

7.1 Results and Findings

RQ1. What is the relationship between the number of microservices and the energy con-
sumption overhead caused by carbon-aware KEDA autoscaling components in the public
cloud?

51

To address RQ1, a hypothesis related to the number of microservices and its impact on
energy consumption was tested using a one-way ANOVA test. The results led to the ac-
ceptance of the null hypothesis, indicating that the number of microservices does not have
a statistically significant impact on the energy overhead imposed by the Carbon Aware
KEDA components. This finding is further illustrated in Figure 23, considering both sce-
narios with and without applying workload.

The investigation of energy consumption cost associated with the Carbon Aware KEDA
components yielded an intriguing result. The energy overhead remained consistent regard-
less of workload and number ofmicroservices, as depicted in Figure 23, which suggests that
the energy cost for running 4 microservices is similar to that of running 14 microservices.
As a result, utilizing the Carbon Aware KEDA autoscaling becomes more advantageous
when managing larger numbers of microservices, such as in scenarios with 10s and 100s
of microservices.

Finding 1
The energy cost efficiency of the Carbon Aware KEDA autoscaling provides a sig-
nificant advantage in managing larger quantities of microservices. The energy cost
remains constant across different configurations, making it a practical and effec-
tive approach for optimizing energy consumption in extensive microservices de-
ployments without incurring additional costs as the microservices scale.

RQ2: How does the Carbon-Aware KEDAAutoscaling compare to HPA-Based autoscaling
strategies in terms of energy consumption?

The null hypothesis states that there is no significant difference in the average energy con-
sumption values of the microservice-based application between Carbon Aware KEDA and
HPA Based Autoscaling methods. The energy efficiency comparison of the microservice-
based application under these two autoscaling methods resulted in rejecting the null hy-
pothesis, indicating that the Carbon Aware KEDA autoscaler leads to significantly less en-
ergy consumption of the microservice-based application in comparison to the HPA based
autoscaler. The difference was confirmed by the Cohen’s d effect size test, which indi-
cated that the Carbon Aware KEDA autoscaler significantly reduces energy consumption

52

2 4 6 8 10 12 14

26
.0

26
.5

27
.0

27
.5

No of Microservices

E
ne

rg
y

C
on

su
m

pt
io

n(
j)

With workload
Without workload

Figure 23: Line graph visualization of Number of microservices and energy usage by Car-
bon Aware KEDA Autoscalers with and without workload

of the microservice-based application (by 42.9%) compared to the HPA-based autoscaler,
resulting in an average energy reduction of 38.24% per microservice.

We further analyzed the test results by creating a box plot for the energy consumption of
each microservice in the sock shop microservice-based application. The energy consump-
tion difference across the application was found to be consistent with the energy consump-
tion comparison of each individual microservice (Figure 24). Microservices with exten-
sive workloads showed a significant energy consumption difference, suggesting that the

53

0

20

40

60

carts carts−db cataloguecatalogue−dbfront−end orders orders−db paymentqueue−masterrabbitmqsession−db shipping user user−db
Microservices

E
ne

rg
y

C
on

su
m

pt
io

n(
J)

Autoscaling Carbon_Aware_KEDA HPA_Based

Energy Usage (J) of microservices in Sock Shop as per Autocaling employed

Figure 24: Box Plot visualization of all microservices and their energy usage under both
Carbon Aware KEDA and HPA Based Autoscalers

carbon-aware KEDA is well-suited for microservices with heavy workloads compared to
those with lower workloads.

Finding 2
The Carbon Aware KEDA autoscaler demonstrates notably lower energy consump-
tion for the microservice-based application compared to the HPA-based autoscaler,
with a particular advantage observed for microservices experiencing heavy work-
loads in contrast to those with lighter workloads.

RQ3: How does the Carbon-Aware KEDA Autoscaling impact the response time of the
microservices in the public cloud?

RQ3.1: Is there a statistically significant correlation between the energy consumption and
response time of the microservice-based application when using either of the autoscalers?

To answer the RQs, Two separate hypotheses were tested in this study. The first hypothesis,
H01, examined the impact on response time, while the second hypothesis, H02, investi-

54

gated the correlation between energy consumption and response time in the microservices-
based application. The results of the Welch Two Sample t-test and Pearson’s product-
moment correlation coefficient showed the rejection of both H01 and H02 respectively,
indicating that the utilization of Carbon Aware KEDA autoscaling led to an average in-
crease in the application’s response time by 30.68%. Furthermore, the findings suggested
a negative correlation between energy savings and response time in the application.

1600

2000

2400

2800

Read_Intensive Write_Intensive
Microservices

E
ne

rg
y

C
on

su
m

pt
io

n(
J)

Autoscaling Carbon_Aware_KEDA HPA_Based

Response Time (ms) of Sock Shop as per Workload Scenario Tested

Figure 25: Box Plot visualization of response time for both test scenarios

The impact on response time was thoroughly analyzed for both test case scenarios, and the
results consistently demonstrated a significant increase in response time when employing
the Carbon Aware KEDA autoscaler in the microservices-based application (Figure 25).
Due to the notable impact on response time, the Carbon Aware KEDA autoscaler is best
suited for low priority workloads that do not require real-time processing, such as batch
processing or machine learning model training.

55

Finding 3
The significant impact on response time makes the Carbon Aware KEDA autoscaler
well-suited for handling low-priority workloads that do not necessitate real-time pro-
cessing, such as batch processing or machine learning model training.

7.2 Sustainability Impact Assessment

The primary objective of this study is to contribute to the ongoing endeavor of achieving
environmental sustainability in cloud computing. To achieve this goal, we have devel-
oped a carbon-aware autoscaling approach for the horizontal pod autoscaling policy in
microservice-based applications deployed on the public cloud. We conducted empirical
experiments to quantitatively analyze the approach’s impact on energy consumption and
response time of the microservice-based application. Additionally, in this section we have
thoroughly examined the potential sustainability impact of the software artifact produced
in this research.

To conduct a sustainability impact assessment of the carbon-aware autoscaler, we em-
ployed Sustainability Awareness Framework (SusAF), a framework designed to assist re-
searchers and practitioners in evaluating the direct, enabling, and systemic effects of social-
technical systems. The framework also takes into account various dimensions of sustain-
ability, including individual, social, environmental, economic, and technical aspects.[65]
By utilizing SusAF, we are able to comprehensively analyze the sustainability implications
of the carbon-aware autoscaling approach.

Figure 26 illustrates two immediate impacts, one positive and one negative, on the en-
vironmental dimension of sustainability. As discussed in Section 7.1, the carbon-aware
scaler components introduce their own energy overhead like any piece of software, which
can be considered a negative aspect. However, in the broader context, these components
contribute significantly to reducing the overall energy consumption of microservice-based
applications, aligning with the primary objective of the autoscaling approach. This imme-
diate impact facilitates carbon emission reduction (enabling impact), leading to a systemic
impact in achieving environmental sustainability.

56

Figure 26: SusAF visualization of the Carbon Aware Autoscaler Sustainability Impact

Additionally, Figure 26 provides further insight into the immediate impact on the economic
sustainability dimension. The carbon-aware autoscaling approach facilitates a reduction in
energy costs, promoting the economic sustainability of software products leveraging this
approach. On the technical sustainability dimension, the introduction of a new software
artifact entails the need for maintenance and operational skills, which has associated eco-
nomic costs. While this aspect may be perceived as a negative impact on the economic

57

dimension of sustainability, it can also be viewed positively as an enabling impact that
creates new opportunities for skilled engineers, enhancing individual sustainability.

Moreover, the autoscaler is built using several open-source cloud-native technologies and
is licensed as open-source on GitHub. This has an immediate impact on the social dimen-
sion of sustainability, fostering collaboration and contributing to the strength of the open-
source community, thus having an enabling impact. Finally, it promotes the development
of more carbon-aware software, leading to a systemic impact on the technical dimension of
sustainability with increased adoption and development of sustainable software solutions.

58

8 Threats To Validity

In this section, we assess various potential threats to the validity of our experiment, using
the classification framework proposed by Cook and Campbell[66]. This framework cat-
egorizes validity threats into four distinct components: internal, external, construct, and
conclusion validity.

8.1 Internal Threats

Internal threats to validity in our study encompass maintaining a consistent and stable ex-
perimental environment, as well as addressing potential variability in the experimental
results. To tackle these concerns, we utilized Terraform to ensure identical Kubernetes
clusters for both autoscaling strategies, promoting a uniform and stable setup. Conducting
multiple trials with diverse workload scenarios further enhanced the reliability and robust-
ness of our analysis, mitigating the impact of inherent variability and reducing the risk of
drawing biased conclusions. These measures bolstered the credibility of our findings, pro-
viding a comprehensive understanding of the impact of the autoscaling strategies on the
microservice-based application’s performance and energy consumption.

8.2 External Threats

An external threat to the validity of our study pertains to the generalizability of our findings
to a broader range of real-world scenarios. To address this concern, we carefully selected a
cloud infrastructure that ranks 2nd in terms of market share among public cloud providers.
Additionally, we chose a representative microservice-based application exemplar for our
experiment. However, it is important to note that the selected microservice-based applica-
tion is not a real-world application. To mitigate this threat, we recommend replicating this
experiment with real-world microservice-based applications that are commonly encoun-
tered in practical cloud environments. Conducting the study with diverse and authentic

59

applications can enhance the external validity of our findings, enabling more confident
generalizations and inferences about the impact of the investigated autoscaling strategies
on different real-world scenarios. By considering a broader range of applications and cloud
infrastructures, future research can provide a more comprehensive understanding of the
implications and practical implications of the studied autoscaling techniques.

8.3 Construct Threats

To ensure the construct validity of our study, we took measures to address potential threats.
We provided a detailed explication of constructs in Chapter 3, outlining the factors and re-
search questions, and logically selected treatments and subjects in Section ??, ensuring a
well-structured experimental design. To enhance the reliability and validity of our mea-
surements, we utilized Kepler for granular energy consumption measurement and Locust
for accurate response time measurement, thus bolstering the overall construct validity of
our investigation.

8.4 Conclusion Threats

To mitigate the conclusion validity threat in our experiment, we employed rigorous statis-
tical analysis and utilized appropriate evaluation methods. By conducting multiple trials
of the experiment with different workload scenarios, we aimed to obtain consistent and
reliable results. Additionally, we used appropriate statistical tests, such as the Welch Two
Sample t-test and Cohen’s d effect size test, to compare the performance of the autoscaling
strategies accurately. Moreover, we ensured that the sample size was adequate and repre-
sentative of the population under study, which further contributes to the conclusion validity
of our findings. By addressing these aspects, we sought to minimize any potential threats
to the validity of the conclusions drawn from our experiment on the impact of autoscaling
strategies for microservice-based applications with Kubernetes in the public cloud.

60

9 Conclusion

This empirical experiment examines the impact of carbon aware autoscaling on microser-
vices based applications in the public cloud. We utilized two autoscaling treatments: HPA-
based and Carbon Aware KEDA, employing both write-intensive and read-intensive work-
load scenarios. The analysis of the experiment results revealed the following key findings:
(i)The Carbon Aware KEDA autoscaler exhibits higher energy cost efficiency, making
it advantageous for managing larger quantities of microservices, (ii)The Carbon Aware
KEDA autoscaler demonstrates significantly lower energy consumption compared to the
HPA-based autoscaler, especially for microservices under heavy workloads, (iii)The Car-
bon Aware KEDA autoscaler is well-suited for low-priority workloads that do not require
real-time processing, such as batch processing or machine learning model training, due to
its positive impact on response time.

In future studies, extending the experiment to workload scheduling based on spatial and
temporal carbon intensity values could provide valuable insights. Additionally, testing the
approachwith real-worldmicroservices-based applications that do not necessitate real-time
processing could further validate its effectiveness.

61

REFERENCES

[1] European Commission, Corporate sustainability reporting, URL: https://eur-
lex.europa.eu/legal- content/EN/TXT/PDF/?uri=CELEX:32022L2464,
Accessed: 16.12.2022.

[2] E. Gelenbe and Y. Caseau, “The impact of information technology on energy con-
sumption and carbon emissions,” Ubiquity, vol. 2015, no. June, Jun. 2015. DOI:
10.1145/2755977. [Online]. Available: https://doi.org/10.1145/2755977.

[3] I. Fé, R. Matos, J. Dantas, et al., “Performance-cost trade-off in auto-scaling mech-
anisms for cloud computing,” Sensors (Basel), vol. 22, no. 3, p. 1221, Feb. 2022.
DOI: 10.3390/s22031221.

[4] P. Singh, P. Gupta, K. Jyoti, and A. Nayyar, “Research on auto-scaling of web appli-
cations in cloud: Survey, trends and future directions,” Scalable Computing: Prac-
tice and Experience, vol. 20, pp. 399–432, May 2019. DOI: 10 . 12694 / scpe .
v20i2.1537.

[5] L. M. N’dri, M. Islam, and M. Kakinaka, “Ict and environmental sustainability:
Any differences in developing countries?” Journal of Cleaner Production, vol. 297,
p. 126 642, 2021, ISSN: 0959-6526. DOI: https : / / doi . org / 10 . 1016 / j .
jclepro.2021.126642. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0959652621008623.

[6] W. A. Hanafy, Q. Liang, N. Bashir, D. E. Irwin, and P. J. Shenoy, “Carbonscaler:
Leveraging cloudworkload elasticity for optimizing carbon-efficiency,”ArXiv, vol. abs/2302.08681,
2023. [Online]. Available: https://api.semanticscholar.org/CorpusID:
257020069.

[7] A. James and D. Schien, “A low carbon kubernetes scheduler,” in ICT for Sus-
tainability, 2019. [Online]. Available: https://api.semanticscholar.org/
CorpusID:195693946.

62

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32022L2464
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32022L2464
https://doi.org/10.1145/2755977
https://doi.org/10.1145/2755977
https://doi.org/10.3390/s22031221
https://doi.org/10.12694/scpe.v20i2.1537
https://doi.org/10.12694/scpe.v20i2.1537
https://doi.org/https://doi.org/10.1016/j.jclepro.2021.126642
https://doi.org/https://doi.org/10.1016/j.jclepro.2021.126642
https://www.sciencedirect.com/science/article/pii/S0959652621008623
https://www.sciencedirect.com/science/article/pii/S0959652621008623
https://api.semanticscholar.org/CorpusID:257020069
https://api.semanticscholar.org/CorpusID:257020069
https://api.semanticscholar.org/CorpusID:195693946
https://api.semanticscholar.org/CorpusID:195693946

[8] Green Software Foundation, Software carbon intensity specification (sci), https:
//github.com/Green-Software-Foundation/sci/blob/dev/Software_
Carbon_Intensity/Software_Carbon_Intensity_Specification.md, 2023.

[9] Microsoft Learn, The principles of sustainable software engineering,Microsoft Learn,
2023. [Online]. Available: https://learn.microsoft.com/en-us/training/
modules/sustainable-software-engineering-overview/.

[10] Microsoft. “Core philosophies of sustainable software engineering.” (Last accessed:
May 2023), Microsoft Learn. (2021).

[11] K.Kinsiveer. “Sustainable software engineering.” (Last accessed:May 2023), Helmes.
(unknown).

[12] Microsoft. “Sustainable software engineering overview.” (Last accessed:May 2023),
Microsoft Learn. (unknown).

[13] G. Learn. “Principles of sustainable software engineering.” (Last accessed: May
2023), Green Software Foundation. (unknown).

[14] Microsoft. “Carbon efficiency principle.” (Last accessed: May 2023), Microsoft
Learn. (unknown).

[15] G. Learn. “Carbon efficiency principle.” (Last accessed:May 2023), Green Software
Foundation. (unknown).

[16] Microsoft. “Energy efficiency principle.” (Last accessed: May 2023), Microsoft
Learn. (unknown).

[17] G. Learn. “Energy efficiency principle.” (Last accessed:May 2023), Green Software
Foundation. (unknown).

[18] Microsoft. “Carbon awareness principle.” (Last accessed: May 2023), Microsoft
Learn. (unknown).

[19] G. Learn. “Carbon awareness principle.” (Last accessed: May 2023), Green Soft-
ware Foundation. (unknown).

[20] Microsoft. “Hardware efficiency principle.” (Last accessed: May 2023), Microsoft
Learn. (unknown).

[21] G. Learn. “Hardware efficiency principle.” (Last accessed: May 2023), Green Soft-
ware Foundation. (unknown).

63

https://github.com/Green-Software-Foundation/sci/blob/dev/Software_Carbon_Intensity/Software_Carbon_Intensity_Specification.md
https://github.com/Green-Software-Foundation/sci/blob/dev/Software_Carbon_Intensity/Software_Carbon_Intensity_Specification.md
https://github.com/Green-Software-Foundation/sci/blob/dev/Software_Carbon_Intensity/Software_Carbon_Intensity_Specification.md
https://learn.microsoft.com/en-us/training/modules/sustainable-software-engineering-overview/
https://learn.microsoft.com/en-us/training/modules/sustainable-software-engineering-overview/

[22] G. Learn. “Measurement principle.” (Last accessed: May 2023), Green Software
Foundation. (unknown).

[23] T. Anquetin, G. Coqueret, B. Tavin, and L. Welgryn, “Scopes of carbon emissions
and their impact on green portfolios,” Economic Modelling, vol. 115, p. 105 951,
2022. DOI: 10.1016/j.econmod.2022.105951.

[24] G. Learn. “Climate commitment principle.” (Last accessed: May 2023), Green Soft-
ware Foundation. (unknown).

[25] M. Learn, Principle climate commitment, https://learn.microsoft.com/en-
us/training/modules/sustainable-software-engineering-overview/8-
climate-commitments, Last accessed: May 2023.

[26] E. Radhika and G. Sudha Sadasivam, “A review on prediction based autoscaling
techniques for heterogeneous applications in cloud environment,” Materials To-
day: Proceedings, vol. 45, pp. 2793–2800, 2021, International Conference on Ad-
vances in Materials Research - 2019, ISSN: 2214-7853. DOI: https : / / doi .
org/10.1016/j.matpr.2020.11.789. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S2214785320394657.

[27] T. Chen and R. Bahsoon, “Self-adaptive and sensitivity-aware qos modeling for the
cloud,” in 2013 8th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems (SEAMS), 2013, pp. 43–52. DOI: 10.1109/SEAMS.
2013.6595491.

[28] Microsoft, Autoscaling, Microsoft Learn, 2023. [Online]. Available: https : / /
learn.microsoft.com/en-us/training/modules/sustainable-software-
engineering-overview/.

[29] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and D. Epema, “A
performance analysis of ec2 cloud computing services for scientific computing,” in
Cloud Computing, D. R. Avresky, M. Diaz, A. Bode, B. Ciciani, and E. Dekel, Eds.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 115–131, ISBN: 978-3-
642-12636-9.

[30] T. T. Nguyen, Y. J. Yeom, T. Kim, D. H. Park, and S. Kim, “Horizontal pod au-
toscaling in kubernetes for elastic container orchestration,” Sensors (Basel), vol. 20,
no. 16, p. 4621, Aug. 2020. DOI: 10.3390/s20164621.

64

https://doi.org/10.1016/j.econmod.2022.105951
https://learn.microsoft.com/en-us/training/modules/sustainable-software-engineering-overview/8-climate-commitments
https://learn.microsoft.com/en-us/training/modules/sustainable-software-engineering-overview/8-climate-commitments
https://learn.microsoft.com/en-us/training/modules/sustainable-software-engineering-overview/8-climate-commitments
https://doi.org/https://doi.org/10.1016/j.matpr.2020.11.789
https://doi.org/https://doi.org/10.1016/j.matpr.2020.11.789
https://www.sciencedirect.com/science/article/pii/S2214785320394657
https://www.sciencedirect.com/science/article/pii/S2214785320394657
https://doi.org/10.1109/SEAMS.2013.6595491
https://doi.org/10.1109/SEAMS.2013.6595491
https://learn.microsoft.com/en-us/training/modules/sustainable-software-engineering-overview/
https://learn.microsoft.com/en-us/training/modules/sustainable-software-engineering-overview/
https://learn.microsoft.com/en-us/training/modules/sustainable-software-engineering-overview/
https://doi.org/10.3390/s20164621

[31] M. Learn, Autoscaling component - best practices for cloud architectures, https:
//learn.microsoft.com/en-us/azure/architecture/best-practices/
auto-scaling, Last accessed: May 2023, Microsoft.

[32] Aws auto scaling types: Best practices, https://www.developer.com/web-
services/aws-auto-scaling-types-best-practices/, Last accessed: May
2023.

[33] V. Podolskiy, A. Jindal, andM. Gerndt, “Iaas reactive autoscaling performance chal-
lenges,” Jul. 2018, pp. 954–957. DOI: 10.1109/CLOUD.2018.00144.

[34] N. Roy, A. Dubey, and A. Gokhale, “Efficient autoscaling in the cloud using predic-
tive models for workload forecasting,” in 2011 IEEE 4th International Conference
on Cloud Computing, 2011, pp. 500–507. DOI: 10.1109/CLOUD.2011.42.

[35] M. Abdullah, W. Iqbal, A. Erradi, and F. Bukhari, “Learning predictive autoscaling
policies for cloud-hosted microservices using trace-driven modeling,” in 2019 IEEE
International Conference on Cloud Computing Technology and Science (Cloud-
Com), 2019, pp. 119–126. DOI: 10.1109/CloudCom.2019.00028.

[36] D.-H. LUONG, H.-T. THIEU, A. OUTTAGARTS, and Y. GHAMRI-DOUDANE,
“Predictive autoscaling orchestration for cloud-native telecom microservices,” in
2018 IEEE 5G World Forum (5GWF), 2018, pp. 153–158. DOI: 10.1109/5GWF.
2018.8516950.

[37] M. Abdullah, W. Iqbal, A. Mahmood, F. Bukhari, and A. Erradi, “Predictive au-
toscaling of microservices hosted in fog microdata center,” IEEE Systems Journal,
vol. 15, no. 1, pp. 1275–1286, 2021. DOI: 10.1109/JSYST.2020.2997518.

[38] AWS. “Scheduled scaling for amazon ec2 auto scaling.” Accessed: 28-August-2018,
Amazon Web Services. (2018), [Online]. Available: https://docs.aws.amazon.
com/autoscaling/ec2/userguide/scheduletime.html.

[39] S. El Kafhali, I. El Mir, K. Salah, et al., “Dynamic scalability model for container-
ized cloud services,” Arabian Journal for Science and Engineering, vol. 45, no. 12,
pp. 10 693–10 708, 2020. DOI: 10.1007/s13369-020-04847-2. [Online]. Avail-
able: https://doi.org/10.1007/s13369-020-04847-2.

65

https://learn.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://learn.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://learn.microsoft.com/en-us/azure/architecture/best-practices/auto-scaling
https://www.developer.com/web-services/aws-auto-scaling-types-best-practices/
https://www.developer.com/web-services/aws-auto-scaling-types-best-practices/
https://doi.org/10.1109/CLOUD.2018.00144
https://doi.org/10.1109/CLOUD.2011.42
https://doi.org/10.1109/CloudCom.2019.00028
https://doi.org/10.1109/5GWF.2018.8516950
https://doi.org/10.1109/5GWF.2018.8516950
https://doi.org/10.1109/JSYST.2020.2997518
https://docs.aws.amazon.com/autoscaling/ec2/userguide/scheduletime.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/scheduletime.html
https://doi.org/10.1007/s13369-020-04847-2
https://doi.org/10.1007/s13369-020-04847-2

[40] J. Lewis and M. Fowler,Microservices: A definition of this new architectural term,
https://www.martinfowler.com/articles/microservices.html, (Last
accessed: May 2023), 2014.

[41] A. Cockroft,Migrating to microservices, https://youtu.be/1wiMLkXz26M, (Last
accessed: May 2023), 2014.

[42] Y. Wang, H. Kadiyala, and J. Rubin, “Promises and challenges of microservices: An
exploratory study,”Empirical Software Engineering, vol. 26, no. 4, p. 63,May 2021,
ISSN: 1573-7616. DOI: 10.1007/s10664-020-09910-y. [Online]. Available:
https://doi.org/10.1007/s10664-020-09910-y.

[43] C. Richardson, Microservice architecture, https://microservices.io/, (Last
accessed: July 2020), 2014.

[44] K. Beck, M. Beedle, A. van Bennekum, et al., Manifesto for agile software devel-
opment, https://agilemanifesto.org,
(Last accessed: May 2023), 2001.

[45] L. Chen, “Microservices: Architecting for continuous delivery and devops,” in 2018
IEEE International Conference on Software Architecture (ICSA), 2018, pp. 39–46.

[46] W. Luz, E. Agilar, M. C. de Oliveira, C. E. de Melo, G. Pinto, and R. Bonifácio,
“An experience report on the adoption of microservices in three brazilian govern-
ment institutions,” in Proceedings of Brazilian Symposium on Software Engineering
(SBES), 2018, pp. 32–41.

[47] J. Soldani, D. A. Tamburri, and W.-J. van den Heuvel, “The pains and gains of mi-
croservices: A systematic grey literature review,” Journal of Systems and Software,
vol. 146, pp. 215–232, 2018.

[48] M. Viggiato, R. Terra, H. Rocha, M. T. Valente, and E. Figueiredo, “Microservices
in practice: A survey study,” in Brazilian Workshop on Software Visualization, Evo-
lution and Maintenance (VEM), 2018, pp. 1–8.

[49] A. Bucchiarone, N. Dragoni, S. Dustdar, S. T. Larsen, and M. Mazzara, “From
monolithic to microservices: An experience report from the banking domain,” IEEE
Software, vol. 35, no. 3, pp. 50–55, 2018.

[50] J. Fritzsch, J. Bogner, S. Wagner, and A. Zimmermann, “Microservices migration
in industry: Intentions, strategies, and challenges,” in Proceedings of the 2019 IEEE

66

https://www.martinfowler.com/articles/microservices.html
https://youtu.be/1wiMLkXz26M
https://doi.org/10.1007/s10664-020-09910-y
https://doi.org/10.1007/s10664-020-09910-y
https://microservices.io/
https://agilemanifesto.org

International Conference on Software Maintenance and Evolution (ICSME), 2019,
pp. 481–490.

[51] D. Taibi, V. Lenarduzzi, and C. Pahl, “Processes, motivations, and issues for migrat-
ing to microservices architectures: An empirical investigation,” IEEE Cloud Com-
puting, vol. 4, no. 5, pp. 22–32, 2017.

[52] I. Nardin, R. Righi, T. Lopes, C. André da Costa, H. Yeom, and H. Köstler, “On
revisiting energy and performance in microservices applications: A cloud elasticity-
driven approach,” Parallel Computing, vol. 108, p. 102 858, Oct. 2021. DOI: 10.
1016/j.parco.2021.102858.

[53] Cloud autoscaling, https://www.techtarget.com/searchcloudcomputing/
definition/autoscaling, Last accessed May 2023.

[54] Microsoft Learn. “Carbon awareness.” (Year of Access (e.g., 2023)).
[55] V. R. Basili, G. Caldiera, and D. Rombach, “The Goal Question Metric Approach,”

in Encyclopedia of Software Engineering, Wiley, 1994, pp. 528–532.
[56] S. S. S. N. Usha and K. Srinivasan, “A comparative study on three selective cloud

providers,” International Journal on Cybernetics Informatics (IJCI), vol. 11, no. 4,
pp. 167–178, 2022. DOI: 10 . 5121 / ijci . 2022 . 110413. [Online]. Available:
https://www.ijcionline.com/paper/11/11422ijci13.pdf.

[57] Carbon Aware KEDA Operator, https://github.com/Azure/carbon-aware-
keda-operator, Last accessed: May 2023.

[58] L. Ardito, R. Coppola, M. Morisio, M. Torchiano, and M. Risi, “Methodological
guidelines for measuring energy consumption of software applications,” Sci. Pro-
gram., vol. 2019, Jan. 2019, ISSN: 1058-9244. DOI: 10.1155/2019/5284645.
[Online]. Available: https://doi.org/10.1155/2019/5284645.

[59] P. Mishra, C. M. Pandey, U. Singh, A. Gupta, C. Sahu, and A. Keshri, “Descriptive
statistics and normality tests for statistical data,” Annals of Cardiac Anaesthesia,
vol. 22, no. 1, pp. 67–72, Jan. 2019. DOI: 10.4103/aca.ACA_157_18.

[60] Z. Hanusz, J. Tarasinska, and W. Zieliński, “Shapiro–wilk test with known mean,”
Revstat Statistical Journal, vol. 14, pp. 89–100, Feb. 2016. DOI: 10.57805/revstat.
v14i1.180.

67

https://doi.org/10.1016/j.parco.2021.102858
https://doi.org/10.1016/j.parco.2021.102858
https://www.techtarget.com/searchcloudcomputing/definition/autoscaling
https://www.techtarget.com/searchcloudcomputing/definition/autoscaling
https://doi.org/10.5121/ijci.2022.110413
https://www.ijcionline.com/paper/11/11422ijci13.pdf
https://github.com/Azure/carbon-aware-keda-operator
https://github.com/Azure/carbon-aware-keda-operator
https://doi.org/10.1155/2019/5284645
https://doi.org/10.1155/2019/5284645
https://doi.org/10.4103/aca.ACA_157_18
https://doi.org/10.57805/revstat.v14i1.180
https://doi.org/10.57805/revstat.v14i1.180

[61] E. Ostertagova and O. Ostertag, “Methodology and application of one-way anova,”
American Journal of Mechanical Engineering, vol. 1, pp. 256–261, Nov. 2013. DOI:
10.12691/ajme-1-7-21.

[62] Z. Lu and K.-H. Yuan, “Welch’s t test,” in Jan. 2010, pp. 1620–1623. DOI: 10.
13140/RG.2.1.3057.9607.

[63] C. R. Brydges, “Effect Size Guidelines, Sample Size Calculations, and Statistical
Power in Gerontology,” Innovation in Aging, vol. 3, no. 4, igz036, Sep. 2019, ISSN:
2399-5300. DOI: 10.1093/geroni/igz036. eprint: https://academic.oup.
com / innovateage / article - pdf / 3 / 4 / igz036 / 33010974 / igz036 . pdf.
[Online]. Available: https://doi.org/10.1093/geroni/igz036.

[64] M.-T. Puth, M. Neuhäuser, and G. D. Ruxton, “Effective use of pearson’s product–
moment correlation coefficient,” Animal Behaviour, vol. 93, pp. 183–189, 2014,
ISSN: 0003-3472. DOI: 10.1016/j.anbehav.2014.05.003. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0003347214002127.

[65] B. Penzenstadler, N. Seyff, S. Betz, et al., “Vision paper: The sustainability aware-
ness framework (susaf) as a de-facto standard?” English,CEURWorkshop Proceed-
ings, vol. 3378, Apr. 2023, Funding Information: Part of this work has been funded
by the Area of Advance at Chalmers under project number 37460087, and the Dept.
of Research and Universities (Catalonia Gov.) under Grant Ref. 2021 SGR 01396.
Publisher Copyright: © 2023 Copyright © 2023 for this paper by its authors. Use
permitted under Creative Commons License Attribution 4.0 International (CC BY
4.0); Joint of REFSQ-2023 Workshops, Doctoral Symposium, Posters and Tools
Track and Journal Early Feedback, REFSQ-JP 2023 ; Conference date: 17-04-2023
Through 20-04-2023, ISSN: 1613-0073.

[66] E. T. Koh and W. L. Owen, “Experimental and quasi-experimental research,” in
Introduction to Nutrition and Health Research. Boston, MA: Springer US, 2000,
pp. 196–217, ISBN: 978-1-4615-1401-5. DOI: 10.1007/978- 1- 4615- 1401-
5_11. [Online]. Available: https://doi.org/10.1007/978-1-4615-1401-
5_11.

68

https://doi.org/10.12691/ajme-1-7-21
https://doi.org/10.13140/RG.2.1.3057.9607
https://doi.org/10.13140/RG.2.1.3057.9607
https://doi.org/10.1093/geroni/igz036
https://academic.oup.com/innovateage/article-pdf/3/4/igz036/33010974/igz036.pdf
https://academic.oup.com/innovateage/article-pdf/3/4/igz036/33010974/igz036.pdf
https://doi.org/10.1093/geroni/igz036
https://doi.org/10.1016/j.anbehav.2014.05.003
https://www.sciencedirect.com/science/article/pii/S0003347214002127
https://doi.org/10.1007/978-1-4615-1401-5_11
https://doi.org/10.1007/978-1-4615-1401-5_11
https://doi.org/10.1007/978-1-4615-1401-5_11
https://doi.org/10.1007/978-1-4615-1401-5_11

	ABSTRACT
	ACKNOWLEDGMENTS
	SYMBOLS AND ABBREVIATIONS
	Introduction
	Background and Related Works
	Sustainable Software Engineering
	Cloud Autoscaling
	Autoscaling Policies
	Autoscaling Components
	Types of Autoscaling

	Microservice Architectural Style
	Related Works: Carbon Awareness, Microservices & Cloud Autoscaling

	Study Design
	Statement of Problem
	Study Definition
	Methodology

	Experiment Planning
	Subject Selection
	Experiment Variable
	Experimental Hypothesis
	Experiment Design
	Data Analysis
	Study Replicability

	Experiment Execution
	Experiment Preparation
	Infrastructure Setup
	Measurement

	Evaluation
	Carbon Aware KEDA components and their energy overhead (RQ1)
	Energy comparison of HPA Based & Carbon Aware KEDA Autoscaling (RQ2)
	 Energy Saving impact on Response Time (RQ3)

	Discussion
	Results and Findings
	Sustainability Impact Assessment

	Threats To Validity
	Internal Threats
	External Threats
	Construct Threats
	Conclusion Threats

	Conclusion
	REFERENCES

